Freescale Semiconductor

Technical Data

RF Power Field Effect Transistor

N-Channel Enhancement-Mode Lateral MOSFET

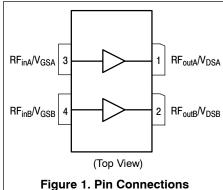
Designed primarily for pulsed wideband applications with frequencies up to 150 MHz. Device is unmatched and is suitable for use in industrial, medical and scientific applications.

 Capable of Handling 10:1 VSWR, @ 50 Vdc, 130 MHz, 1000 Watts Peak Power

Features

- Qualified Up to a Maximum of 50 V_{DD} Operation
- Integrated ESD Protection
- Excellent Thermal Stability
- Designed for Push-Pull Operation
- Greater Negative Gate-Source Voltage Range for Improved Class C Operation
- RoHS Compliant
- In Tape and Reel. R6 Suffix = 150 Units per 56 mm, 13 inch Reel.


Document Number: MRF6VP11KH


Rev. 4, 12/2008

√RoHS

MRF6VP11KHR6

10-150 MHz, 1000 W, 50 V LATERAL N-CHANNEL BROADBAND RF POWER MOSFET

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +110	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Storage Temperature Range	T _{stg}	- 65 to +150	°C
Case Operating Temperature	T _C	150	°C
Operating Junction Temperature	TJ	200	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value (1,2)	Unit
Thermal Resistance, Junction to Case			
Case Temperature 80°C, 1000 W Pulsed, 100 μsec Pulse Width, 20% Duty Cycle	$R_{\theta JC}$	0.03	°C/W

- 1. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.
- 2. Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers*. Go to http://www.freescale.com/rf. Select Documentation/Application Notes AN1955.

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	2 (Minimum)
Machine Model (per EIA/JESD22-A115)	A (Minimum)
Charge Device Model (per JESD22-C101)	IV (Minimum)

Table 4. Electrical Characteristics ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics (1)					11
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	10	μAdc
Drain-Source Breakdown Voltage (I _D = 300 mA, V _{GS} = 0 Vdc)	V _{(BR)DSS}	110	_	_	Vdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 50 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	100	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 100 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	5	mA
On Characteristics					*
Gate Threshold Voltage ⁽¹⁾ (V _{DS} = 10 Vdc, I _D = 1600 μAdc)	V _{GS(th)}	1	1.63	3	Vdc
Gate Quiescent Voltage (2) (V _{DD} = 50 Vdc, I _D = 150 mAdc, Measured in Functional Test)	V _{GS(Q)}	1.5	2.2	3.5	Vdc
Drain-Source On-Voltage (1) (V _{GS} = 10 Vdc, I _D = 4 Adc)	V _{DS(on)}	_	0.28	_	Vdc
Dynamic Characteristics (1)				II.	1
Reverse Transfer Capacitance ($V_{DS} = 50 \text{ Vdc} \pm 30 \text{ mV(rms)ac} @ 1 \text{ MHz}, V_{GS} = 0 \text{ Vdc}$)	C _{rss}	_	3.3	_	pF
Output Capacitance ($V_{DS} = 50 \text{ Vdc} \pm 30 \text{ mV} \text{ (rms)ac} @ 1 \text{ MHz}, V_{GS} = 0 \text{ Vdc}$)	C _{oss}	_	147	_	pF
Input Capacitance ($V_{DS} = 50 \text{ Vdc}$, $V_{GS} = 0 \text{ Vdc} \pm 30 \text{ mV(rms)ac}$ @ 1 MHz)	C _{iss}	_	506	_	pF
			•		

Functional Tests $^{(2)}$ (In Freescale Test Fixture, 50 ohm system) V_{DD} = 50 Vdc, I_{DQ} = 150 mA, P_{out} = 1000 W Peak (200 W Avg.), f = 130 MHz, 100 μ sec Pulse Width, 20% Duty Cycle

Power Gain	G _{ps}	24	26	28	dB
Drain Efficiency	η_{D}	69	71	_	%
Input Return Loss	IRL	_	-16	-9	dB

- 1. Each side of device measured separately.
- 2. Measurement made with device in push-pull configuration.

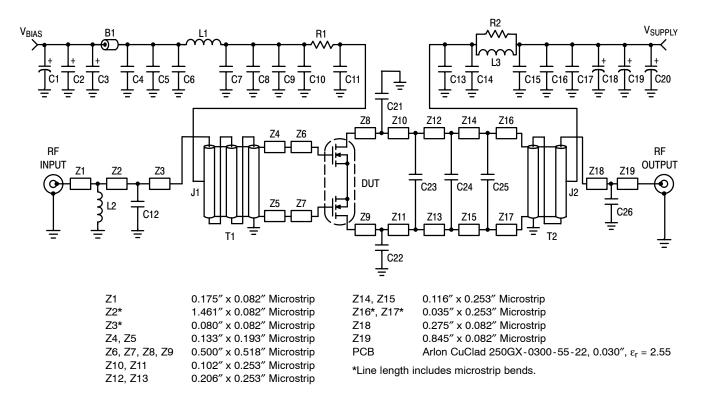
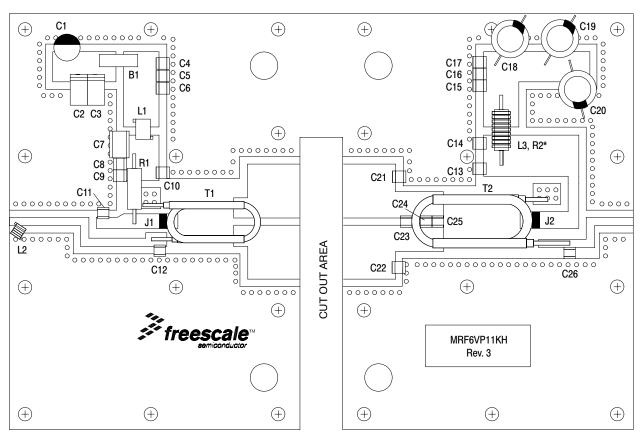
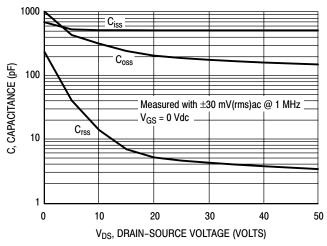



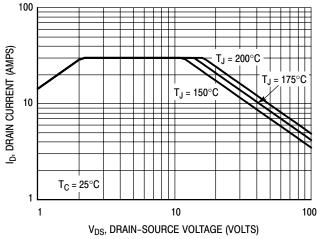
Figure 2. MRF6VP11KHR6 Test Circuit Schematic

Table 5. MRF6VP11KHR6 Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
B1	95 Ω, 100 MHz Long Ferrite Bead	2743021447	Fair-Rite
C1	47 μF, 50 V Electrolytic Capacitor	476KXM050M	Illinois Cap
C2	22 μF, 35 V Tantalum Capacitor	T491X226K035AT	Kemet
C3	10 μF, 35 V Tantalum Capacitor	T491D106K035AT	Kemet
C4, C9, C17	10K pF Chip Capacitors	ATC200B103KT50XT	ATC
C5, C16	20K pF Chip Capacitors	ATC200B203KT50XT	ATC
C6, C15	0.1 μF, 50 V Chip Capacitors	CDR33BX104AKYS	Kemet
C7	2.2 μF, 50 V Chip Capacitor	C1825C225J5RAC	Kemet
C8	0.22 μF, 100 V Chip Capacitor	C1825C223K1GAC	Kemet
C10, C11, C13, C14	1000 pF Chip Capacitors	ATC100B102JT50XT	ATC
C12	18 pF Chip Capacitor	ATC100B180JT500XT	ATC
C18, C19, C20	470 μF, 63 V Electrolytic Capacitors	EKME630ELL471MK25S	Multicomp
C21, C22	47 pF Chip Capacitors	ATC100B470JT500XT	ATC
C23	75 pF Chip Capacitor	ATC100B750JT500XT	ATC
C24, C25	100 pF Chip Capacitors	ATC100B101JT500XT	ATC
C26	33 pF Chip Capacitor	ATC100B330JT500XT	ATC
J1, J2	Jumpers from PCB to T1 and T2	Copper Foil	
L1	82 nH Inductor	1812SMS-82NJLC	CoilCraft
L2	47 nH Inductor	1812SMS-47NJLC	CoilCraft
L3*	10 Turns, #18 AWG Inductor, Hand Wound	Copper Wire	
R1	1 KΩ, 1/4 W Axial Leaded Resistor	CMF601000R0FKEK	Vishay
R2	20 Ω, 3 W Chip Resistor	CPF320R000FKE14	Vishay
T1	Balun	TUI-9	Comm Concepts
T2	Balun	TUO-4	Comm Concepts


^{*}L3 is wrapped around R2.

^{*}L3 is wrapped around R2.


Figure 3. MRF6VP11KHR6 Test Circuit Component Layout

TYPICAL CHARACTERISTICS

Note: Each side of device measured separately.

Figure 4. Capacitance versus Drain-Source Voltage

Note: Each side of device measured separately.

Figure 5. DC Safe Operating Area

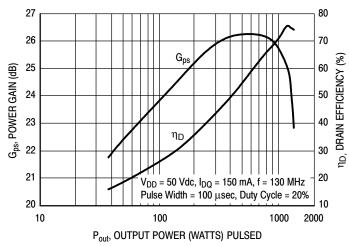


Figure 6. Pulsed Power Gain and Drain Efficiency versus Output Power

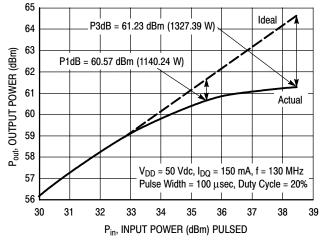


Figure 7. Pulsed Output Power versus Input Power

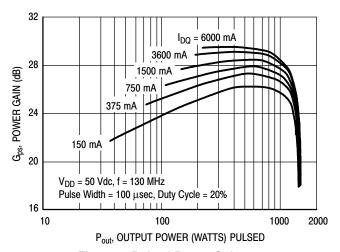


Figure 8. Pulsed Power Gain versus Output Power

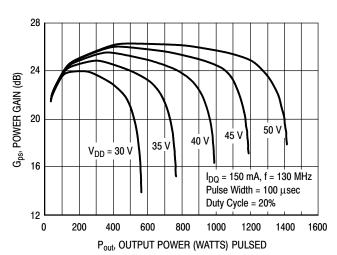


Figure 9. Pulsed Power Gain versus Output Power

MRF6VP11KHR6

TYPICAL CHARACTERISTICS

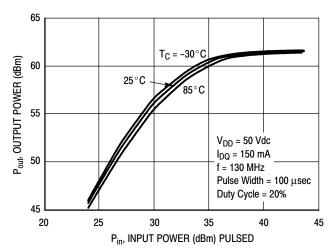


Figure 10. Pulsed Output Power versus Input Power

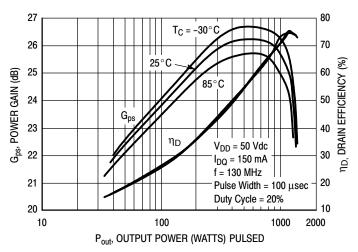
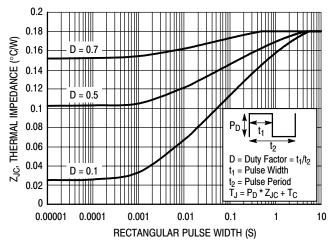
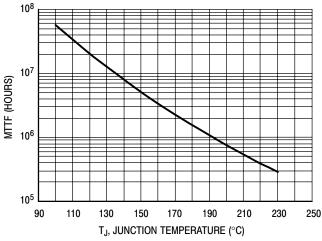
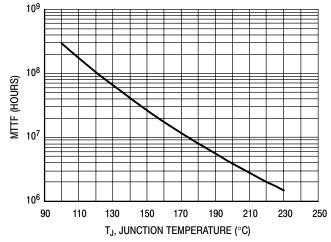


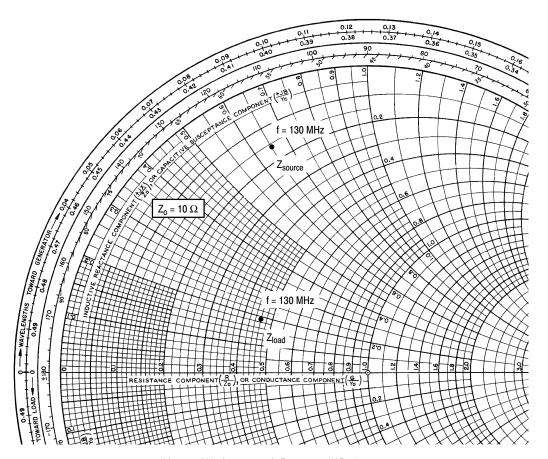
Figure 11. Pulsed Power Gain and Drain Efficiency versus Output Power


Figure 12. Maximum Transient Thermal Impedance

This above graph displays calculated MTTF in hours when the device is operated at V_DD = 50 Vdc, P_out = 1000 W CW, and η_D = 70%.

MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.


Figure 13. MTTF versus Junction Temperature - CW

This above graph displays calculated MTTF in hours when the device is operated at V_{DD} = 50 Vdc, P_{out} = 1000 W Peak, Pulse Width = 100 μsec , Duty Cycle = 20%, and η_D = 71%.

MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

Figure 14. MTTF versus Junction Temperature - Pulsed

 V_{DD} = 50 Vdc, I_{DQ} = 150 mA, P_{out} = 1000 W Peak

f MHz	Z_{source}	$oldsymbol{Z_{load}}{\Omega}$
130	1.58 + j6.47	4.6 + j1.85

Z_{source} = Test circuit impedance as measured from gate to gate, balanced configuration.

Z_{load} = Test circuit impedance as measured from drain to drain, balanced configuration.

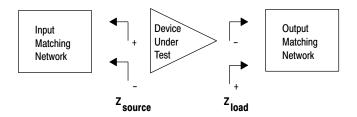
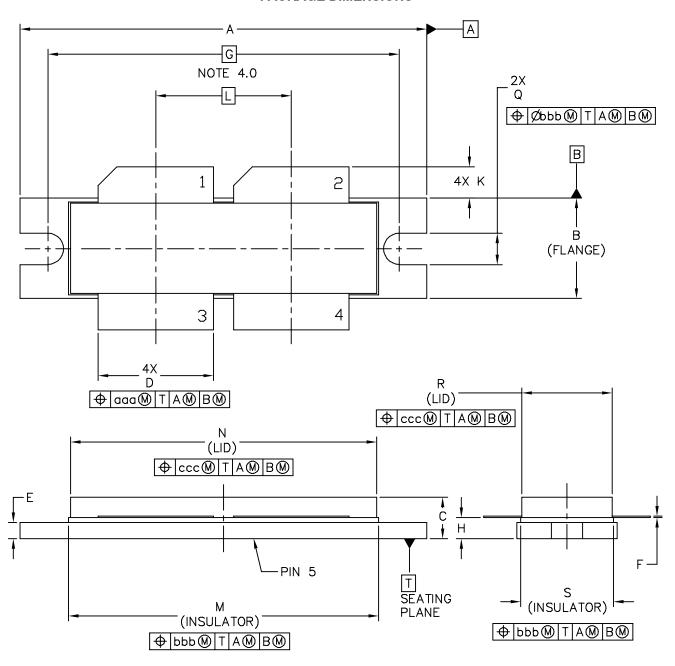



Figure 15. Series Equivalent Source and Load Impedance

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMENT NO): 98ASB16977C	REV: E
NI-1230		CASE NUMBER	R: 375D-05	31 MAR 2005
		STANDARD: NO	DN-JEDEC	

NOTES:

- 1.0 INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. O CONTROLLING DIMENSION: INCH
- 3. O DIMENSION H IS MEASURED . 030 (0.762) AWAY FROM PACKAGE BODY.
- 4. O RECOMMENDED BOLT CENTER DIMENSION OF 1. 52 (38.61) BASED ON M3 SCREW.

STYLE 1:

PIN 1 - DRAIN

2 - DRAIN

3 - GATE

4 - GATE

5 - SOURCE

	ING	INCH		IMETER		INCH		М	ILLIMETER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
A	1.615	1.625	41.02	41.28	N	1.218	1.242	30.9	4 31.55
В	.395	.405	10.03	10.29	Q	.120	.130	3.05	5 3.3
С	.150	.200	3.81	5.08	R	.355	.365	9.0	1 9.27
D	.455	.465	11.56	11.81	S	.365	.375	9.27	7 9.53
E	.062	.066	1.57	1.68					
F	.004	.007	0.1	0.18					
G	1.400	BSC	35.5	.6 BSC aaa .013		.013		0.33	
Н	.082	.090	2.08	2.29	bbb		.010		0.25
K	.117	.137	2.97	3.48	ссс		.020		0.51
L	.540	BSC	13.7	2 BSC					
М	1.219	1.241	30.96	31.52					
© F	REESCALE SEM. ALL RIGHT	ICONDUCTOR, I S RESERVED.	NC.	MECHANICA	PRINT VERSION NOT TO SC		T TO SCALE		
TITLE:	TITLE:			DOCUMENT NO: 98ASB16977C REV: E			REV: E		
	NI-1230 CASE NUMBER: 375D-05 31 M			31 MAR 2005					
					STANDARD: NON-JEDEC				

PRODUCT DOCUMENTATION

Refer to the following documents to aid your design process.

Application Notes

• AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Jan. 2008	Initial Release of Data Sheet
1	Apr. 2008	 Corrected description and part number for the R1 resistor and updated R2 resistor to latest RoHS compliant part number in Table 5, Test Circuit Component Designations and Values, p. 3. Added Fig. 12, Maximum Transient Thermal Impedance, p. 6
2	July 2008	Added MTTF CW graph, Fig. 13, MTTF versus Junction Temperature, p. 6
3	Sept. 2008	Added Note to Fig. 4, Capacitance versus Drain-Source Voltage, to denote that each side of device is measured separately, p. 5
		Updated Fig. 5, DC Safe Operating Area, to clarify that measurement is on a per-side basis, p. 5
		Corrected Fig. 13, MTTF versus Junction Temperature – CW, to reflect the correct die size and increased the MTTF factor accordingly, p. 6
		Corrected Fig. 14, MTTF versus Junction Temperature – Pulsed, to reflect the correct die size and increased the MTTF factor accordingly, p. 6
4	Dec. 2008	 Fig. 15, Series Equivalent Source and Load Impedance, corrected Z_{source} copy to read "Test circuit impedance as measured from gate to gate, balanced configuration" and Z_{load} copy to read "Test circuit impedance as measured from drain to drain, balanced configuration", p. 7

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or quarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale ™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008. All rights reserved.

Document Number: MRF6VP11KH Rev. 4, 12/2008