Freescale Semiconductor

Technical Data

RF Power Field Effect Transistors

N-Channel Enhancement-Mode Lateral MOSFETs

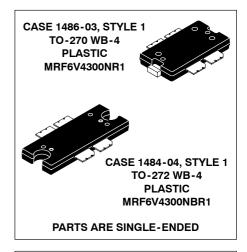
Designed primarily for CW large-signal output and driver applications with frequencies up to 600 MHz. Devices are unmatched and are suitable for use in industrial, medical and scientific applications.

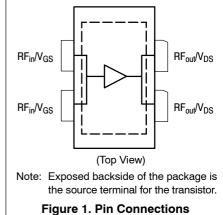
• Typical CW Performance: $V_{DD} = 50 \text{ Volts}$, $I_{DQ} = 900 \text{ mA}$, $P_{out} = 300 \text{ Watts}$, f = 450 MHz

Power Gain — 22 dB Drain Efficiency — 60%

Capable of Handling 10:1 VSWR, @ 50 Vdc, 450 MHz, 300 Watts CW **Output Power**

Features


- Qualified Up to a Maximum of 50 V_{DD} Operation
- Integrated ESD Protection
- Greater Negative Gate-Source Voltage Range for Improved Class C Operation
- · Excellent Thermal Stability
- Facilitates Manual Gain Control, ALC and Modulation Techniques
- 200°C Capable Plastic Package
- **RoHS Compliant**
- In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.


Document Number: MRF6V4300N Rev. 1, 10/2008

VRoHS

MRF6V4300NR1 MRF6V4300NBR1

10-600 MHz, 300 W, 50 V **LATERAL N-CHANNEL** SINGLE-ENDED **BROADBAND RF POWER MOSFETs**

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +110	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Storage Temperature Range	T _{stg}	- 65 to +150	°C
Case Operating Temperature	T _C	150	°C
Operating Junction Temperature	TJ	200	°C

Table 2. Thermal Characteristics

Characteristic		Value (1,2)	Unit
Thermal Resistance, Junction to Case Case Temperature 83°C, 300 W CW	$R_{ heta JC}$	0.24	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	1C (Minimum)
Machine Model (per EIA/JESD22-A115)	A (Minimum)
Charge Device Model (per JESD22-C101)	IV (Minimum)

Table 4. Moisture Sensitivity Level

Test Methodology		Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020		260	°C

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics	<u>.</u>				
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	10	μAdc
Drain-Source Breakdown Voltage (I _D = 150 mA, V _{GS} = 0 Vdc)	V _{(BR)DSS}	110	_	_	Vdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 50 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	50	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 100 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	2.5	mA
On Characteristics			•	•	
Gate Threshold Voltage $(V_{DS} = 10 \text{ Vdc}, I_D = 800 \mu \text{Adc})$	V _{GS(th)}	0.9	1.65	2.4	Vdc
Gate Quiescent Voltage (V _{DD} = 50 Vdc, I _D = 900 mAdc, Measured in Functional Test)	V _{GS(Q)}	1.9	2.7	3.4	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 2 Adc)	V _{DS(on)}	_	0.25	_	Vdc
Oynamic Characteristics	<u>.</u>				
Reverse Transfer Capacitance (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{rss}	_	2.8	_	pF
Output Capacitance $(V_{DS} = 50 \text{ Vdc} \pm 30 \text{ mV(rms)ac} @ 1 \text{ MHz}, V_{GS} = 0 \text{ Vdc})$	C _{oss}	_	105	_	pF
Input Capacitance (V _{DS} = 50 Vdc, V _{GS} = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)	C _{iss}	_	304	_	pF

	Power Gain	G _{ps}	20	22	24	dB
	Drain Efficiency	η_{D}	58	60	_	%
ĺ	Input Return Loss	IRL	_	-16	-9	dB

- 1. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.
- 2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955.

ATTENTION: The MRF6V4300N and MRF6V4300NB are high power devices and special considerations must be followed in board design and mounting. Incorrect mounting can lead to internal temperatures which exceed the maximum allowable operating junction temperature. Refer to Freescale Application Note AN3263 (for bolt down mounting) or AN1907 (for solder reflow mounting) PRIOR TO STARTING SYSTEM DESIGN to ensure proper mounting of these devices.

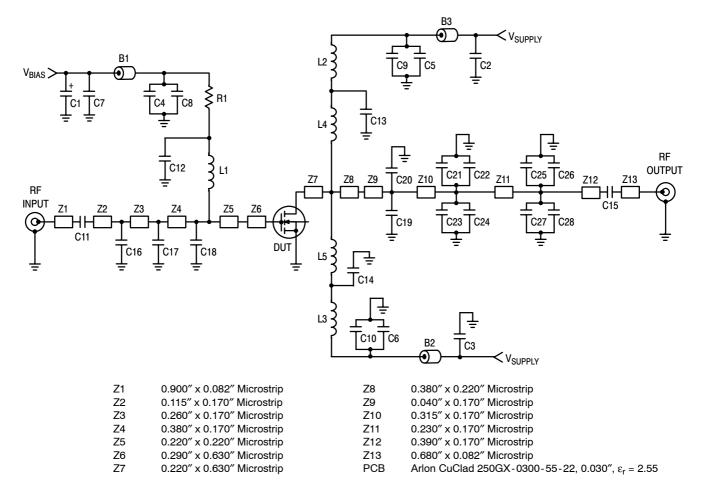


Figure 2. MRF6V4300NR1(NBR1) Test Circuit Schematic

Table 6. MRF6V4300NR1(NBR1) Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
B1	Short Ferrite Bead	2743019447	Fair-Rite
B2, B3	Long Ferrite Beads		Fair-Rite
C1	47 μF, 25 V, Tantalum Capacitor	T491B476M025AT	Kemet
C2, C3	22 μF, 50 V, Chip Capacitors	C5750JF1H226ZT	TDK
C4, C5, C6, C7	1 μF, 100 V, Chip Capacitors	C3225JB2A105KT	TDK
C8, C9, C10	15 nF, 100 V, Chip Capacitors	C3225CH2A153JT	TDK
C11, C12, C13, C14, C15	240 pF, Chip Capacitors	ATC100B241JT500XT	ATC
C16	9.1 pF, Chip Capacitor	ATC100B9R1JT500XT	ATC
C17	15 pF, Chip Capacitor	ATC100B150JT500XT	ATC
C18	51 pF, Chip Capacitor	ATC100B510JT500XT	ATC
C19, C20	5.6 pF, Chip Capacitors	ATC100B5R6JT500XT	ATC
C21, C22, C23, C24	4.3 pF, Chip Capacitors	ATC100B4R3JT500XT	ATC
C25, C26, C27, C28	4.7 pF, Chip Capacitors	ATC100B4R7JT500XT	ATC
L1	27 nH Inductor	1812SMS-27NJLC	Coilcraft
L2, L3	47 nH Inductors	1812SMS-47NJLC	Coilcraft
L4, L5	5 Turns, #18 AWG Inductors, Hand Wound	Copper Wire	
R1	10 Ω, 1/4 W, Chip Resistor	CRCW120610R1FKEA	Vishay

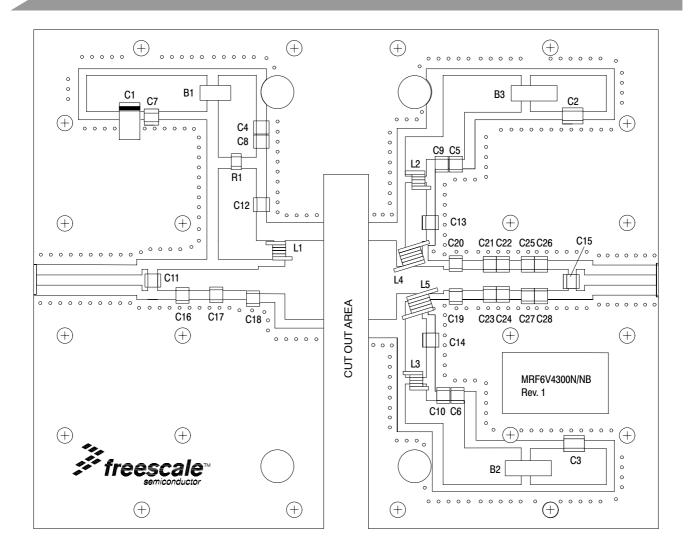


Figure 3. MRF6V4300NR1(NBR1) Test Circuit Component Layout

TYPICAL CHARACTERISTICS

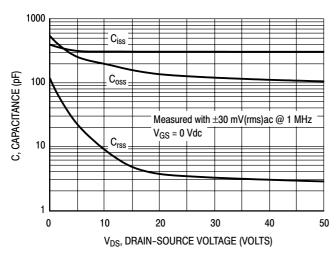
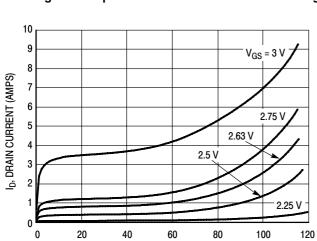



Figure 4. Capacitance versus Drain-Source Voltage

DRAIN VOLTAGE (VOLTS)

Figure 6. DC Drain Current versus Drain Voltage

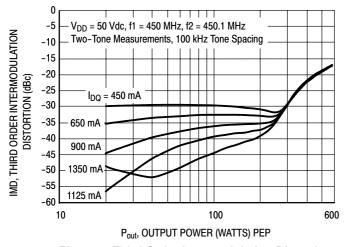


Figure 8. Third Order Intermodulation Distortion versus Output Power

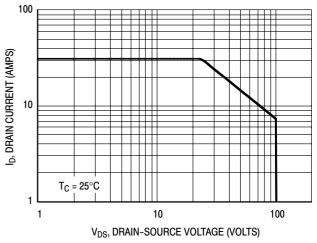


Figure 5. DC Safe Operating Area

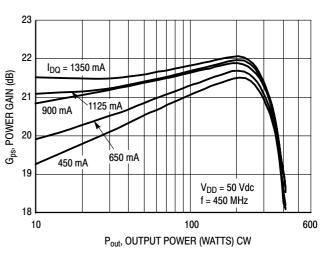


Figure 7. CW Power Gain versus Output Power

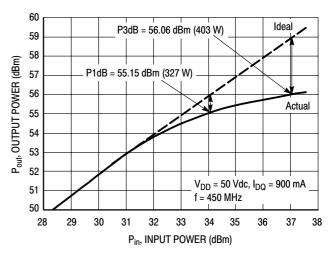


Figure 9. CW Output Power versus Input Power

TYPICAL CHARACTERISTICS

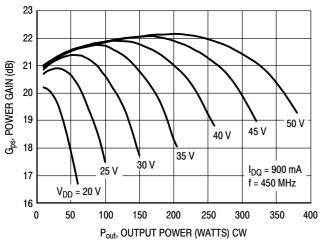


Figure 10. Power Gain versus Output Power

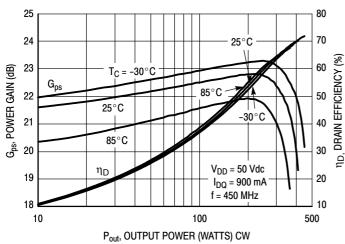
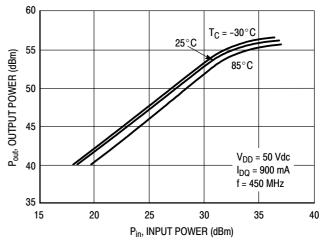
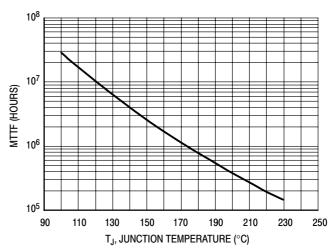
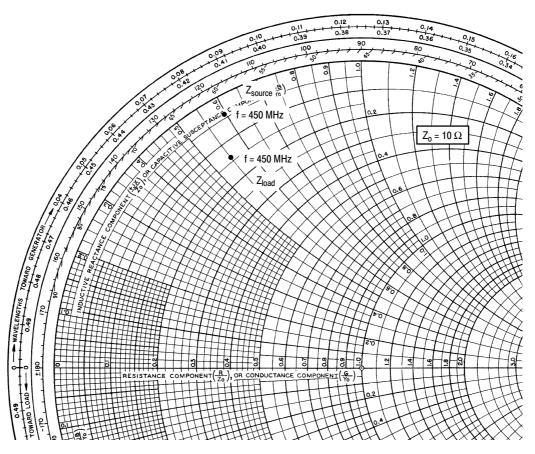


Figure 12. Power Gain and Drain Efficiency versus CW Output Power


Figure 11. Power Output versus Power Input

This above graph displays calculated MTTF in hours when the device is operated at V_DD = 50 Vdc, P_out = 300 W, and η_D = 60%.

MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

Figure 13. MTTF versus Junction Temperature

 V_{DD} = 50 Vdc, I_{DQ} = 900 mA, P_{out} = 300 W CW

f MHz	${f Z_{source}} \ \Omega$	$oldsymbol{Z_{load}}{\Omega}$
450	0.40 + j5.93	1.42 + j5.5

 Z_{source} = Test circuit impedance as measured from gate to ground.

 $Z_{load} \quad \ = \quad Test \ circuit \ impedance \ as \ measured \\ from \ drain \ to \ ground.$

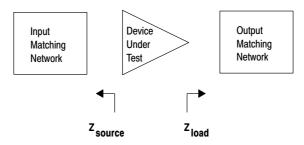
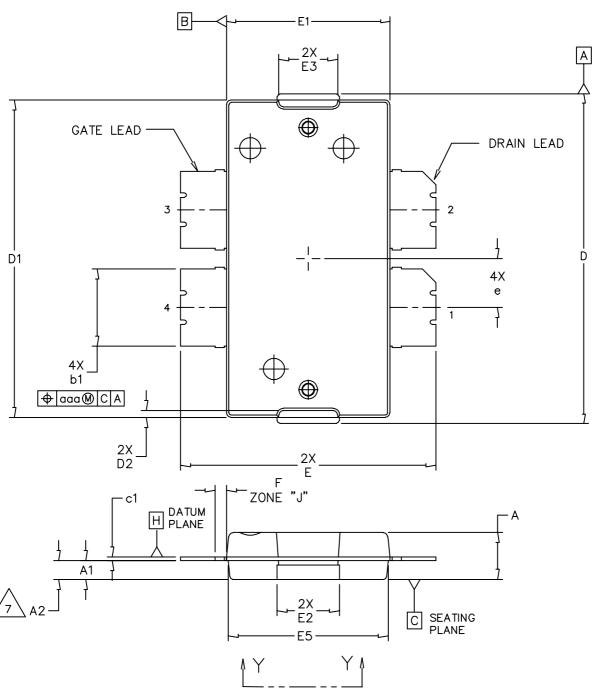
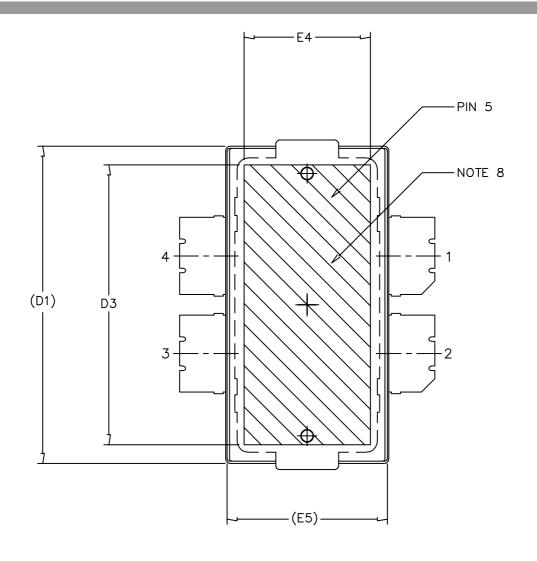




Figure 14. Series Equivalent Source and Load Impedance

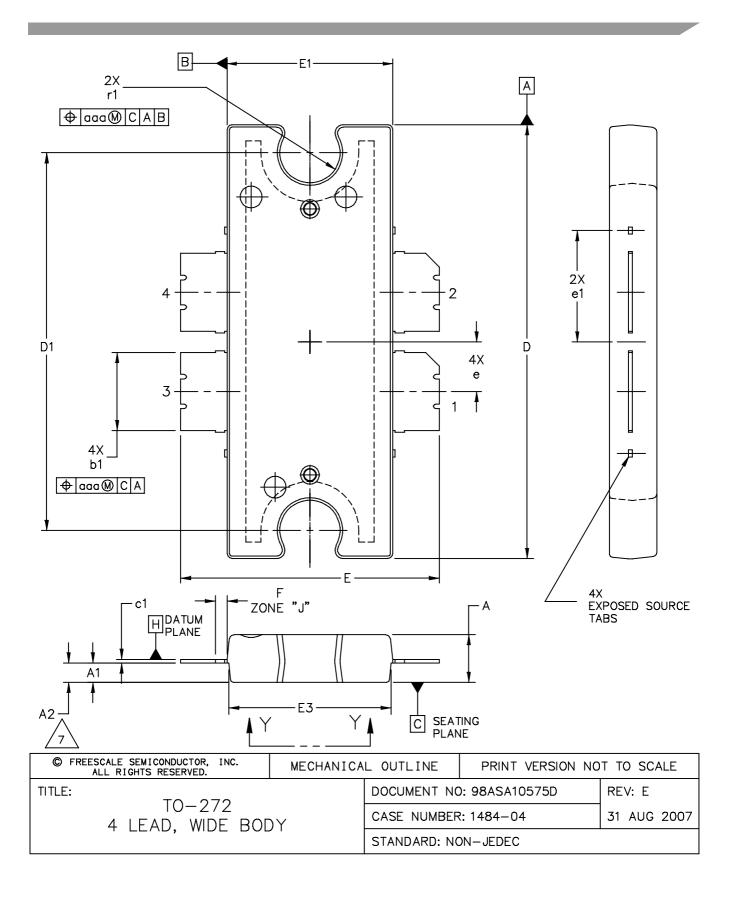
PACKAGE DIMENSIONS

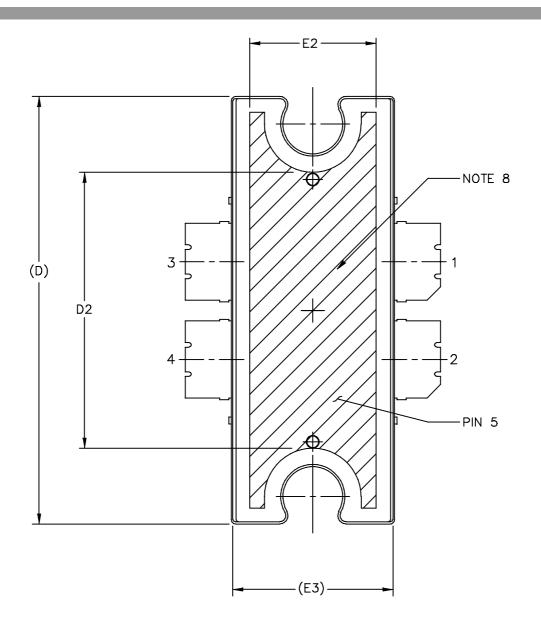
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHA		L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:	DOCUMENT NO): 98ASA10577D	REV: D	
TO-270 4 LEAD, WIDE BOD	CASE NUMBER: 1486-03 13 AUG 20			
T LEND, MBL BOL	STANDARD: NO	N-JEDEC		

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:	DOCUMENT NO): 98ASA10577D	REV: D	
TO-270 4 LEAD, WIDE BOD	CASE NUMBER	2: 1486–03	13 AUG 2007	
, LEAD, WIDE BOL	STANDARD: NO	N-JEDEC		

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSIONS "b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE "b1" DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. DIMENSION A2 APPLIES WITHIN ZONE "J" ONLY.
- 8. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG.


STYLE 1:


PIN 1 - DRAIN PIN 2 - DRAIN

PIN 3 - GATE PIN 4 - GATE

PIN 5 - SOURCE

	IN	СН	MIL	LIMETER			INCH	М	ILLIMETER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
A	.100	.104	2.54	2.64	F	.025 BSC		(0.64 BSC
A1	.039	.043	0.99	1.09	b1	.164	.170	4.17	7 4.32
A2	.040	.042	1.02	1.07	c1	.007	.011	.18	.28
D	.712	.720	18.08	18.29	е	.1	06 BSC	2	2.69 BSC
D1	.688	.692	17.48	17.58	aaa		.004		.10
D2	.011	.019	0.28	0.48					
D3	.600		15.24						
E	.551	.559	14	14.2					
E1	.353	.357	8.97	9.07					
E2	.132	.140	3.35	3.56					
E3	.124	.132	3.15	3.35					
E4	.270		6.86						
E5	.346	.350	8.79	8.89					
© F	REESCALE SEM ALL RIGHT	ICONDUCTOR, I	INC.	MECHANICA	CAL OUTLINE PRINT VERSION NOT TO SCA			T TO SCALE	
TITLE:	TITLE: TO-270 4 LEAD WIDE BODY				DOCUMENT NO: 98ASA10577D REV: D			REV: D	
				CASE NUMBER: 1486-03 13 AUG 2				13 AUG 2007	
	7 6	LND WID		1	STANDARD: NON-JEDEC				

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
TITLE:		DOCUMENT NO	REV: E	
TO-272 4 LEAD, WIDE BOD	CASE NUMBER	31 AUG 2007		
, LEARS, MBL BOL	STANDARD: NON-JEDEC			

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE H IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- 5. DIMENSIONS "b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE "b1" DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUM A AND B TO BE DETERMINED AT DATUM PLANE H.
- 7. DIMENSION A2 APPLIES WITHIN ZONE "J" ONLY.
- 8. HATCHING REPRESENTS EXPOSED AREA OF THE HEAT SLUG. HATCHED AREA SHOWN IS ON THE SAME PLANE.

STYLE 1: PIN 2 - DRAIN PIN 1 - DRAIN PIN 3 - GATE PIN 4 - GATE PIN 5 - SOURCE

	INCH		MILLIMETER			INCH		MILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
Α	.100	.104	2.54	2.64	b1	.164	.170	4.17	4.32
A1	.039	.043	0.99	1.09	c1	.007	.011	.18	.28
A2	.040	.042	1.02	1.07	r1	.063	.068	1.60	1.73
D	.928	.932	23.57	23.67	е	.106 BSC		2.69 BSC	
D1	.810	BSC	20).57 BSC	e1 .239		INFO ONLY	6.07	' INFO ONLY
D2	.600		15.24		aaa		.004		.10
E	.551	.559	14	14.2					
E1	.353	.357	8.97	9.07					
E2	.270		6.86						
E3	.346	.350	8.79	8.89					
F	.025 BSC		0.64 BSC						
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICA				L OUTLINE PRINT VERSION NOT TO S			T TO SCALE		
TITLE:					DOCUMENT NO: 98ASA10575D REV: E			REV: E	
TO-272				CASE NUMBER: 1484-04			31 AUG 2007		
	4 LEAD WIDE BODY				CTANDADD MON IEDEO				

STANDARD: NON-JEDEC

PRODUCT DOCUMENTATION

Refer to the following documents to aid your design process.

Application Notes

- AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over-Molded Plastic Packages

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description				
0	July 2008	Initial Release of Data Sheet				
1	Oct. 2008	Added Fig. 13, MTTF versus Junction Temperature, p. 6				

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or quarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008. All rights reserved.

Document Number: MRF6V4300N

Rev. 1, 10/2008