REJO9B0319-0100 g {
Everywhere you imagine. g E N ESAS

M32C/80 Series

Software Manual

RENESAS 16/32-BIT SINGLE-CHIP MICROCOMPUTER
M16C FAMILY / M32C/80 SERIES

Before using this material, please visit our website to verify that this is the most
updated document available.

Rev. 1.00 RenesasTechnolo
Revision date: May 31, 2006 WWW_renesaS_C(?%

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with
them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with ap-
propriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-
flammable material or (i) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the
Renesas Technology Corp. product best suited to the customer's application; they do not
convey any license under any intellectual property rights, or any other rights, belonging to
Renesas Technology Corp. or a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of
any third-party's rights, originating in the use of any product data, diagrams, charts, pro-
grams, algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, pro-
grams and algorithms represents information on products at the time of publication of these
materials, and are subject to change by Renesas Technology Corp. without notice due to
product improvements or other reasons. It is therefore recommended that customers con-
tact Renesas Technology Corp. or an authorized Renesas Technology Corp. product dis-
tributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other
loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by vari-
ous means, including the Renesas Technology Corp. Semiconductor home page (http://
www.renesas.com).

4. When using any or all of the information contained in these materials, including product
data, diagrams, charts, programs, and algorithms, please be sure to evaluate all informa-
tion as a total system before making a final decision on the applicability of the information
and products. Renesas Technology Corp. assumes no responsibility for any damage, liabil-
ity or other loss resulting from the information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at
stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology
Corp. product distributor when considering the use of a product contained herein for any
specific purposes, such as apparatus or systems for transportation, vehicular, medical,
aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or repro-
duce in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions,
they must be exported under a license from the Japanese government and cannot be im-
ported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/
or the country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the
products contained therein.

Using This Manual

This manual is written for the M32C/80 Series software. This manual can be used for all
types of MCUs having the M32C/80 Series CPU core.

The reader of this manual is expected to have the basic knowledge of electric and logic
circuits and MCUs.

This manual consists of seven chapters. The following lists the chapters and sections to be
referred to when you want to know details on some specific subject.

- To understand the outline of the M32C/80 Series and its features Chapter 1, “Overview”
- To understand the operation of each addressing mode..Chapter 2, “Addressing Modes”
- To understand instruction functions

(Syntax, operation, function, selectable src/dest (label), flag changes, description example,

related INSITUCTIONS)ueiiiiiiiiiiiiii e Chapter 3, “Functions”
- To understand instruction code and cycles....... Chapter 4, “Instruction Code/Number of
Cycles”

- To understand INTEITUPTooiiiiiiieii e Chapter 5, "Interrupt”
- To understand calculation number of cyclesChapter 6, "Caluculation Number of Cycles"
- TO refer to PreCautioNSccii e e Chapter 7, "Precautions”

This manual also contains quick references immediately after the Table of Contents. These
quick references will help you quickly find the pages for the functions or instruction code/
number of cycles you want to know.

* To find pages from mNemoniC..........cccoecvvvvveeeeernnns Quick Reference in Alphabetic Order
* To find pages from function and mnemonicc.cccccuuu.e. Quick Reference by Function
» To find pages from mnemonic and addressing................ Quick Reference by Addressing

A table of symbols, a glossary, and an index are appended at the end of this manual.

M16C Family Documents

The following documents were prepared for the M16C Family.**

Document Contents
Shortsheet Hardware overview
Datasheet Hardware overview and electrical characteristics

Hardware Manual | Hardware specifications (pin assignments, memory maps, peripheral specifications,

electrical characteristics, timing charts)

Software Manual Detailed description of assembly instructions and MCU performance of each
instruction
Application note -Application examples of peripheral functions

-Sample programs
-Introduction to the basic functions in the M16C Family

-Programming method with Assembly and C languages

Technical Update Preliminary report about the specification of a product, a document, etc.

Note:
1. Before using this material, please visit our website to confirm that this is the most current
document available.

Table of Contents

CRAPTEI L OVEIVIEW et e e et e e et e e e e
1.1 Features Of M32C/80 SEIIESccoiiiiiiiiiiiii ettt eeeeaanes 2
1.2 AQAIESS SPACE ... s 3
1.3 Register ConfigUIatiONooooiiiiiiiiii s 4
i e P T =T 153 = (e 1) 7
1.5 REQISIEI BANKuii i 9
1.6 Internal State after RESELoiv i e 10
1.7 DAA TYPES .ottt e e eene 11
1.8 Data ArTangEMENT e e e e et e e e e e e e eaann 16
1.9 INSErUCTION FOIMAL ...t e e e e e e e e eeeenees 18
1.10 VEeCtOr TaBI@ ...oovee e e e e e e e e raae 19
Chapter 2 Addressing MOAESo
2.1 AdAreSSING MOUESccoiiiiii e e e e e e et e e e e et eeeeaannas 22
A €10 1o [(o T I 1S T o (= 23
2.3 General INSruCtion AQAIrESSINGccevviviiiiiiiiiiiiiiiiiiiiirrs e eeeeaaaaaeas 24
2.4 Indirect INSruCtion AQAIESSINGccevvviiiiiiiiiiiiiiiiiiiiii e e e e e aaae e 27
2.5 Special INStruction AAAreSSINGceeeeeiie e e e e 30
2.6 Bit INSruction AdAreSSINGccveieie e e e e e e 32
2.7 Read and write operations with 24-Dit reQISErScceiiiiiiiiiiii e, 35
Chapter 3 FUNCHIONS ..o
G T R €10 [o [(o I g 1S =T o (= 38
I T2 U | o 10 1 PSSP 43
3.3 INAEX INSITUCTIONS ..oeeviiiiiie et e e e e e e e e e e e et e e e e e e e eaannn s 158
Chapter 4 Instruction Code/Number of Cyclesccccoovviviiiiiie e,
4.1 GUide t0 ThiS CRAPLELeeiiiiiiiiiiiiiiieii e 172

4.2 Instruction Code/Number of CYCIEScoovveiiiiiiii e 174

(O g FoT o1 (=T o ST 1 L (=T U o

5.1 OULtliNE OF INTEITUPL .eeeeiiiiiiiiiiiett e e e e e e e eeeeees 308
5.2 INEITUPL CONTIOL c.coiiiiiiiiiiiiieee e e e eeeees 312
5.3 INTEITUPL SEOUENCE ... ettt e e e e e e e e e e eanns 314
5.4 Return from Interrupt ROULINEccooviiiieei e 317
5.5 INEITUPL PHIOTITY ..eeiiiiiiiiiiiiiiiiiiiit s eeeeeeeeeees 318
5.6 MUIIPIE INTEITUPLS ...ceiiiiiiiiiieeee e e e e e eeeees 318
5.7 Precautions fOr INTEITUPLScoevue e e e e e e e e e e e eaaaas 320
5.8 Exit from Stop Mode and Wait MOAE............coeiviiiiiieeice e 320
Chapter 6 Calculation Number of CycCleS.......ccoiiiiiiiiiii e,
6.1 INStruction qUEUE DUTTENooiiiii e 322
Chapter 7 PreCAULIONS ...oouuiiiiiiiie ettt e e e e e e eeeeeeennans

7.1 String/Product-Sum Operation INSrUCtioONccuoiiiiiiiiiiieeeeie e 332

Quick Reference in Alphabetic Order

Quick Reference-1

Mnemonic See page for See page for Mnemonic See page for See page for
function instruction code/ function instruction code/
number of cycles number of cycles
ABS 43 174 | DADD 74 208
ADC 44 174 | DEC 75 210
ADCF 45 176 | DIV 76 210
ADD 46 176 | DIVU 77 212
ADDX 48 183 | DIVX 78 213
ADJINZ 49 185 | DSBB 79 215
AND 50 186 | DSUB 80 217
BAND 52 188 | ENTER 81 219
BCLR 53 188 | EXITD 82 219
BITINDEX 54 189 EXTS 83 220
BMCrd 55 190 | EXTZ 84 222
BMEQ/Z 55 190 | FCLR 85 223
BMGE 55 190 | FREIT 86 223
BMGEU/C 55 190 FSET 87 224
BMGT 55 190 | INC 88 225
BMGTU 55 190 INDEXB 89 225
BMLE 55 190 INDEXBD 89 226
BMLEU 55 190 INDEXBS 89 226
BMLT 55 190 INDEXL 89 227
BMLTU/NC 55 190 INDEXLD 89 227
BMN 55 190 INDEXLS 89 228
BMNE/NZ 55 190 INDEXW 89 228
BMNO 55 190 INDEXWD 89 229
BMO 55 190 INDEXWS 89 229
BMPZ 55 190 | INT 90 230
BNAND 56 192 | INTO 91 230
BNOR 57 192 | ICnd 92 231
BNOT 58 193 JEQ/Z 92 231
BNTST 59 193 JGE 92 231
BNXOR 60 194 JGEU/C 92 231
BOR 61 194 JGT 92 231
BRK 62 195 JGTU 92 231
BRK2 63 195 JLE 92 231
BSET 64 196 JLEU 92 231
BTST 65 196 JLT 92 231
BTSTC 66 197 JLTU/NC 92 231
BTSTS 67 198 JN 92 231
BXOR 68 198 JNE/NZ 92 231
CLIP 69 199 JNO 92 231
CMP 70 200 JO 92 231
CMPX 72 206 JPZ 92 231
DADC 73 206

Quick Reference in Alphabetic Order

Mnemonic See page for See page for Mnemonic See page for See page for
function instruction code/ function instruction code/
number of cycles number of cycles

JMP 93 231 | SBB 130 277
JMPI 94 233 | SBINZ 131 279
JMPS 95 234 | SCend 132 280
JSR 96 235 SCEQ/Z 132 280
JSRI 97 236 SCGE 132 280
JSRS 08 237 SCGEU/C 132 280
LDC 99 237 SCGT 132 280
LDCTX 100 240 SCGTU 132 280
LDIPL 101 241 SCLE 132 280
MAX 102 241 SCLEU 132 280
MIN 103 243 SCLT 132 280
MOV 104 245 SCLTU/NC 132 280
MOVA 106 254 SCN 132 280
MOV Dir 107 255 SCNE/NZ 132 280
MOVHH 107 255 SCNO 132 280
MOVHL 107 255 SCPZ 132 280
MOVLH 107 255 | SCMPU 133 281
MOVLL 107 255 | SHA 134 282
MOVX 108 257 | SHANC 135 284
MUL 109 257 | SHL 136 285
MULEX 110 260 | SHLNC 137 288
MULU 111 260 | SIN 138 288
NEG 112 263 | SMOVB 139 289
NOP 113 263 | SMOVF 140 289
NOT 114 264 | SMOVU 141 290
OR 115 264 | SOUT 142 290
POP 117 267 | SSTR 143 291
POPC 118 267 | STC 144 291
POPM 119 268 | STCTX 145 293
PUSH 120 269 | STNZ 146 293
PUSHA 121 271 | STZ 147 294
PUSHC 122 271 | STZX 148 294
PUSHM 123 272 | SUB 149 295
REIT 124 273 | SUBX 151 299
RMPA 125 273 | TST 152 301
ROLC 126 274 | UND 154 303
RORC 127 274 | WAIT 155 303
ROT 128 275 | XCHG 156 304
RTS 129 276 | XOR 157 304

Quick Reference-2

Quick Reference by Function

Function Mnemonic Content See page for | See page for
function | instruction code/
number of cycles

Transfer MOV Transfer 104 245
MOVA Transfer effective address 106 254

MOVDir Transfer 4-bit data 107 255

MOVX Transfer extend sign 108 257

POP Restore register/memory 117 267

POPC Restore control register 118 267

POPM Restore multiple registers 119 268

PUSH Save register/memory/immediate data 120 269

PUSHA Save effective address 121 271

PUSHM Save multiple registers 123 272

STNZ Conditional transfer 146 293

STZ Conditional transfer 147 294

STZX Conditional transfer 148 294

XCHG Exchange 156 304

Bit BAND Logically AND bits 52 188
manupulation | BCLR Clear bit 53 188
BITINDEX Bit index 54 189

BMCnd Conditional bit transfer 55 190

BNAND Logically AND inverted bits 56 192

BNOR Logically OR inverted bits 57 192

BNOT Invert bit 58 193

BNTST Test inverted bit 59 193

BNXOR Exclusive OR inverted bits 60 194

BOR Logically OR bits 61 194

BSET Set hit 64 196

BTST Test bit 65 196

BTSTC Test bit & clear 66 197

BTSTS Test bit & set 67 198

BXOR Exclusive OR bits 68 198

Shift ROLC Rotate left with carry 126 274
RORC Rotate right with carry 127 274

ROT Rotate 128 275

SHA Shift arithmetic 134 282

SHANC Shift arithmetic 135 284

SHL Shift logical 136 285

SHLNC Shift logical 137 288

Arithmetic ABS Absolute value 43 174
ADC Add with carry 44 174

ADCF Add carry flag 45 176

ADD Add without carry 46 176

ADDX Add extend sigh without carry 48 183

Quick Reference-3

Quick Reference by Function

Function Mnemonic Content See page for | See page for
function | instruction code/
number of cycles
Arithmetic CLIP Clip 69 199
CMP Compare 70 200
CPMX Compare extended sigh 72 206
DADC Decimal add with carry 73 206
DADD Decimal add without carry 74 208
DEC Decrement 75 210
DIV Signed divide 76 210
DIVU Unsigned divide 77 212
DIVX Singed divide 78 213
DSBB Decimal subtract with borrow 79 215
DSUB Decimal subtract without borrow 80 217
EXTS Extend sign 83 220
EXTZ Extend zero 84 222
INC Increment 88 225
MAX Select maximum value 102 241
MIN Select minimum value 103 243
MUL Signed multiply 109 257
MULEX Multiple extend sign 110 260
MULU Unsigned multiply 111 260
NEG Two’s complement 112 263
RMPA Calculate sum-of-products 125 273
SBB Subtract with borrow 130 277
SuUB Subtract without borrow 149 295
SUBX Subtract extend without borrow 151 299
Logical AND Logical AND 50 186
NOT Invert all bits 114 264
OR Logical OR 115 264
TST Test 152 301
XOR Exclusive OR 157 304
Jump ADJNZ Add & conditional jump 49 185
SBJNZ Subtract & conditional jump 131 279
JCnd Jump on condition 92 231
JMP Unconditional jump 93 231
JMPI Jump indirect 94 233
JMPS Jump to special page 95 234
JSR Subroutine call 96 235
JSRI Indirect subroutine call 97 236
JSRS Special page subroutine call 98 237
RTS Return from subroutine 129 276
String SCMPU String compare unequal 133 281
SIN String input 138 288

Quick Reference-4

Quick Reference by Function

Function Mnemonic Content See page for | See page for
function | instruction code/
number of cycles
String SMOVB Transfer string backward 139 289
SMOVF Transfer string forward 140 289
SMOVU Transfer string 141 290
SOUT String output 142 290
SSTR Store string 143 291
Other BRK Debug interrupt 62 195
BRK2 Debug interrupt 2 63 195
ENTER Build stack frame 81 219
EXITD Deallocate stack frame 82 219
FCLR Clear flag register bit 85 223
FREIT Fast return from interrupt 86 223
FSET Set flag register bit 87 224
INDEX Type Index 89 225
INT Interrupt by INT instruction 90 230
INTO Interrupt on overflow 91 230
LDC Transfer to control register 99 237
LDCTX Restore context 100 240
LDIPL Set interrupt enable level 101 241
NOP No operation 113 263
POPC Restore control register 118 267
PUSHC Save control register 122 271
REIT Return from interrupt 124 273
STC Transfer from control register 144 291
STCTX Save context 145 293
SCcend Store on condition 132 280
UND Interrupt for undefined instruction 154 303
WAIT Wait 155 303

Quick Reference-5

Quick Reference by Addressing (general instruction addressing)

for

instruction
code
/number
of cycles

174

174

176

176

183

185

186

189

199

200

206

206

208

210

210

212

213

215

217

219

220

222

225

225

See |See page

page

for
function

43

44

45

46

48

49

50

54

69

70

72

73

74

75

76

77

78

79

80

81

83

84

88

89

Addressing

[resqe]

[9Tsqe]

[[uv]iyz:dsp]

[[g4/as]ot:dsp]

[[uv]oT:dsp]

[[g4/gs]8:dsp]

[[uv]g:dsp]

[[uw]]

VIVIVIV|VV|V]V

VIVIVIV|VV|V]V

VIVIVIV|VV|V]V

VIVIVIV|VV|V]V

VIVIVIV|VV|V]V

VIV V]V V] V] VY

VIVIVIV|VIV|V]V

VIVIVIV|VV|V]V

VIVIVIV|VV|V]V

VIVIVIV|VV|V]V

VIVIVIV|VV|V]V

VIVIVIV|VV|V]V

NINI#

CENNI#

VIVIVIVIV|V|V|V]V]V

VIVIVIVIV|V|V|V]V]V

VCNINI#

ITINNI#

SININI#

vesqe

9Tsqe

[uylyz:dsp

[g4/as]oT:dsp

[uy]oT:dsp

[g4/gs]8:dsp

[uy]g:dsp

[uv]

uy

-/€4/HTY

VIVIVIVIY|V|V]V

VIVIVIVI V[V |V|V|V]V[V|V
VIVIVIVIV[V V]|V V]V

VIVIVIVI V[V |V|V|V]V[V|V

VIVIVIVIV[V V]|V V]V

VIVIVIVI VY|V V] V[V|V
VIVIVIVIV[V V]|V V]V

VIVIVIVI VY|V V] V[V|V

VIVIVIVIV[V V]|V V] V|V

VIVIVIVI V[V V|V V] V[V|V

VIVIVIVI V[V V|V V] V[V|V

VIVIVIVI V[V V|V V] V[V|V

VIVIVIVIV[V V]|V V]V

VIVIVIVIV[V V]|V V]V

VIVIVIVIV[V V]|V V]V

VIVIVIVIV[V V]|V V]V

TdEH/TH/TY

-/¢d/H0Yd

VIVI VI VIV V] V| V[V V] V|V Y]V

VIV V|V Y[Y| V]| V| V|V V] V]V

VIVIV| VIV Y|V V||V V]| V|V]V
VIVIV| VIV Y|V V||V V]| V|V]V
VIVIV| VIV Y|V V||V V]| V|V]V

0dcyd/04/10d

VERARE
VERARE
VERARE

VARARS

VAV V[V (V| V|V VY| V] V|V

VERARE
VERARE
VERARE
VERARE

VIVIVIVIVIV| VY[V V|V V] V]V|V

VeV VT
VERARE

V2

Ve AN
Ve AN

VERARE
VERARE
VERARE
VERARE

Mnemonic

ABS

ADC

ADCF

ADD™

ADDX

ADJINZ™?

AND

BITINDEX

CLIP

CMP

CMPX

DADC

DADD

DEC

DIV

DIVU

DIVX

DSBB

DSUB

ENTER

EXTS

EXTZ

INC

INDEXType

*1 Has special instruction addressing.

y ROL/RO can be selected.

y R1L/R1 can be selected.
y ROL can be selected.

y ROH can be selected.
y R1L can be selected.

y R1H can be selected.

*2 On
*3 On
*4 On
*5 On
*6 On
*7 0On

Quick reference-6

Quick Reference by Addressing (general instruction addressing)

Mnemonic Addressing See |See page
page for
— for jinstruction
§ - g - = E < % < 5 g ? % ? e /n(l:J(rJ:ser
2EEE| | |22 15(5]e]slz 222 5B RS BT | [orevces
AEEIFRBER kLRI EE B R R
INT v 90 230
JMPp v 93 231
JMPI V2 VIV VB[V [V|V [V VYV [V]V 94 233
JMPS v 95 234
JSRI V2 VIV VB[V [V|V [V VYV [V]V 97 236
JSRS v 98 237
LDC™ V2 VIV VB[V [V|V [V IV VV V]V VAR 99 237
LDIPL v 101 241
MAX Ve VIV V[V V|V VIV V|V I[V]V|V]V 102 241
MIN Ve VIV V[V V|V VIV V|V I[V]V|V]V 103 243
MOV VIVIVIVIVIVIVIV|V VIV V| V|V V|V VY|V VY|V Y 104 245
MOVA Vel Ve v VIVIV|VIVI|V]V 106 254
MOVDir VORIV Y V[V VY[V 107 255
MOVX Vel Ve VIVIVIVIVIV[VIV]V]V VIVIVI|V V|V I[V]V 108 257
MUL AR VIVIVIVIVIV[VI|V]V|V]V VIVIVI|VIVI|VI|V]V 109 257
MULEX VIV VIV VIV I[V[V|V]Y VIVIVI|VIVI|VI[V]V 110 260
MULU VIVIVIVIVIVIVI[VIV|V|VI|V[V|V]V VIVIVI|VIVI|VI[V]V 111 260
NEG Ve VIV V[V V|V VIV V|V I[V]V VIVIVI|VIV|VI|V]V 112 263
NOT Ve VIV V[V V|V VIV V|V I[V]V VIVIVIVIV|V|V]|V 114 264
OR Ve VIV V[V V|V VIV V|V I[V][V|V]V VIVIVI|VIVI|VI[V]V 115 264
POP VO VIV V[V V|V VIV V|V I[V]V VIVIVIVIV|V|V]|V 117 267
POPM™ v v 119 268
PUSH VIVIVIVIVIVIVIVIVIVIV|V]V|V]V v VIVIVI|VI[V|VI[V]V 120 269
PUSHA VIVIVIVIYI|V]V 121 271
*1 Has special instruction addressing. *9 Only R3R1 can be selected.
*2 Only RO/R2R0 can be selected. *10 Only ROL can be selected.
*3 Only R2 can be selected. *11 Only ROH can be selected.
*4 Only R1/R3R1 can be selected. *12 Only R1L can be selected.
*5 Only R3 can be selected. *13 Only R1H can be selected.

*6 Only ROL/RO can be selected.
*7 Only R1L/R1 can be selected.
*8 Only R2R0 can be selected.

Quick reference-7

Quick Reference by Addressing (general instruction addressing)

Mnemonic Addressing See |See page
page for
— for [instruction
g (%' E _ E _ _ E = % = function code
Saok| | BEISRE. . |eslsl | ERER] |
R R e HE HHESE B
2E|Z|2|<|<|8|8|8|8|8|R R E|RIEIRIRIE =2z E <
PUSHM™ VA RVA VAR 123 272
ROLC VIV V[V V[V V|V VY VV]Y 126 274
RORC VIV V[V V[V V|V VY VV]Y v v v 127 274
ROT VIV V[V V[V V|V VY VV]Y VIVIVIV|VIVIV|V]Y 128 275
SBB VI V|V [V V[V|V VIV V[V VY] V]V 130 277
SBJINZ VIV V[V V[V V|V VY VV]Y v 131 279
sccend VHVS VeV V[V| V[V V] V|V |V]V VIVIV|VIVIV|V]V 132 280
SHA VIVIVIV|V]| V[V V| V|V]V|V]|V VIVIVIV|VIVIV|V]Y 134 282
SHANC VB VYV V| V|V YV V]V VIVIV|VIV|V|V]V 135 284
SHL VIVIVIV|V]| V[V V| V|V]V|V]|V VIVIVIV|VIVIV|V]Y 136 285
SHLNC VB VYV V| V|V YV V]V VIVIV|VIV|V|V]V 137 288
STC™ VHVS VeV V[V| V[V V| V|V |V]V 144 201
STCTX! VARARARY 145 203
STNZ VI V|V [V V[V]V VIV V[V VY] V]V VIVIV|VIVIV|V]V 146 2093
STZ VI V|V [V V[V]V VIV V[V VY] V]V VIVIV|VIVIV|V]V 147 204
STZX VI V|V [V V[V]V VIV V[V VY] V]V VIVIV|VIVIV|V]V 148 204
SUB VIVIVIV|V]| V[V V| V]|V[V|V] V]|V Vv VIVIV|VIVIV|V]V 149 205
SUBX VWO V[V|V [V [V V|V|V][V]V VIVIV|VIV|V|V]V 151 299
TST AV R4 VA RVAc IVA NRVA VA IEVA NEVA RRVA IEVA IRVA NEVA BRVA BV 152 301
XCHG AV IRVAIRVA RVAc IVA NRVA VA IRVA NEVA REVA VA BV IRV V| V] V| V| V] Y Y] 156 304
XOR AV R4 VA RVAc IVA NRVA VA IEVA NEVA RRVA IEVA IRVA BV BRVA BV V| V] V| V| V| VY Y] 157 304
*1 Has special instruction addressing. *12 Only R2R0 can be selected.
*2 Only ROL/RO can be selected. *13 Only R3R1 can be selected.

*3 Only R1L/R1 can be selected.

*4 Only RO can be selected.

*5 Only R2 can be selected.

*6 Only R1 can be selected.

*7 Only R3 can be selected.

*8 Only ROL/R2RO0 can be selected.
*9 Only ROH can be selected.

*10 Only R1L/R3R1 can be selected.
*11 Only R1H can be selected.

Quick reference-8

Quick Reference by Addressing (special instruction addressing)

Mnemonic Addressing See page | See page
for function for
instruction
i é E g g g g code
- % g g g g g g g /number of
HENEE R E e
Sln|QT|Z|h|b|ojlaja|lalalo
ADD™ v 46 176
ADJINZ* v 49 185
JCnd v 92 231
JMP™ v 93 231
JSR* v 96 235
LDC™ v VI V|V|Y 99 237
POPC Vv 118 267
POPM™ v 119 268
PUSHC VIVIVIVI[VI|Y V]V 122 271
PUSHM? v 123 272
SBINZ*? v 131 279
sSTCH VI IVIVIVI|VI|V V|V V|| V]V 144 291

*1 Has general instruction addressing.

Quick reference-9

Quick Reference by Addressing (bit instruction addressing)

[} c ..m | 0| O N| N N M| < <SS | O ©) - | 0O M <
()} o - o [e6] [e6] (o] (o] (o] (o] (o] (0] (o] (o] (o] (o] (o)} (o)} AN N
I o ..w O O Q — — — — — — — — — — — — — — [qV} [V}
S8 2829
O B3 © 5 0
n c £
c
g 0o aN|lm|w|lol N olo|lo| 9 S|l w|l o]~ o] vl ~
c B | LI L LWL WL ©| ©| ©|l O©| ©| ©| ©| |
o c
o 2
QL
N 5
o
o/d/z/s/a/olin - |
6TeseqUg | |> |>|> === || |=|=|>|>|>
Jzesequq [= | == (=== == |>|>|>|>|>|>
[uvlzziesequg |» | = |> ||| |=|>|>|>=|=|>|>|>
o [ad/gsletesequq = | > | = | |>|=|>|>|=|>|[>=|>|> >
.m [uvleT:asequq |> | | > |> | |>|>|>|>|>|>|>|>|>
m [@ad/a@sltTeseduq |- | [[>|>|> | |>|>|>|>|>|>|>
uvltT:eseqng (> |- > [>|>|> > | |=|>|>|>|>|>
uylug |= | = |=|=|=|=|=|=|=|=|>=|>|>|>
U172 110 N Il B = il B il i e e e e B i
HTYATHUg | = | > | == || |||
Hod/10d'Nq |+ | |= > > | |> || |>|>|>|>|>
Q
5 NEIMMNEES Olv|y
S 0| x e wn -
5 z|%0|2 0|02 |X|x|L|b|B|h|o|%|T
c <|lo|=s|Z|Z2|z|zZz|Z|0|n|E|E|lE|X|O|lwn
= O 0|00 0|0|0|0|d|0|o|o|o|o|d]|L

Quick reference-10

Chapter 1

Overview

1.1 Features of M32C/80 Series
1.2 Address Space

1.3 Register Configuration

1.4 Flag Register (FLG)

1.5 Register Bank

1.6 Internal State after Reset
1.7 Data Types

1.8 Data Arrangement

1.9 Instruction Format

1.10 Vector Table

Chapter 1 Overview 1.1 Features of M32C/80 Series

1.1 Features of M32C/80 Series

The M32C/80 Series is a single-chip MCU developed for built-in applications where the MCU is built into
applications equipment.

The M32C/80 Series supports instructions suitable for the C language with frequently used instructions
arranged in one- byte op-code. Therefore, it allows you for efficient program development with few memory
capacity regardless of whether you are using the assembly language or C language. Furthermore, some
instructions can be executed in one clock cycle, making fast arithmetic processing possible.

Its instruction set consists of 108 discrete instructions matched to the M32C's abundant addressing modes.
This powerful instruction set allows to perform register-register, register-memory, and memory-memory
operations, as well as arithmetic/logic operations on bits and 4-bit data.

M32C/80 Series models incorporate a multiplier, allowing for high-speed computation.

B Features of M32C/80 Series
* Register configuration

Data registers : Four 16-bit registers (of which two registers can be used as 8-bit registers, or two
registers are combined and can be used as 32-bit registers)

Address registers : Two 24-bit registers

Base registers : Two 24-bit registers

* Versatile instruction set

C language-suited instructions (stack frame manipulation) : ENTER, EXITD, etc.
Register and memory-indiscriminated instructions : MOV, ADD, SUB, etc.
Powerful bit manipulate instructions : BNOT, BTST, BSET, etc.
4-bit transfer instructions : MOVLL, MOVHL, etc.
Frequently used 1-byte instructions : MOV, ADD, SUB, JMP, etc.
High-speed 1-cycle instructions : MOV, ADD, SUB, etc.

» 16M-byte linear address area

Relative jump instructions matched to distance of jump
* Fast instruction execution time
Shortest 1-cycle instructions : 108 instructions include 39 1-cycle instructions.

B Speed performance (types incorporating a multiplier, operating at 32 MHz)

Cycle Execution Time
Register-register transfer 1 31.3ns
Register-memory transfer 1 31.3ns
Register-register addition/subtraction 1 31.3 ns
8 bits x 8 bits register-register operation 3 93.8 ns
16 bits x 16 bits register-register operation 3 93.8 ns
16 bits / 8 bits register-register operation 18 562.5 ns
32 bits / 16 bits register-register operation 18 562.5 ns
Rev.1.00 2006.05.31 page 2 of 335 RENESAS

REJ09B0319-0100

Chapter 1 Overview 1.2 Address Space

1.2 Address Space

Fig. 1.2.1 shows an address space.

Addresses 00000016 through 0003FF16 make up an SFR (special function register) area. In individual
models of the M32C/80 Series, the SFR area extends from 0003FF16 toward lower addresses.
Addresses from 00040016 on make up a memory area. In individual models of the M32C/80 Series, a RAM
area extends from address 00040016 toward higher addresses, and a ROM area extends from FFFFFF16
toward lower addresses. Addresses FFFE0016 through FFFFFF16 make up a fixed vector area.

00000016

The SFR area in each
SFR area model extends toward
lower-address locations
as much as available.

t
00040016 | | 0\ RAM area | The RAM area in each
model extends toward
higher-address loca-
tions as much as
available.

External memory area

The ROM area in each
model extends toward
FFFEOO16 lower-address locations
FFFFFFi16 Fixed vector area p as much as available.

Internal ROM area

Figure 1.2.1 Address area

Rev.1.00 2006.05.31 page 3 of 335 RENESAS
REJO9B0319-0100

Chapter 1 Overview 1.3 Register Configuration

1.3 Register Configuration

Figure 1.3.1 shows the CPU registers. The register bank is comprised of eight registers (RO, R1, R2, R3,
A0, Al, FB, and SB) out of 28 CPU registers. There are two sets of register banks.

General register b15 b0
FLG Flag register
b31 greg
5 R2 ROH | ROL |[]
: R3 | .
.................. RiH RIL Data register
R2
b23 R3
AO I
H Address register
Al
SB 1 Static base register
FB I Frame base register
L
USP User stack pointer
ISP Interrupt stack pointer
INTB Interrupt table register
PC Program counter
High-speed interrupt register bi5 bo
b23 SVF Save flag register
SVP Save PC register
VCT Vector register
DMAC related register b7 b
DMDO I
DMA mode register
b15 DMD1 J
DCTO
DMA transfer count register
DCT1
DRCO
DMA transfer count reload register
b23 DRC1
DMAO
DMA memory address register
DMA1
DSAO l
DMA SFR address register
DSA1L i
DRAO
DMA memory address reload register
DRA1

Figure 1.3.1 CPU register configuration

Rev.1.00 2006.05.31 page 4 of 335 RENESAS
REJ09B0319-0100

Chapter 1 Overview 1.3 Register Configuration

(1) Data Registers (RO, ROH, ROL, R1, R1H, R1L, R2, R3, R2R0, and R3R1)
These registers consist of 16 bits, and are used primarily for transfers and arithmetic/logic operations.
Registers RO and R1 can be halved into separate high-order (ROH, R1H) and low-order (ROL, R1L) parts
for use as 8-bit data registers. Moreover, you can combine R2 and RO or R3 and R1 to configure a 32-
bit data register (R2R0 or R3R1).

(2) Address Registers (A0 and Al)

These registers consist of 24 bits, and have the similar functions as the data registers. These registers
are used for address register-based indirect addressing and address register-based relative address-

ing.

(3) Static Base Register (SB)
This register consists of 24 bits, and is used for SB-based relative addressing.

(4) Frame Base Register (FB)
This register consists of 24 bits, and is used for FB-based relative addressing.

(5) Program Counter (PC)
This counter consists of 24 bits, indicating the address of an instruction to be executed next.

(6) Interrupt Table Register (INTB)
This register consists of 24 bits, indicating the initial address of an interrupt vector table.

(7) User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)
There are two types of stack pointers: user stack pointer (USP) and interrupt stack pointer (ISP), each
consisting of 24 bits.
The stack pointer (USP/ISP) you want can be switched by a stack pointer select flag (U flag).
The stack pointer select flag (U flag) is bit 7 in the flag register (FLG).
Set an even number to USP and ISP. When an even number is set, execution becomes efficient.

(8) Flag Register (FLG)
This register consists of 11 bits, and is used as a flag, one bit for one flag. For details about the function
of each flag, see Section 1.4, "Flag Register (FLG)."

(9) Save Flag Register (SVF)

This register consists of 16 bits and is used to save the flag register when a high-speed interrupt is
generated.

(10) Save PC Register (SVP)

This register consists of 16 bits and is used to save the program counter when a high-speed interrupt is
generated.

Rev.1.00 2006.05.31 page 5 of 335 RENESAS
REJO9B0319-0100

Chapter 1 Overview 1.3 Register Configuration

(11) Vector Register (VCT)
This register consists of 24 bits and is used to indicate the jump address when a high-speed interrupt is
generated.

(12) DMA Mode Registers (DMD0O/DMD1)

These registers consist of 8 bits and are used to set transfer mode, etc. for DMA.

(13) DMA Transfer Count Registers (DCTO/DCT1)
These registers consist of 16 bits and are used to set the number of DMA transfers to be performed.

(14) DMA Transfer Count Reload Registers (DRCO/DRC1)
These registers consist of 16 bits and are used to reload the DMA transfer count registers.

(15) DMA Memory Address Registers (DMAO/DMA1)
These registers consist of 24 bits and are used to set a memory address at the source or destination of
DMA transfer.

(16) DMA SFR Address Registers (DSA0/DSA1L)

These registers consist of 24 bits and are used to set a fixed address at the source or destination of DMA
transfer.

(17) DMA Memory Address Reload Registers (DRAO/DRA1)

These registers consist of 24 bits and are used to reload the DMA memory address registers.

Rev.1.00 2006.05.31 page 6 of 335 RENESAS
REJO9B0319-0100

Chapter 1 Overview 1.4 Flag Register (FLG)

1.4 Flag Register (FLG)

Figure 1.4.1 shows a configuration of the flag register (FLG). The function of each flag is detailed below.

(1) Bit 0: Carry Flag (C flag)
This flag holds a carry, borrow, or shifted-out bit that has occurred in the arithmetic/logic unit.

(2) Bit 1: Debug Flag (D flag)
This flag enables a single-step interrupt.
When this flag is set (= 1), a single-step interrupt is generated after an instruction is executed. When
an interrupt is acknowledged, this flag is cleared to 0.

(3) Bit 2: Zero Flag (Z flag)
This flag is set when an arithmetic operation resulted in 0; otherwise, this flag is 0.

(4) Bit 3: Sign Flag (S flag)
This flag is set when an arithmetic operation resulted in a negative value; otherwise, this flag is 0.

(5) Bit 4: Register Bank Select Flag (B flag)
This flag selects a register bank. If this flag is 0, register bank 0 is selected; when the flag is 1,
register bank 1 is selected.

(6) Bit 5: Overflow Flag (O flag)
This flag is set when an arithmetic operation resulted in overflow.

(7) Bit 6: Interrupt Enable Flag (I flag)
This flag enables a maskable interrupt.
When this flag is 0, the interrupt is disabled; when the flag is 1, the interrupt is enabled. When the
interrupt is acknowledged, this flag is cleared to O.

(8) Bit 7: Stack Pointer Select Flag (U flag)
When this flag is 0, the interrupt stack pointer (ISP) is selected; when the flag is 1, the user stack
pointer (USP) is selected.
This flag is cleared to 0 when a hardware interrupt is acknowledged or the INT instruction of software
interrupt numbers 0 to 31 is executed.

(9) Bits 8-11: Reserved Area

Rev.1.00 2006.05.31 page 7 of 335 RENESAS
REJO9B0319-0100

Chapter 1 Overview 1.4 Flag Register (FLG)

(10) Bits 12-14: Processor Interrupt Priority Level (IPL)
The processor interrupt priority level (IPL) consists of three bits, allowing you to specify eight processor
interrupt priority levels from level 0 to level 7. If a requested interrupt's priority level is higher than the
processor interrupt priority level (IPL), this interrupt is enabled.

(11) Bit 15: Reserved Area

b15 bo
IPL ulit|lo|B|s|z|Db|c| Flag register (FLG)

Carry flag

— Debug flag

Zero flag

Sign flag

Register bank select flag

Overflow flag

Interrupt enable flag

Stack pointer select flag

Reserved area

Processor interrupt priority level

Reserved area

Figure 1.4.1 Configuration of flag register (FLG)

Rev.1.00 2006.05.31 page 8 of335 RENESAS
REJ09B0319-0100

Chapter 1 Overview 1.5 Register Bank

1.5 Register Bank

The M32C/80 has two register banks, each configured with data registers (RO, R1, R2, and R3), address
registers (A0 and Al), frame base register (FB), and static base register (SB). These two register banks
are switched over by the register bank select flag (B flag) in the flag register (FLG).

Figure 1.5.1 shows a configuration of register banks.

Register bank 0 (B flag=0) Register bank 1 (B flag=1)

__

i b15 b8b7 b0 1 E b15 b8b7 bO
i RO i I RO |
i Rl | O I | I i E Rl I I | I | i
. R2 | | R2 i
i R3b’73 MAEEEEERE NN E i R3b73 AN EEEE NN i
: Ao | 1) o v | i : AO T I o A | !
L AL | | Al i
: (HEEENEE NN : : NN :
' FB - ' FB |
I LIt ir i iiiiiii : I LIl it irririitiid I
i SB AN EEAEN AN : i SB AEEEEEEEEEEA NN AN :

Note: Register bank 1 is used for high-speed interrupts when using a high-speed interrupt. Also, when
using three or more DMAC channels, it is extended for use as a DMAC register.

Figure 1.5.1 Configuration of register banks

Rev.1.00 2006.05.31 page 9 of 335 RENESAS
REJO9B0319-0100

Chapter 1 Overview 1.6 Internal State after Reset

1.6 Internal State after Reset

The following lists the content of each register after a reset.

* Data registers (RO, R1, R2, and R3) : 000016
» Address registers (A0 and Al) : 00000016
» Static base register (SB) : 00000016
» Frame base register (FB) : 00000016
* Interrupt table register (INTB) : 00000016
* User stack pointer (USP) : 00000016
* Interrupt stack pointer (ISP) : 00000016
* Flag register (FLG) : 000016
* DMA mode register (DMD0O/DMD1) : 0016
» DMA transfer count register (DCTO/DCT1) : undefined
» DMA transfer count reload register (DRC0O/DRC1) : undefined
* DMA memory address register (DMAO/DMA1) : undefined
* DMA SFR address register (DSAO0/DSA1) : undefined
* DMA memory address reload register (DRAO/DRA1) : undefined
* Save flag register (SVF) : undefined
» Save PC register (SVP) : undefined
* Vector register (VCT) : undefined
Rev.1.00 2006.05.31 page 10 of 335 RENESAS

REJ09B0319-0100

Chapter 1 Overview 1.7 Data Types

1.7 Data Types

There are four data types: integer, decimal, bit, and string.

1.7.1 Integer

An integer can be a signed or an unsigned integer. A negative value of a signed integer is represented
by two's complement.

b7 b0

Signed byte (8 bit) integer

b7 b0

Unsigned byte (8 bit) integer m

b15 b0

Signed word (16 bit) integer R

b15]

Unsigned word (16 bit) integer (oo

b3l]

Signed long word (32 bit) integer (s......0,......L.......0......]

b3l il

UnSIgned Iong Word (32 blt) Integer | | | | I | | I | | I | |
S: Sign bit

Figure 1.7.1 Integer data

1.7.2 Decimal
This type of data can be used in DADC, DADD, DSBB, and DSUB.

Pack format b7 b0
(2 digits) [T
Pack format b15 bo
(4 digits) Lol

Figure 1.7.2 Decimal data

Rev.1.00 2006.05.31 page 11 of 335 RENESAS
REJ09B0319-0100

Chapter 1 Overview 1.7 Data Types

1.7.3 Bits
(1) Register bits
Figure 1.7.3 shows register bit specification.
Register bits can be specified by register direct (bit,RnH/RnL or bit,An). Use bit,RnH/RnL to specify
a bit in data register (RnH/RnL); use bit,An to specify a bit in address register (An).
For bit in bit,RnH/RnL and bit,An, you can specify a bit number in the range of 0 to 7.

RnH/RnL An

b7 bo b7 bo
bitRAH/RNLL 1] bitAn [)y]
(bit:0 to 7, n:0,1)

(bit:0to 7, n:0,1)

Figure 1.7.3 Register bit specification

(2) Memory bits
Figure 1.7.4 shows addressing modes used for memory bit specification. Table 1.7.1 lists the address
range in which you can specify bits in each addressing mode. Be sure to observe the address range in
Table 1.7.1 when specifying memory bits.

Addressing mode ——Absolute addressing bit,base:19

— Address register-based indirect
addressing

— Address register-based relative

addressing

bit,base:27

— FB-based relative addressing —E bit,base:11[FB]

bit,base:19[FB]
— bit,[An]

bit,base:11[An]
— bit,base:19[An]
— bit,base:27[An]

Figure 1.7.4 Addressing modes used for memory bit specification

Table 1.7.1 Bit-Specifying Address Range

) Specification range
Addressing Lower limit (address) | Upper limit (address) The access range
bit,base:19 00000016 OOFFFF16
bit,base:27 00000016 FFFFFF16
bit,base:11[SB] | [SB] [SB]+000FF16 00000016 to FFFFFF16.
bit,base:19[SB] [SB] [SB]+0FFFF16 00000016 to FFFFFF1s.
bit,base:11[FB] [FB]-00008016 [FB]+00007F16 00000016 to FFFFFF16.
bit,base:19[FB] [FB]-00800016 [FB]+007FFF16 00000016 to FFFFFF1s6.
bit,[An] 00000016 FFFFFF16
bit,base:11[An] [An] [An]+0000FF16 00000016 to FFFFFF16.
bit,base:19[An] [An] [An]+00FFFF16 00000016 to FFFFFF1s.
bit,base:27[An] [An] [An]+FFFFFF16 00000016 to FFFFFF16.
Rev.1.00 2006.05.31 page 12 of 335 RENESAS

REJ09B0319-0100

Chapter 1 Overview

(1) Bit specification by bit, base

Figure 1.7.5 shows the relationship between memory map and bit map.

Memory bits can be handled as an array of consecutive bits. Bits can be specified by a given combina-
tion of bit and base. Using bit O of the address that is set to base as the reference (= 0), set the desired

1.7 Data Types

bit position to bit. Figure 1.7.6 shows examples of how to specify bit 2 of address 0000A16.

Address
b7

0

))
(q

n-1

n+l

!

---- n n-1
"""""""""""" b7 bob7 bob7 b0 b7 b0
_______________________ Sg____lllllllllllll||lllllIIII[____?e____JIIIIIll
$ g
~ Memory map Bit
Figure 1.7.5 Relationship between memory map and bit map
Address 0000A16 N
b7 b2 b0
Address 0000916
b15 b10 b8b7 b0
BSET 10,9H
I o | | . I — b I These specification
> examples all specify
bit 2 of address
Address 0000816
b23 b18 b16b15 b8b7 bo 0000A18
BSET 18,8H IIII|||IIIII|IIIIIII|IIII
Address 0000016
b87 b82 b80b79 b72 b7 b0
BSET 82,0H I | | | 1 I T T N N N I____ee____]m
J

Figure 1.7.6 Examples of how to specify bit 2 of address 0000A16

Rev.1.00 2006.05.31 page 13

REJ09B0319-0100

of 335

RENESAS

Chapter 1 Overview 1.7 Data Types

(2) SB/FB relative bit specification
For SB/FB-based relative addressing, use bit O of the address that is the sum of the address set to
static base register (SB) or frame base register (FB) plus the address set to base as the reference (=
0), and set the desired bit position to bit.

(3) Address register indirect/relative bit specification
For address register indirect addressing, use bit 0 of the address that is set to address register(An)
as the reference (= 0), and set the desired bit position to bit.
For address register indirect addressing, specified bit range is 0 to 7.
For address register relative addressing, use bit 0 of the address that is the sum of the address set to
address register (An) plus the address set to base as the reference (= 0), and set the desired bit
position to bit.

Rev.1.00 2006.05.31 page 14 of 335 RENESAS
REJO9B0319-0100

Chapter 1 Overview 1.7 Data Types

1.7.4 String
String is a type of data that consists of a given length of consecutive byte (8-bit) or word (16-bit) data.
This data type can be used in seven types of string instructions: character string backward transfer
(SMOVB instruction), character string forward transfer (SMOVF instruction), specified area initialize
(SSTR instruction), character string transfer compare (SCMPU instruction), character string transfer
(SMOVU instruction), character string input (SIN instruction) and character string output (SOUT instruc-
tion).

Byte (8-bit) data Word (16-bit) data

b7 b0 b15 b0
| 1 1 1 1 1 1 1 | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
b7 b0 b15 b0
| 1 1 1 1 1 1 1 | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
b7 b0 b15 b0

Figure 1.7.7 String data

Rev.1.00 2006.05.31 page 15 of 335 RENESAS
REJ09B0319-0100

h r 1 Overview
Chapte Overvie 1.8 Data Arrangement

1.8 Data Arrangement

1.8.1 Data Arrangement in Register
Figure 1.8.1 shows the relationship between a register's data size and bit numbers.

B3 o
Nibble (4-bit) data [
b7 b0

Byte (8-bit) data L]
bis b0

Word (16_b|t) data | Ll | Ll |
b1 b0

Long Word (32_b|t) data I I | I | I I |
MSB LSB

Figure 1.8.1 Data arrangement in register

Rev.1.00 2006.05.31 page 16 of 335 RENESAS
REJ09B0319-0100

Chapter 1 Overview

1.8.2 Data Arrangement in Memory

1.8 Data Arrangement

Figure 1.8.2 shows data arrangement in memory. Figure 1.8.3 shows some examples of operation.

b7 b0
N DATA

N+1
N+2

N+3

Byte (8-bit) data

b7 b0
N DATA(L)
N+1 DATA(M)
N+2 DATA(H)
N+3

24-bit (Address) data

b7 b0
N DATA(L)
N+1 DATA(H)
N+2
N+3

Word (16-bit) data

b7 b0
N DATA(LL)
N+1 DATA(LH)
N+2 DATA(HL)
N+3 DATA(HH)

Long Word (32-bit) data

Figure 1.8.2 Data arrangement in memory

MOV.B N,ROH
b7 b0 Does not change.
N DATA
) |
N+2 b15 b0
N+3 ROlIIPATAI\Illlllllll
H L
Byte (8-bit) data
MOV.W N,RO
b7 bo
N DATA(L)
N+1 DATA(H) ¢ l
N+2 b15 bo
N+3 RO | | |D|AT|A(H)| | | | |DA1|-A(1L)| | |
H L
Word (16-bit) data
Figure 1.8.3 Examples of operation
Rev.1.00 2006.05.31 page 17 of 335 RENESAS

REJ09B0319-0100

Chapter 1 Overview 1.9 Instruction Format

1.9 Instruction Format

The instruction format can be classified into four types: generic, quick, short, and zero. The number of
bytes in the instruction that can be chosen by a given format is least for the zero format, and increases
successively for the short, quick, and generic formats in that order.

The following describes the features of each format.

(1) Generic format (:G)
Op-code in this format consists of 2-3 bytes. This op-code contains information on operation and src™
and dest” addressing modes.
Instruction code here is comprised of op-code (2-3 bytes), src code (0-4 bytes), and dest code (0-3
bytes).

(2) Quick format (:Q)
Op-code in this format consists of two bytes. This op-code contains information on operation and imme-
diate data and dest addressing modes. Note however that the immediate data in this op-code is a
numeric value that can be expressed by -7 to +8 or -8 to +7 (varying with instruction).
Instruction code here is comprised of op-code (2 bytes) containing immediate data and dest code (0-3
bytes).

(3) Short format (:S)
Op-code in this format consists of one byte. This op-code contains information on operation and src and
dest addressing modes. Note however that the usable addressing modes are limited.
Instruction code here is comprised of op-code (1 byte), src code (0-2 bytes), and dest code (0-2 bytes).

(4) Zero format (:2)
Op-code in this format consists of one byte. This op-code contains information on operation (plus
immediate data) and dest addressing modes. Note however that the immediate data is fixed to 0, and
that the usable addressing modes are limited.
Instruction code here is comprised of op-code (1 byte) and dest code (0-2 bytes).

*1 srcis the abbreviation of "source."
*2 dest is the abbreviation of "destination."

Rev.1.00 2006.05.31 page 18 of 335 RENESAS
REJ09B0319-0100

Chapter 1 Overview 1.10 Vector Table

1.10 Vector Table

The vector table comes in two types: a special page vector table and an interrupt vector table. The special
page vector table is a fixed vector table. The interrupt vector table can be a fixed or a variable vector table.

1.10.1 Fixed Vector Table
The fixed vector table is an address-fixed vector table. The special page vector table is allocated to
addresses FFFE0016 through FFFFDB16, and part of the interrupt vector table is allocated to addresses
FFFFDC16 through FFFFFF16. Figure 1.10.1 shows a fixed vector table.
The special page vector table is comprised of two bytes per table. Each vector table must contain the 16
low-order bits of the subroutine's entry address. Each vector table has special page numbers (18 to 255)
which are used in JSRS and JMPS instructions.
The interrupt vector table is comprised of four bytes per table. Each vector table must contain the
interrupt handler routine's entry address.

FFFE0016 | 255 .
———————— U Special page number

FFFE0216 254 0
Special page E
vector table 0

: 0

FFFFDB16 18 _ _ _ [

FFFFDC16 FFFFDC16E yndefined instruction -
Interrupt FFFFEO16 £ Overflow =
vector table — =

FFFFE416 E BRK instruction E

FFFFFF16 FFFFE816 = Address match =

\ FFFFEC16 = 3
\ FFFFF016 £ \watchdog timer =
\ FFFFF416 [3
\ = =
FFFFF816 — NMI —
\ FFFFFCi6 E Reset E
Figure 1.10.1 Fixed vector table
Rev.1.00 2006.05.31 page 19 of 335 RENESAS

REJ09B0319-0100

Chapter 1 Overview 1.10 Vector Table

1.10.2 Variable Vector Table
The variable vector table is an address-variable vector table. Specifically, this vector table is a 256-byte
interrupt vector table that uses the value indicated by the interrupt table register (INTB) as the entry
address (IntBase). Figure 1.10.2 shows a variable vector table.
The variable vector table is comprised of four bytes per table. Each vector table must contain the
interrupt handler routine's entry address.
Each vector table has software interrupt numbers (0 to 63). The INT instruction uses these software
interrupt numbers.
The built-in peripheral 1/0O interrupts are assigned to variable vector table by MCU type expansion.
Interrupts from the internal peripheral functions are assigned from software interrupt numbers 0. The
number of interrupts is different depending on MCU type.
The stack pointer (SP) used for INT instruction interrupts varies with each software interrupt number.
For software interrupt numbers 0 through 31, the stack pointer specifying flag (U flag) is saved when an
interrupt request is accepted and the interrupt sequence is executed after clearing the U flag to 0 and
selecting the interrupt stack pointer (ISP). The U flag that was saved before accepting the interrupt
request is restored upon returning from the interrupt handler routine.
For software interrupt numbers 32 through 63, the stack pointer is not switched over.
For peripheral I/O interrupts, the interrupt stack pointer (ISP) is selected irrespective of software inter-
rupt numbers when accepting an interrupt request as for software interrupt numbers 0 through 31.

b23 b0
INTBIIIIIII,r'tPP'§?IIIIII||||

IntBase+4 = = %

IntBase+8 . [31 [] | Vectors assign
= 4 0O | peripheral 110
= 3 U | interru
— - pts
— 4 [
— - D
= 4 U v
= 4 U
— =
— : D
= 4 U
= =
= 4 O
— - []
= = %Software interrupt

IntBase+252 = 3 Dnumbers
= 463 []

Figure 1.10.2 Variable vector table

Rev.1.00 2006.05.31 page 20 of 335 RENESAS
REJ09B0319-0100

2.1
2.2
2.3
2.4
2.5
2.6
2.7

Chapter 2

Addressing Modes

Addressing Modes

Guide to This Chapter

General Instruction Addressing

Indirect Instruction Addressing

Special Instruction Addressing

Bit Instruction Addressing

Read and write operations with 24-bit registers

Chapter 2 Addressing Modes 2.1 Addressing Modes

2.1 Addressing Modes

This section describes addressing mode-representing symbols and operations for each addressing mode.
The M32C/80 has four addressing modes outlined below.

(1) General instruction addressing
This addressing accesses an area from address 00000016 through address FFFFFF16.
The following lists the name of each general instruction addressing:
* Immediate
* Register direct
* Absolute
* Address register indirect
» Address register relative
* SB relative
* FB relative
» Stack pointer relative

(2) Indirect instruction addressing
This addressing accesses an area from address 00000016 through address FFFFFF16.
The following lists the name of each indirect instruction addressing:
* Absolute indirect
» Two-stage address register indirect
» Address register relative indirect
* SB relative indirect
* FB relative indirect

(3) Special instruction addressing
This addressing accesses an area from address 00000016 through address FFFFFF16 and control reg-
isters.
The following lists the name of each specific instruction addressing:
» Control register direct
» Program counter relative

(4) Bitinstruction addressing
This addressing accesses an area from address 00000016 through address FFFFFF16.
The following lists the name of each bit instruction addressing:
* Register direct
* Absolute
» Address register indirect
 Address register relative

* SB relative
* FB relative
* FLG direct
Rev.1.00 2006.05.31 page 22 of 335 RENESAS

REJ09B0319-0100

Chapter 2 Addressing Modes 2.2 Guide to This Chapter

2.2 Guide to This Chapter

The following shows how to read this chapter using an actual example.

(1)
/7 N\
Address egiste)elative
The value indicated by displacement
(dsp) plus the content of address Memor
\ register (AO/Al)—added not including y
the sign bits—cpfistiidtes the effective
dsp:16[A1] dsp
(3) TasprzarAn] address to be pperated)on. Register !
dsp:24[Al] | However, if the addition resulted in AO/AL [address |~ @
exceeding OFFFFFF16, the bits above N
4) bit 25 are ignored, and the address]
returns to 00000001s6. /
(1) Name

Indicates the name of addressing.

(2) Symbol

Represents addressing mode.

(3) Explanation
Describes the addressing operation and the effective address range.

(4) Operation diagram
Diagrammatically explains the addressing operation.

Rev.1.00 2006.05.31 page 23 of 335 RENESAS
REJ09B0319-0100

Chapter 2

2.3 General Instruction Addressing

Addressing Modes

2.3 General Instruction Addressing

on.

The effective address range is
000000016 to OFFFFFF16.

pors [

Immediate
b7 b0
#IMM 'Tht?\ imrg_editatte lt)data indi::aéed by #IMM #IMM8 |_|_|_|_|_|—_|_|_|
is the object to be operated on.
#IMM8
#lMMlG b15 b8b7 b0
VM2 HMML Lol]
b31 b24b23 b16b15 b8b7 b0
#IMMSZ |IIIIIIllIIIIIIIlIIIIlII|IIIIIII|
Register direct .
Reqister
ROL The specified register is the object to b7 bo
R
ROH be operated on. ROL / R1L L m
R1L bi5 s
R1H ROH / R1H mi
RO
b15 b8b7 b0
i s L]
R2 R2/R3
R3 b23 biebls bsb7 bo
AO AO/Al |IIIIIII|IIIIIII|IIIIIII|
Al R2R0O/ b3t b24b23 b16b15 bgb7 bo
R2R0 R3R1 IIIIIII|IIIIIII|IIIIIII|IIIIIII|
R3R1
Absolute
—) Memory
abs16 The value indicated by abs constitutes the
abs24 effective address to be operated on.
The effective address range is 000000016 to aEslG !
000FFFF16 at abs16, and 000000016 to abs24
OFFFFFF16 at abs24.
Address register indirect
[AO] The value indicated by the content of
[A1] address register (A0/A1) constitutes Reaist
the effective address to be operated egister Memory

Rev.1.00 2006.05.31 page 24 of 335

REJ09B0319-0100

RENESAS

Chapter 2 Addressing Modes

2.3 General Instruction Addressing

Address register relative

The value indicated by displacement

value indicated by displacement
(dsp)—added including the sign
bits—constitutes the effective address
to be operated on.

However, if the addition resulted in
exceeding 000000016- OFFFFFF1s,
the bits above bit 25 are ignored, and
the address returns to 000000016 or
OFFFFFFis6.

dsp:8[AQ] Memory
dsp:8IA1L (dsp) plus the content of address
sp:8[Al] register (AO/Al)—added not including dsp
dsp:16[A0] | the sign bits—constitutes the effective Register |
dsp:16[A1] address to be operated on. A0/ Al _» @
dsp:24[AQ]| However, if the addition resulted in
dsp:24[A1l]|exceeding OFFFFFF1s, the bits above
bit 25 are ignored, and the address
returns to 000000016.
SB relative
) The address indicated by the content
dsp:8[SB] of static base register (SB) plus the
dsp:16[SB]|value indicated by displacement Register Memory
(dsp)—added not including the sign SB| address |- adaress
bits—constitutes the effective address |
to be operated on. dsp — @
However, if the addition resulted in |
exceeding OFFFFFF16, the bits above
bit 25 are ignored, and the address
returns to 000000016.
FB relative
i S Memory
O] e e e (28 oy | When h tsp sl gt
dsp:16[FB]

N

dsp — @
Register t

FB| address |- address

!
dsp*@

L,

When the dsp value is positive

Rev.1.00 2006.05.31 page 25 of 335
REJ09B0319-0100

RENESAS

Chapter 2 Addressmg Modes 2.3 General Instruction Addressing

Stack pointer relative

dsp:8[SP] [The address indicated by the content Memory
of stack pointer (SP) plus the value When the dsp value is negative
indicated by displacement (dsp)
added including the sign bits—consti- ﬁ
tutes the effective address to be dsp — @
operated on. The stack pointer (SP) P
here is the one indicated by the U flag. Register t
SP| address |- address

However, if the addition resulted in |
exceeding 000000016- OFFFFFF1s, the dsp — ®
bits above bit 25 are ignored, and the
address returns to 000000016 or L
OFFFFFFis.

When the dsp value is positive

This addressing can be used in MOV
instruction.

Rev.1.00 2006.05.31 page 26 of 335 RENESAS
REJ09B0319-0100

Chapter 2 Addressmg Modes 2.4 Indirect Instruction Addressing

2.4 Indirect Instruction Addressing

Absolute indirect

[abs16] The 4-byte value indicated by absolute
[abs24] addressing constitutes the effective Memory

address to be operated on. abs16/ abs24 — address LL
The effective address range is adgress LH
000000016 to OFFFFFF16. address HL
address HH
b31 b0
(ol [[|
address
(The upper 8-bit is ignored.)
Two-stage address register indirect
[[AO]] The 4-byte value indicated by address
register (AO/Al) indirect constitutes the Register Memory
[[A1]] effective address to be operated on.
AO/Al| address | — address LL
The effective address range is address LH
000000016 to OFFFFFF16. address HL
address HH

b3 b0

(o] [[|

address

(The upper 8-bit is ignored.)

Rev.1.00 2006.05.31 page 27 of 335 RENESAS
REJ09B0319-0100

Chapter 2 Addressmg Modes 2.4 Indirect Instruction Addressing

Address register relative indirect
[dsp:8[A0]] |The 4-byte value indicated by
dsp 8IA1L address register relative constitutes dsp
[dsp:8[A1]] the effective address to be operated Register }
[dsp:16[A0]] | on. AO /A1 _»@ Memory
dsp:16[Al
[p. [AL]] The effective address range is — address LL
[dsp:24[A0]] | 000000016 to OFFFFFF1s. address LA
. aadress
[dSp.24[Al]] address HH
b31 b0
Lol [[]
address
(The upper 8-bit is ignored.)
SB relative indirect
[dsp:8[SB]] |The 4-byte value indicated by SB
) relative constitutes the effective
[dsp:16[SB]] address to be operated on.) Memory
Register
The effective address range is SB —address
000000016 to OFFFFFF1s. i
dsp —_ @

Ls address LL
address LH
address HL
address HH

b31 bo
Lol [[]
address
(The upper 8-bit is ignored.)

Rev.1.00 2006.05.31 page 28 of 335 RENESAS
REJ09B0319-0100

Chapter 2 Addressmg Modes 2.4 Indirect Instruction Addressing

FB relative indirect
[dsp:8[FB]] |The 4-byte value indicated by FB M
dsp:16[FB relative constitutes the effective emory
[dsp:16[FB]] address to be operated on.
address LL
The effective address range is address LH
address HH
b31 bo
o] [[|
address
—>
dsp - @
Register t
FB [address |- address
!
dsp — @
> address LL
address LH
address HL
address HH
b31 bo
Lo [[[]
address
(The upper 8-bit is ignored.)

Indirecting addressing mode cannot be used since op-code of the following instructions is 3 bytes.
div.L

divu.L
divx.L
mul.L
mulu.L
Rev.1.00 2006.05.31 page 29 of 335 RENESAS

REJ09B0319-0100

Chapter 2 Addressing Modes 2.5 Special Instruction Addressing

2.5 Special Instruction Addressing

Control register direct
Register
INTB The specified control register is the b23 g bo
|SP objecttobeoperatedon. INTB ||||||||||||||||||||||||
b23 b0
SP This addressing can be used in LDC ISP [il
SB and STC instructions.
b23 b0
FB If you specify SP, the stack pointer use L
FLG indicated by the U flag is the object to b23 bo
SVP be operated On SB | | T N T N | |
VCT b23 b0
SVF FB |||||||||||||||||||||||||
bl5 bo
gmgg FLG IIIIIIIIIIIIIII|
DCTO svp b|23 blo
| N T T Y I
DCT1
b23 b0
DRCO VCT |
| N T T N Y I I |
DRC1 bi5 bo
DMAO SVF T
DMA1 b7 b0
5SA0 DMDO Lovveen]
DSA1l bz B0
DMD1
DRAG L]
b15 b0
DRAl DCTO IIIIIIIIIIIIIII|
b15 b0
DCT1 |||||||||||||||||
bl5 b0
DRCO NENEREEEREEENN
bl5 b0
DRCl { N T T Y I I |
b23 b0
DMAO |IIIIIIIIIIIIIIIIIIIIIII
b23 [o]0)
DMAl |IIIIIIIIIIIIIIIIIIIIIII|
b23 bO
DSAO |IIIIIIIIIIIIIIIIIIIIIII
b23 b0
DSAl |IIIIIIIIIIIIIIIIIIIIIII|
b23 b0
DRAO |IIIIIIIIIIIIIIIIIIIIIII|
b23 bO
DRAl |IIIIIIIIIIIIIIIIIIIIIII
Rev.1.00 2006.05.31 page 30 of335 RENESAS

REJ09B0319-0100

Chapter 2 Addressing Modes

2.5 Special Instruction Addressing

Program counter relative
label * When the jump length specifier
(.length) is (.S)... Memory
the base address plus the value
indicated by displacement Base address
(dsp)—added not including the sign y
bits—constitutes the effective ad- dsp - @
dress. |
This addressing can be used in JMP label
instruction.
+0=dsp=+7
*1 The base address is the (start address of instruction + 2).
* When the jump length specifier Memory
(.length) is (.B) or (\W)... When the dsp value is negative
the base address plus the value label
indicated by displacement |
(dsp)—added including the sign bits ds - @
—constitutes the effective address. P |
However, if the addition resulted in Base address
exceeding 000000016- OFFFFFF1s,]
the bits above bit 25 are ignored, and dsp - ®
the address returns to 000000016 or
OFFFFFFise. |
. —> label
This addressing can be used in JMP | When the dsp value is positive
and JSR instructions.
When the specifier is (.B), -128 < dsp < +127
When the specifier is (\W), -32768 < dsp < +32767
*2 The base address varies with each instruction.
Rev.1.00 2006.05.31 page 31 of 335 :{ENESAS

REJ09B0319-0100

Chapter 2 Addressmg Modes 2.6 Bit Instruction Addressing

2.6 Bit Instruction Addressing

This addressing can be used in the following instructions:
BCLR, BSET, BNOT, BTST, BNTST, BAND, BNAND, BOR, BNOR, BXOR, BNXOR, BM Crnd, BTSTS,
BTSTC

Register direct
bit,ROL The specified register bit is the object
bit, ROH to be operated on. bit , ROL
bit,R1L For the bit position (bit) you can
i specify 0 to 7.
b|t,R1H b7 ROL bo
bit,A0 For the address register (A0,Al), you | II
bit,Al can specify 8 low-order bits. n
Bit position
Absolute
; . The bit that is as much away from bit
bit,base:19 T
) 0 at the address indicated by base as b7 bo
bit,base:27 |the number of bits indicated by bit is base
the object to be operated on. e
The address range that can be AN -
specified by bit,base:19 and N
bit,base:27 respectively are -
000000016 through 000FFFF16 and L | |<. .
000000016 through OFFFFFF1s6. t
Bit position
Address register indirect
bit,[A0] The bit that is as much away from bit
bit [A1 0 at address indicated by address
it[Al] register (AO/A1) as the number of bits Register b7 b0
is the object to be operated on. AO/A1 - .II
Bits at addresses 000000016 through t
OFFFFFF16 can be the object to be Bit position
operated on.
For the bit position (bit) you can
specify 0 to 7.

Rev.1.00 2006.05.31 page 32 of335 RENESAS
REJ09B0319-0100

Chapter 2 Addressing Modes

2.6 Bit Instruction Addressing

Address register relative

bit,base:11[A0]
bit,base:11[A1]
bit,base:19[A0]
bit,base:19[Al]
bit,base:27[A0]
bit,base:27[A1]

The bit that is as much away
from bit O at the address indi-
cated by base as the number of
bits indicated by address regis-
ter (AO/Al) is the object to be
operated on.

However, if the address of the
bit to be operated on exceeds
OFFFFFF16, the bits above bit
25 are ignored and the address
returns to 000000016.

The address range that can be
specified by bit,base:11,
bit,pbase:19 and bit,base:27
respectively are 256 bytes,
65,536 bytes and 16,777,216
bytes from address register (A0/
Al) value.

Register

AOIAL ~ addtess
!
base — @

Memory
b7 b0

h)
(€
)

€

L,

<

f

Bit position

SB relative

bit,base:11[SB]
bit,base:19[SB]

The bit that is as much away
from bit O at the address indi-
cated by static base register
(SB) plus the value indicated by
base (added not including the
sign bits) as the number of bits
indicated by bit is the object to
be operated on.

However, if the address of the
bit to be operated on exceeds
OFFFFFF1s, the bits above bit
25 are ignored and the address
returns to 000000016.

The address ranges that can be
specified by bit,base: 11, and
bit,base:19 respectively are 256
bytes, and 65,536 bytes from
the static base register (SB)
value.

Register

SB — address
|

base

Memory
b7 b0

)
ASY
P)
(€

- ®

L

<

f

Bit position

Rev.1.00 2006.05.31 page 33 of 335
REJ09B0319-0100

RENESAS

Chapter 2 Addressing Modes

2.6 Bit Instruction Addressing

FB relative

bit,base:11[FB]
bit,base:19[FB]

The bit that is as much away
from bit O at the address indi-
cated by frame base register
(FB) plus the value indicated by
base (added including the sign
bit) as the number of bits indi-
cated by bit is the object to be
operated on.

However, if the address of the
bit to be operated on exceeds
000000016-0FFFFFF1s, the bits
above bit 25 are ignored and the
address returns to 000000016 or
OFFFFFF1e.

The address range that can be
specified by bit,base:11 and
bit,base:19 are 128 bytes toward
lower addresses or 127 bytes
toward higher addresses from
the frame base register (FB)
value, and 32,768 bytes toward
lower addresses or 32,767 bytes
toward higher addresses, re-
spectively.

If the base value is negative

Register

t
8 — actess

If the base value is positive

Memory
11 1 |
t
(Bit position)
base — @ L A
l [T T T |
base — @ =~ ~

L,

Bit position

FLG direct

O ON W ®mO — C

The specified flag is the object to
be operated on.

This addressing can be used in
FCLR and FSET instructions.

b7

Reqister bo

FLG|U|

IIOIBISIZIDIC|

Rev.1.00 2006.05.31 page 34

REJ09B0319-0100

of 335

RENESAS

Chapter 2 Addressing Modes 2.7 Read and write operations with 24-bit registers

2.7 Read and write operations with 24-bit registers

This section describes operation when 24 bits register (AO, Al) is src or dest for each size specifier (.size/
.B.W .L).

When (.B) is specified for the size specifier (.size)

* Read
b23 bl6b15 b8 b7 b0

The 8 low-order bits are read. The flags change AO0/Al | | M

states depending on the result of 8-bit operation.

! Read
. b7 b0
* Write W
[Transfer instruction]
srcis zero-expanded to 16 bits and saved to the
low-order 16-bit. In this case, the 8 high-order bits Zero-expanded
become 0. The flags change states depending on bl5 b8 b7)
the result of 16-bit transfer data. m
o _ ! ! Write
[Operating instructions]
b23 b16b15 b8 b7 b0

srcis zero-expanded to perform operation in 16-bit. AO/A1l | 0016 0016
In this case, the 8 high-order bits become 0. The
flags change states depending on the result of 16- Zero-expanded

bit operation. bl5 b8b7 b

@ Operation

b23 bl16bl5 b8 b7 b0
AO/Al1 (Ignored

0016

| | Write

b23 bl16b15 b8 b7 b0
AO/AL 0016

Rev.1.00 2006.05.31 page 35 of335 RENESAS
REJ09B0319-0100

Chapter 2 Addressing Modes

2.7 Read and write operations with 24-bit registers
|

When (\W) is specified for the size specifier (.size)

* Read
) p23 b16b15 b8 b7 b0
The low order 16-bit are read. The flags change AOQ/AL
states depending on the result of 16-bit operation.
! Read
» Write 5 i 4
I,
Write to the low order 16-bit. In this case, the 8
high-order bits become 0. The flags change states
depending on the result of 16-bit transfer data.
15 b8 b7 o
| Write
b23 b16b15 b8h7 b0
AO/A1
When (.L) is specified for the size specifier (.size)
« Read Zero-expanded
. . b31 b24b23 b16b15 b8 b7 b0
32 bits are read out after being zero-extended. AO/AL | 0016 |2222221222222E222223
The flag varies depending on the result of a 32-bit
operation. | Read
b31 b24b23 h16b15 b8 b7 b0
770 1 P
- Write G vt v vt
The low-order 24-bit is written, with the 8 high-
order bit ignored. The flag varies depending on
the result of a 32-bit operation (not the value of the
24-bit register). b31 b24b23 h16b15 b8 b7 b0
Example: MOV.L#80000000h,A0 NN 7772 704202 2024,
Flag status after execution | Write
Sflag =1 (The MSB is bit 31.) b23 b16b15 b8 b7 b0
V / /
Z flag = 0 (Set to 1 when all of 32 AOIAL mmm
bits are 0s.)
The value of AO after executing the above instruc-
tion becomes 00000016. However, since operation
is performed on 32-bit data, the S flag is setto 1
and the Z flag is cleared to 0.
Rev.1.00 2006.05.31 page 36 of335 RENESAS

REJ09B0319-0100

Chapter 3

Functions

3.1 Guide to This Chapter
3.2 Functions
3.3 Index Instructions

Chapter 3 Functions 3.1 Guide to This Chapter

3.1 Guide to This Chapter

This chapter describes the functionality of each instruction by showing syntax, operation, function, select-
able src/dest, flag changes, and description examples.
The following shows how to read this chapter by using an actual page as an example.

Chapter 3 Functions _
3.2 Functions

Logically OR
@ @ i OR
2 [Syntax | [Instn Code/Number of Cycles]
) size (:format) src,dest Page=260
| ' G,S (Can be specified)
B,W

() e | ration]

dest < src V dest [dest] < src V [dest]

dest « [src] \y dest [dest] [src] \, [dest]
(5) T— [tion]

\This instruction logically ORs destand srctogether and stores the result in dest.

(6) — [@table src/dest |

* When (\W) is specified for the size specifier (.size) and dest is the address register (A0, Al), the 8
high-order bits become 0. Also, when src is the address register, the 16 low-order bits of the address
register are the data to be operated on.

(See the next page for src/dest classified by format.)

src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
AO/AO A1/A1 [AO] [A1] AO/AO A1/A1 [A0] [A1]
dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB] | dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]| dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[A1] abs24 abs16
#IMM8/#IMM16

*1 Indirect instruction addressing [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-,
R1L/R1/R3R1, R1H/R3/-, SP/SP/SP, and #IMM.

- [hange]

Fag |lu|I |o|B|s|]z]|DJ|C

Changd — | —| —| —| O| O| —| —

Conditions
S : The flag is set when the transfer resulted in MSB of dest = 1; otherwise cleared.
Z : The flag is set when the transfer resulted in O; otherwise cleared.

8) 1 [ription Example]
ORB Ram:8[SB],ROL

OR.B:G AOQ,ROL ; AO's 8 low-order bits and ROL are ORed.
OR.B:G ROL,AO0 ; ROL is zero-expanded and ORed with AQ.
OR.B:S #3,ROL
OR.W:G [R1],[JAO]]
115
Rev.1.00 2006.05.31 page 38 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.1 Guide to This Chapter
. __|

(1) Mnemonic
Indicates the mnemonic explained in this page.

(2) Instruction code/number of cycles
Indicates the page in which instruction code/number of cycles is listed.
Refer to this page for instruction code and number of cycles.

(3) Syntax
Indicates the syntax of the instruction using symbols. If (:format) is omitted, the assembler chooses the
optimum specifier.

OR.size (: forinat) src , dest

G,S)
B,W - (e)

Vo | |
(@) (b) © ()

(&) Mnemonic OR
Describes the mnemonic.

(b) Size specifier size
Describes the data size in which data is handled. The following lists the data sizes that can be
specified:
.B Byte (8 bits)
W Word (16 bits)
L Long word (32 bits)
Some instructions do not have a size specifier.

(c) Instruction format specifier (: format)

Describes the instruction format. If (.format) is omitted, the assembler chooses the optimum speci-
fier. If (.format) is entered, its content is given priority. The following lists the instruction formats that
can be specified:

:G Generic format

:Q Quick format

:S Short format

:Z Zero format

Some instructions do not have an instruction format specifier.

(d) Operand src, dest
Describes the operand.

(e) Indicates the data size you can specify in (b).

() Indicates the instruction format you can specify in (c).

Rev.1.00 2006.05.31 page 39 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.1 Guide to This Chapter

Chapter 3 Functions
3.2 Functions

a4— @ Logically OR O R

(2) [E ax | OR [Instn Code/Number of Cycles]

3] ize (:format) src,dest Page=260
' G, S (Can be specified)
W, B

41— ation |

dest < src V dest [dest] <« src \V [dest]

dest [src]\/ dest [dest] « [src]\/ [dest]
(B)1T— [tion

«This instruction logically ORs destand srctogether and stores the result in dest.

« When (\W) is specified for the size specifier (.size) and dest is the address register (A0, Al), the 8
high-order bits become 0. Also, when src is the address register, the 16 low-order bits of the address
register are the data to be operated on.

6)+— [@@:table src/dest] (See the next page for src/dest classified by format.)
src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
AO0/AO Al/AL [AQ] [A1] AO/AQ A1/AL [AO] [A1]

dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB] | dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]| dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abslé | gspio4[A0] dspi24[Al] abs24 absl6
#IMM8/#IMM16

*1 Indirect instruction addressing [src]land[dest] can be used in all addressing except ROL/RO/R2R0,
ROH/R2/-, R1L/R1/R3R1, R1H/R3/-, SP/SP/SP, and #IMM.

7 —+— [hange]

Fag|u|1 |o|B|S|z|D|C

Changg — | —| —| —| O| O| —| —

Conditions
S : The flag is set when the transfer resulted in MSB of dest = 1; otherwise cleared.
Z : The flag is set when the transfer resulted in 0; otherwise cleared.

@)1 1 gription Example]
ORB Ram:8[SB],ROL
OR.B:G AOQ,ROL ; AO' s 8 low-order bits and ROL are ORed.
OR.B:G ROL,A0 ; ROL is zero-expanded and ORed with AO.
OR.B:S #3,ROL
OR.W:G [R1],[[AQ]]
115
Rev.1.00 2006.05.31 page 40 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.1 Guide to This Chapter

(4) Operation
Explains the operation of the instruction using symbols.

(5) Function
Explains the function of the instruction and precautions to be taken when using the instruction.

(6) Selectable src/ dest (label)
If the instruction has an operand, this indicates the format you can choose for the operand.

(@)
519 fest

ROL/RO/R2R “~ROH/R2 ROL/RO “~ROH/R2 L (b)
R1L/R1 R1H/R3 R1L/R1 R1H/R3
AO0/A0 Al/Al1 [AO AO/A0 1/A1 [
dsp:8[AQ0] dsp:8[Al] dsp:8[SB] dsp:8[FB] : dsp:8[Al] dsp:8[SB] dsp:8[FB] | (c)
dsp:16[AQ] dsp:16[Al] dsp:16[SB] dsp:16[FB :16[AQ] dsp: sp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 absl6 dsp:24[A :24[A1] abs24
#IMM8/#IMM16 Hﬁp\ - ()

(a) Items that can be selected as src (source). (e)

(b) Items that can be selected as dest(destination).
(c) Addressing that cannot be selected.
(d) Addressing that can be selected.

(e) Shown on the left side of the slash (ROL) is the addressing when data is handled in bytes (8 bits).
Shown on the middle side of the slash (RO) is the addressing when data is handled in words (16
bits).

Shown on the right side of the slash (R2R0) is the addressing when data is handled in words (32
bits).

(7) Flag change
Indicates a flag change that occurs after the instruction is executed. The symbols in the table mean the
following:

"—" The flag does not change.

"(O" The flag changes depending on condition.

(8) Description example
Shows a description example for the instruction.

Rev.1.00 2006.05.31 page 41 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.1 Guide to This Chapter

The following explains the syntax of each jump instruction JMP, JPMI, JSR, and JSRI by using an actual
example.

Chapter 3 Functions 3.2 Functions

Q) —+— @ Unconditional jump J M P

(2) JuMP uction Code/Number of Cycles]
[tax]

) length) label Page=195
[

S, B, W, A (Can be specified)

(3) Syntax
Indicates the instruction syntax using a symbol.

JMP (.length) label
|

S,B,W,A — (d)
| | |

@ ® (©

(a) Mnemonic JMP
Describes the mnemonic.

(b) Jump distance specifier .length
Describes the distance of jump. If (.length) is omitted in JMP or JSR instruction, the assembler
chooses the optimum specifier. If (.length) is entered, its content is given priority.
The following lists the jump distances that can be specified:
.S 3-bit PC forward relative (+2 to +9)
.B 8-bit PC relative
W 16-bit PC relative
A 24-bit absolute

(c) Operand label
Describes the operand.

(d) Shows the jump distance that can be specified in (b).

Rev.1.00 2006.05.31 page 42 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

3.2 Functions

Absolute value
ABS ABSolute ABS
[Syntax] [Instruction Code/Number of Cycles]

ABS.size dest Page=174
: B,W

[Operation]
dest <« | dest |
[dest] <« |[dest]]

[Function]
» This instruction takes on an absolute value of destand stores it in dest.

* When (\W) is specified for the size specifier (.size) and destis the address register (A0, Al), the 8
high-order bits become 0.

[Selectable dest]

dest*!
ROL/RO ROH/R2
R1L/R1 R1H/R3
AO Al [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16
*1 Indirect instruction addressing [dest] can be used in all addressing except ROL/RO , ROH/R2/-,
R1L/R1 , RIH/R3/-.
[Flag Change]
Fag |[U| 1 |O|B|S|Z|D]|C
Change| — |[— | O | —|O|O|—=|0O
Conditions
O : Theflag is set (= 1) when destbefore the operation is -128 (.B) or -32768 (.W); otherwise cleared (=
0).

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
. The flag is set when the operation resulted in 0; otherwise cleared.
C : The flag is undefined.

N

[Description Example]
ABS.B ROL
ABS.W [AQ]
ABS.W [[AO]]

Rev.1.00 2006.05.31 page 43 of 335 RENESAS
REJ09B0319-0100

Rev.1.00 2006.05.31 page 44 of 335

Chapter 3 Functions 3.2 Functions

Add with carry
ADdition with Carry

ADC

[Instruction Code/Number of Cycles]
Page=174

ADC

[Syntax]
ADC.size src,dest
' B,W

[Operation]

dest <« src + dest + C

[Function]

 This instruction adds dest, srcand C flag together and stores the result in dest.

» When (.B) is specified for the size specifier (.size) and destis the address register (A0, Al), srcis zero-
extended to be treated as 16-bit data for the operation. In this case, the 8 high-oreder bits become 0.
Also, when srcis the address register, the 8 low-order bits of the address register are used as data to
be operated on.

» When (\W) is specified for the size specifier (.size) and destis the address register, the 8 high-order
bits become 0. Also, when srcis the address register, the 16 low-order bits of the address register are
the data to be operated on.

[Selectable src/dest]

src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
AO/AOAG* ALIAL/AT* [AQ] [Al] AO/AD/AG* ALIAL#AT [AQ] [A1]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] | dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]| dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMMB8/#IMM16

*1 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for srcand dest
simultaneously.

[Flag Change]

Flag lU| 1 |]O|B|S|Z|D|C
Changel — | — | O | — 1 OO =10
Conditions

O : The flag is set when a signed operation resulted in exceeding +32767 (.W) or - 32768 (.W) or
+127 (.B) or -128 (.B); otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when an unsigned operation resulted in exceeding +65535 (\W) or +255 (.B);
otherwise cleared.

N

[Description Example]

ADC.B #2,ROL

ADC.W AO,RO

ADC.B AO,ROL ; AO's 8 low-order bits and ROL are added.
ADC.B ROL,AOQ ; ROL is zero-expanded and added with AQ.
ADC.W R1,[Al]

RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Add carry flag
ADCF ADdition Carry Flag ADCF
[Syntax] [Instruction Code/Number of Cycles]

ADCF.size dest Page=176
' B,W

[Operation]
dest <« dest + C
[dest] <« [dest] + C

[Function]
 This instruction adds desrand C flag together and stores the result in dest.

* When (.W) is specified for the size specifier (.size) and destis the address register (A0, Al), the 8
high-order bits become 0.

[Selectable dest]

dest*!
ROL/RO ROH/R2
R1L/R1 R1H/R3
A0 Al [AO] [Al]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16

*1 Indirect instruction addressing [dest] can be used in all addressing except ROL/RO , ROH/R2/-,
R1L/R1 , RIH/R3/-.

[Flag Change]

Feg flU| I |O|B|S|zZz|D|C
Changel — [— | O| =10 |10O|—=10
Conditions

O : The flag is set when a signed operation resulted in exceeding +32767 (.\W) or -32768 (.W) or
+127 (.B) or -128 (.B); otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when an unsigned operation resulted in exceeding +65535 (.W) or +255 (.B);
otherwise cleared.

[Description Example]
ADCF.B ROL
ADCF.W Ram:16[AQ]

Rev.1.00 2006.05.31 page 45 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Add without carry
ADDition

ADD

[Instruction Code/Number of Cycles]
Page=176

ADD

[Syntax]

ADD.size (:-format) src,dest
[

‘ G, Q,S (Can be specified)
B,W,L
[Operation]
dest <« dest +
dest <« dest +

[dest] < [dest] +
[dest] <« |[dest] +

src
[src]

src
[src]

[Function]
 This instruction adds destand srctogether and stores the result in dest

* When (.B) is specified for the size specifier (.size) and destis the address register (A0, Al), srcis zero-extended to be
treated as 16-bit data for the operation. In this case, the 8 high-order bits become 0. Also, when srcis the address
register, the 8 low-order bits of the address register are used as data to be operated on.

* When (.W) is specified for the size specifier (.size) and destis the address register, the 8 high-order bits become 0.
Also, when srcis the address register, the 16 low-order bits of the address register are the data to be operated on.

* When (.L) is specified for the size specifier (.size) and destis the address register, destis zero-extended to be treated
as 32-bit data for the operation. The 24 low-order bits of the operation result are stored in dest Also, when srcis the
address register, srcis zero-extended to be treated as 32-bit data for the operation. The flags also change states
depending on the result of 32-bit operation.

* When (.L) is specified for the size specifier (.size) and destis SP, destis zero-extended to be treated as 32-bit data for

the operation, and src is sign-extended to be treated as 32-bit data for the operation. The 24 low-order bits of the
operation result are stored in dest. The flags also change states depending on the result of 32-bit operation.

[Selectable src/dest 1** (See the next page for srd dest classified by format.)

src dest
ROL/RO/R2R0 ROH/R2/- ROL/RO/R2R0 ROH/R2/-
R1L/R1/R3R1 R1H/R3/- R1L/R1/R3R1 R1H/R3/-
AO/A0/A0*2 A1/A1/AL1*? [AOQ] [A1] AO/A0/A0*2 A1/A1/A1*? [AQ] [A1]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] [dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM Sp*3

*1 Indirect instruction addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/
R1/R3R1, R1H/R3/-, SP, and #IMM.

*2 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for srcand destsimultaneously.

*3 Operation is performed on the stack pointer indicated by the U flag.

[Flag Change]

Fag (U | I |O|B|S|Z|D]|C
Changel — | — | O|—|O|O|—10
Conditions

O : The flag is set when a signed operation resulted in exceeding +2147483647(.L) or
-2147483648(.L), +32767 (W) or -32768 (.W), or +127 (.B) or -128 (.B); otherwise cleared.

The flag is set when the operation resulted in MSB = 1; otherwise cleared.

The flag is set when the operation resulted in 0; otherwise cleared.

The flag is set when an unsigned operation resulted in exceeding +4294967295(.L) or +65535 (.W) or
+255 (.B); otherwise cleared.

ONWOM

[Description Example]
ADD.B [[AQ]],abs16

Rev.1.00 2006.05.31 page 46 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions

[src/dest Classified by Format]

3.2 Functions
.}

G format**

src dest
ROL/RO/R2R0 ROH/R2/- ROL/RO/R2R0 ROH/R2/-
R1L/R1/R3R1 R1H/R3/- R1L/R1/R3R1 R1H/R3/-
AO/AO/AD* AL/AL/AL* [AO] [A1] AO/AOIAD*® A1/AL/AT* [AQ] [Al]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB] |dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[A1l] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8/#IMM16/4IMM32 Sp*

*4 Indirect instruction addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1LY
SP, and #IMM.
*5 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for src and dest

R1/R3R1, R1H/R3/-,

simultaneously.

*6 Operation is performed on the stack pointer indicated by the U flag. You can choose only #IMM16 for
src. You can choose only (.L) for the size specifier (.size).
In this case, you cannot use indirect instruction addressing mode.

Q format*’
src dest
ROL/RO/R2R0O ROH/R2/-
R1L/R1/R3R1 R1H/R3/-
AO/AO/A0 A1/A1/A1 [A0] [A1]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM3*/#MM4*10 Sp*8

*7 Indirect instruction addressing [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-,
R1L/R1/R3R1, R1H/R3/-, and SP.

*8 Operation is performed on the stack pointer indicated by the U flag. You can choose only #IMM3 for src.

*9 When gestis the SP, #lMM3 can be selected. The range of values is +1 < #IMM3 < +8.

*10 When gestis not the SP, #iIMM4 can be selected. The range of values is -8 < #IMM4 < +7.

S format™!

src dest
ROL/RO dsp:8[SB] dsp:8[FB] abs16
#IMM8/#IMM16*12
#1*13 #2*13 AO*lO A1*13
#IMM8*13 Sp*

*11 Indirect instruction addressing [dest] can be used in all addressing except ROL/RO, and SP.

*12 You can choose the (.B) and (.W) for the size specifier (.size).

*13 You can choose only (.L) for the size specifier (.size). In this case, you cannot use indirect instruction
addressing mode.

Rev.1.00 2006.05.31 page 47 of335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Add extend sign without carry
ADDX ADDition eXtend sign ADDX
[Syntax] [Instruction Code/Number of Cycles]
ADDX src,dest Page=183

[Operation]

dest <« dest + EXTS(src) [dest] <« [dest] + EXTS(src)
dest <« dest + EXTS([src]) [dest] <« [dest] + EXTS([src])
[Function]

 Sign-extend the 8-bit srcto 32 bits which are added to the 32-bit dest, and the result is stored in dest.

» When destis the address register (AQ, Al) , destis zero-extended to be treated as 32-bit data for the
operation. The 24 low-order bits of the operation result are stored in dest. The flags also change
states depending on the result of 32-bit operation. Also, when srcis the address register, srcis zero-
extended to be treated as 8 low-order-bit data for the operation.

[Selectable src/dest]**

src dest
ROL ROH R2R0 -
Ri1L R1H R3R1 -
A0 Al [AQ] [A1] A0 Al [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] [dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] |dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8

*1 Indirect instruction addressing [src] and [dest] can be used in all addressing except ROL/R6/R2R0, ROH/
R2/-, R1L/R1/R3R1, R1H/R3/-, and #IMM.

[Flag Change]

Fag |lU| Il |O|B|S|Z|D|C
Changel — [— | O |—|O|O|—-10
Conditions

O : The flag is set when a signed operation resulted in exceeding +2147483647(.L) or
-2147483648(.L); otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when an unsigned operation resulted in exceeding +4294967295(.L); otherwise
cleared.

N

[Description Example]

ADDX ROL,AQ
ADDX RAM:8[SB],R2R0
ADDX [AO0],A1
Rev.1.00 2006.05.31 page 48 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Add & conditional jump
AD\] NZ ADdition then Jump on Not Zero AD\] NZ
[Syntax] [Instruction Code/Number of Cycles]

ADJNZ.size src,dest,label Page=185
|

[Operation]
dest <« dest + src
if dest+ 0then jump label

[Function]
 This instruction adds destand srctogether and stores the result in dest
* When the addition resulted in any value other than 0, control jumps to label. When the addition
resulted in 0, the next instruction is executed.
» The op-code of this instruction is the same as that of SBINZ.

* When (.W) is specified for the size specifier (.size) and destis the address register (A0, Al), the 8
high-oreder bits become 0.

[Selectable src/dest/label]

src dest label
ROL/RO ROH/R2
R1L/R1 R1H/R3
#IMM42 AO Al [AQ] [A1] PC2-126 =<label=PC"2+129

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

*1 The range of values is - 8 < #IMM4 < +7.
*2 PC indicates the start address of the instruction.

[Flag Change]
Flag |lU| I |O|B|S|Z|D|C

Changel| — | — | —| —| = | —=| —| —

[Description Example]
ADINZW #-1,R0,label

Rev.1.00 2006.05.31 page 49 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions

3.2 Functions

AND

Logically AND
AND

[Syntax]
AND.size (:-format) src,dest
' G, S (Can be specified)
B,W
[Operation]
dest <« src A dest [dest] <« src A [dest]
dest « [src] A dest [dest] « [src] A [dest]
[Function]

* This instruction logically ANDs destand srctogether and stores the result in dest.

AND

[Instruction Code/Number of Cycles]

Page=186

» When (.B) is specified for the size specifier (.size) and destis the address register (A0, Al), srcis zero-
extended to be treated as 16-bit data for the operation. In this case, the 8 high-oreder bits become 0.
Also, when srcis the address register, the 8 low-order bits of the address register are used as data to
be operated on.

» When (\W) is specified for the size specifier (.size) and destis the address register, the 8 high-order
bits become 0. Also, when srcis the address register, the 16 low-order bits of the address register are
the data to be operated on.

[Selectable src/dest] **

(See the next page for src/destclassified by format.)

Src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
AO/AOADB*? AL/ALMAT*? [AQ] [A1] AO/AD/AD*2 AL/ALIAE*? [AQ] [Al]
dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB] [dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8/#IMM16
*1 Indirect instruction addressing [src] and [dest] can be used in all addressing except ROL/RO , ROH/R2/-,

R1L/R1 , R1IH/R3/-, and #IMM.
*2 When you specify (.B) for the size specifier (.size), you cannot choose AO and/or Al for srcand dest
simultaneously.

[Flag Change]

Fag |lU| I |O|B|S|Z|D]|C
Changel — | — | — | — | O |O| —| —
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in O; otherwise cleared.

[Description Example]

AND.B Ram:8[SB],ROL

AND.B:G ~ AQO,ROL : AO's 8 low-order bits and ROL are ANDed.
AND.B:G ROL,A0 _ _
AND.B:S #3 ROL ; ROL is zero-expanded and ANDed with AO.
AND.W:G [AOL[[AL]]

Rev.1.00 2006.05.31 page 50 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

[src/dest Classified by Format]

G format*?

src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
AO/AD/AS* ATIAL/AL* [AQ] [A1] AO/AD/AS* AL/AL/AT [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] |dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16

#IMMB/#IMM16

*3 Indirect instruction addressing [src] and [dest] can be used in all addressing except ROL/RO , ROH/R2/-,
R1L/R1 , R1H/R3/-, and #IMM.

*4 When you specify (.B) for the size specifier (.size), you cannot choose AO and/or Al for srcand dest
simultaneously.

S format™

src dest
ROL/RO dsp:8[SB] dsp:8[FB] absl6

#IMMB/#IMM16
*5 Indirect instruction addressing [src] and [dest] can be used in all addressing except ROL/RO-, and #IMM.

Rev.1.00 2006.05.31 page 51 of335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Logically AND bits
BAND Bit AND carry flag BAND
[Syntax] [Instruction Code/Number of Cycles]
BAND src Page=188

[Operation]
C <« sic A C

[Function]
 This instruction logically ANDs the C flag and srctogether and stores the result in the C flag.

» When srcis the address register (A0, Al), you can specify the 8 low-order bits for the address register.

[Selectable src]

Src
bit, ROL bit, ROH bit, R1L bit,R1H
bit,AO bit,Al bit,[AO] bit,[A1]

bit,base:11[A0] bit,base:11[A1l] bit,base:11[SB] bit,base:11[FB]
bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]
bit,base:27[A0] bit,base:27[A1] bit,base:27 bit,base:19

[Flag Change]

Fag |lU| I |O|B|S|Z|D]|C
Change| — |— | — | —|—|—|—1]0O

Conditions
C : The flag is set when the operation resulted in 1; otherwise cleared.

[Description Example]

BAND flag
BAND 4,Ram
BAND 16,Ram:19[SB]
BAND 5,[A0]
Rev.1.00 2006.05.31 page 52 of335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Clear bit
BCI—R Bit CLeaR BCI—R
[Syntax] [Instruction Code/Number of Cycles]
BCLR dest Page=188

[Operation]
dest <« O

[Function]
 This instruction stores 0 in dest.

» When destis the address register (A0, Al), you can specify the 8 low-order bits for the address
register.

[Selectable dest]

dest
bit,ROL bit, ROH bit, R1L bit, R1H
bit,A0 bit,Al1 bit,[A0] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]
bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]

bit,base:27[A0] bit,base:27[A1] bit,base:27 bit,base:19
[Flag Change]
Fag (U] I |O|B|S|Z|D]|C
Change| — | — | — | — | —|— | —| —
[Description Example]
BCLR flag
BCLR 4,Ram
BCLR 16,Ram:19[SB]
BCLR 5,[A0]
Rev.1.00 2006.05.31 page 53 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

BITINDEX 5 INDEX BITINDEX

[Syntax] [Instruction Code/Number of Cycles]
BITINDEX.silze src Page= 189

[Operation]

[Function]
 This instruction modifies addressing of the next bit instruction.
* No interrupt request is accepted immediately after this instruction.
» The operand specified in s7c constitutes the srcor destindex value for the next bit instruction.

» For details, refer to Section 3.3, "Index Instructions."

[Selectable src]

Src
ROL/RO ROH/R2
R1L/R1 R1H/R3
AO/AD A1/AL [AO] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs:24 abs:16

[Flag Change]
Fag |lU| I |O|B|S|Z|D]|C

Change| — | — | — | — | — | —|—| —

[Description Example]
BITINDEX RO
BITINDEX [AQ]

Rev.1.00 2006.05.31 page 54 of335 RENESAS

REJ09B0319-0100

Chapter 3 Functions

3.2 Functions

BMCnd

[Syntax]
BMCnd

[Operation]

dest

if truethen dest < 1

else

[Function]

dest <« O

Condadltional bit transter
Bit Move Condition

BMCnd

[Instruction Code/Number of Cycles]

Page=190

 This instruction transfers the true or false value of the condition indicated by Crnd'to dest When the
condition is true, 1 is transferred; when false, 0 is transferred.
* When destis the address register (A0, Al), you can specify the 8 low-order bits for the address

register.

» There are following kinds of Crnd.

cnd Condition Expression|| Cnd Condition Expression
GEUIC| C=1 Equal to or greater than = LTUINC|C=0 Smaller than >
Cflagis 1. Cflagis 0.
EQ/Z |Z=1 Equal to = NEINZ |Z=0 Not equal £
Zflagis 1. Zflagis 0.
GTU |CAZ=1 Greater than < LEU |CAZ=0 Equal to or smaller than =
PZ [S=0 Positive or zero 0= N S=1 Negative 0>
GE SV0=0 Equal to or greater than = LE (SVO)V Z=1| Equal to or smaller than =
(signed value) (signed value)
GT (SY0)V Z=0 | Greater than (signed value < LT SV0=1 Smaller than (signed value) >
0 0=1 Oflagis 1. NO 0=0 Oflagis 0.
[Selectable dest]
dest
bit,ROL bit,ROH bit,R1L bit,R1H
bit,AO bit,A1 bit,[A0] bit,[A1]

bit,base:11[A0]
bit,base:19[A0]

bit,base:11[A1]
bit,base:19[A1]

bit,base:11[SB] bit,base:11[FB]
bit,base:19[SB] bit,base:19[FB]

bit,base:27[A0] bit,base:27[A1l] bit,base:27 bit,base:19
C
[Flag Change]
Fag ([lU| I |O|B|S|Z|D|C
Change| — | — | — | — | — | —|—|*1 *1 The flag changes when you specified the C flag for dest

[Description Example]

BMN

BMZ C

3,Ram:11[SB]

Rev.1.00 2006.05.31 page 55 of 335

REJ09B0319-0100

RENESAS

Chapter 3 Functions 3.2 Functions

Logically AND inverted bits
BNAND Bit Not AND carry flag BNAND
[Syntax] [Instruction Code/Number of Cycles]
BNAND src Page=192

[Operation]
C <« srcV C

[Function]
 This instruction logically ANDs the C flag and inverted srctogether and stores the result in the C flag.

» When srcis the address register (AO, Al), you can specify the 8 low-order bits for address register.

[Selectable src]

Src
bit,ROL bit, ROH bit, R1L bit,R1H
bit,AO bit, AL bit,[AO] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]
bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]
bit,base:27[A0] bit,base:27[A1] bit,base:27 bit,base:19

[Flag Change]

Fag |lU| 1 |O|B|S|Z|D|C
Change| — | — | — | —|—|—|—| O
Condition

C : The flag is set when the operation resulted in 1; otherwise cleared.

[Description Example]
BNAND flag
BNAND 4,Ram
BNAND 16,Ram:19[SB]
BNAND 5,[A0]

Rev.1.00 2006.05.31 page 56 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions
3.2 Functions

Logically OR inverted bits
Bit Not OR carry flag

BNOR

[Syntax]
BNOR

BNOR

[Instruction Code/Number of Cycles]

src Page=192

[Operation]
C < src V C

[Function]
* This instruction logically ORs the C flag and inverted srctogether and stores the result in the C flag.

* When srcis the address register (AO, Al), you can specify the 8 low-order bits for address register.

[Selectable src]

Src
bit,ROL bit,ROH bit,R1L bit,R1H
bit,AO bit,Al bit,[AQ] bit,[A1]

bit,base:11[A0]
bit,base:19[A0]

bit,base:11[A1]
bit,base:19[A1]

bit,base:11[SB]
bit,base:19[SB]

bit,base:11[FB]
bit,base:19[FB]

bit,base:27[A0] bit,base:27[Al] bit,base:27 bit,base:19
[Flag Change]

Fag |lU| I |O|B|S|Z|D]|C

Change| — | — | — | —|—|—|—10O

Condition
C : The flag is set when the operation resulted in 1; otherwise cleared.

[Description Example]

BNOR flag

BNOR 4, Ram

BNOR 16,Ram:19[SB]
BNOR 5,[A0]

Rev.1.00 2006.05.31 page 57 of335

RENESAS
REJ09B0319-0100

Chapter 3 Functions
3.2 Functions

Invert bit
BNOT Bit NOT BNOT
[Syntax] [Instruction Code/Number of Cycles]
BNOT dest Page=193

[Operation]
dest <« dest

[Function]
 This instruction inverts destand stores the result in dest.

» When destis the address register (A0, Al), you can specify the 8 low-order bits for the address regis-
ter.

[Selectable dest]

dest
bit,ROL bit,ROH bit,R1L bit,R1H
bit,A0 bit,Al bit,[AQ] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]
bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]

bit,base:27[A0] bit,base:27[A1] bit,base:27 bit,base:19
[Flag Change]
Fag |lU| 1 |O|B|S|Z|D]|C
Change| — | — | — | — | —|—|— | —
[Description Example]
BNOT flag
BNOT 4,Ram
BNOT 16,Ram:19[SB]
BNOT 5,[A0]
Rev.1.00 2006.05.31 page 58 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions
3.2 Functions

7est inverted bit
BNTST Bit Not TeST BNTST
[Syntax] [Instruction Code/Number of Cycles]
BNTST src Page=193

[Operation]
Z <« sIc
C <« src

[Function]
* This instruction transfers inverted srcto the Z flag and inverted srcto the C flag.

* When srcis the address register (A0, Al), you can specify the 8 low-order bits for the address register.

[Selectable src]

Src
bit,ROL bit,ROH bit,R1L bit,R1H
bit,AO bit,Al bit,[AQ] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]
bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]
bit,base:27[A0] bit,base:27[Al] bit,base:27 bit,base:19

[Flag Change]

Fag |lU| | |O|B|S|Z|D|C
Changel — | — | — | — | — | O|—|O
Conditions

Z : The flag is set when srcis 0; otherwise cleared.
C : The flag is set when srcis 0; otherwise cleared.

[Description Example]
BNTST flag
BNTST 4,Ram
BNTST 16,Ram:19[SB]
BNTST 5,[A0]

Rev.1.00 2006.05.31 page 59 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions
3.2 Functions

Exclusive OR inverted bits

Bit Not eXclusive OR carry flag B NXOR

[Instruction Code/Number of Cycles]
Page=194

BNXOR

[Syntax]

BNXOR src

[Operation]
C < sic V C

[Function]
* This instruction exclusive ORs the C flag and inverted s7c and stores the result in the C flag.

» When srcis the address register (A0, Al), you can specify the 8 low-order bits for the address register.

[Selectable src]

SIc
bit, ROL bit, ROH bit, R1L bit, R1H
bit,AO bit, Al bit,[AQ] bit,[A1]

bit,base:11[A0]
bit,base:19[A0]

bit,base:11[A1]
bit,base:19[A1]

bit,base:11[SB]
bit,base:19[SB]

bit,base:11[FB]
bit,base:19[FB]

bit,base:27[A0] bit,base:27[A1] bit,base:27 bit,base:19
[Flag Change]

Fag lU| 1 |O|B|S|Z|D|C

Change| — | — | — | —|—|—|—|O

Conditions
C : The flag is set when the operation resulted in 1; otherwise cleared.

[Description Example]

BNXOR flag

BNXOR 4,Ram
BNXOR 16,Ram:19[SB]
BNXOR 5,[A0]

Rev.1.00 2006.05.31 page 60 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions
3.2 Functions

Logically OR bits
BOR Bit OR carry flag BOR
[Syntax] [Instruction Code/Number of Cycles]
BOR src Page=194

[Operation]
C < src vV C

[Function]

* This instruction logically ORs the C flag and srctogether and stores the result in the C flag.

» When srcis the address register (A0, Al), you can specify the 8 low-order bits for the address register.

[Selectable src]

Src
bit,ROL bit,ROH bit,R1L bit,R1H
bit,AO bit,Al bit,[AQ] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]
bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]
bit,base:27[A0] bit,base:27[Al] bit,base:27 bit,base:19

[Flag Change]

Fag ([U| I |O|B|S|Z|D|C
Change| — | — | — | — | —|—|—|O
Conditions

C : The flag is set when the operation resulted in 1; otherwise cleared.

[Description Example]

BOR flag
BOR 4, Ram
BOR 16,Ram:19[SB]
BOR 5,[A0]
Rev.1.00 2006.05.31 page 61 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions _
3.2 Functions

Debug interrupt
BRK BReaK BRK
[Syntax] [Instruction Code/Number of Cycles]
BRK Page=195

[Operation]

» When anything other than FF16 exists in the ad- * When FFi16 exists in the address FFFFE716
dress FFFFE716 SP ~ SP - 2
SP ~ SP - 2 M(SP) <« FLG
M(SP) <« FLG SP ~ SP - 2
SP -~ SP - 2 M(SP)*2 «— (PC + 1)H
M(SP)*t < (PC + 1)H SP ~ SP - 2
SP ~ SP - 2 M(SP) <« (PC + 1)ML
MSP) <« (PC + Im PC <~ M(IntBase)
PC <~ M(FFFFE41e) *2 The 8 high-order bits become undefined.

*1 The 8 high-order bits become undefined.

[Function]
* This instruction generates a BRK interrupt.

» The BRK interrupt is a nonmaskable interrupt.

[Flag Change]*

Fllg |lU| 1 |O|B|[S|Z|D]|C| *1 Theflags are saved to the stack area before the BRK in-
Changel O | O | —|—|—|—|0O| — struction is executed. After the interrupt, the flags
Conditions change state as shown on the left.

U : Theflag is cleared.
| : Theflagis cleared.
D : Theflag is cleared.

[Description Example]
BRK

Rev.1.00 2006.05.31 page 62 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions
3.2 Functions

BRK2 ooy e BRK2

[Syntax] [Instruction Code/Number of Cycles]
BRK Page=195

[Operation]

SP ~ SP - 2
M(SP) < FLG

SP ~ SP - 2
MESP)*l « (PC + 1)H
SP ~ SP - 2
M(SP) «~ (PC + 1I)mL
PC «~ M(002016)

*1 The 8 high-order bits become undefined.

[Function]
* This instruction is provided for exclusive use in debuggers. Do not use it in user programs.

* A BRK2 interrupt is generated.

» The BRK2 interrupt is a nonmaskable interrupt.

[Flag Change]*

Flag |lU| 1 [O|B|S|Z|D|C]| *1 The flags are saved to the stack area before the BRK2
Changel O | O | — | —|—|—|0O| — instruction is executed. After the interrupt, the flags
Conditions change state as shown on the left.

U : Theflag is cleared.
| : Theflagis cleared.
D : Theflag is cleared.

[Description Example]
BRK2

Rev.1.00 2006.05.31 page 63 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions
3.2 Functions

Set bit
BSET Bit SET BSET
[Syntax] [Instruction Code/Number of Cycles]
BSET dest Page=196

[Operation]
dest <« 1

[Function]
* This instruction stores 1 in gest.

» When destis the address register (A0, Al), you can specify the 8 low-order bits for the address regis-
ter.

[Selectable dest]

dest
bit,ROL bit, ROH bit,R1L bit, R1H
bit,AO bit,A1 bit,[A0] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]
bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]

bit,base:27[A0] bit,base:27[Al] bit,base:27 bit,base:19
[Flag Change]
Fag |lU| 1 |O|B|S|Z|D]|C
Change| — | — | — | — | —|—|— | —
[Description Example]
BSET flag
BSET 4,Ram
BSET 16,Ram:19[SB]
BSET 5,[A0]
Rev.1.00 2006.05.31 page 64 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions
3.2 Functions

7est bit
BTST Bit TeST BTST
[Syntax] [Instruction Code/Number of Cycles]

BTST (:format) src Page=196
' G, S (Can be specified)

[Operation]
Z <« src
C <« src

[Function]
* This instruction transfers inverted srcto the Z flag and non-inverted srcto the C flag.

* When srcis the address register (AO, Al), you can specify the 8 low-order bits for the address register.

[Selectable src]

G format*!
src
bit,ROL bit,ROH bit,R1L bit,R1H
bit,AQ bit,Al bit,[A0] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]
bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]

bit,base:27[A0] bit,base:27[Al] bit,base:27 bit,base:19
S format

src
bit,base:19

[Flag Change]

Flag ([U| 1 |O|B|S|[Z|D]|C
Change| = | — | — | —|—|O|—]0O
Conditions

Z : The flag is set when srcis 0; otherwise cleared.
C : The flag is set when srcis 1; otherwise cleared.

[Description Example]

BTST flag
BTST 4,Ram
BTST 16,Ram:19[SB]
BTST 5,[A0]
Rev.1.00 2006.05.31 page 65 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions
3.2 Functions

7est bit & clear
BTSTC Bit TeST & Clear BTSTC
[Syntax] [Instruction Code/Number of Cycles]
BTSTC dest Page= 197

[Operation]
z <~ dest
C - dest
dest < O

[Function]
* This instruction transfers inverted destto the Z flag and non-inverted destto the C flag. Then it stores
0in dest
* When destis the address register (A0, Al), you can specify the 8 low-order bits for the address regis-
ter.
* Do not use this instruction for dest in SFR area.

[Selectable dest]

dest
bit,ROL bit,ROH bit,R1L bit,R1H
bit,A0 bit,Al bit,[AQ] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]
bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]

bit,base:27[A0] bit,base:27[A1] bit,base:27 bit,base:19
[Flag Change]
Fag (U | I |O|B|S|Z|D|C
Change| — | — | — | — | —|O|—1]0O

Conditions
Z : The flag is set when destis 0; otherwise cleared.
C : The flag is set when destis 1; otherwise cleared.

[Description Example]
BTSTC flag
BTSTC 4,Ram
BTSTC 16,Ram:19[SB]
BTSTC 5,[A0]

Rev.1.00 2006.05.31 page 66 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions

3.2 Functions

BTSTS

[Syntax]
BTSTS

[Operation]

Z -
C -
dest <«
[Function]

dest

dest

dest
1

jest bit £ set
Bit TeST & Set

BTSTS

[Instruction Code/Number of Cycles]

Page=198

» This instruction transfers inverted destto the Z flag and non-inverted destto the C flag. Then it stores

1in dest

» When destis the address register (A0, Al), you can specify the 8 low-order bits for the address regis-

ter.

* Do not use this instruction for dest in SFR area.

[Selectable dest |

[Flag Change]

dest
bit,ROL bit,ROH bit,R1L bit,R1H
bit,A0 bit,Al bit,[AQ] bit,[A1]

bit,base:11[A0]
bit,base:19[A0]
bit,base:27[A0]

bit,base:11[A1]
bit,base:19[A1]
bit,base:27[A1]

bit,base:11[SB] bit,base:11[FB]
bit,base:19[SB] bit,base:19[FB]
bit,base:27 bit,base:19

Fag |U| 1 |O|B|S|Z C
Change| — | — | — | — | — | O O
Conditions

Z : The flag is set when destis 0; otherwise cleared.
C : The flag is set when destis 1; otherwise cleared.

[Description Example]

BTSTS
BTSTS
BTSTS
BTSTS

flag

4,Ram
16,Ram:19[SB]
5,[A0]

Rev.1.00 2006.05.31 page 67 of 335

REJ09B0319-0100

RENESAS

Chapter 3 Functions 3.2 Functions

Exclusive OR bits
Bit eXclusive OR carry flag

BXOR

[Instruction Code/Number of Cycles]
Page=198

BXOR

[Syntax]

BXOR src

[Operation]
C < sic V C

[Function]
» This instruction exclusive ORs the C flag and srctogether and stores the result in the C flag.

» When srcis the address register (A0, Al), you can specify the 8 low-order bits for the address register.

[Selectable src]

bit,base:11[A0]
bit,base:19[A0]

bit,base:11[A1]
bit,base:19[A1]

bit,base:11[SB]
bit,base:19[SB]

SIc
bit,ROL bit,ROH bit,R1L bit,R1H
bit,AO bit,Al bit,[AQ] bit,[A1]

bit,base:11[FB]
bit,base:19[FB]

bit,base:27[A0] bit,base:27[Al] bit,base:27 bit,base:19
[Flag Change]

Fag luU| 1 |O|B|[S|Z|D]|C

Change| — | — | — | — | —=|—|—=1|0O

Conditions
C : The flag is set when the operation resulted in 1; otherwise cleared.

[Description Example]

BXOR flag

BXOR 4,Ram

BXOR 16,Ram:19[SB]
BXOR 5,[A0]

Rev.1.00 2006.05.31 page 68 of 335
REJ09B0319-0100

RENESAS

Chapter 3 Functions 3.2 Functions

CLIP
CLIP cLIP CLIP
[Syntax] [Instruction Code/Number of Cycles]

CLIP.size srcl, src2, dest Page= 199
: B,W

[Operation]
if srcl > dest
then dest < srcl
if src2 < dest
then dest « src2

[Function]
* Signed compares srcl and destand stores the content of srcl in destif srcl is greater than dest. Next,
signed compares src2 and destand stores the content of src2 in destif src2 is smaller than dest.
When srcl < dest < src2, dest is not changed.

* When (.W) is specified for the size specifier (.size), dest is the address register and writing to dest, the
8 high-order bits become 0.
¢ Srcl and src2 are set "srcl<src2".

[Selectable src/dest/label]

srcl, src2 dest
ROL/RO ROH/R2/-
R1L/R1 R1H/R3/-
/AO /A1 [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

#IMMB8/#IMM16

[Flag Change]
Fag |lU| I |O|B|S|Z|D|C

Change| — | — | —| —| = | — | —| —

[Description Example]
CLIP.W #5,#10,R1
CLIP.W #-5,#5,[A0]

Rev.1.00 2006.05.31 page 69 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

CMP o CMP

[Syntax] [Instruction Code/Number of Cycles]
CMP.size (:format) src,dest Page=200
‘ ' G, Q, S (Can be specified)
B,W,L
[Operation]
dest - src [dest] - src
dest - [src] [dest] - [src]
[Function]

* Each flag bit of the flag register varies depending on the result of subtraction of srcfrom dest.

» When (.B) is specified for the size specifier (.size) and destis the address register (A0, Al), srcis zero-
extended to be treated as 16-bit data for the operation. Also, when srcis the address register, the 8
low-order bits of the address register are used as data to be operated on.

* When (.L) is specified for the size specifier (.size), and src or destis the address register, address
register is zero-extended to be treated as 32-bit data for the operation. The flags also change states
depending on the result of 32-bit operation.

[Selectable src/dest]** (See the next page for srd dest classified by format.)
src dest
ROL/RO/R2R0 ROH/R2/- ROL/RO/R2R0O ROH/R2/-
R1L/R1/R3R1 R1H/R3/- R1L/R1/R3R1 R1H/R3/-
AO/A0/A0*2 A1/A1/A1*? [AQ] [A1] AO0/AO0/A0*2 A1/A1/A1*2 [AQ] [A1]

dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB] |[dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] |dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM4/H#IMM8B/#IMM16/#IMM32

*1 Indirect instruction addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/
R1/R3R1, R1H/R3/-, and #IMM.

*2 If you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for srcand destsimul-
taneously.

[Flag Change]

Fag |lU| I |O|B|S|Z|D|C
Change| — | — | O | — | OO =10
Conditions

O : The flag is set when a signed operation resulted in exceeding +2147483647(.L) or
-2147483648(.L), +32767 (.\W) or -32768 (.\W), or +127 (.B) or -128 (.B); otherwise cleared.
S : Theflag is set when the operation resulted in MSB = 1; otherwise cleared.
: The flag is set when the operation resulted in 0; otherwise cleared.
C : The flag is set when an unsigned operation resulted in any value equal to or greater than O;
otherwise cleared.
[Description Example]
CMP.B:S #10,R0OL
CMP.W:G RO,A0
CMP.W #-3,R0
CMP.B #5,Ram:8[FB]
CMP.B AO0,ROL ; AO's 8 low-order bits and ROL are compared.

N

Rev.1.00 2006.05.31 page 70 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

[src/dest Classified by Format]

G format*?
src dest
ROL/RO/R2R0O ROH/R2/- ROL/RO/R2R0O ROH/R2/-
R1L/R1/R3R1 R1H/R3/- R1L/R1/R3R1 R1H/R3/-
AO/AO0/A0* A1/AL/A1* [AOQ] [Al] AO/AOQ/A0* A1/AL/A1** [AOQ] [Al]

dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB] |[dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] [dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
[#IMMB/#IMM16/#IMM32

*3 Indirect instruction addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/
R1/R3R1, R1H/R3/-, and #IMM.

*4 If you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for srcand destsimul-
taneously.

Q format*5*®

src dest
ROL/RO ROH/R2
R1L/R1 R1H/R3
AO/AQ A1/Al [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16

#IMM4*?

*5 Indirect instruction addressing [dest] can be used in all addressing except ROL/RO , ROH/R2/-, R1L/R1
,and R1H/R3/-.

*6 You can only specify (.B) or (.\W) for the size specifier (.size).
*7 The range of values is -8 < #IMM4 < +7.

S format*®

src dest
ROL/RO dsp:8[SB] dsp:8[FB] absl6

#IMMB8/#IMM16
dsp:8[SB] dsp:8[FB] absl6 ROL/RO

*8 Indirect instruction addressing [src] and [dest] can be used in all addressing except ROL/RO, and #IMM.
*9 You can only specify (.B) or (.W) for the size specifier (.size).

Rev.1.00 2006.05.31 page 71 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Compare extended sign
CM PX CoMPare eXtend sign CM PX
[Syntax] [Instruction Code/Number of Cycles]
CMPX src,dest Page=206

[Operation]
dest/[dest] - EXTS(src)

[Function]
» Each flag of the flag register changes state according to the result derived by subtracting the sign-

extended 32-bit srcfrom the 32-bit dest.
» When destis the address register (A0, Al), it is zero-extended to be treated as 32-bit data for the

operation and the flags change their states depending on the result.

[Selectable src/dest 1**

src dest
R2R0 -
R3R1 -
AOQ Al [AQ] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

#IMM8
*1 Indirect instruction addressing [dest] can be used in all addressing except R2RO0, f-,
R3R1, and f-.

[Flag Change]

Fag |U| 1 |O|B|S|Z|D|C
Change| — | — | O | — | OO =10
Conditions

O : The flag is set when a signed operation resulted in exceeding +2147483647(.L) or
-2147483648(.L), otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

. The flag is set when the operation resulted in O; otherwise cleared.

C : The flag is set when an unsigned operation resulted in any value equal to or greater than O;

otherwise cleared.

N

[Description Example]
CMPX #10,R2R0
CMPX #5,A0

Rev.1.00 2006.05.31 page 72 of335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Decimal add with carry
DA DC Decimal ADdition with Carry DA DC

[Syntax] [Instruction Code/Number of Cycles]
DADC.size src,dest Page=206
: B,W
[Operation]

dest < src + dest + C

[Function]
* This instruction adds desy, src, and C flag together in decimal and stores the result in dest.

» When (.\W) is specified for the size specifier (.size) and destis the address register, the 8 high-order
bits become 0. Also, when srcis the address register, the 16 low-order bits of the address register
are the data to be operated on.

[Selectable src/dest]

src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
/AO /Al [AO] [Al] /AQ /Al [AO] [Al]

dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB] |[dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] [dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8/#IMM16

[Flag Change]

Fag |U| I |O|B|S|Z|D|C
Change| — | — | — | — | O|O|—1]0O
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in O; otherwise cleared.

C : The flag is set when the operation resulted in exceeding +9999 (.W) or +99 (.B); otherwise
cleared.

[Description Example]
DADC.B #3,ROL
DADCW R1,RO
DADC.W [AQ],R2

Rev.1.00 2006.05.31 page 73 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Decimal add without carry
DADD Decimal ADDition DADD
[Syntax] [Instruction Code/Number of Cycles]

DADD.size src,dest Page=208
' B,W

[Operation]
dest <« src + dest

[Function]
* This instruction adds destand srctogether in decimal and stores the result in dest.
* When (.W) is specified for the size specifier (.size) and destis the address register, the 8 high-order
bits become 0. Also, when srcis the address register, the 16 low-order bits of the address register
are the data to be operated on.

[Selectable src/dest]

src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
/AO /Al [AO] [A1] /AQ /Al [AO] [Al]

dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB] |[dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] |dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8/#IMM16

[Flag Change]

Fag lU| Il |O|B|S|Z|D]|C
Change| — | — | — | — | OO | =10
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in O; otherwise cleared.

C : The flag is set when the operation resulted in exceeding +9999 (.W) or +99 (.B); otherwise
cleared.

[Description Example]
DADD.B #3,ROL
DADD.W R1,RO
DADD.W [A0],[A1]

Rev.1.00 2006.05.31 page 74 of335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Decrement
D EC DECrement D EC
[Syntax] [Instruction Code/Number of Cycles]

DEC.size dest Page= 210
: B,W

[Operation]
dest <~ dest - 1 [dest] <« [dest] - 1

[Function]
 This instruction decrements 1 from destand stores the result in dest

* When (\W) is specified for the size specifier (.size) and destis the address register, the 8 high-order
bits become 0.

[Selectable dest]

dest*!
ROL/RO ROH/R2
R1L/R1 R1H/R3
AO Al [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16

*1 Indirect instruction addressing [dest] can be used in all addressing except ROL/RO , ROH/R2/-, R1L/R1
,and R1H/R3/-.

[Flag Change]

Fag ([U| 1 |O|B|S|Z|D|C
Change| — | — | — | = | O|O|—| —
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in O; otherwise cleared.

[Description Example]

DEC.W A0
DEC.B ROL
DEC.W RO
Rev.1.00 2006.05.31 page 75 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Signed aivide
DIV Oiide DIV

[Syntax] [Instruction Code/Number of Cycles]
DIV.size src Page=210
: B,W,L
[Operation]
* When the size specifier (.size) is (.L) R2RO0 (quotient) < R2R0-- src
* When the size specifier (.size) is (W) RO (quotient), R2 (remainder) < R2R0-- src/[src]
* When the size specifier (.size) is (.B) ROL (quotient), ROH (remainder) < RO - src/[src]
[Function]

* When (.B) is specified for the size specifier (.size), this instruction divides RO by signed srcand stores
the quotient in ROL and the remainder in ROH. The remainder's sign is the same as the dividend's sign.
When srcis the address register (A0, Al), the 8 low-order bits of the address register are used as data
to be operated on. The O flag is set when the operation resulted in the quotient exceeding 8 bits or the
divider is 0. ROL and ROH is undefined.

* When (.W) is specified for the size specifier (.size), this instruction divides R2R0 by signed sscand
stores the quotient in RO and the remainder in R2. The remainder’s sign is the same as the divider's
sign. When srcis the address register, the 16 low-order bits of the address register are used as data
to be operated on. The O flag is set when the operation resulted in the quotient exceeding 16 bits or
the divider is 0. RO and R2 is undefined.

* When (.L) is specified for the size specifier (.size), this instruction divides R2R0 by signed srcand stores
the quotient in R2R0. The remainder is not operated, but the remainder's sign is the same as the
divider's sign. When srcis the address register, srcis zero-extended to be treated as 32-bit data for the
operation. The O flag is set when the divider is 0. R2R0 is undefined.

[Selectable src]

src*!
ROL/RO/R2R0 ROH/R2
R1L/R1/R3R1 R1H/R3
AO/AO/A0 A1/A1/A1 [AQ] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16
#IMMB/#IMM16

*1 When (.B) and (.W) are specified for the size specifier (.size), indirect instruction addressing [src] can
be used in all addressing except ROL/R0O/-, ROH/R2/-, R1L/R1/-, R1/-, R1H/R3/, and #IMM. When
(.size) is (.L), indirect instruction addressing [src] cannot be used.

[Flag Change]

Feg |lU| 1 |O|B|S|Z|D|C
Change| — | — | O | — | —|—|—| —
Conditions

O : Theflagis set when the operation resulted in the quotient exceeding 16 bits (.W), 8 bits (.B) or the
divider is O; otherwise cleared.
[Description Example]

DIV.B A0 ;AQ's 8 low-order bits is the divider.

DIV.B #4

DIV.W RO

DIV.W [[AL]]

DIV.L R3R1 ;The remainder is not operated.
Rev.1.00 2006.05.31 page 76 of335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Unsigned divide
DIVU DIVide Unsigned DIVU

[Syntax] [Instruction Code/Number of Cycles]
DIVU.size src Page=212
: B,W,L
[Operation]
* When the size specifier (.size) is (.L) R2RO0 (quotient) <« R2R0 = src
* When the size specifier (.size) is (W) RO (quotient), R2 (remainder) < R2RO0 -- src/[src]
« When the size specifier (.size) is (.B) ROL (quotient), ROH (remainder) < RO - src/[src]
[Function]

* When (.B) is specified for the size specifier (.size), this instruction divides RO by unsigned src and
stores the quotient in ROL and the remainder in ROH. When srcis the address register (A0, Al), the 8
low-order bits of the address register are used as data to be operated on. The O flag is set when the
operation resulted in the quotient exceeding 8 bits or the divider is 0. ROL and ROH is undefined.

* When (\W) is specified for the size specifier (.size), this instruction divides R2R0 by unsigned srcand
stores the quotient in RO and the remainder in R2. When srcis the address register, the 16 low-order
bits of the address register are used as data to be operated on. The O flag is set when the operation
resulted in the quotient exceeding 16 bits or the divider is 0. RO and R2 is undefined.

* When (.L) is specified for the size specifier (.size), this instruction divides R2R0 by unsigned src and
stores the quotient in R2R0. The remainder is not operated. When srcis the address register, srcis
zero-extended to be treated as 32-bit data for the operation. The O flag is set when the divider is 0.
R2RO0 is undefined.

[Selectable src]

src*t
ROL/RO/R2R0 ROH/R2
R1L/R1/R3R1 R1H/R3
AO/AO0/A0 A1/A1/A1 [AOQ] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8/#IMM16

*1 When (.B) and (.W) are specified for the size specifier (.size), indirect instruction addressing [src] can
be used in all addressing except ROL/RO/-, ROH/R2/-, R1L/R1/-, R1/-, R1H/R3/-, and #IMM. When
(.size) is (.L), indirect instruction addressing [src] cannot be used.

[Flag Change]
Flag |lU || [O|B|S|Z|D|C
Change| — |[— QO |—|—|—|—|—

Conditions
O : Theflagis set when the operation resulted in the quotient exceeding 16 bits (.W), 8 bits (.B) or the

divider is 0; otherwise cleared.
[Description Example]

DIVU.B A0 ;AQ's 8 low-order bits is the divider.

DIVU.B #4

DIVU.W RO

DIVU.W [[A0]]

DIVU.L R3R1 ;The remainder is not operated.
Rev.1.00 2006.05.31 page 77 of335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Singed aivide
D IVX DIVide eXtension D IVX
[Syntax] [Instruction Code/Number of Cycles]

DIVX.size src Page=213
' B,W,L

[Operation]

* When the size specifier (.size) is (.L) R2RO0 (quotient) <= R2R0 =-src

* When the size specifier (.size) is (W) RO (quotient), R2 (remainder) <= R2RO0 =-src/[src]

* When the size specifier (.size) is (.B) ROL (quotient), ROH (remainder) < RO -src/[src]
[Function]

* When (.B) is specified for the size specifier (.size), this instruction divides RO by signed srcand stores
the quotient in ROL and the remainder in ROH. The remainder's sign is the same as the divider's sign.
When srcis the address register (A0, Al), the 8 low-order bits of the address register are used as data
to be operated on. The O flag is set when the operation resulted in the quotient exceeding 8 bits or the
divider is 0. ROL and ROH is undefined.

* When (.W) is specified for the size specifier (.size), this instruction divides R2R0 by signed sscand
stores the quotient in RO and the remainder in R2. The remainder’s sign is the same as the divider's
sign. When srcis the address register, the 16 low-order bits of the address register are used as data
to be operated on. The O flag is set when the operation resulted in the quotient exceeding 16 bits or
the divider is 0. RO and R2 is undefined.

* When (.L) is specified for the size specifier (.size), this instruction divides R2R0 by signed srcand stores
the quotient in R2R0. The remainder is not operated, but the remainder's sign is the same as the
divider's sign. When srcis the address register, srcis zero-extended to be treated as 32-bit data for the
operation. The O flag is set when the divider is 0. R2R0 is undefined.

[Selectable src]

src*!
ROL/RO/R2R0 ROH/R2
R1L/R1/R3R1 R1H/R3
AO/AO/A0 A1/A1/A1 [AQ] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16
#IMMB/#IMM16

*1 When (.B) and (.W) are specified for the size specifier (.size), indirect instruction addressing [src] can
be used in all addressing except ROL/RO/-, ROH/R2/-, R1L/R1/-, R1/-, R1H/R3/-, and #IMM. When
(.size) is (.L), indirect instruction addressing [src] cannot be used.

[Flag Change]

Flag ull|o|B|S|Z|D|C
Change | — | — | Q| —| —| —| —| —
Conditions

O : Theflag is set when the operation resulted in the quotient exceeding 16 bits (.W), 8 bits (.B) or the
divider is 0; otherwise cleared.
[Description Example]

DIVX.B AO ; AQ's 8 low-order bits is the divider.

DIVX.B #4

DIVX.W RO

DIVX.L R3R1 ;The remainder is not operated
Rev.1.00 2006.05.31 page 78 of335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Decimal subtract with borrow
DSB B Decimal SuBtract with Borrow DSB B
[Syntax] [Instruction Code/Number of Cycles]
DSBB.size src,dest Page=215
' B,W

[Operation]
dest < dest - src - C

[Function]
» This instruction subtracts s/c and inverted C flag from destin decimal and stores the result in dest

» When (\W) is specified for the size specifier (.size) and destis the address register, the 8 high-order
bits become 0. Also, when srcis the address register, the 16 low-order bits of the address register are
the data to be operated on.

[Selectable src/dest]

src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
/AO /Al [AO] [Al] /AQ /Al [AO] [Al]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |[dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] [dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8/#IMM16

[Flag Change]

Fag |lU| 1 |O|B|S|Z|D|C
Change| — | — | — | — O |O|—=10
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when the operation resulted in any value equal to or greater than 0; otherwise
cleared.

[Description Example]
DSBB.B #3,ROL
DSBB.W R1,RO
DSBB.W [AO0],[Al]

Rev.1.00 2006.05.31 page 79 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Decimal subtract without borrow
DSUB Decimal SUBtract DSUB
[Syntax] [Instruction Code/Number of Cycles]

DSUB.size src,dest Page= 217
: B,W

[Operation]
dest <« dest - src

[Function]
* This instruction subtracts srcfrom destin decimal and stores the result in dest.

* When (\W) is specified for the size specifier (.size) and destis the address register, the 8 high-order
bits become 0. Also, when srcis the address register, the 16 low-order bits of the address register are
the data to be operated on.

[Selectable src/dest]

src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
/AO /Al [AO] [A1] /AQ /Al [AO] [Al]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |[dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] |dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8/#IMM16

[Flag Change]

Flag ull|O|B|S|Z|D|C
Change| — | — | — | — | O |O|—1|0O
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when the operation resulted in any value equal to or greater than 0; otherwise
cleared.

[Description Example]
DSUB.B #3,ROL
DSUB.W R1,RO
DSUB.W [AO0],[A1]

Rev.1.00 2006.05.31 page 80 of335 RENESAS
REJ09B0319-0100

Chapter 3 Functions

3.2 Functions

Build stack frame

ENTER ENTER function
[Syntax]

ENTER src
[Operation]

SP - SP - 2

M(SP)*! <~ FBH

SP < 'SP - 2

M(SP) ~ FBL

FB -~ spP

SP - SP - src
[Function]

ENTER

[Instruction Code/Number of Cycles]
Page=219

*1 The 8 high-order bits become undefined.

 This instruction generates a stack frame. srcrepresents the size of the stack frame. Set an even
number for src. (You can set odd number, but it is more effective to set even number for operation.)
» The diagrams below show the stack area status before and after the ENTER instruction is executed at

the beginning of a called subroutine.

Before instruction execution

After instruction execution

— [
SP Auto variable area Number of bytes
| indicated by src
Direction in FB — FB (LL)
which address FB(LH)
increases FB(HL)
} FB (HH)
SP — | Return address (LL) Return address (LL)
Return address (LH) Return address (LH)
Return address (HL) Return address (HL)
Return address (HH) Return address (HH)
Argument of function Argument of function
[Selectable src]
src
#IMM8
[Flag Change]
Feg lU| I |O|B|S|Z|D]|C
Change| — | — | — | — | —|—|—| —
[Description Example]
ENTER #4
Rev.1.00 2006.05.31 page 81 of335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Deallocate stack frame

EXITD EXIT and Deallocate stack frame EXITD
[Syntax] [Instruction Code/Number of Cycles]

EXITD Page=219
[Operation]

SP — FB

FBL ~ M(SP)

SP ~ SP + 2

FBH ~ M(SP)

SP ~ SP + 2

PCL < M(SP)

SP - SP + 2

PCH ~ M(sP)*t

SP - SP + 2 *1 The 8 high-order bits become undefined.
[Function]

 This instruction deallocates the stack frame and exits from the subroutine.
» Use this instruction in combination with the ENTER instruction.

» The diagrams below show the stack area status before and after the EXITD instruction is executed
at the end of a subroutine in which an ENTER instruction was executed.

Before instruction execution After instruction execution
P —
S Auto variable area
Direction in which ad-
FB — FB(LL) dress increases
FB(LH) !
FB(HL)
FB (HH)
Return address (LL)
Return address (LH)
Return address (HL)
Return address (HH)
Argument of function sp — | Argument of function
[Flag Change]
Flg lU| I |O|B|S|zZ|D]|C
Change| — | — | — | — | — | — | — | —
[Description Example]
EXITD
Rev.1.00 2006.05.31 page 82 of335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Extend sign
EXTS EXTend Sign EXTS
[Syntax] [Instruction Code/Number of Cycles]
EXTS.size dest Page=220
: B,W
EXTS.size src,dest
: B
[Operation]
dest < EXTS(dest)
dest <« EXTS(src)

[Function]
* This instruction sign extends deszand stores the result in dest

» When you selected (.B) for the size specifier (.size), srcor destis sign extended to 16 bits. When dest
is the address register(A0, Al), the 8 high-order bits become 0.

» When you selected (\W) for the size specifier (.size), destis sign extended to 32 bits. When RO is
selected for dest, R2 is used for the upper byte; when R1 is selected, R3 is used for the upper byte.
When dest is the address register, stores the 24 low-order bits of result in dest.

[Selectable src/dest]

dest*!
ROL/RO
R1L/R1
A0 Al [AQ] [Al]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

*1 You can only specify(.B) or (.W) for the size of specifier (.size).

src*? dest*?
ROL ROH RO R2
R1L R1H R1 R3
[AO] [A1] AO Al [AO] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB] [dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
*2 You can only specify(.B) for the size of specifier (.size).

[Flag Change]

Fag |[U| 1 |O|B|S|Z|D]|C
Change| — [— | — | — | O|O| —| —

Conditions
S : The flagis set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in O; otherwise cleared.

[Description Example]
EXTS.B ROL

EXTSW RO
EXTSW [A0]

Rev.1.00 2006.05.31 page 83 of335 RENESAS

REJ09B0319-0100

Chapter 3 Functions

EXTZ

[Syntax]
EXTZ src,dest

[Operation]
dest <« EXTZ(src)

[Function]

Extend zero
EXTend Zero

3.2 Functions

EXTZ

[Instruction Code/Number of Cycles]

Page=222

* This instruction zero-extends srcto 16 bits and stores the result in dest. When dest is the address

register(A0, Al), the 8 high-order bits become 0.

[Selectable src/dest]

src dest

ROL ROH RO R2
R1L R1H R1 R3

[AQ] [A1] AO Al [AQ] [A1]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] [dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
[Flag Change]
Fag |lU| 1 |O|B|S|Z|D|C
Change| — | — | — | — | O | O| —| —
Conditions

S : The flag is always cleared to O.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

[Description Example]
EXTZ ROL,R2
EXTZ [A1],[A0]

Rev.1.00 2006.05.31 page 84 of 335
REJ09B0319-0100

RENESAS

Chapter 3 Functions

3.2 Functions

FCLR

[Syntax]

FCLR

[Operation]

dest <« O

[Function]

dest

* This instruction stores 0 in dest.

[Selectable dest]

[Flag Change]

Clear flag register bit
Flag register CLeaR

Flag

U

Change

*1

*1

*1

*1

*1

*1

*1

*1

[Description Example]

FCLR
FCLR

FCLR

[Instruction Code/Number of Cycles]

Page=223

*1 The selected flag is cleared to 0.

Rev.1.00 2006.05.31 page 85 of 335

REJ09B0319-0100

RENESAS

Chapter 3 Functions

3.2 Functions

FREIT

[Syntax]

FREIT

[Operation]

FLG <«

PC

[Function]

-

SVF
SVP

Fast return from Interrupt
Fast REturn from InTerrupt

FREIT

[Instruction Code/Number of Cycles]

Page= 223

» Restores the contents of PC and FLG from the high-speed interrupt registers that had been saved
when accepting a high-speed interrupt request upon returning from the interrupt handler routine.

[Flag Change]

Flag

U

Change

*1

*1

*1

*1

*1

*1

*1

*1

[Description Example]
FREIT

*]1 Becomes the content of SVF.

Rev.1.00 2006.05.31 page 86 of 335
REJ09B0319-0100

RENESAS

Chapter 3 Functions 3.2 Functions

Set flag register bit
FS ET Flag register SET FS ET
[Syntax] [Instruction Code/Number of Cycles]
FSET dest Page=224

[Operation]
dest < 1

[Function]
* This instruction stores 1 in dest

[Selectable dest]

[Flag Change]

Fag |lU| 1 |O|B|S|Z|D]|C
Change| *1 | *1 | *1 | *1 | *1 | *1 | *1 | *1 *1 The selected flag is set (= 1).

[Description Example]

FSET I
FSET S
Rev.1.00 2006.05.31 page 87 of335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Increment
I N C INCrement I NC
[Syntax] [Instruction Code/Number of Cycles]

INC.size dest Page=225
' B,W

[Operation]
dest < dest + 1 [dest] <« [dest] + 1

[Function]
 This instruction adds 1 to destand stores the result in dest.

* When (\W) is specified for the size specifier (.size) and destis the address register, the 8 high-order
bits become 0.

[Selectable dest]

dest*!
ROL/RO ROH/R2
R1L/R1 R1H/R3
AO Al [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16

*1 Indirect instruction addressing [dest] can be used in all addressing except ROL/RO , ROH/R2/-, R1L/R1
,and R1H/R3/-.

[Flag Change]

Fag ([U| I |O|B|S|Zz|D|C
Change| — | — | — |—=|O|O|—| —
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in O; otherwise cleared.

[Description Example]

INC.W A0
INC.B ROL
INC.B [[AL]]
Rev.1.00 2006.05.31 page 88 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

INDEX Type INDEX Type INDEX Type

[Syntax] [Instruction Code/Number of Cycles]
INDEXType.size src Page= 225
|

[Operation]

[Function]
» This instruction modifies addressing of the next instruction.
 No interrupts are enabled until after the modifying instruction is executed.
» Use this instruction to access arrays.
* For details, refer to Section 3.3, "Index Instructions."

» There are following types for 7ype:

Type Function
B
BD Modifies the addressing of the next instruction in units of bytes.
BS
w
WD Modifies the addressing of the next instruction in units of words.
WS
L

LD Modifies the addressing of the next instruction in units of long words.
LS

[Selectable src]

SIrc
ROL/RO ROH/R2
R1L/R1 RIH/R3
AO/AD AL/AL [AO] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

[Flag Change]
Flag ull|{ojB|s|zZz|b|cC

Change | — | — | —m | —m | — | — | — | —

[Description Example]
INDEXB.W RO
INDEXLS.B [AQ]

Rev.1.00 2006.05.31 page 89 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

I N T Interrupt by INT instruction I N T
INTerrupt

[Syntax] [Instruction Code/Number of Cycles]

INT src Page=230

[Operation]

SP - SP - 2
M(SP) <« FLG
SP - SP - 2
MESP)* < (PC + 2)H
SP - SP - 2
M(SP) <« (PC + 2L
PC - M(IntBase + src X 4) *1 The 8 high-order bits become undefined.
[Function]
* This instruction generates a software interrupt specified by src. srcrepresents a software interrupt
number.

* When srcis 31 or smaller, the U flag is cleared to 0 and the interrupt stack pointer (ISP) is used.
» When srcis 32 or larger, the stack pointer indicated by the U flag is used.
» The interrupts generated by the INT instruction are nonmaskable interrupts.

* The interrupt number of srcis 0 < src< 63.

[Selectable src]

Src

#IMM6E12

*1 #IMM denotes a software interrupt number.
*2 The range of values is 0 < #IMM6 < 63.

[Flag Change]

Flag ulitlolBlslzIplc] ™ Tthe fltggs are savedt tc(; thi fsttacI:harefatbeforet ﬂ:ﬁ Il\g' in-
struction is executed. er the interrupt, the flags
Ch — =] == —
ange | O O o change state as shown on the left.
Conditions

U : The flagis cleared when the software interrupt number is 31 or smaller. The flag does not change
when the software interrupt number is 32 or larger.

| : Theflagis cleared.

D : Theflagis cleared.

[Description Example]
INT #0

Rev.1.00 2006.05.31 page 90 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions

INTO

[Syntax]
INTO

[Operation]

[Function]

tttr ot

SP - 2
FLG

SP - 2
(PC + 1)H
SP - 2
(PC + 1)L
M(FFFFEO16)

3.2 Functions

Interrupt on overflow
INTerrupt on Overflow

INTO

[Instruction Code/Number of Cycles]
Page=230

*1 The 8 high-order bits become undefined.

* When the O flag is 1, this instruction generates an overflow interrupt. When the flag is 0, the next
instruction is executed.
» The overflow interrupt is a nonmaskable interrupt.

[Flag Change]

Cc | *1 The flags are saved to the stack area before the INTO

instruction is executed. After the interrupt, the flags

change state as shown on the left.

Fag (U| I |O|B|S|Z|D
Change| O | Q| —|—|—|—|0O]| —
Conditions

U : The flag is cleared.
| : Theflagis cleared.
D : Theflag is cleared.

[Description Example]

INTO

Rev.1.00 2006.05.31 page 91 of 335

REJ09B0319-0100

RENESAS

Chapter 3 Functions 3.2 Functions

Jump on conaltion
J Cnd Jump on Condition J Cnd
[Syntax] [Instruction Code/Number of Cycles]
JCnd label Page=231

[Operation]
if true then jump label

[Function]
 This instruction causes program flow to branch off after checking the execution result of the preceding

instruction against the following condition. When the condition indicated by Crnd/is true, control jumps
to label. When false, the next instruction is executed.
» The following conditions can be used for Crdt

cnd Condition Expression|| Cnd Condition Expression

GEU/C| C=1 Equal to or greater than = LTUINC|C=0 Smaller than >
Cflagis 1. Cflagis 0.

EQ/Zz |Z=1 Equal to = NE/NZ |Z=0 Not equal z
Zflagis 1. Zflagis 0.

GTU |CAZ=1 Greater than < LEU |CAZ=0 Equal to or smaller than =

PZ |S=0 Positive or zero 0= N S=1 Negative 0>

GE |SV0=0 Equal to or greater than = LE (SV 0)VZ=1 Equal to or smaller than Z
(signed value) (signed value)

GT (SV 0)V Z=0| Greater than (signed value) < LT SVO0=1 Smaller than (signed value) >

0 0=1 Oflagis 1. NO 0=0 Oflagis 0.

[Selectable label]
label Cnd
PC1-127 =label =PC"+128 | GEU/C, GTU, EQ/Z, N, LTU/NC, LEU, NE/NZ, PZ,
LE, O, GE, GT, NO, LT
*1 PC indicates the start address of the instruction.

[Flag Change]
Fag (lU| 1]O|B|S|Z|D]|C

Change| — | — | — | — | —|—| —| —

[Description Example]

JEQ label
JNE label
Rev.1.00 2006.05.31 page 92 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Unconalitional jump
JMP JuMP JMP

[Syntax] [Instruction Code/Number of Cycles]
JMP(.length) label Page=231
: S,B,W,A

[Operation]
PC <« label

[Function]

* This instruction causes control to jump to label.

[Selectable label]

length label

.S PC'+2 = label = PC+9

.B PC*-127 =label =PC"+128

W PC-32767 = label = PC"'+32768
A abs24

*1 The PC indicates the start address of the instruction.

[Flag Change]
Fag |lU| 1 |O|B|S|Z|D]|C

Change| — | — | — | —|—|— | — | —

[Description Example]
JMP label

Rev.1.00 2006.05.31 page 93 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Jump indirect
JMPI JuMP Indirect JMPI
[Syntax] [Instruction Code/Number of Cycles]

JMPIl.length src Page=233
: W, A

[Operation]
* When jump distance specifier (.length) is (.\W) » When jump distance specifier (.length) is (.A)
PC <« PC £ src PC <« src

[Function]

* This instruction causes control to jump to the address indicated by src. When srcis memory, specify
the address at which the low-order address is stored.

» When you selected (\W) for the jump distance specifier (.length), control jumps to the start address of the instruc-
tion plus the address indicated by src¢ (added including the sign bits). When srcis memory, the required
memory capacity is 2 bytes.

» When srcis memory and (.A) is selected for the jump distance specifier (.length), the required memory
capacity is 3 bytes.

[Selectable src]
When you selected (.W) for the jump distance specifier (.length)

Src
RO R2
R1 R3
AO Al [AO] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

When you selected (.A) for the jump distance specifier (.length)
src

R2R0O
R3R1
AO Al [A0] [A1]
dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

[Flag Change]
Fag |[U| 1 |O|B|S|Z|D|C

Change| = | — | — | — | —|—|— | —

[Description Example]

JMPI.A Al
JMPLW RO
Rev.1.00 2006.05.31 page 94 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

\]I\/lF)fE; Jump to special page \]I\/lF)fE;

JuMP Special page
[Syntax]

[Instruction Code/Number of Cycles]
JMPS src

Page=234

[Operation]
PCH <~ FFi1e
PCML < M(FFFE1s - src X 2)

[Function]

* This instruction causes control to jump to the address set in each table of the special page vector table

plus FF000016. The area across which control can jump is from address FF000016 to address
FFFFFF16.

* The special page vector table is allocated to an area from address FFFEQ016 to address FFFFDB16.

* srcrepresents a special page number. The special page number is 255 for address FFFEQO16, and 18
for address FFFFDA16.

[Selectable src]

Src

#IMM8'1"2

*1 #IMM denotes a special page number.

*2 The range of values is 18 < #IMM8 < 255.

[Flag Change]
Flag |lU| I |[O|B|S|Z|D|C

Change| — | — | — | — | —|—| —| —

[Description Example]
JMPS #20

Rev.1.00 2006.05.31 page 95 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions

3.2 Functions

J S R Subroutine call
Jump SubRoutine

[Syntax] [Instruction Code/Number of Cycles]

JSR(.Iength) label

: W, A

[Operation]

SP - SP - 2

M(SP)*! «~ (PC + n*d)H

SP - SP - 2

M(SP) ~ (PC + n*9)mL

PC - label

*1 The 8 high-oreder bits become 0.
*2 n denotes the number of bytes in the instruction.

[Function]
* This instruction causes control to jump to a subroutine indicated by label.

[Selectable label]

Jdength label
W PC- 32767= label= PC'+32768
A abs24

*1 The PC indicates the start address of the instruction.

[Flag Change]
Fag |lU|[I |O|B|S|Z|D|C

Change| — | — | — | = | — | — | — | —

[Description Example]

JSR.W func
JSR.A func

Rev.1.00 2006.05.31 page 96 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Indirect subroutine call
\]SRI Jump SubRoutine Indirect \]SRI
[Syntax] [Instruction Code/Number of Cycles]
JSRIl.length src Page=236
: W, A
[Operation]
When jump distance specifier (.length) is (.\W) When jump distance specifier (.length) is (.A)
SP ~ SP - 2 SP -~ SP - 2
M(SP)*t < (PC + n*?)H M(SP)*~ (PC + n*?)H
SP «~ SP - 2 SP ~ SP - 2
M(SP) <« (PC + n*?)mL M(SP) <~ (PC + n*?)H
PC ~ PC * s PC <« src

*1 The 8 high-oreder bits become 0.
*2 n denotes the number of bytes in the instruction.

[Function]
» This instruction causes control to jump to a subroutine at the address indicated by src. When srcis
memory, specify the address at which the low-order address is stored.

* When you selected (.W) for the jump distance specifier (.length), control jumps to a subroutine at the
start address of the instruction plus the address indicated by src(added including the sign bits). When
srcis memory, the required memory capacity is 2 bytes.

* When srcis memory and (.A) is selected for the jump distance specifier (.length), the required memory
capacity is 3 bytes.

[Selectable src]
When you selected (.W) for the jump distance specifier (.length)

Src
RO R2
R1 R3
AO Al [A0] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

When you selected (.A) for the jump distance specifier (.length)
src

R2R0O
R3R1
A0 Al [A0] [A1]
dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

[Flag Change]
Flag Uujl | O|B|S|Z|D|C

Change | — | — | — | — | — | — | — | —

[Description Example]

JSRI.A Al
JSRIL.W RO
Rev.1.00 2006.05.31 page 97 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Special page subroutine call
\]SRS Jump SubRoutine Special page JSRS
[Syntax] [Instruction Code/Number of Cycles]
JSRS src Page= 237

[Operation]

SP ~ SP - 2

M(SP)*1 «~ (PC + 2)H

SP «~ SP - 2

M(SP) - (PC + 2)mL

PCH - FFi6

PCML - M (FFFE16 - src X 2)

*1 The 8 high-oreder bits become 0.

[Function]

» This instruction causes control to jump to a subroutine at the address set in each table of the special
page vector table plus FFO00016. The area across which program flow can jump to a subroutine is
from address FFO00016 to address FFFFFF16.

» The special page vector table is allocated to an area from address FFFEQ016 to address FFFFDB16.
* srcrepresents a special page number. The special page number is 255 for address FFFEQO16, and 18
for address FFFFDA16.

[Selectable src]

Src

#IMM81"2

*1 #IMM denotes a special page number.
*2 The range of values is 18 < #IMM8 < 255.

[Flag Change]
Fag |lU| 1 |O|B|S|Z|D|C

Change| — | — | — | — | — | — | —| —

[Description Example]
JSRS #18

Rev.1.00 2006.05.31 page 98 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

L D C Transfer to control register L D C
LoaD Control register

[Syntax] [Instruction Code/Number of Cycles]

LDC src,dest Page=237

[Operation]
dest <« src

[Function]
* This instruction transfers srcto the control register indicated by dest

* When memory is specified for src, the following bytes of memory are required.
2 bytes : DMDO0*!, DMD1*!, FLG, DCTO, DCT1, DRCO, DRC1, SVF
4 bytes*? : FB, SB, SP*3, ISP*3, INTB*3, VCT, SVP, DMAO, DMAL, DRAO, DRA1, DSA0, DSA1

*1 The low-order 8 bit of src is transferred.
*2 The low-order 24 bit of src is transferred.

*3 Set even number for SP, ISP and INTB even though odd number can be set. It is more effective to set
even number for operation.

[Selectable src/dest]

src dest
RO R2 DMDO DMD1 DCTO DCT1
R1 R3 DRCO DRC1 FLG SVF
AO/AQ AL/Al [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM16/#IMM24
R2R0O - FB SB Sp ISP
R3R1 - INTB VCT SVP
IAD Al [A0] [Al] DMAO DMA1 DRAO DRAL
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] DSAO DSA1
dsp:16[A0] dsp:16[Al1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

#IMM16/#IMM24
*4 QOperation is performed on the stack pointer indicated by the U flag.

[Flag Change]
Fag |[lU| I |O|B|S|Z|D|C
Change| *5 | *5 | *5 | *5 | *5 | *5 | *5 | *5 [*5 The flag changes only when destis FLG.

[Description Example]
LDC AO,FB

Rev.1.00 2006.05.31 page 99 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

LDCTX D oot LDCTX

[Syntax] [Instruction Code/Number of Cycles]
LDCTX abs16,abs24 Page=240
[Function]

* This instruction restores task context from the stack area.

* Set the RAM address that contains the task number in abs16 and the start address of table data in abs24.

* The required register information is specified from table data by the task number and the data in the stack area is
transferred to each register according to the specified register information. Then the SP correction value is
added to the stack pointer (SP). For this SP correction value, set the number of bytes you want to the trans-
ferred. Calculated as 2 bytes when transferring the RO, R1, R2, or R3 registers. A0, Al, SB, and FB
are calculated as 4 bytes.

« Information on transferred registers is configured as shown below. Logic 1 indicates a register to be
transferred and logic O indicates a register that is not transferred.

MSB LSB

FB|SB| A1l| AO| R3| R2| R1| RO

< Transferred sequentially beginning
with RO

* The table data is comprised as shown below. The address indicated by abs24 is the base address of
the table. The data stored at an address apart from the base address as much as twice the content of
abs16 indicates register information, and the next address contains the stack pointer correction value.

abs24 — Base address | Register information for the task whose task number = 0. o
of table (See the above diagram.)
SP correction value for the task whose task number = 0.
Direction in Register information for the task whose task number = 1. abs16x2
which address (See the above diagram.)
Increases SP correction value for the task whose task number = 1.
b R
— . |
Register information for the task whose task number =n*. [— —
(See the above diagram.)
SP correction value for the task whose task number = n™. *1 n=0to 255

[Flag Change]
Fag |lU| 1 |O|B|S|Z|D|C

Change| — | — | — | —| — | — | —| —

[Description Example]
LDCTX Ram,Rom_TBL

Rev.1.00 2006.05.31 page 100 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Set interrupt enable leve/
I—DIPL LoaD Interrupt Permission Level I—DI PI—
[Syntax] [Instruction Code/Number of Cycles]
LDIPL src Page=241

[Operation]
IPL < src

[Function]
* This instruction transfers srcto IPL.

[Selectable src]

Src

#IMM3™

*1 The range of values is 0 < #IMM3 < 7.

[Flag Change]
Fag |U| I |O|B|S|Z|D]|C

Change| — | — | — | — | — | — | — | —

[Description Example]
LDIPL #2

Rev.1.00 2006.05.31 page 101 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Select maximum value
MAX MAX select MAX

[Syntax] [Instruction Code/Number of Cycles]
MAX.size src,dest Page= 241
' B,W
[Operation]

if (src > dest)
then dest <« src

[Function]
* Singed compares s/c and destand transfers srcto destwhen srcis greater than desz No change
occurs when srcis smaller than or equal to dest.
* When (\W) is specified for the size specifier (.size), destis the address register and writing to desz, the

8 high-order bits of the operation result are become 0. Also, when srcis the address register, trans-
fers the 16 low-order bits of the address register to dest.

[Selectable src/dest]

src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
AO Al [AQ] [A1] AO Al [AO] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |[dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] |dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMMB8/#IMM16

[Flag Change]
Fag ([lU| 1 |]O|B|S|Z|D]|C

Change| — | — | — | = | = | — | — | —

[Description Example]
MAX.B #0ABH,ROL
MAX.W #-1,R2

Rev.1.00 2006.05.31 page 102 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Select minimum value
MIN MIN select MIN

[Syntax] [Instruction Code/Number of Cycles]

MIN.size src,dest page:243
' B,W

[Operation]
if (src < dest)
then dest < src

[Function]
* Signed compares src and destand transfers srcto destwhen srcis smaller than desz No change
occurs when srcis greater than or equal to dest
* When (\W) is specified for the size specifier (.size), destis the address register and writing to desz, the

8 high-order bits of the operation result are become 0. Also, when srcis the address register, trans-
fers the 16 low-order bits of the address register to dest.

[Selectable src/dest |

src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
/AO /A1 [AQ] [A1] AO Al [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |[dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB] [dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMMB/#IMM16

[Flag Change]
Fag |lU| 1 |]O|B|S|Z|D|C

Change| — | — | — | = | — | — | — | —

[Description Example]
MIN.B #0ABH,ROL
MIN.W #-1,R2

Rev.1.00 2006.05.31 page 103 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

MOV ove, MOV

[Syntax] [Instruction Code/Number of Cycles]
MOV.size (:format) src,dest Page=245
: G,Q,Z,S (Can be specified)
B,W,L
[Operation]
dest <« src [dest] < src
dest <« [src] [dest] <« [src]
[Function]

» This instruction transfers srcto dest

» When (.B) is specified for the size specifier (.size) and destis the address register (A0, Al), srcis zero-
extended to be treated as 16-bit data for the operation. In this case, the 8 high-order bits become 0.
Also, when srcis the address register, the 8 low-order bits of the address register are used as data to
be operated on.

» When (\W) is specified for the size specifier (.size) and destis the address register, the 8 high-order
bits become 0. Also, when srcis the address register, the 16 low-order bits of the address register are
the data to be operated on.

* When (.L) is specified for the size specifier (.size) and destis the address register, the 8 high-order bits
of srcis ignored and the 24 low-order bits of srcis stored to dest Also, when srcis the address
register, sscis zero-extended to be treated as 32-bit data for the operation. The flags also change

states depending on the result of 32-bit operation.

[Selectable src/dest 1** (See the next page for src/dest classified by format.)
src dest
ROL/RO/R2R0O ROH/R2/- ROL/RO/R2R0O ROH/R2/-
R1L/R1/R3R1 R1H/R3/- R1L/R1/R3R1 R1H/R3/-
AO/A0/A0*? Al/A1/A1*? [AQ] [A1] AO0/AO/A0*? A1/A1/A1*2 [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] |dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16

#IMM dsp:8[SP]*® dsp:8[SP]*®

*1 Indirect instruction addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-,
R1L/R1/R3R1, R1H/R3/-, dsp:8[SP], and #IMM.

*2 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for srcand dest
simultaneously.

*3 When srcor destis dsp:8[SP], you cannot choose indirect instruction addressing [src] nor [dest].

[Flag Change]

Fag |U| I |O|B|S|Z|D|C
Change| — | — | — | —|O|O | —| —
Conditions

S : The flag is set when the transfer resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the transfer resulted in O; otherwise cleared.

[Description Example]

MOV.B:S #0ABH,ROL
MOV.W #1,R2
MOV.W [A1],[[AC]]

Rev.1.00 2006.05.31 page 104 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

[src/dest Classified by Format]

G format **

src dest
ROL/RO/R2R0 ROH/R2/- ROL/RO/R2R0O ROH/R2/-
R1L/R1/R3R1 R1H/R3/- R1L/R1/R3R1 R1H/R3/-
AO/A0/A0* A1/A1/A1* [AO] [A1] AO/AQ/AO0* A1/A1/AL1* [AOQ] [A1]
dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB] |[dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] |[dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al1] abs24 abs16
#IMM8/#IMM16/#IMM32 dsp:8[SP]*®*8 dsp:8[SP]*6*7*8

*4 Indirect instruction addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/
R1/R3R1, R1H/R3/-, dsp:8[SP], and #IMM.

*5 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for srcand dest
simultaneously.

*6 Operation is performed on the stack pointer indicated by the U flag. You cannot choose dsp:8 [SP] for
srcand destsimultaneously.

*7 When you specify (.B) or (W) for the size specifier (.size) and srcis not #IMM, you can choose dsp:8 [SP] for dest

*8 When srcor destis dsp:8[SP], you cannot choose indirect instruction addressing [src] nor [dest].

Q format **10

src dest

ROL/RO ROH/R2
R1L/R1 R1H/R3
AO/AQ Al/Al [AQ] [Al]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

#IMM4*11

*9 Indirect instruction addressing [src] and [dest] can be used in all addressing except ROL/RO , ROH/R2/-,

R1L/R1 , RIH/R3f-, and #IMM .

*10 You can only specify (.B) or (.W) for the size specifier (.size).

*11 The range of values is - 8 < #IMM4 < +7.
S format **2

Src

dest

ROL/RO*314 dsp:8[SB]*“dsp:8[FB]** abs16**
HIMMB/H#IMM16%14

ROL/RO*33*14 R1|/R1*¥**15 dsp:8[SB]***dsp:8[FB]*'*
abs16*4

dsp:8[SB]*'"dsp:8[FB]*!" abs16*’
#IMM16*16/#IMM24*17

AO*IG/A0*17 Al*lG/A1*17

*12 Indirect instruction addressing [src] and [dest] can be used in all addressing except ROL/RO, R1L/R1, and #IMM.
*13 You cannot choose the same registers for srcand destsimultaneously.

*14 You can only specify (.B) or (.\W) for the size specifier (.size).

*15When srcis not #iIMM8/IMM16, you can only choose R1L/R1 for dest.

*16 You can specify (.\W) for the size specifier (.size). In this case, you cannot use indirect instruction addressing mode

for aest
*17 You can specify (.L) for the size specifier (.size). In this case, you cannot use indirect instruction addressing mode
for aest
Z format *8
src dest
ROL/RO dsp:8[SB] dsp:8[FB] abs16

#0

*18 You can specify (.B) or (.W) for the size specifier (.size).

Rev.1.00 2006.05.31 page 105 of 335
REJ09B0319-0100

RENESAS

Chapter 3 Functions 3.2 Functions

Transfer effective adaress
M OVA MOVe effective Address M OVA
[Syntax] [Instruction Code/Number of Cycles]
MOVA src,dest Page= 254

[Operation]
dest <« EVA(src)

[Function]

 This instruction transfers the affective address of srcto dest

[Selectable src/dest]

src dest
R2R0
R3R1

AOQ Al

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

[Flag Change]
Fag lU| 1 |O|B|S|Z|D]|C

Change| — | — | — | — | — | — | —| —

[Description Example]
MOVA Ram:16[SB],A0

Rev.1.00 2006.05.31 page 106 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions

MOV Dir

Transfer 4-bit data
MOVe nibble

3.2 Functions

MOV Dir

REJ09B0319-0100

[Syntax] [Instruction Code/Number of Cycles]
MOV Dir src,dest Page= 255
[Operation]

Dir Operation

HH H4:dest <« H4:src

HL L4:dest <« H4:src

LH H4:dest <« L4:src

LL L4:dest <« Ld:src
[Function]

* Be sure to choose ROL for either srcor dest.

Dir Function

HH Transfers sr¢(8 bits)'s 4 high-order bits to desq8 bits)'s 4 high-order bits.

HL Transfers s7¢(8 bits)'s 4 high-order bits to desq8 bits)'s 4 low-order bits.

LH Transfers s7¢(8 bits)'s 4 low-order bits to des48 bits)'s 4 high-order bits.

LL Transfers sr¢(8 bits)'s 4 low-order bits to desq8 bits)'s 4 low-order bits.
[Selectable src/dest]

src dest

ROL/REARZ2RE ROHRZ2/- ROL/RE/R2RE ROH/R2/-
RILARHR3RE R1H/AR3~ RHARHRIRE: RAHR3~

ABIABHAS ATATAT [AO] [A1] AGAOIAD ALALAYL AO} FAH
dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB] | dsp:8{A6} dsp:8fAt} dsp:8[SB] dsp:8iFB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]| dsp:16{A6] dsp:i6fAt] dspi6[SB] dspi6{FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dop24{A0] dsp24{A1] abs24 absi6
#Hvv

ROL/RE/RZRE ROHR2/- ROL/RO/R2RO ROH/R2/-
RH/RIR3IRE RIHRIS- R1L/RHR3R% R1H/AR3/~

ADIABIAD AHATAT {AB] At ADIABIAD ALALATL [AQ] [A1]
Gspi8iAL aspifAt] aspiB{SBl dspiB{FBl | dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dspribiAG] dspiibiAL] dspiibiSB] dspiiSiFBi| dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]
tsp:24fAB} dsp:24fAl] absZ4 absi6 dsp:24[A0] dsp:24[Al] abs24 abs16
#HHvivi
[Flag Change]

Fag ([U| |1 |O|B|S|Z|D]|C

Change| — | — | — | = | = | = | — | —
[Description Example]

MOVHH ROL,[AQ]

MOVHL ROL,[AQ]

Rev.1.00 2006.05.31 page 107 of 335 RENESAS

Chapter 3 Functions 3.2 Functions

Transfer extend sign
M OVX MOVe eXtend Sign M OVX
[Syntax] [Instruction Code/Number of Cycles]
MOVX src,dest Page= 257

[Operation]
dest/[dest] <« EXTS(src)

[Function]

* Sign-extends the 8-bit immediate to 32 bits before transferring it to dest.

* When destis the address register (AO, Al), the 24 low-order bits are transferred. The flags also
change state for the 32 bits transfers to be performed.

[Selectable src/dest]

src dest*!
R2R0
R3R1
A0 Al [A0] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB

dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8*2
*1 Indirect instruction addressing [dest] can be used in all addressing except R2RO0, R3R1,
and #IMM.

*2 The range of values is -128 < #IMM8 < +127

[Flag Change]

Fag |lU| 1 |O|B|S|Z|D|C
Change| — | — | — | — | O | O | —| —
Conditions

S : The flag is set when the transfer resulted in MSB of dest= 1; otherwise cleared.
Z : The flag is set when the transfer resulted in 0; otherwise cleared.

[Description Example]

MOVX #10,A0
MOVX #5,[[A1]]

Rev.1.00 2006.05.31 page 108 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Signed multiply
MUL MULtiple MUL
[Syntax] [Instruction Code/Number of Cycles]

MUL.size src,dest Page= 257
: B,W,L

[Operation]

dest < dest X src [dest] <« [dest] x src
dest <« dest X [src] [dest] <« [dest] X [src]
[Function]

 This instruction multiplies srcand desttogether including the sign bits and stores the result in dest.

» When you selected (.B) for the size specifier (.size), srcand desrboth are treated as 8-bit data for the
operation and the result is stored in 16 bits. When you specified an address register (AO, Al) for either
srcor dest, operation is performed on the address register's 8 low-order bits. When destis the address
register, the 8 high-order bits become 0.

* When you selected (.W) for the size specifier (.size), srcand destboth are treated as 16-bit data for
the operation and the result is stored in 32 bits. RO, R1, A0, and Al can be selected for desz When you
specified RO or R1 for dest, the result is stored in R2R0 or R3R1 accordingly. When the address
register is selected for desz, the 24 low-order bits of the 32-bit operation result is stored. When the
address register is selected for src, operation is performed using the 16 low-order bits of the register.

» When you selected (.L) for the size specifier (.size), srcand desrboth are treated as 32-bit data for the
operation and the result is stored in 32 bits. R2R0 is selected for dest When the address register is
selected for src, srcis zero-extended to be treated as 32-bit data for the operation, and only 32-low-
order bits are valid for the result.

[Selectable src/dest]*

src dest
ROL/RO/R2R0 ROH/R2 ROL/RO/R2R0
R1L/R1/R3R1 R1H/R3 R1L/R1
AO/A0/A0*? A1/ALfAL*? [AOQ] [A1] AO/ADAG* ALIAL/AT*? [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |[dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB] |dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al1] abs24 abs16
#IMM8/#IMM16
*1 When the size specifier (.size) is (.B), indirect instruction addressing [src] and [dest] can be used in all addressing
except ROL, ROH, R1L, R1H, and #IMM.
When the size specifier (.size) is (W), indirect instruction addressing [src] can be used in all addressing
except RO, R1, and #IMM. Indirect instruction addressing [dest] cannot be used in any addressing.
When the size specifier (.size) is (.L), no indirect instruction addressing can be used.
*2 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for srcand dest
simultaneously.

[Flag Change]
Feg lU| 1 |]O|B|S|Z|D]|C

Change| — | — | — | — | — | — | — | —

[Description Example]

MUL.B AO,ROL ; ROL and AOQ's 8 low-order bits are multiplied.

MUL.W #3,R0O
MUL.L AO,R2RO

Rev.1.00 2006.05.31 page 109 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Multipl extend sign
MULEX MULtiple EXtend MULEX
[Syntax] [Instruction Code/Number of Cycles]
MULEX src Page=260

[Operation]
R1R2R0 <« R2RO0 X src/[src]

[Function]

» Multiplies src (16-bit data) and R2R0 including the sign and stores the result in R1IR2R0.

[Selectable src]

src*t

R3
A0 Al [AO] [A1]
dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

*1 Indirect instruction addressing [src] can be used in all addressing except /R3/-.

[Flag Change]
Fag ([U| 1 |O|B|S|Z|D]|C

Change| — | — | — | = | = | = | —| —

[Description Example]

MULEX A0
MULEX R3
MULEX Ram
MULEX [[AO]]

Rev.1.00 2006.05.31 page 110 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Unsigned multiply
MUI—U MULtiple Unsigned MUI—U
[Syntax] [Instruction Code/Number of Cycles]

MULU.size src,dest Page=260
: B,W,L

[Operation]

dest < dest X src [dest] < [dest] X src
dest <« dest X [src] [dest] « [dest] X [src]
[Function]

 This instruction multiplies srcand desttogether not including the sign bits and stores the result in dest.

* When you selected (.B) for the size specifier (.size), srcand desrboth are treated as 8-bit data for the
operation and the result is stored in 16 bits. When you specified an address register (A0, Al) for either
srcor dest, operation is performed on the address register's 8 low-order bits. When destis the address
register, the 8 high-order bits become 0.

* When you selected (.W) for the size specifier (.size), srcand destboth are treated as 16-bit data for the
operation and the result is stored in 32 bits. RO, R1, A0, and Al can be selected for desz When you
specified RO or R1 for dest, the result is stored in R2R0 or R3R1 accordingly. When the address
register is selected for desz, the 24 low-order bits of the 32-bit operation result is stored. When the
address register is selected for src, operation is performed using the 16 low-order bits of the register.

* When you selected (.L) for the size specifier (.size), srcand desrboth are treated as 32-bit data for the
operation and the result is stored in 32 bits. R2R0 is selected for dest When the address register is
selected for src, srcis zero-extended to be treated as 32-bit data for the operation, and only 32-low-
order bits are valid for the result.

[Selectable src/dest | **

src dest
ROL/RO/R2R0 ROH/R2 ROL/R0O/R2R0
R1L/R1/R3R1 R1H/R3 R1L/R1
AO/AO0/A0*? A1/A1/A1*? [AQ] [A1] AO/ADAG*? ALJAL/AL*? [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB] [dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMMB/H#IMM16

*1 When the size specifier (.size) is (.B), indirect instruction addressing [src] and [dest] can be used in all addressing
except ROL, ROH, R1L, R1H, and #IMM.
When the size specifier (.size) is (W), indirect instruction addressing [src] can be used in all addressing
except RO, R1, and #IMM. Indirect instruction addressing [dest] cannot be used in any addressing.
When the size specifier (.size) is (.L), no indirect instruction addressing can be used.

*2 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for srcand dest
simultaneously.

[Flag Change]
Fag ([U| I |O|B|S|Z|D]|C

Change| — | — | — | = | — | = | — | —

[Description Example]
MULU.B AO,ROL ; ROL and AQ's 8 low-order bits are multiplied.
MULU.W #3,RO
MUL.L AO,R2F0

Rev.1.00 2006.05.31 page 111 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Two's complement
NEG NEGate NEG

[Syntax] [Instruction Code/Number of Cycles |
NEG.size dest Page=263
: B,W
[Operation]
dest < 0 - dest [dest] <« 0 - [dest]
[Function]

 This instruction takes the 2's complement of destand stores the result in dest.

* When (\W) is specified for the size specifier (.size) and destis the address register(A0Q, Al), the 8
high-order bits become 0.

[Selectable dest |

dest*!
ROL/RO ROH/R2
R1L/R1 R1H/R3
AO Al [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

*1 Indirect instruction addressing [dest] can be used in all addressing except ROL/RO , ROH/R2/-,
R1L/R1 , and R1H/R3/-.

[Flag Change]

Fag ([lU| 1 |O|B|S|Z|D|C
Change] — | — | O | —=|O|O|—1]0
Conditions

O : Theflag is set when destbefore the operation is - 128 (.B) or - 32768 (.W); otherwise cleared.
S The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in O; otherwise cleared.

C The flag is set when the operation resulted in O; otherwise cleared.

[Description Example]
NEG.B ROL
NEG.W Al
NEG.W [[AO]]

Rev.1.00 2006.05.31 page 112 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

No operation
NOP No OPeration NOP
[Syntax] [Instruction Code/Number of Cycles]
NOP Page= 263

[Operation]
PC <« PC + 1

[Function]
 This instruction adds 1 to PC.

[Flag Change]
Flg flU| I |O|B|S|Z|D|C

Change| — | — | — | — | — | — | — | —

[Description Example]
NOP

Rev.1.00 2006.05.31 page 113 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

N OT /nveNn‘(Saﬁ bits N OT

[Syntax] [Instruction Code/Number of Cycles]

NOT.size dest Page=264
' B,W

[Operation]
dest < dest [dest] < [dest]

[Function]
* This instruction inverts gestand stores the result in gest.

» When (\W) is specified for the size specifier (.size) and destis the address register(A0, Al), the 8 high-
order bits become 0.

[Selectable dest]

dest*!
ROL/RO ROH/R2
R1L/R1 R1H/R3
AO Al [AQ] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16

*1 Indirect instruction addressing [dest] can be used in all addressing except ROL/RO , ROH/R2/-,
R1L/R1 , and R1H/R3/-.

[Flag Change]

Fag |lU| I |O|B|S|Z|D|C
Change| — | — | — | — | O |O| —| —
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in O; otherwise cleared.

[Description Example]
NOT.B ROL
NOT.W Al

Rev.1.00 2006.05.31 page 114 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Logically OR
OR

OR

[Instruction Code/Number of Cycles]
Page= 264

OR

[Syntax]
OR.size (:format) src,dest
[

G, S (Can be specified)

B,W
[Operation]
dest <« src VvV dest [dest] < src Vv [dest]
dest « [src] Vv dest [dest] « [src] v [dest]

[Function]
* This instruction logically ORs destand srctogether and stores the result in dest.

» When (.B) is specified for the size specifier (.size) and destis the address register (A0, Al), srcis zero-
extended to be treated as 16-bit data for the operation. In this case, the 8 high-order bits become 0.
Also, when srcis the address register, the 8 low-order bits of the address register are used as data to
be operated on.

* When (\W) is specified for the size specifier (.size) and destis the address register, the 8 high-order
bits become 0. Also, when srcis the address register, the 16 low-order bits of the address register are
the data to be operated on.

[Selectable src/dest]** (See the next page for srd dest classified by format.)

dsp:16[A0] dsp:16[A1]
dsp:24[A0] dsp:24[Al]

dsp:16[SB] dsp:16[FB]

abs24

abs16

dsp:16[A0] dsp:16[A1]
dsp:24[A0] dsp:24[Al]

src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
AO/A0/AD*? AL/AL/AT* [AQ] [Al] AO/AD/AG*2 ATIAL/AT*2 [AO] [Al]
dsp:8[AQ0] dsp:8[Al] dsp:8[SB] dsp:8[FB] dsp:8[AQ0] dsp:8[Al] dsp:8[SB] dsp:8[FB]

dsp:16[SB] dsp:16[FB]

abs24

abs16

#IMM8/#IMM16

*1 Indirect instruction addressing [src] and [dest] can be used in all addressing except ROL/RO ,
ROH/R2/-, R1L/R1 , RIH/R3/--and #IMM.

*2 If you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for srcand destsimul-

taneously.

[Flag Change]

Fag ([U| 1 |O|B|S|Z|D|C
Change| — | — | — | — | O | O| —| —
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in 0; otherwise cleared.

[Description Example]

OR.B Ram:8[SB],ROL

OR.B:G AO,ROL ; AO's 8 low-order bits and ROL are ORed.
OR.B:G ROL,AOQ ; ROL is zero-expanded and ORed with AO.
OR.B:S #3,ROL

OR.W:G [R1],[TAO]]

Rev.1.00 2006.05.31 page 115 of 335 RRENESAS

REJ09B0319-0100

Chapter 3 Functio

ns

3.2 Functions

[src/dest Classified by Format]

G format*®
src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
AO/A0AD* ALIAL/AT* [AO] [A1] AO/ADHAD* ALIAL/AL* [AQ] [A1]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1]
dsp:24[A0] dsp:24[Al]
#IMM8/#IMM16

dsp:16[SB] dsp:16[FB]
abs24 absl6

dsp:16[A0] dsp:16[A1]
dsp:24[A0] dsp:24[Al]

dsp:16[SB] dsp:16[FB]
abs24 absl16

ROH/R2/-, R1L/R1

*4 If you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for srcand deszsimul-

taneously.

S format™

, RIH/R3/--and #IMM.

*3 Indirect instruction addressing [src] and [dest] can be used in all addressing except ROL/RO

Src

dest

#IMM8/#IMM16

ROL/RO dsp:8[SB]

dsp:8[FB] absl6

Rev.1.00 2006.05.31 page 116 of 335

REJ09B0319-0100

RENESAS

*5 Indirect instruction addressing [src] and [dest] can be used in all addressing except ROL/RO, and #IMM.

Chapter 3 Functions 3.2 Functions

Restore register/memory
POP Sop POP

[Syntax] [Instruction Code/Number of Cycles]
POP.size dest Page=267
‘ B,W
[Operation]
dest/[dest] <« M(SP)
SP ~ SP + 2

*1 Even when (.B) is specified for the size specifier (.size), SP is increased by 2.

[Function]
* This instruction restores destfrom the stack area.
* When (.\W) is specified for the size specifier (.size) and destis the address register(A0, Al), the 8 high-
order bits become 0.

[Selectable dest]

dest*?
ROL/RO ROH/R2
R1L/R1 R1H/R3
AO Al [A0] [A1]

dsp:8[AQ0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[AQ0] dsp:16[Al] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16
*2 Indirect instruction addressing [dest] can be used in all addressing except ROL/RO , ROH/R2/-,
R1L/R1 , and R1H/R3#-.
[Flag Change]
Fag lu|l|O|B|S|Z|D]|C
Change| — | — | — | — | — | — | — | —
[Description Example]
POP.B ROL
POP.W A0
Rev.1.00 2006.05.31 page 117 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions

3.2 Functions

POPC

[Syntax]

POPC dest

[Operation]
* When dest is DCTO, DCT1, DMDO, DMD1,
DRCO, DRC1, SVF or FLG
dest** <« M(SP)
SP ~ SP + 2
*1 The 8 low-order bytes are saved when dest is

DMDO or DMD1.

[Function]

Restore control register
POP Control register

POPC

[Instruction Code/Number of Cycles]
Page=267

* When dest is FB, SB, SP, ISP or INTB
dest*? «— M(SP)
SP*¥® <« SP + 4
*2 The 3 low-order byte are saved.
*3 4 is not added to SP when dest is SP, or dest

is ISP while U flag is "0".

* This instruction restores from the stack area to the control register indicated by dest

» Restored stack area is indicated by the U flag.

[Selectable dest]

[Flag Change]
Fag (lU| 1]|]O|B|S|Z|D]|C
Change| *2 | *2 | x2 | xD | *D | *D | *D | *D

[Description Example]
POPC SB

dest
FB SB Sp1 ISP
INTB
DCTO DCT1 DMDO DMD1
DRCO DRC1 SVF FLG

*1 Operation is performed on the stack pointer indi-
cated by the U flag.

*2 The flag changes only when destis FLG.

Rev.1.00 2006.05.31 page 118 of 335
REJ09B0319-0100

RENESAS

Chapter 3 Functions 3.2 Functions

Restore multiple registers
POPM POP Multiple POPM
[Syntax] [Instruction Code/Number of Cycles]
POPM dest Page=268

[Operation]
dest*® M(SP)
SP - SP + n1* X 2
SP - SP + n2%2 X 4
*1 nl denotes the number of RO, R1, R2 and R3 registers to be restored.
*2 n2 denotes the number of A0, Al, SB and FB registers to be restored.
*3 The 3 low-order bytes are saved when dest is A0, Al, SB and FB.

[Function]
* This instruction restores the registers selected by deszcollectively from the stack area.
* Registers are restored from the stack area in the following order:

FB|SB|Al| AO|R3|R2|R1| RO

< Restored sequentially beginning
with RO

[Selectable dest]

dest™
RO R1 R2 R3 A0 Al SB FB
*3 You can choose multiple dest.

[Flag Change]
Fag |[lU| Il |O|B|S|Z|D|C

Change| — | — | — | — | — | — | — | —

[Description Example]
POPM RO,R1,A0,SB,FB

Rev.1.00 2006.05.31 page 119 of 335 RRENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Save register/memory/immediate data
PUSH PUSH PUSH

[Syntax] [Instruction Code/Number of Cycles]

PUSH.size src Page=269
' B,W,L

[Operation]

* When the size specifier (.size) is (.B) * When the size specifier (.size) is (.\W)
SP «~ SP - 2 SP <= SP - 2
M(SP)** < src/[src] M(SP) < src/[src]

*1 The 8 high-order bits become undefined.
Even when (.B) is specified for the size specifier (.size) , SP is decreased by 2.

* When the size specifier (.size) is (.L)
SP < SP - 4
M(SP)*? « src/[src]
*2 When srcis address register(AO, Al), the 8 high-order bits become 0.

[Function]
* This instruction saves srcto the stack area.
* When (.W) is specified for the size specifier (.size) and srcis the address register, the 16 low-order bits

of the address register are the data to be operated on.

[Selectable src]

src*®
ROL/RO/R2R0 ROH/R2/-
R1L/R1/R3R1 R1H/R3/-
AO/AO A1/A1 [AQ] [A1]

dsp:8[AQ0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[AQ] dsp:24[Al] abs24 abs16
#IMMB/#IMM16/#IMM32

*3 Indirect instruction addressing [src] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/
R1/R3R1, R1H/R3/-, and #IMM.

[Flag Change]
Fag (lU| 1]|]O|B|S|Z|D]|C
Change| — | — | — | — | —|—|—| —

[Description Example]
PUSH.B #5
PUSHW #100H
PUSH.L R2R0

Rev.1.00 2006.05.31 page 120 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Save effective adaress
PUSHA PUSH effective Address PUSHA
[Syntax] [Instruction Code/Number of Cycles]
PUSHA src Page=271

[Operation]
SP ~ SP - 4
M(SP)** <« EVA(src)
*1 The 8 high-order bits become undefined.

[Function]
 This instruction saves the effective address of srcto the stack area.

[Selectable src]

Src

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[AQ] dsp:16[A1l] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

[Flag Change]
Flag UulljojB|s|zZz|b|cC

Change| — | — | — | — | — | — | — | —

[Description Example]
PUSHA Ram:8[FB]
PUSHA Ram:16[SB]

Rev.1.00 2006.05.31 page 121 of 335 RRENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Save control register

PUSH Control register PUSHC

[Instruction Code/Number of Cycles]
Page=271

PUSHC

[Syntax]
PUSHC src

[Operation]
* When srcis DCTO, DCT1, DMDO, DMD1,

DRCO, DRC1, SVF or FLG
SP < SP - 2 SP

* When srcis FB, SB, SP, ISP or INTB

~ SP - 4

M(SP)*1< src
*1 When srcis DMDO or DMD1, the 8 high-
order bits become undefined.

M(SP)*?« src*®
*2 The 8 high-order bits become 0.
*3 SP before 4 is subtracted is saved when src

is SP, or src is ISP while U flag is "0".
[Function]
« This instruction saves the control register indicated by srcto the stack area.

[Selectable src]

Src
FB SB SP= ISP
INTB
DCTO DCT1 DMDO DMD1
DRCO DRC1 SVF FLG

*3 Operation is performed on the stack pointer indicated by the U flag.

[Flag Change]
Fag lU| 1 |O|B|S|Z|D]|C

Change| — | — | — | — | — | — | — | —

[Description Example]
PUSHC SB

Rev.1.00 2006.05.31 page 122 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Save multiple registers
PUSHM PUSH Multiple PUSHM
[Syntax] [Instruction Code/Number of Cycles]
PUSHM src Page=272

[Operation]
SP ~ SP - n1*® X 2
SP <~ SP - n2®t X 4
M(SP)*® <« src
*1 nl denotes the number of RO, R1, R2 and R3 registers to be saved.
*2 n2 denotes the number of A0, Al, SB and FB registers to be saved.

*3 When srcis A0, Al, SB or FB, the 8 high-order bits become 0.

[Function]

» This instruction saves the registers selected by src collectively to the stack area.
 The registers are saved to the stack area in the following order:

RO|R1| R2| R3| AO|Al|SB|FB

< Saved sequentially beginning with FB

[Selectable src]

src™
RO R1 R2 R3 A0 A1 SB FB
*4 You can choose multiple src.

[Flag Change]
Fag lu|l|O|B|S|Z|D]|C

Change| — | — | — | — | — | —| — | —

[Description Example]
PUSHM RO,R1,A0,SB,FB

Rev.1.00 2006.05.31 page 123 of 335 RRENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Return from interrupt
REIT REturn from InTerrupt REIT
[Syntax] [Instruction Code/Number of Cycles]
REIT Page=273

[Operation]

PCML - M(SP)
SP -~ SP + 2
PCH «~ M(SP)*
SP -~ SP + 2
FLG <~ M(SP)
SP -~ SP + 2

*1 The 8 high-order bits are saved.

[Function]
» This instruction restores the PC and FLG that were saved when an interrupt request was accepted to
return from the interrupt handler routine.

[Flag Change]
Fag lU| 1 |O|B|S|Z|D]|C
Changel *1 | *1 | *1 | *1 | *1 | *1 | *1 | *1

*]1 Becomes the value in the stack.

[Description Example]
REIT

Rev.1.00 2006.05.31 page 124 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Calculate sum-of-products
RM PA Repeat MultiPle & Addition RM PA
[Syntax] [Instruction Code/Number of Cycles]
RMPA . size Page= 273

[Operation]*

Repeat
RIR2R0O <« RIR2R0 + M(AO) X M(AL)
AO ~ A0 + 217
Al «~ Al + 21>
R3 < R3 -1
Until R3=0

*1 When you set a value 0 in R3, this instruction is ingored.
*2 Shown in ()™ applies when (.B) is selected for the size specifier (.size).

[Function]

* This instruction performs sum-of-product calculations, with the multiplicand address indicated by AO, the
multiplier address indicated by A1, and the count of operation indicated by R3. Calculations are
performed including the sign bits and the result is stored in R1R2R0.

» The content of the address register when the instruction is completed indicates the next address of the
last-read data.

» When an interrupt request is received during instruction execution, the interrupt is acknowledged after
a sum-of- product addition is completed (i.e., after the content of R3 is decremented by 1).

* Make sure that R1IR2R0 has the initial value set.

[Flag Change]

Fag (U| I |O|B|S|Z|D]|C
Change| — | — | Q| —| = | —| —| —
Conditions

O : The flag is set when +23%-1 or -2% is exceeded during operation; otherwise cleared.

[Description Example]
RMPA.B

Rev.1.00 2006.05.31 page 125 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Rotare left with carry
ROI—C ROtate to Left with Carry ROI—C
[Syntax] [Instruction Code/Number of Cycles]

ROLC.size dest Page=274
' B,W

_‘MSB destfdes| _ LSB I
[Function]

* This instruction rotates deszone bit to the left including the C flag.

[Operation]

* When (.W) is specified for the size specifier (.size) and destis the address register(A0, Al), the 8
high-order bits become 0.

[Selectable dest]

dest*!
ROL/RO ROH/R2
R1L/R1 R1H/R3
AO Al [AQ] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

*1 Indirect instruction addressing [dest] can be used in all addressing except ROL/RO , ROH/R2/-,
R1L/R1 , and R1H/R3#-.

[Flag Change]

Fag (lU| Il |O|B|S|Z|D|C
Change| — | — | — | — | OO | —10O
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in dest= 0; otherwise cleared.
C : The flag is set when the shifted-out bit is 1; otherwise cleared.

[Description Example]
ROLC.B ROL
ROLCW RO
ROLC.W [[A0]]

Rev.1.00 2006.05.31 page 126 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Rotate right with carry
RO RC ROtate to Right with Carry RO RC
[Syntax] [Instruction Code/Number of Cycles]

RORC.size dest Page=274
' B,W

[Operation]

‘_.||\/|SB dest/[dest] LSB |—’| c |

[Function]

* This instruction rotates destone bit to the right including the C flag.

* When (\W) is specified for the size specifier (.size) and destis the address register (A0, Al), the 8
high-order bits become 0.

[Selectable dest]

dest*!
ROL/RO ROH/R2
R1L/R1 R1H/R3
A0 Al [A0] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16

*1 Indirect instruction addressing [dest] can be used in all addressing except ROL/RO , ROH/R2/-,
R1L/R1 , and R1H/R3#-.

[Flag Change]

Fag |U| 1 |O|B|S|Z|D]|C
Change| — | — | — | — | O |O|—10
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in dest= 0; otherwise cleared.
C : The flag is set when the shifted-out bit is 1; otherwise cleared.

[Description Example]
RORC.B ROL
RORC.W RO
RORC.W [[AQ]]

Rev.1.00 2006.05.31 page 127 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

ROT ROTate ROT

[Syntax] [Instruction Code/Number of Cycles]
ROT.size src,dest Page=275
: B,W
[Operation] src<0

[
|,|:1MSB dest/[dest] LSBEJ
]

src>0
[Function]

» This instruction rotates destleft or right the number of bits indicated by src. The bit overflowing from LSB
(MSB) is transferred to MSB(LSB) and the C flag.

» The direction of rotate is determined by the sign of src. When srcis positive, bits are rotated left; when
negative, bits are rotated right.

* When srcis an immediate, the number of rotates is - 8 to +8(#0). You cannot set values less than - 8, equal
to O, or greater than +8.

» When srcis a register, the number of rotates is -16 to +16. Although you can set 0, no bits are rotated and
no flags are changed. When you set a value less than -17 or greater than +17, the result of rotation is

undefined.
» When (.\W) is specified for the size specifier (.size) and destis the address register(A0, Al), the 8 high-
order bits become 0.

[Selectable src/dest]

src dest*!
ROL/RO ROH/R2
R1H R1L/R1 *2 R1H/R3/*2
AO Al [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16
H#IMM4*3
*1 Indirect instruction addressing [dest] can be used in all addressing except ROL/RO , ROH/R2/-,
R1L/R1 , and R1H/R3/-.

*2 When srcis R1H, you cannot choose R1 or R1H for dest.
*3 The range of values is - 8 < #IMM4 < +8. However, you cannot set 0.

[Flag Change]

Fag lU| 1 |O|B|S|Z|D]|C
Change — | — | = | =] OO |=|0 *4 When the number of rotates is 0, no flags are changed.
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in 0; otherwise cleared.
C : The flag is set when the bit shifted out last is 1; otherwise cleared.
[Description Example]
ROT.B #1,ROL ; Rotated left
ROT.B #-1,ROL ; Rotated right
ROT.W R1H,R2

Rev.1.00 2006.05.31 page 128 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Return from subroutine
RTS ReTurn from Subroutine RTS
[Syntax] [Instruction Code/Number of Cycles]
RTS Page=276

[Operation]
PCML < M(SP)
SP - SP + 2
PCH <« M(SP)*
SP - SP + 2
*1 The 8 low-order bits are saved.

[Function]
 This instruction causes control to return from a subroutine.

[Flag Change]

Fag ([U| 1 |O|B|S|Z|D]|C
Change| — | — | — | = | — | = | = | —

[Description Example]
RTS

Rev.1.00 2006.05.31 page 129 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Subtract with borrow
SB B SuBtract with Borrow SB B
[Syntax] [Instruction Code/Number of Cycles]
SBB.size src,dest Page= 277
' B,W

[Operation]
dest <« dest - src - C

[Function]

 This instruction subtracts srcand inverted C flag from destand stores the result in dest

» When (.B) is specified for the size specifier (.size) and destis the address register (A0, Al), srcis zero-
extended to be treated as 16-bit data for the operation. In this case, the 8 high-oreder bits become 0.
Also, when srcis the address register, the 8 low-order bits of the address register are used as data to
be operated on.

* When (\W) is specified for the size specifier (.size) and destis the address register, the 8 high-order
bits become 0. Also, when srcis the address register, the 16 low-order bits of the address register are
the data to be operated on.

[Selectable src/dest]

src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
AO/AD/AD* AL/AL/AET [AQ] [Al] AO/AD0/AE* AL/AL/AE [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |[dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] |dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8/#IMM16

*1 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for srcand dest
simultaneously.

[Flag Change]

Fag ([U| 1]|]O|B|S|Z|D]|C
Change| — | — 1 O |—=]|O|O|—|0O
Conditions

O : The flag is set when a signed operation resulted in exceeding +32767 (.\W) or -32768 (.W), or +127
(.B) or -128 (.B); otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when an unsigned operation resulted in any value equal to or greater than O;
otherwise cleared.

N

[Description Example]
SBB.B #2,ROL
SBB.W AO,RO

SBB.B AO0,ROL ; AO's 8 low-order bits and ROL are operated on.
SBB.B ROL,AQ ; ROL is zero-expanded and operated with AO.
Rev.1.00 2006.05.31 page 130 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Subtract & conalitional jump
SB\J NZ SuBtract then Jump on Not Zero SB\] NZ
[Syntax] [Instruction Code/Number of Cycles]

SBJNZ.size src,dest,label Page= 279
' B,W

[Operation]
dest <« dest - src
if dest # 0 then jump label

[Function]
* This instruction subtracts srcfrom destand stores the result in gest.
» When the operation resulted in any value other than 0, control jumps to label. When the operation
resulted in O, the next instruction is executed.
» The op-code of this instruction is the same as that of ADIJNZ.
* When (\W) is specified for the size specifier (.size) and destis the address register, the 8 high-order
bits become 0.

[Selectable src/dest/label]

src dest label
ROL/RO ROH/R2
R1L/R1 R1H/R3/-
#IMMA4™ AO Al [AQ] [A1] PC™?-126 < label < PC?+129

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

*1 The range of values is -7 < #IMM4 < +8.
*2 The PC indicates the start address of the instruction.

[Flag Change]
Flag ([U| 1 |O|B|S|Z|D]|C

Change| — | — | — | = | = | = | — | —

[Description Example]
SBINZ.W #1,R0,label
SBINZW #2,[Al],label

Rev.1.00 2006.05.31 page 131 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions

3.2 Functions

SCCnd

Store on condition
Store Condition on Condition

SCCnd

[Syntax] [Instruction Code/Number of Cycles]
SCCnd label Page=280
[Operation]
iftruethen dest <« 1 if true then [dest] <« 1
else dest « O else [dest] < O
[Function]

* When the condition specified by Cnd/is true, this instruction stores a 1 in dest; when the condition is

false, it stores a 0 in gest.

» When destis the address register(A0, Al), the 8 high-order bits of the address register become 0.

* There are following types of Crndt

cnd Condition Expression|| Cnd Condition Expression
GEUIC| C=1 Equal to or greater than = LTU/NC|C=0 Smaller than >
Cflagis 1. Cflagis 0.
EQ/z |z=1 Equal to = NE/NZ |Z=0 Not equal *
Z flag is 1. Z flag is 0.
GTU |CAZ=1 Greater than < LEU |CAZ=0 Equal to or smaller than =
Pz S=0 Positive or zero 0= N S=1 Negative 0>
GE |SVO0=0 Equal to or greater than = LE (SV0) VZ=1| Equal to or smaller than =
(signed value) (signed value)
GT | (SV0)VZ=0| Greater than (signed value) < LT SVO0=1 Smaller than (signed value) >
0 0=1 Oflagis 1. NO 0=0 Oflagis 0.
[Selectable dest]
dest*!
RO R2
R1 R3
A0 Al [AQ] [A1]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

*1 Indirect instruction addressing [dest] can be used in all addressing except

/R1 , and /R3f-.
[Flag Change]
Fag |lU| 1 |O|B|S|Z|D|C
Change| — | — | — | — | — | — | — | —

[Description Example]
SCC ROL
SCC [dsp:8[A0]]

Rev.1.00 2006.05.31 page 132 of 335
REJ09B0319-0100

RENESAS

/RO/

, IR2

Chapter 3 Functions 3.2 Functions

String compare unequal
SCMPU String CoMPare Unequal SCMPU
[Syntax] [Instruction Code/Number of Cycles]
SCMPU.silze Page=281

[Operation]

* When the size specifier (.size) is (.B) * When the size specifier (.size) is (\W)
Repeat Repeat
M(AO) — M(A1) (compared by byte) M(AO) — M(A1) (compared by byte)
tmp0 <« M(AO) If M(AO)=M(A1) and M(A0)20 then M(AO+1)-M(A1+1)
tmp2 < M(AL) (compared by byte)
A0 <« AO0+1 tmp0 < M(AO)
Al <« Al+1 tmpl < M(AO0+1)
Until (tmp0=0) 11 (tmpO£tmp2) tmp2 <« M(AL)
tmpO0, tmp2: temporary registers tmp3 « M(Al+1)

A0 <« AO0+2

Al < Al+2
Until (tmp0=0) 1 (tmp1=0) n (tmp0£tmp2) 11 (tmpl#tmp3)
tmpO, tmpl, tmp2, tmp3: temporary registers

[Function]
» This instruction compares strings until contents do not match when compared in the address
incrementing direction from the comparison address (A0) to the compared address (Al), until M(AO) =
0 or M(AO+1)=0 (when (.W) is specified for the size specifier (.size)) .
» The contents of the address register (A0, A1) when the instruction is terminated become undefined.
» When an interrupt is requested during instruction execution, the interrupt is accepted after comparison

of one data is completed.

[Flag Change]

Fag (lU| 1 |O|B|S|Z|D|C
Change|l — | — | O |—|O|O|—]0
Conditions

O : The flag is set when a signed operation of M(A0)—M(A1) resulted in exceeding +127 or
-128; otherwise cleared.

S : The flag is set when the operation of M(A0)-M(A1) resulted in MSB = 1; otherwise cleared.

Z . The flag is set when fined 0 in M(AO) and terminated, or M(A0)-M(A1)=0 (when compared result
is matched); the flag is cleared when M(A0)-M(A1)£0 (when compared result is not matched).

C : The flag is set when an unsigned operation of M(A0)-M(A1) resulted in any value equal to or
greater then O; otherwise cleared.

[Description Example]
SCMPU.W

Rev.1.00 2006.05.31 page 133 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions

SHA

[Syntax]

SHA .size src,dest
|

3.2 Functions

Shift arithmetic

SHift Arithmetic

[Operation]
When src< 0

When src> 0
[Function]

SHA

[Instruction Code/Number of Cycles]

B,W,L

1
. IMSB dest[dest] LSB | C |

[C]——{MSB dest[destf LSB[¢+— 0

Page=282

« This instruction arithmetically shifts destleft or right the number of bits indicated by src. The bit over-
flowing from LSB(MSB)is transferred to the C flag.
« The direction of shift is determined by the sign of src. When srcis positive, bits are shifted left; when

negative, bits are shifted right.

* When srcis an immediate and you selected (.B) or (.\W) for the size specifier (.size), the number of
shifts is -8 to +8(#0). You cannot set values less than -8, equal to 0, or greater than +8. When you
selected (.L) for the size specifier (.size), the number of shifts is -32 to +32(%0). You cannot set the

value 0.

* When srcis a register, the number of shifts is -32 to +32. Although you can set 0, no bits are shifted
and no flags are changed. When you set a value less than -32 or greater than +32, the result of shift

is undefined.

* When (.L) is specified for the size specifier (.size) and destis the address register (A0, Al), destis
zero-extended to be treated as 32-bit data for the operation. The 24 low-order bits of the operation

result are stored in gest.
Selectable src/dest]

#IMMA/#IMM8*2

src dest*
ROL/RO/R2R0 ROH/R2/-
R1H*? R1L/R1/R3R1*? R1H/R3/-*?

AO/A0 A1/Al [AQ] [A1]
dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

*1 Indirect instruction addressing [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-

, R1IL/R1/R3R1, and R1H/R3/-.

*2 When srcis R1H, you cannot choose R1, R1H or R3R1 for dest.
*3 When (.B) or (\W) is selected for the size specifier (.size), the range of values is -8 < #IMM4 < +8(%0).
When (.L) is selected for the size specifier (.size), the range of values is -32 < #IMM8 < +32 (20).

[Flag Change]*

Fag |[U| 1 |O|B|S|Z C
Change| — | — 1 O |—|O|O O
Conditions

*4 When the number of shifts is 0, no flags are changed.

O*®* : The flag is cleared when all the shift resulted in MSB and shift out bit are the same value;

otherwise set.

S* : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z*% : The flag is set when the operation resulted in O; otherwise cleared.

C*® : The flag is set when the bit at last shifted out is 1; otherwise cleared.

*5 When (.L) is specified for the sign specifier (.size) and dest is the address register(A0, Al), the flag

become undefined.
[Description Example]
SHA.B #3,ROL
SHA.B #-3,ROL
SHA.L R1H,Ram:8[A1]
SHA.W R1H,[[A1]]

Rev.1.00 2006.05.31 page 134 of 335
REJ09B0319-0100

; Arithmetically shifted left
; Arithmetically shifted right

RENESAS

Chapter 3 Functions 3.2 Functions

Shift arithmetic
SHANC SHift Arithmetic Non Carry SHANC

[Syntax] [Instruction Code/Number of Cycles]
SHANC.size src,dest Page=284
[
L
[Operation]]
When src<0 IMSB dest[dest] LSB|
When s7¢>0 [MSB dest[desf LSB|—— 0
[Function]

« This instruction arithmetically shifts destleft or right the number of bits indicated by src.

« The direction of shift is determined by the sign of src. When srcis positive, bits are shifted left; when
negative, bits are shifted right. Data which are compensated for shift are the sign of MSB when src>
0 (negative), or 0 when src< 0 (positive).

« The number of shifts is -32 to +32. You cannot set values less than -32, equal to 0, or greater than +32.

* When destis the address register (A0, Al), destis zero-extended to be treated as 32-bit data for the
operation. The 24 low-order bits of the operation result are stored in dest.

[Selectable src/dest]

src dest*
R2R0O
R3R1
A0 Al [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

[#IMM8*2

*1 Indirect instruction addressing [dest] can be used in all addressing except R2R0 and R3R1.
*2 The range of values is -32 < #IMM8 < +32(20).

[Flag Change]

Flag |[U| 1]|]O|B|S|Z|D]|C
Change| — | — | — | —|O|O|—1| —
Conditions

S*3 : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z** : The flag is set when the operation resulted in 0; otherwise cleared.
*3 When dest is the address register (A0, Al), the flag become undefined.

[Description Example]

SHANC.L #3,R2R0 ; Arithmetically shifted left

SHANC.L #-3,R2R0 ; Arithmetically shifted right

SHANC.L #10,Ram:8[A1l] ; Arithmetically shifted left

SHANC.L #11,[[A1]] ; Arithmetically shifted right
Rev.1.00 2006.05.31 page 135 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Shift logical
SHI— SHift Logical SHI—

[Syntax] [Instruction Code/Number of Cycles]
SHL.size src,dest Page=285
: B,W,L
[Operation]
When src< 0 0 —|MSB dest[des] LsB]— C]
When src> 0 [c] MSB dest/[dest] LSB|—— 0
[Function]

» This instruction logically shifts destleft or right the number of bits indicated by s7c. The bit overflowing
from LSB (MSB) is transferred to the C flag.

» The direction of shift is determined by the sign of src. When srcis positive, bits are shifted left; when
negative, bits are shifted right.

* When srcis an immediate and (.B) or (.W) is specified for the size specifier (.size), the number of shifts
is -8 to +8(#20). You cannot set values less than -8, equal to 0, or greater than +8. When (.L) is
specified for the size specifier (.size), the number of shifts is -32 to +32 (#20). You cannot set the value
0.

» When srcis a register, the number of shifts is -32 to +32. Although you can set 0, no bits are shifted
and no flags are changed. When you set a value less than -32 or greater than +32, the result of shift

is undefined.
[Selectable src/dest]
src dest™
ROL/RO/R2R0O ROH/R2/-
R1H* R1L/R1/R3R1*? R1H/R3/-*
AO/AO AL/A1 [A0] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

#IMMA/#IMM8*®

*1 Indirect instruction addressing [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-,
R1L/R1/R3R1, and R1H/R3/-.

*2 When srcis R1H, you cannot choose R1, R1H or R3R1 for dest.

*3 When (.B) or (.W) is selected for the size specifier (.size), the range of values is
-8 < #IMM4 < +8(20). When (.L) is selected for the size specifier (.size), the range of values is -32 <
#IMMS8 < +32 (20).

[Flag Change]*

Flag |[U| 1 |O|B|S|Z]|D|C/| 4 whenthe number of shifts is 0, no flags are changed.
Change| — | — | — | = | O |O| =10
Conditions

S*>: The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z*: The flag is set when the operation resulted in O; otherwise cleared.

C*: The flag is set when the bit shifted out last is 1; otherwise cleared.

*5 When (.L) is specified for the sign specifier (.size) and dest is the address register(A0, Al), the flag
become undefined.

[Description Example]

SHL.B #3,ROL ; Logically shifted left
SHL.B #-3,ROL ; Logically shifted right
SHL.L R1H,Ram:8[A1]

SHL.W R1H,[[AO]]

Rev.1.00 2006.05.31 page 136 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

S H L N C SHift Losgfz:l)glilcg; Carry S H I— N C

[Syntax] [Instruction Code/Number of Cycles]
SHLNC.size src,dest Page=288
: L
[Operation]
When src< 0 0 —|MSB dest/[dest] LSB|
When src> 0 | MSB dest/[dest] LSB |1— 0
[Function]

* This instruction logically shifts destleft or right the number of bits indicated by src.

» The direction of shift is determined by the sign of src. When srcis positive, bits are shifted left; when
negative, bits are shifted right. Data which are compensated for shift are 0, regardless of the sign of
SIC.

» The number of shifts is -32 to +32. You cannot set values less than -32, equal to 0, or greater than +32.

* When destis the address register (A0, Al), destis zero-extended to be treated as 32-bit data for the
operation. The 24 low-order bits of the operation result are stored in dest.

[Selectable src/dest]

src dest*
R2R0
R3R1
AO Al [AO] [Al]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

[#IMM8*2

*1 Indirect instruction addressing [dest] can be used in all addressing except R2R0 and R3R1.
*2 The range of values is -32 < #IMM8 < +32(£0).

[Flag Change]

Fag |[U| 1 |O|B|S|Z|D|C
Change| — | — | — | — | O|O|—| —
Conditions

S* : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z*% : The flag is set when the operation resulted in 0; otherwise cleared.
*3 When dest is the address register (A0, Al), the flag become undefined.

[Description Example]

SHLNC.L #3,R2R0O ; Logically shifted left

SHLNC.L #-3,R2RO ; Logically shifted right

SHLNC.L #10,Ram:8[Al] ; Logically shifted left

SHLNC.L #11,[[A0]] ; Logically shifted right
Rev.1.00 2006.05.31 page 137 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

String input
S I N String INput SI N
[Syntax] [Instruction Code/Number of Cycles]

SIN.size Page=288
' B,W

[Operation]*

» When size specifier (.size) is (.B) » When size specifier (.size) is (W)
While R3z0 Do While R3#0 Do
M(Al) < M(AO) M(Al) < M(AO)
Al ~ Al + 1 Al ~ Al + 2
R3 < R3 - 1 R3 «~ R3 -1
End End

*1 When you set a value 0 in R3, this instruction is ignored.

[Function]

« This instruction transfers string from the fixed source address indicated by AO to the destination ad-
dress indicated by Al in the address incrementing direction as many times as specified by R3.

« Set the source of transfer address in AO, the destination address in Al, and the transfer count in R3.

» The content of A1, when the instruction is terminated, indicates the next address of the last-transferred
data.

« If an interrupt is requested in the middle of one transfer, the interrupt is acknowledged as soon as the
one transfer is completed.

[Flag Change]
Fag |[U| 1]|]O|B|S|Z|D]|C

Change| — | — | — | = | = | — | — | —

[Description Example]
SIN.W

Rev.1.00 2006.05.31 page 138 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Transfer string backward
SMOVB String MOVe Backward SMOVB
[Syntax] [Instruction Code/Number of Cycles]

SMOVB.size Page=289
' B,W

[Operation J*

* When size specifier (.size) is (.B) » When size specifier (.size) is (W)
While R320 Do While R3#0 Do
M(Al) <« M(AO) M(Al) < M(A0)
A0 ~ A0 - 1 A0 ~ A0 - 2
Al «~ Al - 1 Al ~ Al - 2
R3 <~ R3 - 1 R3 < R3 -1
End End

*1 When you set a value 0 in R3, this instruction is ignored.

[Function]
* This instruction transfers string in successively address decrementing direction from the source ad-
dress indicated by AO to the destination address indicated by Al.
» Set the transfer count in R3.
» The address register (A0, Al), when the instruction is completed, contains the next address of the last-

read data.
« If an interrupt is requested in the middle of one transfer, the interrupt is acknowledged as soon as the

one transfer is completed.

[Flag Change]

Fag (lU| I |O|B|S|Z|D]|C
Change| — | — | — | = | = | — | — | —

[Description Example]
SMOVB.B

Rev.1.00 2006.05.31 page 139 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Transfer string forward
SMOVF String MOVe Forward SMOVF
[Syntax] [Instruction Code/Number of Cycles]

SMOVF.size Page=289
|

[Operation]*

* When size specifier (.size) is (.B) » When size specifier (.size) is (W)
While R3#0 Do While R320 Do
M(Al) < M(AO) M(Al) < M(A0)
A0 ~ A0 + 1 A0 ~ A0 + 2
Al ~ Al + 1 Al ~ Al + 2
R3 ~ R3 - 1 R3 <~ R3 -1
End End

*1 When you set a value 0 in R3, this instruction is ignored.

Function
[e This irfstruction transfers string in successively address incrementing direction from the source ad-
dress indicated by AQO to the destination address indicated by Al.
* Set the transfer count in R3.
» The address register (A0, A1) when the instruction is completed contains the next address of the last-
read data.

« If an interrupt is requested in the middle of one transfer, the interrupt is acknowledged as soon as the
one transfer is completed.

[Flag Change]
Fag ([U| 1 |O|B|S|Z|D]|C

Change| — | — | = | = | = | — | — | —

[Description Example]
SMOVF.W

Rev.1.00 2006.05.31 page 140 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

SMOVU Stringfﬁgﬁfgfgqual SMOVU

[Syntax] [Instruction Code/Number of Cycles]
SMOVU.size Page=290
: B,W
[Operation]
* When size specifier (.size) is (.B) » When size specifier (.size) is (W)
Repeat Repeat
M(Al) < M(AO) (transfered by byte) M(Al) < M(AO) (transfered by word)
tmp0 <« M(AO) tmp0 <« M(AO)
A0 -~ A0 + 1 tmpl <« M(AO+1)
Al ~ Al + 1 A0 ~ A0 + 2
Until tmp0 =0 Al ~ Al + 2
tmpO0: temporary register Until (tmp0 = 0) 1 (tmp1 = 0)
tmpO, tmpl: temporary registers
[Function]

* This instruction transfers strings from the source address indicated by AO to the destination address
indicated by Al in the address incrementing direction until O is detected.
» The contents of the address register (A0, Al), when the instruction is terminated, become undefined.

« If an interrupt is requested in the middle of one transfer, the interrupt is acknowledged as soon as the
one transfer is completed.

[Flag Change]
Fag (lU| I |O|B|S|Z|D]|C

Change| — | — | — | — | — | — | —| —

[Description Example]
SMOVU.B

Rev.1.00 2006.05.31 page 141 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Store string output
SOUT String OUTput SOUT
[Syntax] [Instruction Code/Number of Cycles]

SOUT .size Page=290
: B,W

[Operation]*

* When size specifier (.size) is (.B) » When size specifier (.size) is (W)
While R3#0 Do While R320 Do
M(Al) < M(AO) M(Al) < M(A0)
A0 ~ A0 + 1 A0 ~ A0 + 2
R3 <~ R3 - 1 R3 < R3 -1
End End

*1 When you set a value 0 in R3, this instruction is ignored.

[Function]

* This instruction transfers string from the source address indicated by AO to the fixed destination
address indicated by Al in the address incrementing direction as many times as specified by R3.

» Set the source of transfer address in A0, the destination address in Al, and the transfer count in R3.

* The content of A0, when the instruction is terminated, indicates the next address of the last-trans-
ferred data.

« If an interrupt is requested in the middle of one transfer, the interrupt is acknowledged as soon as
the one transfer is completed.

[Flag Change]
Flag |[U| 1 |O|B|S|Z|D|C

Change| — | — | — | — | = | —| — | —

[Description Example]
SOUT.W

Rev.1.00 2006.05.31 page 142 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Store string
SSTR String SToRe SSTR
[Syntax] [Instruction Code/Number of Cycles]

SSTR.size Page=291
: B,W

[Operation J*

* When size specifier (.size) is (.B) » When size specifier (.size) is (W)
While R3#0 Do While R3#0 Do
M(Al) <« ROL M(Al) <« RO
Al «~ Al + 1 Al «~ Al + 2
R3 « R3 -1 R3 « R3 -1
End End

*1 When you set a value 0 in R3, this instruction is ignored.

[Function]
* This instruction stores string, with the store data indicated by ROL/RO, the transfer address indi-
cated by Al, and the transfer count indicated by R3.
» The content of A1, when the instruction is completed, indicates the next address of the last-written
data.
« If an interrupt is requested in the middle of one transfer, the interrupt is acknowledged as soon as
the one transfer is completed.

[Flag Change]
Fag |U| 1 |]O|[B|S|Z|D]|C

Change| — | — | = | = | = | = | — | —

[Description Example]
SSTR.B

Rev.1.00 2006.05.31 page 143 of 335 RRENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

S T C Transfer from control register S T C

STore from Control register
[Syntax] [Instruction Code/Number of Cycles]
STC src,dest Page= 291

[Operation]
dest <« src

[Function]
» This instruction transfers the control register indicated by sscto dest When destis memory, specify
the address in which to store the low-order address.
* When memory is specified for desz, the following bytes of memory are required.
2 bytes : DMDO*!, DMD1*!, FLG, DCTO, DCT1, DRCO, DRC1, SVF
4 bytes : FB*1, SB*1, SP*, ISP*!, INTB*!, VCT*!, SVP*!, DMAO*!, DMA1*!, DRAO*!, DRA1*,
DSAO0*!, DSA1*!

*1 The 1 high-order byte of dest becomes undefined.

[Selectable src/dest]

src dest
DMDO DMD1 DCTO DCT1 RO R2
DRCO DRC1 FLG SVF R1 R3
A0 Al [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16

FB SB Sp*2 ISP R2R0 -

INTB VCT SVP R3R1 -

DMAO DMA1 DRAO DRA1 AO Al [AQ] [A1]

DSAO0 DSAl dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

*2 Operation is performed on the stack pointer indicated by the U flag.

[Flag Change]
Fag |[U| 1 |]O|B|S|Z|D|C

Change| — | — | — | = | = | = | — | —

[Description Example]

STC FLG,RO
STC FB,A0
Rev.1.00 2006.05.31 page 144 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Save context
STCTX STore ConTeXt STCTX
[Syntax] [Instruction Code/Number of Cycles]
STCTX abs16,abs24 Page=293

[Operation]

[Function]

* This instruction saves task context to the stack area.

* Set the RAM address that contains the task number in abs16 and the start address of table data in abs24.

* The required register information is specified from table data by the task number and the data in the
stack area is transferred to each register according to the specified register information. Then the SP
correction value is subtracted to the stack pointer (SP). For this SP correction value, set the number of
bytes you want to be transferred. Calculated as 2 bytes when transferring the RO, R1, R2, or R3
registers. A0, Al, SB, and FB are calculated as 4 bytes.

« Information on transferred registers is configured as shown below. Logic 1 indicates a register to be
transferred and logic O indicates a register that is not transferred.

MSB LSB

FB|SB| A1| AO| R3| R2| R1| RO

— Transferred sequentially
beginning with FB

* The table data is comprised as shown below. The address indicated by abs24 is the base address of
the table. The data stored at an address apart from the base address as much as twice the content of
abs16 indicates register information, and the next address contains the stack pointer correction value.

abs24 — Bfatseb;elddress Register information for the task whose task number = 0. [
of table .
(See the above diagram.)
SP correction value for the task whose task number = 0.
. L i i i abs16 X2
Direction in Register information for the task whose task number = 1.
Wh'Ch address (See the above diagram.)
increases .
SP correction value for the task whose task number = 1.
| R R
L
Register information for the task whose task number = n.
(See the above diagram.)
SP correction value for the task whose task number = n™., *1 n=0to 255
[Flag Change]
Fag |[U| 1 |]O|B|S|Z|D]|C

Change| — | — | — | = | = | — | — | —

[Description Example]
STCTX Ram,Rom_TBL

Rev.1.00 2006.05.31 page 145 of 335 RRENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Conalitional transfer
STNZ STore on Not Zero STNZ
[Syntax] [Instruction Code/Number of Cycles]

STNZ.size src,dest Page= 293
: B,W

[Operation]
if Z=0then dest/[dest] < src

[Function]
 This instruction transfers srcto destwhen the Z flag is 0. destis not changed when the Z flag is 1.
» When (.B) is specified for the size specifier (.size) and destis the address register (A0, Al), srcis zero-
extended to be treated as 16-bit data for the operation. In this case, the 8 high-oreder bits become 0.
* When (\W) is specified for the size specifier (.size) and destis the address register, the 8 high-order

bits become 0.

[Selectable src/dest]

src dest*!
ROL/RO ROH/R2
R1L/R1 R1H/R3
AO0/AO A1/AL [AO] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8/#IMM16
*1 Indirect instruction addressing [dest] can be used in all addressing except ROL/RO , ROH/R2/-,
R1L/R1 , and R1H/R3/-.
[Flag Change]
Fag |[U| 1 |O|B|S|Z|D]|C
Change| — | — | — | — | = | = | — | —
[Description Example]
STNZ.B #5,Ram:8[SB]
STNZW #15,[[A1]]
Rev.1.00 2006.05.31 page 146 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Conaditional transfer
STZ STore on Zero STZ
[Syntax] [Instruction Code/Number of Cycles]

STZ.size src,dest Page=294
' B,W

[Operation]
if Z=1then dest/[dest] <« src

[Function]
 This instruction transfers srcto destwhen the Z flag is 1. destis not changed when the Z flag is 0.
» When (.B) is specified for the size specifier (.size) and destis the address register (A0, Al), srcis zero-
extended to be treated as 16-bit data for the operation. In this case, the 8 high-oreder bits become 0.
* When (\W) is specified for the size specifier (.size) and destis the address register, the 8 high-order

bits become 0.

[Selectable src/dest]

src dest*!
ROL/RO ROH/R2
R1L/R1 R1H/R3
AO0/AD A1/A1 [A0] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16
#IMMB8/#IMM16
*1 Indirect instruction addressing [dest] can be used in all addressing except ROL/RO , ROH/R2/-,
R1L/R1 , and R1H/R3t-.
[Flag Change]
Fag |U| 1 |]O|B|[S|Z|D]|C
Change| — | — | — | = | = | — | — | —
[Description Example]
STZ.B #5,Ram:8[SB]
STZW #10,[[AQ]]
Rev.1.00 2006.05.31 page 147 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Conalitional transfer
STZX STore on Zero eXtention STZX
[Syntax] [Instruction Code/Number of Cycles]

STZX.size srcl,src2,dest Page=294
' B,W

[Operation]

If Z=1then dest < srcl If Z=1then[dest] <« srcl
else dest < src2 else [dest] <« src2
[Function]
 This instruction transfers srcZto destwhen the Z flag is 1. When the Z flag is 0, it transfers src2to
dest

» When (.B) is specified for the size specifier (.size) and destis the address register (A0, Al), srcis zero-
extended to be treated as 16-bit data for the operation. In this case, the 8 high-oreder bits become 0.
» When (\W) is specified for the size specifier (.size) and destis the address register, the 8 high-order

bits become 0.

[Selectable src/dest]

src dest*!
ROL/RO ROH/R2
R1L/R1 R1H/R3
AO/AQ Al/Al [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16
#IMMB/#IMM 16

*1 Indirect instruction addressing [dest] can be used in all addressing except ROL/RO , ROH/R2/-,
R1L/R1 , and R1H/R3#-.

[Flag Change]
Fag ([U| 1 |O|B|S|Z|D]|C

Change| — | — | — | — | — | = | — | —

[Description Example]
STZX.B #1,#2,Ram:8[SB]
STZX.W #5#10,[R0]

Rev.1.00 2006.05.31 page 148 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Subtract without borrow
SU B SUBtract SU B
[Syntax] [Instruction Code/Number of Cycles]
SUB.size (:format) src,dest Page=295
‘ ' G, S (Can be specified)
B,W,L

[Operation]

dest <« dest - src [dest] <« [dest] - src
dest <« dest - [src] [dest] <« [dest] - [src]
[Function]

 This instruction subtracts srcfrom destand stores the result in dest.

» When (.B) is specified for the size specifier (.size) and destis the address register (A0, Al), srcis zero-
extended to be treated as 16-bit data for the operation. In this case, the 8 high-oreder bits become 0.
Also, when srcis the address register, the 8 low-order bits of the address register are used as data to
be operated on.

» When (\W) is specified for the size specifier (.size) and destis the address register, the 8 high-order
bits become 0. Also, when srcis the address register, the 16 low-order bits of the address register are
the data to be operated on.

» When (.L) is specified for the size specifier (.size) and destis the address register, destis zero-
extended to be treated as 32-bit data for the operation. The 24 low-order bits of the operation result
are stored in dest. When srcis the address register, srcis zero-extended to be treated as 32-bit data

for the operation. The flags also change states depending on the result of 32-bit operation.

[Selectable src/dest]* (See the next page for src/dest classified by format.)
src dest
ROL/RO/R2R0 ROH/R2/- ROL/RO/R2R0 ROH/R2/-
R1L/R1/R3R1 R1H/R3/- R1L/R1/R3R1 R1H/R3/-
AO/A0/A0*2 A1/A1/A1*? [AQ] [A1] AO/A0/A0*2 A1/A1/AL1*2 [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] [dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMMB/#IMM16/#IMM32

*1 Indirect instruction addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/
R1/R3R1, R1H/R3/-, and #IMM.

*2 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for srcand dest
simultaneously.

[Flag Change]

Fag |U| I |O|B|S|Z|D]|C
Change| — | — 1 O| —|O|O|—-1]0O
Conditions

O : The flag is set when a signed operation resulted in exceeding +2147483647(.L) or
-2147483648(.L), +32767 (\W) or -32768 (.W), or +127 (.B) or -128 (.B); otherwise cleared.

S : Theflag is set when the operation resulted in MSB = 1; otherwise cleared.

The flag is set when the operation resulted in O; otherwise cleared.

C : The flag is set when an unsigned operation resulted in any value equal to or greater than O;

N

otherwise cleared.

Rev.1.00 2006.05.31 page 149 of 335 RRENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

[Description Example]

SUB.B AO0,ROL ; AO's 8 low-order bits and ROL are operated on.
SUB.B ROL,A0 ; ROL is zero-expanded and operated with AO.
SUB.B Ram:8[SB],ROL

SUBW #2,[A0]

[src/dest Classified by Format]

G format*?

src dest
ROL/RO/R2R0O ROH/R2/- ROL/RO/R2R0O ROH/R2/-
R1L/R1/R3R1 R1H/R3/- R1L/R1/R3R1 R1H/R3/-
AO/AO/A0* A1/A1/A1* [AQ] [A1] AO/AD/A0* A1/A1/A1* [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |[dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] |dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMMB/HIMM16/#IMM32
*3 Indirect instruction addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/
R1U/R3R1, R1H/R3/-, and #IMM.

*4 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for srcand dest
simultaneously.

S format

src dest™
ROL/RO dsp:8[SB] dsp:8[FB] absl6

#IMMB/#IMM16*¢

*5 Indirect instruction addressing [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/
R1/R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*6 You can specify only (.B) or (.\W) for the size specifier (.size).

Rev.1.00 2006.05.31 page 150 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Subtract extend without borrow
SUBX SUBtract eXtend SUBX
[Syntax] [Instruction Code/Number of Cycles]
SUBX src,dest Page=299

[Operation]

dest <« dest - EXT(src) [dest] < [dest] - EXT(src)
dest « dest - EXT([src]) [dest] « [dest] - EXT([src])
[Function]

* This instruction subtracts 8-bit srcfrom dest (32 bits) after sign-extending srcto 32 bits and stores the
result in dest.

* When dest is the address register (AO, Al), dest is zero-extended to be treated as 32-bit data for the
operation. The 24 low-order bits of the operation result are stored in desz The flags also change
states depending on the result of 32-bit operation.

[Selectable src/dest 1*!

src dest
ROL ROH R2R0 -
R1L R1H R3R1 -
AO Al [AQ] [A1] AO Al [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB] [dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8

*1 Indirect instruction addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/
R1/R3R1, R1H/R3/-, and #IMM.

[Flag Change]

Fag |U| I |O|B|S|Z|D|C
Change| — | — | O | —|O|O|—1]0O
Conditions

O : The flag is set when a signed operation resulted in exceeding +2147483647(.L) or
-2147483648(.L); otherwise cleared.

S : Theflag is set when the operation resulted in MSB = 1; otherwise cleared.

The flag is set when the operation resulted in O; otherwise cleared.

C : The flag is set when an unsigned operation resulted in any value equal to or greater than O;
otherwise cleared.

N

[Description Example]

SUBX ROL,A0
SUBX Ram:8[SB],R2R0
SUBX #2,[A0]
Rev.1.00 2006.05.31 page 151 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

TST TaoT TST

[Syntax] [Instruction Code/Number of Cycles]
TST.size(:format) src,dest Page= 301
' G, S (Can be specified)
B,W
[Operation]

dest A src

[Function]

» Each flag in the flag register changes state depending on the result of logical AND of srcand dest.

» When (.B) is specified for the size specifier (.size) and destis the address register (A0, Al), srcis zero-
extended to be treated as 16-bit data for the operation. Also, when srcis the address register, the 8
low-order bits of the address register are used as data to be operated on.

* When (\W) is specified for the size specifier (.size) and srcis the address register, the 16 low-order bits

of the address register are the data to be operated on.

[Selectable src/dest] (See the next page for src/dest classified by format.
src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
AO/ADHAO* ALIAL/AT [AD] [AL] AO/ADHAGH ALAL/ATH [AQ] [AL]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |[dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] |dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8/#IMM16

*1 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for srcand dest
simultaneously.

[Flag Change]

Fag |U| I |O|B|S|Z|D|C
Change| — | — | — | = | O|O| —| —
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in O; otherwise cleared.

[Description Example]

TST.B #3,ROL

TST.B AO0,ROL ; AQ's 8 low-order bits and ROL are operated on.

TST.B ROL,AO ; ROL is zero-expanded and operated on with AQO.
Rev.1.00 2006.05.31 page 152 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

[src/dest Classified by Format]

G format
src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
AO/ADAG*? ALIAL/AL* [AQ] [Al] AO/ADAG*? ALIALHAEY? [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] [dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8/#IMM16

*2 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for srcand dest
simultaneously.

S format
src dest
ROL/RO dsp:8[SB] dsp:8[FB] absl6
#IMMS8/#IMM16
Rev.1.00 2006.05.31 page 153 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Interrupt for undefined instruction
UND UNDefined instruction UND
[Syntax] [Instruction Code/Number of Cycles]
UND Page=303

[Operation]

SP -~ SP -2
M(SP) ~ FLG

SP ~ SP - 2
M(SP)* ~ (PC + 1H
SP - SP - 2
M(SP) < (PC + 1)L
PC <~ M(FFFFDC16)

*1 The 8 high-order bits become undefined.

[Function]
« This instruction generates an undefined instruction interrupt.

» The undefined instruction interrupt is a nonmaskable interrupt.

[Flag Change]

Fag (U] I]O[B]S]z]D]C *1 The flags are saved to the stacll< area before the UND
Chanae o instruction is executed. After the interrupt, the flag status
€00 - |-|—|— — becomes as shown on the left.
Conditions
U : Theflagis cleared.
| : Theflagis cleared.
D : Theflagis cleared.
[Description Example]
UND
Rev.1.00 2006.05.31 page 154 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Wait
WAIT WAIT WAIT
[Syntax] [Instruction Code/Number of Cycles]
WAIT Page= 303

[Operation]

[Function]

» Stops program execution. Program execution is restarted when an interrupt whose priority level is
higher than bits RLVL2 to RLVLO in the RLVL register is accepted or a reset is generated.

[Flag Change]
Fag ([U| 1 |O|B|S|Z|D]|C

Change| — | — | — | — | — | — | — | —

[Description Example]

WAIT

Rev.1.00 2006.05.31 page 155 of 335 RENESAS
REJO9B0319-0100

Chapter 3 Functions 3.2 Functions

Exchange
XCHG eXCHanGe XCHG
[Syntax] [Instruction Code/Number of Cycles]

XCHG.size src,dest Page=304
: B, W

[Operation]
dest/[dest] <— src

[Function]

* This instruction exchanges contents between srcand dest.

» When (.B) is specified for the size specifier (.size) and destis address register(A0, Al), 24 bits of zero-
expanded srcdata are placed in the address register and the 8 low-order bits of the address register
are placed in src.

» When (.\W) is specified for the size specifier (.size) and destis address register, 24 bits of zero- ex-
panded srcdata are placed in the address register and the 16 low-order bits of the address register are
placed in src. When srcis address register, 24 bits data are placed in the address register and the 16
low-order bits of the address register are placed in dest.

[Selectable src/dest]

src dest*!
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
AO Al AO/A0 Al/Al [AQ] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16
*1 Indirect instruction addressing [dest] can be used in all addressing except ROL/RO , ROH/R2/-,
R1L/R1 , and R1H/R3/-.
[Flag Change]
Fag |lU| 1 |O|B|S|Z|D]|C
Change| — | — | — | — | — | — | — | —
[Description Example]
XCHG.B ROL,AO0 ; AO's 8 low-order bits and ROL's zero-expanded value are exchanged.
XCHG.W RO0OA1
XCHG.B ROL,[A(]
Rev.1.00 2006.05.31 page 156 of 335 RENESAS

REJ09B0319-0100

Chapter 3 Functions 3.2 Functions

Exclusive OR
XOR eXclusive OR XOR
[Syntax] [Instruction Code/Number of Cycles]

XOR:.size src,dest Page=304
: B,W

[Operation]

dest <« dest V src [dest] <« [dest] V src
dest « dest vy [src] [dest] < [dest] V [src]
[Function]

« This instruction exclusive ORs srcand desttogether and stores the result in dest

* When (.B) is specified for the size specifier (.size) and destis the address register (A0, Al), srcis zero-
extended to be treated as 16-bit data for the operation. In this case, the 8 high-oreder bits become 0.
Also, when srcis the address register, the 8 low-order bits of the address register are used as data to
be operated on.

* When (\W) is specified for the size specifier (.size) and destis the address register, the 8 high-order
bits become 0. Also, when srcis the address register, the 16 low-order bits of the address register are
the data to be operated on.

[Selectable src/dest 1*!

src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
AO/ADHAG*2 ALIALHAT* [AQ] [A1] AO/AQ/AD*2 ALJAL/AL*2 [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB] [dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8/#IMM16
*1 Indirect instruction addressing [src] and [dest] can be used in all addressing except ROL/RO ,
ROH/R2/-, R1L/R1 , R1H/R3/-, and #IMM.
*2 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for srcand dest
simultaneously.

[Flag Change]

Fag |lU| 1 |O|B|S|Z
Change| — | — | — | —= | OO | —=| —

Conditions
S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in 0; otherwise cleared.

[Description Example]
XOR.B AOQ,ROL ; AO's 8 low-order bits and ROL are exclusive ORed.
XOR.B ROL,AOQ ; ROL is zero-expanded and exclusive ORed with AQ.
XOR.B #3,ROL
XOR.W AO0,A1
XOR.W [AQ],[[AL]]

Rev.1.00 2006.05.31 page 157 of 335 RENESAS
REJO9B0319-0100

Chapter 3 Functions 3.3 Index instructions

3.3 Index instructions

This section explains each INDEX instruction individually.

The INDEX instructions are provided for use on arrays. The effective addresses are derived by unsigned
adding the addresses indicated by src and dest of the next instruction to be executed after the INDEX
instruction to the content of src of the INDEX instruction.

The modifiable size is from 0 to 65535(64KB).

No interrupt request is not accepted immediately after the INDEX instruction.

The 10 types of INDEX instructions shown below are supported.

(1) INDEXB.size src
The INDEXB (INDEX Byte) instruction is used for arrays arranged in bytes.
The effective addresses for the INDEXB instruction are derived by unsigned adding the src content of
the INDEXB instruction to the addresses indicated by src and dest of the next instruction to be executed.
For the next instruction executed after the INDEXB instruction, be sure to choose memory for both src
and dest. Also, specify .B for the size specifier.

Example: mem1 address
INDEXB.B src v
MOV.B:G mem1.mem2 The src content of >
INDEXB Transfer
Specify .B Memory L

Operation in C language = =
mem2 address

char SIC; ‘
char mem1[],mem2[f The src content of >
INDEXB

memz2[src] = mem1[src];

Instruction which is modified by INDEXB

The src and dest of

ADC, ADD:G*'2, AND, CMP:G*!, MAX, MIN, MOV:G***3, MUL, MULU, OR, SBB, SUB,
TST, XOR.

*1 You can only specify G format.

*2 The SP can not be used in dest of ADD instruction.

*3 The dsp:8[SP] can not be used in src or dest of MOV instruction.

Only above instructions can be used next to INDEXB instruction.

Rev.1.00 2006.05.31 page 158 of 335 RENESAS
REJO9B0319-0100

Chapter 3 Functions 3.3 Index instructions

(2) INDEXBD.size src
The INDEXBD (INDEX Byte Dest) instruction is used for arrays arranged in bytes.
The effective addresses for the INDEXBD instruction are derived by unsigned adding the src content of
the INDEXBD instruction to the addresses indicated by dest(some instructions are src) of the next in-
struction to be executed.
For the next instruction executed after the INDEXBD instruction, be sure to choose memory for
dest(some instructions are src). Also, specify .B for the size specifier.

Example:
P mem1 address Transfer
INDEXBD.B src
MOV .B: meml.,memz2
o G eml,me
Specify .B Memory

Operation in C language
char src.mem1: mem2 address

1 1 ¢
har mem2[];
cha em2(l; The src content of > P

INDEXBD L,

mem2[src] = mem1; D

Instruction which is modified by INDEXBD

The dest of

ABS, ADC, ADCF, ADD:G*'*2, AND, CLIP, CMP:G*!, DEC, INC, MAX, MIN, MOV.:.G*!*3,
MUL, MULU, NEG, NOT, OR, POP, ROLC, RORC, ROT, SBB, SHA, SHL, STNZ, STZ,
STZX, SUB, TST, XCHG, XOR.

The src of

DIV, DIVU, DIVX, PUSH

*1 You can only specify G format.

*2 The SP can not be used in dest of ADD instruction.

*3 The dsp:8[SP] can not be used in src or dest of MOV instruction.

Only above instructions can be used next to INDEXBD instruction.

Rev.1.00 2006.05.31 page 159 of 335 RENESAS
REJO9B0319-0100

Chapter 3 Functions 3.3 Index instructions

(3) INDEXBS.size src
The INDEXBS (INDEX Byte Src) instruction is used for arrays arranged in bytes.
The effective addresses for the INDEXBS instruction are derived by unsigned adding the src content of
the INDEXBS instruction to the addresses indicated by src of the next instruction to be executed.
For the next instruction executed after the INDEXBS instruction, be sure to choose memory for src.
Also, specify .B for the size specifier.

Example:
mem1 address
INDEXBS.B src v
MOV'%:G —mwemz The src content of >
Specify .B Memory INDEXBS Transfer
Operation in C language
char src,memz2;
char mem1(];
mem2 = mem1[src]; mem2 address

Instruction which is modified by INDEXBS
The src of
ADC, ADD:G*"*2, AND, CMP:G*!, MAX, MIN, MOV:G**3, MUL, MULU, OR, SBB, SUB,
TST, XOR

*1 You can only specify G format.
*2 The SP can not be used in dest of ADD instruction.

*3 The dsp:8[SP] can not be used in src or dest of MOV instruction.

Only above instructions can be used next to INDEXBS instruction.

Rev.1.00 2006.05.31 page 160 of 335 RENESAS
REJO9B0319-0100

Chapter 3 Functions 3.3 Index instructions

(4)INDEXW.size src
The INDEXW (INDEX Word) is used for arrays arranged in words.
The effective addresses for the INDEXW instruction are derived by unsigned adding twice the src con-
tent of the INDEXW instruction to the addresses indicated by src and dest of the next instruction to be
executed. The range of src of INDEXW instruction is from 0 to 32767. You can not set otherwise.
For the next instruction executed after the INDEXW instruction, be sure to choose memory for both src
and dest. Also, specify .W for the size specifier.

Example:

INDEXW.B src mem1 address
MOV.\W:G meml,mem2 Twice the src v

Specify \W _Temory content of INDEXW > @D
Operation in C language L)Ensfer
char src, i =
char mem1[],mem2[]; mem2 address E =
mem2[src] = mem1[src]; I(\;\ﬂf:ntth; T,LCDEXW > é

—

Instruction which is modified by INDEXW

The src and dest of
ADC, ADD:G**2, AND, CMP:G*, MAX, MIN, MOV:G**3, MUL, MULU, OR, SBB, SUB,

TST, XOR.
*1 You can only specify G format.
*2 The SP can not be used in dest of ADD instruction.

*3 The dsp:8[SP] can not be used in src or dest of MOV instruction.

Only above instructions can be used next to INDEXW instruction.

Rev.1.00 2006.05.31 page 161 of 335 RENESAS
REJO9B0319-0100

Chapter 3 Functions 3.3 Index instructions

(5) INDEXWD.size Src
The INDEXWD (INDEX Word Dest) is used for arrays arranged in words.
The effective addresses for the INDEXWD instruction are derived by unsigned adding twice the src content
of the INDEXWD instruction to the addresses indicated by dest (some instructions are src) of the next instruc-
tion to be executed.
The range of src of INDEXWD instruction is from 0 to 32767. You cannot set otherwise.
For the next instruction executed after the INDEXWD instruction, be sure to choose memory for
dest(some instructions are src). Also, specify .W for the size specifier.

Example:
INDEXWD.B src
MOV.W:G meml,mem?2 mem1 address)Emsfer
Specify \W Memory
Operation in C language L L
char src;
int meml1; mem2 address
int mem2[]; Twice the src v
content of >
mem2[src] = memi; INDEXWD L }(7

Instruction which is modified by INDEXWD
The dest of
ABS, ADC, ADCF, ADD:G***?2, AND, CLIP, CMP:G**, DEC, INC, MAX, MIN, MOV:G*'*3,
MUL, MULU, NEG, NOT, OR, POP, ROLC, RORC, ROT, SBB, SCcnd, SHA, SHL,
STNZ, STZ, STZX, SUB, TST, XCHG, XOR.
The src of
DIV, DIVU, DIVX, PUSH, JMPI, JSRI.

*1 You can only specify G format.
*2 The SP can not be used in dest of ADD instruction.

*3 The dsp:8[SP] can not be used in src or dest of MOV instruction.

Only above instructions can be used next to INDEXWD instruction.

Rev.1.00 2006.05.31 page 162 of 335 RENESAS
REJO9B0319-0100

Chapter 3 Functions 3.3 Index instructions

(6) INDEXWS.size src
The INDEXWS (INDEX Word Src) is used for arrays arranged in words.
The effective addresses for the INDEXWS instruction are derived by unsigned adding twice the src
content of the INDEXWS instruction to the addresses indicated by src of the next instruction to be
executed. The range of src of INDEXWS instruction is from 0 to 32767. You can not set otherwise.
For the next instruction executed after the INDEXWS instruction, be sure to choose memory for src.
Also, specify .W for the size specifier.

Example:
INDEXWS.B Ssrc mem1 address
MOV.W:G mem3,mem2 Twice thesrc ¥
Specify W ~ Memory contentof > @ == =
INDEXWS
Operation in C language L Transfer
char Src;
int mem1[];
int mem2[]; L L
mem2 address
mem2 = meml[src];

Instruction which is modified by INDEXWS
The src of
ADC, ADD:G*™*2, AND, CMP:G*!, MAX, MIN, MOV:G*™*3, MUL, MULU, OR, SBB, SUB,
TST, XOR.

*1 You can only specify G format.
*2 The SP can not be used in dest of ADD instruction.

*3 The dsp:8[SP] can not be used in src or dest of MOV instruction.

Only above instructions can be used next to INDEXWS instruction.

Rev.1.00 2006.05.31 page 163 of 335 RENESAS
REJO9B0319-0100

Chapter 3 Functions 3.3 Index instructions

(7) INDEXL.size src

The INDEXL (INDEX Long word) is used for arrays arranged in long words.

The effective addresses for the INDEXL instruction are derived by unsigned adding four times the src
content of the INDEXL instruction to the addresses indicated by src and dest of the next instruction to be
executed. The range of src of INDEXL instruction is from 0 to 16383. You can not set otherwise.

For the next instruction executed after the INDEXL instruction, be sure to choose memory for both src
and dest. Also, specify .L for the size specifier.

Example:
INDEXL.B src mem1 address
MOV.L:G meml,_me\mz Four times the src v
Specify .L T Memory content of INDEXL >
Operation in C language lTransfer
char src; J
long mem1[],mem2[]; = =
mem?2 address
memz2[src] = mem1([src]; Four times the src v
content of INDEXL > &]
}<_

Instruction which is modified by INDEXL
The src and dest of
ADD:G**2, CMP:G*!, MOV:G*'*3, SUB.

*1 You can only specify G format.
*2 The SP can not be used in dest of ADD instruction.

*3 The dsp:8[SP] can not be used in src or dest of MOV instruction.

Only above instructions can be used next to INDEXL instruction.

Rev.1.00 2006.05.31 page 164 of 335 RENESAS
REJO9B0319-0100

Chapter 3 Functions 3.3 Index instructions

(8) INDEXLD.size src
The INDEXLD (INDEX Long word Dest) is used for arrays arranged in long words.
The effective addresses for the INDEXLD instruction are derived by unsigned adding four times the src
content of the INDEXLD instruction to the addresses indicated by dest (some instructions are src) of the
next instruction to be executed. The range of src of INDEXLD instruction is from 0 to 16383. You can not
set otherwise.
For the next instruction executed after the INDEXLD instruction, be sure to choose memory for dest
(some instructions are src). Also, specify .L for the size specifier.

Example:
mem1 address
INDEXLD.B src | Transfer
MOV.L:G meml,menQZ J
Specify .L Memory = =~
Operation in C language mem?2 address
char SIC; Four times the v
. src content of >
long mem1, INDEXLD iy 1
long mem2[];
H
mem2[src] = mem1;

Instruction which is modified by INDEXLD

The dest of ADD:G**2, CMP:G*!, MOV:G**3, SUB, SHA, SHANC, SHL, SHLNC.
The src of DIV, DIVL, DIVX, MUL, MULU, JMPI, JSRI.

*1 You can only specify G format.
*2 The SP can not be used in dest of ADD instruction.

*3 The dsp:8[SP] can not be used in src or dest of MOV instruction.

Only above instructions can be used next to INDEXLD instruction.

Rev.1.00 2006.05.31 page 165 of 335 RENESAS
REJO9B0319-0100

Chapter 3 Functions 3.3 Index instructions

(9) INDEXLS.size src
The INDEXLS (INDEX Long word Src) is used for arrays arranged in long words.
The effective addresses for the INDEXLS instruction are derived by unsigned adding four times the src
content of the INDEXLS instruction to the addresses indicated by src of the next instruction to be ex-
ecuted. The range of src of INDEXLS instruction is from 0 to 16383. You cannot set otherwise.
For the next instruction executed after the INDEXLS instruction, be sure to choose memory for src.
Also, specify .L for the size specifier.

Example:

INDEXLS.B Ssrc mem1 address
MOV-%G —m(wmz Four times the src v

Specify .L Memory content of INDEXLS > @
Operation in C language T T
char SIC; Transfer
long mem1[];
long mem2; A x

mem?2 address

mem2 = meml[src]; }

Instruction which is modified by INDEXLS
The src of ADD:G***2, CMP:G*!, MOV:G*1*3, SUB.
*1 You can only specify G format.
*2 The SP can not be used in dest of ADD instruction.

*3 The dsp:8[SP] can not be used in src or dest of MOV instruction.

Only above instructions can be used next to INDEXLS instruction.

Rev.1.00 2006.05.31 page 166 of 335 RENESAS
REJO9B0319-0100

Chapter 3 Functions 3.3 Index instructions

(10) BITINDEX.size src
The BITINDEX instruction is operated on the bit that is apart from bit O of the address indicated by dest
as many bits as indicated by src of BITINDEX.

Make sure the next instruction to be executed after BITINDEX is a bit instruction. Also, be sure to
specify memory for src or dest.

Example:
BITINDEX.B/W src
mem1 address <—[
BSET 3,meml l\l\l L1
\ ol \\\ ~
Bit instruction \ Memory 3 S
Becomes invalid. I | |‘1 P
Bit position

Instruction which is modified by BITINDEX

The src of BAND, BNAND, BNOR, BNTST, BNXOR, BOR, BTST:G*!, BXOR.
The dest of BCLR, BMcnd, BNOT, BSET, BTSTC, BTSTS.

*1 You can only specify G format.

Rev.1.00 2006.05.31 page 167 of 335 RENESAS
REJO9B0319-0100

Chapter 3 Functions 3.3 Index instructions

(11) Nextinstructions that can be executed after INDEX
The table below lists the next instructions that can be executed after each INDEX instruction.

Valid instruction

INDEXB.B/.W*? | ADC, ADD:G*4, AND, CMP:G, MAX, MIN, MOV:G*3, MUL,
MULU, OR, SBB, SUB,TST,XOR

The src and dest of above instructions.
INDEXBD.B/.W*? | ABS, ADC, ADCF, ADD:G**, AND, CLIP, CMP:G, DEC, DIV, DIVU, DIVX, PUSH

INC, MAX, MIN, MOV:G*3, MUL, MULU, NEG, NOT, OR, The src of above instructions.
POP, ROLC, RORC, ROT, SBB, SCcnd, SHA, SHL,
STNZ, STZ, STZX, SUB, TST, XCHG, XOR

The dest of above instructions.

INDEXBS.B/.W*? | ADC, ADD:G*4, AND, CMP:G, MAX, MIN, MOV:G*3, MUL,
MULU, OR, SBB, SUB, TST, XOR

The src of above instructions.

INDEXW.B/.W*2 [ADC, ADD:G**, AND, CMP:G, MAX, MIN, MOV:G*3, MUL,
MULU, OR, SBB, SUB, TST, XOR

The src and dest of above instructions.
INDEXWD.B/.W*?| ABS, ADC, ADCF, ADD:G*4, AND, CLIP, CMP:G, DEC, DIV, DIVU, DIVX, PUSH, JMPI,
INC, MAX, MIN, MOV:G*3, MUL, MULU, NEG, NOT, OR, JSRI

POP, ROLC, RORC, ROT, SBB, SHA, SHL, STNZ, STZ, The src of above instructions.
STZX, SUB, TST, XCHG, XOR

The dest of above instructions.

INDEXWS.B/.W*2[ADC, ADD:G**, AND, CMP:G, MAX, MIN, MOV:G*3, MUL,
MULU, OR, SBB, SUB, TST, XOR

The src of above instructions.

INDEXL.B/.W*2 ADD:G**, CMP:G, MOV:G*3, SUB

The src and dest of above instructions.
INDEXLD.B/.W*? | ADD:G**, CMP:G, MOV:G*3, SHA, SHL, SUB JMPI*, JSRI*!

The dest of above instructions. The src of above instructions.
INDEXLS.B/.W*? | ADD:G**, CMP:G, MOV:G*3, SUB
The src of above instructions.

BITINDEX.B/.W | BAND, BNAND, BNOR, BNTST, BNXOR, BOR, BCLR, BMcnd, BNOT, BSET,
BTST:G, BXOR BTSTC, BTSTS
The src of above instructions. The dest of above instructions.

*1 Since the size is specified for .A(3 bytes) by .L(4 bytes), care must be taken when using the
data table.

*2 The ADD, CMP, and MOV instructions are valid in only the G format.

*3 The dsp:8[SP] cannot be used in src or dest of MOV instruction.

*4 The SP cannot be used in src or dest of ADD instruction.

Rev.1.00 2006.05.31 page 168 of 335 RENESAS
REJ09B0319-0100

Chapter 3 Functions

(12) Addressing modes

3.3 Index instructions

The table below lists the addressing modes that become valid in the next instructions that can be ex-

ecuted after INDEX.

Indirect instruction addressing modes can be used in each instruction.

src dest
[A0] (Al] [A0] [Al]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |[dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] [dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16

*1 For the MOV instruction you cannot use dsp8:[SP].
*2 The SP in the ADD instruction cannot be used.
*3 You cannot use ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

Rev.1.00 2006.05.31 page 169 of 335
REJ09B0319-0100

RENESAS

Chapter 3 Functions 3.3 Index instructions

Rev.1.00 2006.05.31 page 170 of 335 RENESAS
REJO9B0319-0100

Chapter 4

Instruction Code/Number of Cycles

4.1 Guide to This Chapter
4.2 Instruction Code/Number of Cycles

Chapter 4 Instruction Code 41 Guide to This Chapter

4.1 Guide to This Chapter

This chapter describes instruction code and number of cycles for each op-code.

The following shows how to read this chapter by using an actual page as an example.

Chapter 4 Instruction Code 4.2 Instruction Code/Number of Cycles

PL

b7 b0 b7 b0
371 |1 {0)1 010 1011 1|0 1] #mm
N1 11 1 11] 1 1
Number of Bytes/Number of Cycles]
(4) Byte{s/Cycjes 2/2

(1)
2 O ze #IMM, dest M@

b7 0 b7 b0 b7 b0 dest code
dsp8 #IMM8
(3)— |0000[000L L 0 O 0 |d4d3d2szEdldo 1 1]1 1 1 1 [dse6 |
L1 | L1 L1
[dsp24/abs24 |

size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do

B | O ROL/RO/- |1 0 0 1 0 dsp:g[sB] |0 0110

w1 RILUR1-— |1 0 0 1 1 |9SPBISBFBl TgepgFrg) [0 0 1 1 1

Rn ROH/R2- |1 0 0 0 0O dsp:16[A0] |0 1 0 0 0

RIMR3- |1 0 0 0 1 |9P6IAN Tgepaea1) [0 1 0 0 1

A0 00010 dsp:16[SB] |0 1 0 1 O

An Al 00011 |9SPABISBIFB] [yqnaeFB) [0 1 0 1 1

[AQ] 00000 dsp:24[A0] [0 1 1 0 O

[An] [A1] 00001 |9P24AN Tygpogan) [0 1 1 0 1

dsp:8[A0] (0 0 1 0 O [absl6 abs16 01111

dsp8IAN] faspig[al] [0 0 1 0 1 |abs24 abs24 01110

(4) —ENu@f Bytes/Number of Cycles]

dest Rn | An | [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An]|dsp:16[SB/FB] dsp:24[An] |abs16 |abs24

Bytes/Cycles | 4/3| 4/3| 4/5| 5/5 5/5 6/5 6/5 715 6/5 | 715

Rev.1.00 2006.05.31 page 172 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code 41 Guide to This Chapter

(1) Mnemonic

Shows the mnemonic explained in this page.

(2) Syntax

Shows an instruction syntax using symbols.

(3) Instruction code

Shows instruction code. Entered in () are omitted depending on src/dest you selected.

Content at start ~ Content at (start Content at (start Contents at addresses following (start
address of address of instruc- address of instruc- address of instruction + 2)
instruction tion+1) tion+2) (See the following figure.)

OO0 OO oooOoOoOoood N o
b7 b0 b7 b7 b0 dest code
0000{0001{1 0,0 0 H4d3dasiZdd1d01 11,1 1,1

dsp24/abs24 |

Correspondence

Correspondence Correspondenc

PN

size (SIZE dest d4 d8 d2 d1 Ho dest da d3 d2 d1)do
B ROL/RO/-- |1 0 01 0 dsp:8[SB] |0 041 0
w1 RILURL~— |1 0 0 1 1 |9SP8ISBIFBl IGepeFe) [0 0 1 1 1
Rn ROH/R2- |1 0 0 0 0 dsp:16[A0] |0 1 0 0 0

RIH/R3- |1 0 0 0 1 |9PA6IAN] Tgepagias) [0 1 0 0 1

A0 00010 dsp:16[SB] |0 1 0 1 0

An AL 0001 1 |94SPABISBIFB] fyepa6iFe] |0 1 0 1 1

[A0] 00000 dsp:24[A0] [0 1 1 0 O

[An] [A1] 00001 |9P24AN Fagpoaial [0 1 1 0 1

dsp:8[A0] 0010 0 |absle abs16 01111

dsp:8[An] dsp:8[Al] |0 0 1 0 1 |abs24 abs24 01110

Contents at addresses following (start address of instruction + 2) are arranged as follows:

+0 +1 +2
N o i
b7 b0
dsp8 .
#IMMS8 8 bits
b7 b0 b7 b0
dspl6
abs16 Low-order 8 bits High-order 8 bits
#IMM16
b7 b0 b7 b0 b7 b0o
abs24
dsp24 Low-order 8 bits Middle-order 8bits High-order 8 bits
#IMM24

(4) Table of cycles

Shows the number of cycles required to execute this instruction and the number of bytes in the instruc-
tion.

The number of cycles shown are the minimum possible, and they vary depending on the following conditions:
* Number of bytes that have been loaded in the instruction queue buffer

 Accessing of an external memory using 8-bit external bus

« Whether a wait is inserted in the bus cycle

Instruction bytes are indicated on the left side of the slash and execution cycles are indicated on the right side.

Rev.1.00 2006.05.31 page 173 of 335 RRENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles

ABS

(1) ABS.size dest
b7 b0 b7 b0 dest code
1 0 1 0|d4 d3 d2SIZEfjd1do 0 1|1 1 1 1
[11 L1 L1
*1 When dest is indi_rec_tly addressed the code has 00001001 | dsp24/abs24 |
added at the beginning.
size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | O ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBL I4en8iFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 o 1|dsp16lAn] dspi6lAL |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An AL 0 0 0 1 1|ISPI6ISBIFBl Tgeh16FBl |0 1 0 1 1
[AQ] 00O0O00O dsp:24[A0] 01100
[An] [AL] 0 0 0 0 1|dsP24[An] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0][absi6 abs16 01111
dsp:8[An] dsp:8[A1] 001 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An]| dsp:8[SB/FB]| dsp:16[An] | dsp:16[SB/FB] | dsp:24[An] |abs16 | abs24
Bytes/Cycles | 2/1| 2/1| 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3, respectively.

ADC

(1) ADC.size #IMM, dest
Z b0 b7 b0 b7 b0 dest code
0000[0001| 1 0 0 o|ds d3 d2|sizdd1 do 1 o1 1 1 o |[Ldsee]
L1 L1 L1 L1
[dsp24/abs24 |
size| SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | O ROL/RO/-— 10010 dsp:8[SB] 00110
w1 RILRL-— |1 0 0 1 1 |9SPBISB/FBL fyepgiFa] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspelAn] dsp:16[AL] 01001
AO 00010 dsp:16[SB] 01010
An Al 000 1 1|9SPIBISBIFBL [yp 16[FB] 01011
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 o 1|dsp:24[An] dsp:24[A1] 01101
dsp:8[A0] 0 0 1 0 O|absi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] | dsp:8[An]| dsp:8[SB/FB]| dsp:16[An] | dsp:16[SB/FB] | dsp:24[An] |abs16 | abs24
Bytes/Cycles | 4/1 | 4i1| 43| 513 5/3 6/3 6/3 713 63 | 713

*1 When (.\W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

Rev.1.00 2006.05.31 page 174 of 335

REJ09B0319-0100

RENESAS

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(2) ADC.size src, dest
b7 b0 b7 b0 b7 b0 src code dest code
0000|0001]| 1 s4 s3 s2|d4 d3 d2|siz§di do s1 sO[0 1 0 O
1 | 1 1 | | 1 | 1 | 1
| dsp24/abs24 NRY dsp24/abs24 |
.size | SIZE src/dest s4s3s2s1s0 src/dest s4 s3s2s1s0
B 1 o d4 d3 d2 d1 do d4 d3 d2 d1 do
wl 1 ROL/RO/-— 10010 dsp:8[SB] 00110
R1L/R1/-- 10 0 1 1|9SPBISBFBL [4ep8iFR] 00111
Rn ROH/R2/- 10000 dsp:16[A0] |0 1 0 0 O
R1H/R3/- 10 0 o 1|dspa6lAn] dsp:16[A1] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 0 0 1 1|9SPI6ISBIFBl Tqen1efFB] |0 1 0 1 1
[AQ] 0 0O0O0DO dsp:24[A0] 01100
[An] [A1] 000 o 1|dSP24An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|absi6 abs16 01111
dsp:8[An] dsp:8[AL] 001 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest| rn | An [[An] | dsp:8[An] | dsp:8[SB/FB]| dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
Rn 3/113/11]3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3
An 3/113/11]3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3
[An] 3/3|3/3|3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:8[AN] a3 |43 44| 54 5/4 6/4 6/4 714 614 | 7/4
dsp:8[SB/FB] | 4/3 | 4/3 | 4/4 | 5/4 5/4 6/4 6/4 714 614 | 7/4
dsp:16[An] 513 |5/3 |54 | 6/4 6/4 714 714 8/4 714 | 8/4
dsp:16[SB/FB] | 5/3 | 5/3 | 5/4 | 6/4 6/4 714 714 8/4 714 | 8/4
dsp:24[An] 6/3 | 6/3 |64 74 714 8/4 8/4 9/4 g4 | 94
absl16 5/3 | 5/3 | 5/4 6/4 6/4 7/4 714 8/4 714 8/4
abs24 6/3 | 6/3 | 6/4 714 7/4 8/4 8/4 9/4 8/4 9/4
Rev.1.00 2006.05.31 page 175 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
ADCF
(1) ADCF.size dest
b7 b0 b7 b0 dest code
1 0 1 1|d4d3 d2pEld1do 0 1|1 1 1 0 absm
*1 When dest is ind_ire(_:tly addressed the code has 00001001 | dsp24/abs24 |
added at the beginning.
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBL I4en8iFay 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspi6iAn dsp:l6[A] |0 1L 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPIBISBIFBl I4en16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsp:24[An] dsp:24[A1] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|absi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] |dsp:24[An] [abs16 |abs24
Bytes/Cycles | 2/1 | 2/1 | 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

ADD

(1) ADD.size:G #IMM,dest
b7 b0 b7 bo dest code
1 0 0 0|d4 d3 d2flzEjd1 d0 1 0|1 1 1 O
L1 1 L1 L1 1 I
*1 When dest is indi_rec_tly addressed the code has 00001001 | dsp24/abs24 |
added at the beginning.
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SP8ISB/FBL I4engiFa] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 10 0 0 1 |dsPi6lAn] dspl6[A]] |0 1L 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 0 0 1 1|dsPIBISBIFBl heo16fFB] |0 1 0 1 1
[A0] 00O0O0TO dsp:24[A0] 01100
[An] [A1] 000 0 1|dsp24An dsp:24[A1] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|absi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An [[An] |dsp:8[An] | dsp:8[SB/FB] [dsp:16[An] |dsp:16[SB/FB] |[dsp:24[An] [abs16 |abs24
Bytes/Cycles | 3/1 | 3/1| 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

Rev.1.00 2006.05.31 page 176 of 335
REJ09B0319-0100

RENESAS

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

ADD
(2) ADD.L:G #IMM,dest
b7 b0 b7 b0 dest code
1 0 0 0fd4d3d2 0|dldo 1 10 0 0 1 | #IMM32
L1 1 111 11 1 L1 1
*1 When dest is indirectly addressed the code has 00001001 | dsp24/abs24 |
added at the beginning.
dest d4 d3 d2 d1 do dest d4 d3 d2 d1do
---/---IR2R0 10010 dsp:8[SB] 00110
—/—R3RL |1 0 0 1 1 |USPBISBIFBI [yqpngiFa] 00111
Rn SN dsp:16[A0] 01000
VA dsp:16[An] dsp:16[A] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9SPIBISBIFBl Igon1efFB] |0 1 0 1 1
[A0] 00O0O0TO dsp:24[AQ] 01100
[An] [A1] 0 0 0 0 1|dsP24lAn] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0|absi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] [dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |[abs16 |abs24
Bytes/Cycles | 6/2 | 6/2 | 6/4 714 714 8/4 8/4 9/4 8/4 9/4

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

Rev.1.00 2006.05.31 page 177 of 335 RRENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

ADD
(3) ADD.size:Q #IMM, dest
b7 b0 b7 b0 dest code
1 1 1 SIZEJd4 d3 d2§izEdd1 do 1 1 IMM4
L1 11 11 1 111
*1 When dest is |nd|_rec_tly addressed the code has 00001001 \| dsp24/abs2a |
added at the beginning.
size | SIZE1 | SIZE2 #IMM IMM4 #IMM IMM4
.B 0 0 0 0000 -8 1000
W 0 1 +1 0001 -7 1001
L 1 0 +2 0010 -6 1010
+3 0011 -5 1011
+4 0100 -4 1100
+5 0101 -3 1101
+6 0110 -2 1110
+7 0111 -1 1111
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
ROL/RO/R2RO (1 0 0 1 O dsp:8[SB] 00110
RILRUR3RL |1 0 0 1 1 |9SPBISBIFBL fyspgiFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 o 1|dspi6iAn dsp:16[AL] 01001
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|9sPI6ISB/FBL Fyep16FB] |0 1 0 1 1
[A0] 000O0OO dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1]|dsp24lAn] dsp:24[A1] |0 1 1 0 1
dsp:8[A0] 0 0 1 0O O|absl6 abs16 01111
dsp:8[An] dsp:8[AL] 00 10 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
When (.B) and (.W) is specified for the size specifier (.size)
dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] [abs16 |abs24
Bytes/Cycles | 2/1 | 2/1| 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

When (.L) is specified for the size specifier (.size)

dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] [abs16 |abs24

Bytes/Cycles | 2/2 | 2/2 | 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4

*3 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

Rev.1.00 2006.05.31 page 178 of 335 RENESAS
REJ09B0319-0100

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles

(4) ADD.size:S #IMM, dest
b7 bo dest code
[dsp8 |
0 0 dl doj 0 1 1|SIZE [dsps |
I Il
*1 When dest is indirectly addressed the code has 00001001
added at the beginning.
.size | SIZE dest d1 do
.B 0 RN ROL/RO 0 O
W 1 dsp:8[SB] 1 0
dsp:8[SB/FB] dsp:8[FB] 1 1
abs16 abs16 0 1
dest Rn | dsp:8[SB/FB] | abs16
Bytes/Cycles | 2/1 3/3 4/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier (.size) the number of bytes in the table is increased by 1.

(5) ADD.L:S #IMM, AO/A1

b7 b0
1 IO IIMMI 0|1 I1 | do

#IMM | IMM AO0/A1 do
#1 0 A0 0
#2 1 Al 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles

1/2

Rev.1.00 2006.05.31 page 179 of 335

REJ09B0319-0100

ADD

RENESAS

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(6) ADD.size:G src, dest
b7 b0 b7 bo src code dest code
1 s4 s3 s2|d4 d3 d2 PIZE|d1 dO s1 sOf1 O O O
L L 1 1
*1 For indirect instruction addressing, the following number is | dsp24/abs24 | | dsp24/abs24 |
added at the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed
.size | SIZE sre/dest s4 s3s2s1s0 src/dest s4 53525150
.B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
W 1 ROL/RO/--- 1 0010 dsp:8[SB] 00110
R1L/R1/--- 10011 dsp:8[SB/FB] dsp:8[FB] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 100 0 1|dsP16AN] dsp:l6[A] |0 1 0 0 1
A0 00010 . , dsp:16[SB] 01010
AN Al 0 0 01 1|®PIOSBFBl Taspaere] [0 1 0 1 1
A [AQ] 00000 dsp:240A dsp:24[A0] 01100
[An] [A1] 0 0 0 o 1|dsP24lAnl dsp:24A1] [0 1 1 0 1
dsp:8[A0] 0 01 0 O]labsli6 absl16 01111
dsp:8[An] dsp:8[Al] 0 01 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src destf rp | An [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 | abs24
Rn 2/1]2/1]2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
An 2/1]2/1]2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
[An] 2/312/3]2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4
dsp:8[An] 3/313/3]3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:8[SB/FB] | 3/3 | 3/3 | 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:16[An] 4/3 | 4/3 | 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4
dsp:16[SB/FB] | 4/3 | 4/3 | 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4
dsp:24[An] 5/3 | 5/3 | 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4
abs16 4/3 | 4/3 | 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4
abs24 5/3 | 5/3 | 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

Rev.1.00 2006.05.31 page 180 of 335 RENESAS
REJ09B0319-0100

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(7) ADD.L:G src, dest
b7 b0 b7 bo src code dest code
1 s4 s3 s2|d4 d3 d2| 1|d1 do s1 sO|0 O 1 O
———— — g em——
*1 For indirect instru_ctiqn addressing, the following number is | dsp24/abs24 | | dsp24/abs24 |
added at the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed
src/dest s4 s3 52 s1s0 src/dest s4 8352 s1s0
d4 d3 d2 d1 do d4 d3 d2 d1 d0
~/--/[R2RO |1 0 0 1 0 J } dsp:8[SB] 00110
/—R3RL |1 0 o0 1 1 |ISPBISBFBL faspgire) 00111
Rn A dsp:16[A0] 01000
e L dsp:16[An] dsp:16[A1l] 01001
A0 00010 deo ; dsp:16[SB] 01010
An Al 00011 sp:16[SB/FB] dsp:16[FB] 01011
[AQ] 00000 . dsp:24[A0] 01100
[An] [A1] 0 0 0 o 1|dsP24lAnl dsp24[Al]l |0 1101
dsp:8[A0] 0 01 0 O]labsli6 abs16 01111
dsp:8[An] dsp:8[Al] 0 01 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest| rp [An [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
Rn 212 |22 | 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4
An 212 |22 | 214 3/4 3/4 4/4 4/4 5/4 4/4 5/4
[An] 2/4 | 2/4 | 2/6 3/6 3/6 4/6 4/6 5/6 4/6 5/6
dsp:8[An] 3/4 | 3/4 | 3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6
dsp:8[SB/FB] |3/4 | 3/4 | 3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6
dsp:16[An] 4/4 1 4/4 | 416 5/6 5/6 6/6 6/6 716 6/6 716
dsp:16[SB/FB] | 4/4 | 4/4 | 416 5/6 5/6 6/6 6/6 716 6/6 716
dsp:24[An] 5/4 | 5/4 | 5/6 6/6 6/6 716 716 8/6 716 8/6
abs16 4/4 1 4/4 | 416 5/6 5/6 6/6 6/6 716 6/6 716
abs24 5/4 | 5/4 | 5/6 6/6 6/6 716 716 8/6 716 8/6

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

Rev.1.00 2006.05.31 page 181 of 335

REJ09B0319-0100

RENESAS

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

ADD
(8) ADD.L:G #IMM16, SP
b7 b0 b7 b0

1|0|1|l OIlIlIO 0|0|0|10011 #IMM16

[Number of Bytes/Number of Cycles]

Bytes/Cycles 4/2
ADD
(9) ADD.L:Q #IMM3, SP
h7 ho

0|1||2||1 0|0|1||0

#IMM3 i2 i1 i0 #IMM3 i2 i1 i0

+1 0 0 O +5 1 0 O

+2 0 0 1 +6 1 0 1

+3 010 +7 1 1 0

+4 01 1 +8 1 1 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles 1/1

Rev.1.00 2006.05.31 page 182 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(10) ADD.L:S #IMM8, SP
b7 b0 b7 b0
1 01 110 121 1 00 O O O|O0O O 1 1 M
1 1 1 1 1 1 1 1 1 1 1 1
[Number of Bytes/Number of Cycles]
Bytes/Cycles 3/2
(1) ADDX #IMM, dest
dest code
b7 b0 b7 b0
1 0 0 0|d4 d3 d2|0|dildo O 1|0 0 O 1
[N R RN R | I L1 1
*1 When dest is indirectly addressed the code has 00001001
L | dsp24/abs24 |
added at the beginning.
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
---/---/R2R0 10010 dsp:8[SB] 00110
—/—R3RL |1 0 0 1 1 |94SPBISBIFBl " Iysp8iFa 00111
Rn 2 dsp:16[A0] 01000
VA dsp:16[An] dsp:l6[A]] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISBIFBl Tyoh16fFB] |0 1 0 1 1
[A0] 00O0O00O dsp:24[A0] 01100
[An] [A1] 000 o 1]|dsp24An dsp:24[A1] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0|absi6 abs16 01111
dsp:8[An] dsp:8[AL] 0010 1]|abs2s abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] [abs16 [abs24
Bytes/Cycles | 3/2 | 3/2] 3/5 4/4 4/4 5/4 5/4 6/4 5/4 6/4

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

Rev.1.00 2006.05.31 page 183 of 335 RRENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

ADDX
(2) ADDX src, dest
b7 b0 b7 bo src code dest code
1 s4 s3 s2|d4 d3 d2] 0|dl do s1 sO|0 0 1 O
1 1 1 1 1 1 1 1 1 1 1
*1 For indirect instru_ctio_n addressing, the following number is | dsp24/abs24 | | dsp24/abs24 |
added at the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed
src s4 s3 s2 sl s0 src s4 s3 s2 s1s0
ROL/---/--- 10010 dsp:8[SB] 00110
R1L/—f— 10 0 1 1|9SPBISBIFBl [4eo8FB] 00111
Rn ROH/-—- 10000 dsp:16[A0] 01000
R1H/~—-/- 100 0 1|dsPi6AN] dsp:l6[Al] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 00 0 1 1|dSPIBISBIFBL Igen16fFB] |0 1 0 1 1
[AQ] 00O0O0TO dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dSP24An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 o]labsi6 abs16 01111
dsp:8[An] dsp:8[A1] 00 1 0 1|abs24 abs24 01110
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
---/--IR2R0 10010 dsp:8[SB] 00110
/—R3RL |1 0 0 1 1 |9SPBISBIFBl " Iyepg8iFa 00111
Rn VA I dsp:16[A0] 01000
B dsp:16[An] dsp:l6[A] |0 1L 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9SPIBISBIFB] I4qn16[FR] 01011
[AQ] 000O0OO dsp:24[AQ] 01100
[An] [A1] 0 0 0 0 1]|dsP24lAnl dsp:24[A1] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O][absi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
Number of Bytes/Number of Cycles]
src destRrpn | An [An] [dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 | abs24
Rn 212 12/2 | 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4
An 212 12/2 | 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4
[An] 2/4 12/4 |2/6 3/6 3/6 4/6 4/6 5/6 4/6 5/6
dsp:8[An] 3/4 13/4 |3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6
dsp:8[SB/FB] |3/4 |3/4 |3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6
dsp:16[An] 4/4 | 4/4 | 4/6 5/6 5/6 6/6 6/6 716 6/6 716
dsp:16[SB/FB] | 4/4 | 4/4 | 4/6 5/6 5/6 6/6 6/6 716 6/6 7/6
dsp:24[An] 5/4 15/4 | 5/6 6/6 6/6 716 716 8/6 716 8/6
abs16 4/4 | 4/4 | 4/6 5/6 5/6 6/6 6/6 716 6/6 716
abs24 5/4 |5/4 | 5/6 6/6 6/6 716 716 8/6 716 8/6

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

Rev.1.00 2006.05.31 page 184 of 335 RENESAS
REJ09B0319-0100

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
ADJNZ
(1) ADINZ.size #IMM, dest, label
b7 bo b7 bo dest code label code
1 1 1 1]|d4 d3 d2pizE{d1do 0 1 IMM4
L1 1 L1 11 1 L1 1
[dsp24/abs24 |
dsp8 (label code) = address indicated by label - (start address of instruction + 2)
size| SIZE #IMM IMM4 #IMM IMM4
.B 0 0 0000 -8 1000
W 1 +1 0001 -7 1001
+2 0010 -6 1010
+3 0011 -5 1011
+4 0100 -4 1100
+5 0101 -3 1101
+6 0110 -2 1110
+7 0111 -1 1111
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
ROL/RO/--- 10010 dsp:8[SB] 00110
RILRL— |1 0 0 1 1 |9SPBISBIFBL [yep8iFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 o 1|dspl6iAn dsp:l6[A] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 0 0 1 1|9SPIBISBIFB] I4qn.16[FR] 01011
[A0] 000O0OO dsp:24[AQ] 01100
[An] [A1] 0 0 0 0 1]|dsP24An dsp:24[A1] |0 1 1 0 1
dsp:8[AQ] 0 0 1 0 O]|absi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] [abs16 [abs24
Bytes/Cycles | 3/2 | 3/2 | 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

*1 When branched to label, the number of cycles in the table is increased by 2.

Rev.1.00 2006.05.31 page 185 of 335

REJ09B0319-0100

RENESAS

Chapter 4 Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
AND
(1) AND.size:G #IMM, dest
b7 b0 b7 b0 dest code
1 0 0 0|d4 d3 d2BIZF|d1d0 1 1|1 1 1 1
L1111 T L1 1
*1 When dest is |nd|_rec_tly addressed the code has 00001001 | dsp24/abs2a |
added at the beginning.
.size| SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBL I4en8iFay 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 10 0 0 1|dspi6iAn dsp:l6[A] |0 1L 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPIBISBIFBl I4en16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsp:24[An] dsp:24[A1] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|absi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] |dsp:24[An] [abs16 |abs24
Bytes/Cycles | 3/1 | 3/1| 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.\W) is specified for the size specifier (.size) the number of bytes in the table is increased by 1.

(2) AND.size:S #IMM, dest
b7 bo dest code
0 1 didol1 1 OfSE
*1 When dest is indirectly addressed the code has 00001001

added at the beginning.

.Size | SIZE dest dldo
B 0 RN ROL/RO 0 0
W 1 dsp:8[SB] 1 0

dsp:8[SB/FB] dsp:8[FB] 1 1
abs16 abs16 0 1

[Number of Bytes/Number of Cycles]
dsp:8[SB/FB]

dest Rn abs16

2/1 3/3 4/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier (.size) the number of bytes in the table is increased by 1.

Bytes/Cycles

Rev.1.00 2006.05.31 page 186 of 335
REJ09B0319-0100

RENESAS

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(3) AND.size:G src, dest
b7 bo b7 bo src code dest code
1 s4 s3 s2|d4 d3 d2PIZE|d1 dO s1 sO|1 1 O 1
B — - I — B — dspl16/abs16 dspl16/abs16
*1 For indirect instruction addressing, the following number is | dsp24/abs24 | | dsp24/abs24 |

added at the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed

.Size | SIZE sre/dest s4 5352 s1s0 src/dest s4 5352 s1 s0
B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
A 1 ROL/RO/--- 10010 dsp:8[SB] 00110
R1L/R1/--- 100 1 1 dsp:8[SB/FB] dsp:8[FB] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 100 0 1 dsp:16[An] dsp:16[A1] 0100 1
A0 00010 do , dsp:16[SB] 01010
An Al 00 0 1 1|ISPBISBIFBl Hgeptere] [0 1 0 1 1
A [AQ] 000O0O dsp241A dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dSP24lAn] dsp:24[A1] 01101
dsp:8[A0] 0 01 0 0]|absi6 abs16 01111
dsp:8[An] dsp:8[Al] 0 0 1 0 1 |abs24 abs24 01110

[Number of Bytes/Number of Cycles]
src dest| rn | An [An] [dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 | abs24
Rn 2/112/1|2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
An 2/112/1|2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
[An] 2/312/3 | 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4
dsp:8[An] 3/313/3|3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:8[SB/FB] | 3/3 |3/3 | 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:16[An] 4/3 | 4/3 | 4/4 5/4 5/4 6/4 6/4 714 6/4 7/4
dsp:16[SB/FB] | 4/3 | 4/3 | 4/4 5/4 5/4 6/4 6/4 714 6/4 7/4
dsp:24[An] 5/3 | 5/3 | 5/4 6/4 6/4 714 714 8/4 7/4 8/4
abs16 4/3 | 4/3 | 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4
abs24 5/3 | 5/3 | 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

Rev.1.00 2006.05.31 page 187 of 335 RRENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

BAND

(1) BAND src

b7 b0 b7 b0 b7 b0 src code
0000 /0001|1 1 0 1|s4 s3s2 0|s1s0O 0 01 BIT [dsps |
1 | 1 1 1 | | 1 | | 1
[dsp24/abs24 |
src s4 s3 s2 s1s0 src s4 53 s2s1s0
bit,ROL 1 0010 bit,base:11[SB] |0 0 1 0
bit, ROH 100 0 o|Ptbase:ll[SBFB] |y hase11[FB] |0 0 1 1 1
Rn bit,R1L 10011 bit,base:19[A0] |0 1 0 0 O
bit,R1H 100 0 1|Pitbasel9An] bit,base:19[A1] |0 1 0 0 1
bit,A0 00010 bit,base:19[SB] [0 1 0 1 0
An bit, A1 0 0 0 1 1|Ptbase:19[SBIFB] fy hoser1olFB] |0 1 0 1 1
bit,[A0] 00O0O0O bit,base:27[A0] [0 1 1 0 O
[An] bit,[A1] 000 0 1|Ptbase27(An] bit,base:27[A1] |0 1 1 0 1
bit,base:11[A0] |0 0 1 0 O |bit,base:19 bit,base:19 01111
bitbase:11[AN] [hase11[A1] |0 0 1 0 1 |bitbase:27 bit,base:27 01110
[Number of Bytes/Number of Cycles]
. . . bit,base:11 | bit,base:11 | bitbase:19 | bit,base:19 |bitbase:27 | . . .
src bit,Rn | bit,An | bit,[An] [An] [SBIFE] [An] [SBIFE] [An] bit,base:19 | bit,base:27
Bytes/Cycles | 3/2 3/2 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
BCLR
(1) BCLR dest
b7 bO_b7 bo dest code
1 1 0 1 [d4d3d2,01Jdldo 1|1 0 BIT
L1 1 1 1 L1] L1
[dsp24/abs24 |
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
bit,ROL 1 0010 bit,base:11[SB] [0 0 1 1 O
bit, ROH 100 0 o|Ptbase:ll[SBFB] |y hase11[FB] |0 0 1 1 1
Rn bit,R1L 10011 bit,base:19[A0] |0 1 0 0 O
bit,R1H 1 0 0 0 1 |Pitbase27[An] bitbase:19[Al] |0 1 0 0 1
bit,A0 00010 bit,base:19[SB] [0 1 0 1 O
An bit, A1 0 0 0 1 1|Ptbase:19[SBIFB] fy hoser1olFB] [0 1 0 1 1
bit,[A0] 00O0O0O bit,base:27[A0] [0 1 1 0 O
[An] bit,[A1] 000 0 1|Ptbase27(An] bit,base:27[A1] |0 1 1 0 1
bit,base:11[A0] |0 0 1 0 O |bit,base:19 bit,base:19 01111
bit,base:11[AN] [hase:11[A1] |0 0 1 0 1 |bitbase:27 bit,base:27 01110

[Number of Bytes/Number of Cycles]

q vitrn | bitAn | bitia bit,base:11 | bitbase:11| bitbase:19 | bitbase:19 | bitbase:27 bit base19 | bit base27
est itRn | bit, An | bit,[An] [An] [SBIFE] [An] [SBIFE] [An] it,base: it,base:

Bytes/Cycles | 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
Rev.1.00 2006.05.31 page 188 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

BITINDEX

(1) BITINDEX.size src

b7 b0 b7) src code
1 1 0 0 d4d3 d2pizEdL1 do 1 0 |1 1 1 O
| | 1 | 1 1 | | | | 1
| dsp24/abs24 |
.size | SIZE src s4 s3s2s1s0 src s4 53 s2 s1s0
B 0 ROL/RO/--- 10010 dsp:8[SB] 00110
W 1 RILRL— |1 0 0 1 1 |9sP8ISBIFBl I4engFR] 00111
Rn ROH/R2/- 10000 dsp:l6[A0] |0 1 0 0 O
R1H/R3/- 100 0 1|dspi6lAn] dsp:l6[Al] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An AL 0 00 1 1|9sPA6ISB/FBl Tyen16fFB] |0 1 0 1 1
[A0] 00O0O0OO dsp:24[AQ] 01100
[An] [AL] 0 00 0 1|dsp24An] dsp24[Al] |0 1 1 0 1
dsp:8[AQ] 0 0 1 0 O]|absl6 abs16 01111
dsp:8[An] dsp:8[AL] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] | dsp:24[An] |absl16 |abs24
Bytes/Cycles | 2/4 | 2/4 | 2/6 3/3 3/6 4/6 4/6 5/6 4/6 5/6
*1 The cycles of next instruction to be executed is increased by 1.
Rev.1.00 2006.05.31 page 189 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

BMcnd

(1) BMcnd dest

b7 b0 b7 b0 dest code
1 10 1|&4d3d2 0ofdldo of1 of BT 0[ojojo] enD]
L1 1 L1 1 [] L1
[dsp24/abs24 |
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do

bit,ROL 1 0010 bit,base:11[SB] [0 0 1 1 O
bit,ROH 100 0 o|Ptbase:ll[SBFB] |y hose11[FB] |0 0 1 1 1

Rn bit,R1L 10011 bit,base:19[A0] |0 1 0 0 O
bit, R1H 1 0 0 0 1|Pitbasel9An] bit,base:19[A1] |0 1 0 0 1
bit,A0 00010 bit,base:19[SB] [0 1 0 1 O

An bit, A1 0 0 0 1 1|Ptbase:19[SB/FB] |y hoce1oFB] [0 1 0 1 1
bit,[AQ] 000O0OO bit,base:27[A0] |0 1 1 0 0O

[An] bit, [A1] 000 0 1|pPtbase:27[An] bit,base:27[A1] |0 1 1 0 1
bit,base:11[A0] |0 0 1 O O |bit,base:19 bit,base:19 01111

bit,base:11[An] bit,base:11[A1] |0 0 1 0 1 |bitbase:27 bit,base:27 01110

Cnd CND cnd CND

LTU/NC 0 0 0 0 |[GEUIC 1000

LEU 00 0 1 |GTU 1001

NE/NZ 00 1 0 |EQ/Z 1010

PZ 001 1]|N 1011

NO 010010 1100

GT 01 0 1 |LE 1101

GE 01 10 |LT 1110

[Number of Bytes/Number of Cycles]

dest bitRn | bitan | bitfan] bit,base:11 | bit,base:11 | bitbase:19 | bitbase:19 |bit,base:27 bitbase:19 | bit base27
' ! ' [An] [SBIFB] [An] [SBIFB] [An] ' '

Bytes/Cycles | 3/3 3/3 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

Rev.1.00 2006.05.31 page 190 of 335 RENESAS

REJ09B0319-0100

Chapter 4

Instruction Code/Number of Cycles

4.2

Instruction Code/Number of Cycles

BMcnd

(2) BMcnd C

b7 b0 b7 bo

1|1|0|1 1|0|o|10c1I CIZNDI

Cnd C CND Cnd C CND

LTU/NC 0 000 [GEUIC 1 000

LEU 0 001 [GTU 1 001

NE/NZ 0| 010 |EQ/Z 11010

Pz 0 011 |N 1 011

NO 0 100 |O 1 100

GT 0 101 |LE 1 101

GE 0 110 |LT 1 110
[Number of Bytes/Number of Cycles]

Bytes/Cycles 22

Rev.1.00 2006.05.31 page 191 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

BNAND

(1) BNAND src

7 b0 b7 b0 b7 b0 src code
0000j0001]1 1 O 1|s4s3s2 0|s1sO0 0 1]1 BIT |ds_p8|
1 1 1 1 1 | 1 1 1 1 1
[dsp24/abs24 |
src s4 s3s2s1s0 src s4 s3s2s1s0

bit,ROL 1 0010 bit,base:11[SB] [0 0 1 1 0

bit, ROH 100 0 o|Ptbasell[SBFB] Iy hase11(FB] |0 0 1 1 1
Rn bit,R1L 10011 bitbase:19[A0] |0 1 0 0 O

bit,R1H 100 0 1|Pitbasel9An] bit,base:19[A1] |0 1 0 0 1

bit,A0 00010 bit,base:19[SB] [0 1 0 1 0
An bit, A1 0 0 0 1 1|Pitbase:19[SBIFB] f\y hose1olFB] |0 1 0 1 1

bit,[A0] 00O0O0O bit,base:27[A0] [0 1 1 0 0
[An] bit,[A1] 0 00 0 1|Ptbase27(An] bitbase:27[A1] |0 1 1 0 1

bit,base:11[A0] |0 0 1 0 O |bit,base:19 bit,base:19 01111
bitbase:11[AN] [hase11[A1] |0 0 1 0 1 |bitbase:27 bit,base:27 01110
[Number of Bytes/Number of Cycles]

. . . bit,base:11 | bitbase:11 | bit,base:19 | bit,base:19 |bitbase:27 | . . .
src bit,Rn | bit,An | bit,[An] [An] [SBIFE] [An] [SBIFE] [An] bit,base:19 | bit,base:27
Bytes/Cycles | 3/2 3/2 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
BNOR
(1) BNOR src
b7 b0 b7 bo b7 bo src code
000000011 1 O 1|s4 s3s2 O|slsO 1 1|0 BIT [dsps |

1 1 1 1 1 | 1 1 1 1 1
[dsp24/abs24 |)
src s4 s3 s2 s1s0 src s4 53 s2s1s0

bit,ROL 1 0010 bit,base:11[SB] [0 0 1 1 O

bit,ROH 100 0 o|Ptbase:ll[SBFB] |y hose11[FB] |0 0 1 1 1
Rn bit,R1L 10011 bit,base:19[A0] |0 1 0 0 O

bit, R1H 10 0 0 1 |Pitbasel9An] bit,base:19[A1] |0 1 0 0 1

bit,A0 00010 bit,base:19[SB] [0 1 0 1 O
An bit, AL 0 0 0 1 1|Ptbase:19[SB/FB] |y hace1oFB] [0 1 0 1 1

bit,[AQ] 000O0OO bit,base:27[A0] |0 1 1 0 0
[An] bit, [A1] 0 00 0 1|Ptbase:27(An] bit,base:27[A1] |0 1 1 0 1

bit,base:11[A0] |0 0 1 0 O |bit,base:19 bit,base:19 01111
bit,base:11[An] bit,base:11[A1] |0 0 1 0 1 |bitbase:27 bit,base:27 01110
[Number of Bytes/Number of Cycles]

.)) bit,base:11 | bitbase:11 | bitbase:19 | bitbase:19 |bitbase:27 | .)
src bit,Rn | bit, An | bit,[An] [An] [SBIFB] [An] [SBIFB] [An] bit,base:19 | bit,base:27
Bytes/Cycles | 3/2 3/2 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

Rev.1.00 2006.05.31 page 192 of 335 RENESAS

REJ09B0319-0100

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
BNOT
(1) BNOT dest
b7 bo b7 bo dest code
1 10 1pH4d3d2 0 fdido 0|1 1| BIT
L1 1 11| |] 11
[dsp24/abs24 |
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
bit,ROL 1 0010 bit,base:11[SB] |0 0 1 1 O
bit,ROH 100 0 o|Ptbase:ll[SBFB] |y hase11[FB] |0 0 1 1 1
Rn bit,R1L 10011 bit,base:19[A0] |0 1 0 0 O
bit, R1H 100 0 1|Ptbasel9An] bit,base:19[A1] |0 1 0 0 1
bit,AO0 00010 bit,base:19[SB] |0 1 0 1 O
An bit, AL 0 0 0 1 1|Ptbase:19[SBIFB] [y hose1o/FB] [0 1 0 1 1
bit,[AQ] 00O0O0O bit,base:27[A0] |0 1 1 0 O
[An] bit, [A1] 000 o 1|Ptbase:27[An] bitbase:27[A1] |0 1 1 0 1
bit,base:11[A0] |0 0 1 0 O |bit,base:19 bit,base:19 01111
bitbase:11[AN] I hase11[A1] |0 0 1 0 1 |bitbase:27 bit,base:27 01110
[Number of Bytes/Number of Cycles]
dest bitRn | bitAn | bitfAr] bit,base:11 | bit,base:11 | bit,base:19 | bit,base:19 | bit,base:27 bitbase:19 | bit base:27
' ! ! [An] [SBIFB] [An] [SBIFB] [An] ' '
Bytes/Cycles | 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
BNTST
(1) BNTST src
b7 b0 b7 b0 b7 b0 src code
0000/0001| 1 1 0 1|s4 s3s2 0|s1s0 0 00| BIT [dsp8 |
[dsp24/abs24 |
src s4 s3 s2 s1s0 src s4 s3 s2 sl s0
bit,ROL 1 0010 bit,base:11[SB] |0 0 1 1 O
bit,ROH 100 0 o|Ptbase:ll[SBFB] |y hase11[FB] |0 0 1 1 1
Rn bit,R1L 10011 bit,base:19[A0] |0 1 0 0 O
bit, R1H 1 0 0 0 1 |pitbasel9fAn] bit,base:19[A1] |0 1 0 0 1
bit,AO0 00010 bit,base:19[SB] |0 1 0 1 O
An bit, AL 0 0 0 1 1|Ptbase:19[SBIFB] |y hace1o[FB] |0 1 0 1 1
bit,[AQ] 000O00O bit,base:27[A0] |0 1 1 0 O
[An] bit,[A1] 000 0 1|Pitbase:27[An] bitbase:27[A1] |0 1 1 0 1
bit,base:11[A0] |0 0 1 0 O |bit,base:19 bit,base:19 01111
bit,base:11[An] bit,base:11[A1] |0 0 1 0 1 |bit,base:27 bit,base:27 01110
[Number of Bytes/Number of Cycles]
. .) bit,base:11 | bitbase:11 | bitbase:19 | bitbase:19 | bit,base:27)
src bit,Rn | bit,An | bit,[An] [AN] [SBIFE] [AN] [SBIFE] [AN] bit base:19 | bit,base:27
Bytes/Cycles | 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
Rev.1.00 2006.05.31 page 193 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
BNXOR
(1) BNXOR src
7 b0 b7 bo b7 bo src code
0000j0001]1 1 O 1|s4s3s2 0s1s0 1 1]1 BIT |ds_p8|
1 1 1 1 1 | 1 1 1 1 1
[dsp24/abs24 |)
src s4 s3 s2 s1s0 src s4 53 s2s1s0

bit,ROL 1 0010 bit,base:11[SB] [0 0 1 1 O

bit, ROH 100 0 o|Ptbase:ll[SBFB] |y hase11[FB] |0 0 1 1 1
Rn bit,R1L 10011 bit,base:19[A0] |0 1 0 0 O

bit,R1H 100 0 1|Pitbasel9An] bit,base:19[A1] |0 1 0 0 1

bit,A0 00010 bit,base:19[SB] [0 1 0 1 0
An bit, A1 0 0 0 1 1|Ptbase:19[SBIFB] fy hoser1olFB] |0 1 0 1 1

bit,[A0] 00O0O0O bit,base:27[A0] [0 1 1 0 O
[An] bit,[A1] 000 0 1|Ptbase27(An] bit,base:27[A1] |0 1 1 0 1

bit,base:11[A0] |0 0 1 0 O |bit,base:19 bit,base:19 01111
bitbase:11[AN] [hase11[A1] |0 0 1 0 1 |bitbase:27 bit,base:27 01110
[Number of Bytes/Number of Cycles]

. . . bit,base:11 | bit,base:11 | bit,base:19 | bit,base:19 | bitbase:27 | . . .
src bit,Rn | bit,An | bit,[An] [An] [SBIFE] [An] [SBIFE] [An] bit,base:19 | bit,base:27
Bytes/Cycles | 3/2 3/2 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
BOR
(1) BOR src
b7 b0 b7 b0 b7 b0 src code
0000 |0001| 1 1 0 1|s4 s3s2 0[slsO 1 0|0 BIT,)

[dsp24/abs24 |
src s4 s3 s2 s1s0 src s4 53 s2s1s0

bit,ROL 1 0010 bit,base:11[SB] [0 0 1 1 O

bit,ROH 100 0 o|Ptbase:ll[SBFB] |y hose11[FB] |0 0 1 1 1
Rn bit,R1L 10011 bit,base:19[A0] |0 1 0 0 O

bit, R1H 10 0 0 1 |Pitbasel9An] bit,base:19[A1] |0 1 0 0 1

bit,A0 00010 bit,base:19[SB] [0 1 0 1 O
An bit, AL 0 0 0 1 1|Ptbase:19[SB/FB] |y hace1oFB] [0 1 0 1 1

bit,[AQ] 000O00O bit,base:27[A0] |0 1 1 0 0
[An] bit, [A1] 0 00 0 1|Ptbase:27(An] bit,base:27[A1] |0 1 1 0 1

bit,base:11[A0] |0 0 1 0 O |bit,base:19 bit,base:19 01111
bit,base:11[An] bit,base:11[A1] |0 0 1 0 1 |bitbase:27 bit,base:27 01110
[Number of Bytes/Number of Cycles]

) .) bit,base:11 | bitbase:11 | bit,base:19 | bitbase:19 |bitbase:27 | .)
src bit,Rn | bit, An | bit,JAn] [An] [SBIFB] [An] [SBIFB] [An] bit,base:19 | bit,base:27
Bytes/Cycles | 3/2 | 3/2 | 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

Rev.1.00 2006.05.31 page 194 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

BRK

(1) BRK

b7 b0

0O 0 0 0JO O O O
| | | | |]

[Number of Bytes/Number of Cycles]

Bytes/Cycles 1/17

*1 When you specify the target address of the BRK interrupt by use of the interruput table register (INTB) the number of
cycles shown in the table increases by 2. At this time, set FF16 in address FFFFE716.

BRK?2

(1) BRK2

b7 b0

0O 0 0 O]J]1 0 O0 O
| | | | | |

[Number of Bytes/Number of Cycles]
Bytes/Cycles 1/19

Rev.1.00 2006.05.31 page 195 of 335 RENESAS
REJ09B0319-0100

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
BSET
(1) BSET dest
7 bo b7 bo dest code
1 1 0 1 fd4d3d2 0 [dldo 1)1 1 BIT
L1 1 1 1 1 1] L 1
[dsp24/abs24 |
dest d4 d3 d2 d1 do dest d4 d3 d2 d1do
bit,ROL 1 0010 bit,base:11[SB] [0 0 1 1 0
bit, ROH 10 0 0 ofPitbase:ll[SBIFB] [y hose11FB] (0 0 1 1 1
Rn bit,R1L 10011 bit,base:19[A0] [0 1 0 0 O
bit,R1H 100 0 1|Ptbasel9An] bitbase:19Al] |0 1 0 0 1
bit,AO 00O010]| bitbase:19[SB] [0 1 0 1 O
An bit, AL 0 0 0 1 1|Ptbase:19[SBIFB] fy hose1o/FB] |0 1 0 1 1
bit,[A0] 00O0O0Of bit,base:27[A0] [0 1 1 0 O
[An] bit,[A1] 0 0 0 0 1|Pithase:27[An] bitbase:27[Al] |0 1 1 0 1
bit,pbase:11[A0] |0 0 1 0 O |bit,base:19 bit,base:19 01111
bit,base:11[An] bit,base:11[A1] |0 0 1 0 1 |bit,base:27 bit,base:27 01110
[Number of Bytes/Number of Cycles]
dest bitRn | bitAn | bit[An] bit,base:11 | bit,base:11 | bit,base:19 | bit,base:19 | bit,base:27 bitbase:19 | bit base:27
' ! ' [An] [SBIFB] [An] [SBIFB] [An] ' '
Bytes/Cycles | 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
BTST
(1) BTST:G src
b7 b0 b7 b0 src code
1 1 0 1 k4s3s2 01[1s00]0 O BIT
L1 1 L1 1]] L1
[dsp24/abs24 |
src s4 s3 s2 s1s0 src s4 53 s2s1s0
bit,ROL 1 0010 bit,base:11[SB] [0 0 1 1 O
bit,ROH 100 0 o|Ptbase:ll[SBFB] |y hose11[FB] |0 0 1 1 1
Rn bit,R1L 10011 bit,base:19[A0] |0 1 0 0 O
bit, R1H 10 0 0 1 |Pitbasel9An] bit,base:19[A1] |0 1 0 0 1
bit,A0 00010 bit,base:19[SB] [0 1 0 1 O
An bit, AL 0 0 0 1 1|Ptbase:19[SB/FB] |y hace1oFB] [0 1 0 1 1
bit,[AQ] 000O0OO bit,base:27[A0] |0 1 1 0 0O
[An] bit, [A1] 0 00 0 1|Ptbase:27(An] bit,base:27[A1] |0 1 1 0 1
bit,base:11[A0] |0 0 1 0 O |bit,base:19 bit,base:19 01111
bit,base:11[An] bit,base:11[A1] |0 0 1 0 1 |bitbase:27 bit,base:27 01110
[Number of Bytes/Number of Cycles]
. .) bitbase:11 | bitbase:11 | bit,base:19 | bitbase:19 |bitbase:27 | . .
Src bit,Rn | bit,An | bit,[An] [An] [SBIFB] [An] [SBIFB] [An] bit,base:19 | bit,base:27
Bytes/Cycles | 2/1 | 2/1 | 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
Rev.1.00 2006.05.31 page 196 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(2) BTST:S src

b7 b0 src code
0 0 b2bl|{1 0 1 [0
src bit,base:19

[Number of Bytes/Number of Cycles]

Bytes/Cycles 313

BTSTC

(1) BTSTC dest

b7 bo b7 bo dest code
1 1 0 1 [d4d3d2 0fdldo 1]/0 0O BIT
L1 111 L1 ! L1
[dsp24/abs24 |
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
bit,ROL 1 0010 bit,base:11[SB] |0 0 1 1 O
bit, ROH 100 0 o|Ptbase1l[SBIFB] 1y hace11FB] |0 0 1 1 1
Rn bit, R1L 10011 bit,base:19[A0] |0 1 0 0 O
bit,R1H 10 0 0 1|PtbaseldAn] bit,base:19[A1] |0 1 0 0 1
bit,AO 00010 bit,base:19[SB] |0 1 0 1 O
An bit, AL 0 0 0 1 1|Pitbase:19[SBIFB] Iy hace1o[FB] |0 1 0 1 1
bit,[A0] 00O0O0O bit,base:27[A0] |0 1 1 0 O
[An] bit,[AL] 0 0 0 0 1 |Ptbase27An] bitbase:27[A1] |0 1 1 0 1
bit,base:11[A0] |0 0 1 0 O |bitbase:19 bit,base:19 01111
bit,base:11[An] bit,base:11[A1] |0 0 1 0 1 |bit,base:27 bit,base:27 01110
[Number of Bytes/Number of Cycles]
dest bitRn | bitAn | bitjAn] b“’ﬁ?‘” b'[tébBa/SFeB']l ! b't’tE:f]T'lg b'[tébBa/SF‘E]l ? b't’?:i?ﬂ bitbase:19 | bitbase:27
Bytes/Cycles | 2/2 212 | 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4
Rev.1.00 2006.05.31 page 197 of 335 RENESAS

REJ09B0319-0100

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
BTSTS
(1) BTSTS dest
7 bo b7 bo dest code
1 1 0 1 [d4d3d2 0 [dldo 1]0 1 BIT
L1 1 1 1 1 1] L 1
[dsp24/abs24 |
dest d4 d3 d2 d1 do dest d4 d3 d2 d1do
bit,ROL 1 0010 bit,base:11[SB] [0 0 1 1 0
bit, ROH 10 0 0 ofPitbase:ll[SBIFB] [y hose11FB] (0 0 1 1 1
Rn bit,R1L 10011 bit,base:19[A0] [0 1 0 0 O
bit,R1H 100 0 1|Ptbasel9An] bitbase:19Al] |0 1 0 0 1
bit,AO 00010 bitbase:19[SB] [0 1 0 1 O
An bit, AL 0 0 0 1 1|Ptbase:19[SBIFB] fy hose1o/FB] |0 1 0 1 1
bit,[A0] 0 00O0O O bit,base:27[A0] [0 1 1 0 O
[An] bit,[A1] 0 0 0 0 1|Pithase:27[An] bitbase:27[Al] |0 1 1 0 1
bit,pbase:11[A0] |0 0 1 0 O |bit,base:19 bit,base:19 01111
bit,base:11[An] bit,base:11[A1] |0 0 1 0 1 |bit,base:27 bit,base:27 01110
[Number of Bytes/Number of Cycles]
dest bitRn | bitan | bitjar] bit,base:11 | bitbase:11 | bit,base:19 | bitbase:19 | bit,base:27 bit base:19 | bit base:27
' " ' [An] [SBIFB] [An] [SBIFB] [An] ' '
Bytes/Cycles | 2/2 2/2 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4
BXOR
(1) BXOR src
b7 b0 b7 b0 b7 b0 src code
0000 |0001 1|1|0|1 s4|s3|52|0 sllsolllo 1 IBITI)
[dsp24/abs24 |
src s4 s3 s2 s1s0 src s4 53 s2s1s0
bit,ROL 1 0010 bit,base:11[SB] [0 0 1 1 O
bit,ROH 100 0 o|Ptbase:ll[SBFB] |y hose11[FB] |0 0 1 1 1
Rn bit,R1L 10011 bit,base:19[A0] |0 1 0 0 O
bit, R1H 10 0 0 1 |Pitbasel9An] bit,base:19[A1] |0 1 0 0 1
bit,A0 00010 bit,base:19[SB] [0 1 0 1 O
An bit, AL 0 0 0 1 1|Ptbase:19[SB/FB] |y hace1oFB] [0 1 0 1 1
bit,[AQ] 000O0OO bit,base:27[A0] |0 1 1 0 0O
[An] bit, [A1] 0 00 0 1|Ptbase:27(An] bit,base:27[A1] |0 1 1 0 1
bit,base:11[A0] |0 0 1 0 O |bit,base:19 bit,base:19 01111
bit,base:11[An] bit,base:11[A1] |0 0 1 0 1 |bitbase:27 bit,base:27 01110
[Number of Bytes/Number of Cycles]
. .) bitbase:11 | bitbase:11 | bitbase:19 | bitbase:19 [bitbase:27 | . .
Src bit,Rn | bitAn | bit,[An] [An] [SBIFB] [An] [SBIFB] [An] bit,base:19 | bit,base:27
Bytes/Cycles | 3/2 3/2 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
Rev.1.00 2006.05.31 page 198 of 335 RENESAS

REJ09B0319-0100

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
CLIP
(1) CLIP.size #IMM1, #IMM2, dest
b7 b0 b7 b0 b7 b0
0000/0001(1 0 0 0|d4 d3 d2[siZ§dl d0o 1 1|1 1 1 0
dest code
[#vvie-l | [#IMM16-2 |
| dsp24/abs24
.Size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBL T4qpgiFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 100 o 1|dspl6lAn dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPI6ISBIFB] I4en16FB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP24[An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|[absl6 abs16 01111
dsp:8[An] dsp:8[A1] 00 1 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An |[An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] |abs16 [abs24
Bytes/Cycles | 5/6 | 5/6 | 5/8 6/8 6/8 718 718 8/8 718 8/8

*1 When (.\W) is specified for the size specifier (.size) the numberof bytes in the table is increased by 2.

Rev.1.00 2006.05.31 page 199 of 335
REJ09B0319-0100

RENESAS

Chapter 4 Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(1) CMP.size:G #IMM, dest
b7 b0 b7 b0 dest code
1 0 0 1|dsd3d2pizElardo 1 o1 1 1 o
*1 When dest is indirectly addressed, the code has Soo22/ab<2a
00001001 added at the beginning. | P |
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBl T4epgiFa 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
RIH/R3/- 10 0 0 1|dspl6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An AL 0 00 1 1|9sPI6ISBIFBL [yp:16[FB] 01011
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP24[An] dsp:24[A1] 01101
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 001 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] |abs16 |[abs24
Bytes/Cycles | 3/1 | 3/1 | 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.\W) is specified for the size specifier (.size), the number of bytes in the table is increased by 1.

CMP
(2) CMP.L:G #IMM32, dest
b7 b0 b7 bo dest code
10 1 0|d4d3d2 0[ddo 1 1[0 0 0 1 absm | #AMMS2
*1 When dest is indir_ect_ly addressed, the code has 00001001 | dsp2alabs24 |
added at the beginning.
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
---/---/R2R0O 10010 dsp:8[SB] 00110
/—R3RL |1 0 0 1 1 |9SPBISB/FBl I4sp8lFB 00111
Rn 2 dsp:16[A0] 01000
VA dsp:16[An] dsp:l6[A] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Tysn16fFB] |0 1 0 1 1
[AO] 000O0O0 dsp:24[A0] 01100
[An] [A1] 000 o 1]|dsp24An dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0]abslé abs16 01111
dsp:8[An] dsp:8[A1] 0010 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] |[abs16 |[abs24
Bytes/Cycles | 6/2 | 6/2 | 6/4 714 714 8/4 8/4 9/4 8/4 9/4

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

Rev.1.00 2006.05.31 page 200 of 335
REJ09B0319-0100

RENESAS

Chapter 4 Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
CMP
(3) CMP.size:Q #IMM, dest
b7 b0 b7 bo dest code
1 1 1 0|d4d3 d2piZE|dl dO0 O 1 [IMm4. absm
*1 When dest is indirectly addn_ess_ed, the code has |_dsp2 A/absoA
00001001 added at the beginning.
size | SIZE #IMM IMM4 #IMM IMM4
.B 0 0 0000 -8 1000
W 1 +1 0001 -7 1001
+2 0010 -6 1010
+3 0011 -5 1011
+4 0100 -4 1100
+5 0101 -3 1101
+6 0110 -2 1110
+7 0111 | 1 1111
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
ROL/RO/--- 10010 dsp:8[SB] 00110
R1L/R1/- 10 0 1 1|UsPBISBIFBL TyngFB] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 100 0 1|dspi6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISBIFBL [yh16[FB] 01011
[AO] 000O00O0 dsp:24[A0] 01100
[An] [A1] 000 0 1|dsp24An] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 01 0 0]abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] [abs16 |abs24
Bytes/Cycles | 2/1 | 2/1 | 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

Rev.1.00 2006.05.31 page 201 of 335

REJ09B0319-0100

RENESAS

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

CMP
(4) CMP.size:S #IMM, dest
b7 b0 dest code
0 1 dl do|o 1 1|z
*1 When dest is indirectly addressed, the code has
00001001 added at the beginning.
.Size | SIZE dest d1do
B | 0 RN ROL/RO 0 0
W 1 dsp:8[SB] 1 0
dsp:8[SB/FB] dsp:8[FB] 1 1
abs16 abs16 0 1

[Number of Bytes/Number of Cycles]
dest Rn | dsp:8[SB/FB] | absl16

Bytes/Cycles |2/1 3/3 4/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.\W) is specified for the size specifier (.size), the number of bytes in the table is increased by 1.

Rev.1.00 2006.05.31 page 202 of 335 RENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(5) CMP.size:G src, dest
b7 b0 b7 bo src code dest code
dsp8 dsp8
1 s4 s3 s2|d4 d3 d2pIZE|d1 dO s1 sO|0O 1 1 O
*1 For indirect instruction addressing, the following number is | Jsp2alabs2a | dsp2aiabs2a

added at the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed

-Size | SIZE sre/dest s4 5352 s1s0 src/dest s4 3525150
.B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
W 1 ROL/RO/--- 10010 dsp:8[SB] 00110
R1L/R1/--- 10011 dsp:8[SB/FE] dsp:8[FB] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 100 0 1 dsp:16[An] dsp:16[A1] 0100 1
A0 00010 ; ; dsp:16[SB] 01010
An Al 0 0 0 1 1|WSPLBISBIFBL T4ep16iFR] 010011
[AQ] 000O0O ds00 dsp:24[A0] 01100
(Al A 0 0 0 0 1|dsP24AN dsp:24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abslé abs16 01111
dsp:8[An] dsp:8[Al] 00 1 0 1 |abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest| rn | An [An] [dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 | abs24
Rn 2/1 12/1]2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
An 2/1 12/1]2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
[An] 213 12/3 | 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4
dsp:8[An] 3/3 13/3|3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:8[SB/FB] |3/3 | 3/3 | 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:16[An] 4/3 | 4/3 | 4/4 5/4 5/4 6/4 6/4 714 6/4 714
dsp:16[SB/FB] | 4/3 | 4/3 | 4/4 5/4 5/4 6/4 6/4 714 6/4 714
dsp:24[An] 5/3 | 5/3 | 5/4 6/4 6/4 7/4 714 8/4 714 8/4
abs16 4/3 | 4/3 | 4/4 5/4 5/4 6/4 6/4 714 6/4 714
abs24 5/3 | 5/3 | 5/4 6/4 6/4 7/4 714 8/4 714 8/4

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

Rev.1.00 2006.05.31 page 203 of 335 RENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(6) CMP.L:G src, dest
b7 b0 b7 bo src code dest code
1 s4 s3 s2|d4 d3 d2| 1|d1 do s1 sO|0 O O 1
*1 For indirect instruction addressing, the following number is | dsp2aiabs2a | Jsp2alabs2a
added at the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed
src/dest sS4 s3 s2 s1s0 src/dest sS4 s3 s2s1s0
d4 d3 d2 d1do d4 d3 d2 d1 do
—-/--/IR2R0O 10010 seo. / dsp:8[SB] 00110
——R3R1 |1 0 0 1 1 |?PBISBFBL loopairp) 00111
Rn T dsp:16[AQ] 01000
N A B dsp:16[An] dsp:l6[Al] |0 1 0 0 1
A0 00010 J , dsp:16[SB] 01010
An Al 0 0 0 1 1|WPIOISBFBL TasperBl [0 1 0 1 1
[AQ] 00000 dsno dsp:24[AQ] 01100
Al A 0000 1|%2AN gspaial] 01101
dsp:8[AQ] 0 0 1 0 O]|absi6 abs16 01111
dsp:8[An] dsp:8[Al] 0 01 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest[rn | An [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 | abs24
Rn 212 |12/2 | 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5
An 212 |1 2/2 | 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5
[An] 2/5 | 2/5 | 2/8 3/8 3/8 4/8 4/8 5/8 4/8 5/8
dsp:8[An] 3/5]3/5|3/8 4/8 4/8 5/8 5/8 6/8 5/8 6/8
dsp:8[SB/FB] |3/5 | 3/5 | 3/8 4/8 4/8 5/8 5/8 6/8 5/8 6/8
dsp:16[An] 4/5 | 4/5 | 4/8 5/8 5/8 6/8 6/8 718 6/8 718
dsp:16[SB/FB] | 4/5 | 4/5 | 4/8 5/8 5/8 6/8 6/8 718 6/8 718
dsp:24[An] 5/5 | 5/5 | 5/8 6/8 6/8 718 718 8/8 718 8/8
abs16 4/5 | 4/5 | 4/8 5/8 5/8 6/8 6/8 718 6/8 718
abs24 5/5 | 5/5 | 5/8 6/8 6/8 718 718 8/8 718 8/8

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

Rev.1.00 2006.05.31 page 204 of 335 RENESAS
REJ09B0319-0100

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles

CMP
(7) CMP.size:S src, RO/ROL
b7 bo src code
0O 1 didof0O O O (SIZE
el il il
*1 When src is indirectly addressed, the code has 00001001
added at the beginning.
.Size | SIZE src d1do
.B 0 dsp:8[SB] 1 0
w | 1 | |9sPBISBIFBl [4s8iFR] 11
abs16 abs16 0 1

[Number of Bytes/Number of Cycles]

Src

dsp:8[SB/FB]

absl16

Bytes/Cycles

2/3

3/3

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

Rev.1.00 2006.05.31 page 205 of 335

REJ09B0319-0100

RENESAS

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

CMPX

(1) CMPX #IMM, dest

b7 b0 b7 b0 dest code
1 0 1 0|d4d3d2 0|dido O 1|0 O O 1
I TN N AN T M 11 1 111
*1 When dest is indirectly addrt_ass_ed, the code has | dsp2aabsad |
00001001 added at the beginning.
dest d4 d3 d2 d1 do dest d4 d3d2d1do
—/--/R2RO |1 0 0 1 O dsp:8[SB] 00110
—/—/R3RL |1 0 0 1 1 |ISPBISBIFBl [yqpgiFa] 00111
RN Ny 10000 dsp:16[A0] 01000
s 10 0 0 1 |dspl6lAn] dsp:16[A1] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPIBISBIFBl I4en16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP24[An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0fabs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] |[abs16 |abs24
Bytes/Cycles | 3/2 | 3/12 | 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

DADC

(1) DADC.size #IMM, dest

b7 b0 b7 bO b7 bo dest code
0000{0001] 1 0 0 0|d4 d3 d2fsizEld1 do 0 0|1 1 1 0 [dsp8 |
1 1 1 1 1 1 1 1 1 1 1
| dsp24/abs24 |
.size | SIZE dest d4 d3 d2 d1do dest d4 d3 d2 d1 do
B | 0 ROL/RO/-— 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBl fysngFe] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 100 o 1|dspl6lAn] dsp:16[A1] 01001
AO 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Tysn16fFB] |0 1 0 1 1
[AO] 0000O dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1]|dsP24An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|absi6 abs16 01111
dsp:8[An] dsp:8[AL] 0010 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] |dsp:24[An] |abs16 |[abs24
Bytes/Cycles | 4/4 | 4/4 | 4/6 5/6 5/6 6/6 6/6 716 6/6 716

*1 When (.\W)is specified for the size specifier(.size), the numberof bytes in the table is increased by 1.

Rev.1.00 2006.05.31 page 206 of 335 RENESAS
REJ09B0319-0100

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(2) DADC.size src, dest
b7 bo b7 bo b7 bo src code dest code
0000|0001 1 s4 s3 s2|d4 d3 d2[SIZEjd1 dO s1 sO|1 O O O [dsp8 |
1 1 1 1 1 1 1 1 1 1 1
[dsp24/abs24 | | dsp24/abs24 |
.size | SIZE sre/dest s4 53 s2 s1s0 src/dest s4 s3s25s1s0
.B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
W 1 ROL/RO/--- 1 0010 dsp:8[SB] 00110
R1L/RL/~ 100 1 1|IsPBISBIFBl [yspgFe] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 100 0 1|dsPi6lAn dsp:16[A] |0 1 0 0 1
A0 00010 J , dsp:16[SB] 01010
An Al 0 0 0 1 1|ISPLOSBIFBL T4sp16[FR] 01011
A [A] 00000] . ua dsp:24{A0] 01100
[An] [A1] 0 0 0 o 1|dsP24lAn dsp:24[Al] |0 1 1 0 1
dsp:8[AQ] 0 01 0 O|absi6 abs16 01111
dsp:8[An] dsp:8[Al] 0 01 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest [Rn | An [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] [dsp:24[An] | abs16 | abs24
Rn 3/4 | 3/4 | 3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6
An 3/4 | 3/4 | 3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6
[An] 3/6 | 3/6 | 3/7 a/7 417 517 517 6/7 517 6/7
dsp:8[An] 4/6 | 4/6 | 417 517 5/7 6/7 6/7 717 6/7 717
dsp:8[SB/FB] | 4/6 | 4/6 | 4/7 517 5/7 6/7 6/7 717 6/7 717
dsp:16[An] 5/6 | 5/6 | 5/7 6/7 6/7 717 717 8/7 77 8/7
dsp:16[SB/FB] | 5/6 | 5/6 | 5/7 6/7 6/7 717 717 8/7 77 8/7
dsp:24[An] 6/6 | 6/6 | 6/7 717 717 8/7 8/7 9/7 8/7 9/7
abs16 5/6 | 5/6 | 5/7 6/7 6/7 717 717 8/7 717 8/7
abs24 6/6 | 6/6 | 6/7 717 717 8/7 8/7 9/7 8/7 9/7
Rev.1.00 2006.05.31 page 207 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

DADD

(1) DADD.size #IMM, dest

b7 b0 b7 bo b7 bo dest code
0000{0001| 1 0 0 ods d3 d2fszE|dr do 0 1 f1 1 1 o [L9sPE
1 1 1 1 1 1 1 1 1 1 1
| dsp24/abs24 |
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | O ROL/RO/— 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBl [4epeiFay 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspi6lAn] dspil6[A] |0 1 0 0 1
AO 00010 dsp:l6[SB] |0 1 0 1 O
An Al 000 1 1|dSPI6ISBIFB] I4ena6FB] |0 1 0 1 1
[A0] 00000 dsp:24[AQ] 01100
[An] [A1] 0 0 0 0 1|dsP24[An] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|[absl6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] |abs16 |[abs24
Bytes/Cycles | 4/4 | 414 | 4/6 5/6 5/6 6/6 6/6 716 6/6 716

*1 When (.\W) is specified for the size specifier (.size), the number of bytes in the table is increased by 1.

Rev.1.00 2006.05.31 page 208 of 335 RENESAS
REJ09B0319-0100

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(2) DADD.size src, dest
b7 bo b7 bo b7 bo src code dest code
0000/0001| 1 s4 s3 s2|d4 d3 d2|[SIZE{d1 dO s1 sO|0O O O O [dse8 |
1 1 1 1 1 1 1 1 1 1 1
[dsp24/abs24 | | dsp24/abs24
.size | SIZE sre/dest s4 53 s2 s1s0 src/dest s4 s3s25s1s0
.B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
W 1 ROL/RO/--- 1 0010 dsp:8[SB] 00110
R1L/RL/~ 100 1 1|IsPBISBIFBl [yspgFe] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 100 0 1|dsPi6lAn dsp:16[A] |0 1 0 0 1
A0 00010 J , dsp:16[SB] 01010
An Al 0 0 0 1 1|ISPLOSBIFBL T4sp16[FR] 01011
A [A] 00000] . ua dsp:24{A0] 01100
[An] [A1] 0 0 0 o 1|dsP24lAn dsp:24[Al] |0 1 1 0 1
dsp:8[AQ] 0 01 0 O|absi6 abs16 01111
dsp:8[An] dsp:8[Al] 0 01 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest| rn | An [An] [dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 | abs24
Rn 3/4 | 3/14 | 3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6
An 3/4 | 3/4 | 3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6
[An] 3/6 | 3/6 | 3/7 a/7 417 517 517 6/7 5/7 6/7
dsp:8[An] 4/6 | 4/6 | 417 517 517 6/7 6/7 717 6/7 717
dsp:8[SB/FB] | 4/6 | 416 | 417 517 517 6/7 6/7 717 6/7 717
dsp:16[An] 5/6 | 5/6 | 5/7 6/7 6/7 717 717 8/7 717 8/7
dsp:16[SB/FB]| 5/6 | 5/6 | 5/7 6/7 6/7 717 717 8/7 717 8/7
dsp:24[An] 6/6 | 6/6 | 6/7 717 717 8/7 8/7 9/7 8/7 9/7
abs16 5/6 | 5/6 | 5/7 6/7 6/7 717 717 8/7 717 8/7
abs24 6/6 | 6/6 | 6/7 717 717 8/7 8/7 9/7 8/7 9/7
Rev.1.00 2006.05.31 page 209 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

DEC

(1) DEC.size dest

b7 b0 b7 bo dest code
dsp8
1 0 1 1|d4 d3 d2pIZEjd1d0 O O |1 1 1 O
L1 1 L1 I | L1 1 dsp16/abs16

*1 When dest is indirectly addre;se_d,the code has | dsp2aabsad |
00001001 added at the beginning.
.size| SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBl T4epgiFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:16[Al] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPIBISBIFBl I4en6FB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP24[An] dsp24A1] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] |abs16 |[abs24
Bytes/Cycles | 2/1 | 2/1 | 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

DIV

(1) DIV.size #IMM
b7 b0 b7 b0
1 0 1 1/0 0 0 OO 1 O BPIZEfO O 1 1 [#MMS |
L1 1 L1 1 11 I IIIHNHIEIII
.size | SIZE
.B 0
W 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles 3/18

*1 When (.\W) is specified for the size specifier (.size), the number of bytes and cycles in the table are increased by 1 and
6, respectively.

Rev.1.00 2006.05.31 page 210 of 335 RENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

DIV
(2) DIV.size src
b7 b0 b7 bo src code
1 0 0 0[s4s3 s2fZE[sl sO 0 1|1 1 1 0 absw
*1 When src is indirectly addressed, the code has 00001001 _
added at the beginning. | dsp24jabs24
.size| SIZE src s4 s3s2s1s0 Src s4 8352 s1s0
B | O ROL/RO/--- 10010 dsp:8[SB] 00110
wl 1 RILURL— |1 0 0 1 1 |9SPBISB/FBl [4qpgiFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:16[Al] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPIBISBIFBl I4en6FB] |0 1 0 1 1
[AO] 0000O0O dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP24[An] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An] [An] | dsp:8[An]| dsp:8[SB/FB]| dsp:16[An]|dsp:16[SB/FB] |dsp:24[An] |abs16 [abs24
Bytes/Cycles |2/18]2/18| 2/20 3/20 3/20 4/20 4/20 5/20 4/20 | 5/20

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier (.size), the number of bytes in the table is increased by 6.

DIV

(3) DIV.L src
src code
b7 b0 b7 b0 b7 b0
0000{0001f 1 0 1 0fs4 s3 s2f1|s1s0O O 11 1 1 1
| dsp24/abs24 |
src s4 s3s2s1s0 src s4 s3 52 s1s0
---/--IR2R0 10010 dsp:8[SB] 00110
—J—R3R1 |1 0 0 1 1 |9sP8ISBIFBl |4s8FR] 00111
Rn SNV dsp:16[A0] 01000
IS I dsp:16[An] dsp:16[Al] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|IsPI6ISBIFBL [4en16[FB] 01011
[AQ] 000O00O0 dsp:24[A0] 01100
[An] [A1] 000 0 1|dsP24An] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0|absi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An] [An]| dsp:8[An]| dsp:8[SB/FB] dsp:16[An]|dsp:16[SB/FB] |dsp:24[An] |abs16 [abs24
Bytes/Cycles |3/40|3/40| 3/42 4142 4/42 5/42 5/42 6/42 5/42 | 6/42

*1 Indirect instruction addressing cannot be used since op-code is 3 bytes.

Rev.1.00 2006.05.31 page 211 of 335 RENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

DIVU

(1) DIVU.size #IMM

b7 b0 b7 b0

1 0 1 110 O O OJO0 O O pIZEfO O 1 1 IM,
L1 1 L1 1 L1 L1 1

.Size | SIZE

.B 0

W 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles 3/18

*1 When (W) is specified for the size specifier (.size), the number of bytes and cycles in the table are increased by 1 and
5, respectively.

DIVU

(2) DIV.size src
b7 b0 b7 bo src code
1 0 O O |s4 s3 s2PplZEls1 sO O O |1 1 1 O
I N N N N L1 L1 1
*1 When src is indirectly addressed, the code has 00001001
added at the beginning. | dsp24/abs24 |
.size| SIZE src s4 8352 s1s0 src s4 s3 52 51 s0
Bl o ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBL fyengFB] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 10 0 0 1|dspi6lAn] dsp:16[A1] |0 1 0 0 1
AO 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Tyon16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 00 0 0 1|dsp24lAnl dsp24Al] |0 1 1 0 1
dsp:8[AQ] 0 0 1 0 O|absi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB]| dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
Bytes/Cycles |2/18]2/18|2/20 3/20 3/20 4/20 4/20 5/20 4/20 | 5/20

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier (.size), the number of cycles in the table is increased by 5.

Rev.1.00 2006.05.31 page 212 of 335 RENESAS

REJ09B0319-0100

Chapter 4

Instruction Code/Number of Cycles

4.2

Instruction Code/Number of Cycles

(3) DIV.L src
src code
b7 b0 b7 b0 b7 bo
0000/0001| 1 O 1 0|s4 s3 s2|1|sl sO O 0|1 1 1 1
| dsp24/abs24 |
src s4 s3s2s1s0 src s4 8352 s1s0
---/--/R2R0 10010 dsp:8[SB] 00110
/—R3RL |1 0 0 1 1 |9SPBISBIFBl I4s 8iFa 00111
Rn dsp:16[AQ] 01000
---------------------------- dsp:16[An] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|dSPIBISBIFBl I4en16[FB] 01011
[AO] 000O0OO dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1]|dsP24An dsp:24[A] |0 1 1 0 1
dsp:8[AQ] 0 0 1 0 0|abs16 abs16 01111
dsp:8[An] :
dsp:8[Al] 0 01 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An] [An]| dsp:8[An] dsp:8[SB/FB] dsp:16[An]|dsp:16[SB/FB] |dsp:24[An] |abs16 [abs24
Bytes/Cycles | 3/40] 3/40| 3/42 4/42 4/42 5142 5/42 6/42 5/42 | 6/42
*1 Indirect instruction addressing cannot be used since op-code is 3 bytes.
(1) DIVX.size #IMM
b7 b0 b7 b0
1 0 1 1|0 0 1 0|0 1 o@PpizZEJO O 1 1 [MMS |
1 1 1 1 1 1 1 1 1 1 1
.Size | SIZE
.B 0
W 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles

3/18

*1 When (.\W) is specified for the size specifier (.size), the number of bytes and cycles in the table are increased by 1 and
6, respectively.

Rev.1.00 2006.05.31 page 213 of 335

REJ09B0319-0100

RENESAS

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

DIVX
(2) DIVX.size src
b7 b0 b7 bo src code
1 0 0 1fs4s3s2BEls1s0 0 1|1 1 1 0 absm
*1 When srcis indirgctly addressed,the code has 00001001 |_dsp2 AabsA
added at the beginning.
.size| SIZE src sS4 s3 s2 s1 s0 src s4 8352 s1s0
B | 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBl T4epgiFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:16[Al] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPIBISBIFBl I4en6FB] |0 1 0 1 1
[AQ] 000O0OO dsp:24[AQ] 01100
[An] [A1] 0 0 0 0 1|dsP24[An] dsp24A1] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An| [An]| dsp:8[An]| dsp:8[SB/FB]| dsp:16[An]|dsp:16[SB/FB] |dsp:24[An] [abs16 [abs24
Bytes/Cycles |2/18]2/18| 2/20 3/20 3/20 4/20 4/20 5/20 4/20 | 5/20

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier (.size), the number of cycles in the table is increased by 6.

DIVX
(3) DIVX.L src
src code
b7 b0 b7 b0 b7 b0
0000{0001| 1 O 1 O|s4 s3 s2f1]sl sO 1 0|1 1 1 1
[dsp24/abs24 |
src s4 83 s2s1s0 src s4 s3 52 51 s0
---/---IR2R0O 10010 dsp:8[SB] 00110
/—R3RL |1 0 0 1 1 |9SPBISBIFBL T4epgiFa 00111
Rn dsp:16[AQ] 01000
---------------------------- dsp:16[An] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Tysn16fFB] |0 1 0 1 1
[AQ] 000O00O dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1]|dsp24lAn dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|absi6 abs16 01111
dsp:8[An] dsp:8[AL] 0010 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An| [An] | dsp:8[An]| dsp:8[SB/FB] dsp:16[An]|dsp:16[SB/FB] |dsp:24[An] |abs16 [abs24
Bytes/Cycles | 3/40] 3/40| 3/42 4/42 4/42 5/42 5/42 6/42 5/42 6/42

*1 Indirect instruction addressing cannot be used since op-code is 3 bytes.

Rev.1.00 2006.05.31 page 214 of 335 RENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

DSBB

(1) DSBB.size #IMM, dest

b7 b0 _b7 b0 b7 bo dest code
0000{0001f 1 0 o 1[d4 g3 d2fszEdr do 0 o1 1 1 of [L9seE
1 1 1 1 1 1 1 1 1 1 1
| dsp24/abs24 |
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | 0 ROL/RO/-— 10010 dsp:8[SB] 00110
w1 R1L/R1/--- 100 1 1|9P8ISBIFBL T4engFR] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 100 0 1|9sPl6lAn] dsp:16[A1] 01001
AO 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Tyeph16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 000 o 1]|dsp24An dsp24[A] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0]abslé abs16 01111
dsp:8[An] dsp:8[A1] 0010 1]|abs2s abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Btyes/Cycles | 4/12 | 412 | 4/4 5/4 5/4 6/4 6/4 714 6/4 714

*1 When (.\W) is specified for the size specifier (.size), the numberof bytes in the table is increased by 1.

Rev.1.00 2006.05.31 page 215 of 335 RENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(2) DSBB.size src, dest
7 ho h7 ha h7 ho src code dest code
0000 [0001| 1 s4 s3 s2|d4 d3 d2 pizE|d1 dO s1 sO|1 O 1 O [dsp8 |
| dsp24/abs24 | | dsp24/abs24
.size | SIZE sre/dest s4 s3 s2 s1 s0 src/dest s4 s3s2s1s0
.B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
W 1 ROL/RO/--- 10010 dsp:8[SB] 00110
R1L/R1/-— 100 1 1|WPBISBFBL 4epgiFp) 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 1000 1 dsp:16[An] dsp:16[A1] 01001
A0 000100I _ ; dsp:16[SB] 01010
An AL 000 1 1|WPIISBFBL ysp6iFrB] [0 1 0 1 1
[AO] 00000 o2 dsp:24[AQ] 01100
[An] [AL] 0000 1|%P2AN lgsp2aial] [0 11 0 1
dsp:8[AQ] 0 01 0 0|absl6 abs16 01111
dsp:8[An] dsp:8[Al] 0 0 1 0 1 |abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest| Ry | An | [An]| dsp:8[An] | dsp:8[SB/FB]| dsp:16[An]| dsp:16[SB/FB] |dsp:24[An] | abs16 | abs24
Rn 3/2 | 3/2| 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
An 3/2 | 3/2| 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
[An] 3/4 | 3/4 | 3/5 4/5 4/5 5/5 5/5 6/5 5/5 6/5
dsp:8[An] 414 | 414 | 4I5 5/5 5/5 6/5 6/5 715 6/5 | 7/5
dsp:8[SB/FB] | 4/4 | 4/4 | 4/5 5/5 5/5 6/5 6/5 7/5 6/5 7/5
dsp:16[An] 5/4 | 5/4 | 5/5 6/5 6/5 7/5 7/5 8/5 7/15 | 8/5
dsp:16[SB/FB] | 5/4 | 5/4 | 5/5 6/5 6/5 715 715 8/5 7/5 8/5
dsp:24[An] 6/4 | 6/4 | 6/5 7/5 715 8/5 8/5 9/5 8/5 | 95
absl16 5/4 | 5/4 | 5/5 6/5 6/5 715 715 8/5 7/5 8/5
abs24 6/4 | 6/4 | 6/5 715 7/5 8/5 8/5 9/5 8/5 9/5
Rev.1.00 2006.05.31 page 216 of 335 RENESAS

REJ09B0319-0100

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
DSUB
(1) DSUB.size #IMM, dest
b7 bo_b7 bo b7 bo dest code
0000{0001|1 0 O 1 [d4 d3 d2|sizfd1 do 0 1 |1 1 0 [dsp8 |
1 1 1 1 1 1 1 1 1 1 1
[dsp24/abs24 |
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1do
B | 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBL fyepgiFa] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 100 0 1|dspi6lAn] dsp:16[A1] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9SPA6ISB/FBL Tysn16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 00 0 0 1|dsp24An] dsp24A1] |0 1 1 0 1
dsp:8[AQ] 0 0 1 0 O|[absl6 abs16 01111
dsp:8[An] dsp:8[A1] 00 1 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] |abs16 |[abs24
Bytes/Cycles | 4/12 | 4/2| 4/4 5/4 5/4 6/4 6/4 714 6/4 714

*1 When (.W) is specified for the size specifier (.size), the numberof bytes in the table is increased by 1.

Rev.1.00 2006.05.31 page 217 of 335

REJ09B0319-0100

RENESAS

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(2) DSUB.size src, dest
7 bo b7 bo b7 bo src code dest code
0000 |0001]| 1 s4 s3 s2|d4 d3 d2BizE|dl d0 s1 sOf0O 0 1 © [dsp8 |
1 1 1 1 1 1 1 1 1 1 1
[dsp24/abs24 | | dsp24/abs24
.size | SIZE src/dest s4 5352 s1s0 src/dest s4 5352 5150
.B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
W 1 ROL/RO/--- 1 0010 dsp:8[SB] 00110
R1L/RL/~ 10 0 1 1 |9sPBISBIFBL I4ep8F] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 10 0 o 1|dspi6lAn] dsp:6[A] |0 1 0 0 1
A0 00010 4 ; dsp:16[SB] 01010
An Al 0 0 0 1 1|WSPLOISBIFBL T4epa6iFR] 01011
A [A] 00000} u; dsp:24{A0] 01100
[An] [A1] 0 0 0 o 1 |dsP24lAN dsp:24[Al] |0 11 0 1
dsp:8[AQ] 0 0 1 0 0 |absl6e abs16 01111
dsp:8[An] dsp:8[Al] 0 0 1 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest [Rn | An [[An] |dsp:8[An] |dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Rn 3/2 |3/2 |3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
An 3/2 |3/2 |3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
[An] 3/4 |3/4 |3/5 4/5 4/5 5/5 5/5 6/5 5/5 6/5
dsp:8[An] a/4 | 4/4 |45 5/5 5/5 6/5 6/5 715 6/5 | 7/5
dsp:8[SB/FB] |4/4 |4/4 |4/5 5/5 5/5 6/5 6/5 7/5 6/5 7/5
dsp:16[An] 5/4 |5/4 |5/5 6/5 6/5 7/5 7/5 8/5 715 | 85
dsp:16[SB/FB] |5/4 |5/4 |5/5 6/5 6/5 7/5 7/5 8/5 7/5 8/5
dsp:24[An] 6/4 |6/4 |6/5 7/5 7/5 8/5 8/5 9/5 8/5 | 95
abs16 5/4 |5/4 |5/5 6/5 6/5 7/5 7/5 8/5 7/5 8/5
abs24 6/4 |6/4 |6/5 7/5 7/5 8/5 8/5 9/5 8/5 9/5
Rev.1.00 2006.05.31 page 218 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

ENTER

(1) ENTER #IMM

b7 b0

1110|1100 #IMM8

Number of Bytes/Number of Cycles]
Bytes/Cycles 2/4

EXITD

(1) EXITD

b7 b0
1 1 1 1 1I1IO|O

[Number of Bytes/Number of Cycles]

Bytes/Cycles 1/8

Rev.1.00 2006.05.31 page 219 of 335 RENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

EXTS

(1) EXTS.size dest

b7 b0 b7 b0 dest code
1 1 0 0]ds d3 d2pE[dido 0 1|1 1 1 0
1 1 1 1 1 1 | 1 1 1 1
[dsp24/abs24 |
size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | 0 ROURO/—~ |1 0 0 1 O dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBl T4epgiFa 00111
RN S dsp:16[A0] 01000
IS A IR dsp:16[An] dsp:16[A1] 01001
AO 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISBIFBL [yp:16[FB] 01011
[AC] 00000 dsp:24[AQ] 01100
[An] [A1] 0 0 0 0 1|dsP24[An] dsp:24[A1] 01101
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 001 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 2/1 | 21|23 | 33 33 43 43 5/3 53 | si3

*1 When (.\W) is specified for the size specifier(.size) the number of cycles in the table is increased by 1.

Rev.1.00 2006.05.31 page 220 of 335 RENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(2) EXTS.B src,dest
b7 b0 b7 b0 b7 b0 src code dest code
0000[0001| 1 s4 s3 s2[da d3 d2 0d1do s1 so|lo 1 1 1 |[Ldse8]
—— —— —— ——
[dsp24/abs24 |1\ dsp24/abs24 |
src s4 s3 s2 sl s0 src s4 s3 s2 sl1s0
ROL/---/--- 10010 dsp:8[SB] 00110
R1L/~—/— 100 1 1|9P8ISBIFBl I4sp8FR] 00111
Rn ROH/—/- 10000 dsp:16[AQ] 01000
R1H/—/- 10 0 0 1|9sPl6lAn] dsp:16[A1] |0 1 0 0 1
. dsp:16[SB] 01010
An I dsp:16[SB/FB] dsp:16[FB] 01011
[AO] 0000O dsp:24[A0] 01100
[An] [A1] 000 0 1|dsP24An] dsp:24[A1] 01101
dsp:8[A0] 0 0 1 0 0]|absi6 abs16 01111
dsp:8[An] dsp:8[AL] 0010 1|abs24 abs24 01110
dest d4 d3 d2 d1 do dest d4 d3d2d1do
--/RO/--- 10010 dsp:8[SB] 00110
—/R1/— 10 0 1 1|IsP8ISBIFBl [4engiFe] 00111
Rn —IR2I- 10000 dsp:16[A0] 01000
—IR3I- 10 0 0 1|dspl6lAn] dsp:16[A1] 01001
AO 00010 dsp:16[SB] 01010
An Al 0 00 1 1|dSPIBISBIFBl I4en16FB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP24lAn] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0|[abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest rpn | An [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] [dsp:24[An] |abs16 | abs24
RN 31 |31 |33 | 43 4/3 5/3 5/3 6/3 513 | 63
[An] 33 |33 (34| am 4/4 5/4 5/4 6/4 514 | 6/4
dsp:8[An] 43 |43 |44 | 514 5/4 6/4 6/4 714 6/4 | 714
dsp:8[SB/FB] | 4/3 |4/3 |44 | 514 5/4 6/4 6/4 714 6/4 | 714
dsp:16[An] 5/3 |53 54| e/a 6/4 714 714 8/4 714 | 8l4
dsp:16[SB/FB] | 5/3 | 5/3 |54 | 6/ 6/4 714 714 8/4 714 | 8l4
dsp:24[An] 6/3 |63 64| 714 714 8/4 8/4 9/4 8i4 | 94
abs16 5/3 |53 54| el 6/4 714 714 8/4 714 | 8/4
abs24 6/3 |63 64| 714 714 8/4 8/4 9/4 8i4 | 94
Rev.1.00 2006.05.31 page 221 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

EXTZ

(1) EXTZ src,dest
b7 b0 b7 b0 b7 b0 src code dest code
0000{0001| 1 s4 s3 s2|d4 d3 d2 o0[d1do s1 sof1 o 1 1 |[Ldse8]
—— —— —— ——
[dsp24/abs24 |1\ dsp24/abs24 |
src s4 s3 s2 s1 s0 src s4 s3 s2 sl1s0
ROL/---/--- 10010 dsp:8[SB] 00110
R1L/~—/— 100 1 1|9SPB8ISBIFBL I4engFR] 00111
Rn ROH/—/- 10000 dsp:16[AQ] 01000
RLH//- 100 0 1|dspl6lAn] dsp:16[A1] |0 1 0 0 1
N dsp:16[SB] 01010
An I dsp:16[SB/FB] dsp:16[FB] 01011
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsp24An dsp24[Al] |0 1 1 0 1
dsp:8[AQ] 0 0 1 0 O|absi6 abs16 01111
dsp:8[An] dsp:8[AL] 0 0 1 0 1|abs24 abs24 01110
dest d4 d3 d2 d1 do dest d4 d3d2d1do
-/RO/--- 10010 dsp:8[SB] 00110
~—/R1/--- 10 0 1 1|9sPBISBIFBL FyspgFB] 00111
Rn —IR2I- 10000 dsp:16[A0] 01000
—IR3I- 10 0 0 1|dspl6lAn] dsp:16[A1] 01001
AO 00010 dsp:16[SB] 01010
An Al 000 1 1|IsPI6ISBIFBL I4en16[FB] 01011
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP24[An] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest| rn [An [[An]|dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
RN 31|31 |33 43 4/3 5/3 5/3 6/3 53 | 613
[An] 33|33 34| 44 4/4 5/4 5/4 6/4 5/4 | 6/4
dsp:8[An] a3 |43 a4 | 54 5/4 6/4 6/4 714 6/4 | 714
dsp:8[SB/FB] | 4/3 | 4/3 |4/4 | 5/4 5/4 6/4 6/4 714 6/4 | 714
dsp:16[An] 5/3 |5/3|5/4| 6/4 6/4 714 714 8/4 714 | 8/4
dsp:16[SB/FB] | 5/3 | 5/3 | 5/4 | 6/4 6/4 714 714 8/4 714 | 8/4
dsp:24[An] 6/3 |63 |6/4| 74 714 8/4 8/4 /4 8i4 | o4
abs16 5/3 |5/3|5/4| 6/4 6/4 714 714 8/4 714 | 8/4
abs24 6/3 |6/3|6/4| 74 714 8/4 8/4 9/4 84 | 94
Rev.1.00 2006.05.31 page 222 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

FCLR

(1) FCLR dest

b7 b0 b7 b0

11010|0|1|1 lllllIOl DIESIT

dest

m
07]

P ol o o |lo|+

Cl—|Om W0 NITOO
N -l eNeNN v)
Pk |jo|o - Ik oo

[Number of Bytes/Number of Cycles]

Bytes/Cycles 2/1

FREIT

(1) FREIT

b7 b0
1I0IOI1 1 1 1 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles 1/3

Rev.1.00 2006.05.31 page 223 of 335 RENESAS
REJ09B0319-0100

Chapter 4

FSET

(1) FSET

b7

Instruction Code/Number of Cycles

dest

b0 b7

b0

0 0 O
[

1)1

ST

dest

m
wn

C|—|Om 0N OO

Rk k|~ oo |o|o|o

R kO |0 |+ |k O O

POk o |k ok o+

[Number of Bytes/Number of Cycles]

Bytes/Cycles

2/1

Rev.1.00 2006.05.31 page 224 of 335

REJ09B0319-0100

RENESAS

4.2

Instruction Code/Number of Cycles

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

INC

(1) INC.size dest
b7 b0 b7 b0 dest code
1 0 1 0]|d4d3d2pBEld1d0 0 O f1 1 1 0 absm
*1 When dest is indi_rec_tly addressed,the code has 00001001 |_dsp2 2/absod |
added at the beginning.
.size | SIZE dest d4 d3 d2 d1do dest d4 d3 d2 d1 do
B | 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBl [4qpgiFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:16[Al] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPIBISBIFBl I4en6FB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP24[An] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] |dsp:24[An] |abs16 [abs24
Bytes/Cycles | 2/1 | 2/1 | 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

INDEXB

(1) INDEXB.size src
b7 bo b7 bo src code
1|0|0|0 s4|s3I52|0 Sl|so|0 SlZEO|O|1|1
| dsp24/abs24 |
.size | SIZE src $4 53525150 src s4 3 s2 s1s0
B |0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILR1/- |1 0 0 1 1 |dsPB[SBIFB] 4o gFR] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 100 0 1|dspl6[An] dsp:16[Al] |0 1 0 0 1
A0 0600010 dsp:16[SB] 01010
An Al 0 0 0 1 1|dsPABSBIFB] 4eo16[FB] |0 1 0 1 1
[AO] 000O0OC dsp:24[A0] 01100
[An] [AL] 0 0 0 0 1|dsp:24(An] dsp24Al] |0 1 1 0 1
dsp:8[AQ] 0 01 0 Ofabsi6 abs16 01111
dsp:8[An] dsp:8[AL] 0 0 1 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] |abs16 [abs24
Bytes/Cycles | 2/2 | 2/12 | 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4

*1 When (.\W) is specified for the size specifier(.size) the number of cycles in the table is increased by 2.

Rev.1.00 2006.05.31 page 225 of 335 RENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

INDEXBD

(1) INDEXBD.size src

7 b0 b7 bo src. code
1 0 1 0fs4s3s2 0|sls0 OBPlZEJO 0 1 1
1 1 1 1 1 1 1 1 1 1 1
[dsp24/abs24 |
.Ssize | SIZE src sS4 s3 s2 s1 s0 src s4 8352 s1s0
B | O ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBl T4epgiFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:16[Al] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPIBISBIFBl I4en6FB] |0 1 0 1 1
[AQ] 000O00O dsp:24[AQ] 01100
[An] [A1] 0 0 0 0 1|dsP24[An] dsp24A1] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 2/1 | 2/1 | 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
*1 When (.W) is specified for the size specifier(.size) the number of cycles in the table is increased by 1.
INDEXBS
(1) INDEXBS.size src
b7 bo b7 bo src code
1 1 0 0]s4 s3 s2 0 (sl s0 O PBlzEf0 0 1 1
| | 1 | 1 | 1 | | | 1
| dsp24/abs24 |
.size | SIZE src sS4 s3 s2 s1s0 src s4 s3 52 51 s0
B | O ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBl fysngFe] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 100 o 1|dspl6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Tysn16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1]|dsP24An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|absi6 abs16 01111
dsp:8[An] dsp:8[AL] 0010 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 2/1 | 2/1 | 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

*1 When (.W) is specified for the size specifier(.size) the number of cycles in the table is increased by 1.

Rev.1.00 2006.05.31 page 226 of 335 RENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

INDEXL

(1) INDEXL.size src
b7 bO b7 bo src code
1 0 0 1(s4s3s2 0fs1s0o 1pizEfo 0 1 1
[L1 L1 L1
[dsp24/abs24 |
.size | SIZE src s4 s3s2s1s0 Src s4 8352 s1s0
B | 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBl [4qpgiFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:16[Al] |0 1 0 0 1
AO 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPIBISBIFBl I4en6FB] |0 1 0 1 1
[AQ] 0000O0O dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP24[An] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] |dsp:24[An] |abs16 [abs24
Bytes/Cycles | 2/4 | 2/4 | 2/6 3/6 3/6 4/6 4/6 5/6 4/6 5/6

*1 When (.\W) is specified for the size specifier(.size) the number of cycles in the table is increased by 2.

INDEXLD

(1) INDEXLD.size src
b7 b0 b7 bo src code
1 0 1 1(s4s3s2 0s1s0o 1pizEJO0 0O 1 1
L1 L1 1 L1 L1
| dsp24/abs24 |
.size | SIZE src s4 s3s2s1s0 src s4 s3 s2 51 s0
B | O ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBl fysngFa] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 100 0 1|dspl6lAn] dsp:16[A1] 01001
AO 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Tysn16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 000 o0 1]|dsp24An dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0]abslé abs16 01111
dsp:8[An] dsp:8[AL] 00 10 1]|abs2s abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] [dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 2/2 | 2/2 | 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4

*1 When (.W) is specified for the size specifier(.size) the number of cycles in the table is increased by 1.

Rev.1.00 2006.05.31 page 227 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

INDEXLS

(1) INDEXLS.size src
b7 bO b7 bo src code
1 0 0 1]|s4s3s2 0|slsO OFZEO O 1 1 absm
[dsp24/abs24 |
.size | SIZE src sS4 s3 s2 s1 s0 src s4 8352 s1s0
B | O ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBl T4epgiFa 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:16[Al] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPIBISBIFBl I4en6FB] |0 1 0 1 1
[AQ] 0000O0O dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP24[An] dsp24A1] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An |[An] [dsp:8[An] |dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] fsp:24[An] pbsl6 [abs24
Bytes/Cycles |2/2 |2/2 | 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4
*1 When (.\W) is specified for the size specifier(.size) the number of cycles in the table is increased by 1.
INDEXW
(1) INDEXW.size src
b7 b0 b7 bo src code
1 0 0 Os4 s3s2 0sls0O 1BizEjJo 0 1 1
L1 L1 1 L1 L1
| dsp24/abs24 |
.size | SIZE src sS4 s3 s2 s1s0 src s4 s3 52 51 s0
B | O ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBl fysngFe] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 100 o 1|dspl6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Tysn16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1]|dsP24An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|absi6 abs16 01111
dsp:8[An] dsp:8[AL] 0010 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 2/2 | 2/12 | 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4

*1 When (.W) is specified for the size specifier(.size) the number of cycles in the table is increased by 2.

Rev.1.00 2006.05.31 page 228 of 335 RENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

INDEXWD

(1) INDEXWD.size src

b7 b0 b7 bo src code
1,0 1 0|s4s3s20[s1s0 1fzE[0 0O 1 1 absm
[dsp24/abs24 |
.size | SIZE src s4 s3s2s1s0 Src s4 8352 s1s0
B | O ROL/RO/— 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBl [4qpgiFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:16[Al] |0 1 0 0 1
AO 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPIBISBIFBl I4en6FB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP24[An] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]

src Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] |dsp:24[An] |abs16 [abs24
Bytes/Cycles | 2/1 | 2/1 | 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

*1 When (.\W) is specified for the size specifier(.size) the number of cycles in the table is increased by 1.

INDEXWS

(1) INDEXWS.size src

b7 b0 b7 bo src code
1 1 0 Os4s3s2 0fst1s0o 1pzEJ0 O 1 1
L1 L1 1 L1 L1
| dsp24/abs24 |
.size | SIZE src s4 s3s2s1s0 src s4 s3 s2 51 s0
B | O ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBl fysngFa] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 100 0 1|dspl6lAn] dsp:16[A1] 01001
AO 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Tysn16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 000 o0 1]|dsp24An dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0]abslé abs16 01111
dsp:8[An] dsp:8[AL] 00 10 1]|abs2s abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] [dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 2/1 | 2/1 | 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

*1 When (.W) is specified for the size specifier(.size) the number of cycles in the table is increased by 1.

Rev.1.00 2006.05.31 page 229 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

INT

(1) INT #IMM

b7 b0

1. 0 1 111 12 1 0 L.IMm6_[dd

[Number of Bytes/Number of Cycles]
Bytes/Cycles 2/ 12

INTO

(1) INTO

b7 b0

1|0|1|1 1 1 11

[Number of Bytes/Number of Cycles]

Bytes/Cycles 1/1

*1 When O flag is 1, the number of cycles in the table is increased by 13.

Rev.1.00 2006.05.31 page 230 of 335 RENESAS
REJ09B0319-0100

Chapter 4

Instruction Code/Number of Cycles

4.2

Instruction Code/Number of Cycles

Jcnd

(1) Jend label

b7 b0 labe code
1 c3c2cl|1 0 1 IcO

dsp|8 = Iaddlress indlicatled by label - (start address of instruction +1)

cnd c3c2clcO cnd c3c2clco

LTU/NC 0 0 0 0 | GEUIC 1 000
LEU 0 00 1 |GTU 1 00 1
NE/NZ 0 01 0| EQ/Z 1 010
Pz 0 01 1 (N 1 011
NO 0100](|O 1100
GT 0 1 0 1 |LE 110 1
GE 0 1 1 0 |LT 1110

[Number of Bytes/Number of Cycles]

Bytes/Cycles 2/1
*1 When branched to label the number of cycles in the table is increased by 2.

JMP

(1)) IMP.S label

b7 b0

0 1 d2di1|1 0 1 dO
| 1 | | |]

label d2 d1 do label d2 d1 do
PC+2 0 00 [PC+6 1 00
PC+3 0 01 [PC+7 1 01
PC +4 010 [PC+8 110
PC+5 011 |PC+9 111

Number of Bytes/Number of Cycles]
Bytes/Cycles 1/3

Rev.1.00 2006.05.31 page 231 of 335
REJ09B0319-0100

RENESAS

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

JMP

(2) IMP.B label

b7 0] label code
1|0|1|1 1|0|1|1 |ds_p8|

dsp8 = address indicated by label - (start address of instruction +1)

Number of Bytes/Number of Cycles]
Bytes/Cycles 213

JMP

(3) IMP.W label

h7 ho label code
11,0, 0]1,1,1,0
dspl6 = address indicated by label - (start address of instruction +1)

[Number of Bytes/Number of Cycles]

Bytes/Cycles 313

Rev.1.00 2006.05.31 page 232 of 335 RENESAS
REJ09B0319-0100

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(4) IMP.A label
b7 b0 label code
1. 1.0 01 1 00 | ans24
L1 1 I |
[Number of Bytes/Number of Cycles]
Bytes/Cycles 4/3
(1) IMPLW src
b7 b0 b7 b0 src code
1 1 0 O|s4s3s2 1(sls0 0 O0f1 1 1 1
L1 1 111 L1 1 [
| dsp24/abs24 |
src s4s3s2s1s0 src s4 53 s2s1s0

---/RO/--- 1 0010 dsp:8[SB] 00110

IR/ 10 0 1 1|dsp8[SBIFB] [yqngiFa] 00111
Rn —IR2/- 10000 dsp:16[AQ] 01000

—IR3/- 100 0 1|dsp:l6An] dsp:16[A1] |0 1 0 0 1

A0 00010 dsp:16[SB] 01010
An AL 0 00 1 1|[dspI6[SBIFB] 4o 16(FB] |0 1 0 1 1

[AO] 00O0O0DO dsp:24[AQ] 01100
[An] A1] 0 0 0 0 1]|dsp:24[An] dsp:24[Al] 01101

dsp:8[AQ] 0 01 0 Ofabsi6 abs16 01111
dsp:8[An] dsp:8[AL] 0 0 1 0 1[abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An [[An] [dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] |abs16 [abs24
Bytes/Cycles | 2/7 | 2/7 | 2/8 3/8 3/8 4/8 4/8 5/8 4/8 5/8

Rev.1.00 2006.05.31 page 233 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(2) IMPLLA src

b7 b0 b7 bo src code

1 0 O O0|s4s3s2 0fstsO O 0|0 O O 1

| | 1 | 1 1 1 | | 1 | 1
| dsp24/abs24 |
src $4s35251s0 src s4 s3 s2 sl s0

—-/---/R2R0O 10010 dsp:8[SB] 00110
—/—R3R1 |1 0 0 1 1|9dsP8[SBIFB] [4o gFR] 00111

Rn e mef- 10000 dsp:16[AQ] 01000
- 100 0 1|dsp:16[An] dsp:16[A1] 01001
AO 00010 dsp:16[SB] 01010

An AL 0 0 0 1 1|dspA6ISBIFBl I4en6[FB] |0 1 0 1 1
[AO] 000O0OO dsp:24[A0] 01100

[An] [AL] 0 0 0 0 1|dsp:24[An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 01 0 Olabsi6 abs16 01111

dsp:8[An] dsp:8[A1] 0 01 0 1(abs24 abs24 01110

[Number of Bytes/Number of Cycles]

src Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |[dsp:24[An] |abs16 [abs24

Bytes/Cycle 2/5 | 2/5| 27 3/7 317 477 477 5/7 417 5/7

(1) IMPS #IMM8

b7 b0

1|l|0|l llllolo IM,

Number of Bytes/Number of Cycles]

Bytes/Cycles 2/8

Rev.1.00 2006.05.31 page 234 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

JSR

(1)) JISR.W label

b7 bo label code
dspl6

1,1,0,0]1,1, 1,1

dsp16 = address indicated by label - (start address of instruction +1)

Number of Bytes/Number of Cycles]
Bytes/Cycles 3/3

JSR

(2) JSR.A label
b7 b0 label code

| abs24
l|1|0|0 l|1|0|l

Number of Bytes/Number of Cycles]
Bytes/Cycles 4/3

Rev.1.00 2006.05.31 page 235 of 335 RRENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

JSRI

(1) JISRI.W src

b7 b0 b7 bo src code
1 1 0 O|s4s3s2 1(s1s0 0 11 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
| dsp24/abs24 |
src §4 53525150 src 545352510
--IRO/--- 10010 dsp:8[SB] 00110
R1/— 1 0 0 1 1|dsp8SBIFB] 4o, 8FR] 00111
Rn —IR2/- 10000 dsp:16[AQ] 01000
. R3/- 1 0 0 0 1|dsp:16[An] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An AL 0 0 0 1 1|dsPA6ISBIFBl I4en16[FB] |0 1 0 1 1
[AQ] 00O0O0OO dsp:24[AQ] 01100
[An] Al] 0 0 0 0 1|dsp:24{An] dsp:24[A1] 01101
dsp:8[A0] 0 01 0 Ofabsi6 abs16 01111
dsp:8[An] dsp:8[AL] 0 0 1 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] |abs16 [abs24
Bytes/Cycles | 2/7 | 2/7 | 2/8 3/8 3/8 4/8 4/8 5/8 4/8 5/8
JSRI
(2) JSRILA src
b7 b0 b7 bo src code
1 0 0 1|s4s3s2 0fsts0o 0 0f0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1
| dsp24/abs24 |
src $4 5352510 src s4 s3 s2 s1 s0
—-/---/R2R0O 10010 dsp:8[SB] 00110
—/—R3R1 |1 0 0 1 1|9dsP8[SBIFB] [4o gFR] 00111
Rn I dsp:16[AQ] 01000
SN R — dsp:16[An] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An AL 0 0 0 1 1|9sp16SBIFBl Tysn16fFB] [0 1 0 1 1
[AO] 00 O0O0DO dsp:24[AQ] 01100
[An] [AL] 0 0 0 0 1|dsp:24[An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 01 0 Olabsi6 abs16 01111
dsp:8[An] dsp:8[AL] 0 0 1 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |[dsp:24[An] |abs16 [abs24
Bytes/Cycles | 2/5 | 2/5 | 2/7 3/7 3/7 a/7 a/7 5/7 a4/7 5/7
Rev.1.00 2006.05.31 page 236 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

JSRS

(1) JSRS #IMM8
b7 b0
1 I1 IO | 1101 I1 | 0 Il IM,

[Number of Bytes/Number of Cycles]
Bytes/Cycles 2/8

LDC

(1) LDC #IMM16, dest

b7 b0 b7 b0

1|l|0|l Ollloll l|0|1|01 DIESIT
dest DEST

DCTO 00O

DCT1 001

FLG 010

SVF 011

DRCO 100

DRC1 101

DMDO 110

DMD1 111

Number of Bytes/Number of Cycles]
Bytes/Cycles 4/1

Rev.1.00 2006.05.31 page 237 of 335 RRENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles

(2) LDC #IMM24, dest

b7 b0 b7 b0

11 0 1/0 1 0 1|0 0 1 0 |1 | DEST HMM24
[L1 L1 L
dest DEST

INTB 000

SP 001

SB 010

FB 011

SVP 100

VCT 101

110

ISP 111

[Number of Bytes/Number of Cycles]

Bytes/Cycles 5/2

(3) LDC #IMM24, dest

b7 b0 b7 bo

11 0 1/{0 1 0 1|0 1 1 0|1 | DEST #IMM24
L1 [L1 | L1
dest DEST

00O

001

DMAO 010

DMA1 011

DRAO 100

DRA1 101

DSAO0 110

DSAl 111

[Number of Bytes/Number of Cycles]

Bytes/Cycles 5/2

Rev.1.00 2006.05.31 page 238 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(4) LDC src, dest
b7 b0 b7 bo_b7 bo src code
-dsp8
0000(0001| 1 1 O 1|s4 s3 s2 1|s1 s0 O 0| 1| DEST [ds05]
L1 L1 L1 L
| dsp24/abs24 |
src s4 s3 52 s1s0 src s4 s3 s2 s1 s0 dest | DEST
---/R0O/--- 1 0010 dsp:8[SB] 00110 DCTO |000
—IR1/— 100 1 1|9SP8ISBIFBL [ysp8lFB] 00111 DCT1 |001
Rn —IR2I- 10000 dsp:16[A0] 01000 FLIG |o010
—IR3/- 100 0 1[9sPI6IAN] Fasp16[Al] 01001| [svF |o11
A0 00010 dsp:16[SB] 01010 DRCO |100
An Al 0 0 0 1 1 |9SPLBISBIFBL [4es:16(FB] 01011| [DRCL 101
[AO] 00O0O0DO dsp:24[AQ] 01100 DMDO 110
[An] [A1] 0 00 0 1|dsP24An dsp:24[A1] 01101 DMDL [111
dsp:8[A0] 0 0 1 0 O|absi6 abs16 01111
dsp:8[AN] [ysp:glAL] 00 10 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An| [An]| dsp:8[An]| dsp:8[SB/FB]| dsp:16[An]| dsp:16[SB/FB]|dsp:24[An] | abs16 | abs24
Bytes/Cyclse | 3/2| 3/2| 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
(5) LDC src, dest
b7 b0 b7 bo src code
1 1 0 1|s4s3s2 1|sls0O O 0|0 | DEST
L1 1 [L1 1 L
| dsp24/abs24 |
sre s4 s3 52 51 s0 src s4 s3 52 s1s0 dest | DEST
---/---/[R2R0 1 0010 dsp:8[SB] 00110 INTB 000
—/—R3RL |1 0 0 1 1 |9SPBISBIFBL TyengFR] 00111 P |oo1
Rn A dsp:16[A0] 01000 SB |010
A I dsp:16[An] gep16[A1] 01001 FB |011
A0 00010 dsp:16[SB] 01010 SVP 100
An Al 0 0 0 1 1 |ISPIBISBIFB] [sh16[FR] 01011 VCT |101
[A0] 00000 dsp:24[AQ] 01100 110
[An] [A1] 00001 dsp:24{An] dsp:24[A1] 01101 ISP 111
dsp:8[AQ] 0 0 1 0 O|fabsi6 abs16 01111
dsp:8[AN] [Gep:gAL] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An |[An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
Bytes/Cycles | 2/2 | 2/2 | 2/6 3/6 3/6 4/6 4/6 5/6 4/6 5/6
Rev.1.00 2006.05.31 page 239 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles
(6) LDC src, dest
b7 bQ b7 b0 b7 b0 sre code
-d 8
0000(0001| 1,1 O, 6 1|s4 s3,s2 1|s1,s0, 0 0O |O DEST m
[[Tl [I (i
| dsp24/abs24 |
sre s4 s3s2s1s0 src s4 s3 s2s1s0 dest | DEST
---/---/R2R0 10010 dsp:8[SB] 00110 000
/—R3RL |1 0 0 1 1 |9SPBISBIFBL I4ep8iFB] 00111 — loo1
Rn I dsp:16[A0] 01000 DMAO| 010
N A B dsp:16[An] [ysp16[A1] 01001 DMAL|011
A0 00010 dsp:16[SB] 01010 DRAO [100
An Al 0 00 1 1]|9sPI6ISBIFBL [4qn16[FB] 01011 DRAL | 101
[AO] 00000O dsp:24[A0] 01100 DSAO0 110
[An] Al] 0 0 0 0 1|dsp:24[An] dsp:24[A1] 01101 DSAL |111
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8IANl [gspgiat) 0 010 1]abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] | dsp:8[An] | dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] | dsp:24[An] | absl6 | abs24
Bytes/Cyclse [3/2 |3/2 | 3/6 4l6 4/6 5/6 5/6 6/6 5/6 6/6
(1) LDCTX abs16,abs24
b7 b0 b7 b0
101 1[0 1 1 01 10 0f[l0o 0 11 [_abst6 | | abs24
1 1 1 1 1 1 1 1 1 1 1 1

Number of Bytes/Number of Cycles]
Bytes/Cycles 7/10 + m

*1 m denotes the number of transfers performed.
m = (Number of RO,R1,R2,R3) + 2 x (Number of A0,A1,FB,SB)

Rev.1.00 2006.05.31 page 240 of 335 RENESAS

REJ09B0319-0100

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
LDIPL
(1) LDIPL #IMM
b7 b0 b7 b0
110 1/0 10 1/1 1 1 0]1 IMM3
[Number of Bytes/Number of Cycles]
Bytes/Cycles 22
MAX
(1) MAX.size #IMM,dest
b7 b0 b7 b0 b7 b0 dest code
0000 [0001[{1 0 O 0|[d4 d3 d2fsizE[d1 d0 1 1|1 1 1 1
1 | 1 1 | | 1 | 1 | 1
| dsp24/abs24 |
.size | SIZE dest d4 d3 d2 d1do dest d4 d3 d2 d1 do
Bl O ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBl fyspgFa] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 0 0 1 1|9SPI6ISBIFBl 4oy 16fFB] |0 1 0 1 1
[AO] 00000O dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1]|dsp24An dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O]|absl6 abs16 01111
dsp:8[An] dsp:8[AL] 00 10 1]|abs2s abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
Bytes/Cycles | 4/3 | 4/13 | 4/5 5/5 5/5 6/5 6/5 715 6/5 715

*1 When (.\W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

Rev.1.00 2006.05.31 page 241 of 335
REJ09B0319-0100

RENESAS

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(2) MAX.size src, dest
7 ho b7 b b7 ho src code dest code
0000 [0001| 1 s4 s3 s2|d4 d3 d2|Siz§dl dO s1 sO|1 1 0 1 [dsp8 |
1 | 1 | 1 1 | 1 | 1 |
[dsp24/abs24 | | dsp24/abs24
.size | SIZE sre/dest s4 53 52 s1s0 src/dest s4 s3s2 sl s0
B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
W 1 ROL/RO/--- 1 0010 dsp:8[SB] 00110
RILUR1- |1 0 o 1 1 |WSPBSBFBL l4epgiFa] 00111
Rn ROH/R2/- 10000 _ dsp:16[AQ] 01000
R1H/R3/- 10 0 0 1|dsPi6lAn dsp:16[A] |0 1 0 0 1
A0 00010 J , dsp:16[SB] 01010
An AL 0 0 0 1 1|0SPRBISBFBL Tgsp16iFBl [0 1 0 1 1
A [A] 00000] . ua dsp:24{A0] 01100
[An] [A1] 0 0 0 o 1|dsP24lAnl dsp24[Al] |0 1 10 1
dsp:8[AQ] 0 0 1 0 O]|absi6 abs16 01111
dsp:8[An] dsp:8[Al] 0 01 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest| rn | An [An] | dsp:8[An] | dsp:8[SB/FB]| dsp:16[An]| dsp:16[SB/FB] [dsp:24[An] |abs16 | abs24
Rn 3/2 |3/12 | 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
An 3/2 |3/12 | 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
[An] 3/4 | 3/4 | 3/5 4/5 4/5 5/5 5/5 6/5 5/5 6/5
dsp:8[An] 4/4 | 4/4 | 4/5 5/5 5/5 6/5 6/5 715 6/5 7/5
dsp:8[SB/FB] | 4/4 | 4/4 | 4/5 5/5 5/5 6/5 6/5 715 6/5 7/5
dsp:16[An] 5/4 | 5/4 | 5/5 6/5 6/5 715 7/5 8/5 715 8/5
dsp:16[SB/FB]| 5/4 | 5/4 | 5/5 6/5 6/5 715 7/5 8/5 7/5 8/5
dsp:24[An] 6/4 | 6/4 | 6/5 715 715 8/5 8/5 9/5 8/5 9/5
absl16 5/4 | 5/4 | 5/5 6/5 6/5 715 7/5 8/5 7/5 8/5
abs24 6/4 | 6/4 | 6/5 715 7/5 8/5 8/5 9/5 8/5 9/5
Rev.1.00 2006.05.31 page 242 of 335 RENESAS

REJ09B0319-0100

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(1) MIN.size #IMM,dest
7 b b7 b0 b7 bo dest code
0000[0001| 1 0 0 o|da d3 dofszEldr do 1 of1 1 o1 1| [LEseE
—— — —— ——
| dsp24/abs24 |
.size |SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | 0 ROL/RO/—- 10010 dsp:8[SB] 00110
w1 RILURL~— |1 0 0 1 1 |9SPBISB/FBL I4ep8iFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspi6lAn] dsp:6[Al] |0 1 0 0 1
AO 00010 dsp:16[SB] 01010
An Al 0 00 1 1|ISPIBISBIFBL 4o 16fFB] |0 1 0 1 1
[AQ] 00000 dsp:24[A0] |0 1 1 0 O
[An] [A1] 0 0 0 0 1|dsP24[An] dsp24[A] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0 |absil6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An [[An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] Hdsp:24[An] |abs16 |abs24
Bytes/Cycles |4/3 |4/3 |45 | s/5 5/5 6/5 6/5 7/5 6/5 | 7/5

*1 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

Rev.1.00 2006.05.31 page 243 of 335

REJ09B0319-0100

RENESAS

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(2) MIN.size src, dest
b7 bo b7 bo b7 bo src code dest code
dsp8
0000 [0001| 1 s4 s3 s2|d4 d3 d2|SiZdl dO s1 sOf1 1 0O O
[dsp24/abs24 | | dsp24/abs24 |
.size | SIZE sre/dest s4 s3s2 51 s0 src/dest s4 5352 s1s0
.B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
W 1 ROL/RO/--- 1 0010 dsp:8[SB] 00110
R1L/R1/— 100 1 1|WPBISBIFBL T4epgiFa) 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 10 0 0 1|dsPi6lAn dsp:16[A] |0 1 0 0 1
A0 00010 J , dsp:16[SB] 01010
An AL 0 0 0 1 1|0SPRBISBFBL Tgsp16iFBl [0 1 0 1 1
A [A] 00000] . ua dsp:24{A0] 01100
[An] [A1] 0 0 0 o 1|dsP24lAnl dsp24[Al] |0 1 10 1
dsp:8[AQ] 0 0 1 0 O]|absi6 abs16 01111
dsp:8[An] dsp:8[Al] 0 01 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest |[Rn | An [An] |dsp:8[An] |dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] Hdsp:24[An] |abs16 |abs24
Rn 3/2 |3/2 |3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
An 3/2 |3/2 |3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
[An] 3/4 |3/4 |3/5 4/5 4/5 5/5 5/5 6/5 5/5 6/5
dsp:8[An] 4/4 | 4/4 | 4/5 5/5 5/5 6/5 6/5 7/5 6/5 7/5
dsp:8[SB/FB] |4/4 |4/4 |4/5 5/5 5/5 6/5 6/5 7/5 6/5 7/5
dsp:16[An] 5/4 |5/4 |5/5 6/5 6/5 7/5 7/5 8/5 7/5 8/5
dsp:16[SB/FB] |5/4 |5/4 |5/5 6/5 6/5 7/5 7/5 8/5 7/5 8/5
dsp:24[An] 6/4 |6/4 |6/5 7/5 7/5 8/5 8/5 9/5 8/5 9/5
abs16 5/4 |5/4 |5/5 6/5 6/5 7/5 715 8/5 7/5 8/5
abs24 6/4 |6/4 |6/5 7/5 7/5 8/5 8/5 9/5 8/5 9/5
Rev.1.00 2006.05.31 page 244 of 335 RENESAS

REJ09B0319-0100

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
MOV
(1) MOV.size:G #IMM,dest
b7 b0 b7 b0 dest code
1 0 0 1]|d4 d3 d2fizEjldido 1 0|1 1 1 1
[L1 L1 A
*1 When dest is indi_rec_tly addressed the code has 00001001 | dsp24/abs2a |
added at the beginning.
.size | SIZE dest d4 d3 d2 d1do dest d4 d3 d2 d1 do
Bl O ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBI T4qpgiFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:16[Al] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPI6ISBIFB] I4en16FB] |0 1 0 1 1
[AO] 0000O0O dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP24[An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|absl6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 3/1 | 3/1 | 3/2 4/2 4/2 5/2 5/2 6/2 5/2 6/2

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.\W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

MOV
(2) MOV.L:G #IMM,dest
b7 bo b7 bo dest code
1 0 1 1|d4d3d2 0fdLldo 1 1|0 O O 1 | AMM32
L1 L1 1 L1 11
*1 When dest is indi_rec_tly addressed the code has 00001001 | dsp24labs24 |
added at the beginning.
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do

--/--IR2R0 10010 dsp:8[SB] 00110

/—R3RL |1 0 0 1 1 |9SPBISBIFBl " I4e 8iFB 00111
Rn S dsp:16[A0] 01000

A dsp:16[An] dsp:l6[Al] |0 1 0 0 1

A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Tysn16fFB] |0 1 0 1 1

[AO] 00000 dsp:24[A0] 01100
[An] [A1] 000 0 1]|dsp24An dsp24[Al] |0 1 1 0 1

dsp:8[A0] 0 0 1 0 0]abslé abs16 01111
dsp:8[An] dsp:8[AL] 00 10 1]|abs2s abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 6/2 | 6/2 | 6/3 7/3 713 8/3 8/3 9/3 8/3 9/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

Rev.1.00 2006.05.31 page 245 of 335
REJ09B0319-0100

RENESAS

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
MOV
(3) MOV.size:Q #IMM4, dest
b7 b0 b7 b0 dest code
1 1 1 1|d4 d3 d2pizE[d1do 1 © IMM4
I R O A L1 1 L1 1
*1 When dest is |nd|r_ect_ly addressed the code has 00001001 | dsp2dlabs2a
added at the beginning.
.size | SIZE #IMM IMM4 #IMM IMM4
B] O 0 0000 | 8 1000
W1 +1 0001 | 7 1001
+2 0010 | 6 1010
+3 0011 | S 1011
+4 0100 [4 1100
+5 0101 | -3 1101
+6 0110 | 2 1110
+7 0111 |1 1111
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
ROL/RO/--- 10010 dsp:8[SB] 001 0
R1L/R1/-- 10 0 1 1|IsP8ISBIFBL yngiFB] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 100 0 1|dspi6lAn dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|ISPI6ISBIFBL [4e016[FR] 01011
[AQ] 000O0O dsp:24[AQ] 01100
[An] [A1] 000 0 1|dsp24An dsp24Al] |0 1 1 0 1
dsp:8[AQ] 0 0 1 0 0]|absl6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 2/1 | 2/1 | 2/1 31 3/1 4/1 4/1 5/1 4/1 5/1

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

Rev.1.00 2006.05.31 page 246 of 335
REJ09B0319-0100

RENESAS

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(4) MOV.size:S #IMM, dest
b7 bo dest code
0 0 di1doj 0O 1 OfSizE
i BTl

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

.size | SIZE dest dl do
.B 0 RN ROL/RO 0 0
W 1 dsp:8[SB] 1 0

dsp:8[SB/FB] dsp:8[FB] 1 1
abs16 absl6 0 1

[Number of Bytes/Number of Cycles]

dest

Rn

dsp:8[SB/FB]

absl6

Bytes/Cycles

2/1

3/2

4/2

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

*3 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

(5) MOV.size:S #IMM,AO0/A1
b7 b0
1 O[SZE[1]1 1 0 dO
[#IMM24
.size | SIZE AOQ/AL do
W 0 A0 0
L 1 Al 1
[Number of Bytes/Number of Cycles]
#IMM An
#IMM16 3/1
#IMM24 4/2
Rev.1.00 2006.05.31 page 247 of 335 RENESAS

REJ09B0319-0100

Chapter 4

MOV

(6) MOV.size:Z

b7

Instruction Code/Number of Cycles

b0

Ololdlldo

0|0|15IZE

#0, dest

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

.size | SIZE dest dldo
B 0 RN ROL/RO 0 0
W 1 dsp:8[SB] 1 0

dsp:8[SB/FB] dsp:8[FB] 1 1
abs16 abs16 0 1

[Number of Bytes/Number of Cycles]

dest

Rn | dsp:8[SB/FB] | abs16

Bytes/Cycles

11 2/1 3/1

4.2 Instruction Code/Number of Cycles

dest code

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

Rev.1.00 2006.05.31 page 248 of 335

REJ09B0319-0100

RENESAS

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

MOV

(7) MOV.size:G src, dest

b7 bo b7 b0 src code dest code
dsp8 dsp8

1 s4 s3 s2|d4 d3 d2pIZE|d1 d0 s1 sO|1 0 1 1

*1 For indirect instruction addressing, the following number is | dsp24/abs2a | dsp24/abs2a

added at the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed

.Size | SIZE sre/dest s4 5352 s1s0 src/dest s4 5352 s1 s0
B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
W 1 ROL/RO/--- 1 0010 dsp:8[SB] 00 1 0
R1L/R1/--- 10011 dsp:8[SB/FB] dsp:8[FB] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 10 0 o 1|dspi6lAn] dsp:6[A] |0 1 0 0 1
A A0 00010 i 16/SE/ER dsp:16[SB] 01010
n Al 00 0 1 1|0sP26l I' lasp16FBl [0 1 0 1 1
A [AO] 00000 dso241A dsp:24[AQ] 01100
[An] [A1] 0 0 0 o 1|dsP24lAn dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 01 0 O]|absl6 abs16 01111
dsp:8[An] dsp:8[Al] 0 0 1 0 1|abs24 abs24 01110

[Number of Bytes/Number of Cycles]
src dest| rn | An [An]| dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 | abs24
Rn 2/1 121121 3/1 3/1 4/1 4/1 5/1 4/1 5/1
An 2/1 121121 3/1 3/1 4/1 4/1 5/1 4/1 5/1
[An] 2/312/312/3 3/2 3/2 4/2 4/2 5/2 4/2 5/2
dsp:8[An] 3/313/313/3 4/2 4/2 5/2 5/2 6/2 5/2 6/2
dsp:8[SB/FB] | 3/313/3|3/3 4/2 4/2 5/2 5/2 6/2 5/2 6/2
dsp:16[An] 4/3 | 4/3 | 4/3 5/2 5/2 6/2 6/2 712 6/2 712
dsp:16[SB/FB] | 4/3 | 4/3 | 4/3 5/2 5/2 6/2 6/2 712 6/2 712
dsp:24[An] 5/3 | 5/3 | 5/3 6/2 6/2 712 712 8/2 712 8/2
absl16 4/3 | 4/3 | 4/3 5/2 5/2 6/2 6/2 712 6/2 712
abs24 5/3 |1 5/3 |5/3 6/2 6/2 712 712 8/2 712 8/2

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3,
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

Rev.1.00 2006.05.31 page 249 of 335 RENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(8) MOV.L:G src, dest
b7 b0 b7 bo src code dest code
1 s4 s3 s2|d4 d3 d2| 1|dl1 dO s1 sO|O0O O 1 1
*1 For indirect instruction addressing, the following number is | dsp24/abs24 | dsp24/abs24
added at the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed
src/dest s4 83 s2s1s0 src/dest s4 53 s2 s1s0
d4 d3 d2 d1 do d4 d3 d2 d1 do
-—-/---IR2R0 10010 _ dsp:8[SB] 00110
——R3RL |1 0 0 1 1 |°PBISBFBL fgopaiFe] 00111
Rn - dsp:16[AQ] 01000
Y B dsp:16[An] dsp:l6lAll |0 1 0 0 1
A0 00010 4 ; dsp:16[SB] 01010
AN Al 0 0 0 1 1|ISPIOISBFBL f4epit6iFB] [0 1 0 1 1
[A0] 00000 _ dsp:24[A0] 01100
[An] [AL] 0000 1|%P2¥A Taspaaial] [0 11 0 1
dsp:8[AQ] 0 0 1 0 0 |absl6 abs16 01111
dsp:8[An] dsp:8[Al] 0 0 1 0 1 |abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest| rp | An [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Rn 212 |2/2 |2/2 3/2 3/2 4/2 4/2 5/2 4/2 5/2
An 2/2 |2/2 |2/2 3/2 3/2 4/2 4/2 5/2 4/2 5/2
[An] 2/4 | 2/4 | 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4
dsp:8[An] 3/4 |3/4 |3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:8[SB/FB] |3/4 |3/4 |3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:16[An] 4/4 | 4/4 | 4l4 5/4 5/4 6/4 6/4 7/4 6/4 7/4
dsp:16[SB/FB] | 4/4 | 4/4 | 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4
dsp:24[An] 5/4 | 5/4 | 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4
abs16 4/4 | 4/4 | 4l4 5/4 5/4 6/4 6/4 7/4 6/4 7/4
abs24 5/4 | 5/4 | 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

Rev.1.00 2006.05.31 page 250 of 335
REJ09B0319-0100

RENESAS

Chapter 4

Instruction Code/Number of Cycles

(9) MOV.size:S

b7

b0

0I OlsllsO

1I OIO SIZE

src, ROL/RO

*1 When src is indirectly addressed the code has 00001001
added at the beginning.

.size | SIZE src sl s0
.B 0 dsp:8[SB] 1 0
w | 1 | |9sPBISBIFBl [4sh8iFR] 11

abs16 abs16 0 1

[Number of Bytes/Number of Cycles]

Src

dsp:8[SB/FB]

absl16

Bytes/Cycles

2/2

3/2

4.2 Instruction Code/Number of Cycles

src code

MOV

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

(10) MOV.size:S

b7

b0

0 1 s1 s0
[

1 1|1 SIZE
|

src, R1L/R1

*1 When src is indirectly addressed the code has 00001001
added at the beginning.

.size | SIZE src sl s0
.B 0 RN ROL/RO 0 0
W 1 dsp:8[SB] 1 0

dsp:8[SB/FB] dsp:8[FB] 1 1
abs16 abs16 0 1

[Number of Bytes/Number of Cycles]

Src

Rn | dsp:8[SB/FB] | abs16

Bytes/Cycles

1/2 2/2

3/2

src code

MOV

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3, respectively.

Rev.1.00 2006.05.31 page 251 of 335

REJ09B0319-0100

RENESAS

Instruction Code/Number of Cycles

Chapter 4

MOV

(11) MOV.size:S

b7 b0
0I OldlIdO 0I 0I 0 | SIZE

ROL/RO, dest

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

.Size | SIZE dest d1do
B 0 dsp:8[SB] 1 0
w | 1 | |9sPBISBIFBl [4sp8lFE] 11

abs16 abs16 0 1

[Number of Bytes/Number of Cycles]

dest

dsp:8[SB/FB]

absl6

Bytes/Cycles

2/1

3/1

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

4.2 Instruction Code/Number of Cycles

dest code

MOV
(12) MOV.L:S src, AO/Al
b7 bo src code
0,1 s1s0|1 0 0 ,dO
TR —
*1 When dest is indirectly addressed the code has 00001001
added at the beginning.
src sl s0 A0/AL do
dsp:8[SB] 1 0 AO 0
dsp:8[SBIFB] [4sp.8[FB] 11 AL 1
abs16 abs16 0 1

[Number of Bytes/Number of Cycles]

Src

dsp:8[SB/FB]

abs16

Bytes/Cycles

2/3

3/3

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

Rev.1.00 2006.05.31 page 252 of 335
REJ09B0319-0100

RENESAS

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
MOV
(13) MOV.size:G dsp:8[SP], dest
b7 b0 b7 bo src code dest code
1 0 1 1|d4 d3 d2pizE{dido 0 0|1 1 1 1
L1 1 L1 L1 1 L1 1
| dsp24/abs24 |
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B |l 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBL T4qpgiFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:16[Al] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPI6ISBIFBl I4en16FB] |0 1 0 1 1
[AQ] 0000O0O dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP24[An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|[absl6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] |dsp:24[An] |[abs16 [abs24
Bytes/Cycles | 3/3 | 3/3 | 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3
MOV
(14) MOV.size:G src, dsp:8[SP]
b7 b0 b7 b0 src code dest code
1 0 1 O0|s4s3 s2flzE[s1 s0 0 01 1 1 1
L1 1 L1 L1 L1
| dsp24/abs24 |
.size | SIZE src s4 s3s2s1s0 src s4 s3s2s1s0
B | 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBl FyspgFa] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 100 0 1|dspi6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9SPA6ISB/FBL Tysn16fFB] |0 1 0 1 1
[A0] 000O00O0 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1]|dsp24lAn] dsp24A1] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O]absi6 abs16 01111
dsp:8[An] dsp:8[AL] 0010 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
Bytes/Cycles | 3/3 | 3/3 | 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3
Rev.1.00 2006.05.31 page 253 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

MOVA

(1) MOVA src, dest
b7 b0 b7 bo src code
1 1 0 1|s4s3 szl 1]s1s0 0 1| 1| DEST [Ldsps]
L1 [L1 L1
| dsp24/abs24
dest | DEST Src s4 s3s2s1s0 src s4 s3 52 51 s0
R2R0O |000 dsp:8[A0] 00100 dsp:16[SB] 01010
R3R1 001 |dSPEIAN] dsp:8[AL] |0 0 1 o 1|9SPI6ISBIFBl fgeoi6FB] |0 1 0 1 1
AO 010 dsp:8[SB] 00110 dsp:24[AQ] 01100
Al |o11| |9SPBISBIFBl 4ol |0 0 1 1 1 |dsP24[An] dsp24Al] |0 1 1 0 1
dsp:16[AQ] 0 1 0 0 0fabsi6 abs16 01111
dsp:16[An] dsp:16[Al] |0 1 0 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] dsp:16[SB/FB]| dsp:24[An] absl6 | abs24
Bytes/Cycles 3/2 3/2 4/2 4/2 5/2 4/2 5/2
Rev.1.00 2006.05.31 page 254 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

MOV Dir

(1) MOVDir ROL, dest
dest code
b7 b b7 b0 b7 bo
0000 |0001] 1 , 0 ; 1 I02 d4|d3|d2 0 d1|d0|01|00 1 I1 I1 I03
| dsp24/abs24
Dir 03 02 01 00
LL 0100
HL 0101
LH 0110
HH 0111
dest d4 d3 d2 d1do dest d4 d3 d2 d1do
ROL/--/--- 10010 dsp:8[SB] 00110
R1L/-/ 100 1 1|9SPB8ISBIFBL 4engFR] 00111
Rn ROH/---/- 10000 dsp:16[A0] 01000
R1H/--/- 100 0 1|dspl6lAn] dsp:16[A1] 01001
. dsp:16[SB] 01010
An I dsp:16[SB/FB] dsp:16[FB] 01011
[AO] 000O00O dsp:24[A0] 01100
[An] [A1] 00 0 0 1]|dsp24An dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0]abslé abs16 01111
dsp:8[An] dsp:8[AL] 00 10 1]|abs2s abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] | dsp:8[An]| dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB]| dsp:24[An] | abs16 | abs24
MOVHH,
MOVLL 313|313 | 3/5 415 415 5/5 5/5 6/5 5/5 | 6/5
MOVHL,
MOVLH 3/6/3/6 | 3/8 4/8 4/8 5/8 5/8 6/8 5/8 6/8
Rev.1.00 2006.05.31 page 255 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

MOVDir
(2) MOV Dir src, ROL
b7 bo b7 bo b7 bo src code
-dsp8
0000/0001|1 0 1 o02|s4 s3 s2 0 |s1 sO o1 00|1 1 1 o3 (e]
1 1 1 1 1 1 1 1 1 1 1 1
| dsp24/abs24
Dir 03 02 01 00
LL 0 00O
HL 0 0 01
LH 0010
HH 0011
src s4 s3s2 s1s0 src s4 53 52 s1s0
ROL/--/--- 10010 dsp:8[SB] 00110
R1L/-/ 100 1 1|9SP8ISBIFBL T4en8FR] 00111
Rn ROH/---/- 10000 dsp:16[A0] 01000
R1H/-—/- 100 0 1|dspl6lAn] dsp:16[A1] 01001
. dsp:16[SB] 01010
An I dsp:16[SB/FB] dsp:16[FB] 01011
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1]|dsp24lAn dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|absi6 abs16 01111
dsp:8[An] dsp:8[A1L] 00 1 0 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] | dsp:8[An]| dsp:8[SB/FB] |dsp:16[An] | dsp:16[SB/FB]| dsp:24[An] | abs16 | abs24
MOVHH,
MOVLL 313|313 | 3/5 4/5 415 5/5 5/5 6/5 55 | 6/5
MOVHL,
MOVLH 3/6 |3/6 | 3/8 4/8 4/8 5/8 5/8 6/8 5/8 6/8
Rev.1.00 2006.05.31 page 256 of 335 RENESAS

REJ09B0319-0100

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
MOVX
(1) MOVX #IMM, dest
b7 b0 b7 b0 dest code
1 0 1 1|d4d3d2{0|di1d0 O 10 0 O 1
| L1 L1 1 |
*1 When dest is indirectly addressed the code has 00001001 | dsp24/abs24 |
added at the beginning.
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
--/---/R2R0 10010 dsp:8[SB] 00110
J—R3RL |1 0 0 1 1 |ISPBISBIFBL I4engFR] 00111
Rn B2 dsp:16[A0] 01000
ISV I dsp:16[An] dsp:16[A1] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISBIFBl Tyon16fFB] |0 1 0 1 1
[AO] 000O0O dsp:24[A0] 01100
[An] [A1] 00 0 0 1|dsp24An dsp24Al] |0 1 1 0 1
dsp:8[AQ] 0 0 1 0 O|fabsi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An [[An] |dsp:8[An] |dsp:8[SB/FB] [dsp:16[An] |dsp:16[SB/FB] Hsp:24[An] jabsl16 [abs24
Bytes/Cycles |3/2 |3/2 | 3/2 4/2 4/2 5/2 5/2 6/2 5/2 6/2

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

MUL

(1) MUL.size #IMM, dest
b7 bo b7 b0 dest code
1 0 0 O|d4 d3 d2[SliZEfdr1d0 O 1|1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
*1 When dest is indi_rec_tly addressed the code has 00001001 | dsp24alabs24 |
added at the beginning.
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1do
B | 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBl [yepgiFe] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 100 0 1|dspi6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Iyon16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 000 o 1]|dsp24An] dsp24[A] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0]absi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1]|abs2s abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 3/3 | 3/3| 3/5 4/5 4/5 5/5 5/5 6/5 5/5 6/5

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3, respectively.
*3 When (.W) is specified for the size specifier(.size), the number of bytes in the table is increased by 1.
*4 When (.W) is specified for the size specifier(.size), only Rn and An can be selected for desz

Rev.1.00 2006.05.31 page 257 of 335
REJ09B0319-0100

RENESAS

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

MUL

(2) MUL.size src, dest

b7 bo b7 bo src code dest code
dsp8 dsp8
1 s4 s3 s2|d4 d3 d2plZE|d1 dO s1 sO|1 1 O O
*1 For indirect instruction addressing, the following number is | dsp2alabs2d | Jsp2alabs2a

added at the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed

.Size | SIZE sro/dest s4 s3s2 s1s0 src/dest s4 s3s2s1s0
.B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
W 1 ROL/RO/--- 10010 dsp:8[SB] 00110
R1L/R1/--- 10011 dsp:8[SB/FE] dsp:8[FB] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 100 0 1 dsp:16[An] dsp:16[A1] 0100 1
A0 00010 4 ; dsp:16[SB] 01010
An Al 0 0 0 1 1|WSPLOISBIFBL J4epa6iFR] 01011
[AQ] 000O0O o2 dsp:24[A0] 01100
[An] [AL] 0 0 0 o 1|dsP24ANl dsp24/All |0 1 10 1
dsp:8[AQ] 0 01 0 O]|absl6 abs16 01111
dsp:8[An] dsp:8[Al] 0 0 1 0 1 |abs24 abs24 01110

[Number of Bytes/Number of Cycles]
src dest|rn [An [An] |dsp:8[An] |dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] Hdsp:24[An] |abs16 |abs24
Rn 2/3 |2/13 |2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5
An 2/3 |2/13 |2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5
[An] 2/5 | 2/5 |2/6 3/6 3/6 4/6 4/6 5/6 4/6 5/6
dsp:8[An] 3/5 |3/5 |3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6
dsp:8[SB/FB] |3/5 |3/5 |3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6
dsp:16[An] 4/5 |4/5 |4/6 5/6 5/6 6/6 6/6 716 6/6 716
dsp:16[SB/FB] |4/5 |4/5 |4/6 5/6 5/6 6/6 6/6 716 6/6 716
dsp:24[An] 5/5 |5/5 |5/6 6/6 6/6 716 716 8/6 716 8/6
abs16 4/5 |4/5 |4/6 5/6 5/6 6/6 6/6 716 6/6 716
abs24 5/5 |5/5 |5/6 6/6 6/6 716 716 8/6 716 8/6

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

*3 When (.W) is specified for the size specifier(.size), only Rn and An can be selected for dest.

Rev.1.00 2006.05.31 page 258 of 335 RENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles
(3) MUL.L src, R2R0
b7 bo_b7 b b7 bo src code
-dsp8
0000[0001[1 0 0 Os4 s3s2 1|s1s0 0 1|1 1 1 1
L1 [| [1~ 1
| dsp24/abs24 |
src s4 53 s2s1s0 src s4 s3s2s1s0
ROL/RO/R2RO (1 0 0 1 O dsp:8[SB] 00110
RILURUR3RL |1 0 0 1 1 |9SPBISB/FBL I4ep8iFay 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1 |dspl6lAn] dsp:6[Al] |0 1 0 0 1
AO 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISBIFBL [yqn.16[FB] 01011
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1]|dsp24[An] dsp24[A] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0[absi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 3/8 | 3/8| 3/9 | 4/9 419 5/9 5/9 6/9 5/9 | 6/9

*1 Indirect instruction addressing cannot be used since op-code is 3 bytes.

Rev.1.00 2006.05.31 page 259 of 335
REJ09B0319-0100

RENESAS

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

MULEX

(1) MULEX src
b7 b0 b7 bo src code
1,1, 0 0|s4s3s2|1|s1s0 1 1|1 1 1 0 absm
*1 When srcis indirgctly addressed the code has 00001001 |_dsp2 Aabs2A |
added at the beginning.
src s4 8352 s1s0 src s4 83 s2s1s0
S . dsp:8[SB] 001 0
SN A I dsp:8[SB/FB] I 4qn.8[FR] 00111
Rn SN dsp:16[AQ] 01000
—IR3/- 10 0 o 1|dsp16MAn] dsp:16[A1] |0 1 0 0 1
AO 00010 dsp:16[SB] 01010
An Al 000 1 1|9SPI6ISBIFBl [4h16[FB] 01011
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 000 0 1|dsP24An] dsp24Al] |0 1 1 0 1
dsp:8[AQ] 0 01 0 0]absl6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs2s abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An]|dsp:8[An]| dsp:8[SB/FB]| dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 | abs24
Bytes/Cycles | 2/8 | 2/8]| 2/10 3/10 3/10 4/10 4/10 5/10 4/10 | 5/10

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

MULU

(1) MULU.size #IMM, dest
b7 b0 b7 b0 dest code
1 0 0 0]|d4 d3 d2PpizEf[d1do 0 O f1 1 1 1
L1 11 L1 L1
*1 When dest is indirectly addressed the code has 00001001 | dsp24/abs24 |
added at the beginning.
.size |SIZE dest d4 d3 d2 d1do dest d4 d3 d2 d1 do
B | o0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBl fyongFa] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 0 0 1 1|9SPI6ISBIFBl 4er16fFB] |0 1 0 1 1
[AQ] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsp24An] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|absl6 abs16 01111
dsp:8[An] dsp:8[AL] 00 1 0 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An]|dsp:8[An]| dsp:8[SB/FB]| dsp:16[An] | dsp:16[SB/FB] [dsp:24[An] [abs16 | abs24
Bytes/Cycles | 3/3| 3/3| 3/5 4/5 4/5 5/5 5/5 6/5 5/5 6/5

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3, respectively.
*3 When (.\W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.
*4 When (.W) is specified for the size specifier(.size), only Rn and An can be selected for dest.

Rev.1.00 2006.05.31 page 260 of 335 RENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

MULU

(2) MULU:.size src, dest

b7 b0 b7 bo src code dest code
dsp8 dsp8
1 s4 s3 s2|d4 d3 d2|SIZE|d1 dO s1 sO|O0 1 O O
*1 For indirect instruction addressing, the following number is | dsp247abs2a | dsp24abs2a

added at the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed

.size | SIZE sre/dest s4 5352 51 s0 src/dest s4 5352 51 S0
B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
W 1 ROL/RO/--- 1 0010 dsp:8[SB] 00110
R1L/R1/--- 10011 dsp:8[SB/FE] dsp:8[FB] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 100 0 1 dsp:16[An] dsp:16[A1] 0100 1
A0 00010 ; ; dsp:16[SB] 01010
An Al 0 0 0 1 1|WSPLBISBIFBL T4ep16iFR] 010011
[AQ] 000O00O0 ds00 dsp:24[A0] 01100
[An] ALl 0 0 0 o 1|dsP4Anl dsp24/Al |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0]|absi6 abs16 01111
dsp:8[An] dsp:8[Al] 0 01 0 1|abs24 abs24 01110

[Number of Bytes/Number of Cycles]
sre dest rn| An| [An] dsp:8[An]| dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB]| dsp:24[An]| abs16| abs24
Rn 2/3| 2/3| 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5
An 2/3| 2/3| 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5
[An] 2/5| 2/5| 2/6 3/6 3/6 4/6 4/6 5/6 4/6 5/6
dsp:8[An] 3/5| 3/5| 3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6
dsp:8[SB/FB] | 3/5| 3/5| 3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6
dsp:16[An] 4/5] 4/5| 4/6 5/6 5/6 6/6 6/6 716 6/6 7/6
dsp:16[SB/FB]| 4/5| 4/5| 4/6 5/6 5/6 6/6 6/6 7/6 6/6 716
dsp:24[An] 5/5| 5/5| 5/6 6/6 6/6 716 716 8/6 716 8/6
abs16 4/5] 4/5| 4/6 5/6 5/6 6/6 6/6 716 6/6 716
abs24 5/5| 5/5| 5/6 6/6 6/6 716 716 8/6 716 8/6

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

*3 When (.W) is specified for the size specifier(.size), only Rn and An can be selected for dest.

Rev.1.00 2006.05.31 page 261 of 335 RENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

MUL
(3) MULU.L src, R2R0O
b7 bo b7 bo b7 bo src code
000000011 0 0 0s4 s3s2 1|s1s0 0 01 1 11
| dsp24/abs24 |
src s4 5352 s1s0 src s4 s3 52 s1s0
~/--/R2RO [1 0 0 1 O dsp:8[SB] 00110
/—R3RL |1 0 0 1 1 |9SPBISB/FBl [4qpgiFa 00111
Rno T dsp:16[AQ] 01000
______________________ dsp:16[An] dsp:16[A1] 01001
AO 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPABISBIFBl I4en6FB] |0 1 0 1 1
[AC] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP24[An] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
Bytes/Cycles | 3/8 | 3/8 | 3/9 4/9 4/9 5/9 5/9 6/9 5/9 6/9

*1 Indirect instruction addressing cannot be used since op-code is 3 bytes.

Rev.1.00 2006.05.31 page 262 of 335 RENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles
NEG
(1) NEG.size dest
b7 b0 b7 bo dest code
1 010d4d3d25IZEdldOlOllll
*1 When dest is |nd|rectly addressed the code has 00001001 | dsp2alabs2a |
added at the beginning.
.Size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | o0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBl [yspgiFe] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1 |dspl6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9SPIBISBIFBL 4o 16fFB] |0 1 0 1 1
[AO] 00O0O0O dsp:24[A0] 01100
[An] [A1] 000 0 1]|dsp24An] dsp24[A] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0[absi16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1]|abs2s abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 2/1 | 2/1 | 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

NOP

b0
1|1|1 0

[Number of Bytes/Number of Cycles]
11

Bytes/Cycles

Rev.1.00 2006.05.31 page 263 of 335
REJ09B0319-0100

RENESAS

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles
(LNOT .size dest
b7 b0 b7 bo dest code
1 0 1 0]d4 d3 d2pizEfd1do 0 1|1 1 1 O
*1 When dest is indirectly addressed the code has 00001001 | dsp2aabs2d |

added at the beginning.

size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | 0 ROL/RO/— |1 0 0 1 0 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBl T4epgiFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] |0 1 0 0 O
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:16[Al] |0 1 0 0 1
AO 00010 dsp:16[SB] |0 L 0 1 0
An Al 000 1 1|dSPIBISBIFBl I4en6FB] |0 1 0 1 1
[A0] 00000 dsp:24A0] |0 1 1 0 0
[An] [A1] 0 0 0 0 1|dsP24[An] dsp24A1] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110

[Number of Bytes/Number of Cycles]
dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
Bytes/Cycles | 21| 21| 23| 313 33 413 413 5/3 a3 | 53

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

OR

(1) OR.size:G #IMM, dest
b7 b0 b7 bo dest code
1 0 O O0|d4 d3 d2plzEjldid0o 2 O |1 1 1 1
I I T A | L1 1
*1 When dest is |nd|_rec_tly addressed the code has 00001001 | dsp2dlabs2a |
added at the beginning.
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1do
.B 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBl fyep8iFa 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
RIH/R3/- 10 0 0 1|dspi6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Iyon16fFB] |0 1 0 1 1
[A0] 00O0O00O dsp:24[A0] 01100
[An] [A1] 000 0 1]|dsp24An] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0]absi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1]|abs2s abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
Bytes/Cycles | 3/1| 3/1| 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

Rev.1.00 2006.05.31 page 264 of 335

REJ09B0319-0100

RENESAS

Chapter 4

Instruction Code/Number of Cycles

(2) OR.size:S

b7

#IMM, dest

b0

0 lldlldO

0I 1I 0| SIZE

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

.size | SIZE dest dldo
.B 0 RN ROL/RO 0 0
W 1 dsp:8[SB] 1 0

dsp:8[SB/FB] dsp:8[FB] 1 1
abs16 abs16 0 1

[Number of Bytes/Number of Cycles]

dest

Rn

dsp:8[SB/FB]

abs16

Bytes/Cycles

2/1

3/3

4/3

4.2 Instruction Code/Number of Cycles

dest code

OR

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

Rev.1.00 2006.05.31 page 265 of 335

REJ09B0319-0100

RENESAS

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

OR

(3) OR.size:G src, dest

b7 bo b7 b0 src code dest code
dsp8 dsp8
1 s4 s3 s2|d4 d3 d2 BIZE|d1 dO s1 sO|O0O 1 O 1
*1 For indirect instruction addressing, the following number is | dsp24/abs24 | dsp24/abs24

added at the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed

-Size | SIZE sre/dest s4 5352 s1s0 src/dest s4 s3s2s1s0
.B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
W 1 ROL/RO/--- 10010 dsp:8[SB] 00110
R1L/R1/--- 10011 dsp:8[SB/FE] dsp:8[FB] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 100 0 1 dsp:16[An] dsp:16[A1] 0100 1
A0 00010 J , dsp:16[SB] 01010
An Al 0 0 0 1 1|ISPLOSBFBL T4sp16[FR] 01011
[AQ] 000O00O dsno dsp:24[A0] 01100
[An] [AL] 0 0 0 o 1|dsP24AN dsp24[Al] |0 1 1 0 1
dsp:8[AQ] 0 0 1 0 O|absl6 absl16 01111
dsp:8[An] dsp:8[Al] 0 0 1 0 1|abs24 abs24 01110

[Number of Bytes/Number of Cycles]
sre dest|rn [An [An] |dsp:8[An] |dsp:8[SB/FB] [dsp:16[An] |dsp:16[SB/FB] Hsp:24[An] |abs16 [abs24
Rn 2/1 |2/1 |2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
An 2/1 |2/1 |2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
[An] 2/3 |2/3 |2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4
dsp:8[An] 3/3 |3/3 |3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:8[SB/FB] |[3/3 |3/3 |3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:16[An] 4/3 |4/3 |4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4
dsp:16[SB/FB] (4/3 |4/3 |4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4
dsp:24[An] 5/3 |5/3 |5/4 6/4 6/4 714 714 8/4 7/4 8/4
abs16 4/3 |4/3 |4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4
abs24 5/3 |5/3 |5/4 6/4 6/4 714 714 8/4 7/4 8/4

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

Rev.1.00 2006.05.31 page 266 of 335 RENESAS
REJ09B0319-0100

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(1) POP.size dest
b7 b0 b7 b0 dest code
1 0 1 1|d4 d3 d2PpizE[d1 do 1 O |1 1 1 1
TRl G Al Sl el [dspiorabsts |
*1 When dest is indirectly addressed the code has 00001001
L | dsp24/abs24 |
added at the beginning.
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | O ROL/RO/--- 10010 dsp:8[SB] 00110
Wl 1 R1L/R1/-- 100 1 1|IsP8ISBIFBL [yepgiFB] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 100 o 1|dspl6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|ISPI6ISBIFBL [4en16[FB] 01011
[AQ] 000O0O dsp:24[A0] 01100
[An] [A1] 000 0 1|dsp24An dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 01 0 0]absl6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] | dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 2/3 | 2/3 | 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

(1) POPC dest

b7 b0 b7 b0
1\1‘0|1 OJO\111‘0J1|01 I?EST

|
dest DEST dest DEST

DCTO 0 0 O [DRCO 1 00
DCT1 0 0 1 (|DRC1 1 01
FLG 0 1 O (DMDO 1 10
SVF 0 1 1 (DMD1 1 11

[Number of Bytes/Number of Cycles]
Bytes/Cycles 2/3

Rev.1.00 2006.05.31 page 267 of 335 :{ENESAS

REJ09B0319-0100

POPC

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

POPC
(2) POPC dest

b7 b0 b7 b0
1 1 0 1{0 0 1 1/0 0 1 01 DEST
| |

dest DEST dest DEST
INTB 0 0 0 |- 1 00
SP 0 0 1]-- 1 01
SB 0 1 0]- 1 10
FB 0 1 1]ISP 111

[Number of Bytes/Number of Cycles]

Bytes/Cycles 2/4

POPM

(1)POPM dest

b7 b0

1 00 0f1 11 0
|

dest
FB|SB|Al | AO| R3| R2| R1 | RO
DEST™
1 1 1 1 1 1 1

*1 The bit for a selected register is 1.
The bit for a non-selected register is 0.

[Number of Bytes/Number of Cycles]

Bytes/Cycles 2/1+m

*2 m denotes the number of register to be restored.
m = (number of RO, R1,R2,R3)+ 2 x (number of A0,A1,FB,SB)

Rev.1.00 2006.05.31 page 268 of 335 RENESAS
REJ09B0319-0100

Chapter 4

(1) PUSH.size

b7

#IMM

b0

1
|

0
| [

0 | 1 SIZE

.Size | SIZE

[Number of Bytes/Number
2/1

Bytes/Cycles

of Cycles]

Instruction Code/Number of Cycles

[
[z]

4.2

*1 When (.\W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

Instruction Code/Number of Cycles

PUSH

PUSH

(2) PUSH.size src
b7 bo b7 bo src code
1 1 0 0s4 s3 s2PlzE[s1s0 0 0f1 1 1 0
1 1 1 1 1 1 1 1 1 1 1
*1 When src is indirgctly addressed the code has 00001001 | dsp24abs2a
added at the beginning.
.size | SIZE Src s4 83 s2s1s0 Src s4 53 s2 s1s0
B | O ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL~— |1 0 o 1 1 |9SPBISBIFBl I4sp8iFe] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1 |dspl6lAn] dsp:16[Al] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 0 0 1 1|dSPIBISBIFBl I4en16[FB] 01011
[AO] 0000O0O dsp:24[A0] 01100
[An] [A1] 000 0 1|dsP24An] dsp24[A] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] [dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 2/1 | 2/1 | 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

Rev.1.00 2006.05.31 page 269 of 335

REJ09B0319-0100

RENESAS

Chapter 4 Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(3) PUSH.L #IMM32
b7 b0 b7 bo
1 01 1|0 1 1 0/0 1 0 1|0 0 1 1 AMM32
1 1 | 1 | | | 1 1 1 1 |
[Number of Bytes/Number of Cycles]
Bytes/Cycles 6/3
(4) PUSH.L src
b7 b0 b7 b0 src code
101054535205150000001
*1 When src is |nd|rectly addressed the code has 00001001
| dsp24/abs24 |
added at the beginning.
src s4 s3s2 s1s0 src s4 53 52 s1s0

—-/—-IR2R0 10010 dsp:8[SB] 00110

/—R3RL |1 0 0 1 1 |9SPBISB/FBl I4sp8lFB 00111
Rn 2 dsp:16[A0] 01000

VA dsp:16[An] dsp:l6[A] |0 1 0 0 1

A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Tysn16fFB] |0 1 0 1 1

[AO] 00O0O0O dsp:24[AQ0] 01100
[An] [A1] 000 o 1]|dsp24An dsp24[Al] |0 1 1 0 1

dsp:8[A0] 0 0 1 0 0]abslé abs16 01111
dsp:8[An] dsp:8[A1] 0010 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] [dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
Bytes/Cycles | 2/2 | 2/2 | 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

Rev.1.00 2006.05.31 page 270 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

PUSHA

(1) PUSHA src
b7 b0 b7 bo - src code
-S
1 0 1 1|s4s3s2 0|sls0O 0 0[O0 0 0 1
[dsp24/abs24 |
sre s4 53 52 51 s0 src s4 s3 s2 s1s0

S dsp:8[SB] 00110
S dsp:8[SB/FB] dsp:8[FB] 00111

Rn A I dsp:16[A0] 01000
S A I dsp:16[An] dsp:l6[Al] |0 1 0 0 1
e dsp:16[SB] 01010

An R dsp:16[SB/FB] | 4sp16[FB] 01011
—_— e e dsp:24[AQ] 01100

[An] N dsp:24[An] dsp:24[A1] 01101
dsp:8[A0] 0 0 1 0 O|absl6 abs16 01111

dsp:8[An] dsp:8[A1] 0010 1|abs2a abs24 01110

[Number of Bytes/Number of Cycles]

src dsp:8[An] | dsp:8[SB/FB] dsp:16[An] | dsp:16[SB/FB] | dsp:24[An] absl6 | abs24

Bytes/Cycles 3/3 3/3 4/3 4/3 5/3 4/3 5/3

PUSHC

(1) PUSHC src

b7 b0 b7 bo

1J1|0‘1 olo‘oll 1}0\1‘01 JSRC\

src SRC Src SRC

DCTO 0 0 0 [DRCO 1 0 O

DCT1 0 0 1 |DRC1 1 0 1

FLG 0 1 o |DMDO 1 1 0

SVF 0 1 1 |DMD1 1 11

Number of Bytes/Number of Cycles]

Bytes/Cycles 2/1

Rev.1.00 2006.05.31 page 271 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

PUSHC
(2) PUSHC src

b7 b0 b7 b0

110 1/0 0 0 12/0 O 1 01 SRC
I — [— I —

src SRC Src SRC
INTB 0 0 O |- 1 00
SP 0 0 1 |- 1 01
SB 0 1 0| 1 10
FB 0O 1 1]|ISP 1 11

[Number of Bytes/Number of Cycles]

Bytes/Cycles 2/4

PUSHM

(1) PUSHM src
b7 b0
1 0 0 OJ1 1 1 1 SRC
| | | | |]
Src
RO|R1|[R2| R3| A0 | Al | SB | FB
SRC*!
l l l l l l l

*1 The bit for a selected register is 1.
The bit for a non-selected register is 0.

[Number of Bytes/Number of Cycles]

Bytes/Cycles 2/m

*2 m denotes the number of registers to be saved.
m = (number of RO,R1,R2,R3)+2x(number of A0,A1,FB,SB)

Rev.1.00 2006.05.31 page 272 of 335 RENESAS
REJ09B0319-0100

Chapter 4

(1) REIT

b7

Instruction Code/Number of Cycles

1 0 0 1
L1 1

11|10

Bytes/Cycles

1/6

(1) RMPA.size

[Number of Bytes/Number of Cycles]

b7 b0 b7 b0
1 0 1 111 0 O OO 1 O PBIZEJO O 1 1
1 1 1 1 1 1 1 1 1 1 1

.size | SIZE

.B 0

W 1

Bytes/Cycles

2/7+2m

Number of Bytes/Number of Cycles]

*1 m denotes the number of operations to be performed.

Rev.1.00 2006.05.31 page 273 of 335

REJ09B0319-0100

RENESAS

4.2

Instruction Code/Number of Cycles

REIT

RMPA

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles
(1) ROLC.size dest
b7 b0 b7 bo dest code
1 0 1 1|d4 d3 d2plzEJdld0o 1 0f1 1 1 0
L1 1 L1 1 L1 1
*1 When dest is indirectly addressed the code has 00001001 | dsp24/absad |

added at the beginning.

size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | 0 ROL/RO/--- 10010 dsp:8[SB] 00110
Wl 1 R1L/R1/-- 100 1 1|9sPBISBFBL fyepgiFB] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:l6[Al] |0 1 0 0 1
AO 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPIBISBIFBl I4en16[FB] 01011
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 000 0 1|dsp24An] dsp24Al] |0 1 1 0 1
dsp:8[AQ] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110

[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
Bytes/Cycles | 2/1 |21 |2/3 | 33 3/3 413 413 5/3 43 | 53

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

RORC

(1) RORC.size dest
b7 b0 b7 bo dest code
1 0 1 0|d4 d3 d2plzEjdid0o 2 O |1 1 1 O
L1 1 11 L1 1 L 1 1
*1 When dest is indirectly addressed the code has 00001001
e [dsp24/abs24 |
added at the beginning.
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL/~— |1 0 0 1 1 |9SP8ISB/FBI I4engiFR] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:6[Al] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|dSPIBISBIFBl I4en16[FB] 01011
[AO] 000O0OO dsp:24[AQ] 01100
[An] [A1] 000 0 1|dsp24An] dsp:24[A1] |0 1 1 0 1
dsp:8[AQ] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] .
dsp:8[Al] 0 01 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] |dsp:24[An] |abs16 |[abs24
Bytes/Cycles | 2/1 | 2/1 | 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

Rev.1.00 2006.05.31 page 274 of 335

REJ09B0319-0100

RENESAS

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

ROT

(1) ROT.size #IMM, dest
b7 b0 b7 b0 dest code
1 1 1 0]d4 d3 d2pizE[d1d0o 1 O IMM4
I T N A R L1 1 L1
*1 When dest is |nd|_rec_tly addressed the code has 00001001 | dsp2alabsad
added at the beginning.
.Size | SIZE #IMM IMM4 dest IMM4
.B 0 +1 0O 0 0 0] 1 0 0 O
W 1 +2 0O 0 0 1]-2 1 0 0 1
+3 0O 0 1 o0f-3 1 0 1 O
+4 0O 0 1 1|-4 1 0 1 1
+5 0 1 0 0|5 1 1 0 O
+6 0 1 0 1|-6 1 1 0 1
+7 0O 1 1 0f-7 1 1 1 O
+8 0 1 1 1]|-8 1 1 1 1
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
ROL/RO/--- 10010 dsp:8[SB] 00110
RILURL— |1 0 0 1 1 |9SPBISB/FBl T4qpgiFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 100 o 1|dspl6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPIBISBIFBl I4en6FB] |0 1 0 1 1
[AQ] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP24[An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 00 10 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] | dsp:24[An] | absl6 | abs24
Bytes/Cycles |2/2 | 2/2 | 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

Rev.1.00 2006.05.31 page 275 of 335 RENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

ROT
(2) ROT.size R1H, dest
b7 b0 b7 bo dest code
1 0 1 0|d4 d3 d2plzEjdido 1 1|1 1 1 1
IR T N A R | L1
*1 When dest is |nd|_rec_tly addressed the code has 00001001 | dsp2alabs2a |
added at the beginning.
.size | SIZE dest d4 d3 d2 d1do dest d4 d3 d2 d1 do
B | O ROL/RO/--- 10010 dsp:8[SB] 00110
w1 R1L/—/— 100 1 1|9SP8ISBIFB] [4en8FR] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
—IR3/- 100 0 1|dspl6lAn dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Tysn16fFB] |0 1 0 1 1
[AO] 0000O00O dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1]|dsP24An dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|absi6 abs16 01111
dsp:8[An] dsp:8[AL] 0010 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn An | [An] |dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] | dsp:24[An] | abs16 | abs24
Bytes/Cycles 2/3 2/3 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

RTS

(1) RTS

Number of Bytes/Number of Cycles]
Bytes/Cycles 1/6

Rev.1.00 2006.05.31 page 276 of 335 RENESAS
REJ09B0319-0100

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(1) SBB.size #IMM, dest
dest code
b7 b0 b7 b0 b7 b0
-dsp8 -#IMMB
00000001 1 0 O 1|d4 d3 d2|SizEfd1 do 1 Of1 1.0 [dspt] (e
| dsp24/abs24 |
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | o0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBl [4qpgiFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:16[Al] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPIBISBIFBl I4en6FB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP24[An] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] jabs16 |abs24
Bytes/Cycles | 4/1 | 4/1 | 4/3 5/3 5/3 6/3 6/3 713 6/3 713

*1 When (.\W) is specified for the size specifier(.size),the number of bytes in the table is increased by 1.

Rev.1.00 2006.05.31 page 277 of 335
REJ09B0319-0100

RENESAS

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(2) SBB.size src, dest
7 bo b7 bo b7 bo src code dest code
D000 [0001| 1 s4 s3 s2|d4 d3 d2|SizHdl dO s1 sO| 0 1 1 O [ds8 |
| dsp24/abs24 | | dsp24/abs24
.size | SIZE sre/dest s4 53 52 s1s0 src/dest s4 5352 51 50
.B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
W 1 ROL/RO/--- 1 0010 dsp:8[SB] 00110
R1L/R1/— 10 0 1 1|9sPBISBIFBl I4ep8iFB] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
RIH/R3/- 10 0 0 1|dsPi6lAn dspl6[A] |0 1 0 0 1
A0 00010 J , dsp:16[SB] 01010
An Al 0 0 0 1 1|ISPLOISBIFBL T4epa6iFR] 010011
A [AC] 00000] . ua dsp:24{A0] 01100
[An] [A1] 0 0 0 o 1|dsP24lAn dsp24[Al] |0 11 0 1
dsp:8[A0] 0 0 1 0 O]|absi6 abs16 01111
dsp:8[An] dsp:8[Al] 0 01 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest| rn | An [[An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Rn 3/113/1|3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3
An 3/113/1|3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3
[An] 3/313/3|3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:8[An] 4/3 | 413 | 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4
dsp:8[SB/FB] | 4/3 | 4/3 | 4/14 5/4 5/4 6/4 6/4 7/4 6/4 7/4
dsp:16[An] 5/3 | 5/3 | 5/4 6/4 6/4 714 714 8/4 714 8/4
dsp:16[SB/FB]| 5/3 | 5/3 | 5/4 6/4 6/4 714 714 8/4 714 8/4
dsp:24[An] 6/3 | 6/3 | 6/4 714 714 8/4 8/4 9/4 8/4 9/4
abs16 5/3 | 5/3 | 5/4 6/4 6/4 714 714 8/4 714 8/4
abs24 6/3 | 6/3 | 6/4 714 714 8/4 8/4 9/4 8/4 9/4
Rev.1.00 2006.05.31 page 278 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SBJINZ

(1) SBINZ.size #IMM, dest, label

b7 bo b7 b0 dest code label code
dsp8
1 1 1 1|d4 d3 d2SIZEjd1d0 O 1 IMM4
1 1 | | | | 1 1 1 1 |
| dsp24/abs24 |

dsp8 (label code) = address indicated by label - (start address of instruction +2)

.size| SIZE #IMM IMM4 #IMM IMM4
B | o 0 0000 | +8 1000
W 1 -1 0001 +7 1001
-2 0010 | +6 1010
-3 0011 | +5 1011
-4 0100 | +4 1100
5 0101 | +3 1101
-6 0110 | +2 1110
7 0111 | +1 1111
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
ROL/RO/— 10010 dsp:8[SB] 00110
RILRL— |1 0 0 1 1 |9SPBISB/FBL fyengFa] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:16[A1] |0 1 0 0 1
AO 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Tyon16fFB] |0 1 0 1 1
[AC] 00000 dsp:24[AQ] 01100
[An] [A1] 00 0 0 1|dsp24lAn dsp24Al] |0 1 1 0 1
dsp:8[AQ] 0 0 1 0 Ofabs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An| [An]|dsp:8[An]| dsp:8[SB/FB]| dsp:16[An]| dsp:16[SB/FB] |dsp:24[An] |abs16 | abs24
Bytes/Cycles | 3/2| 32| 3/4 | 4/4 414 5/4 5/4 6/4 54 | el4

*1 When branched to label the number of cycles in the table is increased by 2.

Rev.1.00 2006.05.31 page 279 of 335 RENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SCCnd

(1) SCCnd dest
b7 b0 b7 bo dest code
1 1 0 1|(d4 d3 d2 1]|dido 1 1 CND
1 1 1 11 1 1 1 1 1 1 1
*1 When dest is indirectly addrt_ass_ed, the code has | TSp2dlabsaa
00001001 added at the beginning.
Cnd CND Cnd CND
LTU/NC 0 0 0 0| GEUIC 10 00
LEU 0 00 1|GTU 1 0 0 1
NE/NZ 0 0 1 0fEQZ 1010
Pz 0 0 1 1N 101 1
NO 01 00|00 1 1 00
GT 0 1 0 1fLE 110 1
GE 0 1 1 0]|LT 1 1 1 0
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
RO/---/--- 10010 dsp:8[SB] 00110
R/ - 10 0 1 1|IsP8ISBIFBl [4spgFe] 00111
Rn R2/---/- 10000 dsp:16[A0] 01000
R3/-—- 10 0 0 1 |dspl6lAn] dsp:16[A1] 01001
---/AQ/--- 00010 dsp:16[SB] 01010
An AL 000 1 1|dSPABISBIFBl I4en16fFB] |0 1 0 1 1
[AQ] 000O00O0 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsp24[An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0fabs16 abs16 01111
dsp:8[An] dsp:8[A1] 0 0 1 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An| [An]|dsp:8[An]| dsp:8[SB/FB]| dsp:16[An]| dsp:16[SB/FB] |dsp:24[An] |abs16 | abs24
Bytes/Cycles | 2/1| 2/1| 2/1 3/1 3/1 4/1 4/1 5/1 4/1 5/1

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

Rev.1.00 2006.05.31 page 280 of 335 RENESAS
REJ09B0319-0100

Chapter 4

Instruction Code/Number of Cycles

(1) SCMPUé.size

b7 b0 b7 b0
1 01 111 0 O 0|1 1 OPIZEJO O 1 1
1 1 1 1 1 1 1 1 1 1 1

.size | SIZE

.B 0

W 1

[Number of Bytes/Number of Cycles]

4.2 Instruction Code/Number of Cycles

SCMPU

Size specifier Bytes/Cycles Remark
Contents match and Contents do not match and
the instruction is terminated | the instruction is terminated
.B 2/6+3m 2/6+3m The last 0 (null) is the 8 high-order bits
W 2/6+1.5m 2/9+1.5m of word
W 2/8+1.5m 2/10+1.5m The last O(null) is the 8 low-order bits
of word

*1 m denotes t

Rev.1.00 2006.05.31 page 281 of 335

REJ09B0319-0100

he number of transfers to be performed.

RENESAS

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SHA

(1) SHA.size #IMM, dest
b7 b0 b7 bo dest code
1 1 1 1[d4d3 d2prE[dl dO O O MM absm
*1 When dest is indirectly addr_ess.ed, the code has |_dsp2 T7absod
00001001 added at the beginning.
.size | SIZE #IMM IMM4 #IMM IMM4
B |0 +1 0 000O0]-1 1000
W1 +2 000 1][-2 1001
+3 0 01 0]-3 1010
+4 001 1|4 1011
+5 010 0|5 1100
+6 010 1]-6 1101
+7 01 1 0|7 1110
+8 0 11 1]|-8 111 1
dest d4 d3 d2 d1 do dest d4 d3 d2 d1.do
ROL/RO/--- 10010 dsp:8[SB] 00110
RILURL— |1 0 0 1 1 |9SPBISB/FBL [4epgiFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 100 o 1|dspl6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Tysn16fFB] |0 1 0 1 1
[A0] 0000O00O dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1]|dsp24lAn dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|absi6 abs16 01111
dsp:8[An] dsp:8[AL] 0010 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn| An| [An] | dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] | dsp:24[An] | absl6 | abs24
Bytes/Cycles| 2/2| 2/2| 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

Rev.1.00 2006.05.31 page 282 of 335 RENESAS
REJ09B0319-0100

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
SHA
(2) SHA.L #IMM, dest
b7 b0 b7 b0 dest code
1,0 1 0|d4d3d2{0[dd0o1 0|0 0 01 absw
*1 When dest is indirectly addrt_ass_ed, the code has |_dsp2 A7absA |
00001001 added at the beginning.
dest d4 d3 d2 d1 do dest d4 d3 d2d1do
---/---IR2R0 10010 dsp:8[SB] 00110
——R3RL |1 0 0 1 1 |9SPBISB/FBl [4qpngiFa 00111
Rn - 10000 dsp:16[AQ] 01000
weefee]- 10 0 0 1|dspl6lAn] dsp:16[A1] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPIBISBIFBl I4en6FB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP24lAn] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0fabs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn An [An] | dsp:8[An]| dsp:8[SB/FB] | dsp:16[An]| dsp:16[SB/FB]| dsp:24[An]|absl6 | abs24
Bytes/Cycles | 3/6 3/6 3/8 4/8 4/8 5/8 5/8 6/8 5/8 6/8

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

SHA
(3) SHA.size R1H, dest
b7 bo b7 bo dest code
1 0 1 1]|d4 d3 d2PplZE[d1 d0 1 1|1 1 1 O
I N O R L1 1 L1 1
*1 When dest is indirectly addr_ess_ed, the code has | dsp24/abs2a |
00001001 added at the beginning.
.size | SIZE dest d4 d3 d2 d1do dest d4 d3 d2 d1do
Bl O ROL/RO/--- 10010 dsp:8[SB] 00110
w1 R1L/—/— 100 1 1|9sP8ISBIFBl [4en8FR] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
—IR3/- 100 0 1|dspi6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|ISPA6ISB/FBL Tysn16fFB] |0 1 0 1 1
[AQ] 00000 dsp:24[A0] 01100
[An] [A1] 000 0 1]|dsp24An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0]abslé abs16 01111
dsp:8[An] dsp:8[AL] 0010 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn An [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB]| dsp:24[An]| abs16 | abs24
Bytes/Cycles 2/3 2/3 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

Rev.1.00 2006.05.31 page 283 of 335
REJ09B0319-0100

RENESAS

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SHA

(4) SHA.L R1H, dest
b7 bo b7 bo dest code
1 1 0 0|d4d3 d2{ofd1doo 10 0o 0 1
L1 1 L1 L1 L1 1
*1 When dest is indirectly addrt_ass_ed, the code has | dsp2aiabs2a |
00001001 added at the beginning.
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
«=-/---/R2R0 10010 dsp:8[SB] 00110
- 100 1 1|9sP8ISBIFBL T4engFR] 00111
Rn " 10000 dsp:16[A0] 01000
weefee]- 10 0 0 1 |dspi6lAn] dsp:16[A1] |0 1 0 0 1
AO 00010 dsp:16[SB] 01010
An Al 0 0 0 1 1|9sPIBISBIFB] I4qn16[FB] 01011
[AO] 0000O0O dsp:24[A0] 01100
[An] [A1] 000 0 1|dsp24An] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|absi16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn An [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] | dsp:24[An]|abs16 | abs24
Bytes/Cycles | 2/6 2/6 2/8 3/8 3/8 4/8 4/8 5/8 4/8 5/8

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

SHANC

(1) SHANC.L #IMM, dest

ba bo b7 bo dest code
1 I1 IO IO d4|d3|d2 0 d1|d0|1 I0 0 I0 I0 Il absl6
*1 When dest is indirectly addr_ess.ed, the code has | dsp2aiabs24 |
00001001 added at the beginning.
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
---/---/R2R0O 10010 dsp:8[SB] 00110
/—R3RL |1 0 0 1 1 |9SPBISB/FBl I4sp8lFB 00111
Rn T dsp:16[A0] 01000
---------------------------- dsp:16[An] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Tysn16fFB] |0 1 0 1 1
[AO] 000O0O0 dsp:24[A0] 01100
[An] [A1] 000 o 1]|dsp24An dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0]abslé abs16 01111
dsp:8[An] dsp:8[A1] 0010 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn An [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] | dsp:24[An]|abs16 | abs24
Bytes/Cycles | 3/4 3/4 3/7 a/7 a/7 5/7 5/7 6/7 5/7 6/7

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

Rev.1.00 2006.05.31 page 284 of 335 RENESAS
REJ09B0319-0100

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
SHL
(1) SHL.size #IMM, dest
b7 b0 b7 bo dest code
1 1 1 0]d4 d3 d2pizE[d1d0o 0 O #IMM4
111 L1 L1 1 L1 1
*1 When dest is indirectly addrgss_ed, the code has | dsp24/abs2a
00001001 added at the beginning.
.Size | SIZE #IMM IMM4 dest IMM4
B 0 +1 0 0 0 0f-1 1 0 0 O
W 1 +2 0 0 0 1f-2 1 0 0 1
+3 0O 0 1 0]-3 1 0 1 O
+4 0O 0 1 1|4 1 0 1 1
+5 0 1 0 o0f-5 1 1 0 O
+6 0O 1 0 1]|-6 1 1 0 1
+7 0O 1 1 0]-7 1 1 1 O
+8 0 1 1 1)-8 1 1 1 1
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
ROL/RO/--- 10010 dsp:8[SB] 00110
R1L/R1/-- 100 1 1|9sPBISBFBL fypgFB] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 100 o 1|dspl6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|IsPI6ISBIFBL [4en16[FB] 01011
[AQ] 000O0O dsp:24[A0] 01100
[An] [A1] 000 0 1|dsP24An] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 01 0 0]abs16 abs16 01111
dsp:8[AN] dsp:8[A1] 0 0 1 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] | dsp:24[An] | abs16 | abs24
Bytes/Cycles |2/2|2/2 | 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

Rev.1.00 2006.05.31 page 285 of 335
REJ09B0319-0100

RENESAS

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
SHL
(2) SHL.L #IMM, dest
b7 bo b7 bo dest code
1 .0 0 1]|d4d3d2|0fdlido1 0o 0 0 1
*1 When dest is indirectly addrt_ass_ed, the code has |_dsp2 ST |
00001001 added at the beginning.
dest d4 d3 d2 d1 do dest d4 d3d2d1do

---/--/R2R0 10010 dsp:8[SB] 00110

/—R3RL |1 0 0 1 1 |9SPBISB/FBl [4qpgiFa 00111
RN - 10000 dsp:16[AQ] 01000

ceefee]- 10 0 0 1|dspl6lAn] dsp:16[A1] |0 1 0 0 1

A0 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPIBISBIFBl I4en6FB] |0 1 0 1 1

[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP24[An] dsp24[Al] |0 1 1 0 1

dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn An [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] | dsp:24[An] | abs16 | abs24
Bytes/Cycles | 3/6 3/6 3/8 4/8 4/8 5/8 5/8 6/8 5/8 6/8

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

SHL
(3) SHL.size R1H, dest
b7 b0 b7 bo dest code
1 0 1 0|d4d d3 d2plZEf[d1 d0 1 1|1 1 1 O
I Y R I L1 1 [
*1 When dest is |nd|r_ect_ly addressed, the code has 00001001 | dSp24labs2a |
added at the beginning.
.size |SIZE dest d4 d3 d2 d1do dest d4 d3 d2 d1 do
B | O ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBl fyepgFa] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
—IR3/- 100 0 1|dspl6lAn dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Tysn16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1]|dsP24An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|absi6 abs16 01111
dsp:8[An] dsp:8[A1L] 0010 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn An [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB]| dsp:24[An]| abs16 | abs24
Bytes/Cycles 2/3 2/3 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

Rev.1.00 2006.05.31 page 286 of 335
REJ09B0319-0100

RENESAS

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SHL
(4) SHL.L R1H, dest
b7 bo b7 bo dest code
1|1|0|0 d4|d3|d2 0 dlldololo olololl absm
*1 When dest is indirectly addrgss_ed, the code has | dspaalabs2a |
00001001 added at the beginning.
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do

---/--/R2R0 10010 dsp:8[SB] 00110

weefeme] 100 1 1|9sPBISBIFBL I4engFB] 00111
Rn efmef- 10000 dsp:16[A0] 01000

ceefee- 10 0 0 1|dspl6lAn] dsp:16[A1] |0 1 0 0 1

A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|dSPIBISBIFBl I4en16[FB] 01011

[AQ] 000O0OO dsp:24[AQ] 01100
[An] [A1] 000 0 1|dsP24An] dsp24Al] |0 1 1 0 1

dsp:8[AQ] 0 0 1 0 0|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn An [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] | dsp:24[An] | abs16 | abs24
Bytes/Cycles 2/6 2/6 2/8 3/8 3/8 4/8 4/8 5/8 4/8 5/8

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

Rev.1.00 2006.05.31 page 287 of 335 RENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SHLNC

(1) SHLNC.L #IMM, dest

ba bo b7 bo dest code
1 0 0 0|d4d3d2|0(dld 1 0]0 0 0 1 absm
*1 When dest is indirectly addr_ess_ed, the code has | dsp2aiabs2a |
00001001 added at the beginning.
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
——-/-IR2R0 10010 dsp:8[SB] 00110
/—R3RL |1 0 0 1 1 |94SPBISB/FBI I4sp8lFB 00111
Rn dsp:16[A0] 01000
---------------------------- dsp:16[An] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 0 0 1 1|9sPI6ISBIFBl [gey1efFB] |0 1 0 1 1
[A0] 00O0O0OTO dsp:24[AQ] 01100
[An] [A1] 000 o0 1]|dsp24An dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0]|absl6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn An [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] | dsp:24[An]|abs16 | abs24
Bytes/Cycles | 3/4 3/4 3/7 a/7 a/7 5/7 5/7 6/7 5/7 6/7

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

SIN

(1) SIN.size
b7 b0 b7 b0

1 01 1|0 0 1 0|1 O O plzZEjo 0 1 1
L1 1 I | L1 L1 1

.size | SIZE
.B 0
W 1

Number of Bytes/Number of Cycles]
Bytes/Cycles | 2/1+2m

*1 m denotes the number of transfers to be performed.

Rev.1.00 2006.05.31 page 288 of 335 RENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SMOVB

(1) SMOVB.size

b7 b0 b7 b0
1 01 110 1 1 OJ1 O O pPlZEfJO O 1 1
L1 1 L1 1 11 L1 1

.Size | SIZE
.B 0
W 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles | 2/1+2m

*1 m denotes the number of transfers to be performed.

SMOVF

(1) SMOVF.size

b7 b0 b7 b0
1 01 1]0 0 0 O|12 O O PIZEJO O 1 1
| L1 1 L1 |

.Size |SIZE
.B 0
W 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles | 2/1+2m

*1 m denotes the number of transfers to be performed.

Rev.1.00 2006.05.31 page 289 of 335 RENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SMOVU

(1) SMOVU.size

b7 b0 b7 b0

1 01 112 0 O Of1 O O PIZEJO O 1 1
1 1 1 1 1 1 1 1 1 1 1

.Size | SIZE
.B 0
W 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles | 2/1+2m
*1 m denotes the number of transfers to be performed.

SOUT

(1) SOUT.size
b7 b0 b7 b0
1 01 110 1 O Of1 O O PpIZEJO 0 1 1

1 1 1 1 1 1 1 1 1 1 1

.Size | SIZE
.B 0
W 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles | 2/1+2m
*1 m denotes the number of transfers to be performed.

Rev.1.00 2006.05.31 page 290 of 335 RENESAS

REJ09B0319-0100

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(1) SSTR.size
b7 b0 b7 b0
1 01 1112 0 O O|O O O pPlZEJO O 1 1
1 1 1 1 1 1 1 1
.size | SIZE
.B 0
W 1
[Number of Bytes/Number of Cycles]
Bytes/Cycles 2/2+m
*1 m denotes the number of transfers to be performed.
(1) STC src, dest
b7 b0 b7 bo b7 bo dest code
0000(0001|1 1 O 1|d4d3d2 1(dldo O 1|0 | SRC [dsp8 |
L= [I I)
| dsp24/abs24
src | SRC dest d4 d3 d2 d1 do dest d4 d3 d2 d1do
- 000 --/--IR2R0 10010 dsp:8[SB] 00110
- 001 /—R3RL |1 0 0 1 1 |94sPBISBIFB] I4e 8iFa 00111
DMAO| 010 | |R" - 10000 dsp:16[A0] 01000
DMAL| 011 s 100 0 1|dspi6lAn] dsp:16[A1] 01001
DRAO| 100 A0 00010 dsp:16[SB] 01010
DRAL| 101 | |A" Al 0 00 1 1|ISPA6ISB/FBL Tysn16fFB] |0 1 0 1 1
DSAO| 110 [AO] 000O0O dsp:24[A0] 01100
DsAL [111 | A [AL] 000 0 1]|dsp24An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O]absi6 abs16 01111
dsp:8[An] .
dsp:8[A1] 0 0 1 0 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An]|dsp:8[An]| dsp:8[SB/FB]| dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
Bytes/Cycles | 3/3| 3/3| 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3
Rev.1.00 2006.05.31 page 291 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

STC
(2) STC src, dest
b7 bo b7 b0 b7 bo dest code
0000|0001 1‘ lJ O\ 1 d4Jd3\d2| 1 dl\dO‘ 0 | 1|1 SIRC\ |(LSTF:),816/ab516
[dsp24/abs24
src | SRC dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
DCTO | 000 ---/RO/--- 10010 dsp:8[SB] 00110
DCT1 | 001 IR/ 100 1 1|9SP8ISBIFBL I4engFB] 00111
FLG |o10 | [R" —IR2I- 10000 dsp:16[AQ] 01000
SVF |011 IR3I- 100 o 1|dspl6lAn] dsp:16[A1] |0 1 0 0 1
DRCO| 100 AO 00010 dsp:16[SB] 01010
DRC1|101 | |A" AL 0 00 1 1|9sPA6ISB/FBl Tysn16fFB] |0 1 0 1 1
DMDO| 110 [AO] 00000 dsp:24[A0] 01100
pmb1| 111 | |AY [AL] 0 0 0 0 1|dsp24lAn dsp24[Al] |0 1 1 0 1
dsp:8[AQ] 0 0 1 0 O|absi6 abs16 01111
dsp:8[An] dsp:8[AL] 0 0 1 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] [dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
Bytes/Cycles | 3/2 | 3/2 | 3/2 4/2 4/2 5/2 5/2 6/2 5/2 6/2
STC
(3) STC src, dest
b7 bo b7 bo dest code
1 1 0 1{d4d3d2 1|dido O 110 SRC
L1 L1 L1 L
| dsp24/abs24 |
src | SRC dest d4 d3 d2 d1do dest d4 d3 d2 d1 do
INTB | 000 ~/-/R2RO |1 0 0 1 O dsp:8[SB] 00110
sP | oo1 /—R3RL |1 0 0 1 1 |9SPBISBIFB] I4s 8iFa 00111
sB | o10| |7" el 10000 dsp:16[A0] 01000
FB | o011 - 10 0 0 1|dspl6lAn] dsp:16[A1] |0 1 0 0 1
SVP | 100 AO 00010 dsp:16[SB] 01010
veT | 101 | [A" Al 000 1 1|dSPIBISBIFBl I4en6FB] |0 1 0 1 1
- 110 [AQ] 0 00O0OO dsp:24[AQ] 01100
1P | 111 | [AV [A1] 000 0 1|dsp24An] dsp24[Al] |0 1 1 0 1
dsp:8[AQ] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 2/3 | 2/3 | 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
Rev.1.00 2006.05.31 page 292 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

STCTX

(1) STCTX absl6, abs24

b7 b0 b7 b0

| abs16 | | abs24
101 1f0 1 1 0J1 1 0 1|0 O 1 1
| | 1 | 1 1 1 1 | | | 1
[Number of Bytes/Number of Cycles]
Bytes/Cycles 7/10+2m
*1 m denotes the number of transfers to be performed.
(1) STNZ.size #IMM, dest
b7 bo b7 bo dest code
1 0 O 1 |d4 d3 d2$lzEjdL1d0o O 1 |1 1 1 1 |ds_p8|
*1 When dest is indirectly addressed,the code has 00001001
. | dsp24/abs24 |
added at the beginning.
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1do
B 0 ROL/RO/--- 1 0010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBl fyspgFa] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 100 0 1|dspi6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|ISPA6ISB/FBL Tysn16fFB] |0 1 0 1 1
[A0] 000O00O dsp:24[A0] 01100
[An] [A1] 000 0 1]|dsp24An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O]absi6 abs16 01111
dsp:8[An] dsp:8[AL] 0010 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] |abs16 [abs24
Bytes/Cycles | 3/2 | 3/2| 3/2 4/2 4/2 5/2 5/2 6/2 5/2 6/2

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

Rev.1.00 2006.05.31 page 293 of 335 RENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 42 Instruction Code/Number of Cycles
STZ
(1) STZ.size #IMM, dest
b7 b0 b7 b0 dest code
1 0 0 1 |d4 d3 d2§IZE[d1d0O O O |]1 1 1 1
[T TR T I L1 1 [
*1 When dest is |nd|_rec_tly addressed the code has 00001001 | dsp2alabsad |
added at the beginning.
size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | 0 ROL/RO/--- 10010 dsp:8[SB] 00110
Wl 1 R1L/R1/-- 100 1 1|9sPBISBFBL [yepgiFB] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 100 o 1|dspl6lAn dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|IsPI6ISBIFBL [4en16[FB] 01011
[AO] 0000O dsp:24[A0] 01100
[An] [A1] 000 0 1|dsp24An] dsp24Al] |0 1 1 0 1
dsp:8[AQ] 0 01 0 0]absi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An [[An] |dsp:8[An] |dsp:8[SB/FB] [dsp:16[An] |dsp:16[SB/FB] Hsp:24[An] jabsl16 [abs24
Bytes/Cycles | 3/2 |3/2 | 3/2 4/2 42 5/2 5/2 6/2 52 | 6/2

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When Z flag is 0,the number of cycles in the table is increased by 1.
*4 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

STZX

(1) STZX.size

#IMM1, #IMM2, dest

b7 b0 b7 bo dest code
1 0 O 1 |d4 d3 d2§lzEjdLld0o 2 1 |1 1 1 1
Lo | [#MM16-1 | [#IMM16-2 |
*1 When dest is |nd|_rec_tly addressed the code has 00001001 | dsp2dlabs2a |
added at the beginning.
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1do
.B 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBl Fysp8iFa 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
RIH/R3/- 10 0 0 1|dspi6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1]|IPI6ISB/FBl Tyon16fFB] |0 1 0 1 1
[A0] 00O0O00O dsp:24[A0] 01100
[An] [A1] 000 0 1|dsp24An] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O]absi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs2s abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An |[An] [dsp:8[An] |dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] fisp:24[An] pbsl6 [abs24
Bytes/Cycles |4/3 |4/3 | 4/3 5/3 5/3 6/3 6/3 7/3 6/3 7/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 2.

Rev.1.00 2006.05.31 page 294 of 335
REJ09B0319-0100

RENESAS

Chapter 4 Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(1) SUB.size:G #IMM, dest
dest code
b7 b0 b7 b0
1 0 0 O|d4 d3 d2plZE|d1d0O 1 1 |1 1 1 O
*1 When dest is indirectly addressed the code has 00001001 | dsp2alabs2d |
added at the beginning.
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
.B 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 R1L/R1/- 10 0 1 1|9sPBISBIFBL 4qngiFe] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|9SPI6ISBIFBL [4en16[FB] 01011
[A0] 00O0O0O dsp:24[AQ] 01100
[An] [A1] 000 0 1|dsP24An] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O]absle abs16 01111
dsp:8[An] ;
dsp:8[A1l] 0 0 1 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An]|dsp:8[An]| dsp:8[SB/FB]| dsp:16[An]| dsp:16[SB/FB] |dsp:24[An] |abs16 | abs24
Bytes/Cycles | 3/1| 3/1| 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

*3 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

SuUB

(2) SUB.L:G #IMM, dest
b7 b0 b7 bo dest code
1|0|0|1 d4ld3|d2|0 dl|d0|1|1 olololl _ | AMM32
*1 When dest is indirectly addressed,the code has 00001001 | dsp24labs24 |
added at the beginning.
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
---/---/IR2R0 10010 dsp:8[SB] 00110
—/—R3R1 |1 0 0 1 1 |USPBISBIFBl fyepgiFe] 00111
Rn - 10000 dsp:16[AQ] 01000
A 100 0 1|dspi6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Iyon16fFB] |0 1 0 1 1
[A0] 00O0O0O dsp:24[A0] 01100
[An] [A1] 000 o 1]|dsp2aAn dsp24[A] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0]absi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1]|abs2s abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An]|dsp:8[An]| dsp:8[SB/FB]| dsp:16[An]| dsp:16[SB/FB] |dsp:24[An] |abs16 | abs24
Bytes/Cycles | 6/2| 6/2| 6/4 7/4 7/4 8/4 8/4 9/4 8/4 9/4

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

Rev.1.00 2006.05.31 page 295 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SUB

(3) SUB.size:S #IMM, dest

b7 b0 dest code
0 0 dldo|l 1 1fsiE
*1 When dest is indirectly addressed the code has 00001001
added at the beginning.
.size |SIZE dest dl do
B | o0 RN ROL/RO 0 0
W 1 dsp:8[SB] 1 0
dsp:8[SB/FB] dsp:8[FE] 1 1
abs16 abs16 0 1

[Number of Bytes/Number of Cycles]

dest Rn |dsp:8[SB/FB] |abs16

Bytes/Cycles | 2/1 3/3 4/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.\W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

Rev.1.00 2006.05.31 page 296 of 335 RENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SuUB

(4) SUB.size:G src, dest
b7 bo b7 bo src code dest code
1 s4 s3 s2|d4 d3 d2 $IZEd1 dO s1 sO |1 O 1 O
*1 For indirect instruction addressing, the following number is | Jsp2dlabs2d | dsp2alabs2a
added at the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed
size | SIZE sre/dest s4 s3 52 s1 s0 src/dest s4 53 52 s1 s0
.B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
W 1 ROL/RO/--- 10010 dsp:8[SB] 00110
RLL/R1/-— 100 1 1|WPBISBFBL T4epgiFa) 00111
Rn ROH/R2/- 1000 0 . dsp:16[A0] 01000
R1H/R3/- 100 0 1 dsp:16[An] dsp:16[A1] 01001
A0 00010 J , dsp:16[SB] 01010
An Al 0 0 0 1 1|WPIOSBFBl fgep16iFB] [0 1 0 1 1
[AQ] 00000 dsn2 dsp:24[A0] 01100
[An] [AL] 000 o0 1WA Tdspaaa [0 11 01
dsp:8[AQ] 0 0 1 0 O]|absl6 abs16 01111
dsp:8[An] dsp:8[Al] 0 0 1 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest | Rn | An | [An] |dsp:8[An] |dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] ldsp:24[An] |abs16 |abs24
Rn 2/1 |2/1 |2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
An 2/1 |2/1 |2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
[An] 2/3 |2/3 |2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4
dsp:8[An] 3/3 |3/3 |13/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:8[SB/FB] |3/3 [3/3 |3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:16[An] 4/3 | 4/3 | 4l4 5/4 5/4 6/4 6/4 7/4 6/4 7/4
dsp:16[SB/FB] | 4/3 [4/3 | 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4
dsp:24[An] 5/3 |5/3 |5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4
abs16 4/3 | 4/3 | 4l4 5/4 5/4 6/4 6/4 7/4 6/4 7/4
abs24 5/3 |5/3 |5/4 6/4 6/4 714 7/4 8/4 7/4 8/4

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

Rev.1.00 2006.05.31 page 297 of 335 RENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SUB

(5) SUB.L:G src, dest
b7 b0 b7 bo src code dest code
1 s4 s3 s2|d4 d3 d2 1 |dl d0o s1 sO|0O O O O
*1 For indirect instruction addressing, the following number is | dsp2alabs2a | | dsp24/abs2a |
added at the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed
src/dest s4 83 s2s1s0 src/dest s4 53 s2 s1s0
d4 d3 d2 d1 do d4 d3 d2 d1 do
-—/—--/IR2R0O 10010 o / dsp:8[SB] 00110
—/—R3R1 |1 0 o 1 1 |ISPBSBIFBL f4opgiFe] 00111
Rn ceefmed- 10000 oo L6A dsp:16[A0] 01000
el 100 0 1 |dSP6lAN] dsp:il6lAl]l |0 1 0 0 1
A0 00010 deor ; dsp:16[SB] 01010
An Al 000 11 sp:16[SB/FB] dsp:16[FB] 01011
A [AQ] 00000 dso:241A dsp:24[A0] 01100
[An] [A1] 0 0 0 o 1|dsP24lAnl dsp24[Al] [0 1101
dsp:8[AQ] 0 0 1 0 0|absi6 abs16 01111
dsp:8[An] dsp:8[Al] 0 0 1 0 1 |abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest| rn | An |[An]|dsp:8[An] |dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
Rn 2/2 |2/2 | 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4
An 212 (212 | 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4
[An] 2/4 | 2/4 | 2/6 3/6 3/6 4/6 4/6 5/6 4/6 5/6
dsp:8[An] 3/4 13/4 |3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6
dsp:8[SB/FB] |3/4 |3/4 | 3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6
dsp:16[An] 4/4 | 4/4 | 4/6 5/6 5/6 6/6 6/6 716 6/6 716
dsp:16[SB/FB] | 4/4 | 4/4 | 4/6 5/6 5/6 6/6 6/6 716 6/6 716
dsp:24[An] 5/4 | 5/4 |5/6 6/6 6/6 716 716 8/6 716 8/6
abs16 4/4 | 4/4 | 416 5/6 5/6 6/6 6/6 716 6/6 716
abs24 5/4 | 5/4 |5/6 6/6 6/6 716 716 8/6 716 8/6

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

Rev.1.00 2006.05.31 page 298 of 335 RENESAS
REJ09B0319-0100

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
SUBX
(1) SUBX #IMM, dest
b7 b0 b7 b0 dest code
10 0 1[d4d3d2 0|dld 0 1]0 0 0 1 absw
*1 When dest is indi_rec_tly addressed the code has 00001001 |_dsp2 A7absA |
added at the beginning.
dest d4 d3 d2 d1 do dest d4 d3 d2d1do
---/--/R2R0 10010 dsp:8[SB] 00110
——R3RL |1 0 0 1 1 |9SPBISB/FBl [4qpngiFB 00111
Rn S dsp:16[A0] 01000
I dsp:16[An] dsp:16[Al] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPIBISBIFBl I4en6FB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP24[An] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|absi16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 3/2 | 3/2 | 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

Rev.1.00 2006.05.31 page 299 of 335
REJ09B0319-0100

RENESAS

Chapter 4 Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
SUBX
(2) SUBX src, dest
b7 b0 b7 bo src code dest code
1 s4 s3 s2|d4 d3 d2 0 |d1 dO s1 sO|0O O O O
*1 For indirect instruction addressing, the following number is | dsp2alabs2d | dsp2dlabs2d
added at the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed
src s4 s3 s2 s1s0 src s4 s3 s2 s1s0
ROL/---/--- 10010 dsp:8[SB] 00110
R/ - 10 0 1 1|9sP8ISBIFBL T4en8FR] 00111
Rn ROH/---/- 10000 dsp:16[AQ] 01000
RLH/—/- 10 0 0 1 |dsPi6lAn] dsp:16[AL] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|dSPIBISBIFBl I4en16fFB] |0 1 0 1 1
[A0] 00O0O0O dsp:24[AQ] 01100
[An] [A1] 000 o 1]|dsp24An dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0|absl16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1]|abs24 abs24 01110
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
---/---IR2R0 10010 dsp:8[SB] 00110
_J/R3R1 |1 0 0 1 1 |9SPBISBIFBL Iyng[Fa] 00111
Rn IV dsp:16[A0] 01000
VA dsp:16[An] dspl6[A] |0 1L 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 0 0 1 1|dSPIBISBIFBL I4qn16[FB] 01011
[AO] 00O0O0TO dsp:24[AQ] 01100
[An] [A1] 000 0 1|dsp24An] dsp:24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 Ofabsl16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest| rn | An [[An] | dsp:8[An] | dsp:8[SB/FB]| dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
Rn 212 | 2/2] 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4
An 212 | 2/2] 214 3/4 3/4 4/4 4/4 5/4 4/4 5/4
[An] 2/4 | 2/4] 2/6 3/6 3/6 4/6 4/6 5/6 4/6 5/6
dsp:8[An] 3/4 | 3/4 | 3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6
dsp:8[SB/FB] | 3/4 | 3/4 | 3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6
dsp:16[An] 4/4 | 4/4 | 4/6 5/6 5/6 6/6 6/6 716 6/6 716
dsp:16[SB/FB] | 4/4 | 4/4 | 4/6 5/6 5/6 6/6 6/6 716 6/6 716
dsp:24[An] 5/4 | 5/4 | 5/6 6/6 6/6 7/6 7/6 8/6 716 8/6
abs16 4/4 | 4/4 | 4/6 5/6 5/6 6/6 6/6 716 6/6 716
abs24 5/4 | 5/4 | 5/6 6/6 6/6 7/6 716 8/6 716 8/6

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

Rev.1.00 2006.05.31 page 300 of 335 RENESAS

REJ09B0319-0100

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(1) TST.size:G #IMM, dest
b7 bo b7 bo dest code
1 0 0 1|d4 d3 d2BizE|dldo 1 1|1 1 1 O
| dsp24/abs24 |
.size | SIZE dest d4 d3 d2 d1do dest d4 d3 d2 d1 do
B | 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL~— |1 0 o0 1 1 |9SPBISB/FBL I4epeiFay 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1 |dspl6lAn] dsp:6[Al] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9SPIBISBIFBL 4o 16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1]|dsp24[An] dsp24[A] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0fabsi16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 3/1 | 3/1 | 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3
*1 When (.\W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

(2) TST.size:S #IMM, dest
b7 b0 dest code
0 0 dldoj1 1 OfsiE
.size | SIZE dest dldo
B | O RN ROL/RO 0 0
W 1 dsp:8[SB] 1 0
dsp:8[SB/FB] dsp:8[FB] 1 1
abs16 abs16 0 1

Number of Bytes/Number of Cycles]

dest

Rn

dsp:8[SB/FB]

absl16

Bytes/Cycles

2/1

3/3

4/3

#IMM16

*1 When (.\W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

Rev.1.00 2006.05.31 page 301 of 335
REJ09B0319-0100

RENESAS

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(3) TST.size:G src, dest
b7 b0 b7 b0 b7 b0 src code dest code
dsp8 dsp8
0000]0001| 1 s4 s3 s2|da d3 d2|szd a1 do s1 s01 o o 1] [LoB
[dsp24/abs24 | [dsp24/abs24 |
size | SIZE sre/dest s4 s3 s2 s1 s0 src/dest s4 53 s2 s1 s0
B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
w1 ROL/RO/--- 10010 dsp:8[SB] 00110
R1L/R1/--- 10011 dsp:8[SB/FB] dsp:8[FB] 00111
Rn ROH/R2/- 10000 - dsp16[AO] 01000
R1H/R3/- 10 0 o 1|dsPi6lAn] dsp:16[A] |0 1 0 0 1
A A0 00010 0 16/SE/ER dsp:16[SB] 01010
: Al 000 1 1|dsPL6l I | dsp:16[FB] 01011
A [AQ] 000O0O dso:240A dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP24lAn] dsp:24[A1] 01101
dsp:8[AQ] 0 0 1 0 O|absl6 abs16 01111
dsp:8[An] dsp:8[Al] 00 1 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest | Rn [An |[An] | dsp:8[An] | dsp:8[SB/FB]| dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] | abs16 | abs24
Rn 3/113/11]3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3
An 3/113/11]3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3
[An] 3/313/3|3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:8[An] a/3 | 43 | 414 5/4 5/4 6/4 6/4 714 6/4 | 7/4
dsp:8[SB/FB] | 4/13 | 4/3 | 4/4 5/4 5/4 6/4 6/4 714 6/4 | 7/4
dsp:16[An] 5/3 | 5/3 | 5/4 6/4 6/4 7/4 7/4 8/4 714 | 84
dsp:16[SB/FB]| 5/3 | 5/3 | 5/4 6/4 6/4 7/4 7/4 8/4 714 | 8/4
dsp:24[An] 6/3 | 6/3|6/4 7/4 714 8/4 8/4 9/4 8/4 9/4
abs16 5/3 | 5/3 | 5/4 6/4 6/4 714 7/4 8/4 714 8/4
abs24 6/3 | 6/3|6/4 714 714 8/4 8/4 9/4 8/4 9/4
Rev.1.00 2006.05.31 page 302 of 335 RENESAS

REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

UND

(1) UND

b7 b0

Number of Bytes/Number of Cycles]
Bytes/Cycles 1/13

WAIT

(1) WAIT
b7 b0 b7 b0

101 1)j0 0 1 0|0 O O OO0 O 1 1
| L1 1]

[Number of Bytes]
Bytes 2

Rev.1.00 2006.05.31 page 303 of 335 RENESAS
REJO9B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

XCHG

(1) XCHG.size src, dest

b7 b0 b7 bo dest code
1 1 0 1 |d4 d3 d2PplzE|dl d0o O O |1 SRC
I T T S T— I L1
*1 When dest is |nd|_rec_tly addressed the code has 00001001 | dsp2alabs2d |
added at the beginning.
.Size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | o ROL/RO/—- |1 0 0 1 O dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SP8ISB/FBl [yepgiFB] |0 0 1 1 1
Rn ROH/R2- |1 0 0 0 O dsp:16[A0] |0 1 0 0 O
src__ | SRC RIHR3- |1 0 0 0 1 |9P6IAN IGeo16la1] |0 1 0 0 1
ROL/RO/— 1 000 AO 00010 dsp:16[SB] |0 1 0 1 O
RIL/R1/-- 1001 An Al 0 00 1 1|9SPIBISBIFB] [4oh16/FB] [0 1 0 1 1
ROH/R2/- 1100 [AQ] 00000 dsp:24[A0] |0 1 1 0 0
RIH/R3- 101 [An] [A1] 000 0 1|9P24A] [4sp24/A1] |0 11 0 1
AO 010 dsp:8[A0] 0 0 1 0 0fabsi6 abs16 01111
Al 011 dsp-8[AN] T4sp:g[All |0 0 1 0 1 |abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An| [An]|dsp:8[An]| dsp:8[SB/FB]| dsp:16[An]| dsp:16[SB/FB] |dsp:24[An] [abs16 | abs24
Bytes/cycles | 2/3| 2/3| 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4
*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
XOR
(1) XOR.size #IMM, dest
b7 b0 b7 b0 dest code
1 0 O 1]|d4 d3 d2plZEf[drd0 O O |1 1 1 O
L1 1 L1 L1 1 [
*1 When dest is indirectly addressed,the code has 00001001 | dsp2alabs24 |
added at the beginning.
.size | SIZE dest d4 d3 d2 d1do dest d4 d3 d2 d1 do
B | 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBl fyep8iFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1 |dspi6lAn] dspil6[A] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 0 0 1 1|9sPIBISBIFB] I4qn16[FB] 01011
[A0] 000O00O dsp:24[AQ] 01100
[An] [A1] 00 0 o 1|dsp24Anl dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O |absl6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An]|dsp:8[An]| dsp:8[SB/FB]| dsp:16[An]| dsp:16[SB/FB] |dsp:24[An] |abs16 | abs24
Bytes/Cycles | 3/1| 3/1| 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

*2 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

Rev.1.00 2006.05.31 page 304 of 335 RENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(2) XOR.size src, dest
b7 b0 b7 bo src code dest code
[dsp8] [dsp8 |
1 s4 s3 s2|d4 d3 d2 pIZE|d1 dO s1 sO|1 O O 1 - -
*1 For indirect instruction addressing, the following number is | dsp24/abs24 | dsp24/abs24
added at the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed
size | SIZE sre/dest s4 s3 52 s1 s0 src/dest s4 53 52 s1 s0
B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
W 1 ROL/RO/--- 1 0010 dsp:8[SB] 00110
R1L/R1/--- 10011 dsp:8[SB/FB] dsp:8[FB] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 10 0 0 1|dsPi6lAn dsp:6[A] |0 1 0 0 1
A0 00010 deo , dsp:16[SB] 01010
AN Al 0 0 01 1|®PIOSBFBl Taspaere] [0 1 0 1 1
A [AQ] 00000 o240 dsp:24[A0] 01100
[An] [A1] 0 0 0 o 1|dsP24lAnl dsp:24[A1] |0 1 1 0 1
dsp:8[AQ] 0 01 0 0]|absl6 abs16 01111
dsp:8[An] dsp:8[Al] 0 01 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest rn [An [An] | dsp:8[An] | dsp:8[SB/FB]| dsp:16[An]| dsp:16[SB/FB] |dsp:24[An] | abs16 | abs24
Rn 2/1|2/1|2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
An 2/1|2/1|2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
[An] 2/312/3]2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4
dsp:8[An] 3/313/3|3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:8[SB/FB] | 3/3 | 3/3 | 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:16[An] 4/3 | 413 | 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4
dsp:16[SB/FB] | 4/3 | 4/3 | 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4
dsp:24[An] 5/3 | 5/3 | 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4
abs16 4/3 | 413 | 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4
abs24 5/3 | 5/3 | 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

Rev.1.00 2006.05.31 page 305 of 335 RENESAS
REJ09B0319-0100

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

Rev.1.00 2006.05.31 page 306 of 335 RENESAS
REJ09B0319-0100

Chapter 5

Interrupt

5.1 Outline of Interrupt

5.2 Interrupt Control

5.3 Interrupt Sequence

5.4 Return from Interrupt Routine

5.5 Interrupt Priority

5.6 Multiple Interrupts

5.7 Precautions for Interrupts

5.8 Exit from Stop Mode and Wait Mode

Chapter 5 Interrupt 5.1 Outline of Interrupt

5.1 Outline of Interrupt

When an interrupt request is acknowledged, control branches to the interrupt routine that is set to an inter-
rupt vector table. Each interrupt vector table must have had the start address of its corresponding interrupt
routine set. For details about the interrupt vector table, refer to Section 1.10, “Vector Table.”

5.1.1 Types of Interrupts
Figure 5.1.1 lists the types of interrupts. Table 5.1.1 and 5.1.2 list the source of interrupts
(nonmaskable) and the fixed vector tables.

Undefined instruction (UND instruction)
Overflow (INTO instruction)

BRK instruction

BRK2 instruction

INT instruction

Software

(I I [

Interrupt
U Reset
" U R
[0 Specia D tchdog timer
0 D Single step
E U Address matched
[

N

Hardware

U
Peripheral I/0™

*1 Peripheral I/O interrupts are generated by the peripheral functions built into the MCU system.
High-speed interrupt can be used as highest priority in peripheral I/O interrupts.

Figure 5.1.1. Classification of interrupts

Rev.1.00 2006.05.31 page 308 of 335 RENESAS
REJ09B0319-0100

Chapter 5 Interrupt 5.1 Outline of Interrupt

Table 5.1.1 Interrupt Source (Nonmaskable) and Fixed Vector Table

Interrupt source Vector table addresses Remarks
Address (L) to address (H)
Undefined instruction FFFFDC16 to FFFFDF16 | Interrupt generated by the UND instruction.
Overflow FFFFEO16 to FFFFE316 | Interrupt generated by the INTO instruction.

Executed beginning from address indicated by

BRK instruction FFFFE416 to FFFFE716
vector in variable vector table if content of address
FFFFE716 is FFise.
Address match FFFFE816 to FFFFEB16 | Can be controlled by an interrupt enable bit.
Watchdog timer FFFFFO16 to FFFFF316
NMI FFFFF816 to FFFFFB16 | External interrupt generated by driving NMI pin low.
Reset FFFFFC16 to FFFFFF16

Table 5.1.2 Interrupt Exclusively for Emulator (Nonmaskable) and Vector Table

Interrupt source Vector table addresses Remarks
Address (L) to address (H)
BRK2 instruction Interrupt vector table register exclusively for This interrupt is used
: emulator exclusively for debugger
Single step 00002016 to 00002316 purposes.
B Maskable interrupt: This type of interrupt can be controlled by using the I flag to enable (or

disable) an interrupt or by changing the interrupt priority level.
B Nonmaskable interrupt: This type of interrupt cannot be controlled by using the | flag to enable (or
disable) an interrupt or by changing the interrupt priority level.

Rev.1.00 2006.05.31 page 309 of 335 RRENESAS
REJ09B0319-0100

Chapter 5 Interrupt 5.1 Outline of Interrupt

5.1.2 Software Interrupts
Software interrupts are generated by some instruction that generates an interrupt request when ex-
ecuted. Software interrupts are nonmaskable interrupts.
(1) Undefined-instruction interrupt

This interrupt occurs when the UND instruction is executed.

(2) Overflow interrupt

This interrupt occurs if the INTO instruction is executed when the O flag is 1.

The following lists the instructions that cause the O flag to change:

ABS, ADC, ADCF, ADD, ADDX, CMP, CMPX, DIV, DIVU, DIVX, NEG, RMPA, SBB, SCMPU, SHA, SUB,
SUBX

(3) BRK interrupt

This interrupt occurs when the BRK instruction is executed.

(4) BRK2 interrupt

This interrupt occurs when the BRK2 instruction is executed. This interrupt is used exclusively for
debugger purposes. You normally do not need to use this interrupt.

(5) INT instruction interrupt

This interrupt occurs when the INT instruction is executed after specifying a software interrupt number
from O to 63. Note that software interrupt numbers 0 to 54 and 57 are assigned to peripheral 1/O inter-
rupts. This means that by executing the INT instruction, you can execute the same interrupt routine as
used in peripheral I/O interrupts.

The stack pointer used in INT instruction interrupt varies depending on the software interrupt number.
For software interrupt numbers 0 to 31, the U flag is saved when an interrupt occurs and the U flag is
cleared to 0 to choose the interrupt stack pointer (ISP) before executing the interrupt sequence. The
previous U flag before the interrupt occurred is restored when control returns from the interrupt routine.
For software interrupt numbers 32 to 63, such stack pointer switchover does not occur.

However, in peripheral 1/O interrupts, the U flag is saved when an interrupt occurs and the U flag is
cleared to O to choose ISP.

Therefore movement of U flag is different by peripheral I/O interrupt or INT instruction in software interrupt
number 32 to 54 and 57.

Rev.1.00 2006.05.31 page 310 of 335 RENESAS
REJ09B0319-0100

Chapter 5 Interrupt 5.1 Outline of Interrupt

5.1.3 Hardware Interrupts

There are Two types in hardware Interrupts; special interrupts and Peripheral 1/O interrupts.

(1) Special interrupts

Special interrupts are nonmaskable interrupts.

* Reset
A reset occurs when the RESET pin is pulled low.

« NMI interrupt
This interrupt occurs when the NMI pin is pulled low.

» Watchdog timer interrupt
This interrupt is caused by the watchdog timer.

» Address-match interrupt
This interrupt occurs when the program's execution address matches the content of the address match
register while the address match interrupt enable bit is set (= 1).
This interrupt does not occur if any address other than the start address of an instruction is set in the
address match register.

» Single-step interrupt
This interrupt is used exclusively for debugger purposes. You normally do not need to use this inter-
rupt. A single-step interrupt occurs when the D flag is set (= 1); in this case, an interrupt is generated
each time an instruction is executed.

(2) Peripheral I/O interrupts

These interrupts are generated by the on-chip peripheral functions in the MCU system. The types of on-
chip peripheral functions vary with each M32C model, so do the types of interrupt causes. The interrupt
vector table uses the same software interrupt numbers 0-54 and 57 that are used by the INT instruction.
Peripheral 1/O interrupts are maskable interrupts. For details about peripheral I/O interrupts, refer to the
M32C User’s Manual.

For peripheral I/O interrupts, the U flag is saved when an interrupt occurs and the U flag is cleared to O to
choose the interrupt stack pointer (ISP) before executing the interrupt sequence. The previous U flag
before the interrupt occurred is restored when control returns from the interrupt routine.

(3) High-speed interrupts

High-speed interrupts are interrupts in which the response is executed at high-speed. High-speed inter-
rupt can be used as highest priority in peripheral 1/O interrupts.

Execute a FREIT instruction to return from the high-speed interrupt routine.

For details about high-speed interrupt, refer to the M32C User’'s Manual.

Rev.1.00 2006.05.31 page 311 of 335 RENESAS
REJO9B0319-0100

Chapter 5 Interrupt 5.2 Interrupt Control

5.2 Interrupt Control

The following explains how to enable/disable maskable interrupts and set acknowledge priority. The expla-
nation here does not apply to nonmaskable interrupts.

Maskable interrupts are enabled and disabled by using the interrupt enable flag (I flag), interrupt priority
level select bit, and processor interrupt priority level (IPL). Whether there is any interrupt requested is
indicated by the interrupt request bit. The interrupt request bit and interrupt priority level select bit are
arranged in the interrupt control register provided for each specific interrupt. The interrupt enable flag (I
flag) and processor interrupt priority level (IPL) are arranged in the flag register (FLG).

For details about the memory allocation and the configuration of interrupt control registers, refer to the
M32C User's Manual.

5.2.1 Interrupt Enable Flag (I Flag)
The interrupt enable flag (I flag) is used to disable/enable maskable interrupts. When this flag is set (=
1), all maskable interrupts are enabled; when the flag is cleared to 0, they are disabled. This flag is
automatically cleared to O after a reset.
When the | flag is changed, the altered flag status is reflected in determining whether or not to accept an
interrupt request at the following timing:
« If the flag is changed by an REIT or FREIT instruction, the changed status takes effect begin-
ning with that REIT or FREIT instruction.
* If the flag is changed by an FCLR, FSET, POPC, or LDC instruction, the changed status takes
effect beginning with the next instruction.

When changed by REIT or FREIT instruction

Determination whether or not to
Interrupt request generated accept interrupt request
{} —P Time
7
Interrupt sequence g

Previous
instruction REIT

(If I flag is changed from 0 to 1 by REIT instruction)

When changed by FCLR, FSET, POPC, or LDC instruction
Determination whether or not to

Interrupt request generated accept interrupt request
@ —Pp Time
_______________ /
Previous . .
instruction FSET | Next instruction [Interrupt sequence g
.............. -

(If I flag is changed from 0 to 1 by FSET instruction)

Figure 5.2.1 Timing at which changes of | flag are reflected in interrupt handling

5.2.2 Interrupt Request Bit
This bit is set (= 1) when an interrupt request is generated. This bit remains set until the interrupt request
is acknowledged. The bit is cleared to 0 when the interrupt request is acknowledged.
This bit can be cleared to 0 (but cannot be set to 1) in software.

Rev.1.00 2006.05.31 page 312 of 335 RENESAS
REJ09B0319-0100

Chapter 5 Interrupt 5.2 Interrupt Control

5.2.3 Interrupt Priority Level Select Bit and Processor Interrupt Priority Level (IPL)
Interrupt priority levels are set by the interrupt priority select bit in an interrupt control register. When an
interrupt request is generated, the interrupt priority level of this interrupt is compared with the processor
interrupt priority level (IPL). This interrupt is enabled only when its interrupt priority level is greater than
the processor interrupt priority level (IPL). This means that you can disable any particular interrupt by
setting its interrupt priority level to 0.

Table 5.2.1 shows how interrupt priority levels are set. Table 5.2.2 shows interrupt enable levels in
relation to the processor interrupt priority level (IPL).

The following lists the conditions under which an interrupt request is acknowledged:
* Interrupt enable flag (1 flag) =1

* Interrupt request bit =1

* Interrupt priority level > Processor interrupt priority level (IPL)

The interrupt enable flag (I flag), interrupt request bit, interrupt priority level select bit, and the processor
interrupt priority level (IPL) all are independent of each other, so they do not affect any other bit.

Table 5.2.1 Interrupt Priority Levels Table 5.2.2 IPL and Interrupt Enable Levels
Interrupt priori_ty Interrupt priority level Priority Prgcgssor interrupt Enabled interrupt priority
level select bit order priority level (IPL) levels
o o o |revelointerrupt disabled) P Per e [Interrupt levels 1 and above are enabled.
0 0 1 Level 1 Low 0o 0 1 Interrupt levels 2 and above are enabled.
0 1 0 Level 2 0o 1 0 Interrupt levels 3 and above are enabled.
0o 1 1 Level 3 o 1 1 Interrupt levels 4 and above are enabled.
1 0 O Level 4 1 0 o0 Interrupt levels 5 and ahove are enabled.
1 0 1 Level 5 1 0 1 Interrupt levels 6 and above are enabled.
1 1 0 Level 6 1 1 o0 Interrupt levels 7 and above are enabled.
1 1 1 Level 7 High 1 1 1 All maskable interrupts are disabled.

When the processor interrupt priority level (IPL) or the interrupt priority level of some interrupt is

changed, the altered level is reflected in interrupt handling at the following timing:

« If the processor interrupt priority level (IPL) is changed by an REIT or FREIT instruction, the changed
level takes effect beginning with the REIT or FREIT instruction.

« If the processor interrupt priority level (IPL) is changed by a POPC, LDC, or LDIPL instruction, the
changed level takes effect beginning with the next instruction.

« If the interrupt priority level of a particular interrupt is changed by an instruction such as MOV, the
changed level takes effect beginning with the instruction that is executed two clock or two clock peri-
ods after the last clock of the instruction used.

Rev.1.00 2006.05.31 page 313 of 335 RRENESAS
REJ09B0319-0100

Chapter 5 Interrupt 5.2 Interrupt Control

5.2.4 Rewrite the interrupt control register

When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the
interrupt request bit is not set sometimes even if the interrupt request for that register has been gener-
ated. This will depend on the instruction. If this creates problems, use the below instructions to change
the register.

Instructions : AND, OR, BCLR, BSET

5.3 Interrupt Sequence

An interrupt sequence — what are performed over a period from the instant an interrupt is accepted to the

instant the interrupt routine is executed — is described here.

If an interrupt occurs during execution of an instruction, the processor determines its priority when the

execution of the instruction is completed, and transfers control to the interrupt sequence from the next

cycle. If an interrupt occurs during execution of either the SCMPU, SIN, SMOVB, SMOVF, SMOVU,

SSTR, SOUT or RMPA instruction, the processor temporarily suspends the instruction being executed,

and transfers control to the interrupt sequence.

In the interrupt sequence, the processor carries out the following in sequence given:

(1) CPU gets the interrupt information (the interrupt number and interrupt request level) by reading address
00000016 (address 00000216 when high-speed interrupt).

(2) Saves the content of the flag register (FLG) as it was immediately before the start of interrupt sequence
in the temporary register (Note) within the CPU.

(3) Sets the interrupt enable flag (I flag), the debug flag (D flag), and the stack pointer select flag (U flag) to
“0” (the U flag, however does not change if the INT instruction, in software interrupt numbers 32 through
63, is executed)

(4) Saves the content of the temporary register (Note 1) within the CPU in the stack area. Saves in the flag
save register (SVF) in high-speed interrupt.

(5) Saves the content of the program counter (PC) in the stack area. Saves in the PC save register (SVP)
in high-speed interrupt.

(6) Sets the interrupt priority level of the accepted instruction in the IPL.

After the interrupt sequence is completed, the processor resumes executing instructions from the first ad-

dress of the interrupt routine.

Note: This register cannot be utilized by the user.

Rev.1.00 2006.05.31 page 314 of 335 RENESAS
REJ09B0319-0100

Chapter 5 Interrupt 5.3 Interrupt Sequence

5.3.1 Interrupt Response Time
The interrupt response time means a period of time from when an interrupt request is generated till when
the first instruction of the interrupt routine is executed. This period consists of time (a) from when an
interrupt request is generated to when the instruction then under way is completed and time (b) in which
an interrupt sequence is executed. Figure 5.3.1 shows the interrupt response time.

Interrupt request generated Interrupt request acknowledged

b o

Instruction in interrupt
routine

Instruction Interrupt sequence

—) g (b) -

Interrupt response time

(a) Time from when interrupt request is generated to when the instruction then under execu-
tion is completed

(b) Time in which the interrupt sequence is executed

Figure 5.3.1. Interrupt response time

Time (a) varies with each instruction being executed. The DIVX instruction requires a maximum time that
consists of 29* cycles.
Time (b) is shown in table 5.3.1.

* |t is when the divider is immediate or register. When the divider is memory, the following value is

added.
» General instruction addressing 12+ X
« Indirect instruction addressing 5+ X+2Y

X is number of wait of the divider area. Y is number of wait of the indirect address stored area.
When X and Y are in odd address or in 8 bits bus area, double the value of X and Y. When above
addressing modes are modified by the INDEX instructions, add 1 cycle.

Rev.1.00 2006.05.31 page 315 of 335 RRENESAS
REJ09B0319-0100

Chapter 5 Interrupt 5.3 Interrupt Sequence

Table 5.3.1 Interrupt Sequence Execution Time

Interrupt Interrupt vector address 16 bits data bus 8 bits data bus
Peripheral 110 Even address 14 cycles 16 cycles
Odd address*? 16 cycles 16 cycles
INT instruction Even address 12 cycles 14 cycles
Odd address*? 14 cycles 14 cycles
NMI Even address*! 13 cycles 15 cycles

Watchdog timer
Undefined instruction
Address match

Overflow Even address*! 14 cycles 16 cycles
BRK instruction Even address 17 cycles 19 cycles
(Variable vector table) Odd address*? 19 cycles 19 cycles
Single step Even address*! 19 cycles 21 cycles

BRK2 instruction
BRK instruction

(Fixed vector table)

High-speed interrupt*3 Vector table is internal register 5 cycles

*1 The vector table is fixed to even address.
*2 Allocate interrupt vector addresses in even addresses as must as possible.
*3 The high-speed interrupt is independent of these conditions.

5.3.2 Changes of IPL When Interrupt Request Acknowledged
When an interrupt request is acknowledged, the interrupt priority level of the acknowledged interrupt is
set to the processor interrupt priority level (IPL).
If an interrupt request is acknowledged that does not have an interrupt priority level, the value shown in
Table 5.3.2 is set to the IPL.

Table 5.3.2 Relationship between Interrupts without Interrupt Priority Levels and IPL

Interrupt sources without interrupt priority levels Value that is set to IPL

Watchdog timer, NMI 7

Reset 0

Other Not changed
Rev.1.00 2006.05.31 page 316 of 335 RENESAS

REJ09B0319-0100

Chapter 5 Interrupt 5.3 Interrupt Sequence

5.3.3 Saving Registers
In an interrupt sequence, only the contents of the flag register (FLG) and program counter (PC) are
saved to the stack area.
The order in which these contents are saved is as follows: First, the FLG register is saved to the stack
area. Next, the 16 high-order bits and 16 low-order bits of the program counter expanded to 32-bit are
saved. Figure 5.3.2 shows the stack status before an interrupt request is acknowledged and the stack
status after an interrupt request is acknowledged.
In a high-speed interrupt sequence, the contents of the flag register (FLG) is saved to the flag save
register (SVF) and program counter (PC) is saved to PC save register (SVP).
If there are any other registers you want to be saved, save them in software at the beginning of the
interrupt routine. The PUSHM instruction allows you to save all registers except the stack pointer (SP)
by a single instruction.

Address Stack area Address Stack area
MSB LSB MSB LSB

o~ o~

Program counter

m-6 m-6 (PCL) [SP]
Program counter New stack
m-5 m-5 (PCwm) pointer value
Program counter
m-4 m-4 (PCh)
m-3 m—3 0 ©
Flag register
m—2 m-2 (FLGL)
Flag register
m-1 . m-1 (FLGw)
SP
Content of Stack pointer Content of
m previous stack ~— Lalue Eefore m previous stack
Content of interrupt occurs Content of
m+1 previous stack m+1 previous stack
Stack status before interrupt request is acknowledged Stack status after interrupt request is acknowledged

Figure 5.3.2 Stack status before and after an interrupt request is acknowledged

5.4 Return from Interrupt Routine

As you execute the REIT instruction at the end of the interrupt routine, the contents of the flag register (FLG)
and program counter (PC) that have been saved to the stack area immediately preceding the interrupt
sequence are automatically restored. In high-speed interrupt, as you execute the REIT instruction at the end
of the interrupt routine, the contents of the flag register (FLG) and program counter (PC) that have been
saved to the save registers immediately preceding the interrupt sequence are automatically restored.

Then control returns to the routine that was under execution before the interrupt request was acknowledged,
and processing is resumed from where control left off.

If there are any registers you saved via software in the interrupt routine, be sure to restore them using an
instruction (e.g., POPM instruction) before executing the REIT or FREIT instruction.

Rev.1.00 2006.05.31 page 317 of 335 RRENESAS
REJ09B0319-0100

Chapter 5 Interrupt 5.5 Interrupt Priority

5.5 Interrupt Priority

If two or more interrupt requests are sampled active at the same time, whichever interrupt request is ac-
knowledged that has the highest priority.

Maskable interrupts (Peripheral 1/O interrupts) can be assigned any desired priority by setting the interrupt
priority level select bit accordingly. If some maskable interrupts are assigned the same priority level, the
interrupt that a request came to most in the first place is accepted at first, and then, the priority between
these interrupts is resolved by the priority that is set in hardware™L.

Certain nonmaskable interrupts such as a reset (reset is given the highest priority) and watchdog timer
interrupt have their priority levels set in hardware. Figure 5.5.1 lists the hardware priority levels of these
interrupts.

Software interrupts are not subjected to interrupt priority. They always cause control to branch to an inter-
rupt routine whenever the relevant instruction is executed.

*1 Hardware priority varies with each M32C model. Please refer to your M32C User's Manual.

Reset > NMI > Watchdog > Peripheral I/O > Single step > Address match

Figure 5.5.1. Interrupt priority that is set in hardware

5.6 Multiple Interrupts

The following shows the internal bit states when control has branched to an interrupt routine:
« The interrupt enable flag (I flag) is cleared to O (interrupts disabled).
« The interrupt request bit for the acknowledged interrupt is cleared to 0.
» The processor interrupt priority level (IPL) equals the interrupt priority level of the acknowledged interrupt.

By setting the interrupt enable flag (I flag) (= 1) in the interrupt routine, you can reenable interrupts so that an
interrupt request can be acknowledged that has higher priority than the processor interrupt priority level
(IPL). Figure 5.6.1 shows how multiple interrupts are handled.

The interrupt requests that have not been acknowledged for their low interrupt priority level are kept pend-
ing. When the IPL is restored by an REIT and FREIT instruction and interrupt priority is resolved against it,
the pending interrupt request is acknowledged if the following condition is met:

Interrupt priority level of > Restored processor interrupt
pending interrupt request priority level (IPL)
Rev.1.00 2006.05.31 page 318 of 335 RENESAS

REJ09B0319-0100

Chapter 5

Interrupt

5.6 Multiple interrupts

Interrupt request
generated

Nesting

_—

Time

Reset

Interrupt 1

O

Interrupt priority level = 3

Interrupt 2

D

Interrupt priority level = 5

Interrupt 3

D

Interrupt priority level = 2

-

Main routine

Multiple interrupts
/

5

Not acknowledged because
of low interrupt priority

Main routine instructions
are not executed.

. Interrupt enable flag

: Processor interrupt priority level
: Automatically executed.

: Be sure to set in software.

Figure 5.6.1. Multiple interrupts

Rev.1.00 2006.05.31 page 319 of 335
REJ09B0319-0100

RENESAS

Chapter 5 Interrupt 5.7 Precautions for Interrupts

5.7 Precautions for Interrupts

(1) Reading addresses 00000016 and 00000216
» When maskable interrupt is occurred, CPU read the interrupt information (the interrupt number and
interrupt request level) in the interrupt sequence from address 00000016. When high-speed interrupt
is occurred, CPU read from address 00000216.
The interrupt request bit of the certain interrupt will then be set to “0”.
However, reading addresses 00000016 and 00000216 by software does not set request bit to “0”".

(2) Setting the stack pointer
» The value of the stack pointer immediately after reset is initialized to 00000016. Accepting an interrupt
before setting a value in the stack pointer may become a factor of runaway. Be sure to set a value in
the stack pointer before accepting an interrupt. When using the NMI interrupt, initialize the stack
pointer at the beginning of a program. Any interrupt including the NMI interrupt is generated immedi-
ately after executing the first instruction after reset. Set an even number to the stack pointer. When an
even number is set, execution efficiency is increased.

(3) Rewrite the interrupt control register

» When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the
interrupt request bit is not set sometimes even if the interrupt request for that register has been gener-
ated. This will depend on the instruction. If this creates problems, use the below instructions to change
the register.

Instructions : AND, OR, BCLR, BSET

5.8 Exit from Stop Mode and Wait Mode

When using an peripheral I/O interrupt to exit stop mode or wait mode, the relevant interrupt must have been
enabled and set to a priority level above the level set by the interrupt priority set bits for exiting a stop/wait
state. Set the interrupt priority set bits for exiting a stop/wait state to the same level as the processor interrupt
level (IPL) of flag register (FLG).

RESET and NMI interrupt are independent of the interrupt priority set bits for exiting a stop/wait state, and
stop/wait state is exited.

Rev.1.00 2006.05.31 page 320 of 335 RENESAS
REJ09B0319-0100

Chapter 6

Calculation Number of Cycles

6.1 Instruction queue buffer

Chapter 6 Calculation number of cycles 6.1 Instruction queue buffer

6.1 Instruction queue buffer

The M32C/80 Series have 8-stage (8-byte) instruction queue buffers. If the instruction queue buffer has a
free space when the CPU can use the bus, instruction codes are taken into the instruction queue buffer.
This is referred to as “prefetch”. The CPU reads (fetches) these instruction codes from the instruction
gueue buffer as it executes a program.

Explanation about the number of cycles in Chapter 4 assumes that all the necessary instruction codes are
placed in the instruction queue buffer, and that data is read or written to the memory connected via a 16-bit
bus (including the internal memory) beginning with even addresses without software wait or RDY or other
wait states. In the following cases, more cycles may be needed than the number of cycles shown in this
manual:

» When not all of the instruction codes needed by the CPU are placed in the instruction queue buffer...
Instruction codes are read in until all of the instruction codes required for program execution are avail-
able. Furthermore, the number of read cycles increases in the following cases:

(1) The number of read cycles increases as many as the number of wait cycles incurred when reading
instruction codes from an area in which software wait or RDY or other wait states exist.

(2) When reading instruction codes from memory chips connected to an 8-bit bus, more read cycles are
required than for 16-bit bus.

» When reading or writing data to an area in which software wait or RDY or other wait states exist...

The number of read or write cycles increases as many as the number of wait cycles incurred.

» When reading or writing 16-bit data to memory chips connected to an 8-bit bus...

The memory is accessed twice to read or write one 16-bit data. Therefore, the number of read or write
cycles increases by one for each 16-bit data read or written.

» When reading or writing 16-bit data to memory chips connected to a 16-bit bus beginning with an odd
address...

The memory is accessed twice to read or write one 16-bit data. Therefore, the number of read or write
cycles increases by one for each 16-bit data read or written.

Note that if prefetch and data access occur in the same timing, data access has priority. Also, if more than
seven bytes of instruction codes exist in the instruction queue buffer, the CPU assumes there is no free

space in the instruction queue buffer and, therefore, does not prefetch instruction code.

Figures 6.1.1 to 6.1.8 show examples of instruction queue buffer operation and CPU execution cycles.

Rev.1.00 2006.05.31 page 322 of 335 RENESAS
REJ09B0319-0100

Chapter 6 Calculation number of cycles 6.1 Instruction queue buffer

L”nségicé')‘(’encsution (omp TEST11 Ywmovw(JMP TEST 12)
Fetch code | 7A | COEB | A | | |
Content at jump address is / / Content at jump address is
prefetched at the same time the Fetch Fetch prefetched at the same time the
instruction queue buffer is cleared. instruction queue buffer is cleared.
pE | c9 [/co\|(7a)| pE | c9 | c9
Instruction pe | eB [\es/| bE | DE EB EB
queue buffer DE 7A DE DE BB
DE DE DE DE FF
DE DE
DE
DE

Jump address

ek S VR S s

Address bus ~<FFC02A><FFCOZC FFCO2E) FFC030) FFC032) FFC036 FFCO38>—

RD P

=
~-
=
==
=

Data bus(H)

Data bus(L)

BN
LI
CIEILE
BN
IR
21

|
T
o)
Rv)
T
T
o

WR

P : Indicates a prefetch (reading from memory into the instruction queue buffer).
|:| : Indicates the locations of the instruction queue buffer that are cleared.

Sample program

Address Code Instruction
FFC024 TEST_10:

FFC024 7A JMP TEST_ 11
FFC025 DE NOP

FFC026 DE NOP

FFC027 DE NOP

FFC028 DE NOP

FFC029 DE NOP

FFC02A DE NOP

FFC02B DE NOP

FFCO02C TEST_11:

FFC02C C9EB MOV.W.:G RO,R1
FFCO2E 7A JMP TEST_12
FFCO2F DE NOP

FFCO030 DE NOP

FFCO031 DE NOP

FFC032 DE NOP

FFCO033 DE NOP

FFC034 DE NOP

FFCO035 DE NOP

FFCO036 TEST_12:

Figure 6.1.1. When executing a register transfer instruction starting from an even address
(Program area: 16-bit bus without wait state; Data area: 16-bit bus without wait state)

Rev.1.00 2006.05.31 page 323 of 335 RRENESAS
REJ09B0319-0100

Chapter 6 Calculation number of cycles

6.1 Instruction queue buffer

Instructions

Fetch code

Instruction
queue buffer

BCLK

Address bus

Data bus (H)

Data bus (L)

RD

WR

Address
FFC024
FFC024
FFC025
FFCO026
FFC027
FFC028
FFC029
FFCO02A
FFC02B
FFCO02C
FFCO02D
FFCO02D
FFCO2F
FFCO030
FFCO031
FFC032
FFC033
FFCO034
FFC035
FFCO036
FFCO037

under execution

Content at jump address is
prefetched at the same time the
instruction queue buffer is cleared

C JMP TEST 11 Yvovw)(JMP TEST 12)
L= | | Jeeslwm]| [| |
Not all codes are ready in the
N R S et o

DE | c9 | co |/co\|(7AD| DE co c9 c9
DE e [\es/| pe | bE EB | EB
DE 7A 7A | DE | DE BB | BB
DE DE | DE | DE FF
DE DE | DE | DE 9E
DE DE

DE

Jump address

D

L L

L L L L

’J

L

~<FFC02A FFCO02D,

V'

|

FFCO2E

=

FFC030><FFCO32

=

FFC034

=

FFCO37><FFC038

=

FFCO3§—

N N N
e
P pl |P| |P| |P| |P] |P| |P

P : Indicates a prefetch (reading from memory into the instruction queue buffer).

|:| : Indicates the locations of the instruction queue buffer that are cleared.
Sample program

Code Instruction
TEST_10:
7B JMP
DE NOP
DE NOP
DE NOP
DE NOP
DE NOP
DE NOP
DE NOP
DE NOP
TEST 11:
C9EB MOV.W:.G
7A JMP
DE NOP
DE NOP
DE NOP
DE NOP
DE NOP
DE NOP
DE NOP
TEST_12:

TEST 11

RO,R1
TEST 12

Figure 6.1.2. When executing a register transfer instruction starting from an odd address
(Program area: 16-bit bus without wait state; Data area: 16-bit bus without wait state)

Rev.1.00 2006.05.31 page 324 of 335

REJ09B0319-0100

RENESAS

Chapter 6 Calculation number of cycles

6.1 Instruction queue buffer

Instructions (JMP TEST 11)(

MOV.W

)(JMP TEST 12)

under execution

Fetch code | 7A

| BQFBl 0020 |

Content at jump
address is prefetched at
the same time the
instruction queue buffer

Fetch Fetch
Fetch

Content at jump address
is prefetched at the
same time the instruction
queue buffer is cleared.

is cleared. DE <7A> DE B9 B9
DE | FB Q:Bj \2Cy DE DE | FB | FB
Instruction DE DE DE 00
queue buffer
DE 20 DE DE DE 20
DE DE
DE
DE

Jump address

e TN LI

LU L L

L L

Address bus ~<FFC02A><FFC02C><FFC02E><FFC030>< 02000 ><FFC032><FFCOS4><FFCO38><FFC03A>>

Content at address 200116
patabus ¢ {25 —{FB}—{20—{Pe—{aa)—{pg—{pEr—{re)—{)

A Content at address 200016

oaatus {0 —{e9—{oo—{r4r—{4—{og—pe—{eg—{9)
RD P P P P DR P P P P

Sample program

Address Code
FFCO024 TEST_10:
FFCO024 A
FFC025 DE
FFC026 DE
FFC027 DE
FFC028 DE
FFCO029 DE
FFCO02A DE
FFC02B DE
FFC02C TEST_11:
FFCO02C B9FB0020
FFC030 7A
FFCO031 DE
FFC032 DE
FFCO033 DE
FFC034 DE
FFC035 DE
FFC036 DE
FFC037 DE
FFCO038 TEST _12:

JMP
NOP
NOP
NOP
NOP
NOP
NOP
NOP

MOV.W:G

JMP
NOP
NOP
NOP
NOP
NOP
NOP
NOP

Instruction

TEST_11

02000h,R1
TEST 12

P : Indicates a prefetch (reading from memory into the instruction queue buffer).
DR : Indicates a data read.
|:| : Indicates the locations of the instruction queue buffer that are cleared.

Figure 6.1.3. When executing an instruction to read from even addresses starting from an even address
(Program area: 16-bit bus without wait state; Data area: 16-bit bus without wait state)

Rev.1.00 2006.05.31 page 325 of 335

REJ09B0319-0100

RENESAS

Chapter 6 Calculation number of cycles 6.1 Instruction queue buffer

Instructions JMP TEST 11 MOV.W JMP TEST 12
under execution (— X X)
Fetch code | 7A | | | BOFB | 0020 | | | 7A | | |
Content at jump Content at jump address
address is prefetched at is prefetched at the
the same time the Fetch Fetch same time the instruction
instruction queue buﬁer\ Fetch)/ queue buffer is cleared.
Is cleared. DE | B9 [/BoN[/on\] 7A [7a [(GAD] DE | B9 | B9
pE | FB |[\rB /\20/| pE | DE | DE | DE | FB | FB
Instruction DE 01 7A DE | DE 01
queue buffer
DE 20 DE DE DE 20
DE DE
DE
DE

Jump address

4

Address bus {FFCOZA FFC02C FFC02E><FFCO30>< 02001>< 02002><FFCO32><FFC034><FFC038><FFCO3A>—

Content at address 200116
o) = N - = - R
= S S B N e i
P P DR P P P

P DR

3|

O
» &1 &
-

P : Indicates a prefetch (reading from memory into the instruction queue buffer).
DR : Indicates a data read.

|:| . Indicates the locations of the instruction queue buffer that are cleared.

Sample program

Address Code Instruction

FFC024 TEST_10:

FFC024 7A JMP TEST_11
FFC025 DE NOP

FFC026 DE NOP

FFC027 DE NOP

FFC028 DE NOP

FFCO029 DE NOP

FFCO02A DE NOP

FFC02B DE NOP

FFC02C TEST_11:

FFC02C B9FB0120 MOV.W:G 02001h,R1
FFC030 7A JMP TEST_12
FFC031 DE NOP

FFC032 DE NOP

FFC033 DE NOP

FFC034 DE NOP

FFCO035 DE NOP

FFC036 DE NOP

FFC037 DE NOP

FFC038 TEST_12:

Figure 6.1.4. When executing an instruction to read from odd addresses starting from an even address
(Program area: 16-bit bus without wait state; Data area: 16-bit bus without wait state)

Rev.1.00 2006.05.31 page 326 of 335 RENESAS
REJ09B0319-0100

Chapter 6 Calculation number of cycles 6.1 Instruction queue buffer

Lnnsé;urcéi;gsuﬂon(JMP TEST 11)(MOV.W X JMP TEST 12)
Fetchcode | 7A | | [BoFB| 0020 | | |02207A| | |
Content at jump Content at jump address

address is prefetched at is prefetched at the

the same time the Fetch Fetch same time the instruction
instruction queue buffer\\ Fetch)/ queue buffer is cleared.
is cleared. DE | B7 |/B7\| 00\ 02 [02 [/02\] DE [B7 | B7
pE | B [\rB /[\20/| 20 | 20 [[20 || DE | FB | FB
Instruction
DE 00 02 TA 7A DE 00
queue buffer \\/
DE 20 20 DE DE 20
DE DE
DE DE
DE
Jump address
|

Al
Address bus <FFCOZ FFC02C><FFCOZE><FFCOSO>< 02000 ><FF0032><FFC034>< 02002 ><FFCOS FF(:03C>»
Content at address 200116

Data bus (H) @ @ @ @ @ @ @

Content at address 200016
0 o oo
RD P P = P DR P P P P P

WR DW

P : Indicates a prefetch (reading from memory into the instruction queue buffer).
DR : Indicates a data read.
DW : Indicates a data write.

|:| : Indicates the locations of the instruction queue buffer that are cleared.

Sample program

Address Code Instruction

FFC024 TEST_10:

FFC024 7A JMP TEST_11
FFCO025 DE NOP

FFC026 DE NOP

FFC027 DE NOP

FFCO028 DE NOP

FFCO029 DE NOP

FFCO02A DE NOP

FFC02B DE NOP

FFC02C TEST_11:

FFC02C B7FB00200220 MOV.W 02000h,02002h
FFCO032 A JMP TEST_12
FFCO033 DE NOP

FFC034 DE NOP

FFCO035 DE NOP

FFCO036 DE NOP

FFCO037 DE NOP

FFCO038 DE NOP

FFCO039 DE NOP

FFCO3A TEST_12:

Figure 6.1.5. When executing an instruction to transfer data between even addresses starting from an even address
(Program area: 16-bit bus without wait state; Data area: 16-bit bus without wait state)

Rev.1.00 2006.05.31 page 327 of 335 RRENESAS
REJ09B0319-0100

Chapter 6 Calculation number of cycles 6.1 Instruction queue buffer

Instructions JMP TEST_11 MOV.W JMP TEST_12
under execution C —)()(—)
Fetch code | 7A | BOFB | 0020 | 7A | | |
Content at jump Content at jump address
address is prefetched at is prefetched at the
the same time the Fetch Fetch same time the instruction
instruction queue buffer Fetch / queue buffer is cleared.
is cleared. DE /B [/ 00 C7A>[DE [B9 [B9
pe | FB [\FB /\ 20/| DE | DE | DE | FB | FB
Instruction DE 00 7A DE | DE 00
queue buffer
DE 20 DE DE DE 20
DE DE
DE
DE

Jump address

FFC030><FFCO32>< 02000 ><FFC034><FFCO36><FFC03A><FFCOS(%»

FFCO2E

=<
=

Address bus <FFC02C

Data bus (H) @ @ @ @ @ @ @ @ @
& Content at address 200016

Data bus (L) @ @ @ @ @ @ @ @ @

RD P P P P DR P P P =

‘WR

P : Indicates a prefetch (reading from memory into the instruction queue buffer).
DR : Indicates a data read.
|:| : Indicates the locations of the instruction queue buffer that are cleared.

Sample program

Address Code Instruction

FFCO026 TEST_10:

FFC026 7A JMP TEST_11
FFC027 DE NOP

FFC028 DE NOP

FFC029 DE NOP

FFCO02A DE NOP

FFC02B DE NOP

FFC02C DE NOP

FFCO02D DE NOP

FFCO2E TEST_11:

FFCO2E B9FB0020 MOV.W:G 02000h,R1
FFCO032 7A JMP TEST_12
FFC033 DE NOP

FFC034 DE NOP

FFC035 DE NOP

FFC036 DE NOP

FFC037 DE NOP

FFC038 DE NOP

FFCO039 DE NOP

FFCO3A TEST_12:

Figure 6.1.6. When executing an instruction to read from even addresses starting from an even address
(Program area: 16-bit bus without wait state; Data area: 16-bit bus with wait state)

Rev.1.00 2006.05.31 page 328 of 335 RENESAS
REJ09B0319-0100

Chapter 6 Calculation number of cycles 6.1 Instruction queue buffer

Instructions JMP TEST_11 MOV.W JMP TEST_12

under execution (X X)

Fetchcode | 7A | | [BoFB | 0080 | | | 7 | | |
Content at jump Content at jump address
address is prefetched at is prefetched at the
the same time the Fetch Fetch same time the instruction
instruction queue buffer\\ Fetch)/ queue buffer is cleared.
is cleared. DE | B9 [/BO\][/00N\] 7A [7a [C7AD] DE [B9 | B9

pE | /B [\Fr8 /[\80/] pE | DE | DE | DE | FB | FB
o | 7A

Instruction DE DE DE 00
queue buffer
DE 80 DE DE DE 80
DE DE
DE
DE

Jump address

1

Address bus <FFC02A><FFC02C><FFC02E><FFC030>< osooo>< 08001 ><FFCO32><FFCO34><FFCO38><FFC03A>»

Content at address 800016 Content at address 800116

Ty
ooty — 08B

P : Indicates a prefetch (reading from memory into the instruction queue buffer).
DR : Indicates a data read.
I:I : Indicates the locations of the instruction queue buffer that are cleared.

Sample program

Address Code Instruction

FFC024 TEST_10:

FFC024 7A JMP TEST 11
FFC025 DE NOP

FFC026 DE NOP

FFC027 DE NOP

FFC028 DE NOP

FFC029 DE NOP

FFC02A DE NOP

FFC02B DE NOP

FFC02C TEST_11:

FFC02C B9FB0080 MOV.W:G 08000h,R1
FFC030 7A JMP TEST_12
FFC031 DE NOP

FFC032 DE NOP

FFC033 DE NOP

FFC034 DE NOP

FFC035 DE NOP

FFC036 DE NOP

FFC037 DE NOP

FFCO038 TEST_12:

Figure 6.1.7. When executing a read instruction for memory connected to 8-bit bus
(Program area: 16-bit bus without wait state; Data area: 8-bit bus without wait state)

Rev.1.00 2006.05.31 page 329 of 335 RRENESAS
REJ09B0319-0100

Chapter 6 Calculation number of cycles 6.1 Instruction queue buffer

Instructions IMP TEST 11 MOV.W JMP TEST_12
under execution (— X X —)

Fetch code | 7A | | |BQFB| | 0080| | | A | | | |

Content at jump address

j Content at jump address
is prefetched at the \ is prefetcheg at the
same time the instruction Fetch Fetch Fetch same time the instruction
queue buffer is cleared.)/ queue buffer is cleared.

pE | B9 | B9 [/B9) 00 |/00\ 7a |C7a) pE | B9 | B9 | B9
DE B \F8/| 80 | s |\s0/| DE | DE | DE | DE FB | FB
Instruction \ / \ /
queue buffer DE 00 7A | 7A DE | DE 00
DE

Jump address

e TN LML LU LLLTL

Address bus
<FFCOZ7><FFCOZ§<FF002D FFC02E><FFC02|§< FFC03(><FFCO31>< 08000>< 08001 ><FFCOSZ><FF0033><FF0038><FFC039><FFCO3A>»

Data bus (H)

Data bus (L) @
P

Content at address 800016 Content at address 800115

p[P p[e[|P[]P[|orR[]OR Pl |P

Sl
O

P : Indicates a prefetch (reading from memory into the instruction queue buffer).
DR : Indicates a data read.
I:I - Indicates the locations of the instruction queue buffer that are cleared.

Sample program

Address Code Instruction

FFC024 TEST_10:

FFC024 7A JIMP TEST 11
FFC025 DE NOP

FFC026 DE NOP

FFC027 DE NOP

FFC028 DE NOP

FFC029 DE NOP

FFC02A DE NOP

FFC02B DE NOP

FFC02C TEST_11:

FFC02C B9FB0080 MOV.W:G 08000h,R1
FFC030 7A JIMP TEST_12
FFC031 DE NOP

FFC032 DE NOP

FFC033 DE NOP

FFC034 DE NOP

FFC035 DE NOP

FFC036 DE NOP

FFC037 DE NOP

FFCO038 TEST_12:

Figure 6.1.8. When executing a read instruction for memory connected to 8-bit bus
(Program area: 8-bit bus without wait state; Data area: 8-bit bus without wait state)

Rev.1.00 2006.05.31 page 330 of 335 RENESAS
REJ09B0319-0100

Chapter 7

Precautions

7.1 String/Product-Sum Operation Instruction

Chapter 7 Precautions 7.1 String/Product-Sum Operation Instruction

7.1 String Instruction, Product-Sum Operation Instruction
The string instructions and the product sum operation instruction listed in 7.1.1. Subject Instructions will
be aborted under the conditions listed in 7.1.2 Problem Conditions.

7.1.1 Subject Instructions
String instructions: SCMPU, SIN, SMOVB, SMOVF, SMOVU, SOUT, SSTR
Product sum operation instruction: RMPA

7.1.2 Problem Conditions

When DMAC is not used:

1) (a) The interrupt A is requested when bits ILVL2 to ILVLO in the interrupt control registers are set to
other than 000b (level 0, interrupt disabled). However, the interrupt request is not acknowledged
because the | flag is set to O (interrupt disabled) or the requested interrupt has smaller priority
level than IPL (IPL interrupt priority level < 001b) while the interrupt is requested.

(b) After (a), set the IR bit in the interrupt control register for the interrupt A to 0 (no interrupt request)
by program or set the interrupt priority level smaller than the last set level.

(c) After (b), execute the subject instruction, SCMPU, SIN, SMOVB, SMOVF, SMOVU, SOUT,
SSTR, or RMPA, immediately after setting the | flag to 1 or IPL to smaller priority than the
interrupt priority level, which is set when an interrupt request is generated, to enable the
requested interrupt.

When DMAC is used,

2) (a) The interrupt A is requested when bits ILVL2 to ILVLO are set to other than 000b. However, the
interrupt request is not acknowledged because the | flag is set to 0 or the requested interrupt
has smaller priority level than IPL (IPL interrupt priority level < 001b) while the interrupt is
requested.

(b) After (a), set the IR bit for the interrupt A to 0 by program or set the interrupt priority level smaller
than the last set level.

(c) After (b), execute the subject instruction within next three instructions after setting the | flag to 1
or IPL to smaller priority than the interrupt priority level, which is set when an interrupt request is
generated, to enable the requested interrupt.

3) (a) Interrupts are generated immediately before or in the middle of executing the subject instruction.
The interrupt A request is generated when bits ILVL2 to ILVLO are set to other than 000b (level
0, interrupt disabled) in the interrupt routine. However, the interrupt request is not acknowledged
because | flag is set to O or because IPL is equal to or greater than the interrupt priority level
even if | flag is set to 1 (multiple interrupts enabled).

(b) After (a), set the IR bit for the interrupt A to 0 by program or set the interrupt priority level smaller
than the last set level.

(c) After (b), execute the subject instructions after the interrupts are completed with the REIT
instruction or FREIT instruction.

If DMA transfer occurs in conditions 2)-(c) or 3)-(c), the subject instruction is aborted.
The patterns for the above conditions 1) through 3) are illustrated in Figure 7.1.

7.1.3 Operation Check
Use the flow chart in Figure 7.2 to determine whether the countermeasure programs are needed.
When the countermeasure is needed, refer to 7.1.4.

7.1.4 Countermeasure Program
To execute the subject instruction, interrupts need to be disabled. If interrupts cannot be disabled, use
the countermeasure program in Figure 7.3.

Rev.1.00 2006.05.31 page 332 of 335 RENESAS
REJ09B0319-0100

Chapter 7 Precautions 7.1 String/Product-Sum Operation Instruction

felr | < Interrupt disabled
: _ } @
Interrupt A request is generated IR bit is set to 1 (interrupt requested)
mov.b #3, interrupt control register for the interrupt A<4— Set the IR bit to O (interrupt not (b)
: requested)
mov.w #0, RO
fset | < Interrupt enabled ©
Subject instructions < Subject instructions aborted
Condition |
fclr | < Interrupt disabled
: (a)
Interrupt A request is generated < IR bit is set to 1 (interrupt requested)
mov.b #3, interrupt control register for the interrupt A «— Set the IR bit to O (interrupt not (b)
: requested)
mov.w #0, RO
fset | < DMA transfer is| «——— Interrupt enabled
nop generated at this (©
Subject instructions timing <—— Subject instructions aborted
Condition 11

An interrupt is generated immediately before or in the middle of subject
fset | instruction execution. In the interrupt routine, | flag is set to O (interrupt
. disabled)

mov.w #0, RO
mov.w #addr, Al Interrupt (I =0)
mov.w #cycl, R3 : } ()

: Interrupt A request is generated
Subject instructions < :

and.b #00001011b, interrupt control register for interrupt A (b)
Subject instructions :

aborted reit < DMA transfer is (©)
generated at this
timing
Condition 111

Figure 7.1 Problem Conditions

Rev.1.00 2006.05.31 page 333 of 335 RENESAS
REJO9B0319-0100

Chapter 7 Precautions

7.1 String/Product-Sum Operation Instruction

NO

Check flow

)

NO

Using any subject instruction?

YES

Executing the subject

instruction while | flag is setto 1? NO

A 4

YES

Is there any instruction to
set the | flag or to control IPL
immediately before executing
the subject instruction?

YES

o
N
-
[0}
[2]
@©
$)

Case 1.2(2)
Case 1.2(3)

A 4 A

4

YES

YES

Using DMA transfer?

YES
NO

\ 4

Setting the IR bit or IPL within
3 instructions before the subject
instruction?

NO

Using any instruction to set
the IR bit to 0 while an interrupt is
acknowledged when executing the
subject instruction?

NO

sing any instruction to se
the interrupt priority level smaller
than the set level while an interrupt is
acknowledged when executing the
subject instruction?

NO

\ 4

Case 1.2(3) YES

A

C

Apply countermeasure program

Countermeasure
rogram not neede

)G)

Figure 7.2 Operation Check Flow

Rev.1.00 2006.05.31 page 334 of 335
REJ09B0319-0100

RENESAS

Chapter 7 Precautions 7.1 String/Product-Sum Operation Instruction

e|nstructions SIN, SMOVB, SMOVF, SOUT, and SSTR

Loop:

cmp.w
jnz

*SMOVU Instruction

String instruction

#0, R3
Loop

When the size specifier is ".B,"

*SCMPU Instruction
When the size specifier is “.B,”

Loop: Loop:
smovu.b scmpu.b
sub.| #1, AO pushc FLG
sub.| #1, Al jnz Next
cmp.b #0, [AO] sub.| #1, AO
jnz Loop sub. #1, Al
cmp.b #0, [AQ]
When the size specifier is “.W,” jz Next
Loop: popc FLG
SMOoVU.W jmp Loop
sub.| #1, AO Next:
sub.| #1, Al popc FLG
cmp.b #0, [AQ]
iz Next When the size specifier is “.W,”
sub.| #1, A0 Loop:
sub.| #1, Al scmpu.w
cmp.b #0, [AQ] pushc FLG
jnz Loop jnz Next
Next: sub.| #1, AO
sub.| #1, Al
*RMPA Instruction cmp.b #0, [AO]
Loop: iz Next
rmpa.b (rmpa.w) sub.l #1, A0
pushc FLG sub.| #1, Al
jz Next cmp.b #0, [AO]
popc FLG iz Next
jmp Loop popc FLG
Next: imp Loop
popc FLG Next:
popc FLG

Figure 7.3 Countermeasure Programs

Rev.1.00 2006.05.31 page 335 of 335 RENESAS

REJ09B0319-0100

Q&A

Information in a Q&A form to be used to make the most of the M16C Family is given below.
Usually, one question and the answer to it are given on the same page; the upper section is for the
guestion, and the lower section is for the answer (if a pair of question and answer extends over two
or more page, a page number is given at the lower-right corner).

Functions closely connected with the contents of a page are shown at its upper-right corner.

CPU

Q

How do I distinguish between the static base register (SB) and the frame base register (FB)?

Only positive displacement is allowed in SB Relative Addressing, while FB Relative Ad-
dressing can be with positive or negative displacement.

If you write a program in C, use FB as a stack frame base register.

You can use SB and FB as intended in programming in the assembly language.

CPU

Q

What is the difference between the user stack pointer (USP) and the interrupt stack pointer
(ISP)? What are their roles?

You use USP when using the OS. When several tasks run, the OS secures stack areas to
save registers of individual tasks. Also, stack areas have to be secured, task by task, to be
used for handling interrupts that occur while tasks are being executed. If you use USP and
ISP in such an instance, the stack for interrupts can be shared by these tasks; this allows
you to efficiently use stack areas.

Q&A-1

CPU

Q

What is the difference between the DIV instruction and the DIVX instruction?

Either of the DIV instruction and the DIVX instruction is an instruction for signed division,
the sign of the remainder is different.

The sign of the remainder left after the DIV instruction is the same as that of the dividend, on
the contrary, the sign of the remainder of the DIVX instruction is the same as that of the
divider.

In general, the following relation among quotient, divider, dividend, and remainder holds.
dividend = divider X quotient + remainder

Since the sign of the remainder is different between these instructions, the quotient ob-
tained either by dividing a positive integer by a negative integer or by dividing a negative
integer by a positive integer using the DIV instruction is different from that obtained using
the DIVX instruction.

For example, dividing 10 by —3 using the DIV instruction yields -3 and leaves +1, while doing
the same using the DIVX instruction yields —4 and leaves —2.

Dividing —10 by +3 using the DIV instruction yields -3 and leaves -1, while doing the same
using the DIVX instruction yields —4 and leaves +2.

Interrupt

Q

It is possible to change the value of the interrupt table register (INTB) while a program is
being executed?

A

Yes. But there can be a chance that the MCU runs away out of control if an interrupt request
occurs in changing the value of INTB. So it is not recommended to frequently change the
value of INTB while a program is being executed.

Q&A-2

Term

Meaning Related word

Glossary

Technical terms used in this software manual are explained below. They are good in this manual only.

borrow

carry

context

decimal addition

displacement

effective address

LSB

To move a digit to the next lower position. carry

To move a digit to the next higher position. borrow

Registers that a program uses.

An addition in terms of decimal system.

The difference between the initial position and later

position.

An after-modification address to be actually used.

Abbreviation for Least Significant Bit MSB
The bit occupying the lowest-order position of a data item.

Glossary-1

Term

Meaning Related word

MSB

operand

operation

operation code

overflow

pack

SFR area

Abbreviation for Most Significant Bit LSB
The bit occupying the highest-order position of a
data item.

A part of instruction code that indicates the object on ~ operation code
which an operation is performed.

A generic term for move, comparison, bit processing,
shift, rotation, arithmetic, logic, and branch.

A part of instruction code that indicates what sort of operand
operation the instruction performs.

To exceed the maximum expressible value as a result
of an operation.

To join data items. unpack
Used to mean to form two 4-bit data items into one 8-

bit data item, to form two 8-bit data items into one 16-

bit data item, etc.

Abbreviation for Special Function Area. An area in
which control bits of peripheral circuits embodied in a
MCU and control registers are located.

Glossary-2

Term

Meaning Related word

shift out

sign bit

sign extension

stack frame

string

unpack

Zero extension

To move the content of a register either to the right or
left until fully overflowed.

A bit that indicates either a positive or a negative (the
highest-order bit).

To extend a data length in which the higher-order to be
extended are made to have the same sign of the sign
bit. For example, sign-extending FF16 results in
FFFF16, and sign-extending OF16 results in 000F16.

An area for automatic variables the functions of the C
language use.

A sequence of characters.

To restore combined items or packed information to pack
the original form. Used to mean to separate 8-bit

information into two parts — 4 lower-order bits and

four higher-order bits, to separate 16-bit information

into two parts — 8 lower-order bits and 8 higher-order

bits, or the like.

To extend a data length by turning higher-order bits to
0's. For example, zero-extending FF16 to 16 bits
results in 00FF16.

Glossary-3

Table of symbols

Symbols used in this software manual are explained below. They are good in this manual only.

Symbol Meaning
- Transposition from the right side to the left side
- Interchange between the right side and the left side
+ Addition
- Subtraction
X Multiplication
- Division
A Logical conjunction
\% Logical disjunction
v Exclusive disjunction
- Logical negation
dsp24 24-bit displacement
dspl6 16-bit displacement
dsp8 8-bit displacement
EVA() An effective address indicated by what is enclosed in ()
EXTS() Sign extension indicated by what is enclosed in ()
EXTZ() Zero extension indicated by what is enclosed in ()
(HH) Higher-order byte of higher-order word of a register or memory (highest byte)
H4: Four higher-order bits of an 8-bit register or 8-bit memory
(HL) Lower-order byte of higher-order word of a register or memory
I 1 Absolute value
(LH) Higher-order byte of lower-order word of a register or memory
(LL) Lower-order byte of lower-order word of a register or memory (lowest byte)
L4: Four lower-order bits of an 8-bit register or 8-bit memory
LSB Least Significant Bit
M() Content of memory indicated by what is enclosed in ()
MSB Most Significant Bit
PCH Higher-order byte of the program counter
PCML Middle-order byte and lower-order byte of the program counter
FLGH Four higher-order bits of the flag register
FLGL Eight lower-order bits of the flag register
[1] Indirect addressing

Symbol-1

Address Space 3
Addressing Mode 22

Byte (8-bit) data 16

Data type 11
DCTO/DCTL 6

DRAO/DRAL 6
DRCO/DRC1 6
DSAOQO/DSAL 6

Fixed vector table 19

Index

Instruction format specifier 39

Integer 11

Interrupt vector table 19

L

Long word (32-bit) data 16

Maskable interrupt 309
Memory bit 12

Mnemonic 39, 42

Nibble (4-bit) data 16

Nonmaskable interrupt 309

O

Operand 39, 42

RO, R1, R2,R3 5 Word (16-bit) data
ROH, R1H 5

Z
ROL, R1L 5
R2RO ... 5 Zflag ... 7
R3R1 5

Register Bank 9
Register bit 12

Reset 10

S
Sflag 7
SB ... 5

Selectable src / dest (label) 41

Size specifier 39

Software interrupt number 20
Special page number 19
Special page vector table 19
SIC 18

String 15

SVF 5

SVP ... 5

Syntax 39, 42

U
Uflag 7
USP 5

\Y
Variable vector table 20
VCT 6

Index-2

REVISION HISTORY M32C/80 Series Software Manual

Rev. Date Description
Page Summary
B |[Sep01,2001| —— |Preliminary edition issued
1.00|May 31, 2006 Document number is changed from "MEJ19B0002-0200Z" to "REJ09B0319-0100"
2 "Speed performance” is modified.
109, 111 MUL and MULU instruction
-Add "RO, R1, A0, Al can be selected for dest" in [Function] line 7.
-Delete "the result is stored i+-R2R8 in 32 bits." in [Function] line 12.
-Add "R2R0 is selected for dest" in [Function] line 12.
-"*1 When you specify (.B) and (.W) for the indirect addressing [src], you can use in all
addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1, R1H/R3/-, and #IMM;
when (.L), you cannot use [src]."
--->"*1 When the size specifier (.size) is (.B), indirect instruction addressing [src] and
[dest] can be used in all addressing except ROL, ROH, R1L, R1H, and #IMM.
When the size specifier (.size) is (.\W), indirect instruction addressing [src] can be used
in all addressing except RO, R1, and #IMM. Indirect instruction addressing [dest]
cannot be used in any addressing.
When the size specifier (.size) is (.L), no indirect instruction addressing can be used."
-Delete "*3 When you specify (.L) for the size specifier (.size), you can choose only
R2RO for dest"
Chap 3 | Errors in [Function] are fixed.
Chap 4 | "Number of cycles" is modified.
257, 258 "When (\W) is specified for the size specifier (.size), only Rn and An can be selected
260, 261 for dest" is added.
315 "Note" is modified.
331 "Chapter 7 Precautions" is added.

Revision history-1

M32C/80 Series Software Manual
Publication Date: Rev.1.00 May 31, 2006

Published by: Sales Strategic Planning Div.
Renesas Technology Corp.

© 2006. Renesas Technology Corp., All rights reserved. Printed in Japan.

M32C/80 Series
Software Manual

LENESANS

RenesasTechnology Corp.
2-6-2, Ote-machi, Chiyoda-ku, Tokyo, 100-0004, Japan

	Using this manual
	Table of contents
	Quick Reference
	Chapter 1
	1.1 Features of M32C/80 series
	1.2 Address Space
	1.3 Register Configuration
	1.4 Flag Register
	1.5 Register Bank
	1.6 Internal State after Reset
	1.7 Data Types
	1.8 Data Arrangement
	1.9 Instruction Format
	1.10 Vector Table

	Chapter 2
	2.1 Addressing Modes
	2.2 Guide to this Chapter
	2.3 General Instruction Addressing
	2.4 Indirect Instruction Addressing
	2.5 Special Instruction Addressing
	2.6 Bit Instruction Addressing
	2.7 Read and write operations with 24-bit registers

	Chapter 3
	3.1 Guide to This Chapter
	3.2 Functions
	ABS
	ADC
	ADCF
	ADD
	ADDX
	ADJNZ
	AND
	BAND
	BCLR
	BITINDEX
	BMCnd
	BNAND
	BNOR
	BNOT
	BNTST
	BNXOR
	BOR
	BRK
	BRK2
	BSET
	BTST
	BTSTC
	BTSTS
	BXOR
	CLIP
	CMP
	CMPX
	DADC
	DADD
	DEC
	DIV
	DIVU
	DIVX
	DSBB
	DSUB
	ENTER
	EXITD
	EXTS
	EXTZ
	FCLR
	FREIT
	FSET
	INC
	INDEXType
	INT
	INTO
	JCnd
	JMP
	JMPI
	JMPS
	JSR
	JSRI
	JSRS
	LDC
	LDCTX
	LDIPL
	MAX
	MIN
	MOV
	MOVA
	MOVDir
	MOVX
	MUL
	MULEX
	MULU
	NEG
	NOP
	NOT
	OR
	POP
	POPC
	POPM
	PUSH
	PUSHA
	PUSHC
	PUSHM
	REIT
	RMPA
	ROLC
	RORC
	ROT
	RTS
	SBB
	SBJNZ
	SCCnd
	SCMPU
	SHA
	SHANC
	SHL
	SHLNC
	SIN
	SMOVB
	SMOVF
	SMOVU
	SOUT
	SSTR
	STC
	STCTX
	STNZ
	STZ
	STZX
	SUB
	SUBX
	TST
	UND
	WAIT
	XCHG
	XOR

	3.3 Index instructions

	Chapter 4
	4.1 Guide to This Chapter
	4.2 Instruction Code/Number of Cycles
	ABS
	ADC
	ADCF
	ADD
	ADDX
	ADJNZ
	AND
	BAND
	BCLR
	BITINDEX
	BMcnd
	BNAND
	BNOR
	BNOT
	BNTST
	BNXOR
	BOR
	BRK
	BRK2
	BSET
	BTST
	BTSTC
	BTSTS
	BXOR
	CLIP
	CMP
	CMPX
	DADC
	DADD
	DEC
	DIV
	DIVU
	DIVX
	DSBB
	DSUB
	ENTER
	EXITD
	EXTS
	EXTZ
	FCLR
	FREIT
	FSET
	INC
	INDEXB
	INDEXBD
	INDEXBS
	INDEXL
	INDEXLD
	INDEXLS
	INDEXW
	INDEXWD
	INDEXWS
	INT
	INTO
	Jcnd
	JMP
	JMPI
	JMPS
	JSR
	JSRI
	JSRS
	LDC
	LDCTX
	LDIPL
	MAX
	MIN
	MOV
	MOVA
	MOVDir
	MOVX
	MUL
	MULEX
	MULU
	NEG
	NOP
	NOT
	OR
	POP
	POPC
	POPM
	PUSH
	PUSHA
	PUSHC
	PUSHM
	REIT
	RMPA
	ROLC
	RORC
	ROT
	RTS
	SBB
	SBJNZ
	SCCnd
	SCMPU
	SHA
	SHANC
	SHL
	SHLNC
	SIN
	SMOVB
	SMOVF
	SMOVU
	SOUT
	SSTR
	STC
	STCTX
	STNZ
	STZ
	STZX
	SUB
	SUBX
	TST
	UND
	WAIT
	XCHG
	XOR

	Chapter 5
	5.1 Outline of Interrupt
	5.2 Interrupt Control
	5.3 Interrupt Sequence
	5.4 Return from Interrupt Routine
	5.5 Interrupt Priority
	5.6 Multiple Interrupts
	5.7 Precautions for Interrupts
	5.8 Exit from Stop Mode and Wait Mode

	Chapter 6
	6.1 Instruction queue buffer

	Chapter 7
	7.1 String/Product-Sum Operation Instruction

	Q & A
	Table of symbols
	Glossary
	Index
	Revision History

