16/32

M32C/85 Group (M32C/85, M32C/85T)

Hardware Manual

RENESAS 16/32-BIT SINGLE-CHIP MICROCOMPUTER
M16C FAMILY / M32C/80 SERIES

Before using this material, please visit our website to verify that this is the most current document available.

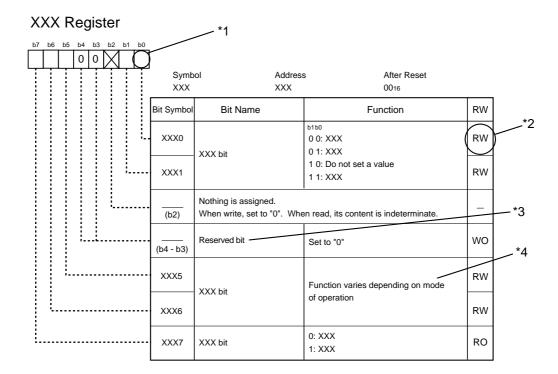
Rev. 1.03 Revision Date: Jul. 01, 2005

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/ or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.


How to Use This Manual

1. Introduction

This hardware manual provides detailed information on the M32C/85 group (M32C/85, M32C/85T) microcomputers. Users are expected to have basic knowledge of electric circuits, logical circuits and microcomputers.

2. Register Diagram

The symbols, and descriptions, used for bit function in each register are shown below.

*1

Blank: Set to "0" or "1" according to the application

- 0: Set to "0"
- 1: Set to "1"
- X: Nothing is assigned

*2

RW: Read and write

RO: Read only

WO: Write only

-: Nothing is assigned

*3

Reserved bit

Reserved bit. Set to specified value.

*4

· Nothing is assigned

Nothing is assigned to the bit concerned. As the bit may be use for future functions, set to "0" when writing to this bit.

• Do not set a value

The operation is not guaranteed when a value is set.

• Function varies depending on mode of operation

Bit function varies depending on peripheral function mode.

Refer to respective register for each mode.

3. M16C Family Documents

The following documents were prepared for the M16C family. (1)

Document	Contents
Short Sheet	Hardware overview
Data Sheet	Hardware overview and electrical characteristics
Hardware Manual	Hardware specifications (pin assignments, memory maps, peripheral
	specifications, electrical characteristics, timing charts)
Software Manual	Detailed description of assembly instructions and microcomputer perfor-
	mance of each instruction
Application Note	Application examples of peripheral functions
	Sample programs
	Introduction to the basic functions in the M16C family
	Programming method with Assembly and C languages
RENESAS TECHNICAL UPDATE	Preliminary report about the specification of a product, a document, etc.

NOTES:

1. Before using this material, please visit the our website to verify that this is the most current document available.

Table of Contents

Quick Reference by Address	B-1
1. Overview	1
1.1 Applications	
1.2 Performance Overview	2
1.3 Block Diagram	4
1.4 Product Information	5
1.5 Pin Assignments and Descriptions	
1.6 Pin Description	15
2. Central Processing Unit (CPU)	19
2.1 General Registers	
2.1.1 Data Registers (R0, R1, R2 and R3)	
2.1.2 Address Registers (A0 and A1)	
2.1.3 Static Base Register (SB)	
2.1.4 Frame Base Register (FB)	
2.1.5 Program Counter (PC)	
2.1.6 Interrupt Table Register (INTB)	
2.1.7 User Stack Pointer (USP), Interrupt Stack Pointer (ISP)	
2.1.8 Flag Register (FLG)	
2.2 High-Speed Interrupt Registers	
2.3 DMAC-Associated Registers	
3. Memory	22
4. Special Function Registers (SFR)	23
5. Reset	45
5.1 Hardware Reset 1	
5.1.1 Reset on a Stable Supply Voltage	45
5.1.2 Power-on Reset	
5.2 Brown-Out Detection Reset (Hardware Reset 2)	47
5.3 Software Reset	48
5.4 Watchdog Timer Reset	
5.5 Internal Space	
6. Voltage Detection Circuit	50
6.1 Low Voltage Detection Interrupt	54
6.1.1 Limitations on Exiting Stop/Wait Mode	56
6.2 Cold Start-up / Warm Start-up Determine Function	56

7 .	Processor Mode	57
	7.1 Types of Processor Mode	
	7.2 Setting of Processor Mode	58
8.	Bus	62
	8.1 Bus Settings	
	8.1.1 Selecting External Address Bus	63
	8.1.2 Selecting External Data Bus	63
	8.1.3 Selecting Separate/Multiplexed Bus	63
	8.2 Bus Control	65
	8.2.1 Address Bus and Data Bus	65
	8.2.2 Chip-Select Signal	65
	8.2.3 Read and Write Signals	67
	8.2.4 Bus Timing	68
	8.2.5 ALE Signal	76
	8.2.6 RDY Signal	76
	8.2.7 HOLD Signal	78
	8.2.8 External Bus Status when Accessing Internal Space	78
	8.2.9 BCLK Output	78
9.	Clock Generation Circuit	79
	9.1 Types of the Clock Generation Circuit	
	9.1.1 Main Clock	
	9.1.2 Sub Clock	89
	9.1.3 On-Chip Oscillator Clock	90
	9.1.4 PLL Clock	
	9.2 CPU Clock and BCLK	93
	9.3 Peripheral Function Clock	93
	9.3.1 f1, f8, f32 and f2n	
	9.3.2 fAD	93
	9.3.3 fc32	94
	9.3.4 fcan	94
	9.4 Clock Output Function	94
	9.5 Power Consumption Control	
	9.5.1 Normal Operating Mode	
	9.5.2 Wait Mode	
	9.5.3 Stop Mode	98
	9.6 System Clock Protect Function	

10. Protection	104
11. Interrupts	105
11.1 Types of Interrupts	
11.2 Software Interrupts	106
11.2.1 Undefined Instruction Interrupt	106
11.2.2 Overflow Interrupt	106
11.2.3 BRK Interrupt	106
11.2.4 BRK2 Interrupt	106
11.2.5 INT Instruction Interrupt	106
11.3 Hardware Interrupts	107
11.3.1 Special Interrupts	107
11.3.2 Peripheral Function Interrupt	107
11.4 High-Speed Interrupt	108
11.5 Interrupts and Interrupt Vectors	108
11.5.1 Fixed Vector Tables	109
11.5.2 Relocatable Vector Tables	109
11.6 Interrupt Request Acknowledgement	112
11.6.1 I Flag and IPL	112
11.6.2 Interrupt Control Register and RLVL Register	112
11.6.3 Interrupt Sequence	116
11.6.4 Interrupt Response Time	117
11.6.5 IPL Change when Interrupt Request is Acknowledged	118
11.6.6 Saving a Register	119
11.6.7 Restoration from Interrupt Routine	119
11.6.8 Interrupt Priority	120
11.6.9 Interrupt Priority Level Select Circuit	120
11.7 INT Interrupt	122
11.8 NMI Interrupt(1)	123
11.9 Key Input Interrupt	123
11.10 Address Match Interrupt	124
11.11 Intelligent I/O Interrupt and CAN Interrupt	125
12. Watchdog Timer	129
12.1 Count Source Protection Mode	

13. DMAC	133
13.1 Transfer Cycle	
13.1.1 Effect of Source and Destination Addresses	
13.1.2 Effect of the DS Register	140
13.1.3 Effect of Software Wait State	140
13.1.4 Effect of RDY Signal	140
13.2 DMAC Transfer Cycle	142
13.3 Channel Priority and DMA Transfer Timing	142
14. DMAC II	144
14.1 DMAC II Settings	144
14.1.1 RLVL Register	
14.1.2 DMAC II Index	146
14.1.3 Interrupt Control Register for the Peripheral Function	148
14.1.4 Relocatable Vector Table for the Peripheral Function	
14.1.5 IRLT Bit in the IIOiIE Register (i=0 to 5, 8 to 11)	148
14.2 DMAC II Performance	
14.3 Transfer Data	148
14.3.1 Memory-to-memory Transfer	148
14.3.2 Immediate Data Transfer	149
14.3.3 Calculation Transfer	149
14.4 Transfer Modes	149
14.4.1 Single Transfer	149
14.4.2 Burst Transfer	149
14.5 Multiple Transfer	149
14.6 Chained Transfer	150
14.7 End-of-Transfer Interrupt	150
14.8 Execution Time	151
15. Timer	152
15.1 Timer A	
15.1.1 Timer Mode	
15.1.2 Event Counter Mode	
15.1.3 One-Shot Timer Mode	
15.1.4 Pulse Width Modulation Mode	
15.2 Timer B	
15.2.1 Timer Mode	
15.2.2 Event Counter Mode	
15.2.3 Pulse Period/Pulse Width Measurement Mode	177

16. Three-Phase Motor Control Timer Full	nctions 180
I7. Serial I/O	191
17.1 Clock Synchronous Serial I/O Mode	
17.1.1 Selecting CLK Polarity Selecting	205
17.1.2 Selecting LSB First or MSB First	205
17.1.3 Continuous Receive Mode	206
17.1.4 Serial Data Logic Inverse	206
17.2 Clock Asynchronous Serial I/O (UART) Mode	207
17.2.1 Transfer Speed	211
17.2.2 Selecting LSB First or MSB First	212
17.2.3 Serial Data Logic Inverse	212
17.2.4 TxD and RxD I/O Polarity Inverse	
17.3 Special Mode 1 (I ² C Mode)	214
17.3.1 Detecting Start Condition and Stop Condition	220
17.3.2 Start Condition or Stop Condition Output	220
17.3.3 Arbitration	222
17.3.4 Transfer Clock	222
17.3.5 SDA Output	
17.3.6 SDA Input	
17.3.7 ACK, NACK	
17.3.8 Transmit and Receive Reset	
17.4 Special Mode 2	224
17.4.1 SSi Input Pin Function (i=0 to 4)	227
17.4.2 Clock Phase Setting Function	228
17.5 Special Mode 3 (GCI Mode)	230
17.6 Special Mode 4 (IE Mode)	234
17.7 Special Mode 5 (SIM Mode)	238
17.7.1 Parity Error Signal	242
17.7.2 Format	243
I8. A/D Converter	244
18.1 Mode Description	252
18.1.1 One-shot Mode	252
18.1.2 Repeat Mode	253
18.1.3 Single Sweep Mode	254
18.1.4 Repeat Sweep Mode 0	255
18.1.5 Repeat Sweep Mode 1	256
18.1.6 Multi-Port Single Sweep Mode	257
18.1.7 Multi-Port Repeat Sweep Mode 0	258

1	8.2 Functions	259
	18.2.1 Resolution Select Function	259
	18.2.2 Sample and Hold Function	259
	18.2.3 Trigger Select Function	259
	18.2.4 DMAC Operating Mode	259
	18.2.5 Extended Analog Input Pins	260
	18.2.6 External Operating Amplifier (Op-Amp) Connection Mode	260
	18.2.7 Power Consumption Reducing Function	261
	18.2.8 Output Impedance of Sensor Equivalent Circuit under A/D Conversion	on . 261
19.	D/A Converter	263
20.	CRC Calculation	266
	X/Y Conversion	268
	Intelligent I/O	271
	2.1 Base Timer	
2	2.2 Time Measurement Function	285
2	2.3 Waveform Generating Function	290
	22.3.1 Single-Phase Waveform Output Mode	
	22.3.2 Phase-Delayed Waveform Output Mode	293
	22.3.3 Set/Reset Waveform Output (SR Waveform Output) Mode	295
2	2.4 Communication Unit 0 and 1 Communication Function	298
	22.4.1 Clock Synchronous Serial I/O Mode (Communication Units 0 and 1)	
	22.4.2 Clock Asynchronous Serial I/O (UART) Mode (Communication Unit	•
	22.4.3 HDLC Data Processing Mode (Communication Units 0 and 1)	315
23.	CAN Module	_ 318
2	3.1 CAN-Associated Registers	322
	23.1.1 CANi Control Register 0 (CiCTLR0 Register) (i=0, 1)	322
	23.1.2 CANi Control Register 1 (CiCTLR1 Register) (i=0, 1)	325
	23.1.3 CANi Sleep Control Register (CiSLPR Register) (i=0, 1)	326
	23.1.4 CANi Status Register (CiSTR Register) (i=0, 1)	327
	23.1.5 CANi Extended ID Register (CiIDR Register) (i=0, 1)	330
	23.1.6 CANi Configuration Register (CiCONR Register) (i=0, 1)	331
	23.1.7 CANi Baud Rate Prescaler (CiBRP Register) (i=0, 1)	
	23.1.8 CANi Time Stamp Register (CiTSR Register) (i=0, 1)	
	23.1.9 CANi Transmit Error Count Register (CiTEC Register) (i=0, 1)	
	23.1.10 CANi Receive Error Count Register (CiREC Register) (i=0, 1)	335
	23.1.11 CANi Slot Interrupt Status Register (CiSISTR Register) (i=0, 1)	336

	23.1.12 CANi Slot Interrupt Mask Register (CiSIMKR Register) (i=0, 1)	338
	23.1.13 CANi Error Interrupt Mask Register (CiEIMKR Register) (i=0, 1)	339
	23.1.14 CANi Error Interrupt Status Register (CiEISTR Register) (i=0, 1)	340
	23.1.15 CANi Error Factor Register (CiEFR Register) (i=0, 1)	341
	23.1.16 CANi Mode Register (CiMDR Register) (i=0, 1)	342
	23.1.17 CANi Single-Shot Control Register (CiSSCTLR Register) (i=0, 1)	344
	23.1.18 CANi Single-Shot Status Register (CiSSSTR Register) (i=0, 1)	345
	23.1.19 CANi Global Mask Register, CANi Local Mask Register A and CANi Local N	/lask
	Register B (CiGMRk, CiLMARk and CiLMBRk Registers) (i=0,1, k=0 to 4)	346
	23.1.20 CANi Message Slot j Control Register (CiMCTLj Register) (i=0,1, j=0 to 15)	. 353
	23.1.21 CANi Slot Buffer Select Register (CiSBS Register) (i=0,1)	357
	23.1.22 CANi Message Slot Buffer j (i=0,1, j=0,1)	358
	23.1.23 CANi Acceptance Filter Support Register (CiAFS Register) (i=0,1)	362
	23.2 CAN Clock	363
	23.2.1 Main Clock Direct Mode	363
	23.3 Timing with CAN-Associated Registers	364
	23.3.1 CAN Module Reset Timing	364
	23.3.2 CAN Transmit Timing	364
	23.3.3 CAN Receive Timing	365
	23.3.4 CAN Bus Error Timing	366
	23.4 CAN Interrupts	
	23.4.1 CAN1 Wake-Up Interrupt	366
	23.4.2 CANij Interrupts	366
24	4. Programmable I/O Ports :	370
	24.1 Port Pi Direction Register (PDi Register, i=0 to 15)	370
	24.2 Port Pi Register (Pi Register, i=0 to 15)	370
	24.3 Function Select Register Aj (PSj Register) (j=0 to 3, 5, 8, 9)	370
	24.4 Function Select Register B0 to B3 (PSL0 to PSL3 Registers)	370
	24.5 Function Select Register C (PSC, PSC2, PSC3 Registers)	371
	24.6 Function Select Register D (PSD1 Register)	371
	24.7 Pull-up Control Register 0 to 4 (PUR0 to PUR4 Registers)	371
	24.8 Port Control Register (PCR Register)	371
	24.9 Input Function Select Register (IPS and IPSA Registers)	371
	24.10 Analog Input and Other Peripheral Function Input	371
25	5. Flash Memory Version :	394
	25.1 Memory Map	395
	25.1.1 Boot Mode	

25.2 Functions to Prevent the Flash Memory from Rewriting	396
25.2.1 ROM Code Protect Function	396
25.2.2 ID Code Verify Function	396
25.3 CPU Rewrite Mode	398
25.3.1 EW Mode 0	398
25.3.2 EW Mode 1	398
25.3.3 Flash Memory Control Register (FMR0 Register and FMR1 Register) .	399
25.3.4 Precautions in CPU Rewrite Mode	405
25.3.5 Software Commands	407
25.3.6 Data Protect Function	413
25.3.7 Status Register (SRD Register)	413
25.3.8 Full Status Check	415
25.4 Standard Serial I/O Mode	417
25.4.1 ID Code Verify Function	417
25.4.2 Circuit Application in Standard Serial I/O Mode	422
25.5 Parallel I/O Mode	424
25.5.1 Boot ROM Area	424
25.5.2 ROM Code Protect Function	424
26. Electrical Characteristics	425
26.1 Electrical Characteristics (M32C/85)	425
26.2 Electrical Characteristics (M32C/85T)	454
27. Precautions	466
27.1 Restrictions to Use M32C/85T (High-Reliability Version)	466
27.2 Reset	
27.3 Bus	468
27.3.1 HOLD Signal	468
27.3.2 External Bus	468
27.4 SFR	469
27.4.1 100-Pin Package	469
27.4.2 Register Settings	469
27.5 Clock Generation Circuit	470
27.5.1 CPU Clock	470
27.5.2 Sub Clock	470
27.5.3 PLL Frequency Synthesizer	471
27.5.4 External Clock	471
27.5.5 Clock Divide Ratio	471
27.5.6 Power Consumption Control	471
27.6 Protection	474

27.7 Interrupts	475
27.7.1 ISP Setting	475
27.7.2 NMI Interrupt	475
27.7.3 INT Interrupt	475
27.7.4 Watchdog Timer Interrupt	476
27.7.5 Changing Interrupt Control Register	476
27.7.6 Changing IIOiIR Register (i = 0 to 5, 8 to 11)	476
27.7.7 Changing RLVL Register	476
27.8 DMAC	477
27.9 Timer	478
27.9.1 Timers A and B	478
27.9.2 Timer A	478
27.9.3 Timer B	480
27.10 Serial I/O	481
27.10.1 Clock Synchronous Serial I/O Mode	481
27.10.2 UART Mode	482
27.10.3 Special Mode 1 (I ² C Mode)	482
27.11 A/D Converter	483
27.12 Intelligent I/O	485
27.12.1 Register Setting	485
27.13 Programmable I/O Ports	486
27.14 Flash Memory Version	487
27.14.1 Differences Between Flash Memory Version and Masked Ro	OM Version 487
27.14.2 Boot Mode	487
27.15 Noise	488
Package Dimensions	489
Register Index	491

Address	Register	Page
000016	-	
000116		
000216		
000316		
000416	Processor Mode Register 0 (PM0)	59
000516	Processor Mode Register 1 (PM1)	60
000616	System Clock Control Register 0 (CM0)	81
000716	System Clock Control Register 1 (CM1)	82
000816		
000916	Address Match Interrupt Enable Register (AIER)	124
000A16	Protect Register (PRCR)	104
000B16	External Data Bus Width Control Register (DS)	62
000C16	Main Clock Division Register (MCD)	83
000D16	Oscillation Stop Detection Register (CM2)	84
000E16	Watchdog Timer Start Register (WDTS)	
000F16	Watchdog Timer Control Register (WDC)	130
001016	, , , , , , , , , , , , , , , , , , ,	
001116	Address Match Interrupt Register 0 (RMAD0)	124
001216	, , , , , , , , , , , , , , , , , , , ,	
001316	Processor Mode Register 2 (PM2)	87
001416	r recesses mede register 2 (r m2)	<u> </u>
001516	Address Match Interrupt Register 1 (RMAD1)	124
001616	Tradition materials regions. Transition in the second seco	
001716	Voltage Detection Register 2 (VCR2)	52
001816		
001916	Address Match Interrupt Register 2 (RMAD2)	124
001A16		
001B ₁₆	Voltage Detection Register 1 (VCR1)	52
001C16		_
001D16	Address Match Interrupt Register 3 (RMAD3)	124
001E16	.,	
001F16		
002016		-
002116		-
002216		-
002316		-
002416		-
002516		-
002616	PLL Control Register 0 (PLC0)	86
002716	PLL Control Register 1 (PLC1)	86
002816		
002916	Address Match Interrupt Register 4 (RMAD4)	124
002A16	,	
002B16		
002C16		
002D16	Address Match Interrupt Register 5 (RMAD5)	124
002E16	(((((((((((((((((((
002F16	Low Voltage Detection Interrupt Register (D4INT)	53
10		

Address	Register	Page
003016		
003116		
003216		
003316		
003416		
003516		
003616		
003716		
003816		
003916	Address Match Interrupt Register 6 (RMAD6)	124
003A16	, , ,	
003B16		
003C16		
003D16	Address Match Interrupt Register 7 (RMAD7)	124
003E16	. ,	
003F16		
004016		
004116		
004216		
004316		
004416		
004516		
004616		
004716		
004816	External Space Wait Control Register 0 (EWCR0)	
004916	External Space Wait Control Register 1 (EWCR1)	
004A16	External Space Wait Control Register 2 (EWCR2)	68
004B16	External Space Wait Control Register 3 (EWCR3)	
004C16	3 10 1 17	
004D16		
004E16		
004F16		
005016		
005116		
005216		
005316		
005416		
005516	Flash Memory Control Register 1 (FMR1)	400
005616	,	
005716	Flash Memory Control Register 0 (FMR0)	399
005816		
005916		
005A16		
005B16		
005C16		
005D16		
005E16		
005E16		
3001 10		

Address	Register	Page
006016		
006116		
006216		
006316		
006416		
006516		
006616		
006716		
006816	DMA0 Interrupt Control Register (DM0IC)	
006916	Timer B5 Interrupt Control Register (TB5IC)	
006A16	DMA2 Interrupt Control Register (DM2IC)	
006B16	UART2 Receive /ACK Interrupt Control Register (S2RIC)	
006C16	Timer A0 Interrupt Control Register (TA0IC)	
006D16	UART3 Receive /ACK Interrupt Control Register (S3RIC)	
006E16	Timer A2 Interrupt Control Register (TA2IC)	
006F16	UART4 Receive /ACK Interrupt Control Register (S4RIC)	
007016	Timer A4 Interrupt Control Register (TA4IC)	
	UART0 Bus Conflict Detect Interrupt Control Register (BCN0IC)/	
007116	UART3 Bus Conflict Detect Interrupt Control Register (BCN3IC)	113
007216	UARTO Receive/ACK Interrupt Control Register (SORIC)	
007316	A/D0 Conversion Interrupt Control Register (AD0IC)	
007416	UART1 Receive/ACK Interrupt Control Register (S1RIC)	
	Intelligent I/O Interrupt Control Register 0 (IIO0IC)/	
007516	CAN Interrupt 3 Control Register (CAN3IC)	
007616	Timer B1 Interrupt Control Register (TB1IC)	
007716	Intelligent I/O Interrupt Control Register 2 (IIO2IC)	
007816	Timer B3 Interrupt Control Register (TB3IC)	
007916	Intelligent I/O Interrupt Control Register 4 (IIO4IC)	
007A16	INT5 Interrupt Control Register (INT5IC)	114
007B16	2 12 14 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	
007C16	INT3 Interrupt Control Register (INT3IC)	114
007D16	Intelligent I/O Interrupt Control Register 8 (IIO8IC)	113
007E16	INT1 Interrupt Control Register (INT1IC)	114
	Intelligent I/O Interrupt Control Register 10 (IIO10IC)/	
007F16	CAN Interrupt 1 Control Register (CAN1IC)	113
008016	3 (*	
008116	CAN Interrupt 2 Control Register (CAN2IC)	113
008216	3 (,	
008316		
008416		
008516		
008616		
008716		
008816	DMA1 Interrupt Control Register (DM1IC)	
008916	UART2 Transmit /NACK Interrupt Control Register (S2TIC)	
008A16	DMA3 Interrupt Control Register (DM3IC)	
008B16	UART3 Transmit /NACK Interrupt Control Register (S3TIC)	
008C16	Timer A1 Interrupt Control Register (TA1IC)	113
008D16	UART4 Transmit /NACK Interrupt Control Register (S4TIC)	
008E16	Timer A3 Interrupt Control Register (TA3IC)	
008F16	UART2 Bus Conflict Detect Interrupt Control Register (BCN2IC)	
000F16	DANTE DOS COMINICI DELECT INTERTUPT CONTION REGISTER (BCNZIC)	

Address	Register	Page
009016	UART0 Transmit /NACK Interrupt Control Register (S0TIC)	
0004	UART1 Bus Conflict Detect Interrupt Control Register (BCN1IC)/	
009116	UART4 Bus Conflict Detect Interrupt Control Register (BCN4IC)	
009216	UART1 Transmit/NACK Interrupt Control Register (S1TIC)	
009316	Key Input Interrupt Control Register (KUPIC)	
009416	Timer B0 Interrupt Control Register (TB0IC)	4.40
0005	Intelligent I/O Interrupt Control Register 1 (IIO1IC)/	113
009516	CAN Interrupt 4 Control Register (CAN4IC)	
009616	Timer B2 Interrupt Control Register (TB2IC)	
009716	Intelligent I/O Interrupt Control Register 3 (IIO3IC)	
009816	Timer B4 Interrupt Control Register (TB4IC)	
009916	CAN Interrupt 5 Control Register (CAN5IC)	
009A16	INT4 Interrupt Control Register (INT4IC)	114
009B16		
009C16	INT2 Interrupt Control Register (INT2IC)	114
0000	Intelligent I/O Interrupt Control Register 9 (IIO9IC)/	440
009D16	CAN Interrupt 0 Control Register (CAN0IC)	113
009E16	INT0 Interrupt Control Register (INT0IC)	114
009F16	Exit Priority Control Register (RLVL)	115
00A016	Interrupt Request Register 0 (IIO0IR)	
00A116	Interrupt Request Register 1 (IIO1IR)	
00A216	Interrupt Request Register 2 (IIO2IR)	
00A316	Interrupt Request Register 3 (IIO3IR)	127
00A416	Interrupt Request Register 4 (IIO4IR)	
00A516	Interrupt Request Register 5 (IIO5IR)	
00A616		
00A716		
00A816	Interrupt Request Register 8 (IIO8IR)	
00A916	Interrupt Request Register 9 (IIO9IR)	407
00AA16	Interrupt Request Register 10 (IIO10IR)	127
00AB16	Interrupt Request Register 11 (IIO11IR)	
00AC16		
00AD16		
00AE16		
00AF16		
00B016	Interrupt Enable Register 0 (IIO0IE)	
00B116	Interrupt Enable Register 1 (IIO1IE)	
00B216	Interrupt Enable Register 2 (IIO2IE)	400
00B316	Interrupt Enable Register 3 (IIO3IE)	128
00B416	Interrupt Enable Register 4 (IIO4IE)	
00B516	Interrupt Enable Register 5 (IIO5IE)	
00B616		
00B716		
00B816	Interrupt Enable Register 8 (IIO8IE)	
00B916	Interrupt Enable Register 9 (IIO9IE)	400
00BA16	Interrupt Enable Register 10 (IIO10IE)	128
00BB16	Interrupt Enable Register 11 (IIO11IE)	
00BC16		
00BD16		
00BE16		
00BF16		

Address	Register	Page
00C016		
00C116		
00C216		
00C316		
00C416		
00C516		
00C616		
00C716		
00C816		
00C916		
00CA16		
00CB16		
00CC16		
00CD16		
00CE16		
00CF16		
00D016		
00D116		
00D216		
00D316		
00D416		
00D516		
00D616		
00D716		
00D816		
00D916		
00DA16		
00DB16		
00DC16		
00DD16		
00DE16		
00DF16		
00E016		
00E116		
00E216		
00E316		
00E416		
00E516		
00E616		
00E716		
00E816		
00E916	SI/O Receive Buffer Register0 (G0RB)	299
00EA16	Transmit Buffer/Receive Data Register 0 (G0TB/G0DR)	305
00EB16		
00EC16	Receive Input Register 0 (G0RI)	298
00ED16	SI/O Communication Mode Register 0 (G0MR)	300
00EE16	Transmit Output Register 0 (G0TO)	298
00EF16	SI/O Communication Control Register 0 (G0CR)	299

Address	Register	Page
00F016	Data Compare Register 00 (G0CMP0)	
00F116	Data Compare Register 01 (G0CMP1)	
00F216	Data Compare Register 02 (G0CMP2)	
00F316	Data Compare Register 03 (G0CMP3)	306
00F416	Data Mask Register 00 (G0MSK0)	
00F516	Data Mask Register 01 (G0MSK1)	
00F616	Communication Clock Select Register (CCS)	307
00F7 ₁₆		
00F816	D	
00F916	Receive CRC Code Register 0 (G0RCRC)	
00FA16	T (100000 1 0 1 1 0 (00000)	306
00FB16	Tramsmit CRC Code Register 0 (G0TCRC)	
00FC16	SI/O Extended Mode Register 0 (G0EMR)	301
00FD16	SI/O Extended Receive Control Register 0 (G0ERC)	303
00FE16	SI/O Special Communication Interrupt Detect Register 0 (G0IRF)	302
00FF16	SI/O Extended Transmit Control Register 0 (G0ETC)	302
010016	Time Measurement Register 10 (G1TM0)/	
010116	Waveform Generating Register 10 (G1PO0)	
010216	Time Measurement Register 11 (G1TM1)/	
010316	Waveform Generating Register 11 (G1PO1)	
010416	Time Measurement Register 12 (G1TM2)/	
010516	Waveform Generating Register 12 (G1PO2)	
010616	Time Measurement Register 13 (G1TM3)/	
010716	Waveform Generating Register 13 (G1PO3)	277/
010816	Time Measurement Register 14 (G1TM4)/	278
010916	Waveform Generating Register 14 (G1PO4)	
010A16	Time Measurement Register 15 (G1TM5)/	
010B16	Waveform Generating Register 16 (G1PO5)	
010C16	Time Measurement Register 16 (G1TM6)/	
010D16	Waveform Generating Register 16 (G1PO6)	
010E16	Time Measurement Register 17 (G1TM7)/	
010F16	Waveform Generating Register 17 (G1PO7)	
011016	Waveform Generating Control Register 10 (G1POCR0)	
011116	Waveform Generating Control Register 11 (G1POCR1)	
011216	Waveform Generating Control Register 12 (G1POCR2)	
011316	Waveform Generating Control Register 13 (G1POCR3)	077
011416	Waveform Generating Control Register 14 (G1POCR4)	2//
011516	Waveform Generating Control Register 15 (G1POCR5)	
011616	Waveform Generating Control Register 16 (G1POCR6)	
011716	Waveform Generating Control Register 17 (G1POCR7)	
011816	Time Measurement Control Register 10 (G1TMCR0)	
011916	Time Measurement Control Register 11 (G1TMCR1)	
011A16	Time Measurement Control Register 12 (G1TMCR2)	
011B ₁₆	Time Measurement Control Register 13 (G1TMCR3)	a=-
011C16	Time Measurement Control Register 14 (G1TMCR4)	276
011D16	Time Measurement Control Register 15 (G1TMCR5)	
011E ₁₆	Time Measurement Control Register 16 (G1TMCR6)	
0111110		

Address	Register	Page	
012016 012116	Base Timer Register1 (G1BT)	274	
012216	Base Timer Control Register 10 (G1BCR0)		
012316	Base Timer Control Register 11 (G1BCR1)	275	
012416	Time Measurement Prescaler Register 16 (G1TPR6)		
012516	Time Measurement Prescaler Register 17 (G1TPR7)	276	
012616	Function Enable Register 1 (G1FE)	279	
012716	Function Select Register 1 (G1FS)	278	
012816	• , ,		
012916	SI/O Receive Buffer Register 1 (G1RB)	299	
012A ₁₆	Transmit Buffer/Receive Data Register 1 (G1TB/G1DR)	305	
012B ₁₆			
012C16	Receive Input Register 1 (G1RI)	298	
012D16	SI/O Communication Mode Register 1 (G1MR)	300	
012E16	Transmit Output Register 1 (G1TO)	298	
012F16	SI/O Communication Control Register 1 (G1CR)	299	
013016	Data Compare Register 10 (G1CMP0)		
013116	Data Compare Register 11 (G1CMP1)		
013216	Data Compare Register 12 (G1CMP2)	000	
013316	Data Compare Register 13 (G1CMP3)	306	
013416	Data Mask Register 10 (G1MSK0)		
013516	Data Mask Register 11 (G1MSK1)		
013616			
013716			
013816			
013916	Receive CRC Code Register1 (G1RCRC)	000	
013A16	T (00000 1 0 1 1 (01T000)	306	
013B ₁₆	Transmit CRC Code Register1 (G1TCRC)		
013C16	SI/O Extended Mode Register 1 (G1EMR)	301	
013D16	SI/O Extended Receive Control Register 1 (G1ERC)	303	
013E ₁₆	SI/O Special Communication Interrupt Detect Register 1 (G1IRF)	305	
013F16	SI/O Extended Transmit Control Register 1 (G1ETC)	302	
014016			
014116			
014216			
014316			
014416			
014516			
014616			
014716			
014816			
014916			
014A16			
014B ₁₆			
014C16			
014D16			
014E ₁₆			
014F ₁₆			

Address	Register	Page
015016		
015116		
015216		
015316		
015416		_
015516		
015616		
015716		
015816		
015916		
015A16		
015B ₁₆		
015C16		
015D16		\neg
015E16		\neg
015F16		\neg
016016		\dashv
016116		\dashv
016216		_
016316		\dashv
016416		_
016516		_
016616		\dashv
016716		\dashv
016816		\dashv
016916		\dashv
016A16		_
016B ₁₆		\dashv
016C16		_
016D16		\dashv
016E16		\dashv
016F16		\dashv
017016		\dashv
017016		\dashv
017116		\dashv
017216		_
		_
017416		\dashv
017516		_
		\dashv
017716	Input Function Colort Desister (IDC)	207
017816	Input Function Select Register (IPS)	387
017916	Input Function Select Register A (IPSA)	388
017A16		_
017B ₁₆		_
017C16		_
017D16		
to		
01DF16		

Address	Register	Page
01E016	CAN0 Message Slot Buffer 0 Standard ID0 (C0SLOT0_0)	050
01E116	CAN0 Message Slot Buffer 0 Standard ID1 (C0SLOT0_1)	358
01E216	CAN0 Message Slot Buffer 0 Extended ID0 (C0SLOT0_2)	250
01E316	CAN0 Message Slot Buffer 0 Extended ID1 (C0SLOT0_3)	359
01E416	CAN0 Message Slot Buffer 0 Extended ID2 (C0SLOT0_4)	200
01E516	CAN0 Message Slot Buffer 0 Data Length Code (C0SLOT0_5)	360
01E616	CAN0 Message Slot Buffer 0 Data 0 (C0SLOT0_6)	
01E716	CAN0 Message Slot Buffer 0 Data 1 (C0SLOT0_7)	
01E816	CAN0 Message Slot Buffer 0 Data 2 (C0SLOT0_8)	
01E916	CAN0 Message Slot Buffer 0 Data 3 (C0SLOT0_9)	
01EA ₁₆	CAN0 Message Slot Buffer 0 Data 4 (C0SLOT0_10)	004
01EB ₁₆	CAN0 Message Slot Buffer 0 Data 5 (C0SLOT0_11)	361
01EC ₁₆	CAN0 Message Slot Buffer 0 Data 6 (C0SLOT0_12)	
01ED16	CAN0 Message Slot Buffer 0 Data 7 (C0SLOT0_13)	
01EE16	CAN0 Message Slot Buffer 0 Time Stamp High-Order (C0SLOT0_14)	
01EF16	CANO Message Slot Buffer 0 Time Stamp Low-Order (C0SLOT0_15)	
01F016	CAN0 Message Slot Buffer 1 Standard ID0 (C0SLOT1_0)	
01F116	CAN0 Message Slot Buffer 1 Standard ID1 (C0SLOT1_1)	358
01F216	CAN0 Message Slot Buffer 1 Extended ID0 (C0SLOT1_2)	
01F3 ₁₆	CAN0 Message Slot Buffer 1 Extended ID1 (C0SLOT1_3)	359
01F416	CAN0 Message Slot Buffer 1 Extended ID2 (C0SLOT1_4)	
01F516	CAN0 Message Slot Buffer 1 Data Length Code (C0SLOT1_5)	360
01F616	CAN0 Message Slot Buffer 1 Data 0 (C0SLOT1_6)	
01F7 ₁₆	CAN0 Message Slot Buffer 1 Data 1 (C0SLOT1_7)	
01F816	CAN0 Message Slot Buffer 1 Data 2 (C0SLOT1_8)	
01F9 ₁₆	CAN0 Message Slot Buffer 1 Data 3 (C0SLOT1_9)	
01FA ₁₆	CAN0 Message Slot Buffer 1 Data 4 (C0SLOT1_10)	
01FB ₁₆	CAN0 Message Slot Buffer 1 Data 5 (C0SLOT1_11)	361
01FC16	CAN0 Message Slot Buffer 1 Data 6 (C0SLOT1_12)	
01FD16	CAN0 Message Slot Buffer 1 Data 7 (C0SLOT1_13)	
01FE16	CANO Message Slot Buffer 1 Time Stamp High-Order (COSLOT1_14)	
01FF16	CANO Message Slot Buffer 1 Time Stamp Low-Order (C0SLOT1_15)	
020016		
020116	CAN0 Control Register0 (C0CTLR0)	322
020216		
020316	CAN0 Status Register (C0STR)	327
020416		
020516	CAN0 Extended ID Register (C0IDR)	330
020616		
020716	CAN0 Configuration Register (C0CONR)	331
020816	CANO Time Steven Desirter (COTOD)	
020916	CAN0 Time Stamp Register (C0TSR)	334
020A16	CAN0 Transmit Error Count Register (C0TEC)	
020B16	CANO Receive Error Count Register (COREC)	333
020C16		
020D16	CAN0 Slot Interrupt Status Register (C0SISTR)	336
020E16		
020F16		

Address	Register	Page
021016		000
021116	CAN0 Slot Interrupt Mask Register (C0SIMKR)	338
021216		
021316		
021416	CAN0 Error Interrupt Mask Register (C0EIMKR)	339
021516	CAN0 Error Interrupt Status Register (C0EISTR)	340
021616	CAN0 Error Cause Register (C0EFR)	341
021716	CAN0 Baud Rate Prescaler (C0BRP)	333
021816		
021916	CAN0 Mode Register (C0MDR)	342
021A16		
021B ₁₆		
021C ₁₆		
021D16		
021E ₁₆		
021F16		
022016	CANIC Circle Chat Constant Descriptor (CCCCCTLD)	0.4.4
022116	CAN0 Single Shot Control Register (C0SSCTLR)	344
022216		
022316		
022416	OANIO Ciarda Obat Otatua Daniatan (OCOCTD)	0.45
022516	CAN0 Single Shot Status Register (C0SSSTR)	345
022616		
022716		
022816	CAN0 Global Mask Register Standard ID0 (C0GMR0)	346
022916	CAN0 Global Mask Register Standard ID1 (C0GMR1)	347
022A16	CAN0 Global Mask Register Extended ID0 (C0GMR2)	348
022B16	CAN0 Global Mask Register Extended ID1 (C0GMR3)	349
022C16	CAN0 Global Mask Register Extended ID2 (C0GMR4)	350
022D16		
022E16		
022F16		
023016	CAN0 Message Slot 0 Control Register (C0MCTL0)/	353/
023016	CAN0 Local Mask Register A Standard ID0 (C0LMAR0)	346
023116	CAN0 Message Slot 1 Control Register (C0MCTL1)/	353/
023110	CAN0Local Mask Register A Standard ID1 (C0LMAR1)	347
023216	CAN0 Message Slot 2 Control Register (C0MCTL2)/	353/
023210	CAN0 Local Mask Register A Extended ID0 (C0LMAR2)	348
023316	CAN0 Message Slot 3 Control Register (C0MCTL3)/	353/
023310	CAN0 Local Mask Register A Extended ID1 (C0LMAR3)	349
023416	CAN0 Message Slot 4 Control Register (C0MCTL4)/	353/
	CAN0 Local Mask Register A Extended ID2 (C0LMAR4)	350
023516	CANO Message Slot 5 Control Register (C0MCTL5)	
023616	CANO Message Sot 6 Control Register (C0MCTL6)	353
023716	CAN0 Message Slot 7 Control Register (C0MCTL7)	
023816	CANO Message Slot 8 Control register (COMCTL8)/	353/
	CAN0 Local Mask Register B Standard ID0 (C0LMBR0)	346

Address	Register	Page
	CAN0 Message Slot 9 Control Register (C0MCTL9)/	353/
023916	CAN0 Local Mask Register B Standard ID1 (C0LMBR1)	347
0004	CAN0 Message Slot 10 Control Register (C0MCTL10)/	353/
023A16	CAN0 Local Mask Register B Extended ID0 (C0LMBR2)	348
0000	CAN0 Message Slot 11 Control Register (C0MCTL11)/	353/
023B ₁₆	CAN0 Local Mask Register B Extended ID1 (C0LMBR3)	349
0000.5	CAN0 Message Slot 12 Control Register (C0MCTL12)/	353/
023C16	CAN0 Local Mask Register B Extended ID2 (C0LMBR4)	350
023D16	CAN0 Message Slot 13 Control Register (C0MCTL13)	
023E16	CAN0 Message Slot 14 Control Register (C0MCTL14)	353
023F16	CAN0 Message Slot 15 Control Register(C0MCTL15)	
024016	CAN0 Slot Buffer Select Register (C0SBS)	357
024116	CAN0 Control Register 1 (C0CTLR1)	325
024216	CAN0 Sleep Control Register (C0SLPR)	326
024316		
024416	CANO Acceptance Filter Support Register (COAES)	262
024516	CAN0 Acceptance Filter Support Register (C0AFS)	362
024616		
024716		
024816		
024916		
024A16		
024B16		
024C16		
024D16		
024E16		
024F16		
025016	CAN1 Slot Buffer Select Register (C1SBS)	357
025116	CAN1 Control Register 1 (C1CTLR1)	325
025216	CAN1 Sleep Control Register (C1SLPR)	326
025316		
025416	CANIA Accontance Filter Support Beginter (CAAES)	262
025516	CAN1 Acceptance Filter Support Register (C1AFS)	362
025616		
025716		
025816		
025916		
025A16		
025B16		
025C16		
025D16		
025E16		
025F16		

Address	Register	Page
026016	CAN1 Message Slot Buffer 0 Standard ID0 (C1SLOT0_0)	
026116	CAN1 Message Slot Buffer 0 Standard ID1 (C1SLOT0_1)	358
026216	CAN1 Message Slot Buffer 0 Extended ID0 (C1SLOT0_2)	
026316	CAN1 Message Slot Buffer 0 Extended ID1 (C1SLOT0_3)	359
026416	CAN1 Message Slot Buffer 0 Extended ID2 (C1SLOT0_4)	
026516	CAN1 Message Slot Buffer 0 Data Length Code (C1SLOT0_5)	360
026616	CAN1 Message Slot Buffer 0 Data 0 (C1SLOT0_6)	
026716	CAN1 Message Slot Buffer 0 Data 1 (C1SLOT0_7)	
026816	CAN1 Message Slot Buffer 0 Data 2 (C1SLOT0_8)	
026916	CAN1 Message Slot Buffer 0 Data 3 (C1SLOT0_9)	
026A16	CAN1 Message Slot Buffer 0 Data 4 (C1SLOT0_10)	
026B16	CAN1 Message Slot Buffer 0 Data 5 (C1SLOT0_11)	361
026C16	CAN1 Message Slot Buffer 0 Data 6 (C1SLOT0_12)	
026D16	CAN1 message Slot Buffer 0 Data 7 (C1SLOT0_13)	
026E16	CAN1 Message Slot Buffer 0 Time Stamp High-Order (C1SLOT0_14)	
026F16	CAN1 Message Slot Buffer 0 Time Stamp Low-Order (C1SLOT0_15)	
027016	CAN1 Message Slot Buffer 1 Standard ID0 (C1SLOT1_0)	
027116	CAN1 Message Slot Buffer 1 Standard ID1 (C1SLOT1_1)	358
027216	CAN1 Message Slot Buffer 1 Extended ID0 (C1SLOT1_2)	
027216	CAN1 Message Slot Buffer 1 Extended ID1 (C1SLOT1_3)	359
027416	CAN1 Message Slot Buffer 1 Extended ID2 (C1SLOT1_3)	
027516		360
	CAN1 Message Slot Buffer 1 Data Length Code (C1SLOT1_5) CAN1 Message Slot Buffer 1 Data 0 (C1SLOT1_6)	
027616	CAN1 Message Slot Buffer 1 Data 1 (C1SLOT1_0)	
027716 027816	CAN1 Message Slot Buffer 1 Data 2 (C1SLOT1_8)	
	CAN1 Message Slot Buffer 1 Data 2 (C13LOT1_8)	
0279 ₁₆ 027A ₁₆	CAN1 Message Slot Buffer 1 Data 3 (C13LOT1_9)	
027A16	CAN1 Message Slot Buffer 1 Data 4 (C13LOT1_10)	361
	· · · · · · · · · · · · · · · · · · ·	
027C16	CANA Message Slot Buffer 1 Data 6 (C1SLOT1_12)	
027D16	CAN1 Message Slot Buffer 1 Data 7 (C1SLOT1_13)	
027E16	CAN1 Message Slot Buffer 1 Time Stamp High-Order (C1SLOT1_14)	
027F16	CAN1 Message Slot Buffer 1 Time Stamp Low-Order (C1SLOT1_15)	
028016	CAN1 Control Register0 (C1CTLR0)	322
0281 ₁₆ 0282 ₁₆		
028316	CAN1 Status Register (C1STR)	327
028416	CAN1 Extended ID Register (C1IDR)	330
028516	- ` ` `	
028616	CAN1 Configuration Register (C1CONR)	331
028716		
028816	CAN1 Time Stamp Register (C1TSR)	204
028916	,	334
028A16	CAN1 Transmit Error Count Register (C1TEC)	
028B16	CAN1 Receive Error Count Register (C1REC)	335
028C16	CAN1 Slot Interrupt Control Register (C1SISTR)	336
028D16	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
028E16		
028F16		

A -1 -1	D'(D
Address	Register	Page
029016	CAN1 Slot Interrupt Mask Register (C1SIMKR)	338
029116	,	
029216		
029316		
029416	CAN1 Error Interrupt Mask Register (C1EIMKR)	339
029516	CAN1 Error Interrupt Status Register (C1EISTR)	340
029616	CAN1 Error Factor Register (C1EFR)	341
029716	CAN1 Baud Rate Prescaler (C1BRP)	333
029816		
029916	CAN1 Mode Register (C1MDR)	342
029A16		
029B16		
029C16		
029D16		
029E16		
029F16		
02A016		
02A116	CAN1 Single Shot Control Register (C1SSCTLR)	344
02A216		
02A316		
02A416		
02A516	CAN1 Single Shot Status Register (C1SSSTR)	345
02A616		
02A716		
02A816	CAN1 Global Mask Register Standard ID0 (C1GMR0)	346
02A916	CAN1 Global Mask Register Standard ID1 (C1GMR1)	347
02AA16	CAN1 Global Mask Register Extended ID0 (C1GMR2)	348
02AB ₁₆	CAN1 Global Mask Register Extended ID1 (C1GMR3)	349
02AC16	CAN1 Global Mask Register Extended ID2 (C1GMR4)	350
02AD16	OTHER CIODAL MASK REGISTED EXTENDED IDE (C. 101/11/4)	000
02AE16		
02AF16		
02AI 10	CAN1 Message Slot 0 Control Register (C1MCTL0)/	353/
02B016	CAN1 Local Mask Register A Standard ID0 (C1LMAR0)	346
	CAN1 Local Mask Register A Standard ID0 (CTLMARO) CAN1 Message Slot 1 Control Register (C1MCTL1)/	353/
02B116	CAN1 Local Mask Register A Standard ID1 (C1LMAR1)	347
	CAN1 Local Mask Register A Standard IDT (C1LMART) CAN1 Message Slot 2 Control Register (C1MCTL2)/	
02B216		353/
	CAN1 Local Mask Register A Extended ID0 (C1LMAR2)	348
02B316	CAN1 Message Slot 3 Control Register (C1MCTL3)/	353/
	CANA Massage Class Control Paginter (CAMCTIA)	349
02B416	CAN1 Message Slot 4 Control Register (C1MCTL4)/	353/
	CAN1 Local Mask Register A Extended ID2 (C1LMAR4)	350
02B516	CAN1 Message Slot 5 Control Register (C1MCTL5)	0.55
02B616	CAN1 Message Slot 6 Control Register (C1MCTL6)	353
02B716	CAN1 Message Slot 7 Control Register (C1MCTL7)	
02B816	CAN1 Message Slot 8 Control Register (C1MCTL8)/	353/
325010	CAN1 Local Mask Register B Standard ID0 (C1LMBR0)	346
02B916	CAN1 Message Slot 9 Control Register (C1MCTL9)/	353/
320010	CAN1 Local Mask Register B Standard ID1 (C1LMBR1)	347

Address	Register	Page
000040	CAN1 Message Slot 10 Control Register (C1MCTL10)/	353/
02BA ₁₆	CAN1 Local Mask Register B Extended ID0 (C1LMBR2)	348
000040	CAN1 Message Slot 11 Control Register (C1MCTL11)/	353/
02BB16	CAN1 Local Mask Register B Extended ID1 (C1LMBR3)	349
0000	CAN1 Message Slot 12 Control Register (C1MCTL12)/	353/
02BC16	CAN1 Local Mask Register B Extended ID2 (C1LMBR4)	350
02BD16	CAN1 Message Slot 13 Control Register (C1MCTL13)	
02BE16	CAN1 Message Slot 14 Control Register (C1MCTL14)	353
02BF16	CAN1 Message Slot 15 Control Register (C1MCTL15)	
02C016	Vo D	
02C116	X0 Register Y0 Register (X0R,Y0R)	
02C216	W. S. J. W. S. J. W. S. W. S.	
02C316	X1 Register Y1 Register (X1R,Y1R)	
02C416	Vo Basistas Vo Basistas (VOB VOB)	
02C516	X2 Register Y2 Register (X2R,Y2R)	
02C616	Vo D	
02C716	X3 Register Y3 Register (X3R,Y3R)	
02C816	VAR TANKE WAR WAR	
02C916	X4 Register Y4 Register (X4R,Y4R)	
02CA ₁₆	VE D	
02CB16	X5 Register Y5 Register (X5R,Y5R)	
02CC16	V(0 D	
02CD16	X6 Register Y6 Register (X6R,Y6R)	
02CE16	V7 D	
02CF16	X7 Register Y7 Register (X7R,Y7R)	000
02D016	Vo De sistem Vo De sistem (VOD VOD)	268
02D116	X8 Register Y8 Register (X8R,Y8R)	
02D216	Vo De sistem Vo De sistem (VOD VOD)	
02D316	X9 Register Y9 Register (X9R,Y9R)	
02D416	VAO De rieter VAO De rieter (VAOD VAOD)	
02D516	X10 Register Y10 Register (X10R,Y10R)	
02D616	V44 Degister V44 Degister (V44D V44D)	
02D716	X11 Register Y11 Register (X11R,Y11R)	
02D816	VAO De viete v VAO De viete v (VAOD VACD)	
02D916	X12 Register Y12 Register (X12R,Y12R)	
02DA16	VAO Desistes VAO Desistes (VAOD VAOD)	
02DB16	X13 Register Y13 Register (X13R,Y13R)	
02DC16	VAA Desire VAA Desire (VAAD VAAD)	
02DD16	X14 Register Y14 Register (X14R,Y14R)	
02DE16) VAS B	
02DF16	X15 Register Y15 Register (X15R,Y15R)	

Address	Register	Page
02E016	X/Y Control Register (XYC)	268
02E116		
02E216		
02E316		
02E416	UART1 Special Mode Register 4 (U1SMR4)	199
02E516	UART1 Special Mode Register 3 (U1SMR3)	198
02E616	UART1 Special Mode Register 2 (U1SMR2)	197
02E716	UART1 Special Mode Register (U1SMR)	196
02E816	UART1 Transmit/Receive Mode Register (U1MR)	
02E916	UART1 Bit Rate Register (U1BRG)	194
02EA ₁₆		
02EB16	UART1 Transmit Buffer Register (U1TB)	193
02EC16	UART1 Transmit/Receive Control Register 0 (U1C0)	195
02ED16	UART1 Transmit/Receive Control Register 1 (U1C1)	196
02EE16		
02EF16	UART1 Receive Buffer Register (U1RB)	193
02F016		
02F116		
02F216		
02F316		
02F416	UART4 Special Mode Register 4 (U4SMR4)	199
02F516	UART4 Special Mode Register 3 (U4SMR3)	198
02F616	UART4 Special Mode Register 2 (U4SMR2)	197
02F716	UART4 Special Mode Register (U4SMR)	196
02F816	UART4 Transmit/Receive Mode Register (U4MR)	
02F916	UART4 Bit Rate Register (U4BRG)	194
02FA16		
02FB16	UART4 Transmit Buffer Register (U4TB)	193
02FC16	UART4 Transmit/Receive Control Register 0 (U4C0)	195
02FD16	UART4 Transmit/Receive Control Register 1 (U4C1)	196
02FE16		400
02FF16	UART4 Receive Buffer Register (U4RB)	193
030016	Timer B3,B4,B5 Count Start Flag (TBSR)	173
030116		
030216	Timer A4 4 Decistor (TA44)	
030316	Timer A1-1 Register (TA11)	
030416	Timer A2 4 Decistor (TA24)	400
030516	Timer A2-1 Register (TA21)	186
030616	Timer A4.4 Decietes (TA44)	
030716	Timer A4-1 Register (TA41)	
030816	Three-Phase PWM Control Register 0 (INVC0)	183
030916	Three-Phase PWM Control Register 1 (INVC1)	184
030A16	Three-Phase Output Buffer Register 0 (IDB0)	105
030B16	Three-Phase Output Buffer Register 1 (IDB1)	185
030C16	Dead Time Timer (DTT)	185
030D16	Timer B2 Interrupt Generating Frequency Set Counter (ICTB2)	186
030E16		
030F16		

Address	Register	Page				
031016	Time on DO De sieten (TDO)					
031116	Timer B3 Register (TB3)					
031216	Time on DA De sister (TDA)	171				
031316	Timer B4 Register (TB4)					
031416	Timor R5 Pogistor (TR5)					
031516	Timer B5 Register (TB5)					
031616						
031716						
031816						
031916						
031A16						
031B ₁₆	Timer B3 Mode Register (TB3MR)					
031C16	Timer B4 Mode Register (TB4MR)	172				
031D16	Timer B5 Mode Register (TB5MR)					
031E16						
031F16	External Interrupt Request Source Select Register (IFSR)	122				
032016						
032116						
032216						
032316						
032416	UART3 Special Mode Register 4 (U3SMR4)	199				
032516	UART3 Special Mode Register 3 (U3SMR3)	198				
032616	UART3 Special Mode Register 2 (U3SMR2)	197				
032716	UART3 Special Mode Register (U3SMR)	196				
032816	UART3 Transmit/Receive Mode Register (U3MR)					
032916	UART3 Bit Rate Register (U3BRG)	194				
032A16						
032B16	UART3 Transmit Buffer Register (U3TB)	193				
032C16	UART3 Transmit/Receive Control Register 0 (U3C0)	195				
032D16	UART3 Transmit/Receive Control Register 1 (U3C1)	196				
032E16						
032F16	UART3 Receive Buffer Register (U3RB)	193				
033016						
033116						
033216						
033316						
033416	UART2 Special Mode Register 4 (U2SMR4)	199				
033516	UART2 Special Mode Register 3 (U2SMR3)	198				
033616	UART2 Special Mode Register 2 (U2SMR2)	197				
033716	UART2 Special Mode Register (U2SMR)	196				
033816	UART2 Transmit/Receive Mode Register (U2MR)					
033916	UART2 Bit Rate Register (U2BRG)	194				
033A16						
033B16	UART2 Transmit Buffer Register (U2TB)	193				
033C16	UART2 Transmit/Receive Control Register 0 (U2C0)	195				
033D16	UART2 Transmit/Receive Control Register 1 (U2C1)	196				
033E16		400				
	UART2 Receive Buffer Register (U2RB)	193				

034116 Clock Prescaler Reset Flag (CPSRF) 8 034216 One-Shot Start Flag (ONSF) 1 034316 Trigger Select Register (TRGSR) 1 034416 Up-Down Flag (UDF) 1 034516 034616 034716 034816 Timer A0 Register (TA0) 034816 Timer A1 Register (TA1) 034A16 Timer A2 Register (TA2) 1 034C16 034C16 034D16 034E16 Timer A4 Register (TA4) 035016	56 85 57 58 57
034216 One-Shot Start Flag (ONSF) 1 034316 Trigger Select Register (TRGSR) 1 034416 Up-Down Flag (UDF) 1 034516 Timer A0 Register (TA0) 034816 Timer A1 Register (TA1) 034A16 Timer A2 Register (TA2) 1 034A16 Timer A3 Register (TA3) 1 034C16 O34C16 Timer A4 Register (TA4) 034F16 Timer A4 Register (TA4)	57 58 57
034316 Trigger Select Register (TRGSR) 1 034416 Up-Down Flag (UDF) 1 034516 034616 1 034716 Timer A0 Register (TA0) 1 034816 Timer A1 Register (TA1) 1 034A16 Timer A2 Register (TA2) 1 034C16 Timer A3 Register (TA3) 1 034E16 Timer A4 Register (TA4) 1 035016 Timer A4 Register (TA4) 1	158
034416 Up-Down Flag (UDF) 1 034516 034616 034716 Timer A0 Register (TA0) 034816 034916 Timer A1 Register (TA1) 034A16 034B16 Timer A2 Register (TA2) 1 034C16 034D16 Timer A3 Register (TA3) 034E16 034F16 Timer A4 Register (TA4)	157
034516 034616 034716 Timer A0 Register (TA0) 034816 034916 Timer A1 Register (TA1) 034A16 034B16 034B16 Timer A2 Register (TA2) 1 1 1 1 1 1 1 1 1 1 1 1 1	
034616 034716 Timer A0 Register (TA0) 034816 034916 Timer A1 Register (TA1) 034A16 034B16 Timer A2 Register (TA2) 1 Timer A3 Register (TA3) 034C16 034D16 Timer A3 Register (TA3) 034E16 034F16 Timer A4 Register (TA4)	55
034716 Timer A0 Register (TA0) 034816 Timer A1 Register (TA1) 034A16 Timer A2 Register (TA2) 034C16 Timer A3 Register (TA3) 034E16 Timer A4 Register (TA4) 035016 Timer A4 Register (TA4)	155
034816 034916 Timer A1 Register (TA1) 034A16 034B16 Timer A2 Register (TA2) 034C16 034D16 Timer A3 Register (TA3) 034E16 034F16 Timer A4 Register (TA4)	155
034916 Timer A1 Register (TA1) 034A16 034B16 Timer A2 Register (TA2) 1 034C16 034D16 Timer A3 Register (TA3) 034E16 034F16 Timer A4 Register (TA4) 035016	155
034A16 034B16 034C16 034D16 034E16 034F16 035016 1 Timer A2 Register (TA2) 1 Timer A3 Register (TA3)	155
034B16 Timer A2 Register (TA2) 1 034C16 034D16 Timer A3 Register (TA3) 2 034E16 034F16 Timer A4 Register (TA4) 035016	
034C16 034D16 Timer A3 Register (TA3) 034E16 034F16 Timer A4 Register (TA4)	
034D16 Timer A3 Register (TA3) 034E16 034F16 Timer A4 Register (TA4) 035016	
034E16 034F16 Timer A4 Register (TA4) 035016	
034F16 Timer A4 Register (TA4) 035016	
035016	
0351 ₁₆ Timer B0 Register (TB0)	
035216	
0353 ₁₆ Timer B1 Register (TB1)	71
035416	
0355 ₁₆ Timer B2 Register (TB2)	
035616 Timer A0 Mode Register (TA0MR)	
035716 Timer A1 Mode Register (TA1MR)	
035816 Timer A2 Mode Register (TA2MR) 1	56
035916 Timer A3 Mode Register (TA3MR)	
035A ₁₆ Timer A4 Mode Register (TA4MR)	
035B16 Timer B0 Mode Register (TB0MR)	
035C ₁₆ Timer B1 Mode Register (TB1MR) 1	72
035D16 Timer B2 Mode Register (TB2MR)	
035E ₁₆ Timer B2 Special Mode Register (TB2SC) 1	86
035F16 Count Source Prescaler Register (TCSPR) 8	85
036016	
036116	
036216	
036316	
036416 UART0 Special Mode Register 4 (U0SMR4) 1	199
	98
	97
036716 UARTO Special Mode Register (U0SMR) 1	96
036816 UART0 Transmit/Receive Mode Register (U0MR)	
036916 UART0 Bit Rate Register (U0BRG)	94
036A16	
036B ₁₆ UART0 Transmit Buffer Register (U0TB)	193
036C16 UART0 Transmit/Receive Control Register 0 (U0C0) 1	95
9 , ,	30
036E16	196
036F ₁₆ UART0 Receive Buffer Register (U0RB) 1	196

Address	Register	Page
037016	register	1 age
037016		
037116		
037216		
037416		
037516		
037616		
037716		
037816	DMA0 Request Source Select Register (DM0SL)	
037916	DMA1 Request Source Select Register (DM1SL)	135
037A16	DMA2 Request Source Select Register (DM2SL)	133
037B ₁₆	DMA3 Request Source Select Register (DM3SL)	
037C16	CDC Data Basistar (CDCD)	
037D16	CRC Data Register (CRCD)	266
037E16	CRC Input Register (CRCIN)	
037F16		
038016	A/D0 Dominton0 (AD00)	
038116	A/D0 Register0 (AD00)	
038216	A/Da D. J. J. (ADA))	
038316	A/D0 Register1 (AD01)	
038416		
038516	A/D0 Register2 (AD02)	
038616		
038716	A/D0 Register3 (AD03)	
038816		251
038916	A/D0 Register4 (AD04)	
038A16		
038B16	A/D0 Register5 (AD05)	
038C ₁₆		
038D16	A/D0 Register6 (AD06)	
038E16		
038F16	A/D0 Register7 (AD07)	
039016		
039116		
039216	A/D0 Control Register 4 (AD0CON4)	251
039316	7.000 Control Register + (ND00014+)	201
039416	A/D0 Control Register 2 (AD0CON2)	249
039516	A/D0 Control Register 3 (AD0CON3)	250
	A/D0 Control Register 3 (AD0CON3) A/D0 Control Register 0 (AD0CON0)	
039616	, ,	247
039716	A/D0 Control Register 1 (AD0CON1)	248
039816	D/A Register 0 (DA0)	265
039916	D/A Designar 4 (DA4)	005
039A16	D/A Register 1 (DA1)	265
039B16	D/A 0	00-
039C16	D/A Control Register (DACON)	265
039D16		
039E16		
039F16		

Address	Register	Page
03A016	Function Select Register A8 (PS8)	379
03A116	Function Select Register A9 (PS9)	380
03A216		
03A316		
03A416		
03A516		
03A616		
03A716	Function Select Register D1 (PSD1)	384
03A816		
03A916		
03AA16		
03AB16		
03AC16	Function Select Register C2 (PSC2)	383
03AD16	Function Select Register C3 (PSC3)	384
03AE16		
03AF16	Function Select Register C (PSC)	383
03B016	Function Select Register A0 (PS0)	
03B116	Function Select Register A1 (PS1)	377
03B216	Function Select Register B0 (PSL0)	
03B316	Function Select Register B1 (PSL1)	381
03B416	Function Select Register A2 (PS2)	
03B516	Function Select Register A3 (PS3)	378
03B616	Function Select Register B2 (PSL2)	
03B716	Function Select Register B3 (PSL3)	382
03B816	G (, ,	
03B916	Function Select Register A5 (PS5)	379
03BA16	• • • • • • • • • • • • • • • • • • • •	
03BB16		
03BC16		
03BD16		
03BE16		
03BF16		
03C016	Port P6 Register (P6)	
03C116	· ,	376
03C216	Port P6 Direction Register (PD6)	
03C316	Port P7 Direction Register (PD7)	375
03C416	Port P8 Register (P8)	
03C516	Port P9 Register (P9)	376
03C616	Port P8 Direction Register (PD8)	
03C716	Port P9 Direction Register (PD9)	375
03C816	Port P10 Register (P10)	
03C916	Port P11 Register (P11)	376
03CA16	Port P10 Direction Register (PD10)	
03CB16	Port P11 Direction Register(PD11)	375
03CC16		
03CD16		376
03CE16	Port P12 Direction Register (PD12)	
03CF16	Port P13 Direction Register (PD13)	375
	1 1 1 2 2 1 2 2 1 2 2 1 2 3 3 3 3 3 3 3	

Address	Register	Page				
03D016	Port P14 Register (P14)	376				
03D116	Port P15 Register (P15)					
03D216	Port P14 Direction Register (PD14)					
03D316	Port P15 Direction Register (PD15)	375				
03D416						
03D516						
03D616						
03D716						
03D816						
03D916						
03DA ₁₆	Pull-Up Control Register 2 (PUR2)	385				
03DB16	Pull-Up Control Register 3 (PUR3)					
	Pull-Up Control Register 4 (PUR4)	386				
03DD16						
03DE16						
03DF16						
03E016	Port P14 Register (P0)					
03E116	Port P14 Register (P1)	376				
03E216	Port P14 Direction Register (PD0)					
03E316	Port P14 Direction Register (PD1)	375				
03E416	Port P14 Register (P2)					
03E516	Port P14 Register (P3)	376				
03E616	Port P14 Direction Register (PD2)					
03E716	Port P14 Direction Register (PD3)	375				
03E816	Port P14 Register (P4)					
03E916	Port P14 Register (P5)	376				
03EA ₁₆	Port P14 Direction Register (PD4)					
03EB16	Port P14 Direction Register (PD5)	375				
03EC16	,					
03ED16						
03EE16						
03EF16						
03F016	Pull-up Control Register 0 (PUR0)					
03F116	Pull-up Control Register 1 (PUR1)	385				
03F216						
03F316						
03F416						
03F516						
03F616						
03F716						
03F816						
03F916						
03FA ₁₆						
03FB ₁₆						
03FC16						
03FD16		$\overline{}$				
03FE16						
03FF16	Port Control Register (PCR)	387				
JUI 10	1 or control regioter (1 ort)	307				

M32C/85 Group (M32C/85, M32C/85T)

SINGLE-CHIP 16/32-BIT CMOS MICROCOMPUTER

1. Overview

The M32C/85 group (M32C/85, M32C/85T) microcomputer is a single-chip control unit that utilizes high-performance silicon gate CMOS technology with the M32C/80 series CPU core. The M32C/85 group (M32C/85, M32C/85T) is available in 144-pin and 100-pin plastic molded LQFP/QFP packages.

With a 16-Mbyte address space, this microcomputer combines advanced instruction manipulation capabilities to process complex instructions by less bytes and execute instructions at higher speed.

It includes a multiplier and DMAC adequate for office automation, communication devices and industrial equipments, and other high-speed processing applications.

1.1 Applications

Automobiles, audio, cameras, office equipment, communications equipment, portable equipment, etc.

1.2 Performance Overview

Tables 1.1 and 1.2 list performance overview of the M32C/85 group (M32C/85, M32C/85T).

Table 1.1 M32C/85 Group (M32C/85, M32C/85T) Performance (144-Pin Package)

	Characteristic	Perform				
0.51 :		M32C/85	M32C/85T			
CPU	Basic Instructions	108 instructions				
	Minimum Instruction Execution Time	31.3 ns (f(BCLK)=32 MHz, VCC1=4.2 V to 5.5 V) 41.7 ns (f(BCLK)=24 MHz, VCC1=3.0 V to 5.5 V)	31.3 ns (f(BCLK)=32 MHz, Vcc1=4.2 V to 5.5 V)			
	Operating Mode	Single-chip mode, Memory expansion mode and Microprocessor mode	Single-chip mode			
	Address Space	16 Mbytes				
	Memory Capacity	See Table 1.3				
Peripheral		123 I/O pins and 1 input pin				
Function	Multifunction Timer	Timer A: 16 bits x 5 channels, Time Three-phase motor control circuit				
	Intelligent I/O	Time measurement function or War 16 bits x 8 channels Communication function (Clock sy chronous serial I/O, HDLC data pro	nchronous serial I/O, Clock asyn-			
	Serial I/O	5 Channels Clock synchronous serial I/O, Cloc IEBus ⁽¹⁾ , I ² C bus ⁽²⁾	ck asynchronous serial I/O,			
	CAN Module	2 channels Supporting CAN 2.08				
	A/D Converter	10-bit A/D converter: 1 circuit, 34 channels				
	D/A Converter	8 bits x 2 channels				
	DMAC	4 channels				
	DMAC II	Can be activated by all peripheral f Immediate transfer, Calculation trai				
ı	CRC Calculation Circuit	CRC-CCITT				
ı	X/Y Converter	16 bits x 16 bits				
	Watchdog Timer	15 bits x 1 channel (with prescaler)				
	Interrupt	39 internal and 8 external sources, Interrupt priority level: 7	5 software sources			
	Clock Generation Circuit	4 circuits Main clock oscillation circuit(*), Sub- oscillator, PLL frequency synthesiz (*)Equipped with a built-in feedba crystal oscillator must be connected	er ack resistor. Ceramic resonator or			
ı	Oscillation Stop Detect Function	Main clock oscillation stop detect fu	unction			
	Voltage Detection Circuit	Available (optional)	Not available ⁽⁴⁾			
Electrical Charact- eristics	Supply Voltage	Vcc1=4.2 V to 5.5 V, Vcc2=3.0 V to Vcc1 (f(BCLK)=32 MHz) Vcc1=3.0 V to 5.5 V, Vcc2=3.0 V to Vcc1 (f(BCLK)=24 MHz)	VCC1=VCC2=4.2 V to 5.5 V, (f(BCLK)=32 MHz) ⁽³⁾			
	Power Consumption	28 mA (Vcc1=Vcc2=5 V, f(BCLK)=32 MHz) 22 mA (Vcc1=Vcc2=3.3 V, f(BCLK)=24 MHz) 10μA (Vcc1=Vcc2=5 V, f(BCLK)=32 kHz, in wait mode)	28 mA (Vcc1=Vcc2=5 V, f(BCLK)=32 MHz) 10μA (Vcc1=Vcc2=5 V, f(BCLK)=32 kHz, in wait mode)			
Flash	Program/Erase Supply Voltage	$3.3~V \pm 0.3~V~or~5.0~V \pm 0.5~V$	5.0 V ± 0.5 V			
Memory	Program and Erase Endurance	100 times (all space)				
	· · · · =	20.4- 0000	40 to 0000 (T.,,,,,,,)			
Operating	Ambient Temperature	−20 to 85°C −40 to 85°C (optional)	-40 to 85°C (T version)			

NOTES:

- 1. IEBus is a trademark of NEC Electronics Corporation.
- 2. I²C bus is a trademark of Koninklijke Philips Electronics N. V.
- 3. The supply voltage of M32C/85T (High-reliability version) must be Vcc1=Vcc2.
- 4. The cold start-up/warm start-up determine function is available only at the user's option.

All options are on a request basis.

Table 1.2 M32C/85 Group (M32C/85, M32C/85T) Performance (100-Pin Package)

	Characteristic	Perform			
		M32C/85	M32C/85T		
CPU	Basic Instructions	108 instructions			
	Minimum Instruction Execution Time	31.3 ns (f(BCLK)=32 MHz, VCC1=4.2 V to 5.5 V) 41.7 ns (f(BCLK)=24 MHz, VCC1=3.0 V to 5.5 V)	31.3 ns (f(BCLK)=32 MHz, Vcc1=4.2 V to 5.5 V)		
	Operating Mode	Single-chip mode, Memory expansion mode and Microprocessor mode	Single-chip mode		
	Address Space	16 Mbytes			
	Memory Capacity	See Table 1.3			
Peripheral		87 I/O pins and 1 input pin			
Function	Multifunction Timer	Timer A: 16 bits x 5 channels, Time Three-phase motor control circuit	er B: 16 bits x 6 channels		
	Intelligent I/O	Time measurement function or Wa 16 bits x 8 channels Communication function (Clock sy chronous serial I/O, HDLC data pro	nchronous serial I/O, Clock asyn-		
	Serial I/O	5 Channels Clock synchronous serial I/O, Clo IEBus ⁽¹⁾ , I ² C bus ⁽²⁾			
	CAN Module	2 channels Supporting CAN 2.08			
	A/D Converter	10-bit A/D converter: 1 circuit, 26 channels			
	D/A Converter	8 bits x 2 channels			
	DMAC	4 channels			
(DMAC II	Can be activated by all peripheral function interrupt sources Immediate transfer, Calculation transfer and Chain transfer functions			
	CRC Calculation Circuit	CRC-CCITT			
	X/Y Converter	16 bits x 16 bits			
	Watchdog Timer	15 bits x 1 channel (with prescaler)			
	Interrupt	39 internal and 8 external sources, 5 software sources Interrupt priority level: 7			
	Clock Generation Circuit	oscillator, PLL frequency synthesiz (*)Equipped with a built-in feedba crystal oscillator must be connected	ack resistor. Ceramic resonator or dexternally		
	Oscillation Stop Detect Function	Main clock oscillation stop detect for			
	Voltage Detection Circuit	Available (optional)	Not available ⁽⁴⁾		
Electrical Charact- eristics	Supply Voltage	Vcc1=4.2 V to 5.5 V, Vcc2=3.0 V to Vcc1 (f(BCLK)=32 MHz) Vcc1=3.0 V to 5.5 V, Vcc2=3.0 V to Vcc1 (f(BCLK)=24 MHz)	VCC1=VCC2=4.2 V to 5.5 V, (f(BCLK)=32 MHz) ⁽³⁾		
	Power Consumption	28 mA (VCC1=VCC2=5 V, f(BCLK)=32 MHz) 22 mA (VCC1=VCC2=3.3 V, f(BCLK)=24 MHz) 10μA (VCC1=VCC2=5 V, f(BCLK)=32 kHz, in wait mode)	28 mA (Vcc1=Vcc2=5 V, f(BCLK)=32 MHz) 10μA (Vcc1=Vcc2=5 V, f(BCLK)=32 kHz, in wait mode)		
Flash	Program/Erase Supply Voltage	3.3 V \pm 0.3 V or 5.0 V \pm 0.5 V	5.0 V ± 0.5 V		
Memory	Program and Erase Endurance	100 times (all space)			
Operating	g Ambient Temperature	−20 to 85°C −40 to 85°C (optional)	-40 to 85°C (T version)		
Package		100-pin plastic molded LQFP/QFP	ı		

- 1. IEBus is a trademark of NEC Electronics Corporation.
- 2. I²C bus is a trademark of Koninklijke Philips Electronics N. V.
- 3. The supply voltage of M32C/85T (High-reliability version) must be Vcc1=Vcc2.
- 4. The cold start-up/warm start-up determine function is available only at the user's option.

All options are on a request basis.

1.3 Block Diagram

Figure 1.1 shows a block diagram of the M32C/85 group (M32C/85, M32C/85T) microcomputer.

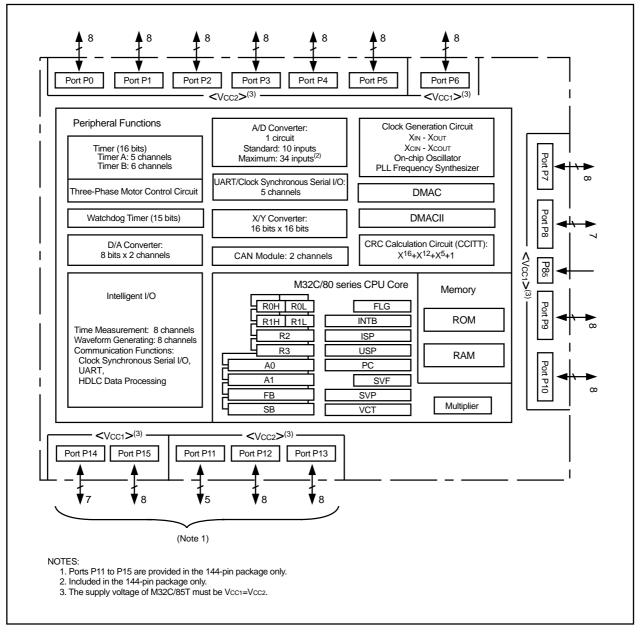


Figure 1.1 M32C/85 Group (M32C/85, M32C/85T) Block Diagram

1.4 Product Information

Table 1.3 lists the product information. Figure 1.2 shows the product numbering system.

Table 1.3 M32C/85 Group (1) (M32C/85)

As of July, 2005

Type Number	Package Type	ROM Capacity	RAM Capacity	Remarks
M30855FJGP	PLQP0144KA-A (144P6Q-A)			
M30853FJGP	PLQP0100KB-A (100P6Q-A)	512K+4K		
M30853FJFP	PRQP0100JB-A (100P6S-A)			
M30855FHGP	PLQP0144KA-A (144P6Q-A)			
M30853FHGP	PLQP0100KB-A (100P6Q-A)	384K+4K		Flash Memory
M30853FHFP	PRQP0100JB-A (100P6S-A)		24K	
M30855FWGP	PLQP0144KA-A (144P6Q-A)		24N	
M30853FWGP	PLQP0100KB-A (100P6Q-A)	320K+4K		
M30853FWFP	PRQP0100JB-A (100P6S-A)			
M30855MW-XXXGP	PLQP0144KA-A (144P6Q-A)			
M30853MW-XXXGP	PLQP0100KB-A (100P6Q-A)	320K		Mask ROM
M30853MW-XXXFP	PRQP0100JB-A (100P6S-A)			

Table 1.3 M32C/85 Group (2) (T Version, M32C/85T)

As of July, 2005

Type Number	Package Type	ROM Capacity	RAM Capacity	Remarks
M30855FJTGP	PLQP0144KA-A (144P6Q-A)	512K+4K		
M30853FJTGP	PLQP0100KB-A (100P6Q-A)	312N+4N		
M30855FHTGP	PLQP0144KA-A (144P6Q-A)	384K+4K	24K	Flash Memory T Version
M30853FHTGP	PLQP0100KB-A (100P6Q-A)	304N+4N		(High-reliability 85°C Version)
M30855FWTGP	PLQP0144KA-A (144P6Q-A)	320K+4K		
M30853FWTGP	PLQP0100KB-A (100P6Q-A)	320N+4N		

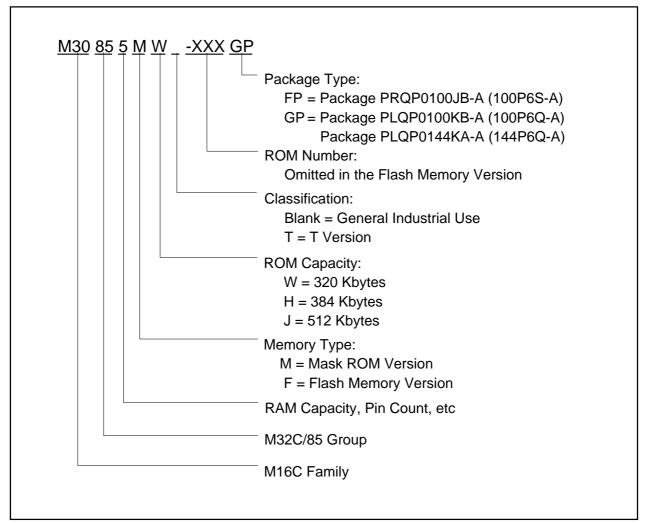


Figure 1.2 Product Numbering System

1.5 Pin Assignments and Descriptions

Figures 1.3 to 1.5 show pin assignments (top view).

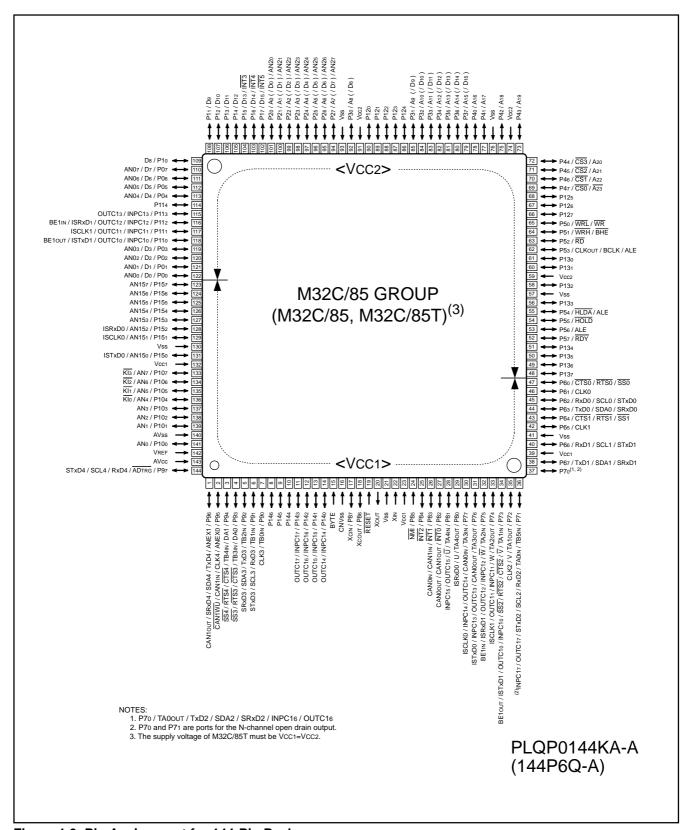


Figure 1.3 Pin Assignment for 144-Pin Package

Table 1.4 Pin Characteristics for 144-Pin Package

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART/CAN Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin ⁽¹⁾
1		P96			TxD4/SDA4/SRxD4/CAN1out		ANEX1	
2		P95			CLK4/CAN1IN/CAN1WU		ANEX0	
3		P94		TB4IN	CTS4/RTS4/SS4		DA1	
4		P93		TB3IN	CTS3/RTS3/SS3		DA0	
5		P92		TB2IN	TxD3/SDA3/SRxD3			
6		P91		TB1IN	RxD3/SCL3/STxD3			
7		P90		TB0in	CLK3			
8		P146						
9		P145						
10		P144						
11		P143				INPC17/OUTC17		
12		P142				INPC16/OUTC16		
13		P141				INPC15/OUTC15		
14		P140				INPC14/OUTC14		
15	BYTE							
16	CNVss							
17	XCIN	P87						
18	Хсоит	P86						
19	RESET							
20	Хоит							
21	Vss							
22	XIN							
23	Vcc1							
24		P85	NMI					
25		P84	ĪNT2					
26		P83	ĪNT1		CAN0in/CAN1in			
27		P82	ĪNT0		CAN0out/CAN1out			
28		P81		TA4IN/Ū		INPC15/OUTC15		
29		P80		TA4out/U		ISRxD0		
30		P77		TA3IN	CAN0in	INPC14/OUTC14/ISCLK0		
31		P76		ТА3оит	CAN0out	INPC13/OUTC13/ISTxD0		
32		P75		TA2IN/W		INPC12/OUTC12/ISRxD1/BE1IN		
33		P74		TA2out/W		INPC11/OUTC11/ISCLK1		
34		P73		TA1IN/V	CTS2/RTS2/SS2	INPC1o/OUTC1o/ISTxD1/BE1out		
35		P72		TA1out/V	CLK2			
36		P71		TB5IN/TA0IN	RxD2/SCL2/STxD2	INPC17/OUTC17		
37		P70		ТА0оит	TxD2/SDA2/SRxD2	INPC16/OUTC16		
38		P67			TxD1/SDA1/SRxD1			
39	Vcc1							
40		P66			RxD1/SCL1/STxD1			
41	Vss							
42		P65			CLK1			
43		P64			CTS1/RTS1/SS1			
44		P63			TxD0/SDA0/SRxD0			
45		P62			RxD0/SCL0/STxD0			
46		P61			CLK0			
47		P60			CTS0/RTS0/SS0			
48		P137						

^{1.} Bus control pins in M32C/85T cannot be used.

Table 1.4 Pin Characteristics for 144-Pin Package (Continued)

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART/CAN Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin ⁽¹⁾
49		P136						
50		P135						
51		P134						
52		P57						RDY
53		P56						ALE
54		P55						HOLD
55		P54						HLDA/ALE
56		P133						
57	Vss							
58		P132						
59	Vcc2							
60	1002	P131						
61		P130						
62		P53						CLKout/BCLK/ALE
63		P52						RD
64		P51						WRH/BHE
65		P50						WRL/WR
66		P127						VVICE/VVIC
67		P126						
68		P125						
69		P47						CS0/A23
		P47						CS0/A23 CS1/A22
70 71		P45						CS1/A22 CS2/A21
72		P44						CS3/A20
73		P43						A19
74	VCC2	D.4						
75	.,	P42						A18
76	Vss	-						
77		P41						A17
78		P40						A16
79		P37						A15(/D15)
80		P36						A14(/D14)
81		P35						A13(/D13)
82		P34						A12(/D12)
83		P3 ₃						A11(/D11)
84		P32						A10(/D10)
85		P31						A9(/D9)
86		P124						
87		P123						
88		P122						
89		P121						
90		P120						
91	VCC2							
92		P30						A8(/D8)
93	Vss							
94		P27					AN27	A7(/D7)
95		P26					AN26	A6(/D6)
96		P25					AN25	A5(/D5)

^{1.} Bus control pins in M32C/85T cannot be used.

Table 1.4 Pin Characteristics for 144-Pin Package (Continued)

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART/CAN Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin ⁽¹⁾
97		P24					AN24	A4(/D4)
98		P23					AN23	A3(/D3)
99		P22					AN22	A2(/D2)
100		P21					AN21	A1(/D1)
101		P20					AN20	Ao(/Do)
102		P17	INT5					D15
103		P16	ĪNT4					D14
104		P15	ĪNT3					D13
105		P14						D12
106		P13						D11
107		P12						D10
108		P11						D9
109		P10						D8
110		P07					AN07	D7
111		P06					AN06	D ₆
112		P05					AN05	D ₅
113		P04					AN04	D4
114		P114						
115		P113				INPC13/OUTC13		
116		P112				INPC12/OUTC12/ISRxD1/BE1IN		
117		P111				INPC11/OUTC11/ISCLK1		
118		P110				INPC1o/OUTC1o/ISTxD1/BE1out		
119		P03					AN03	D3
120		P02					AN02	D ₂
121		P01					AN01	D ₁
122		P00					AN0o	D ₀
123		P157					AN157	-
124		P156					AN156	
125		P155					AN155	
126		P154					AN154	
127		P153					AN153	
128		P152				ISRxD0	AN152	
129		P151				ISCLK0	AN151	
130	Vss							
131		P150				ISTxD0	AN150	
132	Vcc1							
133		P107	KIз				AN ₇	
134		P106	Kl ₂				AN ₆	
135		P105	KI ₁				AN ₅	
136		P104	KIo				AN4	
137		P103					AN ₃	
138		P102					AN ₂	
139		P101					AN ₁	
	AVss							
141	-	P100					AN ₀	
	VREF							
	AVcc							
144		P97			RxD4/SCL4/STxD4		ADTRG	

^{1.} Bus control pins in M32C/85T cannot be used,

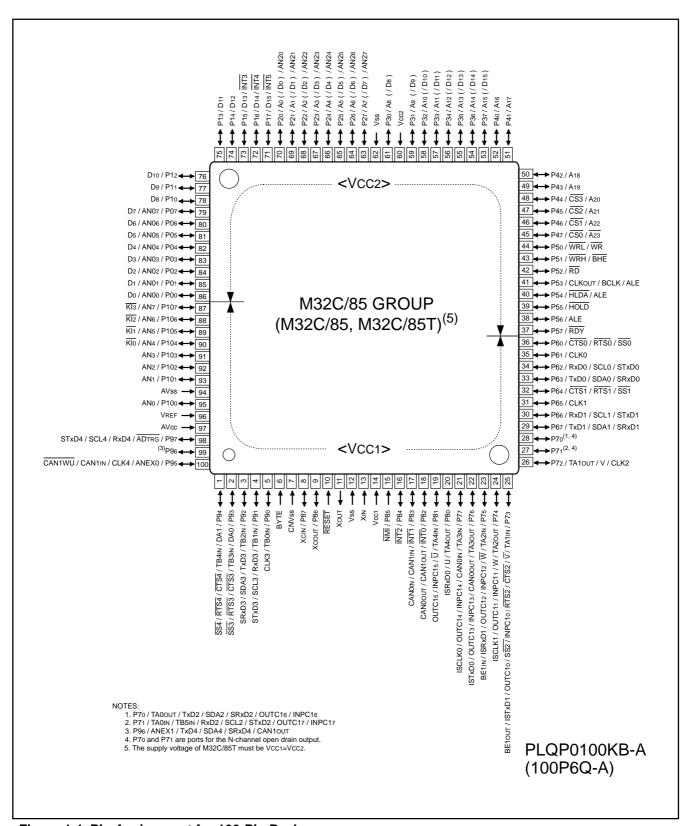


Figure 1.4 Pin Assignment for 100-Pin Package

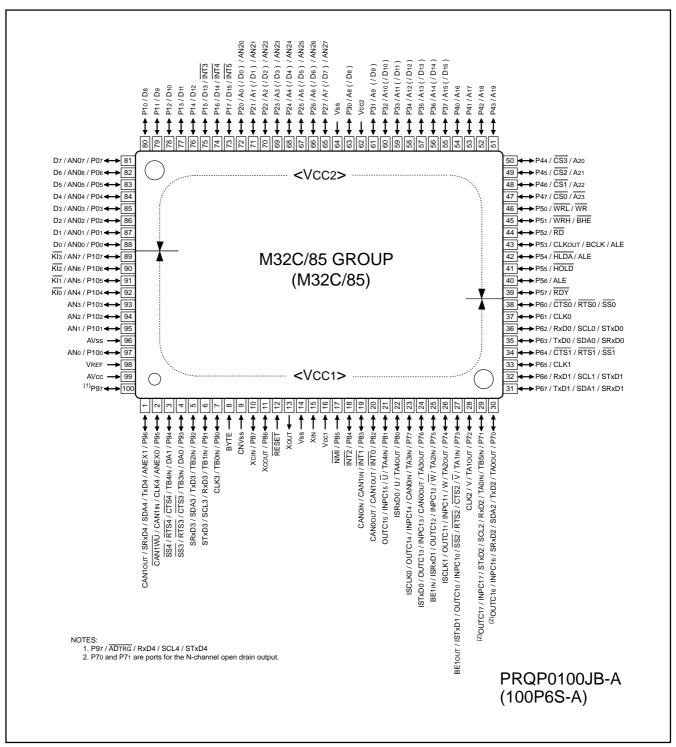


Figure 1.5 Pin Assignment for 100-Pin Package

Table 1.5 Pin Characteristics for 100-Pin Package

Pin	kage No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART/CAN Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin ⁽¹⁾
FP	GP								
1	99		P96			TxD4/SDA4/SRxD4/CAN1out		ANEX1	
2	100		P95			CLK4/CAN1IN/CAN1WU		ANEX0	
3	1		P94		TB4IN	CTS4/RTS4/SS4		DA1	
4	2		P93		TB3iN	CTS3/RTS3/SS3		DA0	
5	3		P92		TB2IN	TxD3/SDA3/SRxD3			
6	4		P91		TB1IN	RxD3/SCL3/STxD3			
7	5		P90		TB0in	CLK3			
8	6	BYTE							
9	7	CNVss							
10	8	Xcin	P87						
11	9	Хсоит	P86						
12	10	RESET							
13	11	Хоит							
14	12	Vss							
15	13	XIN							
16	14	Vcc1							
17	15		P85	NMI					
18	16		P84	ĪNT2					
19	17		P83	ĪNT1		CAN0IN/CAN1IN			
20	18		P82	ĪNT0		CAN0out/CAN1out			
21	19		P81		TA4IN/Ū		INPC15/OUTC15		
22	20		P80		TA4out/U		ISRxD0		
23	21		P77		TA3IN	CAN0IN	INPC14/OUTC14/ISCLK0		
24	22		P76		ТА3оит	CAN0out	INPC13/OUTC13/ISTxD0		
25	23		P75		TA2IN/W		INPC12/OUTC12/ISRxD1/BE1IN		
26	24		P74		TA2out/W		INPC11/OUTC11/ISCLK1		
27	25		P73		TA1ın/∇	CTS2/RTS2/SS2	INPC10/OUTC10/ISTxD1/BE10UT		
28	26		P72		TA1out/V	CLK2			
29	27		P71		TB5IN/TA0IN	RxD2/SCL2/STxD2	INPC17/OUTC17		
30	28		P70		ТА0оит	TxD2/SDA2/SRxD2	INPC16/OUTC16		
31	29		P67			TxD1/SDA1/SRxD1			
32	30		P66			RxD1/SCL1/STxD1			
33	31		P65			CLK1			
34	32		P64			CTS1/RTS1/SS1			
35	33		P63			TxD0/SDA0/SRxD0			
36	34		P62			RxD0/SCL0/STxD0			
37	35		P61			CLK0			
38	36		P60			CTS0/RTS0/SS0			
39	37		P57						RDY
40	38		P56						ALE
41	39		P5 ₅						HOLD
42	40		P54						HLDA/ALE
43	41		P53						CLKout/BCLK/ALE
44	42		P52						RD
45	43		P51						WRH/BHE
46	44		P50						WRL/WR
47	45		P47						CS0/A23
48	46		P46						CS1/A22
49	47		P45						CS2/A21
50	48		P44						CS3/A20
NOTI				<u> </u>			I		3 5 5 7 . 120

^{1.} Bus control pins in M32C/85T cannot be used.

Table 1.5 Pin Characteristics for 100-Pin Package (Continued)

Pack Pin	kage No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART/CAN Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin ⁽¹⁾
FP	GP								
51	49		P43						A19
52	50		P42						A18
53	51		P41						A17
54	52		P40						A16
55	53		P37						A15(/D15)
56	54		P36						A14(/D14)
57	55		P35						A13(/D13)
58	56		P34						A12(/D12)
59	57		P33						A11(/D11)
60	58		P32						A10(/D10)
61	59		P31						A9(/D9)
62	60	VCC2	101						710(720)
63	61	V 002	P30						A8(/D8)
64	62	Vss	1 30						7.0(100)
65	63	v 33	P27					AN27	A7(/D7)
66	64		P27					AN26	A7(/D7) A6(/D6)
67	65		P25					AN25	A5(/D5)
68	66		P24					AN24	A4(/D4)
69	67		P23					AN23	A3(/D3)
70	68		P22					AN22	A2(/D2)
71	69		P21					AN21	A1(/D1)
72	70		P20					AN20	Ao(/Do)
73	71		P17	INT5					D15
74	72		P16	INT4					D14
75	73		P15	ĪNT3					D13
76	74		P14						D12
77	75		P13						D11
78	76		P12						D10
79	77		P11						D9
80	78		P10						D8
81	79		P07					AN07	D7
82	80		P06					AN06	D6
83	81		P05					AN05	D5
84	82		P04					AN04	D4
85	83		P03					AN03	D3
86	84		P02					AN02	D2
87	85		P01					AN01	D1
88	86		P00					AN00	D ₀
89	87		P107	КIз				AN7	= 0
90	88		P106	Kl ₂				AN ₆	
91	89		P105	KI ₁				AN5	
92	90		P104	KIO				AN4	
93	91		P103	IXIU				AN3	
	92		P103					AN ₂	
94									
95	93	۸۱/۵-	P101					AN ₁	
96	94	AVss	D40-					A N I -	
97	95	.,	P10 ₀					AN ₀	
98	96	VREF							
99	97	AVcc						<u> </u>	
100	98		P97			RxD4/SCL4/STxD4		ADTRG	

NOTES:

^{1.} Bus control pins in M32C/85T cannot be used.

1.6 Pin Description

Table 1.6 Pin Description (100-Pin and 144-Pin Packages)

Classsfication	Symbol	I/O Type	Supply Voltage	Function	
Power Supply	VCC1, VCC2	I	-	Apply 3.0 to 5.5V to both VCC1 and VCC2 pins. Apply 0V to the	
	Vss			Vss pin. $VCC1 \ge VCC2^{(1, 2)}$	
Analog Power	AVcc	1	VCC1	Supplies power to the A/D converter. Connect the AVCC pin to	
Supply	AVss			Vcc1 and the AVss pin to Vss	
Reset Input	RESET	I	VCC1	The microcomputer is in a reset state when "L" is applied to the RESET p	
Power Supply VCC1, VCC2 Vss Analog Power AVCC Supply AVSS Reset Input RESET CNVss CNVss Input to Switch External Data Bus		I	VCC1	Switches processor mode. Connect the CNVss pin to Vss to start up	
				in single-chip mode or to VCC1 to start up in microprocessor mode	
Input to Switch	BYTE	I	VCC1	Switches data bus width in external memory space 3. The data	
External Data Bus				bus is 16 bits wide when the BYTE pin is held "L" and 8 bits wide	
Width ⁽³⁾				when it is held "H". Set to either. Connect the BYTE pin to Vss	
				to use the microcomputer in single-chip mode	
Bus Control	Do to D7	I/O	VCC2	Inputs and outputs data (Do to D7) while accessing an external	
Pins ⁽³⁾ memory space with separate bus		memory space with separate bus			
D8 to D15 I/O VCC2 Inputs and outputs data		Inputs and outputs data (D8 to D15) while accessing an external			
		memory space with 16-bit separate bus			
	A0 to A22	0	VCC2	Outputs address bits Ao to A22	
	A23	0	VCC2	Outputs inversed address bit A23	
	Ao/Do to	I/O	VCC2	Inputs and outputs data (Do to D7) and outputs 8 low-order	
	A7/D7			address bits (A ₀ to A ₇) by time-sharing while accessing an	
				external memory space with multiplexed bus	
	A8/D8 to	I/O	VCC2	Inputs and outputs data (D8 to D15) and outputs 8 middle-order	
	A15/D15				
				external memory space with 16-bit multiplexed bus	
	CS0 to CS3	0	VCC2	Outputs CS0 to CS3 that are chip-select signals specifying an external space	
	WRL / WR	0	VCC2	Outputs WRL, WRH, (WR, BHE) and RD signals. WRL and	
	$\overline{\text{WRH}} / \overline{\text{BHE}}$			WRH can be switched with WR and BHE by program	
	\overline{RD}			■ WRL, WRH and RD selected:	
				If external data bus is 16 bits wide, data is written to an even	
				address in external memory space when WRL is held "L".	
				Data is written to an odd address when WRH is held "L".	
				Data is read when RD is held "L".	
				■ WR, BHE and RD selected:	
				Data is written to external memory space when WR is held "L".	
				Data in an external memory space is read when \overline{RD} is held "L".	
				An odd address is accessed when BHE is held "L".	
				Select WR, BHE and RD for external 8-bit data bus.	
	ALE	0	VCC2	ALE is a signal latching the address	
	HOLD	I	VCC2	The microcomputer is placed in a hold state while the HOLD pin is held "L"	
	HLDA	0	VCC2	Outputs an "L" signal while the microcomputer is placed in a hold state	
ı	RDY		VCC2	Bus is placed in a wait state while the RDY pin is held "L"	

I : Input O : Output NOTES:

I/O: Input and output

^{1.} VCC1 is hereinafter referred to as VCC unless otherwise noted.

^{2.} Apply 4.2 to 5.5V to the Vcc1 and Vcc2 pins when using M32C/85T. Vcc1=Vcc2.

^{3.} Bus control pins in M32C/85T cannot be used.

Table 1.6 Pin Description (100-Pin and 144-Pin Packages) (Continued)

Classsfication	Symbol	I/O Type	Supply Voltage	Function	
Main Clock Input	XIN	I	VCC1	I/O pins for the main clock oscillation circuit. Connect a ceramic	
Main Clask Outnut	Vour		1/004	resonator or crystal oscillator between XIN and XOUT. To apply	
Main Clock Output	XOUT	0	VCC1	external clock, apply it to XIN and leave XOUT open	
Sub Clock Input	XCIN	I	VCC1	I/O pins for the sub clock oscillation circuit. Connect a crystal	
Sub Clock Output	XCOUT	0	VCC1	oscillator between XCIN and XCOUT. To apply external clock,	
	7,0001		V 001	apply it to XCIN and leave XCOUT open	
BCLK Output ⁽¹⁾	BCLK	0	VCC2	Outputs BCLK signal	
Clock Output	CLKout	0	VCC2	Outputs the clock having the same frequency as fC, f8 or f32	
INT Interrupt	INT0 to INT2	I	VCC1	Input pins for the INT interrupt	
Input	INT3 to INT5		VCC2		
NMI Interrupt Input	NMI	I	VCC1	Input pin for the NMI interrupt	
Key Input Interrupt	Klo to Kl3	I	VCC1	Input pins for the key input interrupt	
Timer A	TA0out to	I/O	VCC1	C1 I/O pins for the timer A0 to A4	
	TA4out			(TA0out is a pin for the N-channel open drain output.)	
	TA0IN to	I	VCC1	Input pins for the timer A0 to A4	
	TA4IN				
Timer B TB0IN to I VCC1 Input pins for the timer B0 to B5		Input pins for the timer B0 to B5			
	TB5IN				
Three-phase Motor	$\overline{U}, \overline{U}, V, \overline{V},$	0	VCC1	Output pins for the three-phase motor control timer	
Control Timer Output	W, W				
Serial I/O	CTS0 to CTS4	I	VCC1	Input pins for data transmission control	
	RTS0 to RTS4	0	VCC1	Output pins for data reception control	
	CLK0 to CLK4	I/O	VCC1	Inputs and outputs the transfer clock	
	RxD0 to RxD4	I	VCC1	Inputs serial data	
	TxD0 to TxD4	0	VCC1	Outputs serial data	
				(TxD2 is a pin for the N-channel open drain output.)	
I ² C Mode	SDA0 to	I/O	VCC1	Inputs and outputs serial data	
	SDA4			(SDA2 is a pin for the N-channel open drain output.)	
	SCL0 to			Inputs and outputs the transfer clock	
	SCL4			(SCL2 is a pin for the N-channel open drain output.)	
Serial I/O	STxD0 to	0	VCC1	Outputs serial data when slave mode is selected	
Special Function STxD4			(STxD2 is a pin for the N-channel open drain output.)		
	SRxD0 to	I		Inputs serial data when slave mode is selected	
	SRxD4				
	SS0 to SS4	I	VCC1	Input pins to control serial I/O special function	

I/O: Input and output I : Input O : Output

NOTES:

1. Bus control pins in M32C/85T cannot be used.

Table 1.6 Pin Description (100-Pin and 144-Pin Packages) (Continued)

Classsfication	Symbol	I/O Type	Supply Voltage	Function
Reference	VREF	I	-	Applies reference voltage to the A/D converter and D/A converter
Voltage Input				
A/D Converter	ANo to AN7	7 I VCC1		Analog input pins for the A/D converter
	AN00 to AN07			
	AN20 to AN27			
	ADTRG	I	VCC1	Input pin for an external A/D trigger
	ANEX0	I/O	VCC1	Extended analog input pin for the A/D converter and output pin in
				external op-amp connection mode
	ANEX1	I	VCC1	Extended analog input pin for the A/D converter
D/A Converter	DA0, DA1	0	VCC1	Output pin for the D/A converter
Intelligent I/O	INPC10 to INPC13	I	Vcc1/Vcc2 ⁽¹⁾	Input pins for the time measurement function
	INPC14 to INPC17		VCC1	
	OUTC10 to OUTC13	0	Vcc1/Vcc2 ⁽¹⁾	Output pins for the waveform generating function
	OUTC14 to OUTC17		VCC1	(OUTC16 and OUTC17 assigned to P70 and P71 are pins for the N-channel open drain output.)
	ISCLK0	I/O	VCC1	Inputs and outputs the clock for the intelligent I/O communication
	ISCLK1		Vcc1/Vcc2 ⁽¹⁾	function
	ISRXD0	I	VCC1	Inputs data for the intelligent I/O communication function
	ISRXD1		Vcc1/Vcc2 ⁽¹⁾	
	ISTXD0	0	VCC1	Outputs data for the intelligent I/O communication function
	ISTXD1		Vcc1/Vcc2 ⁽¹⁾	
	BE1IN	I	Vcc1/Vcc2 ⁽¹⁾	Inputs data for the intelligent I/O communication function
	BE1out	0	Vcc1/Vcc2 ⁽¹⁾	Outputs data for the intelligent I/O communication function
CAN	CAN0IN	I	VCC1	Input pin for the CAN communication function
	CAN1IN			
	CAN0out	0		Output pin for the CAN communication function
	CAN1out			
	CAN1WU	I		Input pin for the CAN1 wake-up interrupt
I/O Ports	P00 to P07	I/O	VCC2	I/O ports for CMOS. Each port can be programmed for input or
	P10 to P17			output under the control of the direction register. An input port
	P20 to P27			can be set, by program, for a pull-up resistor available or for no
	P30 to P37			pull-up resister available in 4-bit units
	P40 to P47			
	P50 to P57			
	P60 to P67	I/O	VCC1	I/O ports having equivalent functions to P0
	P70 to P77			(P70 and P71 are ports for the N-channel open drain output.)
	P90 to P97			
	P100 to P107			
	P80 to P84	I/O	VCC1	I/O ports having equivalent functions to P0
	P86, P87			
Input Port	P85	ı	VCC1	Shares a pin with NMI. NMI input state can be got by reading P85

I : Input O: Output I/O: Input and output NOTES:

^{1.} VCC2 is not available in the 100-pin package. VCC1 only available.

Table 1.6 Pin Description (144-Pin Package only) (Continued)

		-		
Classsfication	Symbol	I/O Type	Supply Voltage	Function
A/D Converter	AN150 to AN157	1	VCC1	Analog input pins for the A/D converter
I/O Ports	P110 to P114	I/O	VCC2	I/O ports having equivalent functions to P0
	P120 to P127			
	P130 to P137			
	P140 to P146	I/O	VCC1	I/O ports having equivalent functions to P0
	P150 to P157			

I : Input O : Output I/O : Input and output

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU registers.

The register bank is comprised of 8 registers (R0, R1, R2, R3, A0, A1, SB and FB) out of 28 CPU registers. Two sets of register banks are provided.

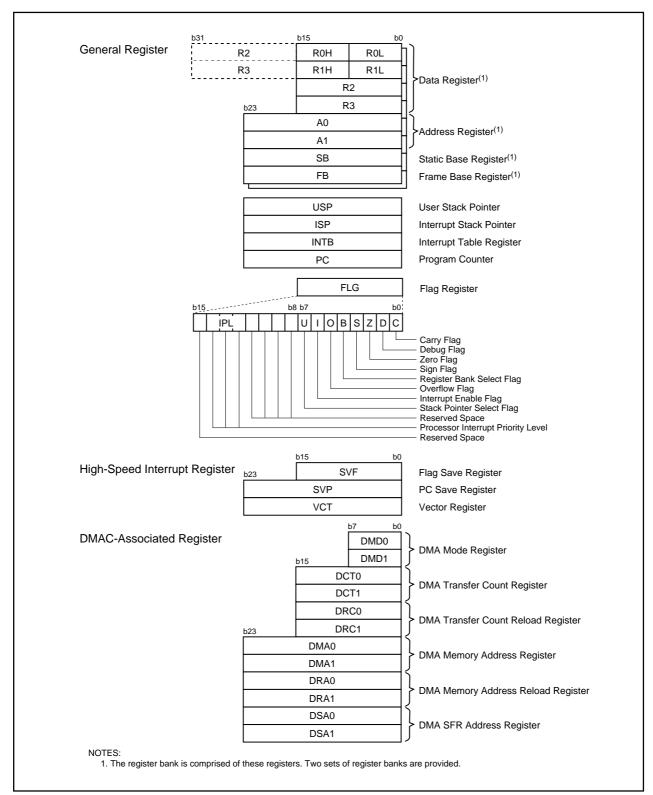


Figure 2.1 CPU Register

2.1 General Registers

2.1.1 Data Registers (R0, R1, R2 and R3)

R0, R1, R2 and R3 are 16-bit registers for transfer, arithmetic and logic operations. R0 and R1 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R0 can be combined with R2 to be used as a 32-bit data register (R2R0). The same applies to R1 and R3.

2.1.2 Address Registers (A0 and A1)

A0 and A1 are 24-bit registers for A0-/A1-indirect addressing, A0-/A1-relative addressing, transfer, arithmetic and logic operations.

2.1.3 Static Base Register (SB)

SB is a 24-bit register for SB-relative addressing.

2.1.4 Frame Base Register (FB)

FB is a 24-bit register for FB-relative addressing.

2.1.5 Program Counter (PC)

PC, 24 bits wide, indicates the address of an instruction to be executed.

2.1.6 Interrupt Table Register (INTB)

INTB is a 24-bit register indicating the starting address of an relocatable interrupt vector table.

2.1.7 User Stack Pointer (USP), Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP and ISP, are 24 bits wide each. The U flag is used to switch between USP and ISP. Refer to **2.1.8 Flag Register (FLG)** for details on the U flag. Set USP and ISP to even addresses to execute an interrupt sequence efficiently.

2.1.8 Flag Register (FLG)

FLG is a 16-bit register indicating a CPU state.

2.1.8.1 Carry Flag (C)

The C flag indicates whether carry or borrow has occurred after executing an instruction.

2.1.8.2 Debug Flag (D)

The D flag is for debug only. Set to "0".

2.1.8.3 Zero Flag (Z)

The Z flag is set to "1" when the value of zero is obtained from an arithmetic operation; otherwise "0".

2.1.8.4 Sign Flag (S)

The S flag is set to "1" when a negative value is obtained from an arithmetic operation; otherwise "0".

2.1.8.5 Register Bank Select Flag (B)

The register bank 0 is selected when the B flag is set to "0". The register bank 1 is selected when this flag is set to "1".

2.1.8.6 Overflow Flag (O)

The O flag is set to "1" when the result of an arithmetic operation overflows; otherwise "0".

2.1.8.7 Interrupt Enable Flag (I)

The I flag enables a maskable interrupt.

Interrupt is disabled when the I flag is set to "0" and enabled when the I flag is set to "1". The I flag is set to "0" when an interrupt is acknowledged.

2.1.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to "0". USP is selected when this flag is set to "1".

The U flag is set to "0" when a hardware interrupt is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.1.8.9 Processor Interrupt Priority Level (IPL)

IPL, 3 bits wide, assigns processor interrupt priority levels from level 0 to level 7.

If a requested interrupt has greater priority than IPL, the interrupt is enabled.

2.1.8.10 Reserved Space

When writing to a reserved space, set to "0". When reading, its content is indeterminate.

2.2 High-Speed Interrupt Registers

Registers associated with the high-speed interrupt are as follows:

- Flag save register (SVF)
- PC save register (SVP)
- Vector register (VCT)

Refer to **11.4 High-Speed Interrupt** for details.

2.3 DMAC-Associated Registers

Registers associated with DMAC are as follows:

- DMA mode register (DMD0, DMD1)
- DMA transfer count register (DCT0, DCT1)
- DMA transfer count reload register (DRC0, DRC1)
- DMA memory address register (DMA0, DMA1)
- DMA SFR address register (DSA0, DSA1)
- DMA memory address reload register (DRA0, DRA1)

Refer to 13. DMAC for details.

3. Memory

Figure 3.1 shows a memory map of the M32C/85 group (M32C/85, M32C/85T).

The M32C/85 group (M32C/85, M32C/85T) provides 16-Mbyte address space from addresses 00000016 to FFFFFF16.

The internal ROM is allocated lower addresses beginning with address FFFFF16. For example, a 64-Kbyte internal ROM is allocated addresses FF000016 to FFFFF16.

The fixed interrupt vectors are allocated addresses FFFDC16 to FFFFF16. It stores the starting address of each interrupt routine.

The internal RAM is allocated higher addresses beginning with address 00040016. For example, a 10-Kbyte internal RAM is allocated addresses 00040016 to 002BFF16. Besides storing data, it becomes stacks when the subroutine is called or an interrupt is acknowledged.

SFR, consisting of control registers for peripheral functions such as I/O port, A/D converter, serial I/O, timers, is allocated addresses 00000016 to 0003FF16. All blank spaces within SFR are reserved and cannot be accessed by users.

The special page vectors are allocated addresses FFFE0016 to FFFFDB16. It is used for the JMPS instruction and JSRS instruction. Refer to the Renesas publication **M32C/80 Series Software Manual** for details. In memory expansion mode and microprocessor mode, some spaces are reserved and cannot be accessed by users.

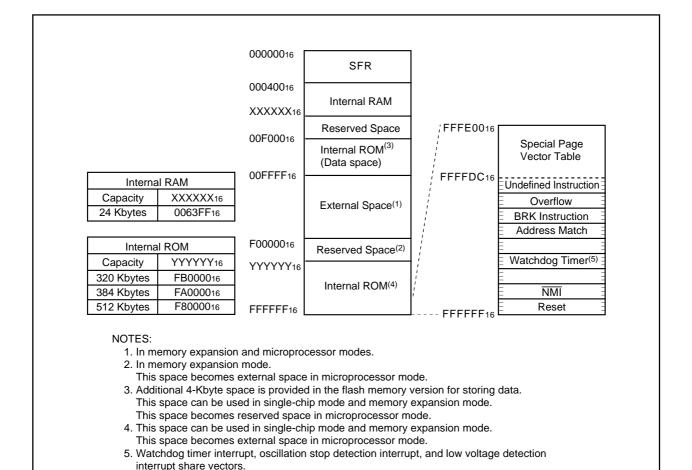


Figure 3.1 Memory Map

4. Special Function Registers (SFR)

Address	Register	Symbol	Value after RESET
000016	·	•	
000116			
000216			
000316			
000416	Processor Mode Register ⁽¹⁾	PM0	1000 00002(CNVss pin ="L") 0000 00112(CNVss pin ="H")
000516	Processor Mode Register 1	PM1	0016
000516	System Clock Control Register 0	CM0	0000 10002
000016	System Clock Control Register 1	CM0	0010 00002
	System Clock Control Register 1	CIVIT	0010 00002
000816	A.I. M. I.I. (5.11.5.1)	ALED	
000916	Address Match Interrupt Enable Register	AIER	0016
000A16	Protect Register	PRCR	XXXX 00002
000B16	External Data Bus Width Control Register ⁽²⁾	DS	XXXX 10002(BYTE pin ="L") XXXX 00002(BYTE pin ="H")
000C16	Main Clock Division Register	MCD	XXX0 10002
000D16	Oscillation Stop Detection Register	CM2	0016
000E16	Watchdog Timer Start Register	WDTS	XX16
000F16	Watchdog Timer Control Register	WDC	000X XXXX2
001016			
001116	Address Match Interrupt Register 0	RMAD0	00000016
001216			
001216	Processor Mode Register 2	PM2	0016
001316	1 10003301 Wiode (Yegister 2	1 IVIZ	0010
001516	Address Match Interrupt Register 1	RMAD1	00000016
	Address Match Interrupt Negister 1	KWADI	00000016
001616	Valtana Data tian Danistan 2(2)	VCDO	00.45
001716 001816	Voltage Detection Register 2 ⁽²⁾	VCR2	0016
001916	Address Motel Interrupt Decistor 2	DMADO	00000040
	Address Match Interrupt Register 2	RMAD2	00000016
001A16	(2)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
001B16	Voltage Detection Register 1 ⁽²⁾	VCR1	0000 10002
001C16		D	
001D16	Address Match Interrupt Register 3	RMAD3	00000016
001E16			
001F16			
002016			
002116			
002216			
002316			
002416			
002516			
002616	PLL Control Register 0	PLC0	0001 X0102
002716	PLL Control Register 1	PLC1	000X 00002
002816			
002916	Address Match Interrupt Register 4	RMAD4	0000016
002A16			
002B16			
002C16			
002D16	Address Match Interrupt Register 5	RMAD5	00000016
002E16			
002F16	Low Voltage Detection Interrupt Register ⁽²⁾	D4INT	0016
V. In date	2011 Voltago Dottotton Interrupt Prograter	DTINI	3310

X: Indeterminate

Blank spaces are reserved. No access is allowed.

NOTES

- 1. The PM01 and PM00 bits in the PM0 register maintain values set before reset, even after software reset or watchdog timer reset has been performed.
- 2. These registers in M32C/85T cannot be used.

Address	Register	Symbol	Value after RESET
003016			
003116			
003216			
003316			
003416			
003516			
003616			
003716			
003816			
003916	Address Match Interrupt Register 6	RMAD6	0000016
003A16			
003B16			
003C16			
003D16	Address Match Interrupt Register 7	RMAD7	0000016
003E16			
003F16			
004016			
004116			
004216			
004316			
004416			
004516			
004616			
004716			
004816	External Space Wait Control Register 0 ⁽¹⁾	EWCR0	X0X0 00112
004916	External Space Wait Control Register 1 ⁽¹⁾	EWCR1	X0X0 00112
004A16	External Space Wait Control Register 2 ⁽¹⁾	EWCR2	X0X0 00112
004B16	External Space Wait Control Register 3 ⁽¹⁾	EWCR3	X0X0 00112
004C16			
004D16			
004E16			
004F16			
005016			
005116			
005216			
005316			
005416			
005516	Flash Memory Control Register 1	FMR1	0000 01012
005616			
005716	Flash Memory Control Register 0	FMR0	0000 00012(Flash memory version) XXXX XXX02(Masked ROM version)
005816			
005916			
005A16			
005B16			
005C16			
005D16			
005E16			
005F16			

Blank spaces are reserved. No access is allowed.

NOTES:

1. These registers cannot be used in M32C/85T.

Address	Register	Symbol	Value after RESET
006016			
006116			
006216			
006316			
006416			
006516			
006616			
006716			
006816	DMA0 Interrupt Control Register	DM0IC	XXXX X0002
006916	Timer B5 Interrupt Control Register	TB5IC	XXXX X0002
006A16	DMA2 Interrupt Control Register	DM2IC	XXXX X0002
006B16	UART2 Receive /ACK Interrupt Control Register	S2RIC	XXXX X0002
006C16	Timer A0 Interrupt Control Register	TAOIC	XXXX X0002
006D16	UART3 Receive /ACK Interrupt Control Register	S3RIC	XXXX X0002
006E16	Timer A2 Interrupt Control Register	TA2IC	XXXX X0002
006F16	UART4 Receive /ACK Interrupt Control Register	S4RIC	XXXX X0002
007016	Timer A4 Interrupt Control Register	TA4IC	XXXX X0002
007116	UART0/UART3 Bus Conflict Detect Interrupt Control Register	BCN0IC/BCN3IC	XXXX X0002
007216	UARTO Receive/ACK Interrupt Control Register	SORIC	XXXX X0002
007316	A/D0 Conversion Interrupt Control Register	ADOIC	XXXX X0002
007416	UART1 Receive/ACK Interrupt Control Register	S1RIC	XXXX X0002 XXXX X0002
307410	Intelligent I/O Interrupt Control Register 0/	IIO0IC/	XXXX X0002
007516	CAN Interrupt 3 Control Register	CAN3IC	XXXX X0002
007616	Timer B1 Interrupt Control Register	TB1IC	XXXX X0002
007616	Intelligent I/O Interrupt Control Register 2	IIO2IC	XXXX X0002 XXXX X0002
007716			
	Timer B3 Interrupt Control Register	TB3IC	XXXX X0002
007916	Intelligent I/O Interrupt Control Register 4	IIO4IC	XXXX X0002
007A16	INT5 Interrupt Control Register	INT5IC	XX00 X0002
007B16	NITO L	11.17010	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
007C16	INT3 Interrupt Control Register	INT3IC	XX00 X0002
007D16	Intelligent I/O Interrupt Control Register 8	IIO8IC	XXXX X0002
007E16	INT1 Interrupt Control Register	INT1IC	XX00 X0002
007F16	Intelligent I/O Interrupt Control Register 10/	IIO10IC/	XXXX X0002
0071 10	CAN Interrupt 1 Control Register	CAN1IC	7000070002
008016			
008116	CAN Interrupt 2 Control Register	CAN2IC	XXXX X0002
008216			
008316			
008416			
008516			
008616			
008716			
008816	DMA1 Interrupt Control Register	DM1IC	XXXX X0002
008916	UART2 Transmit /NACK Interrupt Control Register	S2TIC	XXXX X0002
008A16	DMA3 Interrupt Control Register	DM3IC	XXXX X0002
008B16	UART3 Transmit /NACK Interrupt Control Register	S3TIC	XXXX X0002
008C16	Timer A1 Interrupt Control Register	TA1IC	XXXX X0002
008D16	UART4 Transmit /NACK Interrupt Control Register	S4TIC	XXXX X0002
008E16	Timer A3 Interrupt Control Register	TA3IC	XXXX X0002
008F16	UART2 Bus Conflict Detect Interrupt Control Register	BCN2IC	XXXX X0002

Address	Register	Symbol	Value after RESET
009016	UART0 Transmit /NACK Interrupt Control Register	SOTIC	XXXX X0002
009116	UART1/UART4 Bus Conflict Detect Interrupt Control Register	BCN1IC/BCN4IC	XXXX X0002
009216	UART1 Transmit/NACK Interrupt Control Register	S1TIC	XXXX X0002
009316	Key Input Interrupt Control Register	KUPIC	XXXX X0002
009416	Timer B0 Interrupt Control Register	TB0IC	XXXX X0002
009516	Intelligent I/O Interrupt Control Register 1/ CAN Interrupt 4 Control Register	IIO1IC/ CAN4IC	XXXX X0002
009616	Timer B2 Interrupt Control Register	TB2IC	XXXX X0002
009716	Intelligent I/O Interrupt Control Register 3	IIO3IC	XXXX X0002
009816	Timer B4 Interrupt Control Register	TB4IC	XXXX X0002
009916	CAN Interrupt 5 Control Register	CAN5IC	XXXX X0002
009A16	INT4 Interrupt Control Register	INT4IC	XX00 X0002
009R16	THE THE TOP CONTROL TO SOLUTION TO SOLUTIO	111110	70,000 7,0002
009C16	INT2 Interrupt Control Register	INT2IC	XX00 X0002
003010	Intelligent I/O Interrupt Control Register 9/	IIO9IC/	7/100 /10002
009D16	CAN Interrupt 0 Control Register	CANOIC	XXXX X0002
009E16	INTO Interrupt Control Register	INTOIC	XX00 X0002
009E16	Exit Priority Control Register	RLVL	XXXX 00002
0091 16 00A016	Interrupt Request Register 0	IIO0IR	0000 000X2
00A016	Interrupt Request Register 1	IIO1IR	0000 000X2
00A116	Interrupt Request Register 2	IIO1IR IIO2IR	0000 000X2
00A216	Interrupt Request Register 3	IIO2IR IIO3IR	0000 000X2
00A316		IIO3IR IIO4IR	0000 000X2
	Interrupt Request Register 4		
00A516	Interrupt Request Register 5	IIO5IR	0000 000X2
00A616			
00A716	Intermed Decreet Decreets 0	HOND	0000 000
00A816	Interrupt Request Register 8	IIO8IR	0000 000X2
00A916	Interrupt Request Register 9	IIO9IR	0000 000X2
00AA16	Interrupt Request Register 10	IIO10IR	0000 000X2
00AB16	Interrupt Request Register 11	IIO11IR	0000 000X2
00AC16			
00AD16			
00AE16			
00AF16		HOOLE	
00B016	Interrupt Enable Register 0	IIO0IE	0016
00B116	Interrupt Enable Register 1	IIO1IE	0016
00B216	Interrupt Enable Register 2	IIO2IE	0016
00B316	Interrupt Enable Register 3	IIO3IE	0016
00B416	Interrupt Enable Register 4	IIO4IE	0016
00B516	Interrupt Enable Register 5	IIO5IE	0016
00B616			
00B716	Intermed Facility Projector 0	IIO0IE	00.5
00B816	Interrupt Enable Register 8	IIO8IE	0016
00B916	Interrupt Enable Register 9	IIO9IE	0016
00BA16	Interrupt Enable Register 10	IIO10IE	0016
00BB16	Interrupt Enable Register 11	IIO11IE	0016
00BC16			
00BD16			
00BE16			
00BF16			

Address	Register	Symbol	Value after RESET
00C016			
00C116			
00C216			
00C316			
00C416			
00C516			
00C616			
00C716			
00C816			
00C916			
00CA16			
00CB16			
00CC16			
00CD16			
00CE16			
00CF16			
00D016			
00D116			
00D216			
00D316			
00D416			
00D516			
00D616			
00D716			
00D816			
00D916			
00DA16			
00DB16			
00DC16			
00DD16			
00DE16			
00DF16			
00E016			
00E116			
00E216			
00E316			
00E416			
00E516			
00E616			
00E716			
00E816	0//0 0 1 0 // 0 1/ 0	0.222	XXXX XXXX2
00E916	SI/O Receive Buffer Register 0	G0RB	X000 XXXX2
00EA16	Transmit Buffer/Receive Data Register 0	G0TB/G0DR	XX16
00EB16			
00EC16	Receive Input Register 0	G0RI	XX16
00ED16	SI/O Communication Mode Register 0	G0MR	0016
00EE16	Transmit Output Register 0	G0TO	XX16
00EF16	SI/O Communication Control Register 0	G0CR	0000 X0112

Address	Register	Symbol	Value after RESET
00F016	Data Compare Register 00	G0CMP0	XX16
00F116	Data Compare Register 01	G0CMP1	XX16
00F216	Data Compare Register 02	G0CMP2	XX16
00F316	Data Compare Register 03	G0CMP3	XX16
00F416	Data Mask Register 00	G0MSK0	XX16
00F516	Data Mask Register 01	G0MSK1	XX16
00F616	Communication Clock Select Register	CCS	XXXX 00002
00F716	Ÿ		
00F816			XX16
00F916	Receive CRC Code Register 0	G0RCRC	XX16
00FA16			0016
00FB16	Transmit CRC Code Register 0	G0TCRC	0016
00FC16	SI/O Extended Mode Register 0	G0EMR	0016
00FD16	SI/O Extended Receive Control Register 0	G0ERC	0016
00FE16	SI/O Special Communication Interrupt Detect Register 0	GOIRF	0016
00FF16	SI/O Extended Transmit Control Register 0	G0ETC	0000 0XXX2
010016	· · · · · · · · · · · · · · · · · · ·		XX16
010116	Time Measurement/Waveform Generating Register 10	G1TM0/G1PO0	XX16
010216			XX16
010316	Time Measurement/Waveform Generating Register 11	G1TM1/G1PO1	XX16
010416			XX16
010516	Time Measurement/Waveform Generating Register 12	G1TM2/G1PO2	XX16
010616			XX16
010716	Time Measurement/Waveform Generating Register 13	G1TM3/G1PO3	XX16
010816			XX16
010916	Time Measurement/Waveform Generating Register 14	G1TM4/G1PO4	XX16
010A16			XX16
010B16	Time Measurement/Waveform Generating Register 15	G1TM5/G1PO5	XX16
010C16			XX16
010D16	Time Measurement/Waveform Generating Register 16	G1TM6/G1PO6	XX16
010E16			XX16
010F16	Time Measurement/Waveform Generating Register 17	G1TM7/G1PO7	XX16
011016	Waveform Generating Control Register 10	G1POCR0	0000 X0002
011116	Waveform Generating Control Register 11	G1POCR1	0X00 X0002
011216	Waveform Generating Control Register 12	G1POCR2	0X00 X0002
011316	Waveform Generating Control Register 13	G1POCR3	0X00 X0002
011416	Waveform Generating Control Register 14	G1POCR4	0X00 X0002
011516	Waveform Generating Control Register 15	G1POCR5	0X00 X0002
011616	Waveform Generating Control Register 16	G1POCR6	0X00 X0002
011716	Waveform Generating Control Register 17	G1POCR7	0X00 X0002
011816	Time Measurement Control Register 10	G1TMCR0	0016
011916	Time Measurement Control Register 11	G1TMCR1	0016
011A16	Time Measurement Control Register 12	G1TMCR2	0016
011B ₁₆	Time Measurement Control Register 13	G1TMCR3	0016
011C ₁₆	Time Measurement Control Register 14	G1TMCR4	0016
011D16	Time Measurement Control Register 15	G1TMCR5	0016
011E ₁₆	Time Measurement Control Register 16	G1TMCR6	0016
011F16	Time Measurement Control Register 17	G1TMCR7	0016

Address	Register	Symbol	Value after RESET
012016		0.157	XX16
012116	Base Timer Register 1	G1BT	XX16
012216	Base Timer Control Register 10	G1BCR0	0016
012316	Base Timer Control Register 11	G1BCR1	X000 000X2
012416	Time Measurement Prescaler Register 16	G1TPR6	0016
012516	Time Measurement Prescaler Register 17	G1TPR7	0016
012616	Function Enable Register 1	G1FE	0016
012716	Function Select Register 1	G1FS	0016
012816	01/0 D D	0.400	XXXX XXXX2
012916	SI/O Receive Buffer Register 1	G1RB	X000 XXXX2
012A16	Transmit Buffer/Receive Data Register 1	G1TB/G1DR	XX16
012B16			
012C16	Receive Input Register 1	G1RI	XX16
012D16	SI/O Communication Mode Register 1	G1MR	0016
012E16	Transmit Output Register 1	G1TO	XX16
012F16	SI/O Communication Control Register 1	G1CR	0000 X0112
013016	Data Compare Register 10	G1CMP0	XX16
013116	Data Compare Register 11	G1CMP1	XX16
013216	Data Compare Register 12	G1CMP2	XX16
013316	Data Compare Register 13	G1CMP3	XX16
013416	Data Mask Register 10	G1MSK0	XX16
013516	Data Mask Register 11	G1MSK1	XX16
013616			
013716			
013816		0.17070	XX16
013916	Receive CRC Code Register 1	G1RCRC	XX16
013A16	T. 100000 1 0 1 1 1	0.1707.0	0016
013B16	Transmit CRC Code Register 1	G1TCRC	0016
013C16	SI/O Extended Mode Register 1	G1EMR	0016
013D16	SI/O Extended Receive Control Register 1	G1ERC	0016
013E16	SI/O Special Communication Interrupt Detection Register 1	G1IRF	0016
013F16	SI/O Extended Transmit Control Register 1	G1ETC	0000 0XXX2
014016			
014116			
014216			
014316			
014416			
014516			
014616			
014716			
014816			
014916			
014A16			
014B16			
014C16			
014D16			
014E ₁₆			
014F16			

Address	Register	Symbol	Value after RESET
015016		-	
015116			
015216			
015316			
015416			
015516			
015616			
015716			
015816			
015916			
015A16			
015B ₁₆			
015C16			
015D16			
015E16			
015F16			
016016			
016116			
016216			
016316			
016416			
016516			
016616			
016716			
016816			
016916			
016A16			
016B ₁₆			
016C16			
016D16			
016E16			
016F16			
017016			
017116			
017216			
017316			
017416			
017516			
017616			
017716			
017816	Input Function Select Register	IPS	0016
017916	Input Function Select Register A	IPSA	0016
017A16			
017B16			
017C16			
017D16			
to			
01DF16			

Address	Register	Symbol	Value after RESET
01E016	CAN0 Message Slot Buffer 0 Standard ID0	C0SLOT0_0	XX16
01E1 ₁₆	CAN0 Message Slot Buffer 0 Standard ID1	C0SLOT0_1	XX16
01E216	CAN0 Message Slot Buffer 0 Extended ID0	C0SLOT0_2	XX16
01E3 ₁₆	CAN0 Message Slot Buffer 0 Extended ID1	C0SLOT0_3	XX16
01E416	CAN0 Message Slot Buffer 0 Extended ID2	C0SLOT0_4	XX16
01E516	CAN0 Message Slot Buffer 0 Data Length Code	C0SLOT0_5	XX16
01E616	CAN0 Message Slot Buffer 0 Data 0	C0SLOT0_6	XX16
01E7 ₁₆	CAN0 Message Slot Buffer 0 Data 1	C0SLOT0_7	XX16
01E816	CAN0 Message Slot Buffer 0 Data 2	C0SLOT0_8	XX16
01E9 ₁₆	CAN0 Message Slot Buffer 0 Data 3	C0SLOT0_9	XX16
01EA ₁₆	CAN0 Message Slot Buffer 0 Data 4	C0SLOT0 10	XX16
01EB ₁₆	CAN0 Message Slot Buffer 0 Data 5	C0SLOT0_11	XX16
01EC ₁₆	CAN0 Message Slot Buffer 0 Data 6	C0SLOT0_12	XX16
01ED ₁₆	CAN0 Message Slot Buffer 0 Data 7	C0SLOT0_13	XX16
01EE16	CAN0 Message Slot Buffer 0 Time Stamp High-Order	C0SLOT0_14	XX16
01EF16	CANO Message Slot Buffer 0 Time Stamp Low-Order	C0SLOT0_15	XX16
01F016	CAN0 Message Slot Buffer 1 Standard ID0	C0SLOT1 0	XX16
01F1 ₁₆	CAN0 Message Slot Buffer 1 Standard ID1	C0SLOT1_1	XX16
01F216	CAN0 Message Slot Buffer 1 Extended ID0	C0SLOT1_2	XX16
01F3 ₁₆	CAN0 Message Slot Buffer 1 Extended ID1	C0SLOT1_3	XX16
01F416	CAN0 Message Slot Buffer 1 Extended ID2	C0SLOT1_4	XX16
01F516	CAN0 Message Slot Buffer 1 Data Length Code	C0SLOT1_5	XX16
01F616	CAN0 Message Slot Buffer 1 Data 0	C0SLOT1_6	XX16
01F7 ₁₆	CAN0 Message Slot Buffer 1 Data 1	C0SLOT1_7	XX16
01F8 ₁₆	CAN0 Message Slot Buffer 1 Data 2	C0SLOT1_8	XX16
01F9 ₁₆	CAN0 Message Slot Buffer 1 Data 3	C0SLOT1_9	XX16
01FA ₁₆	CAN0 Message Slot Buffer 1 Data 4	C0SLOT1_10	XX16
01FB ₁₆	CAN0 Message Slot Buffer 1 Data 5	C0SLOT1_11	XX16
01FC ₁₆	CAN0 Message Slot Buffer 1 Data 6	C0SLOT1_12	XX16
01FD ₁₆	CAN0 Message Slot Buffer 1 Data 7	C0SLOT1_13	XX16
01FE ₁₆	CAN0 Message Slot Buffer 1 Time Stamp High-Order	C0SLOT1_14	XX16
01FF16	CAN0 Message Slot Buffer 1 Time Stamp Low-Order	C0SLOT1_15	XX16
020016			XX01 0X012 ⁽¹⁾
020116	CAN0 Control Register 0	C0CTLR0	XXXX 00002 ⁽¹⁾
020216			0000 00002(1)
020316	CAN0 Status Register	COSTR	X000 0X012 ⁽¹⁾
020416			0016 ⁽¹⁾
020516	CAN0 Extended ID Register	COIDR	0016 ⁽¹⁾
020616			0000 XXXX ₂ ⁽¹⁾
020716	CAN0 Configuration Register	C0CONR	0000 00002 ⁽¹⁾
020816			0016 ⁽¹⁾
020916	CAN0 Time Stamp Register	C0TSR	0016 ⁽¹⁾
020A16	CAN0 Transmit Error Count Register	C0TEC	0016 ⁽¹⁾
020B16	CAN0 Receive Error Count Register	C0REC	0016 ⁽¹⁾
020C16			0016 ⁽¹⁾
020D16	CAN0 Slot Interrupt Status Register	COSISTR	0016 ⁽¹⁾
020E16			
020F16			

Blank spaces are reserved. No access is allowed.

NOTES:

1. Values are obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) after reset and applying the clock to the CAN module.

Address	Register	Symbol	Value after RESET	
021016	CANO Clet Interment Meets Devictor	COCIMICD	0016 ⁽²⁾	
021116	CAN0 Slot Interrupt Mask Register	COSIMKR	0016 ⁽²⁾	
021216				
021316				
021416	CAN0 Error Interrupt Mask Register	C0EIMKR	XXXX X0002 ⁽²⁾	
021516	CAN0 Error Interrupt Status Register	C0EISTR	XXXX X0002 ⁽²⁾	
021616	CAN0 Error Cause Register	C0EFR	0016 ⁽²⁾	
021716	CAN0 Baud Rate Prescaler	C0BRP	0000 00012 ⁽²⁾	
021816				
021916	CAN0 Mode Register	COMDR	XXXX XX002 ⁽²⁾	
021A ₁₆				
021B ₁₆				
021C ₁₆				
021D16				
021E16				\dashv
021F16				
022016			0016 ⁽²⁾	1
022116	CAN0 Single Shot Control Register	C0SSCTLR	0016 ⁽²⁾	
022216				
022316				
022416			0016 ⁽²⁾	-
022516	CAN0 Single Shot Status Register	COSSSTR	0016 ⁽²⁾	
022616				
022716				-
022816	CAN0 Global Mask Register Standard ID0	C0GMR0	XXX0 00002 ⁽²⁾	-
022916	CAN0 Global Mask Register Standard ID1	C0GMR1	XX00 00002 ⁽²⁾	
022A16	CAN0 Global Mask Register Extended ID0	C0GMR2	XXXX 00002 ⁽²⁾	
022B16	CAN0 Global Mask Register Extended ID1	C0GMR3	0016 ⁽²⁾	
022C16	CAN0 Global Mask Register Extended ID2	C0GMR4	XX00 00002 ⁽²⁾	
022D16	3			
022E16				
022F16				-
	CAN0 Message Slot 0 Control Register /	C0MCTL0/	0000 00002(2)	(Note 1)
023016	CAN0 Local Mask Register A Standard ID0	C0LMAR0	XXX0 00002 ⁽²⁾	
	CANO Message Slot 1 Control Register /	C0MCTL1/	0000 00002 ⁽²⁾	-
023116	CAN0 Local Mask Register A Standard ID1	C0LMAR1	XX00 00002 ⁽²⁾	
	CAN0 Message Slot 2 Control Register /	C0MCTL2/	0000 00002(2)	
023216	CAN0 Local Mask Register A Extended ID0	C0LMAR2	XXXX 00002 ⁽²⁾	
	CANO Message Slot 3 Control Register /	COMCTL3/	0016 ⁽²⁾	\dashv \mid
023316	CAN0 local Mask Register A Extended ID1	C0LMAR3	0016 ⁽²⁾	
	CANO Message Slot 4 Control Register /	COMCTL4/	0000 00002(2)	\dashv \mid
023416	CAN0 Local Mask Register A Extended ID2	C0LMAR4	XX00 00002 ⁽²⁾	
023516	CANO Message Slot 5 Control Register	C0MCTL5	0016 ⁽²⁾	\dashv \mid
023616	CANO Message Slot 6 Control Register	C0MCTL6	0016 ⁽²⁾	\dashv
023716	CANO Message Slot 7 Control Register	C0MCTL7	0016 ⁽²⁾	\dashv
	CANO Message Slot 8 Control Register /	COMCTL8/	0000 00002 ⁽²⁾	\dashv \mid
023816	CAN0 Local Mask Register B Standard ID0	COLMBRO	XXX0 00002 ⁽²⁾	
				
	CAN0 Message Slot 9 Control Register /	C0MCTL9/	0000 00002 ⁽²⁾	I —

Blank spaces are reserved. No access is allowed.

NOTES:

- 1. The BANKSEL bit in the C0CTLR1 register switches functions for addresses 022016 to 023F16.
- 2. Values are obtained by setting the SLEEP bit in the C0SLPR register to "1" (sleep mode exited) after reset and applying the clock to the CAN module.

RENESAS

Address	Register	Symbol	Value after RESET	\neg
	CAN0 Message Slot 10 Control Register /	C0MCTL10/	0000 00002(2)	1 1
023A16	CAN0 Local Mask Register B Extended ID0	C0LMBR2	XXXX 00002 ⁽²⁾	1 1
	CAN0 Message Slot 11 Control Register /	C0MCTL11/	0016 ⁽²⁾	
023B ₁₆	CAN0 Local Mask Register B Extended ID1	C0LMBR3	0016 ⁽²⁾	
_	CAN0 Message Slot 12 Control Register /	C0MCTL12/	0000 00002(2)	1
023C16	CAN0 Local Mask Register B Extended ID2	C0LMBR4	XX00 00002 ⁽²⁾	(Note 1)
023D16	CAN0 Message Slot 13 Control Register	C0MCTL13	0016 ⁽²⁾	_
023E16	CAN0 Message Slot 14 Control Register	C0MCTL14	0016 ⁽²⁾	
023F16	CAN0 Message Slot 15 Control Register	C0MCTL15	0016 ⁽²⁾	7
024016	CAN0 Slot Buffer Select Register	COSBS	0016 ⁽²⁾	
024116	CAN0 Control Register 1	C0CTLR1	X000 00XX2 ⁽²⁾	
024216	CAN0 Sleep Control Register	COSLPR	XXXX XXX02	
024316	,			1
024416			0016 ⁽²⁾	
024516	CAN0 Acceptance Filter Support Register	C0AFS	01 ₁₆ ⁽²⁾	
024616				
024716				1
024816				1
024916				
024A16				
024B16				
024C16				
024D16				
024E16				1
024F16				1
025016	CAN1 Slot Buffer Select Register	C1SBS	0016 ⁽³⁾	
025116	CAN1 Control Register 1	C1CTLR1	X000 00XX2 ⁽³⁾	
025216	CAN1 Sleep Control Register	C1SLPR	XXXX XXX02	
025316				
025416			0016 ⁽³⁾	
025516	CAN1 Acceptance Filter Support Register	C1AFS	01 ₁₆ ⁽³⁾	
025616				
025716				
025816				
025916				1
025A16				1
025B16				1
025C16				7
025D16				1
025E16				1
025F16				1
-	l .	I		_

Blank spaces are reserved. No access is allowed.

NOTES:

- 1. The BANKSEL bit in the COCTLR1 register switches functions for addresses 022016 to 023F16.
- 2. Values are obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) after reset and applying the clock to the CAN module.
- 3. Values are obtained by setting the SLEEP bit in the C1SLPR register to "1" (sleep mode exited) after reset and applying the clock to the CAN module.

Address	Register	Symbol	Value after RESET
026016	CAN1 Message Slot Buffer 0 Standard ID0	C1SLOT0_0	XX16
026116	CAN1 Message Slot Buffer 0 Standard ID1	C1SLOT0_1	XX16
026216	CAN1 Message Slot Buffer 0 Extended ID0	C1SLOT0_2	XX16
026316	CAN1 Message Slot Buffer 0 Extended ID1	C1SLOT0_3	XX16
026416	CAN1 Message Slot Buffer 0 Extended ID2	C1SLOT0_4	XX16
026516	CAN1 Message Slot Buffer 0 Data Length Code	C1SLOT0_5	XX16
026616	CAN1 Message Slot Buffer 0 Data 0	C1SLOT0_6	XX16
026716	CAN1 Message Slot Buffer 0 Data 1	C1SLOT0_7	XX16
026816	CAN1 Message Slot Buffer 0 Data 2	C1SLOT0_8	XX16
026916	CAN1 Message Slot Buffer 0 Data 3	C1SLOT0_9	XX16
026A16	CAN1 Message Slot Buffer 0 Data 4	C1SLOT0_10	XX16
026B ₁₆	CAN1 Message Slot Buffer 0 Data 5	C1SLOT0_11	XX16
026C16	CAN1 Message Slot Buffer 0 Data 6	C1SLOT0_12	XX16
026D16	CAN1 Message Slot Buffer 0 Data 7	C1SLOT0_13	XX16
026E16	CAN1 Message Slot Buffer 0 Time Stamp High-Order	C1SLOT0_14	XX16
026F16	CAN1 Message Slot Buffer 0 Time Stamp Low-Order	C1SLOT0_15	XX16
027016	CAN1 Message Slot Buffer 1 Standard ID0	C1SLOT1_0	XX16
027116	CAN1 Message Slot Buffer 1 Standard ID1	C1SLOT1_1	XX16
027216	CAN1 Message Slot Buffer 1 Extended ID0	C1SLOT1_2	XX16
027316	CAN1 Message Slot Buffer 1 Extended ID1	C1SLOT1_3	XX16
027416	CAN1 Message Slot Buffer 1 Extended ID2	C1SLOT1_4	XX16
027516	CAN1 Message Slot Buffer 1 Data Length Code	C1SLOT1_5	XX16
027616	CAN1 Message Slot Buffer 1 Data 0	C1SLOT1_6	XX16
027716	CAN1 Message Slot Buffer 1 Data 1	C1SLOT1_7	XX16
027816	CAN1 Message Slot Buffer 1 Data 2	C1SLOT1_8	XX16
027916	CAN1 Message Slot Buffer 1 Data 3	C1SLOT1_9	XX16
027A16	CAN1 Message Slot Buffer 1 Data 4	C1SLOT1_10	XX16
027B16	CAN1 Message Slot Buffer 1 Data 5	C1SLOT1_11	XX16
027C16	CAN1 Message Slot Buffer 1 Data 6	C1SLOT1_12	XX16
027D16	CAN1 Message Slot Buffer 1 Data 7	C1SLOT1_13	XX16
027E16	CAN1 Message Slot Buffer 1 Time Stamp High-Order	C1SLOT1_14	XX16
027F16	CAN1 Message Slot Buffer 1 Time Stamp Low-Order	C1SLOT1_15	XX16
028016	Oracl Moodage Clet Ballot 1 Time Stamp 25th Crash	0102011_10	XX01 0X012 ⁽¹⁾
028116	CAN1 Control Register 0	C1CTLR0	XXXX 00002 ⁽¹⁾
028216			0000 00002 ⁽¹⁾
028316	CAN1 Status Register	C1STR	X000 0X012 ⁽¹⁾
028416			0016 ⁽¹⁾
028516	CAN1 Extended ID Register	C1IDR	0016 ⁽¹⁾
028616			0000 XXXX2 ⁽¹⁾
028716	CAN1 Configuration Register	C1CONR	0000 00002 ⁽¹⁾
028816			0000 00002
028916	CAN1 Time Stamp Register	C1TSR	0016 ⁽¹⁾
028A16	CAN1 Transmit Error Count Register	C1TEC	0016 ⁽¹⁾
028B16	CAN1 Transmit Error Count Register CAN1 Receive Error Count Register	C1REC	0016 ⁽¹⁾
028C16	OANT RECEIVE LITER COUNT REGISTER	OTREC	0016 ⁽¹⁾
028D16	CAN1 Slot Interrupt Status Register	C1SISTR	0016(1)
028E16			0016
UZ0E16			

Blank spaces are reserved. No access is allowed.

NOTES:

1. Values are obtained by setting the SLEEP bit in the C1SLPR register to "1" (sleep mode exited) after reset and supplying the clock to the CAN module.

Address	Register	Symbol	Value after RESET	
029016	OANIA Olet let engagt Meel, De gieten	04011417	0016	7
029116	CAN1 Slot Interrupt Mask Register	C1SIMKR	0016	
029216				
029316				
029416	CAN1 Error Interrupt Mask Register	C1EIMKR	XXXX X0002 ⁽²⁾	
029516	CAN1 Error Interrupt Status Register	C1EISTR	XXXX X0002 ⁽²⁾	
029616	CAN1 Error Factor Register	C1EFR	0016 ⁽²⁾	
029716	CAN1 Baud Rate Prescaler	C1BRP	0000 00012 ⁽²⁾	
029816				
029916	CAN1 Mode Register	C1MDR	XXXX XX002 ⁽²⁾	
029A16				
029B16				
029C16				
029D16				
029E16				7
029F16				7
02A016	0.000.000.000.000.000.000	0:000717	0016 ⁽²⁾	1
02A116	CAN1 Single Shot Control Register	C1SSCTLR	0016 ⁽²⁾	♣
02A216				7
02A316				7
02A416			0016 ⁽²⁾	7
02A516	CAN1 Single Shot Status Register	C1SSSTR	0016 ⁽²⁾	
02A616				
02A716				1
02A816	CAN1 Global Mask Register Standard ID0	C1GMR0	XXX0 00002 ⁽²⁾	1
02A916	CAN1 Global Mask Register Standard ID1	C1GMR1	XX00 00002 ⁽²⁾	1
02AA16	CAN1 Global Mask Register Extended ID0	C1GMR2	XXXX 00002 ⁽²⁾	1
02AB16	CAN1 Global Mask Register Extended ID1	C1GMR3	0016 ⁽²⁾	
02AC16	CAN1 Global Mask Register Extended ID2	C1GMR4	XX00 00002 ⁽²⁾	1
02AD16				7
02AE16				
02AF16				(Note 1)
_	CAN1 Message Slot 0 Control Register /	C1MCTL0/	0000 00002(2)	1
02B016	CAN1 Local Mask Register A Standard ID0	C1LMAR0	XXX0 00002 ⁽²⁾	
_	CAN1 Message Slot 1 Control Register /	C1MCTL1/	0000 00002(2)	
02B116	CAN1 Local Mask Register A Standard ID1	C1LMAR1	XX00 00002 ⁽²⁾	
	CAN1 Message Slot 2 Control Register /	C1MCTL2/	0000 00002(2)	
02B216	CAN1 Local Mask Register A Extended ID0	C1LMAR2	XXXX 00002 ⁽²⁾	
	CAN1 Message Slot 3 Control Register /	C1MCTL3/	0016 ⁽²⁾	7
02B316	CAN1 Local Mask Register A Extended ID1	C1LMAR3	0016 ⁽²⁾	
	CAN1 Message Slot 4 Control Register /	C1MCTL4/	0000 00002(2)	-
02B416	CAN1 Local Mask Register A Extended ID2	C1LMAR4	XX00 00002 ⁽²⁾	
02B516	CAN1 Message Slot 5 Control Register	C1MCTL5	0016 ⁽²⁾	
02B616	CAN1 Message Slot 6 Control Register	C1MCTL6	0016 ⁽²⁾	
02B716	CAN1 Message Slot 7 Control Register	C1MCTL7	0016 ⁽²⁾	
	CAN1 Message Slot 8 Control Register /	C1MCTL8/	0000 00002(2)	
02B816	CAN1 Local Mask Register B Standard ID0	C1LMBR0	XXX0 00002 ⁽²⁾	
	CAN1 Message Slot 9 Control Register /	C1MCTL9/	0000 00002 ⁽²⁾	$\dashv \perp$
02B916	CAN1 Local Mask Register B Standard ID1	C1LMBR1	XX00 00002 ⁽²⁾	▼

Blank spaces are reserved. No access is allowed.

NOTES:

- 1. The BANKSEL bit in the C1CTLR1 register switches functions for addresses 02A016 to 02BF16.
- 2. Values are obtained by setting the SLEEP bit in the C1SLPR register to "1" (sleep mode exited) after reset and applying the clock to the CAN module.

02BA16	CAN1 Message Slot 10 Control Register / CAN1 Local Mask Register B Extended ID0 CAN1 Message Slot 11 Control Register / CAN1 Local Mask Register B Extended ID1 CAN1 Message Slot 12 Control Register / CAN1 Local Mask Register B Extended ID2 CAN1 Local Mask Register B Extended ID2 CAN1 Message Slot 13 Control Register CAN1 Message Slot 14 Control Register CAN1 Message Slot 15 Control Register	C1MCTL10/ C1LMBR2 C1MCTL11/ C1LMBR3 C1MCTL12/ C1LMBR4 C1MCTL13	0000 00002 ⁽²⁾ XXXX 00002 ⁽²⁾ 0016 ⁽²⁾ 0000 00002 ⁽²⁾ XX00 00002 ⁽²⁾	(Note 1)
02BB16 02BD16 02BE16 02BF16 02C016	CAN1 Message Slot 11 Control Register / CAN1 Local Mask Register B Extended ID1 CAN1 Message Slot 12 Control Register / CAN1 Local Mask Register B Extended ID2 CAN1 Message Slot 13 Control Register CAN1 Message Slot 14 Control Register	C1MCTL11/ C1LMBR3 C1MCTL12/ C1LMBR4 C1MCTL13	0016 ⁽²⁾ 0016 ⁽²⁾ 0000 00002 ⁽²⁾ XX00 00002 ⁽²⁾	(Note 1)
02BB16 02BC16 02BD16 02BE16 02BF16 02C016	CAN1 Local Mask Register B Extended ID1 CAN1 Message Slot 12 Control Register / CAN1 Local Mask Register B Extended ID2 CAN1 Message Slot 13 Control Register CAN1 Message Slot 14 Control Register	C1LMBR3 C1MCTL12/ C1LMBR4 C1MCTL13	0016 ⁽²⁾ 0000 00002 ⁽²⁾ XX00 00002 ⁽²⁾	(Note 1)
02BC16 02BD16 02BF16 02CO16	CAN1 Message Slot 12 Control Register / CAN1 Local Mask Register B Extended ID2 CAN1 Message Slot 13 Control Register CAN1 Message Slot 14 Control Register	C1MCTL12/ C1LMBR4 C1MCTL13	0000 00002 ⁽²⁾ XX00 00002 ⁽²⁾	(Note 1)
02BC16 02BD16 02BE16 02BF16 02C016	CAN1 Local Mask Register B Extended ID2 CAN1 Message Slot 13 Control Register CAN1 Message Slot 14 Control Register	C1LMBR4 C1MCTL13	XX00 00002 ⁽²⁾	(Note 1)
02BD16 02BE16 02BF16 02C016	CAN1 Message Slot 13 Control Register CAN1 Message Slot 14 Control Register	C1MCTL13	1	
02BE16 02BF16 02C016	CAN1 Message Slot 14 Control Register			
02BF16 02C016	<u> </u>		0016 ⁽²⁾	
02C016	CAN1 Massage Slot 15 Control Register	C1MCTL14	0016 ⁽²⁾	
	SANT Message Slot 15 Control Register	C1MCTL15	0016 ⁽²⁾	_
			XX16	
02C116	X0 Register Y0 Register	X0R,Y0R	XX16	
02C216			XX16	
02C316	X1 Register Y1 Register	X1R,Y1R	XX16	
02C416	V2. D	V	XX16	7
02C516	X2 Register Y2 Register	X2R,Y2R	XX16	
02C616			XX16	
02C716	X3 Register Y3 Register	X3R,Y3R	XX16	
02C816			XX16	
02C916	X4 Register Y4 Register	X4R,Y4R	XX16	
02CA16	Y5 Pagister V5 Pagister Y5P V5P		XX16	
02CB ₁₆		XX16		
02CC16			XX16	
02CD16	X6 Register Y6 Register	X6R,Y6R	XX16	
02CE16		.,,	XX16	
02CF16	X7 Register Y7 Register	X7R,Y7R	XX16	
02D016			XX16	
02D116	X8 Register Y8 Register	X8R,Y8R	XX16	
02D216			XX16	
02D316	X9 Register Y9 Register	X9R,Y9R	XX16	
02D416			XX16	
02D516	X10 Register Y10 Register	X10R,Y10R	XX16	
02D616			XX16	
02D716	X11 Register Y11 Register	X11R,Y11R	XX16	
02D816			XX16	
02D916	X12 Register Y12 Register	X12R,Y12R	XX16	
02DA16			XX16	
02DB16	X13 Register Y13 Register	X13R,Y13R	XX16	
02DC16			XX16	
02DD16	X14 Register Y14 Register	X14R,Y14R	XX16	
02DE16			XX16	_
02DF16	X15 Register Y15 Register	X15R,Y15R	XX16	

Blank spaces are reserved. No access is allowed.

NOTES:

- 1. The BANKSEL bit in the C1CTLR1 register switches functions for addresses 02A016 to 02BF16.
- 2. Values are obtained by setting the SLEEP bit in the C1SLPR register to "1" (sleep mode exited) after reset and applying the clock to the CAN module.

Address	Register	Symbol	Value after RESET
02E016	X/Y Control Register	XYC	XXXX XX002
02E116			
02E216			
02E316			
02E416	UART1 Special Mode Register 4	U1SMR4	0016
02E516	UART1 Special Mode Register 3	U1SMR3	0016
02E616	UART1 Special Mode Register 2	U1SMR2	0016
02E716	UART1 Special Mode Register	U1SMR	0016
02E816	UART1 Transmit/Receive Mode Register	U1MR	0016
02E916	UART1 Bit Rate Register	U1BRG	XX16
02EA16			XX16
02EB16	UART1 Transmit Buffer Register	U1TB	XX16
02EC16	UART1 Transmit/Receive Control Register 0	U1C0	0000 10002
02ED16	UART1 Transmit/Receive Control Register 1	U1C1	0000 00102
02EE16	•		XX16
02EF16	UART1 Receive Buffer Register	U1RB	XX16
02F016			
02F116			
02F216			
02F316			
02F416	UART4 Special Mode Register 4	U4SMR4	0016
02F516	UART4 Special Mode Register 3	U4SMR3	0016
02F616	UART4 Special Mode Register 2	U4SMR2	0016
02F716	UART4 Special Mode Register	U4SMR	0016
02F816	UART4 Transmit/Receive Mode Register	U4MR	0016
02F916	UART4 Bit Rate Register	U4BRG	XX16
02FA16	or with a bit take it to greate.	0.2.10	XX16
02FB16	UART4 Transmit Buffer Register	U4TB	XX16
02FC16	UART4 Transmit/Receive Control Register 0	U4C0	0000 10002
02FD16	UART4 Transmit/Receive Control Register 1	U4C1	0000 00102
02FE16	- Critical Indiana (1888)	0.0.	XX16
02FF16	UART4 Receive Buffer Register	U4RB	XX16
030016	Timer B3, B4, B5 Count Start Flag	TBSR	000X XXXX2
030116	Timor Bo, Ba, Bo Count Glart Hag	TBOIL	000/17/07/2
030216			XX16
030316	Timer A1-1 Register	TA11	XX16
030416			XX16
030516	Timer A2-1 Register	TA21	XX16
030616			XX16
030716	Timer A4-1 Register	TA41	XX16 XX16
030816	Three-Phase PWM Control Register 0	INVC0	0016
030916	Three-Phase PWM Control Register 1	INVC1	0016
030916 030A16	Three-Phase Output Buffer Register 0	IDB0	XX11 11112
	-		XX11 11112 XX11 11112
030B16	Three-Phase Output Buffer Register 1	IDB1	
030C16	Dead Time Timer	DTT	XX16
030D16	Timer B2 Interrupt Generation Frequency Set Counter	ICTB2	XX16
030E16			
030F16			

Address	Register	Symbol	Value after RESET
031016			XX16
031116	Timer B3 Register	TB3	XX16
031216			XX16
031316	Timer B4 Register	TB4	XX16
031416			XX16
031516	Timer B5 Register	TB5	XX16
031616			
031716			
031816			
031916			
031A16			
031B ₁₆	Timer B3 Mode Register	TB3MR	00XX 00002
031C ₁₆	Timer B4 Mode Register	TB4MR	00XX 00002
031D16	Timer B5 Mode Register	TB5MR	00XX 00002
031E ₁₆	-		
031F16	External Interrupt Request Source Select Register	IFSR	0016
032016			
032116			
032216			
032316			
032416	UART3 Special Mode Register 4	U3SMR4	0016
032516	UART3 Special Mode Register 3	U3SMR3	0016
032616	UART3 Special Mode Register 2	U3SMR2	0016
032716	UART3 Special Mode Register	U3SMR	0016
032816	UART3 Transmit/Receive Mode Register	U3MR	0016
032916	UART3 Bit Rate Register	U3BRG	XX16
032A16			XX16
032B16	UART3 Transmit Buffer Register	U3TB	XX16
032C16	UART3 Transmit/Receive Control Register 0	U3C0	0000 10002
032D16	UART3 Transmit/Receive Control Register 1	U3C1	0000 00102
032E16			XX16
032F16	UART3 Receive Buffer Register	U3RB	XX16
033016			
033116			
033216			
033316			
033416	UART2 Special Mode Register 4	U2SMR4	0016
033516	UART2 Special Mode Register 3	U2SMR3	0016
033616	UART2 Special Mode Register 2	U2SMR2	0016
033716	UART2 Special Mode Register	U2SMR	0016
033816	UART2 Transmit/Receive Mode Register	U2MR	0016
033916	UART2 Bit Rate Register	U2BRG	XX16
033A16	LIADTO Transmit Duffer Degister	LIOTE	XX16
033B16	UART2 Transmit Buffer Register	U2TB	XX16
033C16	UART2 Transmit/Receive Control Register 0	U2C0	0000 10002
033D16	UART2 Transmit/Receive Control Register 1	U2C1	0000 00102
033E16	HARTO Deceive Duffer Decists	Hebb	XX16
033F16	UART2 Receive Buffer Register	U2RB	XX16

Address	Register	Symbol	Value after RESET
034016	Count Start Flag	TABSR	0016
034116	Clock Prescaler Reset Flag	CPSRF	0XXX XXXX2
034216	One-Shot Start Flag	ONSF	0016
034316	Trigger Select Register	TRGSR	0016
034416	Up/Down Flag	UDF	0016
034516	•		
034616			XX16
034716	Timer A0 Register	TA0	XX16
034816			XX16
034916	Timer A1 Register	TA1	XX16
034A16			XX16
034B16	Timer A2 Register	TA2	XX16
034C16			XX16
034D16	Timer A3 Register	TA3	XX16
034E16			XX16
034F ₁₆	Timer A4 Register	TA4	XX16
035016			XX16
035116	Timer B0 Register	TB0	XX16
035116			XX16 XX16
035316	Timer B1 Register	TB1	XX16
035316			XX16 XX16
035516	Timor P2 Pogistor	TB2	XX16 XX16
035516	Timer A0 Mode Register	TAOMR	0016
035616		TA1MR	0016
035716	Timer A1 Mode Register	TA2MR	0016
	Timer A2 Mode Register		
035916	Timer A3 Mode Register	TA3MR	0016
035A16	Timer A4 Mode Register	TA4MR	0016
035B16	Timer B0 Mode Register	TB0MR	00XX 00002
035C16	Timer B1 Mode Register	TB1MR	00XX 00002
035D16	Timer B2 Mode Register	TB2MR	00XX 00002
035E16	Timer B2 Special Mode Register	TB2SC	XXXX XXX02
035F16	Count Source Prescaler Register ⁽¹⁾	TCSPR	0XXX 00002
036016			
036116			
036216			
036316			
036416	UARTO Special Mode Register 4	U0SMR4	0016
036516	UARTO Special Mode Register 3	U0SMR3	0016
036616	UART0 Special Mode Register 2	U0SMR2	0016
036716	UART0 Special Mode Register	U0SMR	0016
036816	UART0 Transmit/Receive Mode Register	U0MR	0016
036916	UART0 Bit Rate Register	U0BRG	XX16
036A16	UART0 Transmit Buffer Register	U0ТВ	XX16
036B16	•		XX16
036C16	UART0 Transmit/Receive Control Register 0	U0C0	0000 10002
036D16	UART0 Transmit/Receive Control Register 1	U0C1	0000 00102
036E16	LIADTO Possiva Ruffer Posister	LIODD	XX16
036F16	UART0 Receive Buffer Register	UORB	XX16

Blank spaces are reserved. No access is allowed.

NOTES:

1. The TCSPR register maintains values set before reset, even after software reset or watchdog timer reset has been performed.

Address	Register	Symbol	Value after RESET
037016			
037116			
037216			
037316			
037416			
037516			
037616			
037716			
037816	DMA0 Request Source Select Register	DM0SL	0X00 00002
037916	DMA1 Request Source Select Register	DM1SL	0X00 00002
037A16	DMA2 Request Source Select Register	DM2SL	0X00 00002
037B16	DMA3 Request Source Select Register	DM3SL	0X00 00002
037C16			XX16
037D16	CRC Data Register	CRCD	XX16
037E16	CRC Input Register	CRCIN	XX16
037F16	. •		
038016			XXXX XXXX2
038116	A/D0 Register 0	AD00	0000 00002
038216			XX16
038316	A/D0 Register 1	AD01	XX16
038416			XX16
038516	A/D0 Register 2	AD02	XX16
038616			XX16
038716	A/D0 Pogistor 3	AD03	XX16
038816			XX16
038916	A/D0 Register 4	AD04	XX16
038A16			XX16
038B16	A/D0 Register 5	AD05	XX16
038C16			XX16
038D16	A/D0 Register 6	AD06	XX16
038E16			XX16
038F16	A/D0 Register 7	AD07	XX16
039016			-
039116			
039216	A/D0 Control Register 4	AD0CON4	XXXX 00XX2
039316			
039416	A/D0 Control Register 2	AD0CON2	XX0X X0002
039516	A/D0 Control Register 3	AD0CON3	XXXX X0002
039616	A/D0 Control Register 0	AD0CON0	0016
039716	A/D0 Control Register 1	AD0CON1	0016
039816	D/A Register 0	DA0	XX16
039916	0	27.0	
039A16	D/A Register 1	DA1	XX16
039B16	g	2,	70.10
039C16	D/A Control Register	DACON	XXXX XX002
039D16		27,0014	7000770002
039E16			
039F16			
	arminata		

<144-pin package>

Address	Register	Symbol	Value after RESET
03A016	Function Select Register A8	PS8	X000 00002
03A116	Function Select Register A9	PS9	0016
03A216			
03A316			
03A416			
03A516			
03A616			
03A716	Function Select Register D1	PSD1	X0XX XX002
03A816			
03A916			
03AA16			
03AB16			
03AC16	Function Select Register C2	PSC2	XXXX X00X2
03AD16	Function Select Register C3	PSC3	X0XX XXXX2
03AE16			
03AF16	Function Select Register C	PSC	00X0 00002
03B016	Function Select Register A0	PS0	0016
03B116	Function Select Register A1	PS1	0016
03B216	Function Select Register B0	PSL0	0016
03B316	Function Select Register B1	PSL1	0016
03B416	Function Select Register A2	PS2	00X0 00002
03B516	Function Select Register A3	PS3	0016
03B616	Function Select Register B2	PSL2	00X0 00002
03B716	Function Select Register B3	PSL3	0016
03B816			
03B916	Function Select Register A5	PS5	XXX0 00002
03BA16			
03BB16			
03BC16			
03BD16			
03BE16			
03BF16			
03C016	Port P6 Register	P6	XX16
03C116	Port P7 Register	P7	XX16
03C216	Port P6 Direction Register	PD6	0016
03C316	Port P7 Direction Register	PD7	0016
03C416	Port P8 Register	P8	XX16
03C516	Port P9 Register	P9	XX16
03C616	Port P8 Direction Register	PD8	00X0 00002
03C716	Port P9 Direction Register	PD9	0016
03C816	Port P10 Register	P10	XX16
03C916	Port P11 Register	P11	XX16
03CA16	Port P10 Direction Register	PD10	0016
03CB16	Port P11 Direction Register	PD11	XXX0 00002
03CC16	Port P12 Register	P12	XX16
03CD16	Port P13 Register	P13	XX16
03CE16	Port P12 Direction Register	PD12	0016
03CF16	Port P13 Direction Register	PD13	0016

X: Indeterminate

<144-pin package>

Address	Register	Symbol	Value after RESET
03D016	Port P14 Register	P14	XX16
03D116	Port P15 Register	P15	XX16
03D216	Port P14 Direction Register	PD14	X000 00002
03D316	Port P15 Direction Register	PD15	0016
03D416			
03D516			
03D616			
03D716			
03D816			
03D916			
03DA16	Pull-Up Control Register 2	PUR2	0016
03DB16	Pull-Up Control Register 3	PUR3	0016
03DC16	Pull-Up Control Register 4	PUR4	XXXX 00002
03DD16			
03DE16			
03DF16			
03E016	Port P0 Register	P0	XX16
03E116	Port P1 Register	P1	XX16
03E216	Port P0 Direction Register	PD0	0016
03E316	Port P1 Direction Register	PD1	0016
03E416	Port P2 Register	P2	XX16
03E516	Port P3 Register	P3	XX16
03E616	Port P2 Direction Register	PD2	0016
03E716	Port P3 Direction Register	PD3	0016
03E816	Port P4 Register	P4	XX16
03E916	Port P5 Register	P5	XX16
03EA16	Port P4 Direction Register	PD4	0016
03EB ₁₆	Port P5 Direction Register	PD5	0016
03EC16			
03ED16			
03EE16			
03EF16	D. H. H. O. a. a. I. D. L. a. a.	51150	
03F016	Pull-Up Control Register 0	PUR0	0016
03F116	Pull-Up Control Register 1	PUR1	XXXX 00002
03F216			
03F316			
03F416			
03F516 03F616			
03F616 03F716			
03F716 03F816			
03F916			
03F916 03FA16			
03FA16 03FB16			
03FC16			
03FD16			
03FE16			
03FE16	Port Control Register	PCR	XXXX XXX02
	. c. como regioni	. 510	7000170002

X: Indeterminate

<100-pin package>

Address	Register	Symbol	Value after RESET
03A016			
03A116			
03A216			
03A316			
03A416			
03A516			
03A616			
03A716	Function Select Register D1	PSD1	X0XX XX002
03A816	·		
03A916			
03AA16			
03AB16			
03AC16	Function Select Register C2	PSC2	XXXX X00X2
03AD16	Function Select Register C3	PSC3	X0XX XXXX2
03AE16	<u> </u>		
03AF16	Function Select Register C	PSC	00X0 00002
03B016	Function Select Register A0	PS0	0016
03B116	Function Select Register A1	PS1	0016
03B216	Function Select Register B0	PSL0	0016
03B316	Function Select Register B1	PSL1	0016
03B416	Function Select Register A2	PS2	00X0 00002
03B516	Function Select Register A3	PS3	0016
03B616	Function Select Register B2	PSL2	00X0 00002
03B716	Function Select Register B3	PSL3	0016
03B816			
03B916			
03BA16			
03BB16			
03BC16			
03BD16			
03BE16			
03BF16			
03C016	Port P6 Register	P6	XX16
03C116	Port P7 Register	P7	XX16
03C216	Port P6 Direction Register	PD6	0016
	Port P7 Direction Register	PD7	0016
03C416	Port P8 Register	P8	XX16
03C516	Port P9 Register	P9	XX16
03C616	Port P8 Direction Register	PD8	00X0 00002
03C716	Port P9 Direction Register	PD9	0016
03C816	Port P10 Register	P10	XX16
03C916		-	
03CA16	Port P10 Direction Register	PD10	0016
03CB16	Set default value to "FF16"	-	
03CC16	•		
03CD16			
03CE16	Set default value to "FF16"		
USCETHI		1	

X: Indeterminate

<100-pin package>

Address	Register	Symbol	Value after RESET
03D016			
03D116			
03D216	Set default value to "FF16"		
03D316	Set default value to "FF16"		
03D416			
03D516			
03D616			
03D716			
03D816			
03D916			
03DA16	Pull-Up Control Register 2	PUR2	0016
03DB16	Pull-Up Control Register 3	PUR3	0016
03DC16	Set default value to "0016"		
03DD16			
03DE16			
03DF16			
03E016	Port P0 Register	P0	XX16
03E116	Port P1 Register	P1	XX16
03E216	Port P0 Direction Register	PD0	0016
03E316	Port P1 Direction Register	PD1	0016
03E416	Port P2 Register	P2	XX16
03E516	Port P3 Register	P3	XX16
03E616	Port P2 Direction Register	PD2	0016
03E716	Port P3 Direction Register	PD3	0016
03E816	Port P4 Register	P4	XX16
03E916	Port P5 Register	P5	XX16
03EA16	Port P4 Direction Register	PD4	0016
03EB16	Port P5 Direction Register	PD5	0016
03EC16			
03ED16			
03EE16			
03EF16			
03F016	Pull-up Control Register 0	PUR0	0016
03F116	Pull-up Control Register 1	PUR1	XXXX 00002
03F216			
03F316			
03F416			
03F516			
03F616			
03F716 03F816			
03F816 03F916			
03F916 03FA16			
03FA16			
03FC16			
03FC16			
03FD16			
03FE16	Port Control Register	PCR	XXXX XXX02
V: Indot		1 010	///// ////UZ

X: Indeterminate

5. Reset

Hardware reset 1, brown-out detection reset (hardware reset 2), software reset and watchdog timer reset are available to reset the microcomputer.

5.1 Hardware Reset 1

Pins, the CPU and SFR are reset by setting the RESET pin. If the supply voltage meets the recommended operating conditions, all pins are reset when a low-level ("L") signal is applied to the RESET pin (see **Table 5.1**). The oscillation circuit is also reset and the main clock starts oscillating. The CPU and SFR are reset when the signal applied to the RESET pin changes "L" to high level ("H"). The microcomputer executes the program in an address indicated by the reset vector. The internal RAM is not reset. When an "L" signal is applied to the RESET pin while writing data to the internal RAM, the internal RAM is in an indeterminate state.

Figure 5.1 shows an example of the reset circuit. Figure 5.2 shows a reset sequence. Table 5.1 lists pin states while the $\overline{\text{RESET}}$ pin is held "L".

5.1.1 Reset on a Stable Supply Voltage

- (1) Apply an "L" signal to the RESET pin
- (2) Provide 20 or more clock cycle inputs into the XIN pin
- (3) Apply an "H" signal to the RESET pin

5.1.2 Power-on Reset

- (1) Apply an "L" signal to the RESET pin
- (2) Raise the supply voltage to the recommended operating level
- (3) Insert td(P-R) ms as wait time for the internal voltage to stabilize
- (4) Provide 20 or more clock cycle inputs into the XIN pin
- (5) Apply an "H" signal to the RESET pin

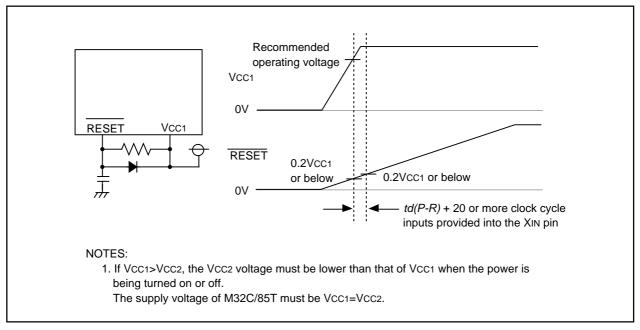


Figure 5.1 Reset Circuit

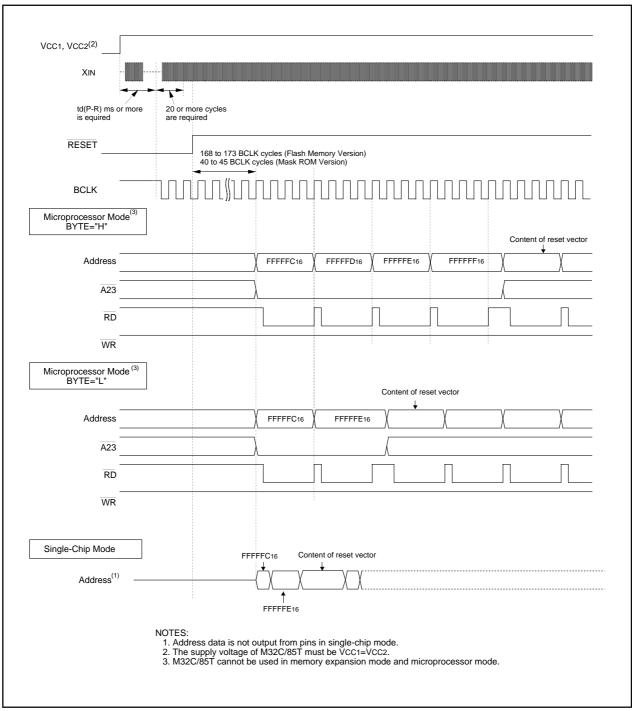


Figure 5.2 Reset Sequence

Table 5.1 Pin States while RESET Pin is Held "L"

	Pin States ⁽²⁾		
Pin Name	CNVss=Vss	CNVss=Vcc	
		BYTE=Vss	BYTE=Vcc
P0	Input port (high-impedance)	Inputs data (high-impedance)	
P1	Input port (high-impedance)	Inputs data (high-impedance)	Input port (high-impedance)
P2, P3, P4	Input port (high-impedance)	Output addresses (indeterminate)	
P50	Input port (high-impedance)	Outputs the WR signal ("H") ⁽³⁾	
P51	Input port (high-impedance)	Outputs the BHE signal (indeterminate)	
P52	Input port (high-impedance)	Outputs the RD signal ("H")(3)	
P53	Input port (high-impedance)	Outputs the BCLK ⁽³⁾	
P54	Input port (high-impedance)	Outputs the HLDA signal (Output signal depends on an input	
		signal to the HOLD pin.)(3)	
P55	Input port (high-impedance)	Inputs the HOLD signal (high-impedance)	
P56	Input port (high-impedance)	Outputs an "H" signal ⁽³⁾	
P57	Input port (high-impedance)	Inputs the RDY signal (high-impedance)	
P6 to P15 ⁽¹⁾	Input port (high-impedance)	Input port (high-impedance)	

NOTES:

- 1. Ports P11 to P15 are provided in the 144-pin package only.
- 2. The availability of pull-up resistors is indeterminate until internal supply voltage stabilizes.
- 3. Each port is in this state after power is on and internal supply voltage stabilizes, but in an indeterminate state until internal supply voltage stabilizes.

5.2 Brown-Out Detection Reset (Hardware Reset 2)

Pins, the CPU and SFR are reset by using the built-in voltage detection circuit, which monitors the voltage applied to the Vcc1 pin.

When the VC26 bit in the VCR2 register is set to "1" (reset level detection circuit enabled), pins, the CPU and SFR are reset as soon as the voltage applied to the Vcc1 pin drops to Vdet3 or below.

Then, pins, the CPU and SFR are reset as soon as the voltage applied to the Vcc1 pin reaches Vdet3r or above. The microcomputer executes the program in an address determined by the reset vector.

The microcomputer executes the program after detecting Vdet3r and waiting td(S-R) ms . The same pins and registers are reset by the hardware reset 1 and brown-out detection reset, and are also placed in the same reset state.

The microcomputer cannot exit stop mode by brown-out detection reset.

Figure 5.3 shows an example of brown-out detection reset operation.

NOTES:

1. Brown-out detection reset cannot be used in M32C/85T.

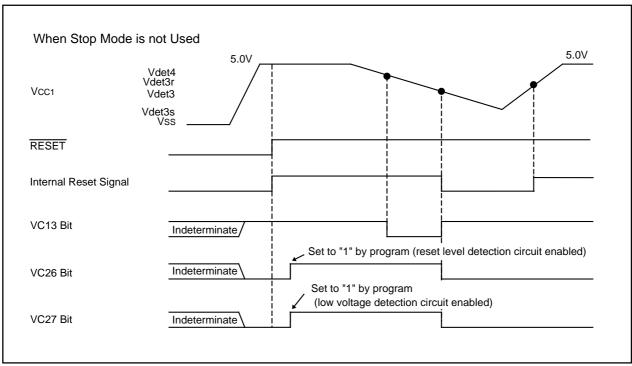


Figure 5.3 Brown-out Detection Reset (Hardware Reset 2)

5.3 Software Reset

Pins, the CPU and SFR are reset when the PM03 bit in the PM0 register is set to "1" (microcomputer reset). Then the microcomputer executes the program in an address determined by the reset vector.

Set the PM03 bit to "1" while the main clock is selected as the CPU clock and the main clock oscillation is stable.

In the software reset, the microcomputer does not reset a part of the SFR. Refer to **4. SFR** for details. Processor mode remains unchanged since the PM01 and PM00 bits in the PM0 register are not reset.

5.4 Watchdog Timer Reset

Pins, the CPU and SFR are reset when the CM06 bit in the CM0 register is set to "1" (reset) and the watchdog timer underflows. Then the microcomputer executes the program in an address determined by the reset vector.

In the watchdog timer reset, the microcomputer does not reset a part of the SFR. Refer to **4. SFR** for details. Processor mode remains unchanged since the PM01 and PM00 bits in the PM0 register are not reset.

5.5 Internal Space

Figure 5.4 shows CPU register states after reset. Refer to 4. SFR for SFR states after reset.

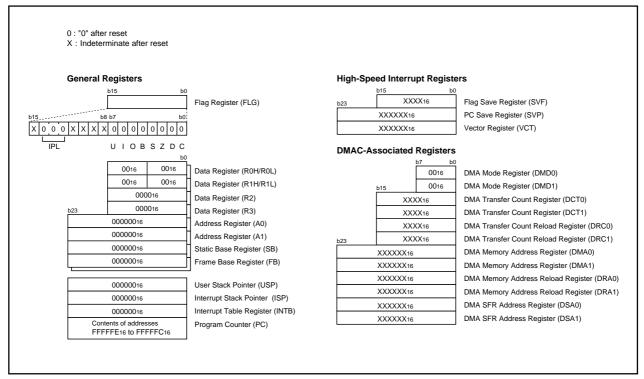


Figure 5.4 CPU Register States after Reset

6. Voltage Detection Circuit

NOTE

The voltage detection circuit in M32C/85T cannot be used.

However, the cold start-up/warm start-up determine function is available.

The voltage detection circuit consists of the reset level detection circuit and the low voltage detection circuit. The reset level detection circuit monitors the voltage applied to the Vcc1 pin. The microcomputer is reset if the reset level detection circuit detects Vcc1 is Vdet3 or below. This circuit is disabled when the microcomputer is in stop mode.

The voltage detection circuit also monitors the voltage applied to the VCC1 pin. The low voltage detection signal is generated when the low voltage detection circuit detects VCC1 is above or below Vdet4. This signal generates the low voltage detection interrupt. The VC13 bit in the VCR1 register determines whether VCC1 is above or below Vdet4.

The voltage detection circuit is available when Vcc1=4.2V to 5.5V.

Figure 6.1 shows a block diagram of the voltage detection circuit.

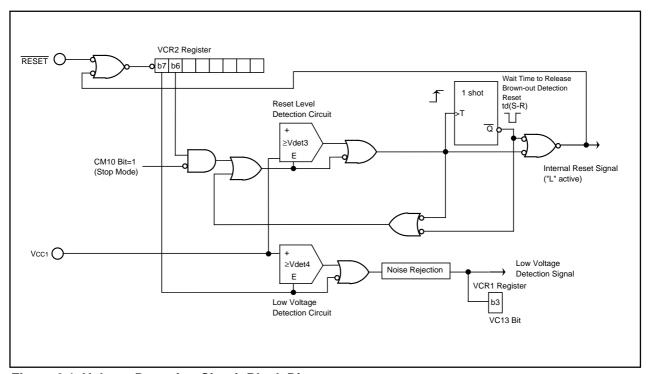


Figure 6.1 Voltage Detection Circuit Block Diagram

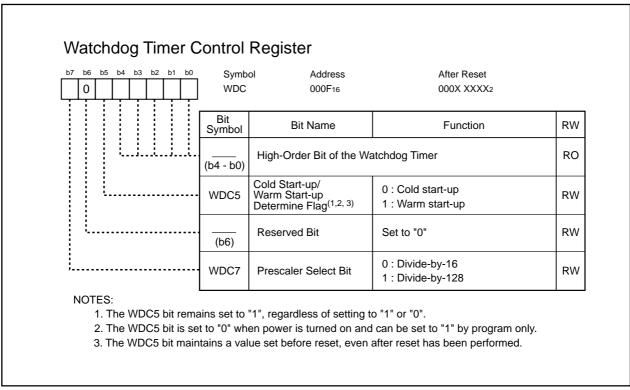
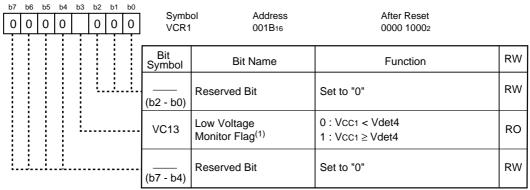
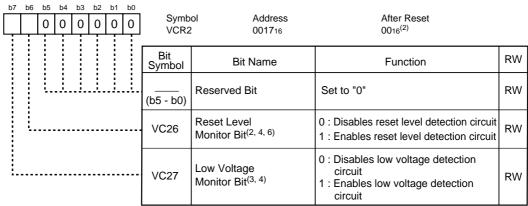
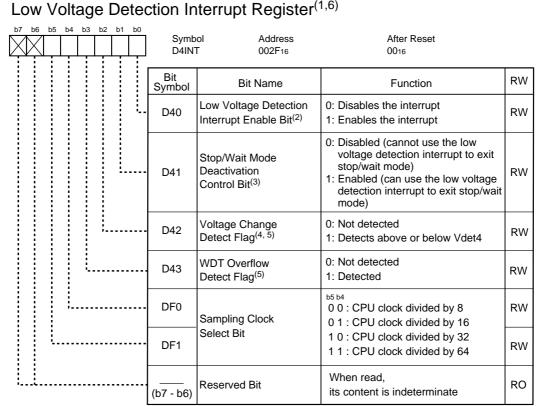



Figure 6.2 WDC Register


Voltage Detection Register 1(2)

NOTES:


- 1. The VC13 bit setting is enabled when the VC27 bit in the VCR2 register is set to "1" (low voltage detection circuit enabled). The VC13 bit is set to "1" when the VC27 bit is set to "0" (low voltage detection circuit disabled).
- 2. The VCR1 register in M32C/85T cannot be used.

Voltage Detection Register 2^(1, 5)

- 1. Set the VCR2 register after the PRC3 bit in the PRCR register is set to "1" (write enable).
- 2. To use the brown-out detection reset (hardware reset 2), set the VC26 bit to "1".
- 3. Set the VC27 bit to "1" to set the VC13 bit in the VCR1 register and the D42 bit in the D4INT register, or to set the D40 bit to "1" (low voltage detect interrupt enabled).
- 4. The reset level detection circuit and low voltage detection circuit start operating *td(E-A)* ms after the VC26 or VC27 bit is set to "1".
- 5. The VCR2 register in M32C/85T cannot be used.
- 6. The VC26 bit setting is disabled when the microcomputer is in stop mode. Its setting is not reset even if the voltage applied to the Vcc1 pin drops below Vdet3.

Figure 6.3 VCR1 and VCR2 Registers

- 1. Set the D4INT registers after the PRC3 bit in the PRCR register is set to "1" (write enable).
- The D40 bit setting is enabled when the VC27 bit in the VCR2 register is set to "1" (low voltage detection circuit enabled).

Use the following procedure to set the D40 bit to "1":

- (1) Set the VC27 bit to "1"
- (2) Wait td(E-A) ms to start operating the voltage detection circuit
- (3) Wait required sampling time (see Table 6.2)
- (4) Set the D40 bit to "1"
- 3. When exiting stop mode using the low voltage detection circuit again after having already done so, set the D41 bit to "1" after setting it to "0".
- 4. The D42 bit setting is enabled when the VC27 bit in the VCR2 register is set to "1" (low voltage detection circuit enabled). The D42 bit is set to "0" when the VC27 bit is set to "0" (low voltage detection circuit disabled).
- 5. The bit is set to "0" by a program. (It remains unchanged even if it is set to "1".)
- 6. The D4INT register in M32C/85T cannot be used.

Figure 6.4 D4INT Register

6.1 Low Voltage Detection Interrupt

If the D40 bit in the D4INT register is set to "1" (low voltage detection interrupt enabled), low voltage detection interrupt request is generated when the voltage applied to the Vcc1 pin rises above or drops below Vdet4. The low voltage detection interrupt shares the same interrupt vector with the watchdog timer interrupt and oscillation stop detection interrupt. The D42 bit in the D4INT register determines whether the low voltage detection interrupt has been generated. Read the D42 bit using an interrupt routine when using the low voltage detection interrupt at the same time as the watchdog timer interrupt and oscillation stop detection interrupt.

Set the D41 bit in the D4INT register to "1" (enabled) to use the low voltage detection interrupt to exit stop mode or wait mode.

The D42 bit is set to "1" (more or less than Vdet4 detected) as soon as the voltage applied to the Vcc1 pin reaches Vdet4 due to the voltage rise and voltage drop. When the D42 bit setting changes "0" to "1", low voltage detection interrupt request is generated. Set the D42 bit to "0" (not detected) by program. However, when the D41 bit is set to "1" and the microcomputer is in stop mode or wait mode, low voltage detection interrupt request is generated, regardless of the D42 bit setting, if the voltage applied to the Vcc1 pin is detected to be higher than Vdet4. The microcomputer then exits stop mode or wait mode.

Table 6.1 shows how a low voltage detection interrupt request is generated.

The DF1 and DF0 bits in the D4INT register determine sampling period that detects the voltage applied to the VCC1 pin rises above or drops below Vdet4. Table 6.2 shows the sampling periods.

Table 6.1 Conditions to Generate Low Voltage Detection Interrupt Request

Operating Mode	VC27 Bit	D40 Bit	D41 Bit	D42 Bit ⁽⁴⁾	VC13 Bit ⁽³⁾
Normal Operating			"0" or "1"	"0" to"1"	"0" to"1"
Mode ⁽¹⁾	1	1			"1" to"0"
Wait Mode ⁽²⁾ , Stop Mode ⁽²⁾	'	'	1	-	"0" to"1"

^{-: &}quot;0" or "1"

- All states excluding wait mode and stop mode are handled as normal operating mode. (Refer to 9. Clock Generation Circuit.)
- 2. Refer to 6.1.1 Limitations for Exiting Stop/Wait Mode.
- 3. Sampling begins after the VC13 bit setting changes. An interrupt request is generated after sampling is completed. See Figure 6.6 for details.
- 4. Set to "0" by program before generating an interrupt.

Table 6.2 Sampling Periods

CPU Clock	Sampling Clock (μs)					
(MHz)	Divide-by-8	Divide-by-16	Divide-by-32	Divide-by-64		
16	3.0	6.0	12.0	24.0		
32	1.5	3.0	6.0	12.0		

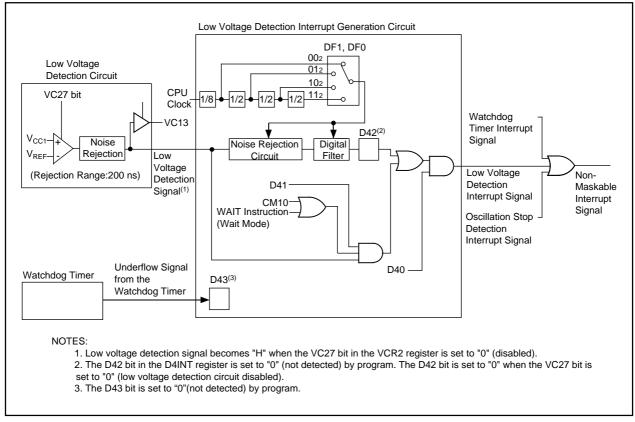


Figure 6.5 Low Voltage Detection Interrupt Generation Circuit

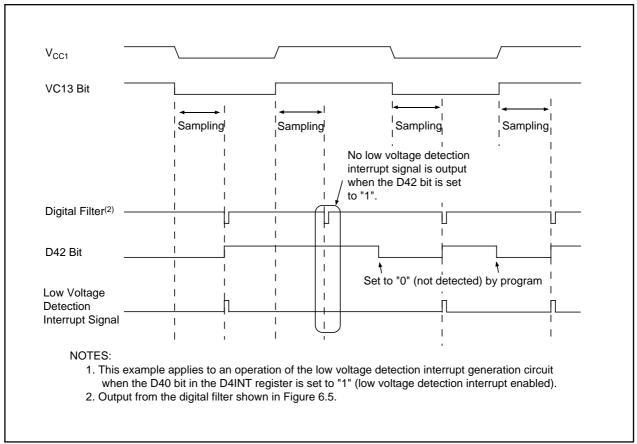


Figure 6.6 Low Voltage Detection Interrupt Generation Circuit Operation Example

6.1.1 Limitations on Exiting Stop/Wait Mode

The low voltage detection interrupt is generated and the microcomputer exits stop mode as soon as the CM10 bit in the CM1 register is set to "1" (all clocks stopped) under the conditions below. Additionally, if WAIT instruction is executed under these same conditions, the low voltage detection interrupt is immediately generated and the microcomputer exits wait mode.

- the VC27 bit in the VCR2 register is set to "1" (low voltage detection circuit enabled),
- the D40 bit in the D4INT register is set to "1" (low voltage detection interrupt enabled),
- the D41 bit in the D4INT register is set to "1" (low voltage detection interrupt is used to exit stop/wait mode), and
- the voltage applied to the VCC1 pin is higher than Vdet4 (the VC13 bit in the VCR1 register is set to "1")

Set the CM10 bit to "1" when the VC13 bit is "0" (Vcc1 < Vdet4), if the microcomputer is set to enter stop/wait mode when the voltage applied to the Vcc1 pin drops below Vdet4 and to exit stop/wait mode when the voltage applied rises to Vdet4 or above.

6.2 Cold Start-up / Warm Start-up Determine Function

The WDC5 bit in the WDC register determines either cold start-up, power-on reset, or warm start-up, reset during the microcomputer running. Default value of the WDC5 bit is "0" (cold start-up) when power-on. It is set to "1" (warm start-up) by writing desired values to the WDC register. The WDC5 bit is not reset, regardless of a software reset or reset signal input.

Figure 6.7 shows a block diagram of the cold start-up/warm start-up determine function. Figure 6.8 shows its operation exmaple.

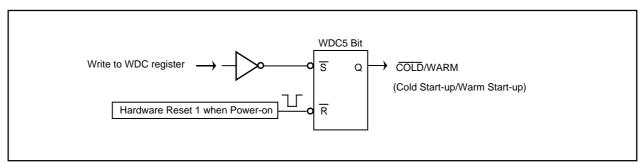


Figure 6.7 Cold Start-up/Warm Start-up Determine Function Block Diagram

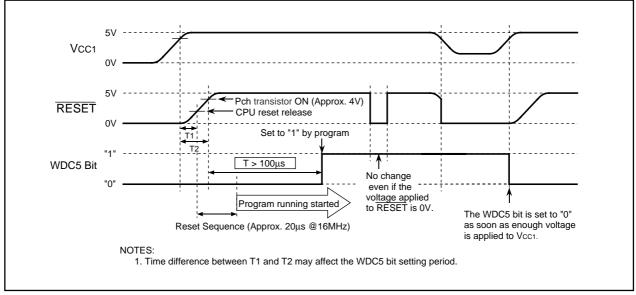


Figure 6.8 Cold Start-up/Warm Start-up Determine Function Operation

7. Processor Mode

NOTE

Use M32C/85T in single-chip mode only.

M32C/85T cannot be used in memory expansion mode and microprocessor mode.

7.1 Types of Processor Mode

Single-chip mode, memory expansion mode or microprocessor mode can be selected as a processor mode. Table 7.1 lists a feature of the processor mode.

Table 7.1 Processor Mode Feature

Processor Mode	Accessable Space	Pin Status as I/O Ports
Single-chip Mode	SFR, Internal RAM, Internal ROM	All pins assigned to I/O ports or to I/O pins for the peripheral functions
Memory Expansion Mode	SFR, Internal RAM, Internal ROM, External Space ⁽¹⁾	Some pins assigned to bus control pins ⁽¹⁾
Microprocessor Mode	SFR, Internal RAM, External Space ⁽¹⁾	Some pins assigned to bus control pins ⁽¹⁾

NOTES:

1. Refer to 8. Bus for details.

7.2 Setting of Processor Mode

The CNVss pin state and the PM01 and PM00 bit settings in the PM0 register determine which processor mode is selected. Table 7.2 lists processor mode after hardware reset. Table 7.3 lists processor mode selected by PM01 and PM00 bit settings.

Table 7.2 Processor Mode after Hardware Reset

Input Level into the CNVss pin	Processor Mode
Vss	Single-chip Mode
Vcc1 ^(1, 2)	Microprocessor Mode

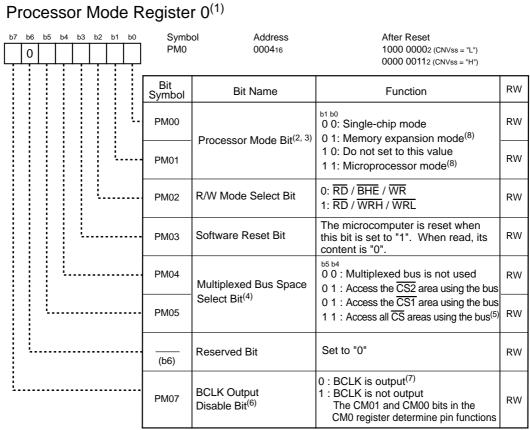
NOTES:

- The internal ROM cannot be accessed, regardless of PM01 and PM00 bit settings, when applying Vcc1 to the CNVss pin and generating the hardware reset (hardware reset 1 or brown-out detection reset).
- 2. Multiplex bus cannot be assigned to all $\overline{\text{CS}}$ areas.

Table 7.3 Processor Mode Selected by the PM01 and PM00 bit Settings

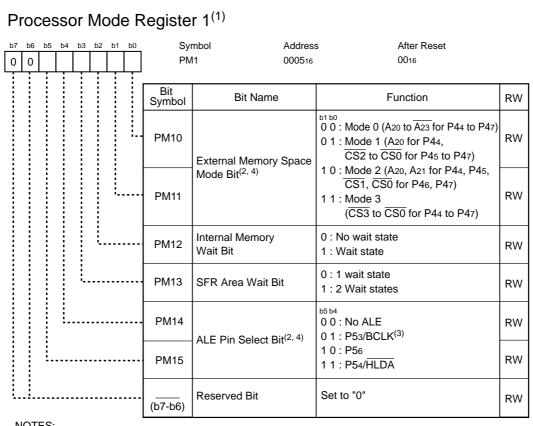
PM01 and PM00 Bits	Processor Mode
002	Single-chip Mode
012	Memory Expansion Mode
102	Do not set to this value
112	Microprocessor Mode

If the PM01 and PM00 bits are rewritten, the mode corresponding to the PM01 and PM00 bits is selected regardless of CNVss pin level.


Do not change the PM01 and PM00 bits to "012" (memory expansion mode) or "112" (microprocessor mode) when the PM07 to PM02 bits in the PM0 register are being rewritten.

Do not enter microprocessor mode while the CPU is executing a program in the internal ROM.

Do not enter single-chip mode or memory expansion mode from microprocessor mode while the CPU is executing a program in an external memory space, the same address assigned for the internal ROM.


The internal ROM cannot be accessed, regardless of PM01 and PM00 bit settings, when applying Vcc1 to the CNVSS pin and generating the hardware reset (hardware reset 1 or brown-out detection reset).

Figures 7.1 and 7.2 show the PM0 register and PM1 register. Figure 7.3 shows a memory map in each processor mode.

- 1. Rewrite the PM0 register after the PRC1 bit in the PRCR register is set to "1" (write enable).
- The PM01 and PM00 bits maintain values set before reset, even after software reset or watchdog timer reset has performed.
- 3. Set the PM01 and PM00 bits to "012" or "112" separately. Rewrite other bits before rewriting the PM01 and PM00 bits.
- 4. The PM04 and PM05 bits are available in memory expansion mode or microprocessor mode.
 - Set the PM05 and PM04 bits to "002" in mode 0.
 - Do not set the PM05 and PM04 bits to "012" in mode 2.
- 5. The PM05 and PM04 bits cannot be set to "112" in microprocessor mode since the microcomputer starts up with the separate bus after reset.
 - When the PM05 and PM04 bits are set to "112" in memory expansion mode, the microcomputer can access each 64-Kbyte chip-select-assigned address space. The multiplexed bus is not available in mode 0. The microcomputer accesses the $\overline{\text{CS0}}$ to $\overline{\text{CS2}}$ in mode 1, $\overline{\text{CS0}}$ and $\overline{\text{CS1}}$ in mode 2 and $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ in mode 3.
- 6. No BCLK is output in single-chip mode even if the PM07 bit is set to "0". When a clock output is terminated in microprocessor mode or memory expansion mode, set the PM07 bit to "1" and the CM01 and CM00 bits in the CM0 register to "002" (I/O port P53). P53 outputs "L".
- 7. When the PM07 bit is set to "0" (BCLK output), set the CM01 and CM00 bits to "002".
- 8. M32C/85T cannot be used in memory expansion mode and microprocessor mode.

Figure 7.1 PM0 Register

- 1. Rewrite the PM1 register after the PRC1 bit in the PRCR register is set to "1" (write enable).
- 2. The PM15 and PM14 bit setting, PM11 and PM10 bit setting are available in memory expansion mode or microprocessor mode.
- 3. Set the CM01 and CM00 bits in the CM0 register to "002" (I/O port P53) when the PM15 and PM14 bits are set to "012" (P53/BCLK select).
- 4. M32C/85T cannot be used in memory expansion mode and microprocessor mode.

Figure 7.2 PM1 Register

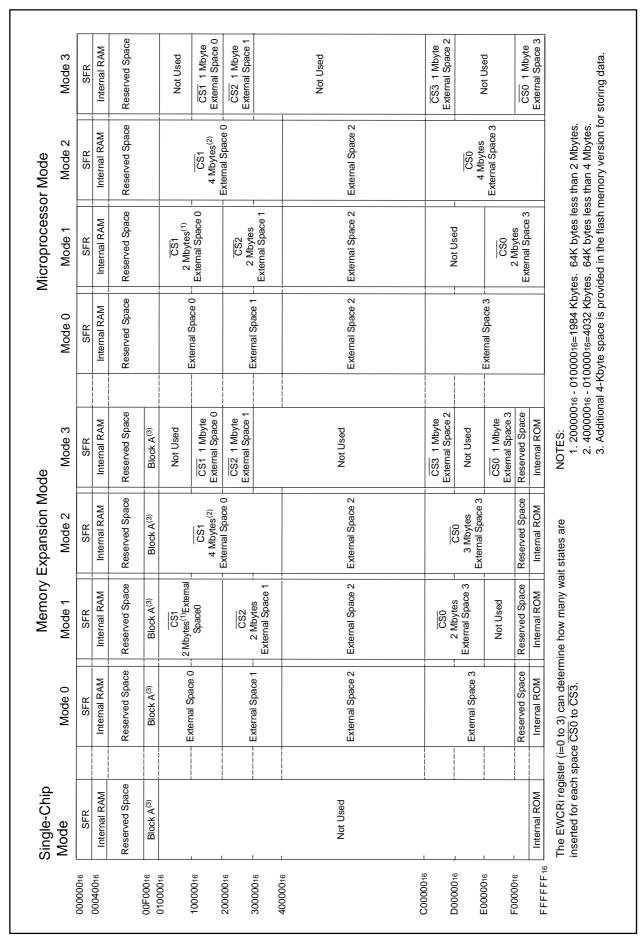


Figure 7.3 Memory Map in Each Processor Mode

8. Bus

In memory expansion mode or microprocessor mode, some pins function as bus control pins to control the address bus and data bus. At to A22, $\overline{\text{A23}}$, Do to D15, $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$, $\overline{\text{WRL/WR}}$, $\overline{\text{WRH/BHE}}$, $\overline{\text{RD}}$, BCLK/ALE, $\overline{\text{HLDA/ALE}}$, $\overline{\text{HOLD}}$, ALE, $\overline{\text{RDY}}$ are used as bus control pins.

NOTE

Bus control pins in M32C/85T cannot be used.

8.1 Bus Settings

The BYTE pin, the DS register, the PM05 and PM04 bits in the PM0 register and the PM11 and PM10 bits in the PM1 register determine bus settings.

Table 8.1 lists how to change bus settings. Figure 8.1 shows the DS register.

Table 8.1 Bus Settings

Bus Setting	Changed By
Selecting External Address Bus Width	DS register
Setting Bus Width after Reset	BYTE pin (external space 3 only)
Selecting Between Separate Bus or Multiplexed Bus	PM05 and PM04 bits in PM0 register
Number of Chip-Select	PM11 and PM10 bits in PM1 register

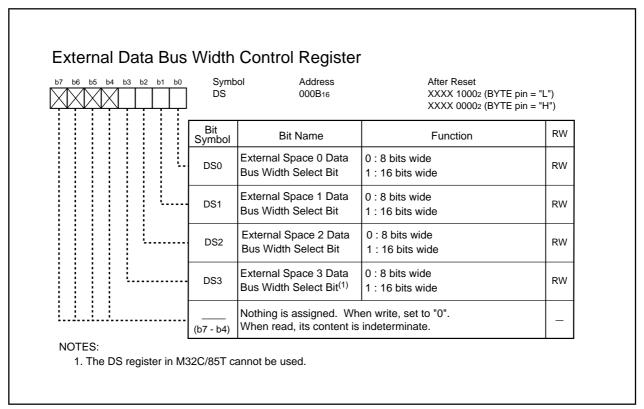


Figure 8.1 DS Register

8.1.1 Selecting External Address Bus

The number of externally-output address buses, the number of chip-select signals and chip-select-assigned address space ($\overline{\text{CS}}$ area) vary depending on each external space mode. The PM11 and PM10 bits in the PM1 register determine the external space mode.

8.1.2 Selecting External Data Bus

The DS register selects either external 8-bit or 16-bit data bus per external space. The data bus in the external space 3, after reset, becomes 16 bits wide when a low-level ("L") signal is applied to the BYTE pin and 8 bits wide when a high-level ("H") signal is applied. Keep the BYTE pin input level while the microcomputer is operating. Internal bus is always 16 bits wide.

8.1.3 Selecting Separate/Multiplexed Bus

The PM05 and PM04 bits in the PM0 register determine either separate or multiplexed bus as bus format.

8.1.3.1 Separate Bus

The separate bus is a bus format which allows the microcomputer to input and output data and address separatelly. The DS register selects 8-bit or 16-bit data bus as the external data bus per external space. If all DSi bits in the DS register (i=0 to 3) are set to "0" (8-bit data bus), port P0 becomes the data bus and port P1, the programmable I/O port. If one of the DSi bits is set to "1" (16-bit data bus), ports P0 and P1 become the data bus. Port P1 is indeterminate when the microcomputer accesses a space where the DSi bit is set to "0".

The EWCRi register (i=0 to 3) determines the number of software wait states inserted, when the microcomputer accesses space using the separate bus.

8.1.3.2 Multiplexed Bus

The multiplexed bus is a bus format which allow the microcomputer to input and output data and address by timesharing. Do to D7 are multiplexed with A0 to A7 in space accessed by the 8-bit data bus. Do to D15 are multiplexed with A0 to A15 in space accessed by the 16-bit data bus. The DSi bit controls the data bus width. The EWCRi register (i=0 to 3) controls the number of software wait states inserted, when the microcomputer accesses a space using the multiplexed bus. Refer to **8.2.4 Bus Timing** for details.

The multiplexed bus can be assigned to access the $\overline{\text{CS1}}$ area, $\overline{\text{CS2}}$ area or all $\overline{\text{CS}}$ areas. However, because the microcomputer starts operation using the separate bus after reset, the multiplexed bus cannot be assigned to access all $\overline{\text{CS}}$ areas in microprocessor mode. When the PM05 and PM04 bits in the PM0 register are set to "112" (access all $\overline{\text{CS}}$ areas with the bus), 16 low-order bits, from Ao to A15, of an address are output. See **Table 8.2** for details.

Table 8.2 Processor Mode and Port Function

Processor Mode	Single- Chip Mode	Memo	ry Expansion Mo	Memory Exp	ansion Mode			
PM05 to PM04 Bits in PM0 Register		the Multip Access All Other	or CS2 using \	"002" (Access all CS Areas using the Separate Bus		"112" ⁽¹⁾ (Access all CS Areas using the Multiplexed Bus		
Data Bus Width		Access all external space with 8-bit data bus	Access one or more external space with 16-bit data bus	Access all external space with 8-bit data bus	Access one or more external space with 16-bit data bus	Access all external space with 8-bit data bus	Access one or more external space with 16-bit data bus	
P00 to P07	I/O port	Data bus Do to D7	Data bus Do to D7	Data bus Do to D7	Data bus Do to D7	I/O port	I/O port	
P10 to P17	I/O port	I/O port	Data bus D8 to D15	I/O port	Data bus D8 to D15	I/O port	I/O port	
P20 to P27	I/O port	Address bus Data bus ⁽²⁾ A0/D0 to A7/D7	Address bus Data bus ⁽²⁾ Ao/Do to A7/D7	Address bus Ao to A7	Address bus Ao to A7	Address bus Data bus Ao/Do to Ar/Dr	Address bus Data bus A0/D0 to A7/D7	
P30 to P37	I/O port	Address bus A8 to A15	Address bus/ Data bus ⁽²⁾ A8/D8 to A15/D15	Address bus A8 to A15	Address bus A8 to A15	Address bus A8 to A15	Address bus/ Data bus A8/D8 to A15/D15	
P40 to P43	I/O port	Address bus A16 to A19	Address bus A ₁₆ to A ₁₉	Address bus A16 to A19	Address bus A16 to A19	I/O port	I/O port	
P44 to P46	I/O port	CS (Chip-selec	CS (Chip-select signal) or Address bus (A20 to A22) (Refer to 8.2 Bus Control for details)(4)					
P47	I/O port	CS (Chip-selec	CS (Chip-select signal) or Address bus (A23) (Refer to 8.2 Bus Control for details)(4)					
P50 to P53	I/O port		Outputs $\overline{\text{RD}}$, $\overline{\text{WRL}}$, $\overline{\text{WRH}}$ and BCLK or outputs $\overline{\text{RD}}$, $\overline{\text{BHE}}$, $\overline{\text{WR}}$ and BCLK (Refer to 8.2 Bus Control for details)(3)					
P54	I/O port	HDLA (3) HDLA (3) HDLA (3)			HDLA (3)	HDLA (3)	HDLA (3)	
P55	I/O port	HOLD	HOLD	HOLD	HOLD	HOLD	HOLD	
P56	I/O port	ALE (3)	ALE (3)	ALE (3)	ALE (3)	ALE (3)	ALE (3)	
P57	I/O port	RDY	RDY	RDY	RDY	RDY	RDY	

P56 provides an indeterminate output when the PM15 and PM14 bits to "002" (no ALE). It cannot be used as an I/O port.

4. The PM11 and PM10 bits in the PM1 register determine the CS signal and address bus.

The PM05 and PM04 bits cannot be set to "112" (access all CS areas using multiplexed bus) in microprocessor mode because the microcomputer starts operation using the separate bus after reset. When the PM05 and PM04 bits are set to "112" in memory expansion mode, the microcomputer accesses 64-Kbyte memory space per chip-select using the address bus .

These ports become address buses when accessing space using the separate bus.
 The PM15 and PM14 bits in the PM1 register determines which pin outputs the ALE signal. The PM02 bit in the PM0 register selects either "WRL,WRH" or "BHE,WR" combination.

8.2 Bus Control

Signals, required to access external devices, are provided and software wait states are inserted as follows. The signals are available in memory expansion mode and microprocessor mode only.

8.2.1 Address Bus and Data Bus

Address bus is a signal accessing 16-Mbyte space and uses 24 control pins; A0 to A22 and $\overline{\text{A23}}$. $\overline{\text{A23}}$ is the inversed output signal of the highest-order address bit.

Data bus is a signal for data input and output. The DS register selects an 8-bit data bus from Do to D7 or a 16-bit data bus from D0 to D15 for each external space. When applying a high-level ("H") signal to the BYTE pin, the data bus accessing the external memory space 3 becomes an 8-bit data bus after reset. When applying a low-level ("L") signal to the BYTE pin, the data bus accessing the external memory space 3 becomes the 16-bit data bus.

When changing single-chip mode to memory expansion mode, the address bus is in an indeterminate state until the microcomputer accesses an external memory space.

8.2.2 Chip-Select Signal

Chip-select signal shares pins with A20 to A22 and $\overline{\text{A23}}$. The PM11 and PM10 bits in the PM1 register determine which $\overline{\text{CS}}$ area is accessed and how many chip-select signals are output. A maximum of four chip-select signals can be output.

In microprocessor mode, no chip-select signal, aside from A23 which can perform as a chip-select signal, is output after reset.

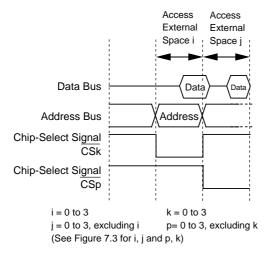
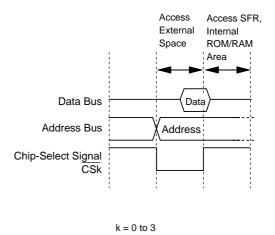
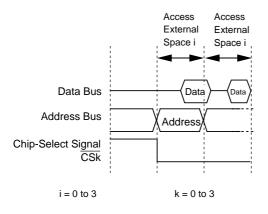

The chip-select signal becomes "L" while the microcomputer is accessing the external $\overline{\text{CSi}}$ area (i=0 to 3). It becomes "H" while the microcomputer is accessing other external memory space.

Figure 8.2 shows an example of the address bus and chip-select signal output.

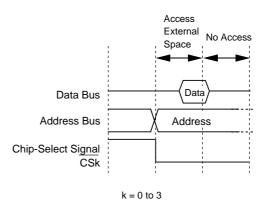

Example 1:

When the microcomputer accesses the external space j specified by another chip-select signal in the next cycle after having accessed the external space i, both address bus and chip-select signal change.


Example 2:

When the microcomputer accesses the SFR or the internal ROM/RAM area in the next cycle after having accessed an external space, the chip-select signal changes but the address bus does not.

Example 3:


When the microcomputer accesses the space i specified by the same chip-select signal in the next cycle after having accessed the external space i, the address bus changes but the chip-select signal does not.

(See Figure 7.3 for i and k)

Example 4:

When the microcomputer does not access any space in the next cycle after having accessed an external space (no pre-fetch of an instruction is generated), neither address bus nor chip-select signal changes.

NOTES:

The above applies to the address bus and chip-select signal in two consecutive cycles.
 By combining these examples, a chip-select signal extended by two or more cycles may be output.

Figure 8.2 Address Bus and Chip-Select Signal Outputs (Separate Bus)

8.2.3 Read and Write Signals

When using a16-bit data bus, the PM02 bit in the PM0 register selects a combination of the " \overline{RD} , \overline{WR} and \overline{BHE} " signals or the " \overline{RD} , \overline{WRL} and \overline{WRH} " signals to determine the read or write signal. When the DS3 to DS0 bits in the DS register are set to "0" (8-bit data bus), set the PM02 bit to "0" ($\overline{RD}/\overline{WR}/\overline{BHE}$). When any of the DS3 to DS0 bits are set to "1" (16-bit data bus) to access an 8-bit space, the combination of " \overline{RD} , \overline{WR} and \overline{BHE} " is automatically selected regardless of the PM02 bit setting. Tables 8.3 and 8.4 list each signal operation.

The RD, WR and BHE signals are combined for the read or write signal after reset.

When changing the combination of " \overline{RD} , \overline{WRL} and \overline{WRH} ", set the PM02 bit first to write data to an external memory.

Table 8.3 RD, WRL and WRH Signals

Data Bus	RD	WRL	WRH	Status of External Data Bus
	L	Н	Н	Read data
16 Bits	Н	L	Н	Write 1-byte data to even address
	Н	Н	L	Write 1-byte data to odd address
	Н	L	L	Write data to both even and odd addresses
8 Bits	Н	L(1)	Not used	Write 1-byte data
o bits	L	H ⁽¹⁾	Not used	Read 1-byte data

Table 8.4 RD, WR and BHE Signals

Data Bus	RD	WR	BHE	A0	Status of External Data Bus
	Н	L	L	Н	Write 1-byte data to odd address
	L	Н	L	Н	Read 1-byte data from odd address
16 Bits	Н	L	Н	L	Write 1-byte data to even address
L	L	Н	Н	L	Read 1-byte data from even address
	Н	L	L	L	Write data to both even and odd addresses
	L	Н	L	L	Read data from both even and odd addresses
O Dito	Н	L	Not used	H/L	Write 1-byte data
8 Bits	L	Н	Not used	H/L	Read 1-byte data

^{1.} The WR signal is used instead of the WRL signal.

8.2.4 Bus Timing

Bus cycle for the internal ROM and internal RAM is basically one BCLK cycle. When the PM12 bit in the PM1 register is set to "1" (wait state), the bus cycles are two BCLK cycles.

Bus cycles for the SFR are basically two BCLK cycles. When the PM13 bit in the PM1 register is set to "1" (2 wait states), the bus cycles are three BCLK cycles.

Basic bus cycle for an external space is $2\emptyset$ ($1\emptyset+1\emptyset$) to read and to write. Bus cycle is selected by the EWCRi register (i=0 to 3) from 12 types of separate bus settings and 7 types of multiplexed bus settings. If the EWCRi04 to EWCRi00 bits are set to "000112" ($1\emptyset+3\emptyset$), bus cycles are four BCLK cycles.

Figure 8.3 shows the EWCRi register. Figures 8.4 to 8.8 show bus timing in an external space.

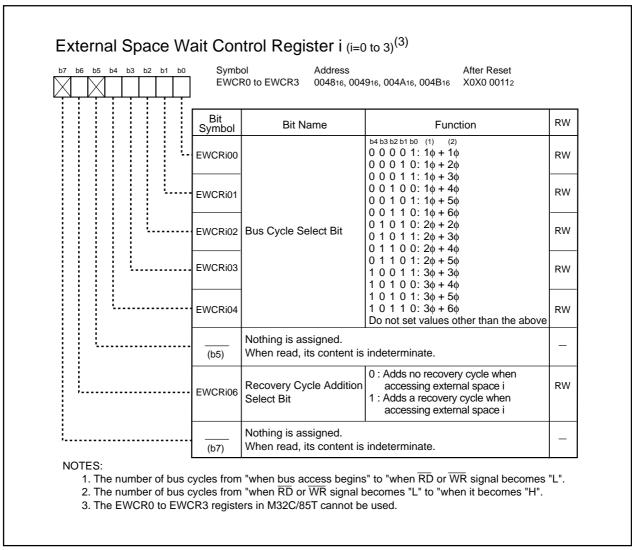


Figure 8.3 EWCR0 to EWCR3 Registers

Table 8.5 Software Wait State and Bus Cycle

Space	External Bus	PM1 R	egister	EWCRi Register (i=0 to 3)	Pue Cyalee
Space	Status	PM13 Bit	PM12 Bit	EWCRi04 to EWCRi00 Bits	Bus Cycles
SFR		0			2 BCLK cycles
J-K		1			3 BCLK cycles
Internal			0		1 BCLK cycles
ROM/RAM			1		2 BCLK cycles
				000012	2 BCLK cycles
				000102	3 BCLK cycles
				000112	4 BCLK cycles
				001002	5 BCLK cycles
	Separate Bus			001012	6 BCLK cycles
				001102	7 BCLK cycles
				010102	4 BCLK cycles
				010112	5 BCLK cycles
				011002	6 BCLK cycles
External Memory				100112	6 BCLK cycles
				101002	7 BCLK cycles
				101102	9 BCLK cycles
				010102	4 BCLK cycles
				010112	5 BCLK cycles
				011012	7 BCLK cycles
	Multiplexed Bus			100112	6 BCLK cycles
				101002	7 BCLK cycles
				101012	8 BCLK cycles
				101102	9 BCLK cycles

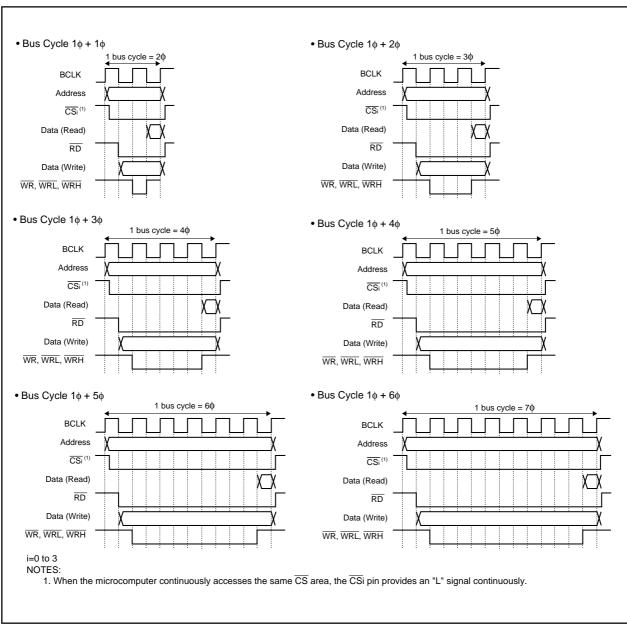


Figure 8.4 Bus Cycle with Separate Bus (1)

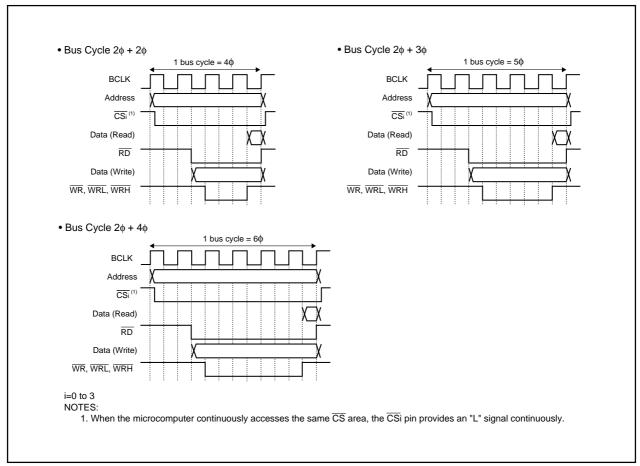


Figure 8.5 Bus Cycle with Separate Bus (2)

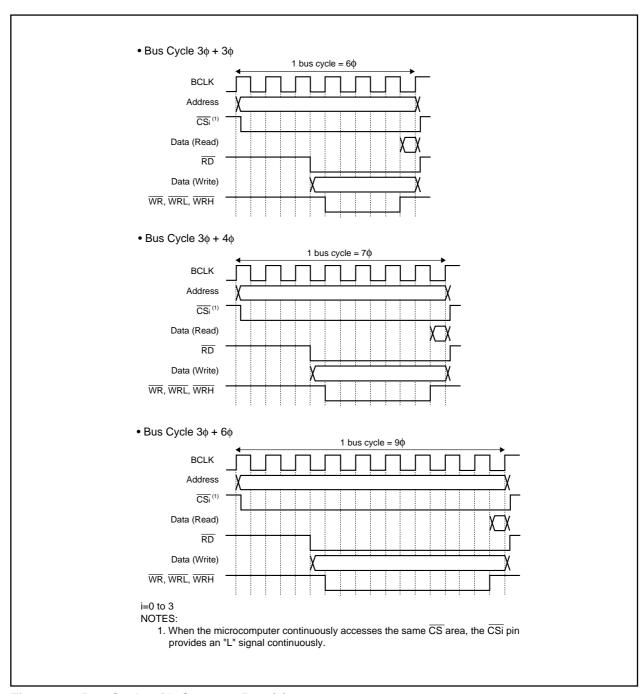


Figure 8.6 Bus Cycle with Separate Bus (3)

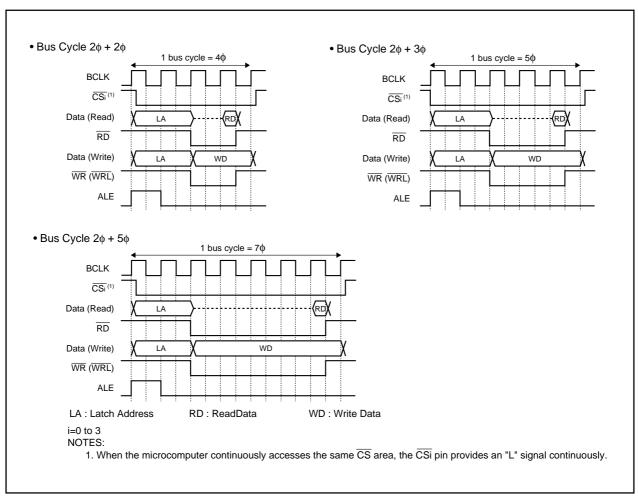


Figure 8.7 Bus Cycle with Multiplexed Bus (1)

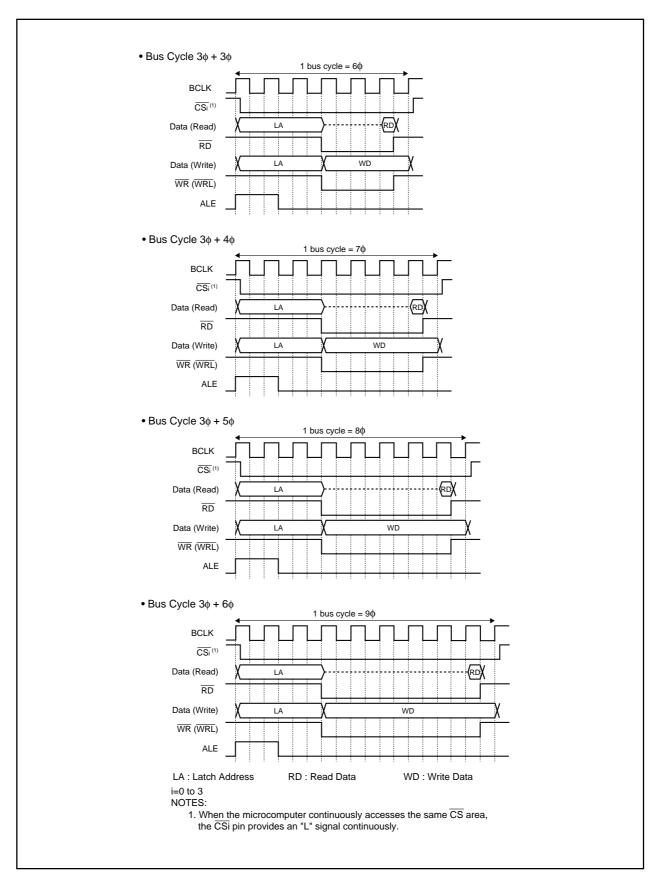


Figure 8.8 Bus Cycle with Multiplexed Bus (2)

8.2.4.1 Bus Cycle with Recovery Cycle Added

The EWCRi06 bit in the EWCRi register (i=0 to 3) determines whether the recovery cycle is added or not. In the recovery cycle, addresses and wrie data outputs are provided continuously (using the separate bus only). Devices, which take longer address hold time and data hold time to write data, are connectable.

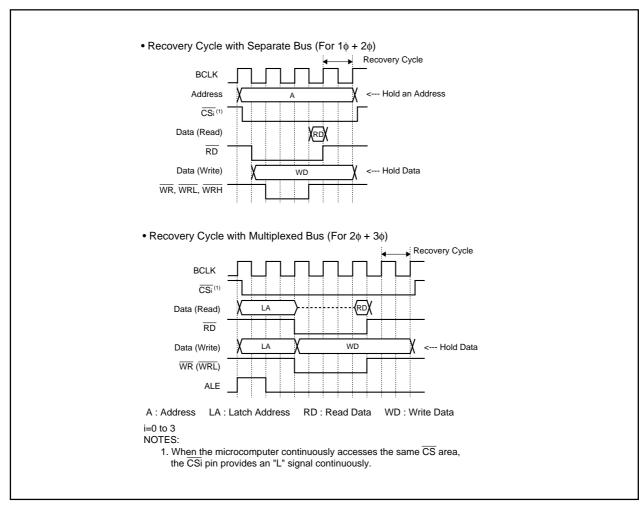


Figure 8.9 Recovery Cycle

8.2.5 ALE Signal

The ALE signal latches an address of the multiplexed bus. Latch an address on the falling edge of the ALE signal. The PM15 and PM14 bits in the PM1 register determine the output pin for the ALE signal. The ALE signal is output to internal space and external space.

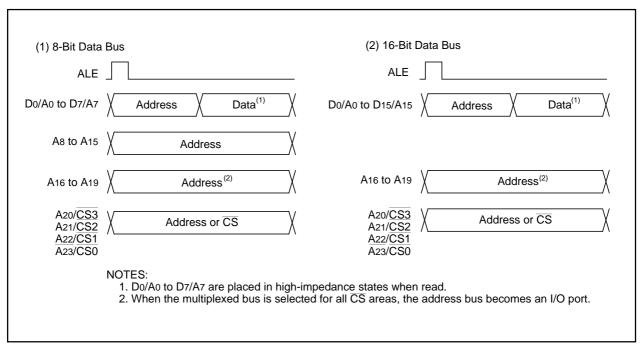


Figure 8.10 ALE Signal and Address/Data Bus

8.2.6 RDY Signal

The \overline{RDY} signal facilitates access to external devices requiring longer access time. When a low-level ("L") signal is applied to the \overline{RDY} pin on the falling edge of the last BCLK of the bus cycle, wait states are inserted into the bus cycle. When a high-level ("H") signal is applied to the \overline{RDY} pin on the falling edge of BCLK, the bus cycle starts running again.

Table 8.6 lists microcomputer states when the \overline{RDY} signal inserts wait states into the bus cycle. Figure 8.11 shows an example of the \overline{RD} signal that is extended by the \overline{RDY} signal.

Table 8.6 Microcomputer States in Wait State(1)

Item	State					
Oscillation	On					
RD Signal, WR Signal, Address Bus, Data Bus, CS, ALE Signal, HLDA, Programmable I/O Ports	Maintains the same state as when RDY signal was received					
Internal Peripheral Circuits	On					

NOTES:

1. The RDY signal cannot be accepted immediately before software wait states are inserted.

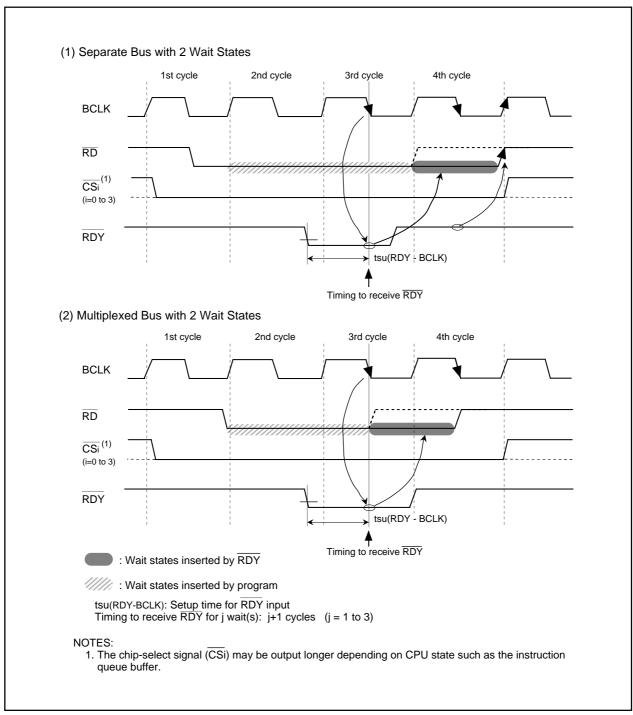


Figure 8.11 RD Signal Output Extended by RDY Signal

8.2.7 HOLD Signal

The HOLD signal transfers bus privileges from the CPU to external circuits. When a low-level ("L") signal is applied to the HOLD pin, the microcomputer enters a hold state after bus access is completed. While the HOLD pin is held "L", the microcomputer is in a hold state and the HLDA pin outputs an "L" signal.

Table 8.7 shows the microcomputer status in a hold state.

Bus is used in the following priority order: HOLD, DMAC, CPU.

HOLD > DMAC > CPU

Figure 8.12 Bus Priority Order

Table 8.7 Microcomputer Status in Hold State

Item	Status
Oscillation	On
RD Signal, WR Signal, Address Bus, Data Bus, CS, BHE	High-impedance
Programmable I/O Ports: P0 to P15	Maintains the same state as when HOLD was received
HLDA	Outputs "L"
Internal Peripheral Circuits	On (excluding the watchdog timer)
ALE Signal	Outputs "L"

8.2.8 External Bus Status when Accessing Internal Space

Table 8.8 shows external bus states when an internal space is accessed.

Table 8.8 External Bus States when Accessing Internal Space

Item		State when Accessing SFR, Internal ROM, and Internal RAM	
Address Bus		Holds address of external space last accessed	
Data Bus	When Read	High-impedance	
	When Write	High-impedance	
RD, WR, WRL, WRH		Outputs "H"	
BHE		Holds state of external space last accessed	
CS		Outputs "H"	
ALE		Outputs ALE	

8.2.9 BCLK Output

The CPU clock operates the CPU. P53 outputs the CPU clock signal as BCLK when the PM07 bit in the PM0 register is set to "0" (BCLK) and the CM01 and CM00 bits in the CM0 register are set to "002" (I/O port P53).

No BCLK is output in single-chip mode. Refer to 9. Clock Generation Circuit for details.

9. Clock Generation Circuit

9.1 Types of the Clock Generation Circuit

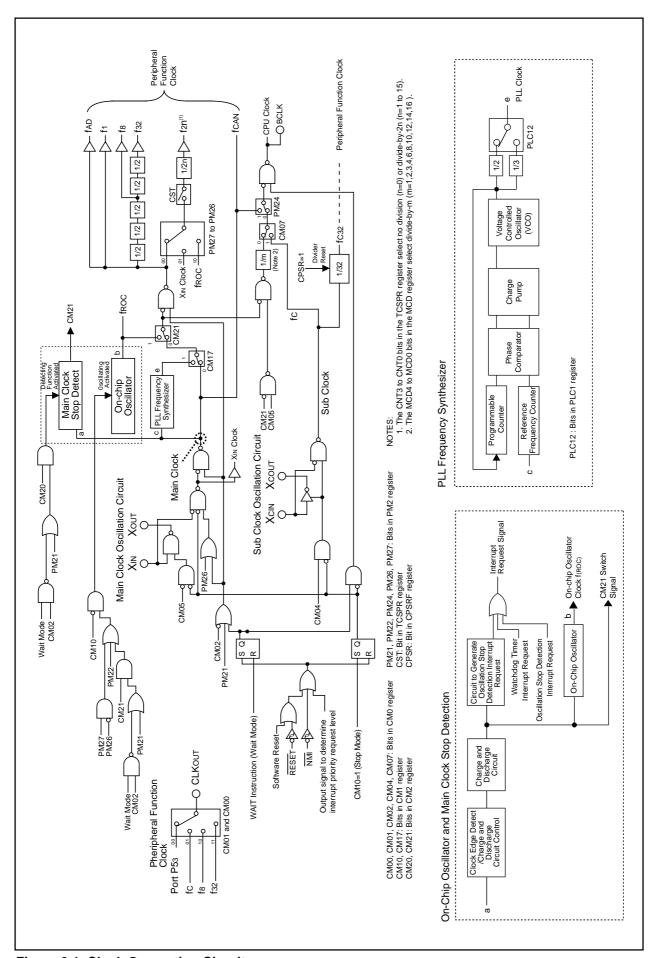
Four circuits are included to generate the system clock signal:

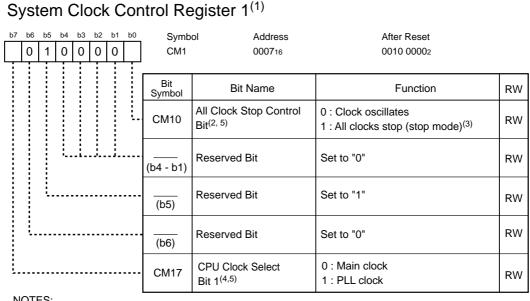
- · Main clock oscillation circuit
- Sub clock oscillation circuit
- On-chip oscillator
- PLL frequency synthesizer

Table 9.1 lists specifications of the clock generation circuit. Figure 9.1 shows a block diagram of the clock generation circuit. Figures 9.2 to 9.8 show registers controlling the clock.

Table 9.1 Clock Generation Circuit Specifications

Item	Main Clock Oscillation Circuit	Sub Clock Oscillation Circuit	On-chip Oscillator	PLL Frequency Synthesizer
Use	CPU clock source, Peripheral function clock source	CPU clock source, Timer A and B clock source	CPU clock source, Peripheral function clock source	CPU clock source, Peripheral function clock source
Clock Frequency	Up to 32 MHz	32.768 kHz	Approx. 1 MHz	Up to 32 MHz (See Table 9.3)
Connectable Osillator or Additional Circuit	Ceramic resonator Crystal oscillator	Crystal oscillator		
Pins for Oscillator or for Additional Circuit	XIN, XOUT	Xcin, Xcout		
Oscillation Stop / Restart Function	Available	Available	Available	Available
Oscillator State after Reset	Oscillating	Stopped	Stopped	Stopped
Other	Externally generated clock can be applied.	Externally generated clock can be applied.	When the main clock stops oscillating, the on-chip oscillator starts oscillating automatically and becomes clock source for the CPU and peripheral function.	




Figure 9.1 Clock Generation Circuit

System Clock Control Register 0(1)

,			gister o		
b7 b6 b5 b4 b3 b2	b1 b0	Symb	ol Address	After Reset	
		CMO 000616 0000 10002		0000 10002	
	TT,				
		Bit Symbol	Bit Name	Function	RW
		CM00	Clock Output Function	b1 b0 0 0 : I/O port P53 0 1 : Outputs fc 1 0 : Outputs f8 1 1 : Outputs f32	
		CM01	Select Bit ⁽²⁾		
Ų.		CM02	In Wait Mode, Peripheral Function Clock Stop Bit ⁽⁹⁾	Peripheral clock does not stop in wait mode Peripheral clock stops in wait mode	RW
		CM03	XCIN-XCOUT Drive Capacity Select Bit ⁽¹¹⁾	0 : Low 1 : High	RW
		CM04	Port Xc Switch Bit	0 : I/O port function 1 : XCIN-XCOUT oscillation function ⁽⁴⁾	RW
		CM05	Main Clock (XIN-XOUT) Stop Bit ^(5, 9)	0 : Main clock oscillates 1 : Main clock stops ⁽⁶⁾	RW
		CM06	Watchdog Timer Function Select Bit	0 : Watchdog timer interrupt 1 : Reset ⁽⁷⁾	RW
		CM07	CPU Clock Select Bit 0 ^(8, 9, 10)	Clock selected by the CM21 bit divided by MCD register setting Sub clock	RW

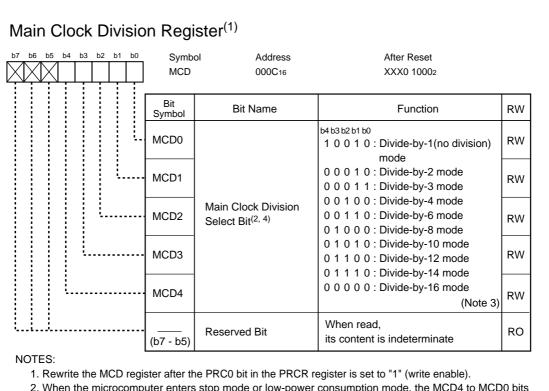

- 1. Rewrite the CM0 register after the PRC0 bit in the PRCR register is set to "1" (write enable).
- 2. When the PM07 bit in the PM0 register is set to "0" (BCLK output), set the CM01 and CM00 bits to "002". When the PM15 and PM14 bits in the PM1 register are set to "012" (ALE output to P53), set the CM01 and CM00 bits to "002". When the PM07 bit is set to "1" (function selected in the CM01 and CM00 bits) in microprocessor or memory expansion mode, and the CM01 and CM00 bits are set to "002", an "L" signal is output from port P53 (port P53 does not function as an I/O port).
- fc32 does not stop running. When the CM02 bit is set to "1", the PLL clock cannot be used in wait mode.
- 4. When setting the CM04 bit is set to "1", set the PD8_7 and PD8_6 bits in the PD8 register to "002" (port P87 and P86 in input mode) and the PU25 bit in the PUR2 register to "0" (no pull-up).
- 5. When entering low-power consumption mode or on-chip oscillator low-power consumption mode, the CM05 bit stops running the main clock. The CM05 bit cannot detect whether the main clock stops or not. To stop running the main clock, set the CM05 bit to "1" after the CM07 bit is set to "1" with a stable sub clock oscillation or after the CM21 bit in the CM2 register is set to "1" (on-chip oscillator clock). When the CM05 bit is set to "1", the clock applied to Xout becomes "H". The built-in feedback resistor remains ON. XIN is pulled up to Xout ("H" level) via the feedback resistor.
- 6. When the CM05 bit is set to "1", the MCD4 to MCD0 bits in the MCD register are set to "010002" (divide-by-8 mode). In on-chip oscillation mode, the MCD4 to MCD0 bits are not set to "010002" even if the CM05 bit terminates XIN-XOUT.
- 7. Once the CM06 bit is set to "1", it cannot be set to "0" by program.
- 8. After the CM04 bit is set to "1" with a stable sub clock oscillation, set the CM07 bit to "1" from "0". After the CM05 bit is set to "0" with a stable main clock oscillation, set the CM07 bit to "0" from "1". Do not set the CM07 bit and CM04 or CM05 bit simultaneously.
- 9. When the PM21 bit in the PM2 register is set to "1" (clock change disable), the CM02, CM05 and CM07 bits do not change even when written.
- 10. After the CM07 bit is set to "0", set the PM21 bit to "1".
- 11. When stop mode is entered, the CM03 bit is set to "1".

Figure 9.2 CM0 Register

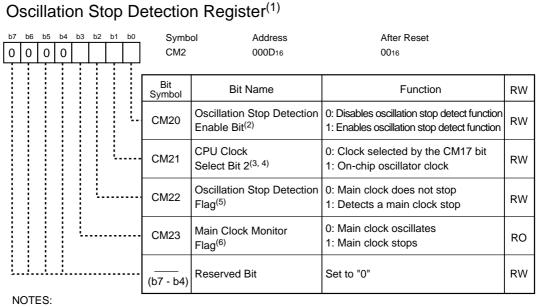

- 1. Rewrite the CM1 register after the PRC0 bit in the PRCR register is set to "1" (write enable).
- 2. When the CM10 bit is set to "1", the clock applied to XouT becomes "H" and the built-in feedback resistor is disabled. XIN, XCIN and XCOUT are placed in high-impedance states.
- 3. When the CM10 bit is set to "1", the MCD4 to MCD0 bits in the MCD register are set to "010002" (divide-by-8 mode). When the CM20 bit is set to "1" (oscillation stop detect function enabled) or the CM21 bit to "1" (on-chip oscillator selected), do not set the CM10 bit to "1".
- 4. The CM17 bit is valid only when the CM21 bit in the CM2 register is set to "0". Use the procedure shown in Figure 9.12 to set the CM17 bit to "1".
- 5. If the PM21 bit in the PM2 register is set to "1" (clock change disable), the CM10 and CM17 bits do not change when written.
 - If the PM22 bit in the PM2 register is set to "1" (on-chip oscillator clock as watchdog timer count source), the CM10 bit setting does not change when written.

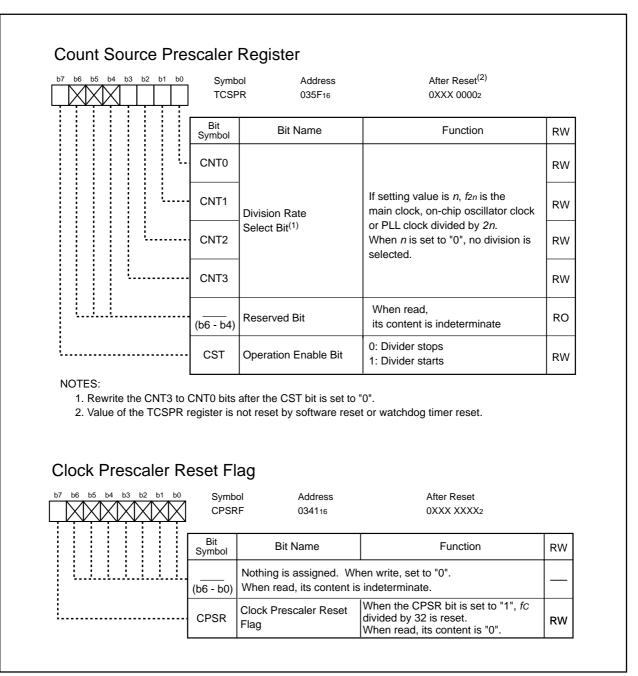
Figure 9.3 CM1 Register

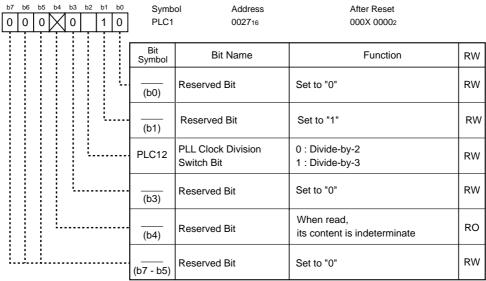
- When the microcomputer enters stop mode or low-power consumption mode, the MCD4 to MCD0 bits are set to "010002".
 - The MCD4 to MCD0 bits are not set to "010002" even if the CM05 bit in the CM0 register is set to "1" (XIN-XOUT stopped) in on-chip oscillator mode.
- 3. Bit combinations cannot be set not listed above.
- 4. Access CAN-associated register addresses after setting the MCD4 to MCD0 bits are set to "100102", when the PM24 bit in the PM2 register is set to "0" (clock selected by the CM07 bit).

Figure 9.4 MCD Register

- 1. Rewrite the CM2 register after the PRC0 bit in the PRCR register is set to "1" (write enable).
- 2. If the PM21 bit in the PM2 register is set to "1" (clock change disable), the CM20 bit setting does not change when written.
- 3. When a main clock oscillation stop is detected while the CM20 bit is set to "1", the CM21 bit is set to "1". Although the main clock starts oscillating, the CM21 bit is not set to "0". If the main clock is used as a CPU clock source after the main clock resumes oscillating, set the CM21 bit to "0" by program.
- 4. When the CM20 bit is set to "1" and the CM22 bit is set to "1", do not set the CM21 bit to "0".
- 5. When a main clock stop is detected, the CM22 bit is set to "1". The CM22 bit can only be set to "0", not "1", by program.
 - If the CM22 bit is set to "0" by program while the main clock stops, the CM22 bit cannot be set to "1" until the next main clock stop is detected.
- 6. Determine the main clock state by reading the CM23 bit several times after the oscillation stop detection interrupt is generated.

Figure 9.5 CM2 Register

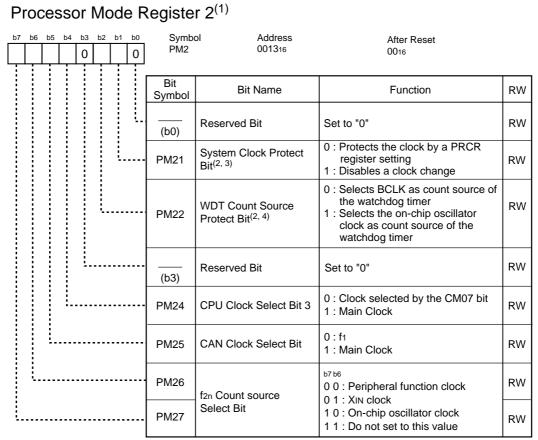



Figure 9.6 TCSPR and CPSRF Registers

PLL Control Register 0^(1, 2, 5) Symbol Address After Reset 1 0 1 PLC0 002616 0001 X0102 Bit Symbol Bit Name **Function** RW PLC00 RW 0 1 1: Multiply-by-6 Programmable Counter 1 0 0 : Multiply-by-8 PI C01 RW Select Bit(3) Do not set to values other than the above PLC02 RW When read, Reserved Bit RO its content is indeterminate (b3)Set to "1" RW Reserved Bit (b4) RW Reserved Bit Set to "0" (b5) Reserved Bit Set to "1" RW (b6) 0: PLL is Off PLC07 Operation Enable Bit(4) RW 1: PLL is On

NOTES:

- 1. Rewrite the PLC0 register after the PRC0 bit in the PRCR register is set to "1" (write enable).
- 2. If the PM21 bit in the PM2 register is set to "1" (clock change disable), the PLC0 register setting does not change when written.
- 3. Set the PLC02 to PLC00 bits when the PLC07 bit is set to "0". Once these bits are set, they cannot be changed.
- 4. Set the CM17 bit in the CM1 register to "0" (main clock as CPU clock source) and the PLC07 bit to "0" before entering wait or stop mode.
- 5. Set the PLC0 and PLC1 registers simultaneously in 16-bit units.


PLL Control Register 1^(1, 2, 3, 4)

NOTES:

- 1. Rewrite the PLC1 register after the PRC0 bit in the PRCR register is set to "1" (write enable).
- 2. If the PM21 bit in the PM2 register is set to "1" (clock change disable), the PLC1 register does not change when written.
- 3. Set the PLC1 register when the PLC07 bit is set to "0" (PLL off).
- 4. Set the PLC0 and PLC1 registers simultaneously in 16-bit units.

Figure 9.7 PLC0 and PLC1 Registers

NOTES:

- 1. Rewrite the PM2 register after the PRC1 bit in the PRCR register is set to "1" (write enable).
- 2. Once the PM22 and PM21 bits are set to "1", they can not be set to "0" by program.
- 3. When the PM21 bit is set to "1",

the CPU clock keeps running when the WAIT instruction is executed;

nothing is changed even if following bits are set to either "0" or "1".

- the CM02 bit in the CM0 register (the peripheral function clock is not stopped in wait mode.)
- the CM05 bit in the CM0 register (the main clock is not stopped.)
- the CM07 bit in the CM0 register (a CPU clock source is not changed.)
- the CM10 bit in the CM1 register (the microcomputer does not enter stop mode.)
- the CM17 bit in the CM1 register (a CPU clock source is not changed.)
- the CM20 bit in the CM2 register (oscillation stop detect function settings are not changed.)
- all bits in the PLC0 and PLC1 registers (PLL frequency synthesizer function settings are not changed.)
- 4. When the PM22 bit is set to "1",

the on-chip oscillator clock becomes a count source of the watchdog timer after the on-chip oscillator starts; write to the CM10 bit is disabled (the microcomputer does not enter stop mode.);

the watchdog timer keeps running when the microcomputer is in wait mode and hold state.

Figure 9.8 PM2 Register

9.1.1 Main Clock

Main clock oscillation circuit generates the main clock. The main clock becomes clock source of the CPU clock and peripheral function clock.

The main clock oscillation circuit is configured by connecting an oscillator or resonator between the XIN and XOUT pins. The circuit has a built-in feedback resistor. The feedback resistor is separated from the oscillation circuit in stop mode to reduce power consumption. An external clock can be applied to the XIN pin in the main clock oscillation circuit. Figure 9.9 shows an example of a main clock circuit connection. Circuit constants vary depending on each oscillator. Use the circuit constant recommended by each oscillator manufacturer.

The main clock divided-by-eight becomes a CPU clock source after reset.

To reduce power consumption, set the CM05 bit in the CM0 register to "1" (main clock stopped) after switching the CPU clock source to the sub clock or on-chip oscillator clock. In this case, the clock applied to XOUT becomes high ("H"). XIN is pulled up by XOUT via the feedback resistor which remains on. When an external clock is applied to the XIN pin, do not set the CM05 bit to "1".

All clocks, including the main clock, stop in stop mode. Refer to **9.5 Power Consumption Control** for details.

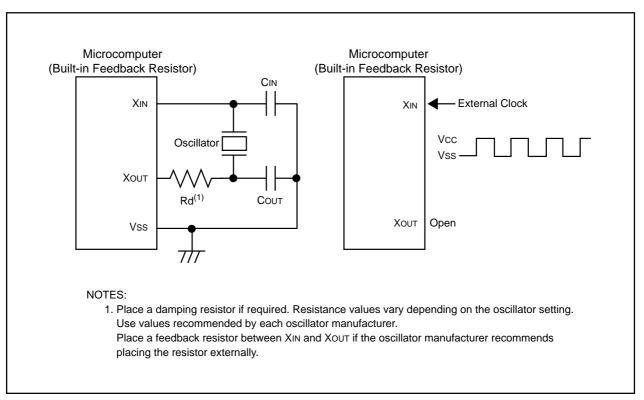


Figure 9.9 Main Clock Circuit Connection

9.1.2 Sub Clock

Sub clock oscillation circuit generates the sub clock. The sub clock becomes clock source of the CPU clock and for the timers A and B. The same frequency, fc, as the sub clock can be output from the CLKOUT pin.

The sub clock oscillation circuit is configured by connecting a crystal oscillator between the XCIN and XCOUT pins. The circuit has a built-in feedback resistor. The feedback resistor is separated from the oscillation circuit in stop mode to reduce power consumption. An external clock can be applied to the XCIN pin. Figure 9.10 shows an example of a sub clock circuit connection. Circuit constants vary depending on each oscillator. Use the circuit constant recommended by each oscillator manufacturer.

The sub clock stops after reset. The feedback resistor is separated from the oscillation circuit. When the PD8_6 and PD8_7 bits in the PD8 register are set to "0" (input mode) and the PU25 bit in the PUR2 register is set to "0" (no pull-up), set the CM04 bit in the CM0 register to "1" (XCIN-XCOUT oscillation function). The sub clock oscillation circuit starts oscillating. To apply an external clock to the XCIN pin, set the CM04 bit to "1" when the PD8_7 bit is set to "0" and the PU25 bit to "0". The clock applied to the XCIN pin becomes a clock source of the sub clock.

When the CM07 bit in the CM0 register is set to "1" (sub clock) after the sub clock oscillation has stabilized, the sub clock becomes a CPU clock source.

All clocks, including the sub clock, stop in stop mode. Refer to **9.5 Power Consumption Control** for details.

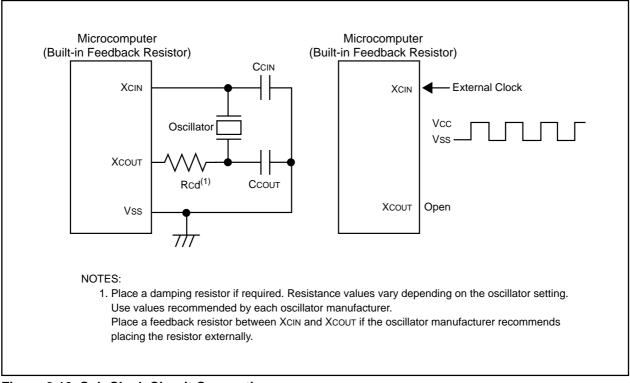


Figure 9.10 Sub Clock Circuit Connection

9.1.3 On-Chip Oscillator Clock

On-chip oscillator generates the on-chip oscillator clock. The 1-MHz on-chip oscillator clock becomes a clock source of the CPU clock and peripheral function clock.

The on-chip oscillator clock stops after reset. When the CM21 bit in the CM2 register is set to "1" (on-chip oscillator clock), the on-chip oscillator starts oscillating. Instead of the main clock, the on-chip oscillator clock becomes clock source of the CPU clock and peripheral function clock.

Table 9.2 shows bit settings for on-chip oscillator start condition.

Table 9.2 Bit Settings for On-Chip Oscillator Start Condition

CM2 Register	PM2 Register		Used as	
CM21 Bit	PM22 Bit	PM27 and PM26 Bits		
1	0	0 0	CPU clock source or peripheral function clock source	
0	1	0 0	Watchdog timer operating clock source (The clock keeps running when entering stop mode.)	
0	0	0 1	f _{2n} count source	

9.1.3.1 Oscillation Stop Detect Function

When the main clock is terminated by external source, the on-chip oscillator automatically starts oscillating to generate another clock.

When the CM 20 bit in the CM2 registser is set to "1" (oscillation stop detect function enabled), an oscillation stop detection interrupt request is generated as soon as the main clock stops. Simultaneously, the onchip oscillator starts oscillating. Instead of the main clock, the on-chip oscillator clock becomes clock source for the CPU clock and peripheral function clock. Associated bits are set as follows:

- The CM21 bit is set to "1" (on-chip oscillator clock becomes a clock source of the CPU clock.)
- The CM22 bit is set to "1" (main clock stop is detected.)
- The CM23 bit is set to "1" (main clock stops.) (See Figure 9.14)

9.1.3.2 How to Use Oscillation Stop Detect Function

- The oscillation stop detection interrupt shares vectors with the watchdog timer interrupt and the low voltage detection interrupt. When these interrupts are used simultaneously, read the CM22 bit with an interrupt routine to determine if an oscillation stop detection interrupt request has been generated.
- When the main clock resumes running after an oscillation stop is detected, set the main clock as clock source of the CPU clock and peripheral function clock. Figure 9.11 shows the procedure to switch the on-chip oscillator clock to the main clock.
- In low-speed mode, when the main clock is stopped by setting the CM20 bit to "1", the oscillation stop detection interrupt request is generated. Simultaneously, the on-chip oscillator starts oscillating. The sub clock remains the CPU clock source. The on-chip oscillator clock becomes a clock source for the peripheral function clock.
- When the peripheral function clock stops running, the oscillation stop detect function is also disabled. To enter wait mode while the oscillation stop detect function is in use, set the CM02 bit in the CM0 register to "0" (peripheral clock does not stop in wait mode).
- The oscillation stop detect function is provided to handle main clock stop caused by external source. Set the CM20 bit to "0" (oscillation stop detect function disabled) when the main clock is terminated by program, i.e., entering stop mode or setting the CM05 bit to "1" (main clock oscillation stop).
- When the main clock frequency is 2MHz or less, the oscillation stop detect function is not available.
 Set the CM20 bit to "0".

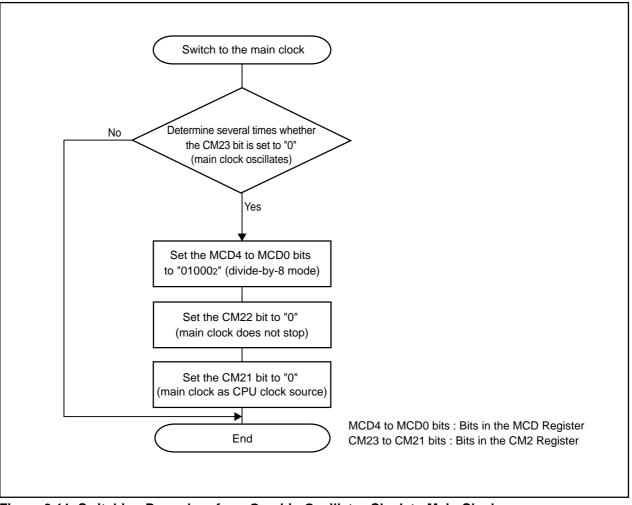


Figure 9.11 Switching Procedure from On-chip Oscillator Clock to Main Clock

9.1.4 PLL Clock

The PLL frequency synthesizer generates the PLL clock based on the main clock. The PLL clock can be used as clock source for the CPU clock and peripheral function clock.

The PLL frequency synthesizer stops after reset. When the PLC07 bit is set to "1" (PLL on), the PLL frequency synthesizer starts operating. Wait tsu(PLL) ms for the PLL clock to stabilize.

The PLL clock can either be the clock output from the voltage controlled oscillator (VCO) divided-by-2 or divided-by-3. When the PLL clock is used as a clock source for the CPU clock or peripheral function clock, set each bit as is shown in Table 9.3. Figure 9.12 shows the procedure to use the PLL clock as the CPU clock source.

To enter wait or stop mode, set the CM17 bit to "0" (main clock as CPU clock source), set the PLC07 bit in the PLC0 register to "0" (PLL off) and then enter wait or stop mode.

Table 9.3 Bit Settings to Use PLL Clock as CPU Clock Source					
f/XINI)	PLC0 Register	PLC1 Register			

f(XIN)	PLC0 Register		PLC1 Register	PLL Clock		
I(XIIV)	PLC02 Bit	PLC01 Bit	PLC00 Bit	CM21 Bit	I LL OIOCK	
10 MHz	0	1	1	0	30 MHz	
10 1011 12	0		•	'		1
0 MU-7	8 MHz 1 0	0	0	0	32 MHz	
O IVITIZ		0		1	21.3 MHz	

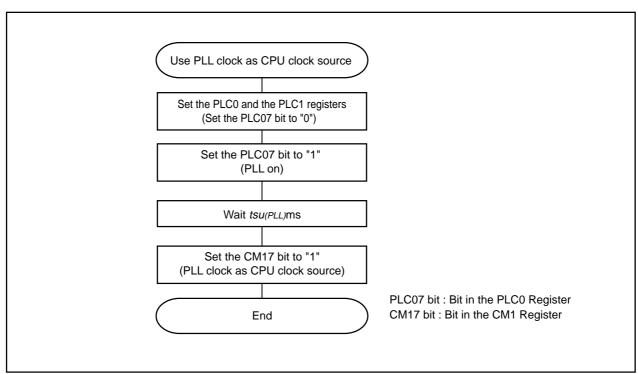


Figure 9.12 Procedure to Use PLL Clock as CPU Clock Source

9.2 CPU Clock and BCLK

The CPU operating clock is referred to as the CPU clock. The CPU clock is also a count source for the watchdog timer. After reset, the CPU clock is the main clock divided-by-8. In memory expansion or microprocessor mode, the clock having the same frequency as the CPU clock can be output from the BCLK pin as BCLK. Refer to **9.4 Clock Output Function** for details.

The main clock, sub clock, on-chip oscillator clock or PLL clock can be selected as a clock source for the CPU clock. Table 9.4 shows CPU clock source and bit settings.

When the main clock, on-chip oscillator clock or PLL clock is selected as a clock source of the CPU clock, the selected clock divided-by-1 (no division), -2, -3, -4, -6, -8, -10, -12, -14 or -16 becomes the CPU clock. The MCD4 to MCD0 bits in the MCD register select the clock division.

When the microcomputer enters stop mode or low-power consumption mode (except when the on-chip oscillator clock is the CPU clock), the MCD4 to MCD0 bits are set to "010002" (divide-by-8 mode). Therefore, when the main clock starts running, the CPU clock enters medium-speed mode (divide-by-8).

Table 9.4 CPU Clock Source and Bit Settings

CDLL Clask Caures	CM0 Register	CM1 Register	CM2 Register	PM2 Register
CPU Clock Source	CM07 Bit	CM17 Bit	CM21 Bit	PM24 Bit
Main Clock	0	0	0	0
Main Clock (Main Clock Direct Mode) ⁽¹⁾	0	0	0	1
Sub Clock	1	0	0	0
On-Chip Oscillator Clock	0	0	1	0
PLL Clock	0	1	0	0

NOTES:

9.3 Peripheral Function Clock

The peripheral function clock becomes an operating clock or count source for peripheral functions excluding the watchdog timer.

9.3.1 f1, f8, f32 and f2n

f1, f8 and f32 are the peripheral function clock, selected by the CM21 bit, divided-by-1, -8, or -32. The PM27 and PM26 bits in the PM2 register selects a f2n count source from the peripheral clock, XIN clock, and the on-chip oscillator clock. The CNT3 to CNT0 bits in the TCSPR register selects a f2n division. (n=1 to 15. No division when n=0.)

f1, f8, f32 and f2n stop when the CM02 bit in the CM0 register to "1" (peripheral function stops in wait mode) to enter wait mode or when in low-power consumption mode.

f1, f8 and f2n are used as an operating clock of the serial I/O and count source of the timers A and B. f1 is also used as an operating clock for the intelligent I/O.

The CLKOUT pin outputs f8 and f32 . Refer to **9.4 Clock Output Function** for details.

9.3.2 fAD

fAD is an operating clock for the A/D converter and has the same frequency as either the main clock⁽¹⁾ or the on-chip oscillator clock. The CM21 bit determines which clock is selected.

If the CM02 bit is set to "1" (peripheral function stop in wait mode) to enter wait mode, fAD stops. fAD also stops in low-power consumption mode.

NOTES:

1. The PLL clock, instead of the main clock, when the CM17 bit is set to "1" (PLL clock).

^{1.} Refer to 23.2 CAN Clock for details.

9.3.3 fc32

fC32 is the sub clock divided by 32. fC32 is used as a count source for the timers A and B. fC32 is available when the sub clock is running.

9.3.4 fCAN

fCAN has the same frequency as the main clock. It is a clock for the CAN module only.

9.4 Clock Output Function

The CLKOUT pin outputs fc, f8 or f32.

In memory expansion mode or microprocessor mode, a clock having the same frequency as the CPU clock can be output from the BCLK pin as BCLK.

Table 9.5 lists CLKOUT pin function in single-chip mode. Table 9.6 lists CLKOUT pin function in memory expansion mode and microprocessor mode.

Table 9.5 CLKout Pin in Single-Chip Mode

PM0 Register (1)	CM0 Register (2)		Ol Kay - Die Frankling	
PM07 Bit	CM01 Bit	CM00 Bit	CLKOUT Pin Function	
_	0	0	P53 I/O port	
1	0	1	Outputs fc	
1	1	0	Outputs f8	
1	1	1	Outputs f32	

^{-:} Can be set to either "0" or "1"

NOTES:

- 1. Rewrite the PM0 register after the PRC1 bit in the PRCR register is set to "1" (write enable).
- 2. Rewrite the CM0 register after the PRC0 bit in the PRCR register is set to "1" (write enable).

Table 9.6 CLKout Pin in Memory Expansion Mode and Microprocessor Mode

PM1 Register ⁽¹⁾		PM0 Register ⁽¹⁾	CM0 R	egister ⁽²⁾	CLKo∪T Pin Function	
PM15 Bit	PM14 Bit	PM07 Bit	CM01 Bit	CM00 Bit	CERCOTT IIIT directori	
002, 102, 112,		0	0 (3)	0 (3)	Outputs BCLK	
		1	0	0	Outputs "L" (not P53)	
		1	0	1	Outputs fc	
		1	1	0	Outputs f8	
		1	1	1	Outputs f32	
0	1		0 (3)	0 (3)	Outputs ALE	

^{-:} Can be set to either "0" or "1"

NOTES:

- 1. Rewrite the PM1 and PM0 registers after the PRC1 bit in the PRCR register is set to "1" (write enable).
- 2. Rewrite the CM0 register after the PRC0 bit in the PRCR register is set to "1" (write enable).
- 3. When the PM07 bit is set to "0" (selected in the CM01 and CM00 bits) or the PM15 and PM14 bits are set to "012" (P53/BCLK), set the CM01 and CM00 bits to "002" (I/O port P53).
- 4. M32C/85T cannot be used in memory expansion mode and microprocessor mode.

9.5 Power Consumption Control

Normal operating mode, wait mode and stop mode are provided as the power consumption control. All mode states, except wait mode and stop mode, are called normal operating mode in this section. Figure 9.13 shows a block diagram of status transition in wait mode and stop mode. Figure 9.14 shows a block diagram of status transition in all modes.

9.5.1 Normal Operating Mode

The normal operating mode is further separated into six modes.

In normal operating mode, the CPU clock and peripheral function clock are supplied to operate the CPU and peripheral function. The power consumption control is enabled by controlling a CPU clock frequency. The higher the CPU clock frequency is, the more processing power increases. The lower the CPU clock frequency is, the more power consumption decreases. When unnecessary oscillation circuit stops, power consumption is further reduced.

9.5.1.1 High-Speed Mode

The main clock⁽¹⁾ becomes the CPU clock and a clock source of the peripheral function clock. When the sub clock runs, fC32 can be used as a count source for the timers A and B.

9.5.1.2 Medium-Speed Mode

The main clock⁽¹⁾ divided-by-2, -3, -4, -6, -8, -10, -12, -14, or -16 becomes the CPU clock. The main clock⁽¹⁾ is a clock source for the peripheral function clock. When the sub clock runs, fc32 can be used as a count source for the timers A and B.

9.5.1.3 Low-Speed Mode

The sub clock becomes the CPU clock. The main clock⁽¹⁾ is a clock source for the peripheral function clock. fc32 can be used as a count source for the timers A and B.

9.5.1.4 Low-Power Consumption Mode

The microcomputer enters low-power consumption mode when the main clock stops in low-speed mode. The sub clock becomes the CPU clock. Only fc32 can be used as a count source for the timers A and B and the peripheral function clock. In low-power consumption mode, the MCD4 to MCD0 bits in the MCD register are set to "010002" (divide-by-8 mode). Therefore, when the main clock resumes running, the microcomputer is in midium-speed mode (divide-by-8 mode).

9.5.1.5 On-Chip Oscillator Mode

The on-chip oscillator clock divided-by-1 (no division), -2, -3, 4-, -6, -8, -10, -12, -14, or -16 becomes the CPU clock. The on-chip oscillator clock is a clock source for the peripheral function clock. When the sub clock runs, fc32 can be used as a count source for the timers A and B.

9.5.1.6 On-Chip Oscillator Low-Power Consumption Mode

The microcomputer enters on-chip oscillator low-power consumption mode when the main clock stops in on-chip oscillator mode. The on-chip oscillator clock divided-by-1 (no division), -2, -3, -4, -6, -8, -10, -12, -14, or -16 becomes the CPU clock. The on-chip oscillator clock is a clock source for the peripheral function clock. When the sub clock runs, fc32 can be used as a count source for the timers A and B.

NOTES:

1. The PLL clock, instead of the main clock, when the CM17 bit is set to "1" (PLL clock).

Switch the CPU clock after the clock to be switched to stabilize. Sub clock oscillation will take longer⁽²⁾ to stabilize. Wait, by program, until the clock stabilizes directly after turning the microcomputer on or exiting stop mode.

To switch the on-chip oscillator clock to the main clock, enter medium-speed mode (divide-by-8) after the main clock is divided by eight in on-chip oscillator mode (the MCD4 to MCD0 bits in the MCD register are set to "010002").

Do not enter on-chip oscillator mode or on-chip oscillator low-power consumption mode from low-speed mode or low-power consumption mode and vice versa.

NOTES:

2. Contact your oscillator manufacturer for oscillation stabilization time.

9.5.2 Wait Mode

In wait mode, the CPU clock stops running. The CPU and watchdog timer, operated by the CPU clock, also stop. When the PM22 bit in the PM2 register is set to "1" (on-chip oscillator clock as watchdog timer count source), the watchdog timer continues operating. Because the main clock, sub clock and on-chip oscillator clock continue running, peripheral functions using these clocks also continue operating.

9.5.2.1 Peripheral Function Clock Stop Function

If the CM02 bit in the CM0 register is set to "1" (peripheral function clock stops in wait mode), f1, f8, f32, f2n (when peripheral clock is selected as a count source), and fAD stop in wait mode. Power consumption can be reduced. f2n, when XIN clock or on-chip oscillator clock is selected as a count source, and fC32 do not stop running.

9.5.2.2 Entering Wait Mode

If wait mode is entered after setting the CM02 bit to "1", set the MCD4 to MCD0 bits in the MCD register to be the 10-MHz or less CPU clock flequency after dividing the main clock.

Enter wait mode after setting the followings.

Initial Setting

Set each interrupt priority level after setting the exit priority level, required to exit wait mode and controlled by the RLVL2 to RLVL0 bits in the RLVL register, to "7".

- Before Entering Wait Mode
 - (1) Set the I flag to "0"
 - (2) Set the interrupt priority level of the interrupt being used to exit wait mode
 - (3) Set the interrupt priority levels of the interrupts, not being used to exit wait mode, to "0"
 - (4) Set IPL in the FLG register. Then set the exit priority level to the same level as IPL Interrupt priority level of the interrupt used to exit wait mode > IPL = the exit priority level
 - (5) Set the PRC0 bit in the PRCR register to "1"
 - (6) If the CPU clock source is the PLL clock, set the CM17 bit in the CM1 register to "0" (main clock) and PLC07 bit in the PLC0 register to "0" (PLL off)
 - (7) Set the I flag to "1"
 - (8) Execute the WAIT instruction
- After Exiting Wait Mode

Set the exit priority level to "7" as soon as exiting wait mode.

9.5.2.3 Pin Status in Wait Mode

Table 9.7 lists pin states in wait mode.

Table 9.7 Pin States in Wait Mode

	Pin	Memory Expansion Mode ⁽¹⁾ Microprocessor Mode ⁽¹⁾	Single-Chip Mode	
Address Bus, Data	a Bus, $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$,	Maintains state immediately before entering wait mode		
RD, WR, WRL, W	RH	"H"		
HLDA, BCLK		"H"		
ALE		"L"		
Ports		Maintains state immediately before entering wait mode		
CLKout	When fc is selected	Outputs clock		
When f8, f32 are selected		Outputs the clock when the CM02 bit in the CM0 register is set to "0" (peripheral function clock does not stop in wait mode). Maintains state immediately before entering wait mode when the CM02 bit is set to "1" (peripheral function clock stops in wait mode).		

NOTES:

1. M32C/85T cannot be used in memory expansion mode and microprocessor mode.

9.5.2.4 Exiting Wait Mode

Wait mode is exited by the hardware reset, $\overline{\text{NMI}}$ interrupt or peripheral function interrupts.

When the hardware reset or $\overline{\text{NMI}}$ interrupt, but not the peripheral function interrupts, is used to exit wait mode, set the ILVL2 to ILVL0 bits for the peripheral function interrupts to "0002" (interrupt disabled) before executing the WAIT instruction.

CM02 bit setting affects the peripheral function interrupts. When the CM02 bit in the CM0 register is set to "0" (peripheral function clock does not stop in wait mode), all peripheral function interrupts can be used to exit wait mode. When the CM02 bit is set to "1" (peripheral function clock stops in wait mode), peripheral functions using the peripheral function clock stop. Therefore, the peripheral function interrupts cannot be used to exit wait mode. However, the peripheral function interrupts caused by an external clock, fC32, or f2n whose count source is the XIN clock or on-chip oscillator clock, can be used to exit wait mode.

The CPU clock used when exiting wait mode by the peripheral function interrupts or NMI interrupt is the same CPU clock used when the WAIT instruction is executed.

Table 9.8 shows interrupts to be used to exit wait mode and usage conditions.

Table 9.8 Interrupts to Exit Wait Mode

Interrupt	When CM02=0	When CM02=1
NMI Interrupt	Available	Available
Serial I/O Interrupt	Available when the internal and external clocks are used	Available when the external clock or f2n (when XIN clock or on-chip oscillator is selected) is used
Key Input Interrupt	Available	Available
A/D Conversion Interrupt	Available in single or single-sweep mode	Do not use
Timer A Interrupt Timer B Interrupt	Available in all modes	Available in event counter mode or when count source is fC32 or f2n (when XIN clock or on-chip oscillator is selected)
INT Interrupt	Available	Available
Low Voltage Detection Interrupt	Available	Available
CAN Interrupt	Available	Do not use
Intelligent I/O Interrupt	Available	Do not use

9.5.3 Stop Mode

In stop mode, all oscillators and resonators stop. The CPU clock and peripheral function clock, as well as the CPU and peripheral functions operated by these clocks, also stop. The least power required to operate the microcomputer is in stop mode. The internal RAM holds its data when the voltage applied to the Vcc1 and Vcc2 pins is VRAM or more. If the voltage applied to the Vcc1 and Vcc2 pins is 2.7V or less, the voltage must be $Vcc1 \ge Vcc2 \ge VRAM^{(1)}$.

The following interrupts can be used to exit stop mode:

- NMI interrupt
- Key Input Interrupt
- INT interrupt
- Timer A and B interrupt (Available when the timer counts external pulse, having its 100Hz or less frequency, in event counter mode)
- Low voltage detection interrupt (Refer to 6.1 Low Voltage Detection Interrupt for usage conditions)

NOTES:

1. The supply voltage of M32C/85T must be Vcc1=Vcc2.

9.5.3.1 Entering Stop Mode

Stop mode is entered when setting the CM10 bit in the CM10 register to "1" (all clocks stops). The MCD4 to MCD0 bits in the MCD register become set to "010002" (divide-by-8 mode).

Enter stop mode after setting the followings.

Initial Setting

Set each interrupt priority level after setting the exit priority level, required to exit stop mode, controlled by the RLVL2 to RLVL0 bits in the RLVL register, to "7".

- Before Entering stop mode
 - (1) Set the I flag to "0"
 - (2) Set the interrupt priority level of the interrupt being used to exit stop mode
 - (3) Set the interrupt priority levels of the interrupts, not being used to exit stop mode, to "0"
 - (4) Set IPL in the FLG register. Then set the exit priority level to the same level as IPL Interrupt priority level of the interrupt used to exit stop mode > IPL = the exit priority level
 - (5) Set the PRC0 bit in the PRCR register to "1" (write enable)
 - (6) Select the main clock as the CPU clock
 - When the CPU clock source is the sub clock,
 - (a) set the CM05 bit in the CM0 register to "0" (main clock oscillates)
 - (b) set the CM07 bit in the CM0 register to "0" (clock selected by the CM21 bit divided by MCD register setting)
 - When the CPU clock source is the PLL clock,
 - (a) set the CM17 bit in the CM1 register to "0" (main clock)
 - (b) set the PLC07 bit in the PLC0 register to "0" (PLL off)
 - When main clock direct mode is used,
 - (a) set the PRC1 bit in the PRCR register to "1" (write enable)
 - (b) set the PM24 bit in the PM2 register to "0" (clock selected by the CM07 bit)
 - When the CPU clock source is the on-chip oscillator clock,
 - (a) set MCD4 to MCD0 bits to "010002" (divide-by-8 mode)
 - (b) set the CM05 bit to "0" (main clock oscillates)
 - (c) set the CM21 bit in the CM2 register to "0" (clock selected by the CM17 bit)
 - (7) The oscillation stop detect function is used, set the CM20 bit in the CM2 register to "0" (oscillation stop detect function disabled)
 - (8) Set the I flag to "1"
 - (9) Set the CM10 bit to "1" (all clocks stops)
- After Exiting Stop Mode

Set the exit priority level to "7" as soon as exiting stop mode.

9.5.3.2 Exiting Stop Mode

Stop mode is exited by the hardware reset, $\overline{\text{NMI}}$ interrupt or peripheral function interrupts (key input interrupt and $\overline{\text{INT}}$ interrupt).

When the hardware reset or NMI interrupt, but not the peripheral function interrupts, is used to exit wait mode, set all ILVL2 to ILVL0 bits in the interrupt control registers for the peripheral function interrupt to "0002" (interrupt disabled) before setting the CM10 bit to "1" (all clocks stops).

9.5.3.3 Pin Status in Stop Mode

Table 9.9 lists pin status in stop mode.

Table 9.9 Pin Status in Stop Mode

	Pin	Memory Expansion Mode ⁽¹⁾ Microprocessor Mode ⁽¹⁾	Single-Chip Mode	
Address Bus	, Data Bus, CS0 to CS3, BHE	Maintains state immediately before		
		entering stop mode		
RD, WR, WF	RL, WRH	"H"		
HLDA, BCLK		"H"		
ALE		"H"		
Ports		Maintains state immediately before entering stop mode		
CLKout	When fc selected	"H"		
	When f8, f32 selected	Maintains state immediately before entering stop mode		
XIN		Placed in a high-impedance state		
Хоит		"H"		
XCIN, XCOUT		Placed in a high-impedance state		

NOTES:

1. M32C/85T cannot be used in memory expansion mode and microprocessor mode.

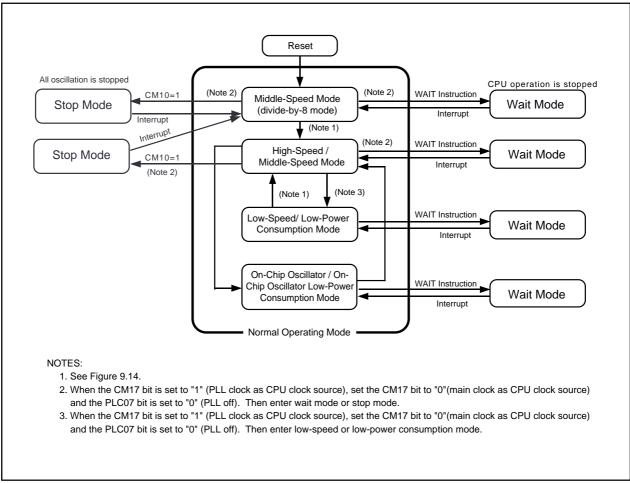


Figure 9.13 Status Transition in Wait Mode and Stop Mode

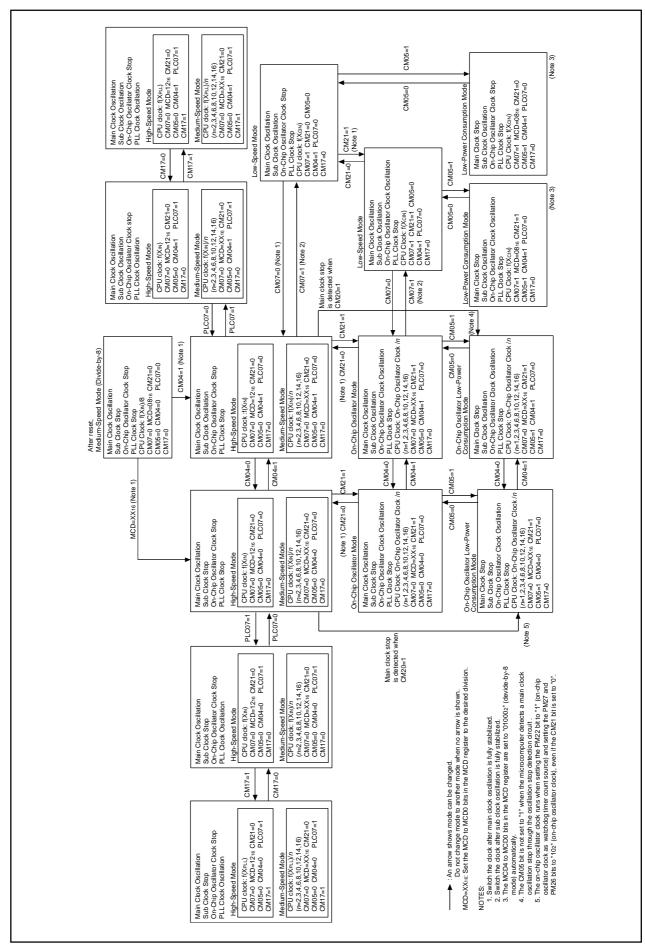


Figure 9.14 Status Transition

9.6 System Clock Protect Function

The system clock protect function prohibits the CPU clock from changing clock sources when the main clock is selected as the CPU clock source. This prevents the CPU clock from stopping the program crash. When the PM21 bit in the PM2 register is set to "1" (clock change disable), the following bits cannot be written to:

- The CM02 bit, CM05 bit and CM07 bit in the CM0 register
- The CM10 bit and CM17 bit in the CM1 register
- The CM20 bit in the CM2 register
- All bits in the PLC0 and PLC1 registers

The CPU clock continues running when the WAIT instruction is executed.

To use the system clock protect function, set the CM05 bit in the CM0 register to "0" (main clock oscillation) and CM07 bit to "0" (main clock as BCLK clock source) and follow the procedure below.

- (1) Set the PRC1 bit in the PRCR register to "1" (write enable).
- (2) Set the PM21 bit in the PM2 register to "1" (protects the clock).
- (3) Set the PRC1 bit in the PRCR register to "0" (write disable).

When the PM21 bit is set to "1", do not execute the WAIT instruction.

10. Protection

The protection function protects important registers from being easily overwritten when a program runs out of control.

Figure 10.1 shows the PRCR register. Each bit in the PRCR register protects the following registers:

- The PRC0 bit protects the CM0, CM1, CM2, MCD, PLC0 and PLC1 registers;
- The PRC1 bit protects the PM0, PM1, PM2, INVC0 and INVC1 registers;
- The PRC2 bit protects the PD9 and PS3 registers;
- The PRC3 bit protects the VCR2 and D4INT registers.

The PRC2 bit is set to "0" (write disable) when data is written to a desired address after setting the PRC2 bit to "1" (write enable). Set the PD9 and PS3 registers immediately after setting the PRC2 bit in the PRCR register to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the following instruction. The PRC0, PRC1 and PRC3 bits are not set to "0" even if data is written to desired addresses. Set the PRC0, PRC1 and PRC3 bits to "0" by program.

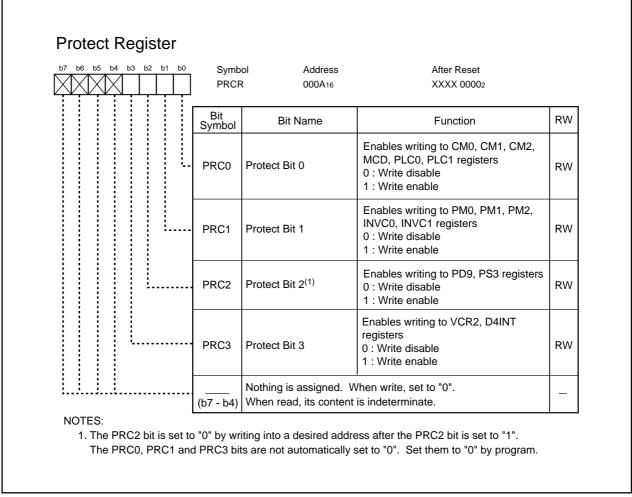


Figure 10.1 PRCR Register

11. Interrupts

11.1 Types of Interrupts

Figure 11.1 shows types of interrupts.

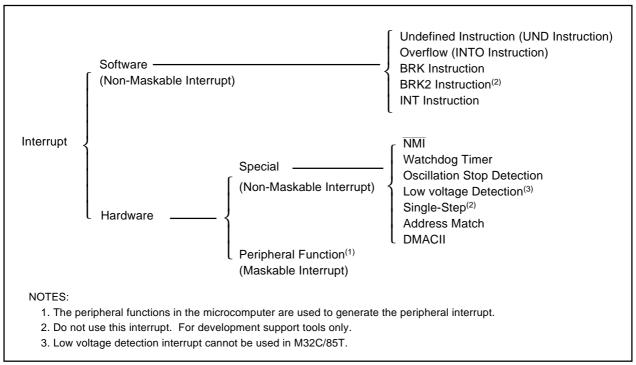


Figure 11.1 Interrupts

Maskable Interrupt

The I flag enables or disables an interrupt.

The interrupt priority order based on interrupt priority level can be changed.

Non-Maskable Interrupt

The I flag does not enable nor disable an interrupt.

The interrupt priority order based on interrupt priority level cannot be changed.

11.2 Software Interrupts

Software interrupt occurs when an instruction is executed. The software interrupts are non-maskable interrupts.

11.2.1 Undefined Instruction Interrupt

The undefined instruction interrupt occurs when the UND instruction is executed.

11.2.2 Overflow Interrupt

The overflow interrupt occurs when the O flag in the FLG register is set to "1" (overflow of arithmetic operation) and the INTO instruction is executed.

Instructions to set the O flag are:

ABS, ADC, ADCF, ADD, ADDX, CMP, CMPX, DIV, DIVU, DIVX, NEG, RMPA, SBB, SCMPU, SHA, SUB, SUBX

11.2.3 BRK Interrupt

The BRK interrupt occurs when the BRK instruction is executed.

11.2.4 BRK2 Interrupt

The BRK2 interrupt occurs when the BRK2 instruction is executed.

Do not use this interrupt. For development support tools only.

11.2.5 INT Instruction Interrupt

The INT instruction interrupt occurs when the INT instruction is executed. The INT instruction can select software interrupt numbers 0 to 63. Software interrupt numbers 8 to 49, 52 to 54 and 57 are assigned to the vector table used for the peripheral function interrupt. Therefore, the microcomputer executes the same interrupt routine when the INT instruction is executed as when a peripheral function interrupt occurs.

When the INT instruction is executed, the FLG register and PC are saved to the stack. PC also stores the relocatable vector of specified software interrupt numbers. Where the stack is saved varies depending on a software interrupt number. ISP is selected as the stack for software interrupt numbers 0 to 31 (setting the U flag to "0"). SP, which is set before the INT instruction is executed, is selected as the stack for software interrupt numbers 32 to 63 (the U flag is not changed).

With the peripheral function interrupt, the FLG register is saved and the U flag is set to "0" (ISP select) when an interrupt request is acknowledged. With software interrupt numbers 32 to 49, 52 to 54 and 57, SP to be used varies depending on whether the interrupt is generated by the peripheral function interrupt request or by the INT instruction.

11.3 Hardware Interrupts

Special interrupts and peripheral function interrupts are available as hardware interrupts.

11.3.1 Special Interrupts

Special interrupts are non-maskable interrupts.

11.3.1.1 NMI Interrupt

The NMI interrupt occurs when a signal applied to the NMI pin changes from a high-level ("H") signal to a low-level ("L") signal. Refer to 11.8 NMI Interrupt for details.

11.3.1.2 Watchdog Timer Interrupt

The watchdog timer interrupt occurs when a count source of the watchdog timer underflows. Refer to **12. Watchdog Timer** for details.

11.3.1.3 Oscillation Stop Detection Interrupt

The oscillation stop detection interrupt occurs when the microcomputer detects a main clock oscillation stop. Refer to **9. Clock Generation Circuit** for details.

11.3.1.4 Low Voltage Detection Interrupt

The low voltage detection interrupt occurs when the voltage applied to Vcc1 is above or below Vdet4. Refer to **6. Voltage Detection Circuit** for details.

NOTES:

1. Low voltage detection interrupt cannot be used in M32C/85T.

11.3.1.5 Single-Step Interrupt

Do not use the single-step interrupt. For development support tool only.

11.3.1.6 Address Match Interrupt

The address match interrupt occurs immediately before executing an instruction that is stored into an address indicated by the RMADi register (i=0 to 7) when the AIERi bit in the AIER register is set to "1" (address match interrupt enabled). Set the starting address of the instruction in the RMADi register. The address match interrupt does not occur when a table data or addresses of the instruction other than the starting address, if the instruction has multiple addresses, is set. Refer to 11.10 Address Match Interrupt for details.

11.3.2 Peripheral Function Interrupt

The peripheral function interrupt occurs when a request from the peripheral functions in the microcomputer is acknowledged. The peripheral function interrupts and software interrupt numbers 8 to 49, 52 to 54 and 57 for the INT instruction use the same interrupt vector table. The peripheral function interrupt is a maskable interrupt.

See **Table 11.2** about how the peripheral function interrupt occurs. Refer to the descriptions of each function for details.

11.4 High-Speed Interrupt

The high-speed interrupt executes an interrupt sequence in five cycles and returns from the interrupt in three cycles.

When the FSIT bit in the RLVL register is set to "1" (interrupt priority level 7 available for the high-speed interrupt), the ILVL2 to ILVL0 bits in the interrupt control registers can be set to "1112" (level 7) to use the high-speed interrupt.

Only one interrupt can be set as the high-speed interrupt. When using the high-speed interrupt, do not set multiple interrupts to interrupt priority level 7. Set the DMAII bit in the RLVL register to "0" (interrupt priority level 7 available for interrupts).

Set the starting address of the high-speed interrupt routine in the VCT register.

When the high-speed interrupt is acknowledged, the FLG register is saved into the SVF register and PC is saved into the SVP register. The program is executed from an address indicated by the VCT register.

Execute the FREIT instruction to return from the high-speed interrupt routine.

The values saved into the SVF and SVP registers are restored to the FLG register and PC by executing the FREIT instruction.

The high-speed interrupt and the DMA2 and DMA3 use the same register. When using the high-speed interrupt, neither DMA2 nor DMA3 is available. DMA0 and DMA1 can be used.

11.5 Interrupts and Interrupt Vectors

There are four bytes in one vector. Set the starting address of interrupt routine in each vector table. When an interrupt request is acknowledged, the interrupt routine is executed from the address set in the interrupt vectors.

Figure 11.2 shows the interrupt vector.

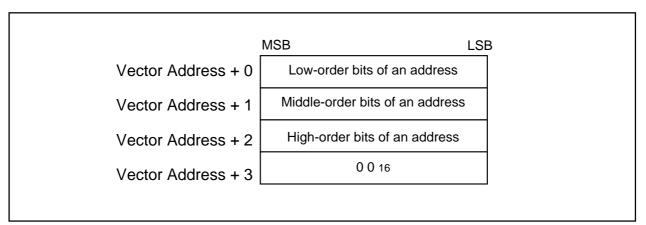


Figure 11.2 Interrupt Vector

11.5.1 Fixed Vector Tables

The fixed vector tables are allocated addresses FFFDC16 to FFFFF16. Table 11.1 lists the fixed vector tables. Refer to **25.2 Functions to Prevent Flash Memory from Rewriting** for fixed vectors of flash memory.

Table 11.1 Fixed Vector Table

Interrupt Generated by	Vector Addresses Address (L) to Address (H)	Remarks	Reference
Undefined Instruction	FFFFDC16 to FFFFDF16		
Overflow	FFFFE016 to FFFFE316		M32C/80 Series
BRK Instruction	FFFFE416 to FFFFE716	If the content of address FFFFE716 is FF16, a program is executed from the address stored into software interrupt number 0 in the relocatable vector table	Software Manual
Address Match	FFFFE816 to FFFFEB16		
-	FFFFEC16 to FFFFEF16	Reserved space	
Watchdog Timer	FFFFF016 to FFFFF316	These addresses are used for the watchdog timer interrupt, oscillation stop detection interrupt, and low voltage detection interrupt ⁽¹⁾	Reset, Clock Generation Circuit, Watchdog Timer
-	FFFFF416 to FFFFF716	Reserved space	
NMI	FFFFF816 to FFFFFB16		
Reset	FFFFC16 to FFFFF16		Reset

NOTES:

11.5.2 Relocatable Vector Tables

The relocatable vector tables occupy 256 bytes from the starting address set in the INTB register. Table 11.2 lists the relocatable vector tables.

Set an even address as the starting address of the vector table set in the INTB register to increase interrupt sequence execution rate.

^{1.} Low voltage detection interrupt cannot be used in M32C/85T.

Table 11.2 Relocatable Vector Tables

Interrupt Generated by	Vector Table Address Address(L) to Address(H) ⁽¹⁾	Software Interrupt Number	Reference
BRK Instruction ⁽²⁾	+0 to +3 (000016 to 000316)	0	M32C/80 Series
Reserved Space	+4 to +31 (000416 to 001F16)	1 to 7	Software Manual
DMA0	+32 to +35 (002016 to 002316)	8	DMAC
DMA1	+36 to +39 (002416 to 002716)	9	
DMA2	+40 to +43 (002816 to 002B16)	10	
DMA3	+44 to +47 (002C16 to 002F16)	11	
Timer A0	+48 to +51 (003016 to 003316)	12	Timer A
Timer A1	+52 to +55 (003416 to 003716)	13	
Timer A2	+56 to +59 (003816 to 003B16)	14	
Timer A3	+60 to +63 (003C16 to 003F16)	15	
Timer A4	+64 to +67 (004016 to 004316)	16	
UART0 Transmission, NACK ⁽³⁾	+68 to +71 (004416 to 004716)	17	Serial I/O
UART0 Reception, ACK ⁽³⁾	+72 to +75 (004816 to 004B16)	18	
UART1 Transmission, NACK ⁽³⁾	+76 to +79 (004C16 to 004F16)	19	
UART1 Reception, ACK ⁽³⁾	+80 to +83 (005016 to 005316)	20	
Timer B0	+84 to +87 (005416 to 005716)	21	Timer B
Timer B1	+88 to +91 (005816 to 005B16)	22	
Timer B2	+92 to +95 (005C16 to 005F16)	23	
Timer B3	+96 to +99 (006016 to 006316)	24	
Timer B4	+100 to +103 (006416 to 006716)	25	
INT5	+104 to +107 (006816 to 006B16)	26	Interrupt
INT4	+108 to +111 (006C16 to 006F16)	27	
ĪNT3	+112 to +115 (007016 to 007316)	28	
INT2	+116 to +119 (007416 to 007716)	29	
INT1	+120 to +123 (007816 to 007B16)	30	
INTO	+124 to +127 (007C16 to 007F16)	31	
Timer B5	+128 to +131 (008016 to 008316)	32	Timer B
UART2 Transmission, NACK(3)	+132 to +135 (008416 to 008716)	33	Serial I/O
UART2 Reception, ACK ⁽³⁾	+136 to +139 (008816 to 008B16)	34	
UART3 Transmission, NACK(3)	+140 to +143 (008C16 to 008F16)	35	
UART3 Reception, ACK ⁽³⁾	+144 to +147 (009016 to 009316)	36	
UART4 Transmission, NACK(3)	+148 to +151 (009416 to 009716)	37	
UART4 Reception, ACK ⁽³⁾	+152 to +155 (009816 to 009B16)	38	

Table 11.2 Relocatable Vector Tables (Continued)

Interrupt Generated by	Vector Table Address	Software	Reference
	Address(L) to Address(H) ⁽¹⁾	Interrupt Number	
Bus Conflict Detect, Start Condition Detect,	+156 to +159 (009C16 to 009F16)	39	Serial I/O
Stop Condition Detect, (UART2) ⁽³⁾ ,			
Bus Conflict Detect, Start Condition Detect,	+160 to +163 (00A016 to 00A316)	40	
Stop Condition Detect (UART3/UART0) ⁽⁴⁾			
Bus Conflict Detect, Start Condition Detect,	+164 to +167 (00A416 to 00A716)	41	
Stop Condition Detect (UART4/UART1) ⁽⁴⁾			
A/D0	+168 to +171 (00A816 to 00AB16)	42	A/D Converter
Key Input	+172 to +175 (00AC16 to 00AF16)	43	Interrupts
Intelligent I/O Interrupt 0, CAN 3	+176 to +179 (00B016 to 00B316)	44	Intelligent I/O
Intelligent I/O Interrupt 1, CAN 4	+180 to +183 (00B416 to 00B716)	45	CAN
Intelligent I/O Interrupt 2	+184 to +187 (00B816 to 00BB16)	46	
Intelligent I/O Interrupt 3	+188 to +191 (00BC16 to 00BF16)	47	
Intelligent I/O Interrupt 4	+192 to +195 (00C016 to 00C316)	48	
CAN 5	+196 to +199 (00C416 to 00C716)	49	CAN
Reserved Space	+200 to +207 (00C816 to 00CF16)	50, 51	
Intelligent I/O Interrupt 8	+208 to +211 (00D016 to 00D316)	52	Intelligent I/O
Intelligent I/O Interrupt 9, CAN 0	+212 to +215 (00D416 to 00D716)	53	CAN
Intelligent I/O Interrupt 10, CAN 1	+216 to +219 (00D816 to 00DB16)	54	
Reserved Space	+220 to +227 (00DC16 to 00E316)	55, 56	
CAN 2	+228 to +231 (00E416 to 00E716)	57	CAN
Reserved Space	+232 to +255 (00E816 to 00FF16)	58 to 63	
INT Instruction ⁽²⁾	+0 to +3 (000016 to 000316) to	0 to 63	Interrupts
	+252 to +255 (00FC16 to 00FF16)		

NOTES:

- 1. These addresses are relative to those in the INTB register.
- 2. The I flag does not disable interrupts.
- 3. In I²C mode, NACK, ACK or start/stop condition detection causes interrupts to be generated.
- 4. The IFSR6 bit in the IFSR register determines whether these addresses are used for an interrupt in UART0 or in UART3.

The IFSR7 bit in the IFSR register determines whether these addresses are used for an interrupt in UART1 or in UART4.

11.6 Interrupt Request Acknowledgement

Software interrupts and special interrupts occur when conditions to generate an interrupt are met.

The peripheral function interrupts are acknowledged when all conditions below are met.

I flag = "1"
 IR bit = "1"
 ILVL2 to ILVL0 bits > IPL

The I flag, IPL, IR bit and ILVL2 to ILVL0 bits are independent of each other. The I flag and IPL are in the FLG register. The IR bit and ILVL2 to ILVL0 bits are in the interrupt control register.

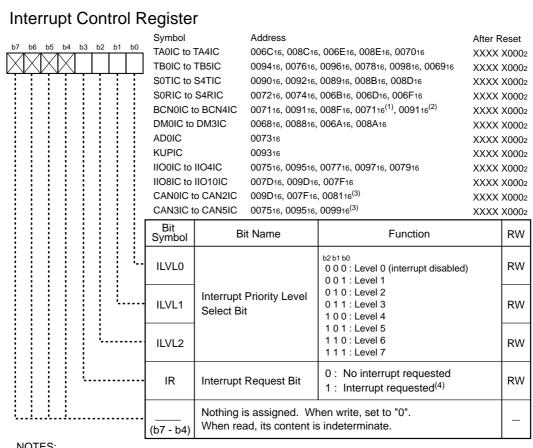
11.6.1 I Flag and IPL

The I flag enables or disables maskable interrupts. When the I flag is set to "1" (enable), all maskable interrupts are enabled; when the I flag is set to "0" (disable), they are disabled. The I flag is automatically set to "0" after reset.

IPL, consisting of three bits, indicates the interrupt priority level from level 0 to level 7.

If a requested interrupt has higher priority level than indicated by IPL, the interrupt is acknowledged.

Table 11.3 lists interrupt priority levels associated with IPL.


Table 11.3 Interrupt Priority Levels

IPL2	IPL1	IPL0	Interrupt Priority Levels
0	0	0	Level 1 and above
0	0	1	Level 2 and above
0	1	0	Level 3 and above
0	1	1	Level 4 and above
1	0	0	Level 5 and above
1	0	1	Level 6 and above
1	1	0	Level 7 and above
1	1	1	All maskable interrupts are disabled

11.6.2 Interrupt Control Register and RLVL Register

The peripheral function interrupts use interrupt control registers to control each interrupt. Figures 11.3 and 11.4 show the interrupt control register. Figure 11.5 shows the RLVL register.

NOTES:

- 1. The BCN0IC register shares an address with the BCN3IC register.
- 2. The BCN1IC register shares an address with the BCN4IC register.
- 3. The IIO9IC register shares an address with the CAN0IC register. The IIO10IC register shares an address with the CAN1IC register. The IIO0IC register shares an address with the CAN3IC register. The IIO1IC register shares an address with the CAN4IC register.
- 4. The IR bit can be set to "0" only (do not set to "1").

Figure 11.3 Interrupt Control Register (1)

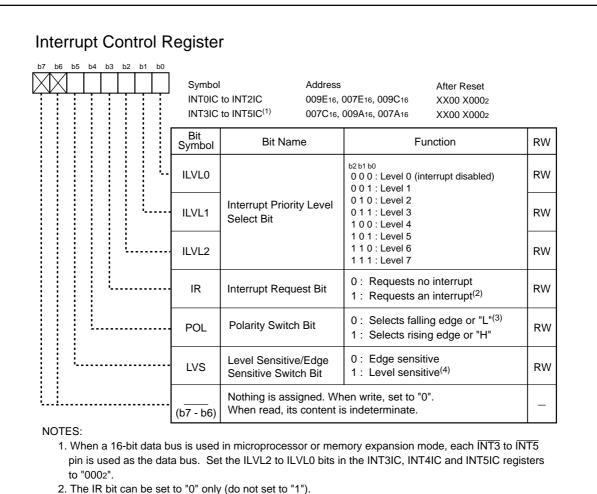
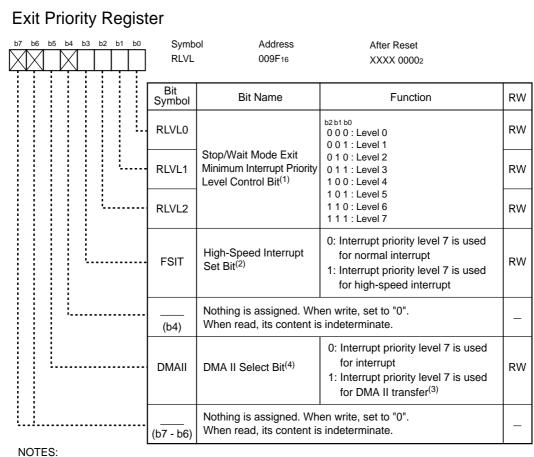


Figure 11.4 Interrupt Control Register (2)

11.6.2.1 ILVL2 to ILVL0 Bits

The ILVL2 to ILVL0 bits determines an interrupt priority level. The higher the interrupt priority level is, the higher interrupt priority is.


3. Set the POL bit to "0" when a corresponding bit in the IFSR register is set to "1" (both edges). 4. When setting the LVS bit to "1", set a corresponding bit in the IFSR register to "0" (one edge).

When an interrupt request is generated, its interrupt priority level is compared to IPL. This interrupt is acknowledged only when its interrupt priority level is higher than IPL. When the ILVL2 to ILVL0 bits are set to "0002" (level 0), its interrupt is ignored.

11.6.2.2 IR Bit

The IR bit is automatically set to "1" (interrupt requested) when an interrupt request is generated. The IR bit is automatically set to "0" (no interrupt requested) after an interrupt request is acknowledged and an interrupt routine in the corresponding interrupt vector is executed.

The IR bit can be set to "0" by program. Do not set to "1".

- 1. The microcomputer exits stop or wait mode when the requested interrupt priority level is higher than the level set in the RLVL2 to RLVL0 bits. Set the RLVL2 to RLVL0 bits to the same value as IPL in the FLG register.
- 2. When the FSIT bit is set to "1", an interrupt having the interrupt priority level 7 becomes the high-speed interrupt. In this case, set only one interrupt to the interrupt priority level 7 and the DMAII bit to "0".
- 3. Set the ILVL2 to ILVL0 bits in the interrupt control register after setting the DMAII bit to "1". Do not change the DMAII bit setting to "0" after setting the DMAII bit to "1". Set the FSIT bit to "0" when the DMAII bit to "1".
- 4. The DMAII bit becomes indeterminate after reset. To use the DMAII bit for an interrupt setting, set it to "0" before setting the interrupt control register.

Figure 11.5 RLVL Register

11.6.2.3 RLVL2 to RLVL0 Bits

When using an interrupt to exit stop or wait mode, refer to 9.5.2 Wait Mode and 9.5.3 Stop Mode for details.

11.6.3 Interrupt Sequence

The interrupt sequence is performed between an interrupt request acknowledgment and interrupt routine execution.

When an interrupt request is generated while an instruction is executed, the CPU determines its interrupt priority level after the instruction is completed. The CPU starts the interrupt sequence from the following cycle. However, in regards to the SCMPU, SIN, SMOVB, SMOVF, SMOVU, SSTR, SOUT or RMPA instruction, if an interrupt request is generated while executing the instruction, the microcomputer suspends the instruction to start the interrupt sequence.

The interrupt sequence is performed as follows:

- (1) The CPU obtains interrupt information (interrupt number and interrupt request level) by reading address 00000016 (address 00000216 for the high-speed interrupt). Then, the IR bit applicable to the interrupt information is set to "0" (interrupt requested).
- (2) The FLG register, prior to an interrupt sequence, is saved to a temporary register⁽¹⁾ within the CPU.
- (3) Each bit in the FLG register is set as follows:
 - The I flag is set to "0" (interrupt disabled)
 - The D flag is set to "0" (single-step disabled)
 - The U flag is set to "0" (ISP selected)
- (4) A temporary register within the CPU is saved to the stack; or to the SVF register for the high-speed interrupt.
- (5) PC is saved to the stack; or to the SVP register for the high-speed interrupt.
- (6) The interrupt priority level of the acknowledged interrupt is set in IPL.
- (7) A relocatable vector corresponding to the acknowledged interrupt is stored into PC.

After the interrupt sequence is completed, an instruction is executed from the starting address of the interrupt routine.

NOTES:

1. Temporary register cannot be modified by users.

11.6.4 Interrupt Response Time

Figure 11.6 shows an interrupt response time. Interrupt response time is the period between an interrupt generation and the execution of the first instruction in an interrupt routine. Interrupt response time includes the period between an interrupt request generation and the completed execution of an instruction ((a) on Figure 11.6) and the period required to perform an interrupt sequence ((b) on Figure 11.6).

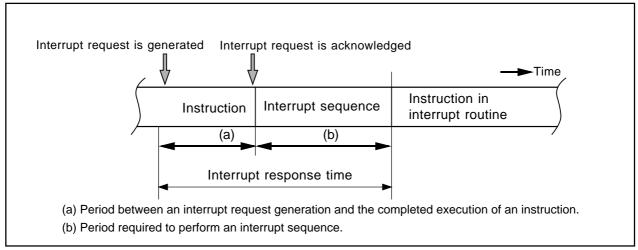


Figure 11.6 Interrupt Response Time

Time (a) varies depending on an instruction being executed. The DIVX instruction requires the longest time (a); 42 cycles when an immediate value or register is set as the divisor.

When the divisor is a value in the memory, the following value is added.

Normal addressing : 2 + X
 Index addressing : 3 + X
 Indirect addressing : 5 + X + 2Y
 Indirect index addressing : 6 + X + 2Y

X is the number of wait states for a divisor space. Y is the number of wait states for the space that stores indirect addresses. If X and Y are in an odd address or in 8-bit bus space, the X and Y value must be doubled.

Table 11.4 lists time (b), shown Figure 11.6.

Table 11.4 Interrupt Sequence Execution Time

Interrupt	Interrupt Vector Address	16-Bit Bus	8-Bit Bus
Peripheral Function	Even address	14 cycles	16 cycles
	Odd address ⁽¹⁾	16 cycles	16 cycles
INT Instruction	Even address	12 cycles	14 cycles
	Odd address ⁽¹⁾	14 cycles	14 cycles
NMI	Even address ⁽²⁾	13 cycles	15 cycles
Watchdog Timer			
Undefined Instruction			
Address Match			
Overflow	Even address ⁽²⁾	14 cycles	16 cycles
BRK Instruction (relocatable vector table)	Even address	17 cycles	19 cycles
	Odd address ⁽¹⁾	19 cycles	19 cycles
BRK Instruction (fixed vector table)	Even address ⁽²⁾	19 cycles	21 cycles
High-Speed Interrupt	Vector table is internal register	5 cycles	-

NOTES:

- 1. Allocate interrupt vectors in even addresses.
- 2. Vectors are fixed to even addresses.

11.6.5 IPL Change when Interrupt Request is Acknowledged

When a peripheral function interrupt request is acknowledged, IPL sets the priority level for the acknowledged interrupt.

Software interrupts and special interrupts have no interrupt priority level. If an interrupt request that has no interrupt priority level is acknowledged, the value shown in Table 11.5 is set in IPL as the interrupt priority level.

Table 11.5 Interrupts without Interrupt Priority Levels and IPL

Interrupt Source	Level Set to IPL
Watchdog Timer, NMI, Oscillation Stop Detection, Low Voltage Detection	7
Reset	0
Software, Address Match	Not changed

NOTES:

1. Low voltage detection interrupt cannot be used in M32C/85T.

11.6.6 Saving a Register

In the interrupt sequence, the FLG register and PC are saved to the stack.

After the FLG register is saved to the stack, 16 high-order bits and 16 low-order bits of PC, extended to 32 bits, are saved to the stack. Figure 11.7 shows stack states before and after an interrupt request is acknowledged.

Other important registers are saved by program at the beginning of an interrupt routine. The PUSHM instruction can save several registers⁽¹⁾ in the register bank used.

Refer to 11.4 High-Speed Interrupt for the high-speed interrupt.

NOTES:

1. Can be selected from the R0, R1, R2, R3, A0, A1, SB and FB registers.

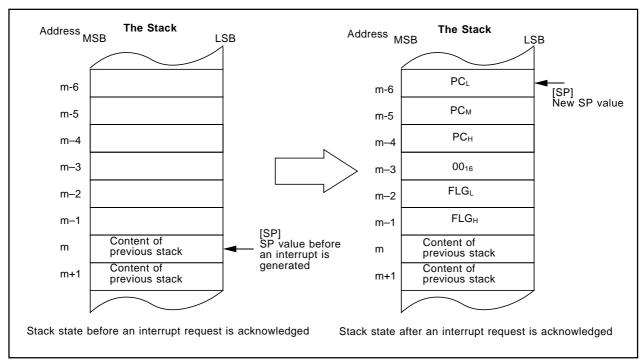


Figure 11.7 Stack States

11.6.7 Restoration from Interrupt Routine

When the REIT instruction is executed at the end of an interrupt routine, the FLG register and PC before the interrupt sequence is performed, which have been saved to the stack, are automatically restored. The program, executed before an interrupt request was acknowledged, starts running again. Refer to **11.4 High-Speed Interrupt** for the high-speed interrupt.

Restore registers saved by program in an interrupt routine by the POPM instruction or others before the REIT and FREIT instructions. Register bank is switched back to the bank used prior to the interrupt sequence by the REIT or FREIT instruction.

11.6.8 Interrupt Priority

If two or more interrupt requests are sampled at the same sampling points (a timing to detect whether an interrupt request is generated or not), the interrupt with the highest priority is acknowledged.

Set the ILVL2 to ILVL0 bits to select the desired priority level for maskable interrupts (peripheral function interrupt).

Priority levels of special interrupts such as reset (reset has the highest priority) and watchdog timer are set by hardware. Figure 11.8 shows priority levels of hardware interrupts.

The interrupt priority does not affect software interrupts. Executing instruction causes the microcomputer to execute an interrupt routine.

Oscillation Stop Detection

Reset > NMI > Watchdog > Peripheral Function > Address Match

Low voltage Detection⁽¹⁾

NOTES:

1. Low voltage detection interrupt cannot be used in M32C/85T.

Figure 11.8 Interrupt Priority

11.6.9 Interrupt Priority Level Select Circuit

The interrupt priority level select circuit selects the highest priority interrupt when two or more interrupt requests are sampled at the same sampling point.

Figure 11.9 shows the interrupt priority level select circuit.

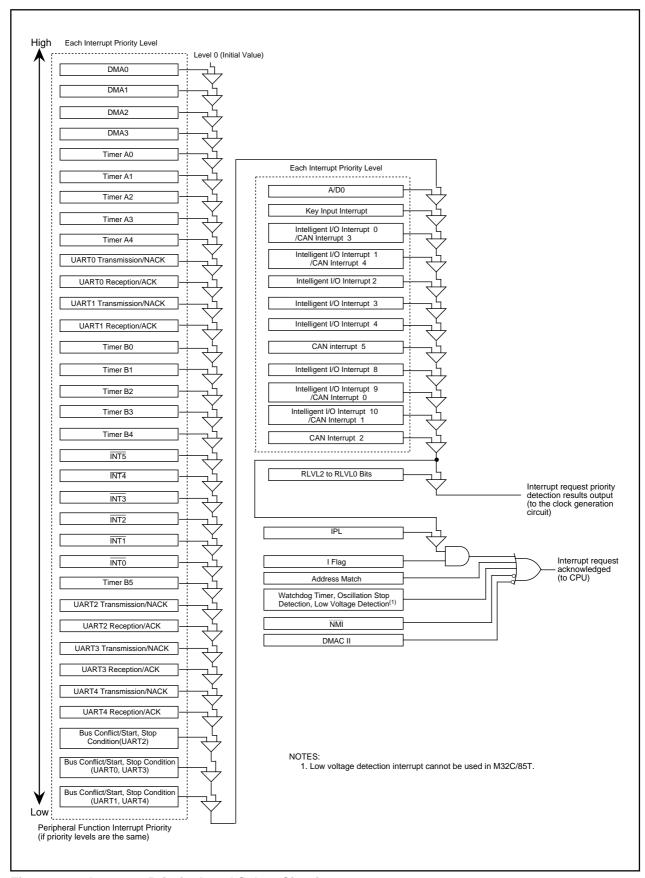


Figure 11.9 Interrupt Priority Level Select Circuit

11.7 INT Interrupt

External input generates the INTi interrupt (i = 0 to 5). The LVS bit in the INTiIC register selects either edge sensitive triggering to generate an interrupt on any edge or level sensitive triggering to generate an interrupt at an applied signal level. The POL bit in the INTiIC register determines the polarity.

For edge sensitive, when the IFSRi bit in the IFSR register is set to "1", an interrupt occurs on both rising and falling edges of the external input. If the IFSRi bit is set to "1", set the POL bit in the corresponding register to "0" (falling edge).

For level sensitive, set the IFSRi bit to "0" (single edge). When the INTi pin input level reaches the level set in the POL bit, the IR bit in the INTiIC register is set to "1". The IR bit remains unchanged even if the INTi pin level is changed. The IR bit is set to "0" when the INTi interrupt is acknowledged or when the IR bit is written to "0" by program.

Figure 11.10 shows the IFSR register.

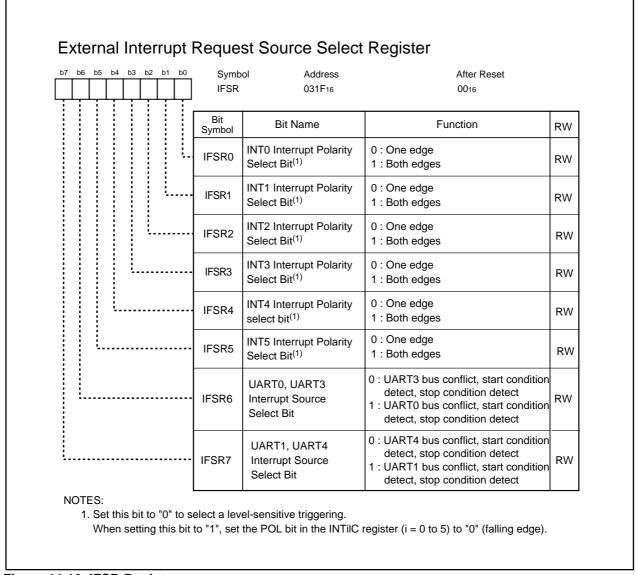


Figure 11.10 IFSR Register

11.8 NMI Interrupt⁽¹⁾

The $\overline{\text{NMI}}$ interrupt occurs when a signal applied to the $\overline{\text{NMI}}$ pin changes from a high-level ("H") signal to a low-level ("L") signal. The $\overline{\text{NMI}}$ interrupt is a non-maskable interrupt. Although the P85/ $\overline{\text{NMI}}$ pin is used as the $\overline{\text{NMI}}$ interrupt input pin, the P8_5 bit in the P8 register indicates the input level for this pin.

NOTES:

1. When the $\overline{\text{NMI}}$ interrupt is not used, connect the $\overline{\text{NMI}}$ pin to Vcc1 via a resistor. Because the $\overline{\text{NMI}}$ interrupt cannot be ignored, the pin must be connected.

11.9 Key Input Interrupt

Key input interrupt request is generated when one of the signals applied to the P104 to P107 pins in input mode is on the falling edge. The key input interrupt can be also used as key-on wake-up function to exit wait or stop mode. To use the key input interrupt, do not use P104 to P107 as A/D input ports. Figure 11.11 shows a block diagram of the key input interrupt. When an "L" signal is applied to any pins in input mode, signals applied to other pins are not detected as an interrupt request signal.

When the PSC_7 bit in the PSC register⁽²⁾ is set to "1" (key input interrupt disabled), no key input interrupt occurs regardless of interrupt control register settings. When the PSC_7 bit is set to "1", no input from a port pin is available even when in input mode.

NOTES:

2. Refer to 24. Programmable I/O Ports about the PSC register.

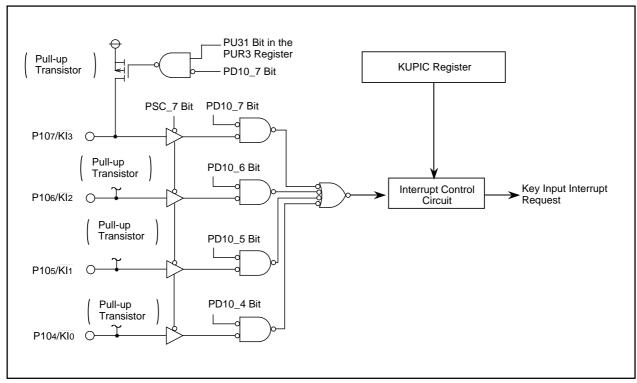


Figure 11.11 Key Input Interrupt

11.10 Address Match Interrupt

The address match interrupt occurs immediately before executing an instruction that is stored into an address indicated by the RMADi register (i=0 to 7). The address match interrupt can be set in eight addresses. The AIERi bit in the AIER register determines whether the interrupt is enabled or disabled. The I flag and IPL do not affect the address match interrupt.

Figure 11.12 shows registers associated with the address match interrupt.

The starting address of an instruction must be set in the RMADi register. The address match interrupt does not occur when a table data or addresses other than the starting address of the instruction is set.

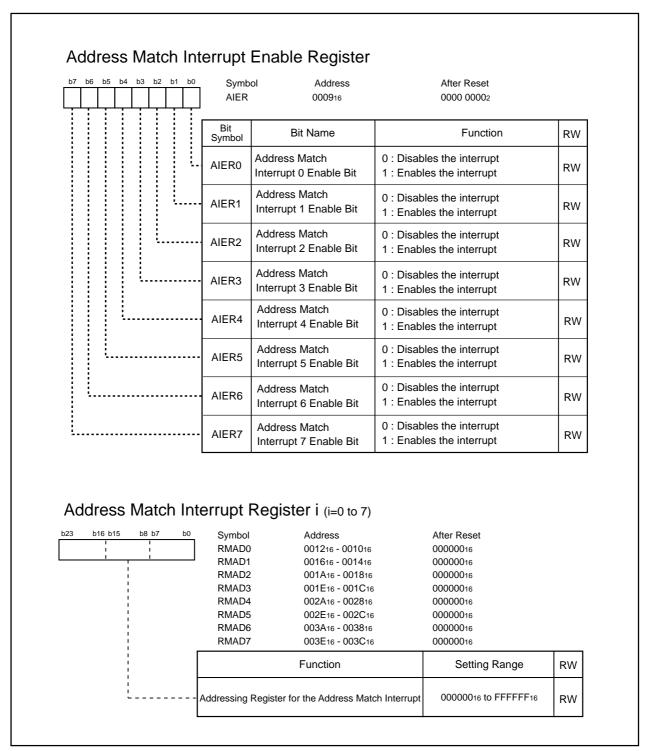


Figure 11.12 AIER Register and RMAD0 to RMAD7 Registers

11.11 Intelligent I/O Interrupt and CAN Interrupt

The intelligent I/O interrupt and CAN interrupt are assigned to software interrupt numbers 44 to 49, 52 to 54, and 57.

When using the intelligent I/O interrupt or CAN interrupt, set the IRLT bit in the IIOiIE register (i = 0 to 5, 8 to 11) to "1" (interrupt request for interrupt used).

Various interrupt requests cause the intelligent I/O interrupt to occur. When an interrupt request is generated with each intelligent I/O or CAN functions, the corresponding bit in the IIOiIR register is set to "1" (interrupt requested). When the corresponding bit in the IIOiIE register is set to "1" (interrupt enabled), the IR bit in the corresponding IIOiIC register is set to "1" (interrupt requested).

After the IR bit setting changes "0" to "1", the IR bit remains set to "1" when a bit in the IIOiIR register is set to "1" by another interrupt request and the corresponding bit in the IIOiIE register is set to "1".

Bits in the IIOiIR register are not set to "0" automatically, even if an interrupt is acknowledged. Set each bit to "0" by program. If these bit settings are left "1", all generated interrupt requests are ignored.

Figure 11.13 shows a block diagram of the intelligent I/O interrupt and CAN interrupt. Figure 11.14 shows the IIOiIR register. Figure 11.15 shows the IIOiIE register.

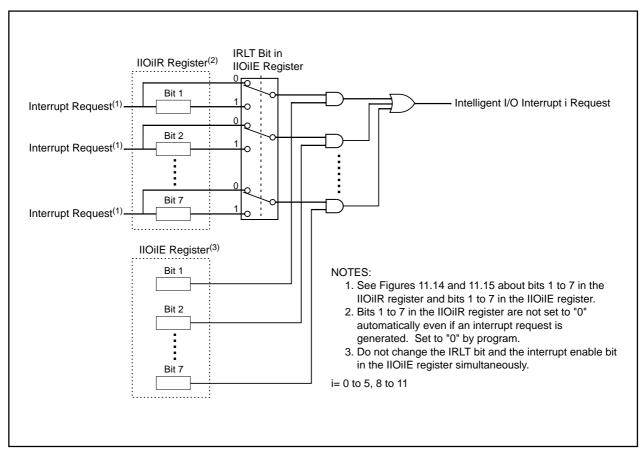
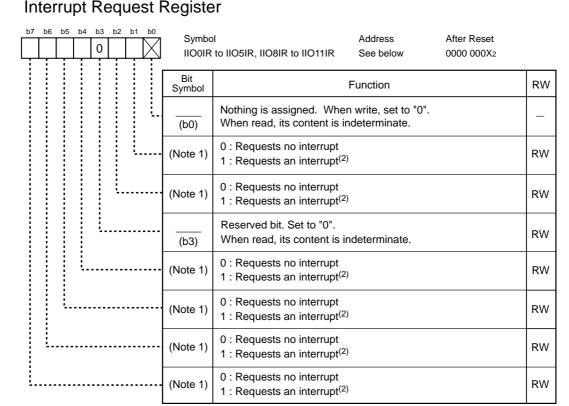


Figure 11.13 Intelligent I/O Interrupt and CAN Interrupt

The CANjk (j=0 to 1, k=0 to 2) interrupt and CAN1 wake-up interrupt are provided as the CAN interrupt. The following registers are required for the CAN interrupts:

- Bits 7 in the IIO9IR to IIO11IR registers and Bits 7 in the IIO9IE to IIO11IE registers for the CAN00 to CAN02 interrupts.
- Bits 7 in the IIO0IR, IIO1IR and IIO5IR registers and Bits 7 in the IIO0IE, IIO1IE and IIO5IE registers for the CAN10 to CAN12 interrupts.
- Bit 6 in the IIO5IR register and Bit 6 in the IIO5IE register for the CAN1 wake-up interrupt.


The CANOIC, CAN1IC, CAN3IC and CAN4IC registers share addresses with the following registers:

- The CANOIC register shares an address with the IIO9IC register.
- The CAN1IC register shares an address with the IIO10IC register.
- The CAN3IC register shares an address with the IIO0IC register.
- The CAN4IC register shares an address with the IIO1IC register.

Refer to 23.4 CAN Interrupt for details.

When using the intelligent I/O interrupt or CAN interrupt to activate DMAC II, set the IRLT bit in the IIOiIE register to "0" (interrupt used for DMAC, DMAC II) to enable the interrupt request that the IIOiIE register requires.

NOTES:

- 1. See table below for bit symbols.
- 2. Only "0" can be set (nothing is changed even if "1" is set).

Bit Symbols for the Interrupt Request Register

Symbol	Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IIO0IR	00A016	CAN10R	-	SIO0RR	G0RIR	-	TM13R/PO13R	-	-
IIO1IR	00A116	CAN11R	-	SIO0TR	G0TOR	-	TM14R/PO14R	-	-
IIO2IR	00A216	-	-	SIO1RR	G1RIR	-	TM12R/PO12R	-	-
IIO3IR	00A316	-	-	SIO1TR	G1TOR	-	TM10R/PO10R	-	-
IIO4IR	00A416	SRT0R	SRT1R	-	BT1R	-	TM17R/PO17R	-	-
IIO5IR	00A516	CAN12R	CAN1WUR	-	-	-	-	-	-
IIO8IR	00A816	-	-	-	-	-	-	TM11R/PO11R	-
IIO9IR	00A916	CAN00R	-	-	-	-	-	TM15R/PO15R	-
IIO10IR	00AA16	CAN01R	-		-		-	TM16R/PO16R	-
IIO11IR	00AB ₁₆	CAN02R	-	-	-	-	-	-	-

BT1R : Intelligent I/O Base Timer Interrupt Request

TM1jR : Intelligent I/O Time Measurement j Interrupt Request

PO1jR : Intelligent I/O Waveform Generating Function j Interrupt Request SIOiRR : Intelligent I/O Communication Unit i Receive Interrupt Request SIOiTR : Intelligent I/O Communication Unit i Transmit Interrupt Request

GiTOR : Intelligent I/O Communication Unit i HDLC Data Processing Function Interrupt Request (TO: Output to Transmit)

GiRIR : Intelligent I/O Communication Unit i HDLC Data Processing Function Interrupt Request (RI: Input to Receive)

SRTIR : Intelligent I/O Special Communication Function Interrupt Request
CAN0kR : CAN0 Communication Function Interrupt Request (k = 0 to 2)
CAN1mR : CAN1 Communication Function Interrupt Request (m = 0 to 2)

CAN1WUR : CAN1 Wake-up Interrupt Request i = 0, 1
- : Reserved Bit. Set to "0". j = 0 to 7

Figure 11.14 IIO0IR to IIO5IR, IIO8IR to IIO11IR Registers

Interrupt Enable Register b5 b4 b3 Symbol Address After Reset IIO0IE to IIO5IE, IIO8IE to IIO11IE 0 See below 0000 00002 RW Bit Name **Function** Symbol Interrupt Request 0: Interrupt request is used for DMAC, DMAC II **IRLT** RW Select Bit(2) 1: Interrupt request is used for interrupt 0 : Disables an interrupt by bit 1 in IIOiIR register (Note 1) RW 1: Enables an interrupt by bit 1 in IIOiIR register 0 : Disables an interrupt by bit 2 in IIOiIR register RW (Note 1) 1 : Enables an interrupt by bit 2 in IIOiIR register Reserved Bit Set to "0" RW (b3) 0: Disables an interrupt by bit 4 in IIOiIR register RW (Note 1) 1: Enables an interrupt by bit 4 in IIOiIR register 0 : Disables an interrupt by bit 5 in IIOiIR register (Note 1) RW 1 : Enables an interrupt by bit 5 in IIOiIR register 0 : Disables an interrupt by bit 6 in IIOiIR register (Note 1) RW 1 : Enables an interrupt by bit 6 in IIOiIR register 0: Disables an interrupt by bit 7 in IIOiIR register RW (Note 1) 1 : Enables an interrupt by bit 7 in IIOiIR register NOTES:

1. See table below for bit symbols.

Bit Symbols for the Interrupt Enable Register

Symbol	Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IIO0IE	00B016	CAN10E	-	SIO0RE	G0RIE	-	TM13E/PO13E	-	IRLT
IIO1IE	00B116	CAN11E	-	SIO0TE	G0TOE	-	TM14E/PO14E	-	IRLT
IIO2IE	00B216	-	-	SIO1RE	G1RIE	-	TM12E/PO12E	-	IRLT
IIO3IE	00B316	-	-	SIO1TE	G1TOE	-	TM10E/PO10E	-	IRLT
IIO4IE	00B416	SRT0E	SRT1E	-	BT1E	-	TM17E/PO17E	-	IRLT
IIO5IE	00B516	CAN12E	CAN1WUE	-	•	-	-	-	IRLT
IIO8IE	00B816	-	-	-	•		1	TM11E/PO11E	IRLT
IIO9IE	00B916	CAN00E	-	-	•	-	-	TM15E/PO15E	IRLT
IIO10IE	00BA16	CAN01E	-	-	•		1	TM16E/PO16E	IRLT
IIO11IE	00BB16	CAN02E	-	-	-	-	-	-	IRLT

BT1E : Intelligent I/O Base Timer Interrupt Enabled

TM1iE : Intelligent I/O Time Measurement j Interrupt Enabled

PO1jE : Intelligent I/O Waveform Generating Function j Interrupt Enabled SIOiRE : Intelligent I/O Communication Unit i Receive Interrupt Enabled SIOITE : Intelligent I/O Communication Unit i Transmit Interrupt Enabled

GiTOE : Intelligent I/O Communication Unit i HDLC Data Processing Function Interrupt Enabled (TO: Output to Transmit) **GiRIE** : Intelligent I/O Communication Unit i HDLC Data Processing Function Interrupt Enabled (RI: Input to Receive)

SRTiE : Intelligent I/O Special Communication Function Interrupt Enabled CAN0kF : CAN0 Communication Function Interrupt Enabled (k = 0 to 2) CAN1mE : CAN1 Communication Function Interrupt Enabled (m = 0 to 2)

CAN1WUE: CAN1 Wake-up Interrupt Enabled i = 0, 1: Reserved Bit. Set to "0". j = 0 to 7

Figure 11.15 IIO0IE to IIO5IE, IIO8IE to IIO11IE Registers

^{2.} If an interrupt request is used for interrupt, set bit 1, 2, 4 to 7 to "1" after the IRLT bit is set to "1".

12. Watchdog Timer

The watchdog timer monitors the program executions and detects defective program. It allows the microcomputer to trigger a reset or to generate an interrupt if the program error occurs. The watchdog timer contains a 15-bit counter, which is decremented by the CPU clock that the prescaler divides. The CM06 bit in the CM0 register determines whether a watchdog timer interrupt request or reset is generated if the watchdog timer underflows. The CM06 bit can only be set to "1" (reset). Once the CM06 bit is set to "1", it cannot be changed to "0" (watchdog timer interrupt) by program. The CM06 bit is set to "0" only after reset. When the main clock, on-chip oscillator clock, or PLL clock runs as the CPU clock, the WDC7 bit in the WDC register determine whether the prescaler divides the clock by 16 or by 128. When the sub clock runs as the CPU clock, the prescaler divides the clock by 2 regardless of the WDC7 bit setting. Watchdog timer cycle is calculated as follows. Marginal errors, due to the prescaler, may occur in watchdog timer cycle.

When the main clock, on-chip oscillator clock, or PLL clock is selected as the CPU clock,

When the sub clock is selected as the CPU clock,

For example, if the CPU clock frequency is 30MHz and the prescaler divides it by 16, the watchdog timer cycle is approximately 17.5 ms.

The watchdog timer is reset when the WDTS register is set and when a watchdog timer interrupt request is generated. The prescaler is reset only when the microcomputer is reset. Both watchdog timer and prescaler stop after reset. They begin counting when the WDTS register is set.

The watchdog timer and prescaler stop in stop mode, wait mode and hold state. They resume counting from the value held when the mode or state is exited.

Figure 12.1 shows a block diagram of the watchdog timer. Figure 12.2 shows registers associated with the watchdog timer.

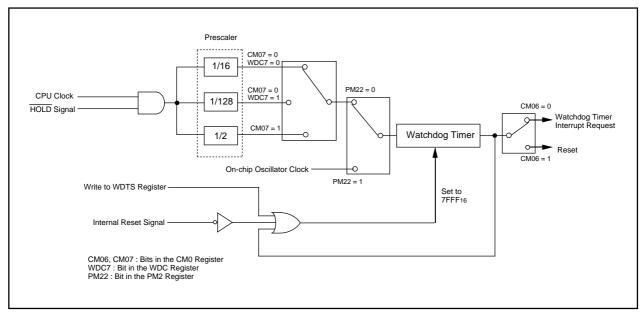


Figure 12.1 Watchdog Timer Block Diagram

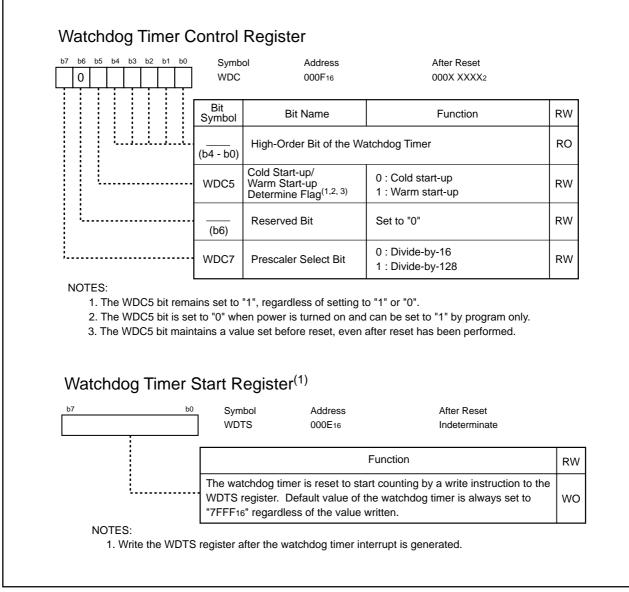


Figure 12.2 WDC Register and WDTS Register

System Clock Control Register 0⁽¹⁾ Symbol Address After Reset CM0 000616 0000 10002 Bit Name RW **Function** Symbol RW CM00 0 0 : I/O port P53 Clock Output Function 01: Outputs fc Select Bit(2) 10: Outputs f8 RW CM01 1 1: Outputs f32 0 : Peripheral clock does not stop in In Wait Mode, Peripheral wait mode RW CM02 Function Clock Stop Bit⁽⁹⁾ 1 : Peripheral clock stops in wait mode(3) 0 : Low **XCIN-XCOUT Drive** CM03 RW Capacity Select Bit (11) 1: High 0: I/O port function RW CM04 Port Xc Switch Bit 1: XCIN-XCOUT oscillation function(4 Main Clock (XIN-XOUT) 0: Main clock oscillates RW CM05 Stop Bit^(5, 9) 1: Main clock stops(6) Watchdog Timer 0: Watchdog timer interrupt RW CM06 **Function Select Bit** 1 : Reset⁽⁷⁾ 0: Clock selected by the CM21 bit **CPU Clock Select** RW CM07 divided by MCD register setting Bit 0^(8, 9, 10)

NOTES:

- 1. Rewrite the CM0 register after the PRC0 bit in the PRCR register is set to "1" (write enable).
- 2. When the PM07 bit in the PM0 register is set to "0" (BCLK output), set the CM01 and CM00 bits to "002". When the PM15 and PM14 bits in the PM1 register are set to "012" (ALE output to P53), set the CM01 and CM00 bits to "002". When the PM07 bit is set to "1" (function selected in the CM01 and CM00 bits) in microprocessor or memory expansion mode, and the CM01 and CM00 bits are set to "002", an "L" signal is output from port P53 (port P53 does not function as an I/O port).
- fc32 does not stop running. When the CM02 bit is set to "1", the PLL clock cannot be used in wait mode.
- 4. When setting the CM04 bit is set to "1", set the PD8_7 and PD8_6 bits in the PD8 register to "002" (port P87 and P86 in input mode) and the PU25 bit in the PUR2 register to "0" (no pull-up).
- 5. When entering low-power consumption mode or on-chip oscillator low-power consumption mode, the CM05 bit stops running the main clock. The CM05 bit cannot detect whether the main clock stops or not. To stop running the main clock, set the CM05 bit to "1" after the CM07 bit is set to "1" with a stable sub clock oscillation or after the CM21 bit in the CM2 register is set to "1" (on-chip oscillator clock). When the CM05 bit is set to "1", the clock applied to XOUT becomes "H". The built-in feedback resistor remains ON. XIN is pulled up to XOUT ("H" level) via the feedback resistor.
- 6. When the CM05 bit is set to "1", the MCD4 to MCD0 bits in the MCD register are set to "010002" (divide-by-8 mode). In on-chip oscillation mode, the MCD4 to MCD0 bits are not set to "010002" even if the CM05 bit terminates XIN-XOUT.
- 7. Once the CM06 bit is set to "1", it cannot be set to "0" by program.
- 8. After the CM04 bit is set to "1" with a stable sub clock oscillation, set the CM07 bit to "1" from "0". After the CM05 bit is set to "0" with a stable main clock oscillation, set the CM07 bit to "0" from "1". Do not set the CM07 bit and CM04 or CM05 bit simultaneously.
- 9. When the PM21 bit in the PM2 register is set to "1" (clock change disable), the CM02, CM05 and CM07 bits do not change even when written.
- 10. After the CM07 bit is set to "0", set the PM21 bit to "1".
- 11. When stop mode is entered, the CM03 bit is set to "1".

Figure 12.3 CM0 Register

12.1 Count Source Protection Mode

In count source protection mode, the on-chip oscillator clock is used as a count source for the watchdog timer. The count source protection mode allows the on-chip oscillator clock to run continuously, maintaining watchdog timer operation even if the program error occurs and the CPU clock stops running. Follow the procedures below when using this mode.

- (1) Set the PRC0 bit in the PRCR register to "1" (write to CM0 register enabled)
- (2) Set the PRC1 bit in the PRCR register to "1" (write to PM2 register enabled)
- (3) Set the CM06 bit in the CM0 register to "1" (reset when the watchdog timer overflows)
- (4) Set the PM22 bit in the PM2 register to "1" (the on-chip oscillator clock as a count source of the watchdog timer)
- (5) Set the PRC0 bit to "0" (write to CM0 register disabled)
- (6) Set the PRC1 bit to "0" (write to PM2 register disabled)
- (7) Write to the WDTS register (the watchdog timer starts counting)

The followings will occur when the PM22 bit is set to "1".

• The on-chip oscillator starts oscillating and the on-chip oscillator clock becomes a count source for the watchdog timer.

- Write to the CM10 bit in the CM1 register is disabled. (The bit setting remains unchanged even if set it to "1". The microcomputer does not enter stop mode.)
- In wait mode or hold state, the watchdog timer continues running. However, the watchdog timer interrupt cannot be used to exit wait mode.

13. DMAC

This microcomputer contains four DMAC (direct memory access controller) channels that allow data to be sent to memory without using the CPU. DMAC transmits a 8- or 16-bit data from a source address to a destination address whenever a transmit request occurs. DMA0 and DMA1 must be prioritized if using DMAC. DMA2 and DMA3 share registers required for high-speed interrupts. High-speed interrupts cannot be used when using three or more DMAC channels.

The CPU and DMAC use the same data bus, but DMAC has a higher bus access privilege than the CPU. The cycle-steal method employed on DMAC enables high-speed operation between a transfer request and the complete transmission of 16-bit (word) or 8-bit (byte) data. Figure 13.1 shows a mapping of registers to be used for DMAC. Table 13.1 lists specifications of DMAC. Figures 13.2 to 13.5 show registers associated with DMAC.

Because the registers shown in Figure 13.1 are allocated in the CPU, use the LDC instruction to write to the registers. To set the DCT2, DCT3, DRC2, DRC3, DMA2 and DMA3 registers, set the B flag to "1" (register bank 1) and set the R0 to R3, A0, A1 registers with the MOV instruction.

To set the DSA2 and DSA3 registers, set the B flag to "1" and set the SB and FB registers with the LDC instruction. To set the DRA2 and DRA3 registers, set the SVP and VCT registers with the LDC instruction.

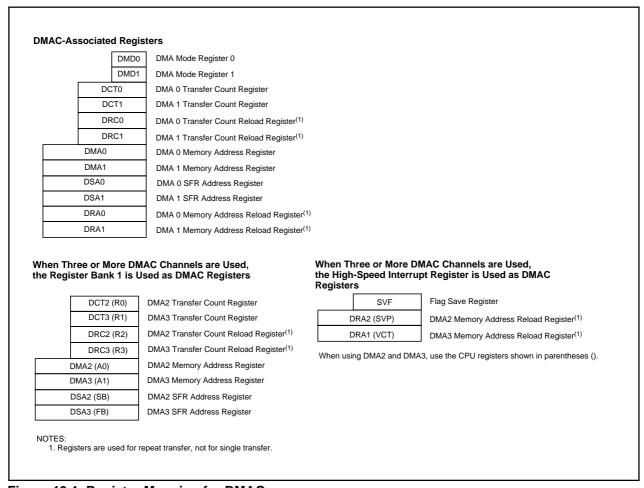


Figure 13.1 Register Mapping for DMAC

DMAC starts a data transfer by setting the DSR bit in the DMiSL register (i=0 to 3) or by using an interrupt request, generated by the functions determined by the DSEL 4 to DSEL0 bits in the DMiSL register, as a DMA request. Unlike interrupt requests, the I flag and interrupt control register do not affect DMA. Therefore, a DMA request can be acknowledged even if an interrupt is disabled and cannot be acknowledged. In addition, the IR bit in the interrupt control register does not change when a DMA request is acknowledged.

Table 13.1 DMAC Specifications

Item		Specification					
Channels		4 channels (cycle-steal method)					
Transfer Memo	ry Space	• From a desired address in a 16-Mbyte space to a fixed address in a					
		16-Mbyte space					
		• From a fixed address in a 16-Mbyte space to a desired address in a					
		16-Mbyte space					
Maximum Bytes	s Transferred	128 Kbytes (when a 16-bit data is transferred) or 64 Kbytes (with an 8-					
		bit data is transferred)					
DMA Request S	Source ⁽¹⁾	Falling edge or both edges of signals applied to the INTO to INT3 pins					
		Timers A0 to A4 interrupt requests					
		Timers B0 to B5 interrupt requests					
		UART0 to UART4 transmit and receive interrupt requests					
		A/D0 conversion interrupt request					
		Intelligent I/O interrupt request					
		CAN interrupt request					
		Software trigger					
Channel Priority	/	DMA0 > DMA1 > DMA2 > DMA3 (DMA0 has highest priority)					
Transfer Unit		8 bits, 16 bits					
Destination Add	dress	Forward/fixed (forward and fixed directions cannot be specified when					
		specifying source and destination addresses simultaneously)					
Transfer Mode	Single Transfer	Transfer is completed when the DCTi register (i = 0 to 3) is set to "000016"					
	Repeat Transfer	When the DCTi register is set to "000016", the value of the DRCi register					
		is reloaded into the DCTi register and the DMA transfer is continued					
DMA Interrupt Requ	est Generation Timing	When the DCTi register changes "000116" to "000016"					
DMA Startup	Single Transfer	DMA starts when a DMA request is generated after the DCTi register is					
		set to "000116" or more and the MDi1 and MD0 bits in the DMDj register					
		(j = 0,1) are set to "012" (single transfer)					
	Repeat Transfer	DMA starts when a DMA request is generated after the DCTi register is					
		set to "000116" or more and the MDi1 and MDi0 bits are set to "112"					
		(repeat transfer)					
DMA Stop	Single Transfer	DMA stops when the MDi1 and MDi0 bits are set to "002" (DMA dis-					
Repeat Transfer		abled) and the DCTi register is set to "000016" (0 DMA transfer) by DMA					
		transfer or write					
		DMA stops when the MDi1 and MDi0 bits are set to "002" and the DCT					
		register is set to "000016" and the DRCi register set to "000016"					
Reload Timing to the DCTi		When the DCTi register is set to "000016" from "000116" in repeat trans-					
or DMAi Register		fer mode					
DMA Transfer (Cycles	Minimum 3 cycles between SFR and internal RAM					

NOTES:

1. The IR bit in the interrupt control register does not change when a DMA request is acknowledged.

DMAi Request Source Select Register (i=0 to 3) Symbol Address After Reset DM0SL to DM3SL 037816, 037916, 037A16, 037B16 0X00 00002 Bit Symbol Bit Name **Function** RW RW DSEL0 DSEL1 RW See Table 13.2 for the DMiSL **DMA Request Source** DSEL2 RW Select Bit(1) register (i = 0 to 3) function RW DSEL3 RW DSEL4 When a software trigger is selected, Software DMA a DMA request is generated by DSR RW Request Bit(2) setting this bit to "1" (When read, its content is always "0") When read, RO Reserved Bit its content is indeterminate (b6)0: Not requested DRQ DMA Request Bit(2, 3) RW 1: Requested 1. Change the DSEL4 to DSEL0 bit settings while the MDi1 and MDi0 bits in the DMD0 and DMD1

registers are set to "002" (DMA disabled). Also, set the DRQ bit to "1" simultaneously when the

Figure 13.2 DM0SL to DM3SL Registers

DSEL4 to DSEL0 bit settings are changed. e.g., MOV.B #083h, DMiSL; Set timer A0

e.g., OR.B #0A0h, DMiSL 3. Do not set the DRQ bit to "0".

2. When the DSR bit is set to "1", set the DRQ bit to "1" simultaneously.

Table 13.2 DMiSL Register (i = 0 to 3) Function

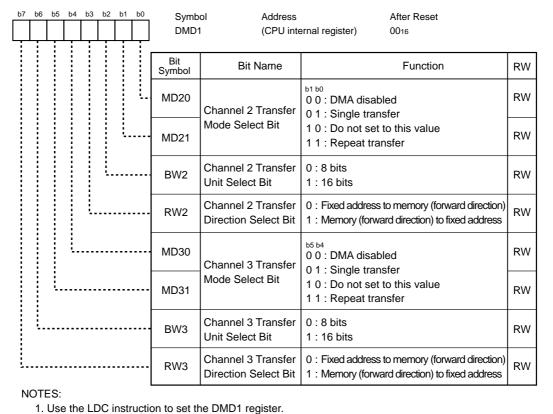
Setting Value		DMA Request	Source								
b4 b3 b2 b1 b0 DMA0 DMA1 DMA2 DMA3											
0 0 0 0 0		Softwar	e trigger								
0 0 0 0 1	Falling Edge of INT0	Falling Edge of INT1	Falling Edge of INT2	Falling Edge of INT3 ⁽¹⁾							
0 0 0 1 0	Both Edges of INT0	Both Edges of INT1	Both Edges of INT2	Both Edges of INT3 ⁽¹⁾							
0 0 0 1 1	Timer A0 Interrupt Request										
0 0 1 0 0	Timer A1 Interrupt Request										
0 0 1 0 1		Timer A2 Inte	rrupt Request								
0 0 1 1 0		Timer A3 Inte	rrupt Request								
0 0 1 1 1		Timer A4 Inte	rrupt Request								
0 1 0 0 0		Timer B0 Inte	rrupt Request								
0 1 0 0 1		Timer B1 Inte	rrupt Request								
0 1 0 1 0		Timer B2 Inte	rrupt Request								
0 1 0 1 1		Timer B3 Inte	rrupt Request								
0 1 1 0 0		Timer B4 Inte	rrupt Request								
0 1 1 0 1		Timer B5 Inte	rrupt Request								
0 1 1 1 0		UART0 Transmit	Interrupt Request								
0 1 1 1 1		UARTO Receive or AC	CK Interrupt Request ⁽³⁾								
1 0 0 0 0		UART1 Transmit	Interrupt Request								
1 0 0 0 1		UART1 Receive or AC	CK Interrupt Request ⁽³⁾								
1 0 0 1 0	UART2 Transmit Interrupt Request										
1 0 0 1 1		UART2 Receive or AC	CK Interrupt Request ⁽³⁾								
1 0 1 0 0		UART3 Transmit	Interrupt Request								
1 0 1 0 1		UART3 Receive or AC	CK Interrupt Request ⁽³⁾								
1 0 1 1 0		UART4 Transmit	Interrupt Request								
1 0 1 1 1		UART4 Receive or AC	CK Interrupt Request ⁽³⁾								
1 1 0 0 0		A/D0 Interrupt	Request								
1 1 0 0 1	Intelligent I/O Interrupt 0 Request ⁽⁶⁾		Intelligent I/O Interrupt 2 Request	Intelligent I/O Interrupt 9 Request ⁽⁴⁾							
1 1 0 1 0	Intelligent I/O Interrupt 1 Request ⁽⁷⁾	Intelligent I/O Interrupt 8 Request	Intelligent I/O Interrupt 3 Request	Intelligent I/O Interrupt 10 Request ⁽⁵⁾							
1 1 0 1 1	Intelligent I/O Interrupt 2 Request	Intelligent I/O Interrupt 9 Request ⁽⁴⁾	Intelligent I/O Interrupt 4 Request	CAN Interrupt 2 Request							
1 1 1 0 0	Intelligent I/O Interrupt 3 Request	Intelligent I/O Interrupt 10 Request ⁽⁵⁾	CAN Interrupt 5 Request	Intelligent I/O Interrupt 0 Request ⁽⁶⁾							
1 1 1 0 1	Intelligent I/O Interrupt 4 Request	CAN Interrupt 2 Request		Intelligent I/O Interrupt 1 Request ⁽⁷⁾							
1 1 1 1 0	CAN Interrupt 5 Request	Intelligent I/O Interrupt 0 Request ⁽⁶⁾		Intelligent I/O Interrupt 2 Request							
1 1 1 1 1		Intelligent I/O Interrupt 1 Request ⁽⁷⁾	Intelligent I/O Interrupt 8 Request	Intelligent I/O Interrupt 3 Request							

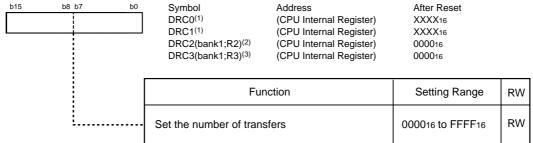
NOTES:

- 1. If the INT3 pin is used for data bus in memory expansion mode or microprocessor mode, a DMA3 interrupt request cannot be generated by a signal applied to the INT3 pin.
- 2. The falling edge and both edges of signals applied to the INTj pin (j=0 to 3) cause a DMA request generation. The INT interrupt (the POL bit in the INTjIC register, the LVS bit, the IFSR register) is not affected and vice versa.
- 3. Use the UkSMR register and UkSMR2 register (k=0 to 4) to switch between the UARTk receive and ACK interrupt as a DMA request source.
 - To use the ACK interrupt for a DMA regest, set the IICM bit in the UkSMR register to "1" and the IICM2 bit in the UkSMR2 register to "0".
- 4. The same setting is used to generate an intelligent I/O interrupt 9 request and a CAN interrupt 0 request.
- 5. The same setting is used to generate an intelligent I/O interrupt 10 request and a CAN interrupt 1 request.
- 6. The same setting is used to generate an intelligent I/O interrupt 0 request and a CAN interrupt 3 request.
- 7. The same setting is used to generate an intelligent I/O interrupt 1 request and a CAN interrupt 4 request.

DMA Mode Register 0⁽¹⁾ Symbol Address After Reset DMD0 (CPU Internal Register) 0016 Bit Name **Function** RW Symbol RW MD00 0 0 : DMA disabled Channel 0 Transfer 0 1 : Single transfer Mode Select Bit 10: Do not set to this value RW MD01 11: Repeat transfer Channel 0 Transfer 0:8 bits BW0 RW Unit Select Bit 1:16 bits Channel 0 Transfer 0: Fixed address to memory (forward direction) RW RW0 **Direction Select Bit** 1: Memory (forward direction) to fixed address MD10 RW 0 0: DMA disabled Channel 1 Transfer 0 1 : Single transfer Mode Select Bit 10: Do not set to this value MD11 RW 11: Repeat transfer Channel 1 Transfer 0:8 bits BW1 RW Unit Select Bit 1:16 bits Channel 1 Transfer 0: Fixed address to memory (forward direction) RW RW1 **Direction Select Bit** 1: Memory (forward direction) to fixed address NOTES: 1. Use the LDC instruction to set the DMD0 register.

DMA Mode Register 1⁽¹⁾



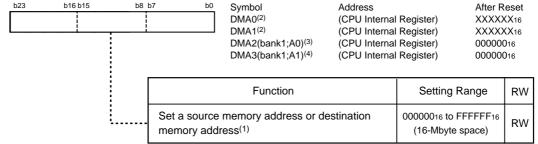

Figure 13.3 DMD0 and DMD1 Registers

DMAi Transfer Count Register (i=0 to 3) Symbol After Reset Address DCT0(2) (CPU Internal Register) XXXX16 DCT1(2) (CPU Internal Register) XXXX16 DCT2(bank1;R0)(3) (CPU Internal Register) 000016 DCT3(bank1;R1)(4) (CPU Internal Register) 000016 **Function** Setting Range RW Set the number of transfers 000016 to FFFF16⁽¹⁾ RW

NOTES:

- 1. When the DCTi register is set to "000016", no data transfer occurs regardless of a DMA request.
- 2. Use the LDC instruction to set the DCT0 and DCT1 registers.
- 3. To set the DCT2 register, set the B flag in the FLG register to "1" (register bank 1) and set the R0 register. Use the MOV instruction to set the R0 register.
- 4. To set the DCT3 register, set the B flag to "1" and set R1 register. Use the MOV instruction to set the R1 register.

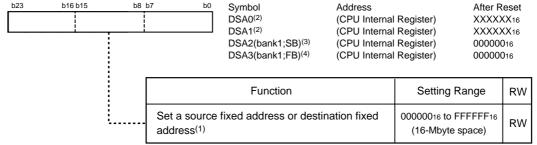
DMAi Transfer Count Reload Register (i=0 to 3)



NOTES:

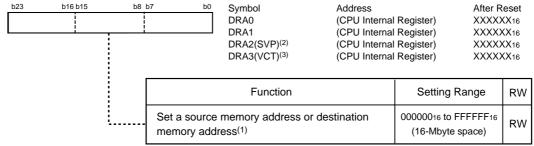
- 1. Use the LDC instruction to set the DRC0 and DRC1 registers.
- To set the DRC2 register, set the B flag in the FLG register to "1" (register bank 1) and set the R2 register. Use the MOV instruction to set the R2 register.
- 3. To set the DRC3 register, set the B flag to "1" and set R3 register. Use the MOV instruction to set the R3 register.

Figure 13.4 DCT0 to DCT3 Registers and DRC0 to DRC3 Registers


DMAi Memory Address Register (i=0 to 3)

NOTES:

- 1. When the RWk bit (k=0 to 3) in the DMDj register (j=0, 1)is set to "0" (fixed address to memory), a destination address is selected. When the RWk bit is set to "1" (memory to fixed address), a source address is selected.
- 2. Use the LDC instruction to set the DMA0 and DMA1 registers.
- 3. To set the DMA2 register, set the B flag in the FLG register to "1" (register bank 1) and set the A0 register. Use the MOV instruction to set the A0 register.
- 4. To set the DMA3 register, set the B flag to "1" and set the A1 register. Use the MOV instruction to set the A1 register.


DMAi SFR Address Register (i=0 to 3)

NOTES:

- 1. When the RWk bit (k=0 to 3) in the DMDj register (j=0, 1) is set to "0" (fixed address to memory), a source address is selected. When the RWk bit is set to "1" (memory to fixed address), a destination address is selected.
- 2. Use the LDC instruction to set the DSA0 and DSA1 registers.
- 3. To set the DSA2 register, set the B flag in the FLG register to "1" (register bank 1) and the set the SB register. Use the LDC instruction to set the DSA2 register.
- 4. To set the DSA3 register, set the B flag to "1" and set the FB register. Use the LDC instruction to set the DSA3 register.

DMAi Memory Address Reload Register⁽¹⁾ (i=0 to 3)

NOTES:

- 1. Use the LDC instruction to set the DRA0 and DRA1 registers.
- 2. To set the DRA2 register, set the SVP register.
- 3. To set the DRA3 register, set the VCT register.

Figure 13.5 DMA0 to DMA3 Registers, DSA0 to DSA3 Registers and DRA0 to DRA3 Registers

13.1 Transfer Cycle

Transfer cycle contains a bus cycle to read data from a memory or the SFR area (source read) and a bus cycle to write data to a memory space or the SFR area (destination write). The number of read and write bus cycles depends on source and destination addresses. In memory expansion mode and microprocessor mode, the number of read and write bus cycles also depends on DS register setting. Software wait state insertion and the $\overline{\text{RDY}}$ signal make a bus cycle longer.

13.1.1 Effect of Source and Destination Addresses

When a 16-bit data is transferred with a 16-bit data bus and a source address starting with an odd address, source read cycle is incremented by one bus cycle, compared to a source address starting with an even address.

When a 16-bit data is transferred with a 16-bit data bus and a destination address starting with an odd address, a destination write cycle is incremented by one bus cycle, compared to a destination address starting with an even address.

13.1.2 Effect of the DS Register

In an external space in memory expansion or microprocessor mode, transfer cycle varies depending on the data bus used at the source and destination addresses. See **Figure 8.1** for details about the DS register.

- When an 8-bit data bus (the DSi bit in the DS register is set to "0" (i=0 to 3)), accessing both source address and destination address, is used to transfer a 16-bit data, 8-bit data is transferred twice. Therefore, two bus cycles are required to read the data and another two bus cycles to write the data.
- When an 8-bit data bus (the DSi bit in the DS register is set to "0" (i=0 to 3)), accessing source address, and a 16-bit data bus, accessing destination address, are used to transfer a 16-bit data, 8-bit data is read twice but is written once as 16-bit data. Therefore, two bus cycles are required for reading and one bus cycle is for writing.
- When a 16-bit data bus, accessing source address, and an 8-bit data bus, accessing destination address, are used to transfer a 16-bit data, 16-bit data is read once and 8-bit data is written twice. Therefore, one bus cycle is required for reading and two bus cycles is for writing.

13.1.3 Effect of Software Wait State

When the SFR area or memory space with software wait states is accessed, the number of CPU clock cycles is incremented by software wait states.

Figure 13.6 shows an example of a transfer cycle for the source-read bus cycle. In Figure 13.6, the number of source-read bus cycles is illustrated under different conditions, provided that the destination address is an address of an external space with the destination-write cycle as two CPU clock cycles (=one bus cycle). In effect, the destination-write bus cycle is also affected by each condition and the transfer cycles change accordingly. To calculate a transfer cycle, apply respective conditions to both destination-write bus cycle and source-read bus cycle. As shown in example (2) of Figure 13.6, when an 8-bit data bus, accessing both source and destination addresses, is used to transfer a 16-bit data, two bus cycles each are required for the source-read bus cycle and destination-write bus cycle.

13.1.4 Effect of RDY Signal

In memory expansion or microprocessor mode, the \overline{RDY} signal affects a bus cycle if a source address or destination address is allocated address in an external space. Refer to **8.2.6** \overline{RDY} **Signal** for details.

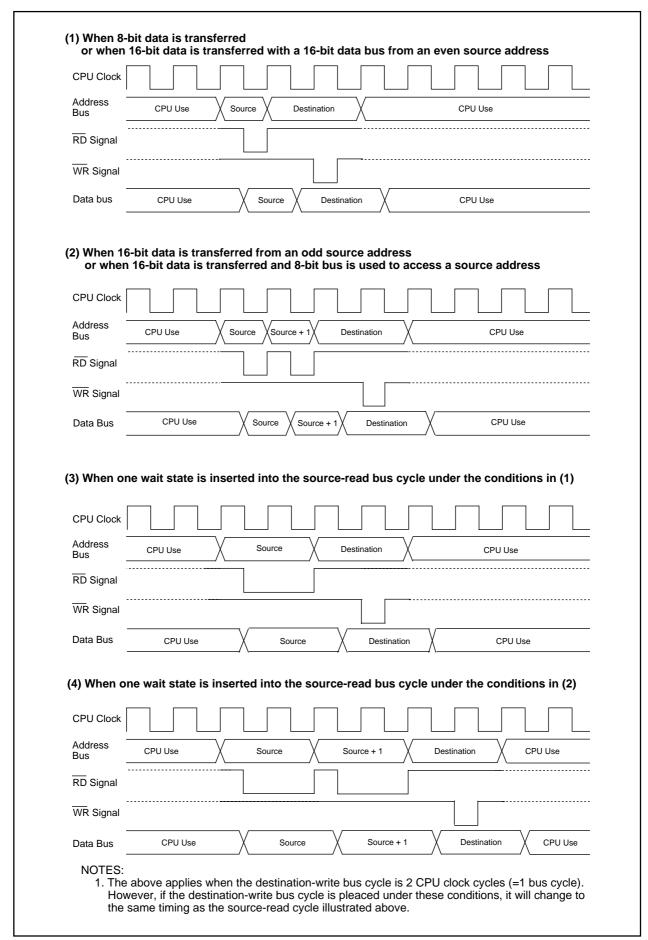


Figure 13.6 Transfer Cycle Examples with the Source-Read Bus Cycle

13.2 DMAC Transfer Cycle

The number of DMAC transfer cycle can be calculated as follows.

Any combination of even or odd transfer read and write addresses are possible. Table 13.3 lists the number of DMAC transfer cycles. Table 13.4 lists coefficient j, k.

Transfer cycles per transfer = Number of read cycle x j + Number of write cycle x k

Table 13.3 DMAC Transfer Cycles

Transfer Unit	Bus Width	Access Address	Single-C	hip Mode	Memory Expansion Mode Microprocessor Mode										
Transisi Cini	Buo Widii	7100000 71001000	Read	Write	Read	Write									
			Cycle	Cycle	Cycle	Cycle									
	16-bit	Even	1	1	1	1									
8-bit transfers		Odd	1	1	1	1									
(BWi bit in the DMDp	8-bit	8-bit	8-bit	8-bit	8-bit	8-bit	8-bit	8-bit	8-bit	8-bit	Even	_	_	1	1
register = 0)		Odd	_	_	1	1									
	16-bit	Even	1	1	1	1									
16-bit transfers		Odd	2	2	2	2									
(BWi bit = 1)	8-bit	Even	_	_	2	2									
		Odd	_	_	2	2									

i = 0 to 3, p = 0 to 1

Table 13.4 Coefficient j, k

Inte	ernal Space		External Space
Internal ROM Internal ROM SF		SFR	
or internal RAM	or internal RAM or internal RAM a		j and k BCLK cycles shown in Table 8.5.
with no wait state with a wait state			Add one cycle to j or k cycles when inserting a recovery cycle.
j=1	j=2	j=2	
k=1	k=2	k=2	

j, k=2 to 9

13.3 Channel Priority and DMA Transfer Timing

When multiple DMA requests are generated in the same sampling period, between the falling edge of the CPU clock and the next falling edge, the DRQ bit in the DMiSL register (i = 0 to 3) is set to "1" (requested) simultaneously. Channel priority in this case is: DMA0 > DMA1 > DMA2 > DMA3.

Figure 13.7 shows an example of the DMA transfer by external source.

In Figure 13.7, the DMA0 request having highest priority is received first to start a transfer when a DMA0 request and DMA1 request are generated simultaneously. After one DMA0 transfer is completed, the bus privilege is returned to the CPU. When the CPU has completed one bus access, the DMA1 transfer starts. After one DMA1 transfer is completed, the privilege is again returned to the CPU.

In addition, DMA requests cannot be counted up since each channel has one DRQ bit. Therefore, when DMA requests, as DMA1 in Figure 13.7, occur more than once before receiving bus privilege, the DRQ bit is set to "0" as soon as privilege is acquired. The bus privilege is returned to the CPU when one transfer is completed.

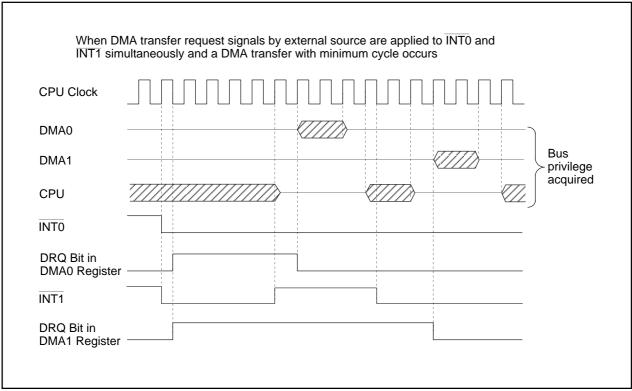


Figure 13.7 DMA Transfer by External Source

14. DMAC II

DMAC II performs memory-to-memory transfer, immediate data transfer and calculation transfer, which transfers the sum of two data added by an interrupt request from any peripheral functions.

Table 14.1 lists specifications of DMAC II.

Table 14.1 DMAC II Specifications

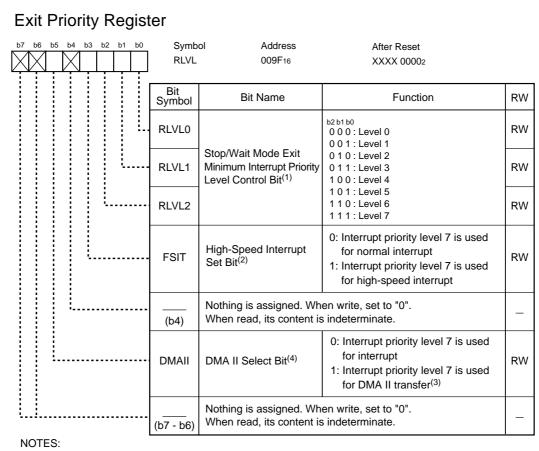
Item	Specification					
DMAC II Request Source	Interrupt requests generated by all peripheral functions when the ILVL2 to					
	ILVL0 bits are set to "1112"					
Transfer Data	Data in memory is transferred to memory (memory-to-memory transfer)					
	• Immediate data is transferred to memory (immediate data transfer)					
	• Data in memory (or immediate data) + data in memory are transferred to					
	memory (calculation transfer)					
Transfer Block	8 bits or 16 bits					
Transfer Space	64-Kbyte space in addresses 0000016 to 0FFFF16 ^(1, 2)					
Transfer Direction	Fixed or forward address					
	Selected separately for each source address and destination address					
Transfer Mode	Single transfer, burst transfer					
Chained Transfer Function	Parameters (transfer count, transfer address and other information) are					
	switched when transfer counter reaches zero					
End-of-Transfer Interrupt	Interrupt occurs when a transfer counter reaches zero					
Multiple Transfer Function	Multiple data can be transferred by a generated request for one DMAC II transfer					

NOTES:

- 1. When transferring a 16-bit data to destination address 0FFFF16, it is transferred to 0FFFF16 and 1000016. The same transfer occurs when the source address is 0FFFF16.
- 2. The actual space where transfer can occurs is limited due to internal RAM capacity.

14.1 DMAC II Settings

DMAC II can be made available by setting up the following registers and tables.


- RLVL register
- DMAC II Index
- Interrupt control register of the peripheral function causing a DMAC II request
- The relocatable vector table of the peripheral function causing a DMAC II request
- IRLT bit in the IIOiIE register (i = 0 to 5, 8 to 11) if using the intelligent I/O or CAN interrupt Refer to 11. Interrupts for details on the IIOiIE register.

14.1.1 RLVL Register

When the DMAII bit is set to "1" (DMAC II transfer) and the FSIT bit to "0" (normal interrupt), DMAC II is activated by an interrupt request from any peripheral function with the ILVL2 to ILVL0 bits in the interrupt control register set to "1112" (level 7).

Figure 14.1 shows the RLVL register.

- 1. The microcomputer exits stop or wait mode when the requested interrupt priority level is higher than the level set in the RLVL2 to RLVL0 bits. Set the RLVL2 to RLVL0 bits to the same value as IPL in the FLG register.
- 2. When the FSIT bit is set to "1", an interrupt having the interrupt priority level 7 becomes the high-speed interrupt. In this case, set only one interrupt to the interrupt priority level 7 and the DMAII bit to "0".
- 3. Set the ILVL2 to ILVL0 bits in the interrupt control register after setting the DMAII bit to "1". Do not change the DMAII bit setting to "0" after setting the DMAII bit to "1". Set the FSIT bit to "0" when the DMAII bit to "1".
- 4. The DMAII bit becomes indeterminate after reset. To use the DMAII bit for an interrupt setting, set it to "0" before setting the interrupt control register.

Figure 14.1 RLVL Register

14.1.2 DMAC II Index

The DMAC II index is a data table which comprises 8 to 18 bytes (maximum 32 bytes when the multiple transfer function is selected). The DMAC II index stores parameters for transfer mode, transfer counter, source address (or immediate data), operation address as an address to be calculated, destination address, chained transfer address, and end-of-transfer interrupt address.

This DMAC II index must be located on the RAM area.

Figure 14.2 shows a configuration of the DMAC II index. Table 14.2 lists a configuration of the DMAC II index in transfer mode.

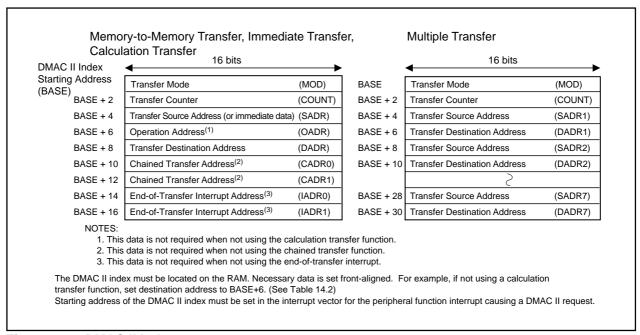


Figure 14.2 DMAC II Index

The followings are details of the DMAC II index. Set these parameters in the specified order listed in Table 14.2, according to DMAC II transfer mode.

Transfer mode (MOD)

Two-byte data is required to set transfer mode. Figure 14.3 shows a configuration for transfer mode.

• Transfer counter (COUNT)

Two-byte data is required to set the number of transfer.

Transfer source address (SADR)

Two-byte data is required to set the source memory address or immediate data.

Operation address (OADR)

Two-byte data is required to set a memory address to be calculated. Set this data only when using the calculation transfer function.

Transfer destination address (DADR)

Two-byte data is required to set the destination memory address.

Chained transfer address (CADR)

Four-byte data is required to set the starting address of the DMAC II index for the next transfer. Set this data only when using the chained transfer function.

End-of-transfer interrupt address (IADR)

Four-byte data is required to set a jump address for end-of-transfer interrupt processing. Set this data only when using the end-of-transfer interrupt.

Table 14.2 DMAC II Index Configuration in Transfer Mode

Transfer Data		emory-to-Me nmediate Da	emory Trans ata Transfer	fer	Calculation Transfer				Multiple Transfer
Chained Transfer	Not Used	Used	Not Used	Used	Not Used	Used	Not Used	Used	Not Available
End-of-Transfer Interrupt	Not Used	Not Used	Used	Used	Not Used	Not Used	Used	Used	Not Available
DMAC II	MOD COUNT SADR DADR	MOD COUNT SADR DADR CADRO	MOD COUNT SADR DADR	MOD COUNT SADR DADR CADRO	MOD COUNT SADR OADR	MOD COUNT SADR OADR	MOD COUNT SADR OADR	MOD COUNT SADR OADR	MOD COUNT SADR1 DADR1
Index	8 bytes	CADR1 12 bytes	IADR1	CADR1 IADR0 IADR1 16 bytes	10 bytes	CADR0 CADR1 14 bytes	IADR0 IADR1 14 bytes	CADRO CADR1 IADR0 IADR1 18 bytes	SADRi DADRi i=1 to 7 max. 32 bytes (when i=7)

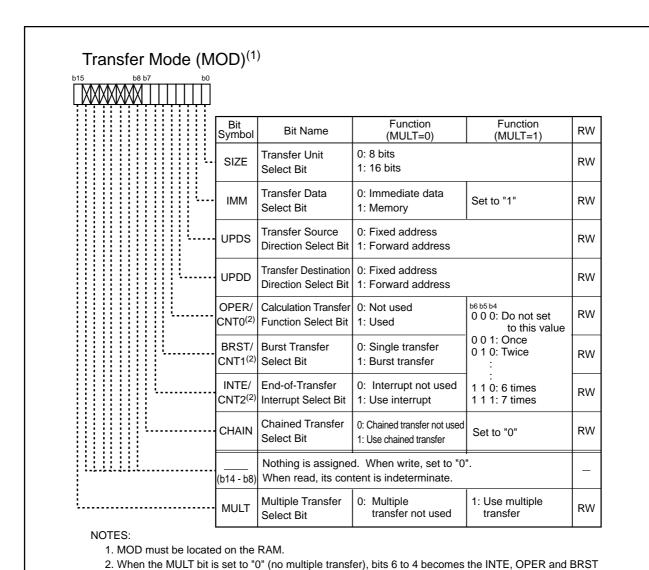


Figure 14.3 MOD

bits. When the MULT bit is set to "1" (multiple transfer), bits 6 to 4 becomes the CNT2 to CNT0 bits.

14.1.3 Interrupt Control Register for the Peripheral Function

For the peripheral function interrupt activating DMAC II, set the ILVL2 to ILVL0 bits to "1112" (level 7).

14.1.4 Relocatable Vector Table for the Peripheral Function

Set the starting address of the DMAC II index in the interrupt vector for the peripheral function interrupt activating DMAC II.

When using the chained transfer, the relocatable vector table must be located in the RAM.

14.1.5 IRLT Bit in the IIOiIE Register (i=0 to 5, 8 to 11)

When the intelligent I/O interrupt or CAN interrupt is used to activate DMAC II, set the IRLT bit in the IIOiIE register of the interrupt to "0".

14.2 DMAC II Performance

Function to activate DMAC II is selected by setting the DMA II bit to "1" (DMAC II transfer). DMAC II is activated by all peripheral function interrupts with the ILVL2 to ILVL0 bits set to "1112" (level 7). These peripheral function interrupt request signals become DMAC II transfer request signals and the peripheral function interrupt cannot be used.

When an interrupt request is generated by setting the ILVL2 to ILVL0 bits to "1112" (level 7), DMAC II is activated regardless of what state the I flag and IPL are in.

14.3 Transfer Data

DMAC II transfers 8-bit or 16-bit data.

- Memory-to-memory transfer: Data is transferred from a desired memory location in a 64-Kbyte space (Addresses 0000016 to 0FFFF16) to another desired memory location in the same space.
- Immediate data transfer: Immediate data is transferred to a desired memory location in a 64-Kbyte space.
- Calculation transfer: Two 8-bit or16-bit data are added together and the result is transferred to a desired memory location in a 64-Kbyte space.

When a 16-bit data is transferred to the destination address 0FFFF16, it is transferred to 0FFFF16 and 1000016. The same transfer occurs when the source address is 0FFFF16. Actual transferable space varies depending on the internal RAM capacity.

14.3.1 Memory-to-memory Transfer

Data transfer between any two memory locations can be:

- a transfer from a fixed address to another fixed address
- a transfer from a fixed address to a relocatable address
- a transfer from a relocatable address to a fixed address
- a transfer from a relocatable address to another relocatable address

When a relocatable address is selected, the address is incremented, after a transfer, for the next transfer. In a 8-bit transfer, the transfer address is incremented by one. In a 16-bit transfer, the transfer address is incremented by two.

When a source or destination address exceeds address 0FFFF16 as a result of address incrementation, the source or destination address returns to address 0000016 and continues incrementation. Maintain source and destination address at address 0FFFF16 or below.

14.3.2 Immediate Data Transfer

DMAC II transfers immediate data to any memory location. A fixed or relocatable address can be selected as the destination address. Store the immediate data into SADR. To transfer an 8-bit immediate data, write the data in the low-order byte of SADR (high-order byte is ignored).

14.3.3 Calculation Transfer

After two memory data or an immediate data and memory data are added together, DMAC II transfers calculated result to any memory location. SADR must have one memory location address to be calculated or immediate data and OADR must have the other memory location address to be calculated. Fixed or relocatable address can be selected as source and destination addresses when using a memory + memory calculation transfer. If the transfer source address is relocatable, the operation address also becomes relocatable. Fixed or relocatable address can be selected as the transfer destination address when using an immediate data + memory calculation transfer.

14.4 Transfer Modes

Single and burst transfers are available. The BRST bit in MOD selects transfer method, either single transfer or burst transfer. COUNT determines how many transfers occur. No transfer occurs when COUNT is set to "000016".

14.4.1 Single Transfer

For every transfer request source, DMAC II transfers one transfer unit of 8-bit or 16-bit data once. When the source or destination address is relocatable, the address is incremented, after a transfer, for the next transfer.

COUNT is decremented every time a transfer occurs. When using the end-of-transfer interrupt, the interrupt is acknowledged when COUNT reaches "0".

14.4.2 Burst Transfer

For every transfer request source, DMAC II continuously transfers data the number of times determined by COUNT. COUNT is decremented every time a transfer occurs. The burst transfer ends when COUNT reaches "0". The end-of-transfer interrupt is acknowledged when the burst transfer ends if using the end-of-transfer interrupt. All interrupts are ignored while the burst transfer is in progress.

14.5 Multiple Transfer

The MULT bit in MOD selects the multiple transfer. When using the multiple transfer, select the memory-to-memory transfer. One transfer request source initiates multiple transfers. The CNT2 to CNT0 bits in MOD selects the number of transfers from "0012" (once) to "1112" (7 times). Do not set the CNT2 to CNT0 bits to "0002".

The transfer source and destination addresses for each transfer must be allocated alternately in addresses following MOD and COUNT. When the multiple transfer is selected, the calculation transfer, burst transfer, end-of-transfer interrupt and chained transfer cannot be used.

14.6 Chained Transfer

The CHAIN bit in MOD selects the chained transfer.

The following process initiates the chained transfer.

- (1) Transfer, caused by a transfer request source, occurs according to the content of the DMAC II index. The vectors of the request source indicates where the DMAC II index is allocated. For each request, the BRST bit selects either single or burst transfer.
- (2) When COUNT reaches "0", the contents of CADR1 and CADR0 are written to the vector of the request source. When the INTE bit in MOD is set to "1", the end-of-transfer interrupt is generated simultaneously.
- (3) When the next DMAC II transfer request is generated, transfer occurs according to the contents of the DMAC II index indicated by the peripheral function interrupt vector rewritten in (2).

Figure 14.4 shows the relocatable vector and DMACII index when the chained transfer is in progress. For the chained transfer, the relocatable vector table must be located in the RAM.

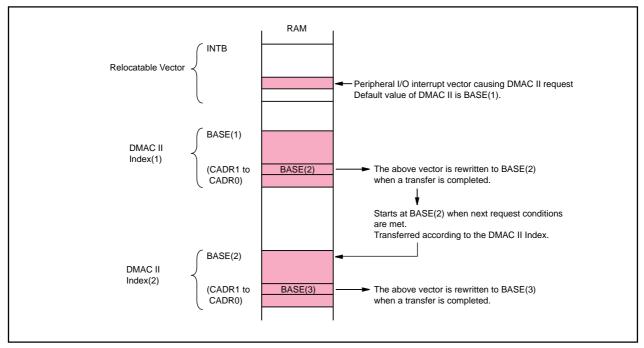


Figure 14.4 Relocatable Vector and DMAC II Index

14.7 End-of-Transfer Interrupt

The INTE bit in MOD selects the end-of-transfer interrupt. Set the starting address of the end-of-transfer interrupt routine in IADR1 and IADR0. The end-of-transfer interrupt is generated when COUNT reaches "0."

14.8 Execution Time

DMAC II execution cycle is calculated by the following equations:

Multiple transfers: $t = 21 + (11 + b + c) \times k$ cycles

Other than multiple transfers: $t = 6 + (26 + a + b + c + d) \times m + (4 + e) \times n$ cycles

a: If IMM = 0 (source of transfer is immediate data), a = 0;

if IMM = 1 (source of transfer is memory), a = -1

b: If UPDS = 1 (source transfer address is a relocatable address), b = 0;

if UPDS = 0 (source transfer address is a fixed address), b = 1

c: If UPDD = 1 (destination transfer address is a relocatable address), c = 0;

if UPDD = 0 (destination transfer address is a fixed address), c = 1

d: If OPER = 0 (calculation function is not selected), d = 0;

if OPER = 1 (calculation function is selected) and UPDS = 0 (source of transfer is immediate data or fixed address memory), d = 7;

if OPER = 1 (calculation function is selected) and UPDS = 1 (source of transfer is relocatable address memory), d = 8

e: If CHAIN = 0 (chained transfer is not selected), e = 0; if CHAIN = 1 (chained transfer is selected), e = 4

m: BRST = 0 (single transfer), m = 1; BRST = 1 (burst transfer), m = the value set in transfer counter

n: If COUNT = 1, n = 0; if COUNT = 2 or more, n = 1

k: Number of transfers set in the CNT2 to CNT0 bits

The equations above are approximations. The number of cycles may vary depending on CPU state, bus wait state, and DMAC II index allocation.

The first instruction from the end-of-transfer interrupt routine is executed in the eighth cycle after the DMAC II transfer is completed.

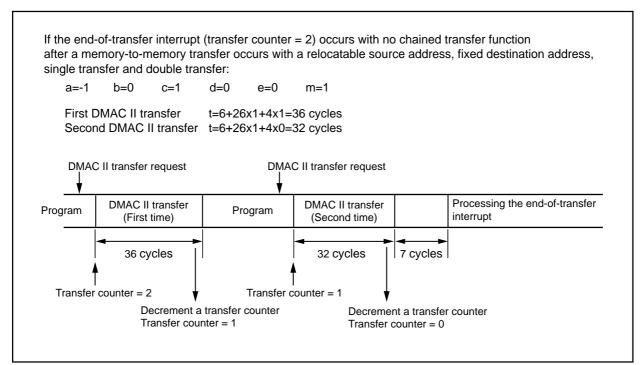


Figure 14.5 Transfer Cycle

When an interrupt request as a DMAC II transfer request source and another interrupt request with higher priority (e.g., $\overline{\text{NMI}}$ or watchdog timer) are generated simultaneously, the interrupt with higher priority takes precedence over the DMAC II transfer. The pending DMAC II transfer starts after the interrupt sequence has been completed.

15. Timer

The microcomputer has eleven 16-bit timers. Five timers A and six timers B have different functions. Each timer functions independently. The count source for each timer becomes the clock for timer operations including counting and reloading, etc. Figures 15.1 and 15.2 show block diagrams of timer A and timer B configuration.

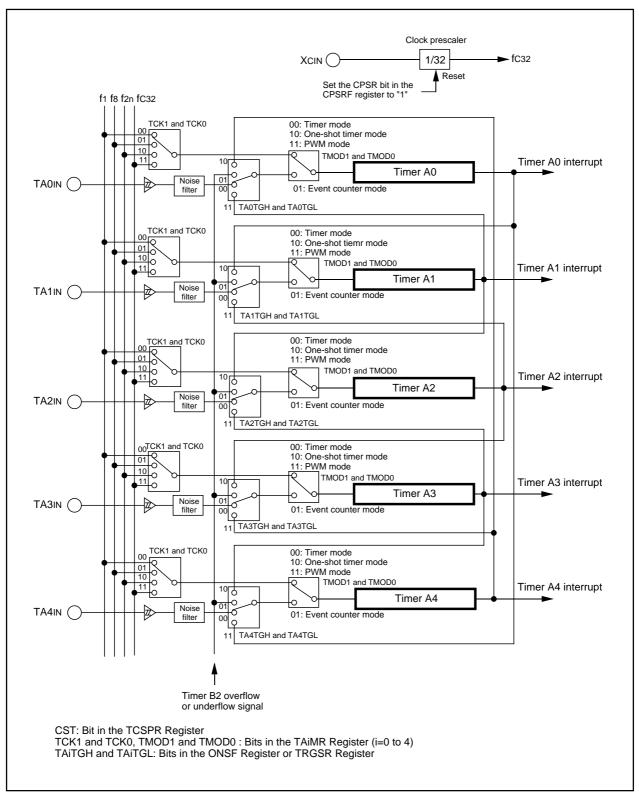


Figure 15.1 Timer A Configuration

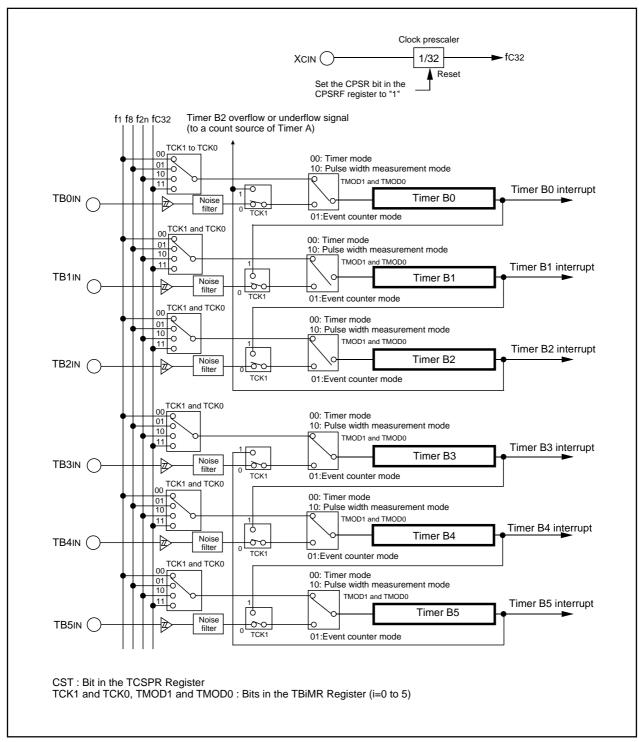


Figure 15.2 Timer B Configuration

15.1 Timer A

Figure 15.3 shows a block diagram of the timer A. Figures 15.4 to 15.7 show registers associated with the timer A.

The timer A supports the following four modes. Except in event counter mode, all timers A0 to A4 have the same function. The TMOD1 and TMOD0 bits in the TAiMR register (i=0 to 4) determine which mode is used.

- Timer mode: The timer counts an internal count source.
- Event counter mode: The timer counts an external pulse or an overflow and underflow of other timers.
- One-shot timer mode: The timer outputs one valid pulse until a counter value reaches "000016".
- Pulse width modulation mode: The timer continuously outputs desired pulse widths.

Table 15.1 lists TAiout pin settings when used as an output. Table 15.2 lists TAin and TAiout pin settings when used as an input.

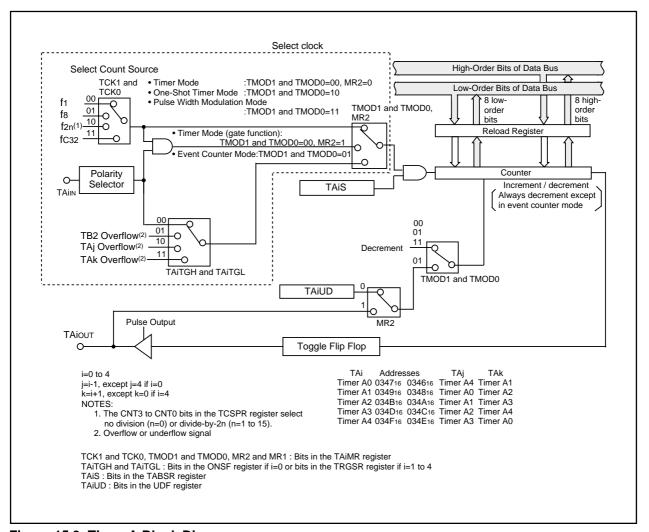
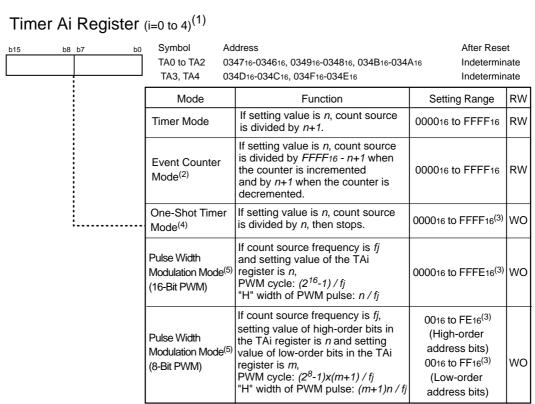



Figure 15.3 Timer A Block Diagram

fj : f1, f8, f2n, fC32 NOTES:

- 1. Use 16-bit data for reading and writing.
- The TAi register counts how many pulse inputs are provided externally or how many times another timer counter overflows and underflows.
- 3. Use the MOV instruction to set the TAi register.
- 4. When the TAi register is set to "000016", the timer counter does not start and the timer Ai interrupt request is not generated.
- 5. When the TAi register is set to "000016", the pulse width modulator does not operate and the TAiout pin is held "L". The TAi interrupt request is also not generated. The same situation occurs in 8-bit pulse width modulator mode if the 8 high-order bits in the TAi register are set to "0016".

Figure 15.4 TA0 to TA4 Registers

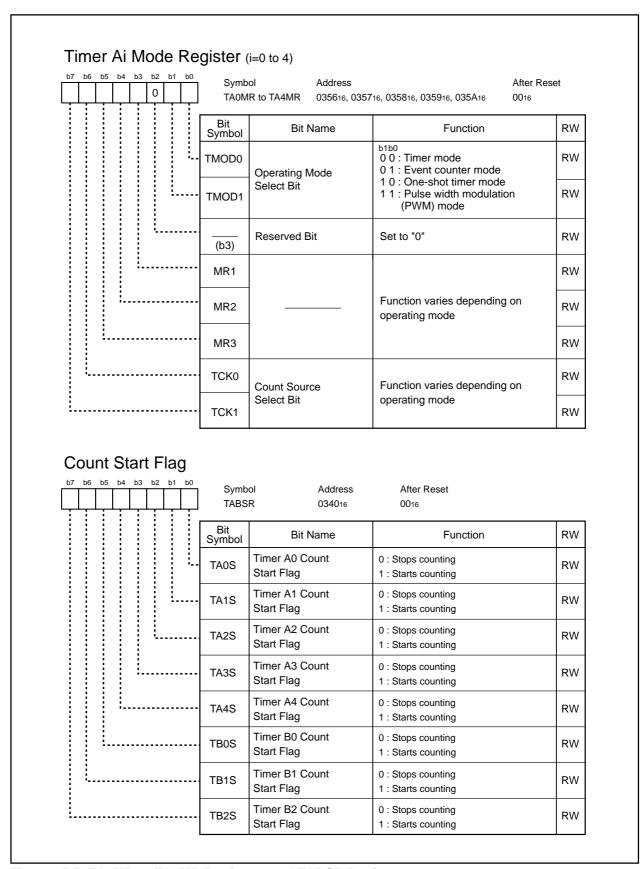
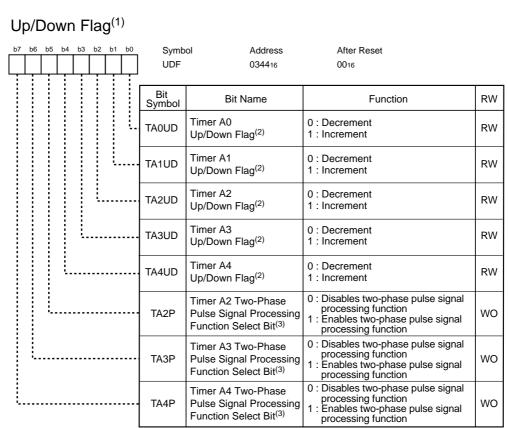



Figure 15.5 TA0MR to TA4MR Registers and TABSR Register

NOTES:

- 1. Use the MOV instruction to set the UDF register.
- 2. This bit is enabled when the MR2 bit in the TAiMR register (i=0 to 4) is set to "0" (the UDF register causes increment/decrement switching) in event counter mode.
- 3. Set this bit to "0" when not using the two-phase pulse signal processing function.

One-Shot Start Flag

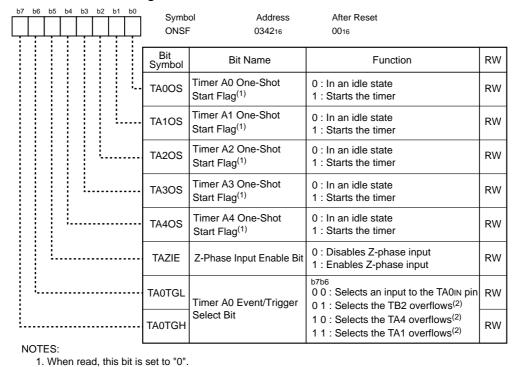
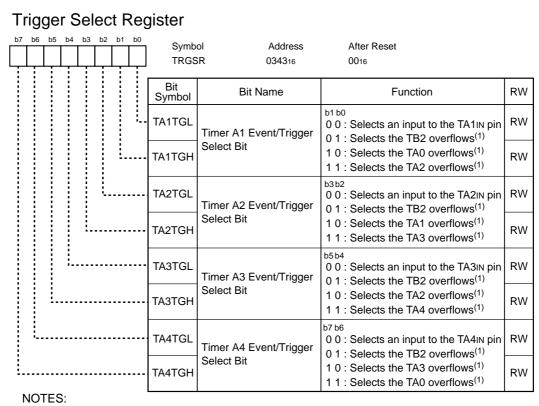



Figure 15.6 UDF Register and ONSF Register

2. Overflow or underflow.

1. Overflow or underflow

Count Source Prescaler Register

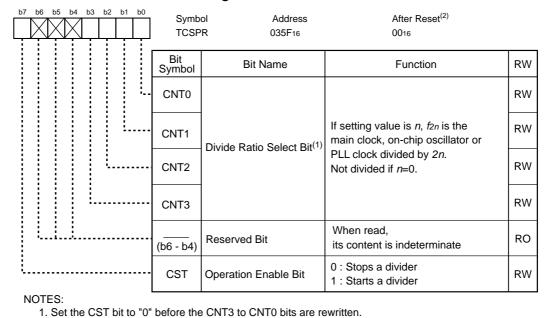


Figure 15.7 TRGSR Register and TCSPR Register

^{2.} The TCSPR register maintains values set before reset, even after software reset or watchdog timer reset has performed.

Table 15.1 Pin Settings for Output from TAiouT Pin (i=0 to 4)

Pin	Setting		
	PS1, PS2 Registers	PSL1, PSL2 Registers	PSC Register
P70/TA0ouT ⁽¹⁾	PS1_0= 1	PSL1_0=1	PSC_0= 0
P72/TA1out	PS1_2= 1	PSL1_2=1	PSC_2= 0
P74/TA2OUT	PS1_4= 1	PSL1_4=0	PSC_4= 0
P76/TA3out	PS1_6= 1	PSL1_6=1	PSC_6= 0
P80/TA4OUT	PS2_0= 1	PSL2_0=0	_

Table 15.2 Pin Settings for Input to TAilN and TAiOUT Pins (i=0 to 4)

Pin	Setting	
	PS1, PS2 Registers	PD7, PD8 Registers
P70/TA0out	PS1_0=0	PD7_0=0
P71/TA0IN	PS1_1=0	PD7_1=0
P72/TA1out	PS1_2=0	PD7_2=0
P73/TA1IN	PS1_3=0	PD7_3=0
P74TA2out	PS1_4=0	PD7_4=0
P75/TA2IN	PS1_5=0	PD7_5=0
Р76ТАЗООТ	PS1_6=0	PD7_6=0
P77/TA3IN	PS1_7=0	PD7_7=0
Р80/ТА400Т	PS2_0=0	PD8_0=0
P81/TA4IN	PS2_1=0	PD8_1=0

^{1.} P70/TA0out is a port for the N-channel open drain output.

15.1.1 Timer Mode

In timer mode, the timer counts an internally generated count source (see **Table 15.3**). Figure 15.8 shows the TAiMR register (i=0 to 4) in timer mode.

Table 15.3 Timer Mode Specifications

Item	Specification		
Count Source	f1, f8, f2n ⁽¹⁾ , fC32		
Counting Operation	The timer decrements a counter value		
	When the timer counter underflows, content of the reload register is reloaded into the		
	count register and counting resumes.		
Divide Ratio	1/(n+1) n: setting value of the TAi register (i=0 to 4) 000016 to FFFF16		
Counter Start Condition	The TAiS bit in the TABSR register is set to "1" (starts counting)		
Counter Stop Condition	The TAiS bit is set to "0" (stops counting)		
Interrupt Request Generation Timing	The timer counter underflows		
TAilN Pin Function	Programmable I/O port or gate input		
TAiout Pin Function	Programmable I/O port or pulse output		
Read from Timer	The TAi register indicates counter value		
Write to Timer	While the timer counter stops, the value written to the TAi register is also written to		
	both reload register and counter		
	While counting, the value written to the TAi register is written to the reload register		
	(It is transferred to the counter at the next reload timing)		
Selectable Function	Gate function		
	Input signal to the TAilN pin determines whether the timer counter starts or stops counting		
	Pulse output function		
	The polarity of the TAiout pin is inversed whenever the timer counter underflows		

NOTES:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

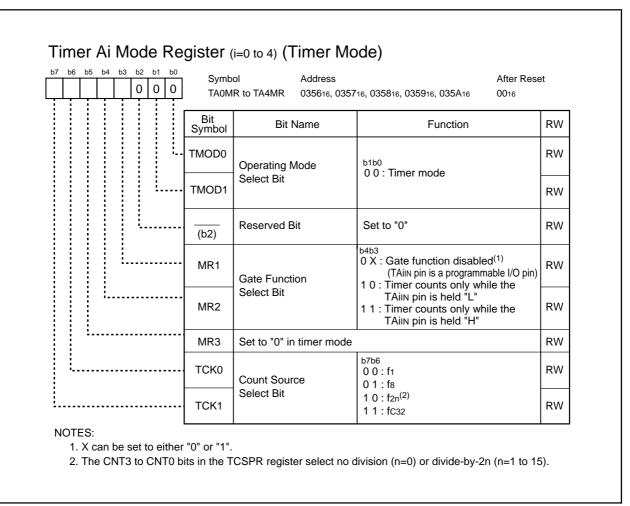


Figure 15.8 TA0MR to TA4MR Registers

15.1.2 Event Counter Mode

In event counter mode, the timer counts how many external signals are applied or how many times another timer counter overflows and underflows. The timers A2, A3 and A4 can count externally generated two-phase signals. Table 15.4 lists specifications in event counter mode (when not handling a two-phase pulse signal). Table 15.5 lists specifications in event counter mode (when handling a two-phase pulse signal with the timers A2, A3 and A4). Figure 15.9 shows the TAiMR register (i=0 to 4) in event counter mode.

Table 15.4 Event Counter Mode Specifications (When Not Processing Two-phase Pulse Signal)

Item	Specification	
Count Source	• External signal applied to the TAiIN pin (i = 0 to 4) (valid edge can be selected by program)	
	• Timer B2 overflow or underflow signal, timer Aj overflow or underflow signal (j=i-1,	
	except j=4 if i=0) and timer Ak overflow or underflow signal (k=i+1, except k=0 if i=4)	
Counting Operation	External signal and program can determine whether the timer increments or decre-	
	ments a counter value	
	• When the timer counter underflows or overflows, content of the reload register is	
	reloaded into the count register and counting resumes. When the free-running count	
	function is selected, the timer counter continues running without reloading.	
Divide Ratio	• 1/(FFFF16 - n + 1) for counter increment	
	• 1/(n + 1) for counter decrement n: setting value of the TAi register 000016 to FFFF16	
Counter Start Condition	The TAiS bit in the TABSR register is set to "1" (starts counting)	
Counter Stop Condition	The TAiS bit is set to "0" (stops counting)	
Interrupt Request Generation Timing	The timer counter overflows or underflows	
TAilN Pin Function	Programmable I/O port or count source input	
TAIOUT Pin Function	Programmable I/O port, pulse output or input selecting a counter increment or decrement	
Read from Timer	The TAi register indicates counter value	
Write to Timer	• When the timer counter stops, the value written to the TAi register is also written to	
	both reload register and counter	
	• While counting, the value written to the TAi register is written to the reload register	
	(It is transferred to the counter at the next reload timing)	
Selectable Function	Free-running count function	
	Content of the reload register is not reloaded even if the timer counter overflows or	
	underflows	
	Pulse output function	
	The polarity of the TAiout pin is inversed whenever the timer counter overflows or	
	underflows	

Table 15.5 Event Counter Mode Specifications (When Processing Two-phase Pulse Signal on Timer A2, A3 and A4)

Item	Specification	
Count Source	Two-phase pulse signal applied to the TAiIN and TAiOUT pins (i = 2 to 4)	
Counting Operation	Two-phase pulse signal determines whether the timer increments or decrements a	
Counting operation	counter value	
	When the timer counter overflows or underflows, content of the reload register is	
	reloaded into the count register and counting resumes. With the free-running count	
	function, the timer counter continues running without reloading.	
Divide Ratio	• 1/(FFFF16 - n + 1) for counter increment	
Divide Ratio	,	
Counter Start Condition	• 1/(n + 1) for counter decrement n: setting value of the TAi register 000016 to FFFF16 The TAIS bit in the TARSP register is set to "1" (starte counting)	
	The TAIS bit in the TABSR register is set to "1" (starts counting)	
Counter Stop Condition	The TAiS bit is set to "0" (stops counting)	
Interrupt Request Generation Timing	The timer counter overflows or underflows	
TAIN Pin Function	Two-phase pulse signal is applied	
TAIOUT Pin Function	Two-phase pulse signal is applied	
Read from Timer	The TAi register indicates the counter value	
Write to Timer	When the timer counter stops, the value written to the TAi register is also written to	
	both reload register and counter	
	While counting, the value written to the TAi register is written to the reload register	
40	(It is transferred to the counter at the next reload timing)	
Selectable Function ⁽¹⁾	Normal processing operation (the timer A2 and timer A3)	
	While a high-level ("H") signal is applied to the TAjout pin (j = 2 or 3), the timer	
	increments a counter value on the rising edge of the TAjıN pin or decrements a	
	counter on the falling edge.	
	ТАјоит	
	TAjIN Increment Increment Decrement Decrement Decrement	
	Multiply-by-4 processing operation (the timer A3 and timer A4)	
	While an "H" signal is applied to the TAkou⊤ pin (k = 3 or 4) on the rising edge of the	
	TAkın pin, the timer increments a counter value on the rising and falling edges of the	
	TAkout and TAkın pins.	
	While an "H" signal is applied to the TAko∪⊤ pin on the falling edge of the TAkıν pin, the	
	timer decrements a counter value on the rising and falling edges of the TAkout and	
	TAkın pins.	
	TAKOUT A V A V A V	
	TAKIN A A A A A A A A A A A A A A A A A A A	
	la constant on all oders. Decreased on all oders	
	Increment on all edges Decrement on all edges	

1. Only timer A3 operation can be selected. The timer A2 is for the normal processing operation. The timer A4 is for the multiply-by-4 operation.

Timer Ai Mode Re	gister (i=0 to 4) (Event	Counter Mode	e)	
b7 b6 b5 b4 b3 b2 b1 b0 0 0 1	Symb TA0M		s 035716, 035816, 035916,	After Reset 035A ₁₆ 00 ₁₆	
	Bit Symbol	Bit Name	Function (When not processing two-phase pulse signal)	Function (When processing two-phase pulse signal)	RW
	TMOD0	Operating Mode	b1b0 0 1 : Event counter m	ode ⁽¹⁾	RW
	TMOD1	Select Bit			RW
	(b2)	Reserved Bit	Set to "0"		RW
	MR1	Count Polarity Select Bit ⁽²⁾	Counts falling edges of an external signal Counts rising edges of an external signal	Set to "0"	RW
	MR2	Increment/Decrement Switching Source Select Bit	0 : UDF registser setting 1 : Input signal to TAiout pin ⁽³⁾	Set to "1"	RW
	MR3	Set to "0" in event cou	unter mode		RW
	TCK0	Count Operation Type Select Bit	0 : Reloading 1 : Free running		RW
	TCK1	Two-Phase Pulse Signal Processing Operation Select Bit ^(4,5)	Set to "0"	Normal processing operation Multiply-by-4 processing operation	RW

- 1. The TAiTGH and TAiTGL bits in the ONSF or TRGSR register determine the count source in the event counter mode.
- 2. MR1 bit setting is enabled only when counting how many times external signals are applied.
- 3. The timer decrements a counter value when an "L" signal is applied to the TAiouT pin and the timer increments a counter value when an "H" signal is applied to the TAiouT pin.
- 4. The TCK1 bit is enabled only in the TA3MR register.
- 5. For two-phase pulse signal processing, set the TAjP bit in the UDF register (j=2 to 4) to "1" (two-phase pulse signal processing function enabled). Also, set the TAiTGH and TAiTGL bits to "002" (input to the TAjIN pin).

Figure 15.9 TA0MR to TA4MR Registers

15.1.2.1 Counter Reset by Two-Phase Pulse Signal Processing

Z-phase input resets the timer counter when processing a two-phase pulse signal.

This function can be used in timer A3 event counter mode, two-phase pulse signal processing, free-running count operation type or multiply-by-4 processing. The Z-phase signal is applied to the $\overline{\text{INT2}}$ pin. When the TAZIE bit in the ONSF register is set to "1" (Z-phase input enabled), Z-phase input can reset the timer counter. To reset the counter by a Z-phase input, set the TA3 register to "000016" beforehand.

Z-phase input is enabled when the edge of the signal applied to the $\overline{\text{INT2}}$ pin is detected. The POL bit in the INT2IC register can determine edge polarity. The Z-phase must have a pulse width of one timer A3 count source cycle or more . Figure 15.10 shows two-phase pulses (A-phase and B-phase) and the Z-phase.

Z-phase input resets the timer counter in the next count source following Z-phase input. Figure 15.11 shows the counter reset timing.

Timer A3 interrupt request is generated twice continuously when a timer A3 overflow or underflow, and a counter reset by $\overline{\text{INT2}}$ input occur at the same time. Do not use the timer A3 interrupt request when this function is used.

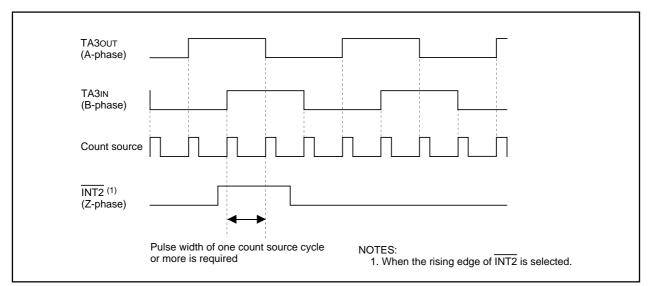


Figure 15.10 Two-Phase Pulse (A-phase and B-phase) and Z-phase

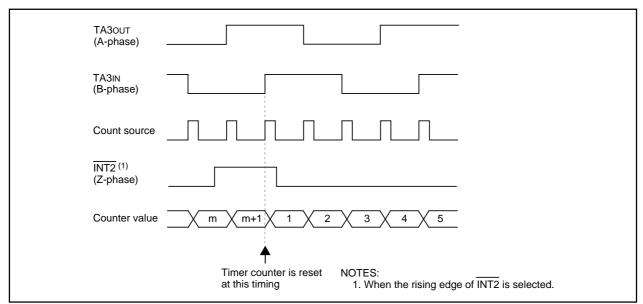


Figure 15.11 Counter Reset Timing

15.1.3 One-Shot Timer Mode

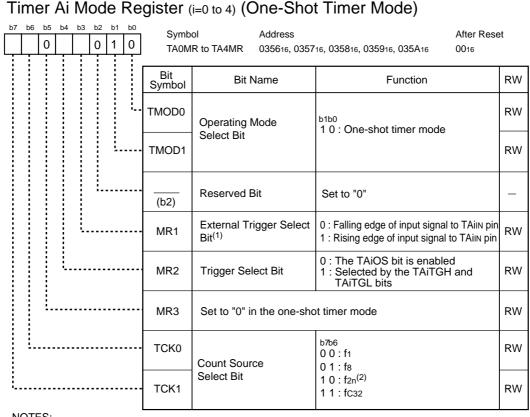

In one-shot timer mode, the timer operates only once for each trigger (see **Table 15.6**). Once a trigger occurs, the timer starts and continues operating for a desired period. Figure 15.12 shows the TAiMR register (i=0 to 4) in one-shot timer mode.

Table 15.6 One-Shot Timer Mode Specifications

Item	Specification		
Count Source	f1, f8, f2n ⁽¹⁾ , fC32		
Counting Operation	The timer decrements a counter value		
	When the timer counter reaches "000016", it stops counting after reloading.		
	If a trigger occurs while counting, content of the reload register is reloaded into the		
	count register and counting resumes.		
Divide Ratio	1/n n: setting value of the TAi register (i=0 to 4) 000016 to FFFF16,		
	but the timer counter does not run if n=000016		
Counter Start Condition	The TAiS bit in the TABSR register is set to "1" (starts counting) and following triggers		
	occur:		
	External trigger input is provided		
	Timer counter overflows or underflows		
	The TAiOS bit in the ONSF register is set to "1" (timer started)		
Counter Stop Condition	After the timer counter has reached "000016" and is reloaded		
	When the TAiS bit is set to "0" (stops counting)		
Interrupt Request Generation Timing	The timer counter reaches "000016"		
TAilN Pin Function	Programmable I/O port or trigger input		
TAIOUT Pin Function	Programmable I/O port or pulse output		
Read from Timer	The value in the TAi register is indeterminate when read		
Write to Timer	When the timer counter stops, the value written to the TAi register is also written to		
	both reload register and counter		
	While counting, the value written to the TAi register is written to the reload register.		
	(It is transferred to the counter at the next reload timing)		

NOTES:

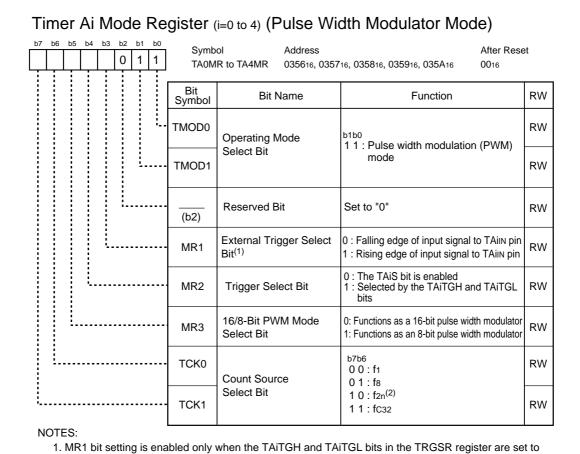
1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

- 1. The MR1 bit setting is enabled only when the TAiTGH and TAiTGL bits in the TRGSR register are set to "002" (input to the TAiin pin). The MR1 bit can be set to either "0" or "1" when the TAiTGH and TAiTGL bits are set to "012" (TB2 overflow and underflow), "102" (TAi overflow and underflow) or "112" (TAi overflow and underflow).
- 2. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

Figure 15.12 TA0MR to TA4MR Registers

15.1.4 Pulse Width Modulation Mode

In pulse width modulation mode, the timer outputs pulse of desired width continuously (see **Table 15.7**). The timer counter functions as either 16-bit pulse width modulator or 8-bit pulse width modulator. Figure 15.13 shows the TAiMR register (i=0 to 4) in pulse width modulation mode. Figures 15.14 and 15.15 show examples of how a 16-bit pulse width modulator operates and of how an 8-bit pulse width modulator operates.


Table 15.7 Pulse Width Modulation Mode Specifications

Item	Specification		
Count Source	f1, f8, f2n ⁽¹⁾ , fC32		
Counting Operation	The timer decrements a counter value		
	(The counter functions as an 8-bit or a 16-bit pulse width modulator)		
	Content of the reload register is reloaded on the rising edge of PWM pulse and count-		
	ing continues.		
	The timer is not affected by a trigger that is generated during counting.		
16-Bit PWM	• "H" width = n/f_j n : setting value of the TAi register 000016 to FFFE16		
	fj: count source frequency		
	• Cycle = $(2^{16}-1)/f_j$ fixed		
8-Bit PWM	• "H" width = n x (m+1) / fj		
	• Cycles = $(2^8-1) \times (m+1) / f_j$		
	m: setting value of low-order bit address of the TAi register 0016 to FF16		
	n: setting value of high-order bit address of the TAi register 0016 to FE16		
Counter Start Condition	External trigger input is provided		
	Timer counter overflows or underflows		
	The TAiS bit in the TABSR register is set to "1" (starts counting)		
Counter Stop Condition	The TAiS bit is set to "0" (stops counting)		
Interrupt Request Generation Timing	On the falling edge of the PWM pulse		
TAilN Pin Function	Programmable I/O port or trigger input		
TAiout Pin Function	Pulse output		
Read from Timer	The value in the TAi register is indeterminate when read		
Write to Timer	When the timer counter stops, the value written to the TAi register is also written to		
	both reload register and counter		
	While counting, the value written to the TAi register is written to the reload register		
	(It is transferred to the counter at the next reload timing)		

NOTES:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

"002" (input to the TAiIN pin). The MR1 bit can be set to either "0" or "1" when the TAiTGH and TAiTGL bits are set to "012" (TB2 overflow and underflow), "102" (TAi overflow and underflow) or

2. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

Figure 15.13 TA0MR to TA4MR Registers

"112" (TAi overflow and underflow).

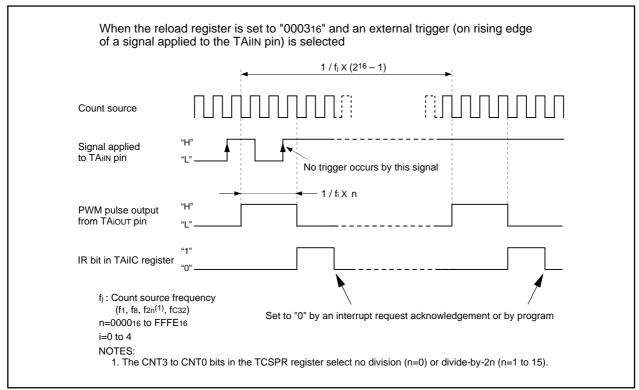


Figure 15.14 16-bit Pulse Width Modulator Operation

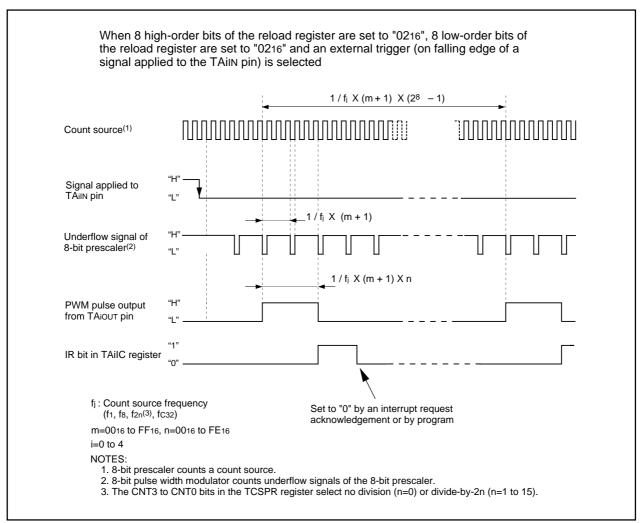


Figure 15.15 8-bit Pulse Width Modulator Operation

15.2 Timer B

Figure 15.16 shows a block diagram of the timer B. Figures 15.17 to 15.19 show registers associated with the timer B. The timer B supports the following three modes. The TMOD1 and TMOD0 bits in the TBiMR register (i=0 to 5) determine which mode is used.

- Timer mode: The timer counts an internal count source.
- Event counter mode: The timer counts pulses from an external source or overflow and underflow of another timer.
- Pulse period/pulse width measurement mode : The timer measures pulse period or pulse width of an external signal.

Table 15.8 lists TBiIN pin settings.

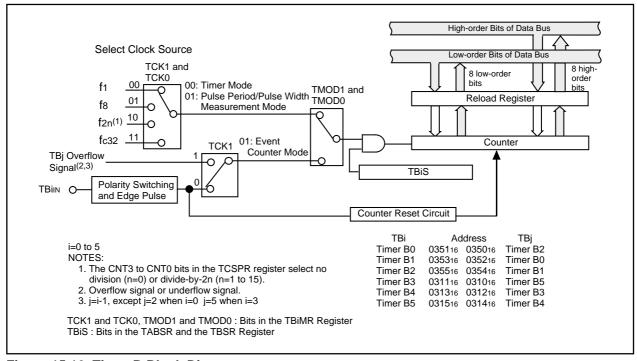


Figure 15.16 Timer B Block Diagram

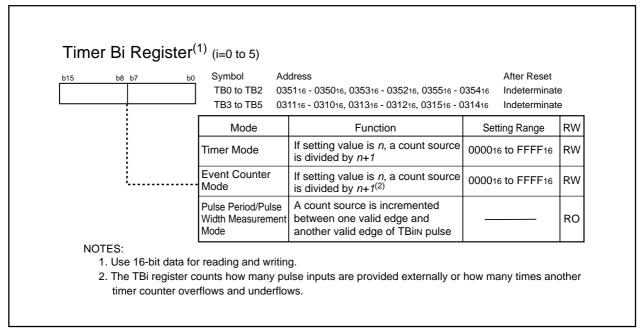
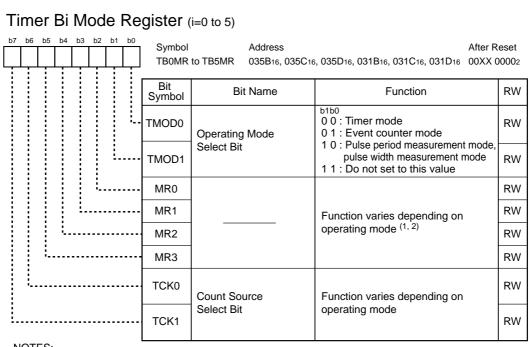



Figure 15.17 TB0 to TB5 Registers

- 1. Only MR2 bits in the TB0MR and TB3MR registers are enabled.
- Nothing is assigned in the MR2 bit in the TB1MR, TB2MR, TB4MR and TB5MR registers.
 When write, set to "0". When read, its content is indeterminate.

Count Start Flag

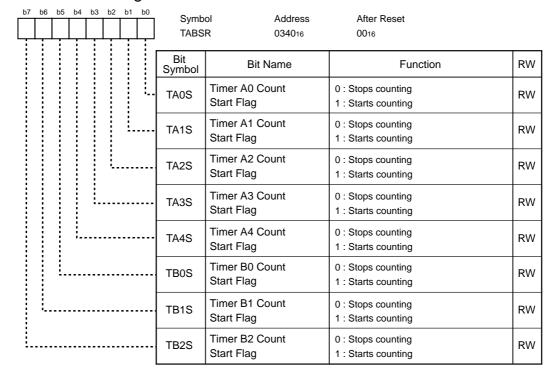


Figure 15.18 TB0MR to TB5MR Registers, TABSR Register

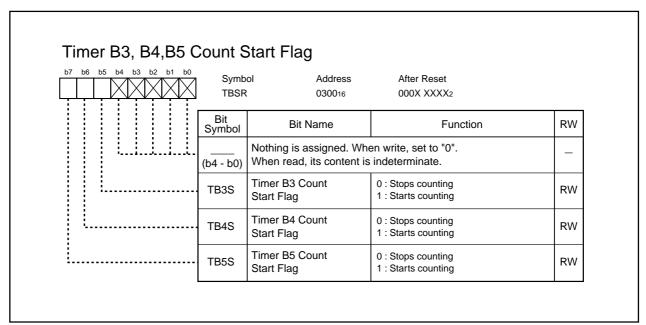


Figure 15.19 TBSR Register

Table 15.8 Settings for the TBin Pins (i=0 to 5)

Port Name	Function	Setting	
		PS1, PS3 ⁽¹⁾ Registers	PD7, PD9 ⁽¹⁾ Registers
P90	TB0in	PS3_0=0	PD9_0=0
P91	TB1IN	PS3_1=0	PD9_1=0
P92	TB2IN	PS3_2=0	PD9_2=0
P93	TB3IN	PS3_3=0	PD9_3=0
P94	TB4IN	PS3_4=0	PD9_4=0
P71	TB5IN	PS1_1=0	PD7_1=0

^{1.} Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

15.2.1 Timer Mode

In timer mode, the timer counts an internally generated count source (see **Table 15.9**). Figure 15.20 shows the TBiMR register (i=0 to 5) in timer mode.

Table 15.9 Timer Mode Specifications

Item	Specification		
Count Source	f1, f8, f2n ⁽¹⁾ , fC32		
Counting Operation	The timer decrements a counter value		
	When the timer counter underflows, content of the reload register is reloaded into the		
	count register and counting resumes		
Divide Ratio	1/(n+1) n. setting value of the TBi register (i=0 to 5) 000016 to FFFF16		
Counter Start Condition	The TBiS bits in the TABSR and TBSR registers are set to "1" (starts counting)		
Counter Stop Condition	The TBiS bit is set to "0" (stops counting)		
Interrupt Request Generation Timing	Timer counter underflows		
TBilN Pin Function	Programmable I/O port		
Read from Timer	The TBi register indicates counter value		
Write to Timer	• When the timer counter stops, the value written to the TBi register is also written to		
	both reload register and counter		
	While counting, the value written to the TBi register is written to the reload register		
	(It is transferred to the counter at the next reload timing)		

NOTES:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

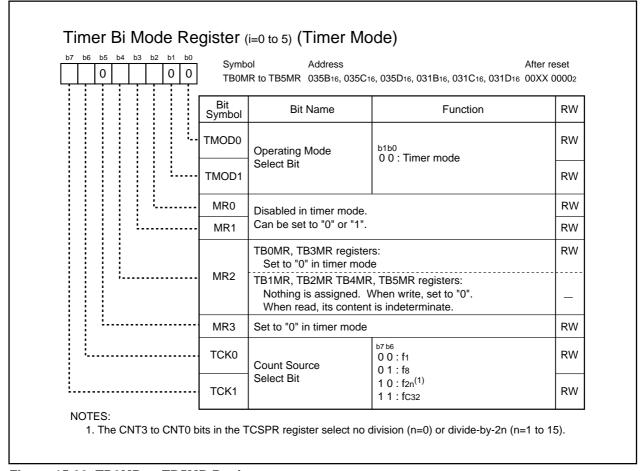


Figure 15.20 TB0MR to TB5MR Registers

15.2.2 Event Counter Mode

In event counter mode, the timer counts how many external signals are applied or how many times another timer overflows and underflows. (See **Table 15.10**) Figure 15.21 shows the TBiMR register (i=0 to 5) in event counter mode.

Table 15.10 Event Counter Mode Specifications

Item	Specification		
	·		
Count Source	• External signal applied to the TBiln pin (i = 0 to 5) (valid edge can be selected by		
	program)		
	• TBj overflow or underflow signal (j=i-1, except j=2 when i=0, j=5 when i=3)		
Counting Operation	The timer decrements a counter value		
	When the timer counter underflows, content of the reload register is reloaded into the		
	count register to continue counting		
Divide Ratio	1/(n+1) n: setting value of the TBi register 000016 to FFFF16		
Counter Start Condition	The TBiS bits in the TABSR and TBSR register are set to "1" (starts counting)		
Counter Stop Condition	The TBiS bit is set to "0" (stops counting)		
Interrupt Request Generation Timing	The timer counter underflows		
TBiIN Pin Function	Programmable I/O port or count source input		
Read from Timer	The TBi register indicates counter value		
Write to Timer	• When the timer counter stops, the value written to the TBi register is also written to		
	both reload register and counter		
	• While counting, the value written to the TBi register is written to the reload register		
	(It is transferred to the counter at the next reload timing)		

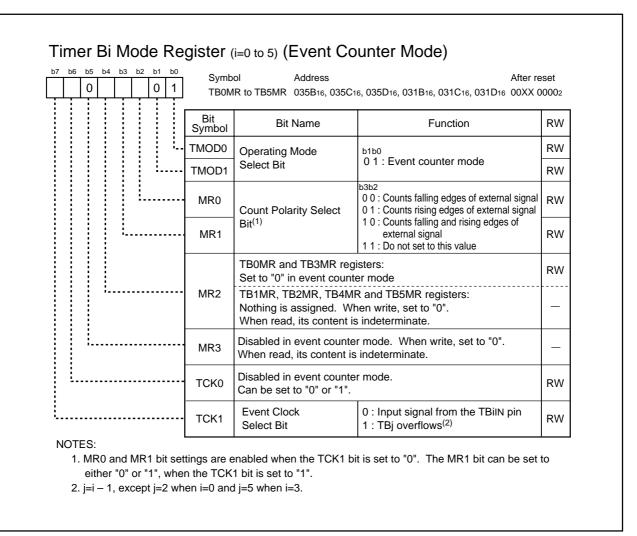


Figure 15.21 TB0MR to TB5MR Registers

15.2.3 Pulse Period/Pulse Width Measurement Mode

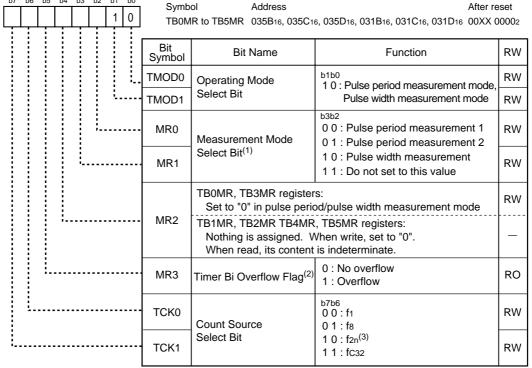

In pulse period/pulse width measurement mode, the timer measures pulse period or pulse width of an external signal. (See **Table 15.11**) Figure 15.22 shows the TBiMR register (i=0 to 5) in pulse period/pulse width measurement mode. Figure 15.23 shows an operation example in pulse period measurement mode. Figure 15.24 shows an operation example in the pulse width measurement mode.

Table 15.11 Pulse Period/Pulse Width Measurement Mode Specifications

Item	Specification	
Count Source	f1, f8, f2n ⁽³⁾ , fC32	
Counting Operation	The timer increments a counter value	
	Counter value is transferred to the reload register on the valid edge of a pulse to be	
	measured. It is set to "000016" and the timer continues counting	
Counter Start Condition	The TBiS bits (i=0 to 5) in the TABSR and TBSR register are set to "1" (starts counting)	
Counter Stop Condition	The TBiS bit is set to "0" (stops counting)	
Interrupt Request Generation Timing	On the valid edge of a pulse to be measured ⁽¹⁾	
	The timer counter overflows	
	The MR3 bit in the TBiMR register is set to "1" (overflow) simultaneously. When the	
	TBiS bit is set to "1" (start counting) and the next count source is counted after setting	
	the MR3 bit to "1" (overflow), the MR3 bit can be set to "0" (no overflow) by writing to	
	the TBiMR register.	
TBilN Pin Function	Input for a pulse to be measured	
Read from Timer	The TBi register indicates reload register values (measurement results) ⁽²⁾	
Write to Timer	Value written to the TBi register can be written to neither reload register nor counter	

- 1. No interrupt request is generated when the pulse to be measured is on the first valid edge after the timer has started counting.
- 2. The TBi register is in an indeterminate state until the pulse to be measured is on the second valid edge after the timer has started counting.
- 3. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

Timer Bi Mode Register (i=0 to 5) (Pulse Period / Pulse Width Measurement Mode)

- 1. The MR1 and MR0 bits selects the following measurements.
 - Pulse period measurement 1 (the MR1 and MR0 bits are set to "002"):
 - Measures between the falling edge and the next falling edge of a pulse to be measured Pulse period measurement 2 (the MR1 and MR0 bits are set to "012"):
 - Measures between the rising edge and the next rising edge of a pulse to be measured Pulse width measurement (the MR1 and MR0 bits are set to "102"):
 - Measures between a falling edge and the next rising edge of a pulse to be measured and between the rising edge and the next falling edge of a pulse to be measured
- 2. The MR3 bit is indeterminate when reset.
 - To set the MR3 bit to "0", se the TBiMR register after the MR3 bit is set to "1" and one or more cycles of the count source are counted, while the TBiS bits in the TABSR and TBSR registers are set to "1" (starts counting).
 - The MR3 bit cannot be set to "1" by program.
- 3. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

Figure 15.22 TB0MR to TB5MR Registers

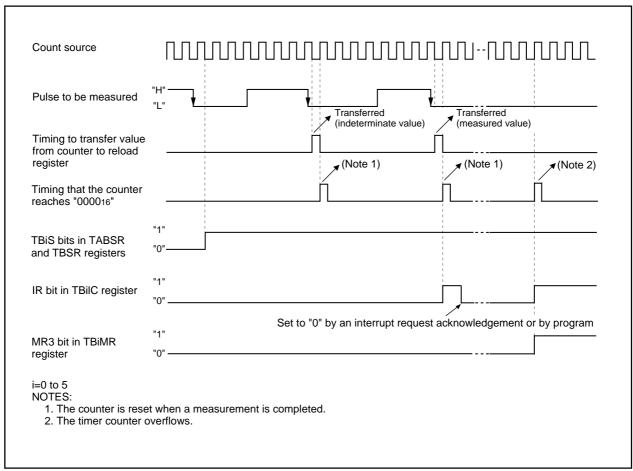


Figure 15.23 Operation Example in Pulse Period Measurement Mode

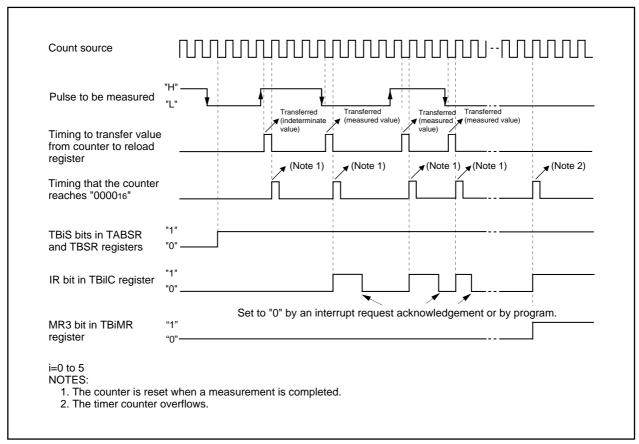


Figure 15.24 Operation Example in Pulse Width Measurement Mode

16. Three-Phase Motor Control Timer Functions

Three-phase motor driving waveform can be output by using the timers A1, A2, A4 and B2. Table 16.1 lists specifications of the three-phase motor control timer functions. Table 16.2 lists pin settings. Figure 16.1 shows a block diagram. Figures 16.2 to 16.7 show registers associated with the three-phase motor control timer functions.

Table 16.1 Three-Phase Motor Control Timer Functions Specification

Item	Specification		
Three-Phase Waveform Output Pin	Six pins $(U, \overline{U}, V, \overline{V}, W, \overline{W})$		
Forced Cutoff ⁽¹⁾	Apply a low-level ("L") signal to the NMI pin		
Timers to be Used	Timer A4, A1, A2 (used in one-shot timer mode):		
	Timer A4: U- and $\overline{\text{U}}$ -phase waveform control		
	Timer A1: V- and $\overline{ extsf{V}}$ -phase waveform control		
	Timer A2: W- and W-phase waveform control		
	Timer B2 (used in timer mode):		
	Carrier wave cycle control		
	Dead time timer (three 8-bit timers share reload register):		
	Dead time control		
Output Waveform	Triangular wave modulation, Sawtooth wave modulation		
	Can output a high-level waveform or a low-level waveform for one cycle;		
	Can set positive-phase level and negative-phase level separately		
Carrier Wave Cycle	Triangular wave modulation: count source x (m+1) x 2		
	Sawtooth wave modulation: count source x (m+1)		
	m. setting value of the TB2 register, 000016 to FFFF16		
	Count source: f1, f8, f2n ⁽²⁾ , fc32		
Three-Phase PWM Output Width	Triangular wave modulation: count source x n x 2		
	Sawtooth wave modulation: <i>count source</i> x <i>n</i>		
	n: setting value of the TA4, TA1 and TA2 register (of the TA4, TA41, TA11,		
	TA2 and TA21 registers when setting the INV11 bit to "1"), 000116 to FFFF16		
	Count source: f1, f8, f2n ⁽²⁾ , fc32		
Dead Time	Count source x p, or no dead time		
	ho: setting value of the DTT register, 0116 to FF16		
	Count source: f1, or f1 divided by 2		
Active Level	Selected from a high level ("H") or low level ("L")		
Positive- and Negative-Phase Con-	Positive and negative-phases concurrent active disable function		
current Active Disable Function	Positive and negative-phases concurrent active detect function		
Interrupt Frequency	For the timer B2 interrupt, one carrier wave cycle-to-cycle basis through 15		
	time- carrier wave cycle-to-cycle basis can be selected		

- 1. Forced cutoff by the signal applied to the NMI pin is available when the INV02 bit is set to "1" (three-phase motor control timer functions) and the INV03 bit is set to "1" (three-phase motor control timer output enabled).
- 2. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

Table 16.2 Pin Settings

Pin	Setting			
	PS1, PS2 Registers ⁽¹⁾	PSL1, PSL2 Registers	PSC Register	
P72/V	PS1_2 =1	PSL1_2 =0	PSC_2 =1	
P73/V	PS1_3 =1	PSL1_3 =1	PSC_3 =0	
P74/W	PS1_4 =1	PSL1_4 =1	PSC_4 =0	
P75/W	PS1_5 =1	PSL1_5 =0		
P80/U	PS2_0 =1	PSL2_0 =1		
P81/ U	PS2_1 =1	PSL2_1 =0		

^{1.} Set the PS1_5 to PS1_2 bits and PS2_1 and PS2_0 bits in the PS1 and PS2 registers to "1" after the INV02 bit is set to "1".

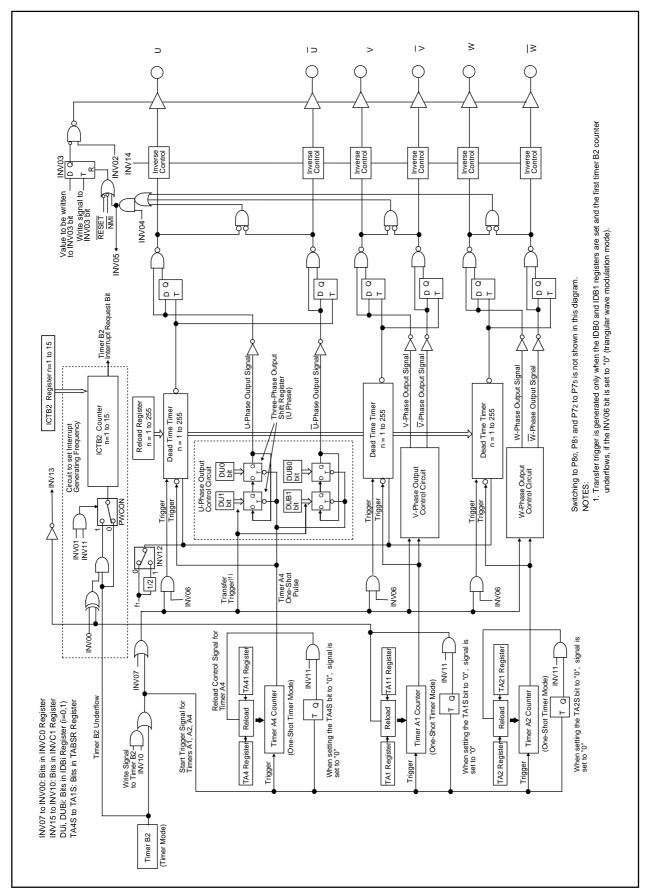


Figure 16.1 Three-Phase Motor Control Timer Functions Block Diagram

Three-Phase PWM Control Register 0 ⁽¹⁾					
b7 b6 b5 b4 b3 b2 b1 b0	Sym INV	abol Address	After Reset 0016		
	Bit Symbol	Bit Name	Function	RW	
1.	INV00	Interrupt Enable Output Polarity Select Bit ⁽³⁾	O: The ICTB2 counter is incremented by one on the rising edge of the timer A1 reload control signal The ICTB2 counter is incremented by one on the falling edge of the timer A1 reload control signal	RW	
<u> </u>	INV01	Interrupt Enable Output Specification Bit ^(2, 3)	ICTB2 counter is incremented by one when timer B2 counter underflows Selected by the INV00 bit	RW	
ļ ļ ļ ļ	INV02	Mode Select Bit ^(4, 5, 6)	No three-phase control timer function Three-phase control timer function	RW	
	INV03	Output Control Bit ^(6, 7)	Disables three-phase control timer output Enables three-phase control timer output	RW	
	INV04	Positive and Negative- Phases Concurrent Active Disable Function Enable Bit	Enables concurrent active output Disables concurrent active output	RW	
	INV05	Positive and Negative- Phases Concurrent Active Output Detect Flag ⁽⁸⁾	0: Not detected 1: Detected	RW	
	INV06	Modulation Mode Select ^(9, 10)	Triangular wave modulation mode Sawtooth wave modulation mode	RW	
NOTES:	· INV07	Software Trigger Select	Transfer trigger is generated when the INV07 bit is set to "1". Trigger to the dead time timer is also generated when setting the INV06 bit to "1". Its value is "0" when read.	RW	

- 1. Set the INVC0 register after the PRC1 bit in the PRCR register is set to "1" (write enable). Rewrite the INV02 to INV00 and INV06 bits when the timers A1,A2, A4 and B2 stop.
- 2. Set the INV01 bit to "1" after setting the ICTB2 register.
- 3. The INV01 and INV00 bit settings are enabled only when the INV11 bit in the INVC1 register is set to "1" (three-phase mode 1). The ICTB2 counter is incremented by one every time the timer B2 counter underflows, regardless of INV01 and INV00bit settings, when the INV11 bit is set to "0" (three-phase mode). When setting the INV01 bit to "1", set the timer A1 count start flag before the first timer B2 counter underflows. When the INV00 bit is set to "1", the first interrupt is generated when the timer B2 counter underflows n-1 times, if n is the value set in the ICTB2 counter. Subsequent interrupts are generated every n times the timer B2 counter underflows.
- 4. Set the INV02 bit to "1" to operate the dead time timer, U-, V-and W-phase output control circuits and ICTB2
- 5. Set pins after the INV02 bit is set to "1". See Table 16.2 for pin settings.
- 6. When the INV02 bit is set to "1" and the INV03 bit to "0", the U, \overline{U} , V, \overline{V} , W and \overline{W} pins, including pins shared with other output functions, are all placed in high-impedance states.
- 7. The INV03 bit is set to "0" when the followings occurs :
 - Reset
 - A concurrent active state occurs while the INV04 bit is set to "1"

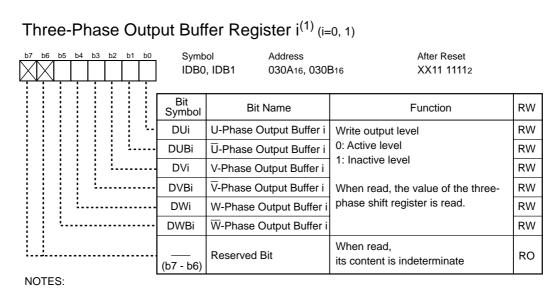
 - The INV03 bit is set to "0" by program An "H" signal applied to the $\overline{\text{NMI}}$ pin changes to an "L" signal
- 8. The INV05 bit can not be set to "1" by program. Set the INV04 bit to "0", as well, when setting the INV05 bit to "0".
- 9. The following table describes how the INV06 bit setting works.

Item	INV06 = 0	INV06 = 1
Mode	Triangular wave modulation mode	Sawtooth wave modulation mode
Timing to Transfer from the IDB0 and IDB1 Registers to Three-Phase Output Shift Register	Transferred once by generating a transfer trigger after setting the IDB0 and IDB1 registers	Transferred every time a transfer trigger is generated
Timing to Trigger the Dead Time Timer when the INV16 Bit=0	On the falling edge of a one-shot pulse of the timer A1, A2 or A4	By a transfer trigger, or the falling edge of a one-shot pulse of the timer A1, A2 or A4
INV13 Bit	Enabled when the INV11 bit=1 and the INV06 bit=0	Disabled

Transfer trigger: Timer B2 counter underflows and write to the INV07 bit, or write to the TB2 register when INV10 = 1 10. When the INV06 bit is set to "1", set the INV11 bit to "0" (three-phase mode 0) and the PWCON bit in the TB2SC register to "0" (timer B2 counter underflows).

Three-Phase PWM Control Register 1⁽¹⁾ Symbol Address After Reset INVC1 030916 n 0016 Bit Symbol Bit Name **Function** RW 0: Timer B2 counter underflows Timer A1, A2 and A4 1: Timer B2 counter underflows and RW INV₁₀ Start Trigger Select Bit write to the TB2 register Timer A1-1, A2-1 and 0: Three-phase mode 0 INV11 RW A4-1 Control Bit^(2, 3) 1: Three-phase mode 1 **Dead Time Timer** $0:f_1$ RW INV12 Count Source Select Bit 1: f1 divided-by-2 0: Timer A1 reload control signal is "0" INV13 Carrier Wave Detect Flag(4 RO 1: Timer A1 reload control signal is "1" 0 : Active "L" of an output waveform INV14 Output Polarity Control Bit RW 1 : Active "H" of an output waveform 0: Enables dead time Dead Time Disable Bit RW INV15 1: Disables dead time 0: Falling edge of a one-shot pulse of Dead Time Timer Trigger the timer A1, A2 and A4⁽⁵⁾ INV16 RW Select Bit 1: Rising edge of the three-phase output shift register (U-, V-, W-phase) Reserved Bit Set to "0" RW (b7)

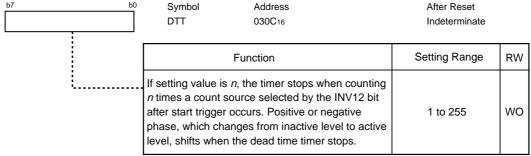
NOTES:


- 1. Rewrite the INVC1 register after the PRC1 bit in the PRCR register is set to "1" (write enable). The timers A1, A2, A4, and B2 must be stopped during rewrite.
- 2. The following table lists how the INV11 bit setting works.

Item	INV11 = 0	JNV11 = 1
Mode	Three-phase mode 0	Three-phase mode 1
TA11, TA21 and TA41 Registers	Not used	Used
INV01 and INV00 Bit in the INVC0 Register	Disabled. The ICTB2 counter is incremented whenever the timer B2 counter underflows	Enabled
INV13 Bit	Disabled	Enabled when INV11=1 and INV06=0

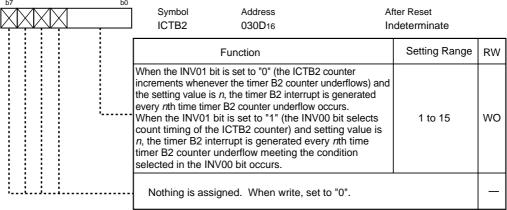
- 3. When the INV06 bit in the INVC0 registser is set to "1" (sawtooth wave modulation mode), set the INV11 bit to "0". Also, when the INV11 bit is set to "0", set the PWCON bit in the TB2SC register to "0" (Timer B2 counter underflows).
- 4. The INV13 bit setting is enabled only when the INV06 bit is set to "0" (Triangular wave modulation mode) and the INV11 bit to "1".
- 5. If the following conditions are all met, set the INV16 bit to "1".
 - The INV15 bit is set to "0"
 - The Dij bit (i=U, V or W, j=0, 1) and DiBj bit always have different values when the INV03 bit in the INVC0 register is set to "1". (The positive-phase and negative-phase outputs always provide opposite level signals.)

If the above conditions are not met, set the INV16 bit to "0".


Figure 16.3 INVC1 Register

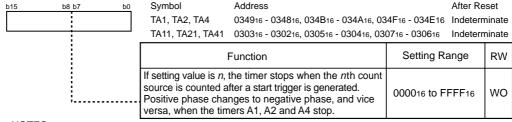
1. Values of the IDB0 and IDB1 registers are transferred to the three-phase output shift register by a transfer trigger.

After the transfer trigger occurs, the values written in the IDB0 register determine each phase output signal level first. Then the value written in the IDB1 register on the falling edge of the timers A1, A2 and A4 one-shot pulse determines each phase output signal level.


Dead Time Timer^(1, 2)

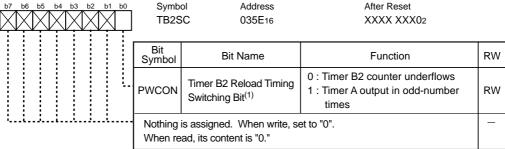
- 1. Use the MOV instruction to set the DTT register.
- 2. The DTT register setting is enabled when the INV15 bit in the INVC1 register is set to "0" (dead time enabled). No dead time can be set when the INV15 bit is set to "1" (dead time disabled). The INV06 bit in the INVC0 register determines start trigger of the DTT register.

Figure 16.4 IDB0 and IDB1 registers, DTT Register


Timer B2 Interrupt Generation Frequency Set Counter^(1, 2, 3)

NOTES:

- 1. Use the MOV instruction to set the ICTB2 register.
- 2. If the INV01 bit in the INVC0 register is set to "1", set the ICTB2 register in the TABSR register when the TB2S bit is set to "0" (timer B2 counter stopped).
 If the INV01 bit is set to "0" and the TB2S bit to "1" (timer B2 counter start), do not set the ICTB2 register when the timer B2 counter underflows.
- 3. If the INV00 bit in the INVC0 register is set to "1", the first interrupt is generated when the timer B2 counter underflows *n-1* times, *n* being the value set in the ICTB2 counter. Subsequent interrupts are generated every *n* times the timer B2 counter underflows.


Timer Ai, Ai-1 Register (i=1, 2, 4)^(1, 2, 3, 4, 5, 6)

NOTES:

- 1. Use a 16-bit data for read and write.
- 2. If the TAi or TAi1 register is set to "000016", no counter starts and no timer Ai interrupt is generated.
- 3. Use the MOV instruction to set the TAi and TAi1 registers.
- 4. When the INV15 bit in the INVC1 register is set to "0" (dead timer enabled), phase switches from an inactive level to an active level when the dead time timer stops.
- 5. When the INV11 bit in the INVC1 register is set to "0" (three-phase mode 0), the value of the TAi register is transferred to the reload register by a timer Ai start trigger. When the INV11 bit is set to "1" (three-phase mode 1), the value of the TAi1 register is first transferred to the reload register by a timer Ai start trigger. Then, the value of the TAi register is transferred by the next trigger. The values of the TAi1 and TAi registers are transferred alternately to the reload register with every timer Ai start trigger.
- 6. Do not write to these registers when the timer B2 counter underflows.

Timer B2 Special Mode Register

NOTES:

1. Set the PWCON bit to "0" when setting the INV11 bit to "0" (three-phase mode 0) or the INV06 bit to "1" (sawtooth wave modulation mode).

Figure 16.5 ICTB2 Register, TA1, TA2, TA4, TA11, TA21 and TA41 Registers, TB2SC Register

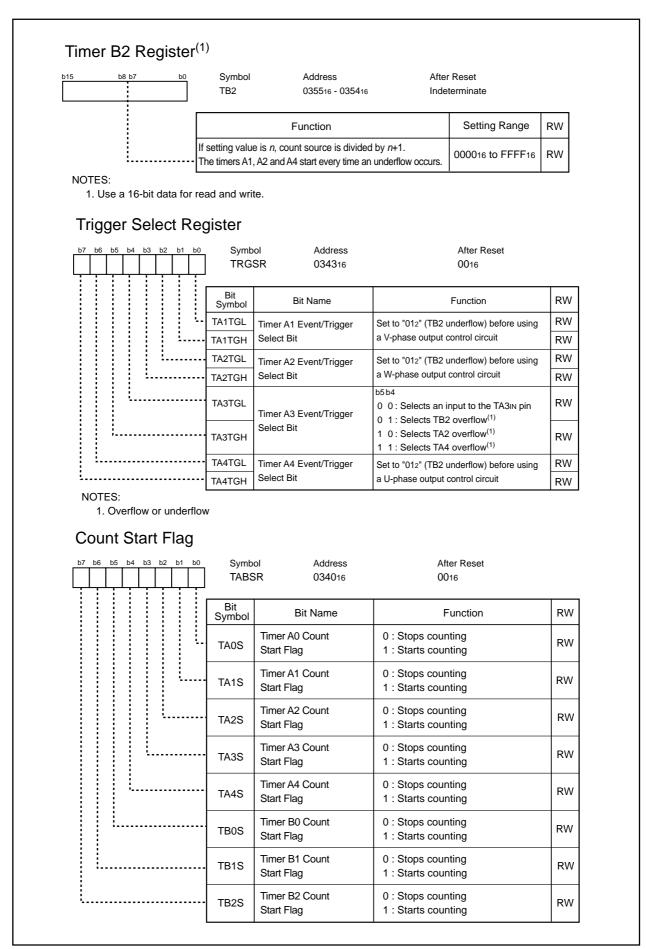


Figure 16.6 TB2, TRGSR and TABSR Registers

Timer Ai Mode Register (i=1, 2, 4) Symbol Address After Reset 0 1 0 0 1 0 TA1MR, TA2MR, TA4MR 035716, 035816, 035A16 0016 Bit RW Bit Name **Function** Symbol Set to "102" (one-shot timer TMOD0 Operating Mode RW mode) when using the three-phase Select Bit TMOD1 motor control timer function MR0 Reserved Bit Set to "0" RW Set to "0" when using the three-phase MR1 External Trigger Select Bit RW motor control timer function Set to "1" (selected by the TRGSR Trigger Select Bit register) when using the three-RW MR2 phase motor control timer function MR3 Set to "0" with the three-phase motor control timer function RW b7 b6 TCK0 RW 0 0:f1 Count Source Select Bit 0 1:f8 $1 \ 0 : f_{2n}^{(1)}$ RW TCK1 1 1: fc32 NOTES:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

Timer B2 Mode Register

Symbol After Reset Address 0 0 0 0 TB2MR 035D₁₆ 00XX 00002 0 Bit Symbol Bit Name RW **Function** TMOD0 Set to "002" (timer mode) when using Operating Mode RW the three-phase motor control timer Select Bit TMOD1 function Disabled when using the three-phase motor control timer function. MR0 When write, set to "0" MR1 When read, its content is indeterminate. MR2 Set to "0" when using three-phase motor control timer function RW Nothing is assigned. When write, set to "0". MR3 RW When read, its content is indeterminate. b7 b6 TCK0 RW 0 0:f1 Count Source Select Bit 0 1:f8 1 0: f₂n⁽¹⁾ TCK1 RW 1 1: fC32

Figure 16.7 TA1MR, TA2MR and TA4MR Registers, TB2MR Register

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

The three-phase motor control timer function is available by setting the INV02 bit in the INVC0 register to "1". The timer B2 is used for carrier wave control and the timers A1, A2, A4 for three-phase PWM output $(U, \overline{U}, V, \overline{V}, W, \overline{W})$ control. An exclusive dead time timer controls dead time. Figure 16.8 shows an example of the triangular modulation waveform. Figure 16.9 shows an example of the sawtooth modulation waveform.

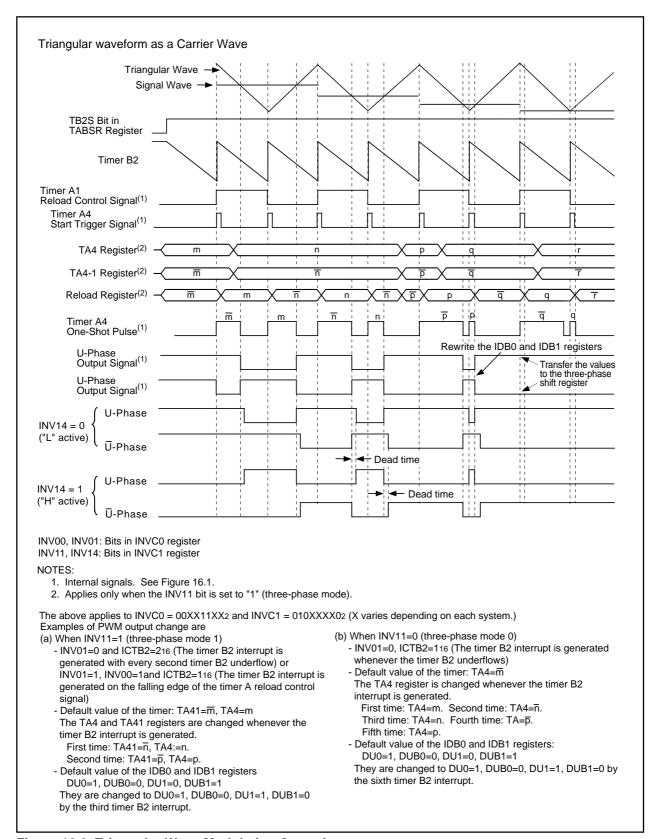


Figure 16.8 Triangular Wave Modulation Operation

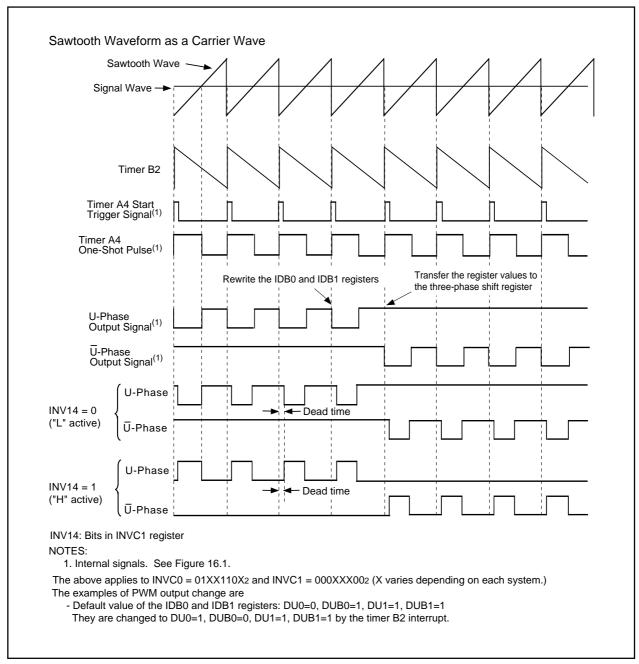


Figure 16.9 Sawtooth Wave Modulation Operation

17. Serial I/O

Serial I/O consists of five channels (UART0 to UART4).

Each UARTi (i=0 to 4) has an exclusive timer to generate the transfer clock and operates independently.

Figure 17.1 shows a UARTi block diagram.

UARTi supports the following modes:

- Clock synchronous serial I/O mode
- Clock asynchronous serial I/O mode (UART mode)
- Special mode 1 (I²C mode)
- Special mode 2
- Special mode 3 (Clock-divided synchronous function, GCI mode)
- Special mode 4 (Bus conflict detect function, IE mode)
- Special mode 5 (SIM mode)

Figures 17.2 to 17.9 show registers associated with UARTi.

Refer to the tables listing each mode for register and pin settings.

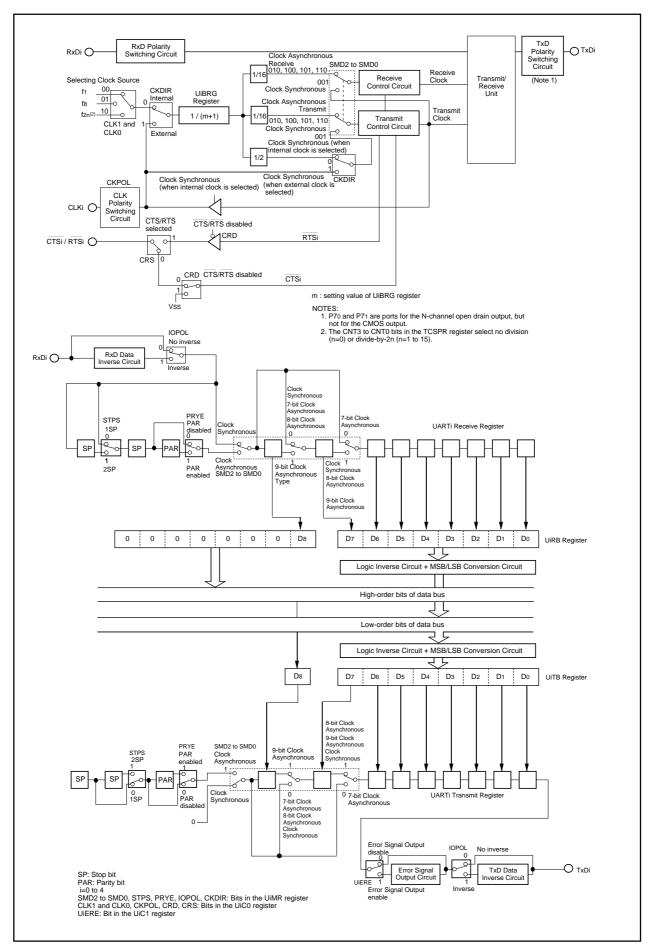
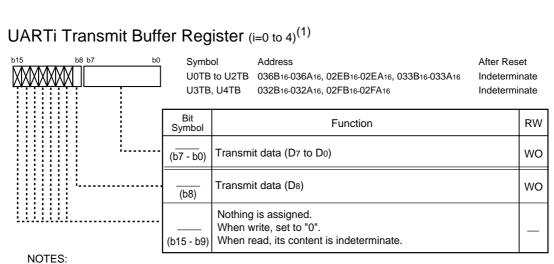
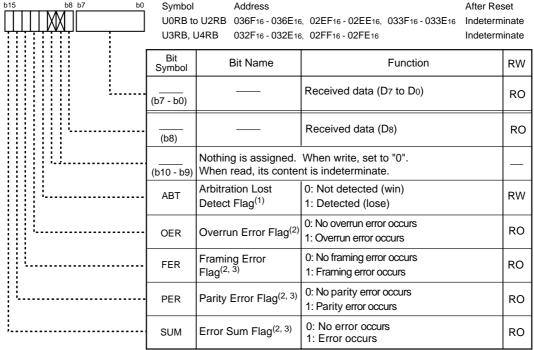




Figure 17.1 UARTi Block Diagram

^{1.} Use the MOV instruction to set the UiTB register.

UARTi Receive Buffer Register (i=0 to 4)

- 1. The ABT bit can be set to "0" only.
- 2. When the SMD2 to SMD0 bits in the UiMR register are set to "0002" (serial I/O disable) or the RE bit in the UiC1 register is set to "0" (receive disable), the OER, FER, PER and SUM bits are set to "0". When all OER, FER and PER bits are set to "0", the SUM bit is set to "0". Also, the FER and PER bits are set to "0" by reading low-order bits in the UiRB register.
- 3. These error flags are disabled when the SMD2 to SMD0 bits are set to "0012" (clock synchronous serial I/O mode) or to "0102" (I²C mode). When read, the contents are indeterminate.

Figure 17.2 U0TB to U4TB Registers and U0RB to U4RB Registers

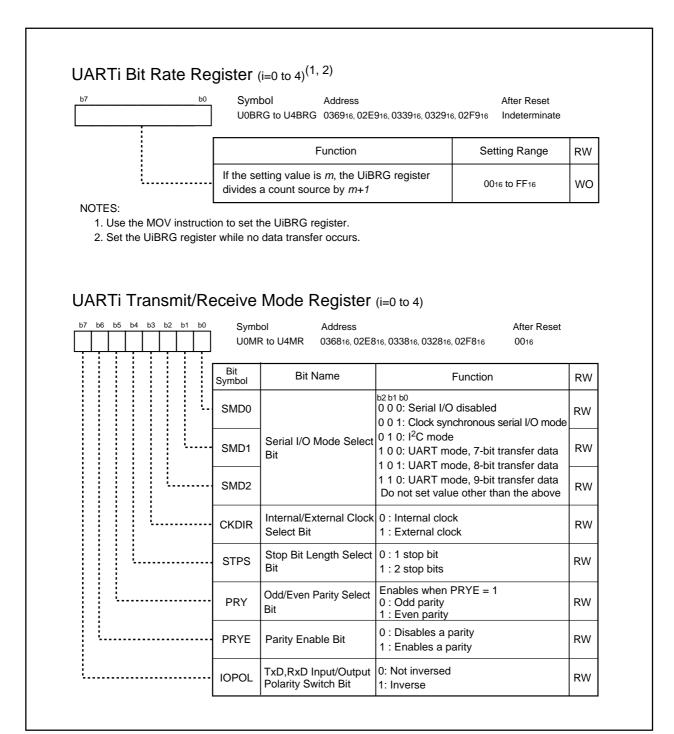
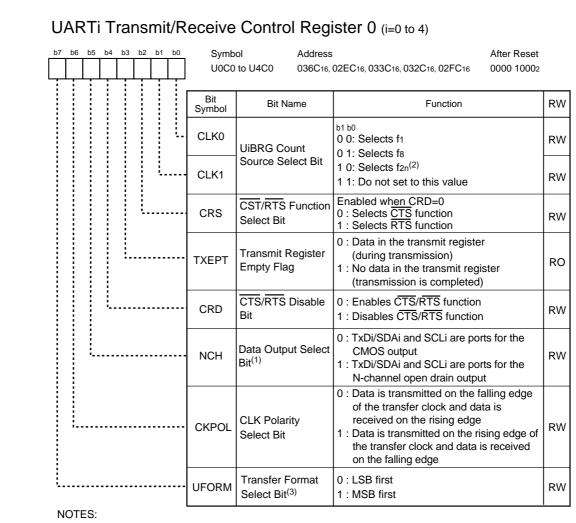
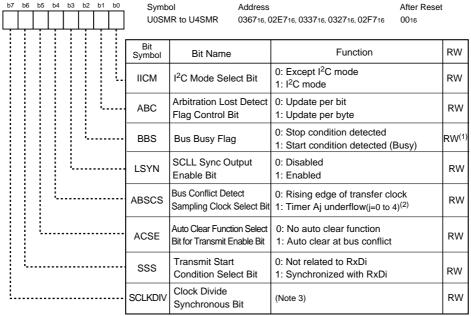



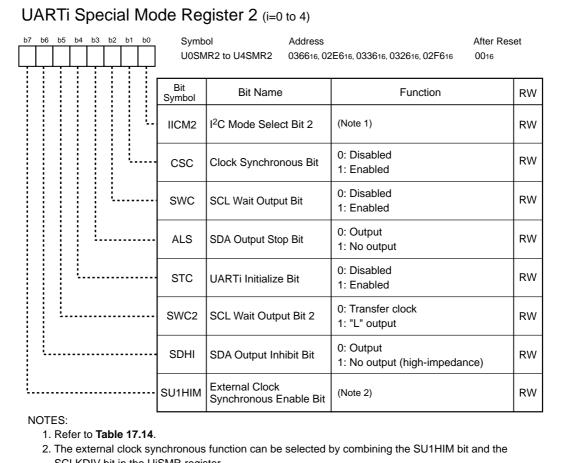
Figure 17.3 U0BRG to U4BRG Registers and U0MR to U4MR Registers

- 1. P70/TxD2 and P71/SCL2 are ports for the N-channel open drain output, but not for the CMOS output.
- 2. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).
- 3. The UFORM bit setting is enabled when the SMD2 to SMD0 bits in the UiMR register are set to "0012" (clock syncronous serial I/O mode) or "1012" (UART mode, 8-bit transfer data). Set the UFORM bit to "1" when setting the SMD2 to SMD0 bits to "0102" (I²C mode), or to "0" when setting them to "1002" (UART mode, 7-bit transfer data) or "1102" (UART mode, 9-bit transfer data).


Figure 17.4 U0C0 to U4C0 Registers

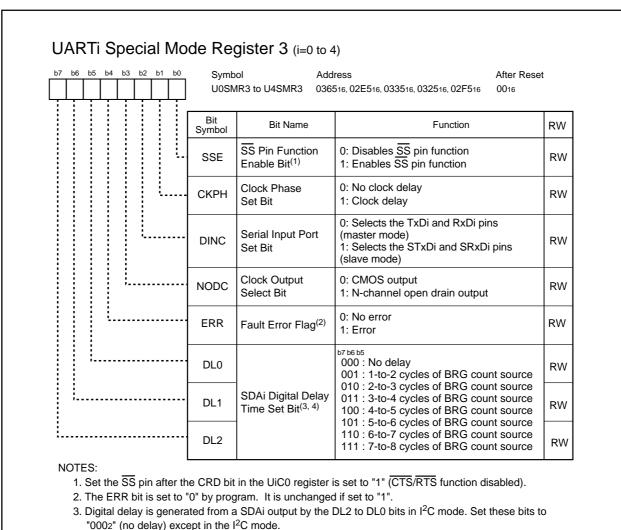
UARTi Transmit/Receive Control Register 1 (i=0 to 4) Symbol After Reset U0C1 to U4C1 036D16, 02ED16, 033D16, 032D16, 02FD16 0000 00102 **Function** RW Symbo Transmit 0: Transmit disable RW TE Enable Bit 1: Transmit enable 0: Data in the UiTB register Transmit Buffer ΤI RO **Empty Flag** 1: No data in the UiTB register Receive 0: Receive disable RE RW Enable Bit 1. Receive enable 0: No data in the UiRB register Receive RO RI Complete Flag 1: Data in the UiRB register UARTi Transmit 0: No data in the UiTB register (TI = 1) **UiIRS** RW Interrupt Cause 1: Transmission is completed (TXEPT = 1) Select Bit UARTi Continuous 0: Disables continuous receive mode to be entered **UiRRM** RW Receive Mode 1: Enables continuous receive mode to be entered Enable Bit 0: Not inversed Data Logic RW **UiLCH** Select Bit(2) 1: Inverse Clock-Divided Clock-divided synchronous stop bit (special mode 3) Synchronous Stop 0: Stops synchronizing SCLKSTPB Bit / 1: Starts synchronizing RW /UiERE Error Signal Error signal output enable bit (special mode 5) 0: Not output Output Enable Bit(1)

NOTES:


- 1. Set the SCLKSTPB/UiERE bit after setting the SMD2 to SMD0 bits in the UiMR register.
- 2. The UiLCH bit setting is enabled when setting the SMD2 to SMD0 bits to "0012" (clock syncronous serial I/O mode), "1002" (UART mode, 7-bit transfer data) or "1012" (UART mode, 8-bit transfer data). Set the UiLCH bit to "0" when setting the SMD2 to SMD0 bits to "0102" (I²C mode) or "1102" (UART mode, 9-bit transfer data).

UARTi Special Mode Register (i=0 to 4)

- 1. The BBS bit is set to "0" by program. It is unchanged if set to "1".
- UART0: timer A3 underflow signal, UART1: timer A4 underflow signal, UART2: timer A0 underflow signal, UART3: timer A3 underflow signal, UART4: timer A4 underflow signal.
- 3. Refer to notes for the SU1HIM bit in the UiSMR2 register.


Figure 17.5 U0C1 to U4C1 Registers and U0SMR to U4SMR Registers

SCLKDIV bit in the UiSMR register.

SCLKDIV bit in the UiSMR Register	SU1HIM bit in the UiSMR2 Register	External Clock Synchronous Function Selection	
0 0		No synchronization	
0 1		Same division as the external clock	
1	0 or 1	External clock divided by 2	

Figure 17.6 U0SMR2 to U4SMR2 Registers

4. When the external clock is selected, approximately 100ns delay is added.

Figure 17.7 U0SMR3 to U4SMR3 Registers

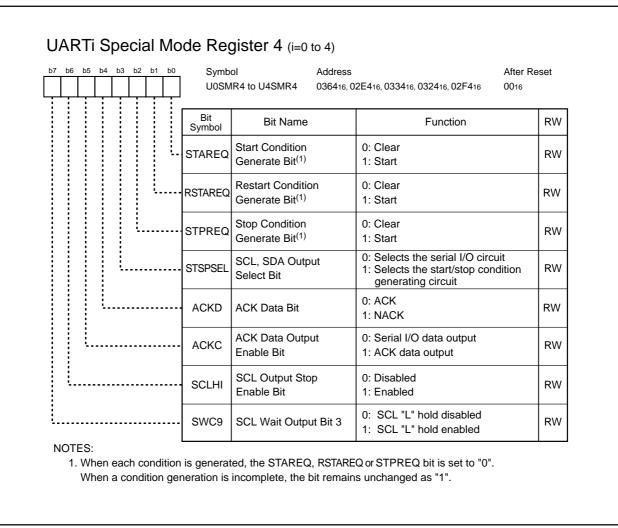


Figure 17.8 U0SMR4 to U4SMR4 Registers

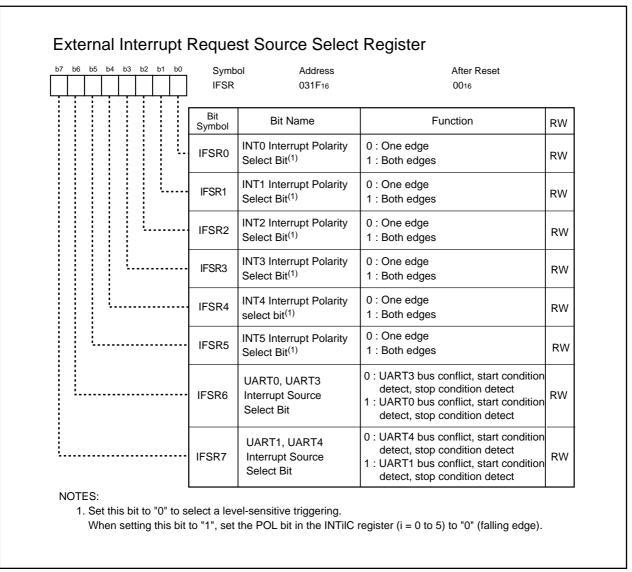


Figure 17.9 IFSR Register

17.1 Clock Synchronous Serial I/O Mode

In clock synchronous serial I/O mode, data is transmitted and received with the transfer clock. Table 17.1 lists specifications of clock synchronous serial I/O mode. Table 17.2 lists register settings. Tables 17.3 to 17.5 list pin settings. When UARTi (i=0 to 4) operating mode is selected, the TxDi pin outputs a high-level ("H") signal before transfer starts (the TxDi pin is in a high-impedance state when the N-channel open drain output is selected). Figure 17.10 shows transmit and receive timings in clock synchronous serial I/O mode.

Table 17.1 Clock Synchronous Serial I/O Mode Specifications

Item	Specification
Transfer Data Format	Transfer data: 8 bits long
Transfer Clock	• The CKDIR bit in the UiMR register (i=0 to 4) is set to "0" (internal clock selected):
	$\frac{n}{2(m+1)}$ $f_{=}$ f1, f8, f2n ⁽¹⁾ m :setting value of the UiBRG register, 0016 to FF16
	• The CKDIR bit is set to "1" (external clock selected) : an input from the CLKi pin
Transmit/Receive Control	Selected from the CTS function, RTS function or CTS/RTS function disabled
Transmit Start Condition	To start transmitting, the following requirements must be met ⁽²⁾ :
	- Set the TE bit in the UiC1 register to "1" (transmit enable)
	- Set the TI bit in the UiC1 register to "0" (data in the UiTB register)
	- Apply a low-level ("L") signal to the CTSi pin when the CTS function is selected
Receive Start Condition	To start receiving, the following requirements must be met ⁽²⁾ :
	- Set the RE bit in the UiC1 register to "1" (receive enable)
	- Set the TE bit to "1" (transmit enable)
	- Set the TI bit to "0" (data in the UiTB register)
Interrupt Request Generation Timing	While transmitting, the following conditions can be selected:
	- The UiIRS bit in the UiC1 register is set to "0" (no data in the transmit buffer):
	when data is transferred from the UiTB register to the UARTi transmit register (transfer started)
	- The UiIRS bit is set to "1" (transmission completed):
	when a data transfer from the UARTi transmit register is completed
	While receiving
	When data is transferred from the UARTi receive register to the UiRB register (reception completed)
Error Detect	Overrun error ⁽³⁾
	This error occurs when the seventh bit of the next received data is read before reading
	the UiRB register
Selectable Function	CLK polarity
	Transferred data output and input are provided on either the rising edge or falling edge
	of the transfer clock
	LSB first or MSB first
	Data is transmitted or received in either bit 0 or in bit 7
	Continuous receive mode
	Data can be received simultaneously by reading the UiRB register
	Serial data logic inverse
	This function inverses transmitted/received data logically

- 1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).
- 2. To start transmission/reception when selecting the external clock, these conditions must be met after the CKPOL bit in the UiC0 register is set to "0" (data is transmitted on the falling edge of the transfer clock and data is received on the rising edge) and the CLKi pin is held "H", or when the CKPOL bit is set to "1" (data is transmitted on the rising edge of the transfer clock and data is received on the falling edge) and the CLKi pin is held "L".
- 3. If an overrun error occurs, the UiRB register is indeterminate. The IR bit in the SiRIC register does not change to "1" (interrupt requested).

Table 17.2 Register Settings in Clock Synchronous Serial I/O Mode

Register	Bit	Function				
UiTB	7 to 0	Set transmit data				
UiRB	7 to 0	Received data can be read				
	OER	Overrun error flag				
UiBRG	7 to 0	Set bit rate				
UiMR	SMD2 to SMD0	Set to "0012"				
	CKDIR	Select the internal clock or external clock				
	IOPOL	Set to "0"				
UiC0	CLK1, CLK0	Select count source for the UiBRG register				
	CRS	Select CTS or RTS when using either				
	TXEPT	Transmit register empty flag				
	CRD	Enables or disables the CTS or RTS function				
	NCH	Select output format of the TxDi pin				
	CKPOL	Select transmit clock polarity				
	UFORM	Select either LSB first or MSB first				
UiC1	TE	Set to "1" to enable data transmission and reception				
	TI	Transmit buffer empty flag				
	RE	Set to "1" to enable data reception				
	RI	Reception complete flag				
	UilRS	Select what causes the UARTi transmit interrupt to be generated				
	UiRRM	Set to "1" when using continuous receive mode				
	UiLCH	Set to "1" when using data logic inverse				
	SCLKSTPB	Set to "0"				
UiSMR	7 to 0	Set to "0016"				
UiSMR2	7 to 0	Set to "0016"				
UiSMR3	2 to 0	Set to "0002"				
	NODC	Select clock output format				
	7 to 4	Set to "00002"				
UiSMR4	7 to 0	Set to "0016"				

i=0 to 4

Table 17.3 Pin Settings in Clock Synchronous Serial I/O Mode (1)

Port	Function	Setting			
		PS0 Register	PSL0 Register	PD6 Register	
P60	CTS0 input	PS0_0=0	-	PD6_0=0	
	RTS0 output	PS0_0=1	-	-	
P61	CLK0 input	PS0_1=0	-	PD6_1=0	
	CLK0 output	PS0_1=1	-	-	
P62	RxD0 input	PS0_2=0	-	PD6_2=0	
P63	TxD0 output	PS0_3=1	-	-	
P64	CTS1 input	PS0_4=0	-	PD6_4=0	
	RTS1 output	PS0_4=1	PSL0_4=0	-	
P65	CLK1 input	PS0_5=0	-	PD6_5=0	
	CLK1 output	PS0_5=1	-	-	
P66	RxD1 input	PS0_6=0	-	PD6_6=0	
P67	TxD1 output	PS0_7=1	-	-	

Table 17.4 Pin Settings (2)

Port	Function	Setting				
		PS1 Register	PSL1 Register	PSC Register	PD7 Register	
P70 ⁽¹⁾	TxD2 output	PS1_0=1	PSL1_0=0	PSC_0=0	-	
P71 ⁽¹⁾	RxD2 input	PS1_1=0	-	-	PD7_1=0	
P72	CLK2 input	PS1_2=0	-	-	PD7_2=0	
	CLK2 output	PS1_2=1	PSL1_2=0	PSC_2=0	-	
P73	CTS2 input	PS1_3=0	-	-	PD7_3=0	
	RTS2 output	PS1_3=1	PSL1_3=0	PSC_3=0	-	

NOTES:

Table 17.5 Pin Settings (3)

Port	Function			
		PS3 Register ⁽¹⁾	PSL3 Register	PD9 Register ⁽¹⁾
P90	CLK3 input	PS3_0=0	-	PD9_0=0
	CLK3 output	PS3_0=1	-	-
P91	RxD3 input	PS3_1=0	-	PD9_1=0
P92	TxD3 output	PS3_2=1	PSL3_2=0	-
P93	CTS3 input	PS3_3=0	PSL3_3=0	PD9_3=0
	RTS3 output	PS3_3=1	-	-
P94	CTS4 input	PS3_4=0	PSL3_4=0	PD9_4=0
	RTS4 output	PS3_4=1	-	-
P95	CLK4 input	PS3_5=0	PSL3_5=0	PD9_5=0
	CLK4 output	PS3_5=1	-	-
P96	TxD4 output	PS3_6=1	-	-
P97	RxD4 input	PS3_7=0	-	PD9_7=0

NOTES:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

^{1.} P70 and P71 are ports for the N-channel open drain output.

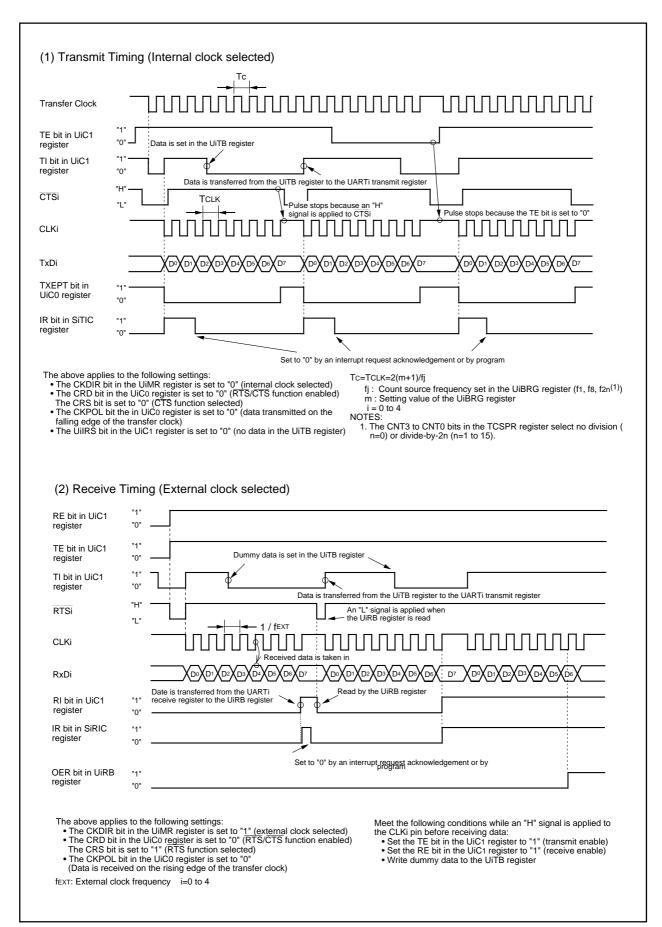


Figure 17.10 Transmit and Receive Operation

17.1.1 Selecting CLK Polarity Selecting

As shown in Figure 17.11, the CKPOL bit in the UiC0 register (i=0 to 4) determines the polarity of the transfer clock.

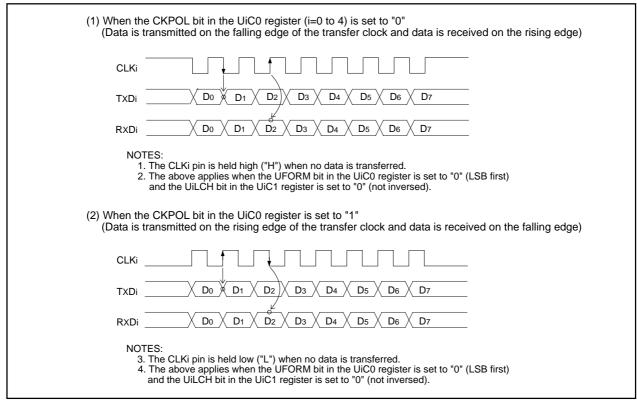


Figure 17.11 Transfer Clock Polarity

17.1.2 Selecting LSB First or MSB First

As shown in Figure 17.12, the UFORM bit in the UiC0 register (i=0 to 4) determines a data transfer format.

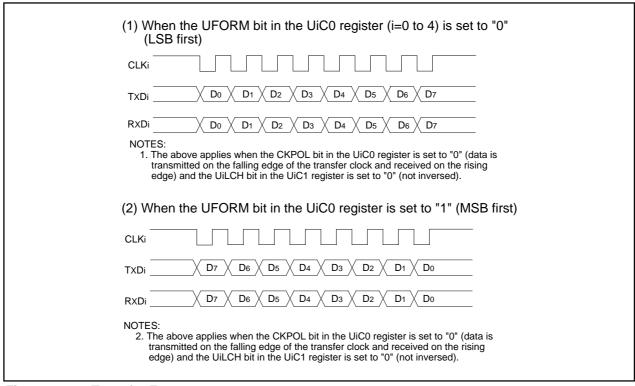


Figure 17.12 Transfer Format

17.1.3 Continuous Receive Mode

When the UiRRM bit in the UiC1 register (i=0 to 4) is set to "1" (continuous receive mode), the TI bit is set to "0" (data in the UiTB register) by reading the UiRB register. When the UiRRM bit is set to "1", do not set dummy data in the UiTB register by program.

17.1.4 Serial Data Logic Inverse

When the UiLCH bit (i=0 to 4) in the UiC1 register is set to "1" (inverse), data logic written in the UiTB register is inversed when transmitted. The inversed receive data logic can be read by reading the UiRB register. Figure 17.13 shows a switching example of the serial data logic.

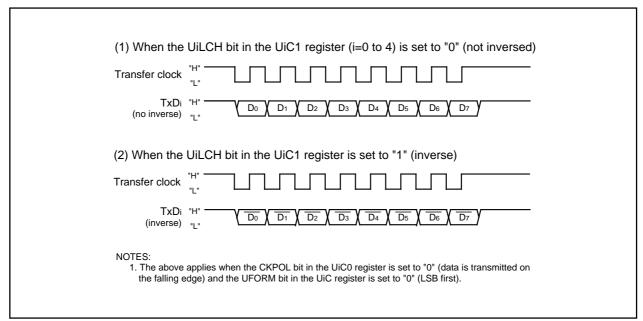


Figure 17.13 Serial Data Logic Inverse

17.2 Clock Asynchronous Serial I/O (UART) Mode

In UART mode, data is transmitted and received after setting a desired bit rate and data transfer format. Table 17.6 lists specifications of UART mode.

Table 17.6 UART Mode Specifications

Item	Specification
Transfer Data Format	Character bit (transfer data): selected from 7 bits, 8 bits, or 9 bits long
	Start bit: 1 bit long
	Parity bit: selected from odd, even, or none
	Stop bit: selected from 1 bit or 2 bits long
Transfer Clock	• The CKDIR bit in the UiMR register is set to "0" (internal clock selected):
	$f_i/16(m+1)$ $f_i = f_1$, f8, $f_{2n}^{(1)}$ m . setting value of the UiBRG register, 0016 to FF16
	The CKDIR bit is set to "1" (external clock selected):
	fEXT/16(m+1) fEXT: clock applied to the CLKi pin
Transmit/Receive Control	Select from CTS function, RTS function or CTS/RTS function disabled
Transmit Start Condition	To start transmitting, the following requirements must be met:
	- Set the TE bit in the UiC1 register to "1" (transmit enable)
	- Set the TI bit in the UiC1 register to "0" (data in the UiTB register)
	- Apply a low-velel ("L") signal to the CTSi pin when the CTS function is selected
Receive Start Condition	To start receiving, the following requirements must be met:
	- Set the RE bit in the UiC1 register to "1" (receive enable)
	- The start bit is detected
Interrupt Request	While transmitting, the following condition can be selected:
Generation Timing	- The UiIRS bit in the UiC1 register is set to "0" (no data in the UiTB register):
	when data is transferred from the UiTB register to the UARTi transmit register (transfer started)
	- The UiIRS bit is set to "1" (transmission completed):
	when data transmission from the UARTi transfer register is completed
	While receiving
	when data is transferred from the UARTi receive register to the UiRB register (reception completed)
Error Detect	Overrun error ⁽²⁾
	This error occurs when the bit before the last stop bit of the next received data is read
	prior to reading the UiRB register (the first stop bit when selecting 2 stop bits)
	Framing error
	This error occurs when the number of stop bits set is not detected
	Parity error
	When parity is enabled, this error occurs when the number of "1" in parity and charac-
	ter bits does not match the number of "1" set
	Error sum flag
	This flag is set to "1" when any of an overrun, framing or parity errors occur
Selectable Function	LSB first or MSB first
	Data is transmitted or received in either bit 0 or in bit 7
	Serial data logic inverse
	Logic values of data to be transmitted and received data are inversed. The start bit
	and stop bit are not inversed
	•TxD and RxD I/O polarity Inverse
	TxD pin output and RxD pin input are inversed. All I/O data levels are also inversed

- 1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).
- 2. If an overrun error occurs, the UiRB register is indeterminate. The IR bit in the SiRIC register remains unchanged as "1" (interrupt requested).

Table 17.7 lists register settings. Tables 17.8 to 17.10 list pin settings. When UARTi (i=0 to 4) operating mode is selected, the TxDi pin outputs a high-level ("H") signal before transfer is started (the TxDi pin is in a high-impedance state when the N-channel open drain output is selected). Figure 17.14 shows an example of a transmit operation in UART mode. Figure 17.15 shows an example of a receive operation in UART mode.

Table 17.7 Register Settings in UART Mode

Register	Bit	Function				
UiTB	8 to 0	Set transmit data ⁽¹⁾				
UiRB	8 to 0	Received data can be read ⁽¹⁾				
	OER, FER,	Error flags				
	PER, SUM					
UiBRG	7 to 0	Set bit rate				
UiMR	SMD2 to SMD0	Set to "1002" when transfer data is 7 bits long				
		Set to "1012" when transfer data is 8 bits long				
		Set to "1102" when transfer data is 9 bits long				
	CKDIR	Select the internal clock or external clock				
	STPS	Select stop bit length				
	PRY, PRYE	Select parity enable or disable, odd or even				
	IOPOL	Select TxD and RxD I/O polarity				
UiC0	CLK1, CLK0	Select count source for the UiBRG register				
	CRS	Select either CTS or RTS when using either				
	TXEPT	Transfer register empty flag				
	CRD	Enables or disables the CTS or RTS function				
	NCH	Select output format of the TxDi pin				
	CKPOL	Set to "0"				
	UFORM	Select the LSB first or MSB first when a transfer data is 8 bits long				
		Set to "0" when transfer data is 7 bits or 9 bits long				
UiC1	TE	Set to "1" to enable data transmission				
	TI	Transfer buffer empty flag				
	RE	Set to "1" to enable data reception				
	RI	Reception complete flag				
	UiIRS	Select what causes the UARTi transmit interrupt to be generated				
	UiRRM	Set to "0"				
	UiLCH	Select whether data logic is inversed or not inversed when a transfer data is				
		7 bits or 8 bits long. Set to "0" when transfer data is 9 bits long				
	UiERE	Set to either "0" or "1"				
UiSMR	7 to 0	Set to "0016"				
UiSMR2	7 to 0	Set to "0016"				
UiSMR3	7 to 0	Set to "0016"				
UiSMR4	7 to 0	Set to "0016"				

NOTES:

1. Use bits 0 to 6 when transfer data is 7 bits long, bits 0 to 7 when 8 bits long, bits 0 to 8 when 9 bits long.

Table 17.8 Pin Settings in UART Mode (1)

Port	Function	Setting			
		PS0 Register	PSL0 Register	PD6 Register	
P60	CTS0 input	PS0_0=0	_	PD6_0=0	
	RTS0 output	PS0_0=1	_	_	
P61	CLK0 input	PS0_1=0	_	PD6_1=0	
P62	RxD0 input	PS0_2=0	_	PD6_2=0	
P63	TxD0 output	PS0_3=1	_	_	
P64	CTS1 input	PS0_4=0	_	PD6_4=0	
	RTS1 output	PS0_4=1	PSL0_4=0	_	
P65	CLK1 input	PS0_5=0	_	PD6_5=0	
P66	RxD1 input	PS0_6=0	_	PD6_6=0	
P67	TxD1 output	PS0_7=1	_	_	

Table 17.9 Pin Settings (2)

Port	Function	Setting					
		PS1 Register	PS1 Register PSC Reg				
P70 ⁽¹⁾	TxD2 output	PS1_0=1	PSL1_0=0	PSC_0=0	_		
P71 ⁽¹⁾	RxD2 input	PS1_1=0	_	_	PD7_1=0		
P72	CLK2 input	PS1_2=0	_	_	PD7_2=0		
P73	CTS2 input	PS1_3=0	_	_	PD7_3=0		
	RTS2 output	PS1_3=1	PSL1_3=0	PSC_3=0	_		

NOTES:

Table 17.10 Pin Settings (3)

Port	Function	Setting				
		PS3 Register ⁽¹⁾	PSL3 Register	PD9 Register ⁽¹⁾		
P90	CLK3 input	PS3_0=0	_	PD9_0=0		
P91	RxD3 input	PS3_1=0	_	PD9_1=0		
P92	TxD3 output	PS3_2=1	PSL3_2=0	-		
P93	CTS3 input	PS3_3=0	PSL3_3=0	PD9_3=0		
	RTS3 output	PS3_3=1	-	_		
P94	CTS4 input	PS3_4=0	PSL3_4=0	PD9_4=0		
	RTS4 output	PS3_4=1	-	_		
P95	CLK4 input	PS3_5=0	PSL3_5=0	PD9_5=0		
P96	TxD4 output	PS3_6=1	-	_		
P97	RxD4 input	PS3_7=0	_	PD9_7=0		

NOTES:

1. Set the PD9 and PS3 registers set immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

^{1.} P70 and P71 are ports for the N-channel open drain output.

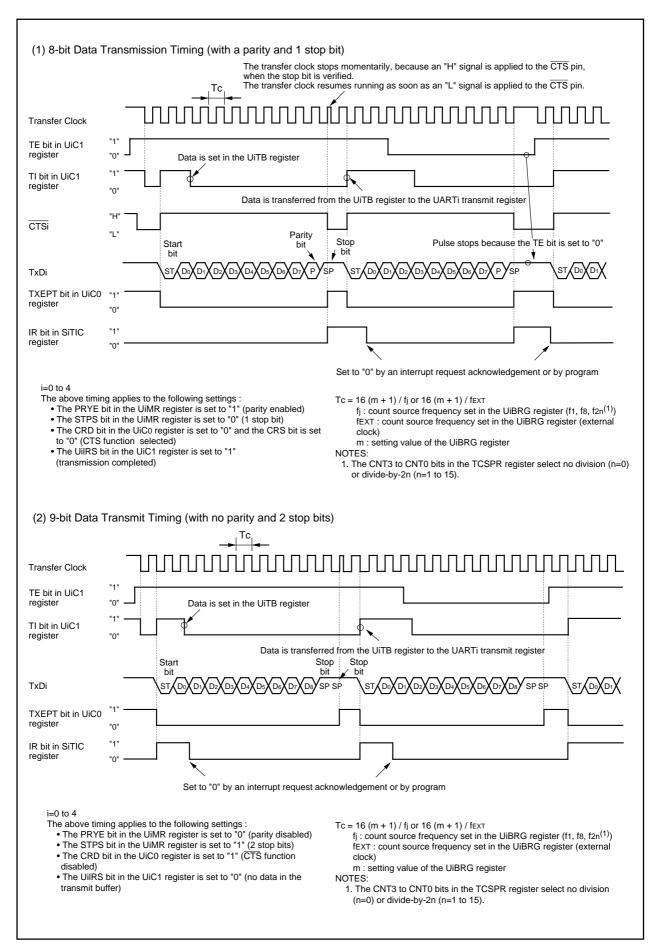


Figure 17.14 Transmit Operation

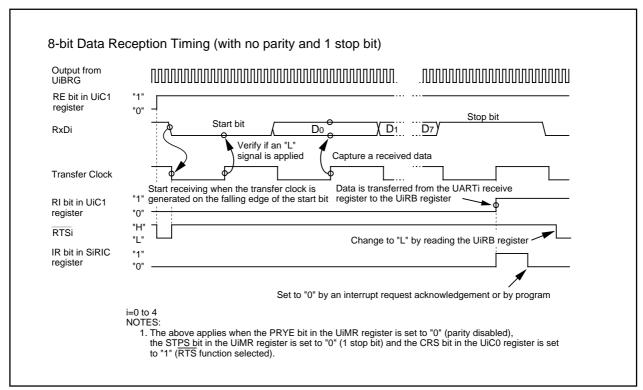


Figure 17.15 Receive Operation

17.2.1 Transfer Speed

In UART mode, transfer speed is clock frequency which is divided by a setting value of the UiBRG (i=0 to 4) register and again divided by 16. Table 17.11 lists an example of transfer speed setting.

Table 17.11 Transfer Speed

Bit Rate Count Source	Peripheral Function Clock: 16MHz		Peripheral Function Clock: 24MHz		Peripheral Function Clock: 32MHz		
(bps)	of UiBRG	Setting Value of UiBRG: n	Actual Bit Rate (bps)	Setting Value of UiBRG: n	Actual Bit Rate (bps)	Setting Value of UiBRG: n	Actual Bit Rate (bps)
1200	f8	103 (67h)	1202	155 (96h)	1202	207 (CFh)	1202
2400	f8	51 (33h)	2404	77 (46h)	2404	103 (67h)	2404
4800	f8	25 (19h)	4808	38 (26h)	4808	51 (33h)	4808
9600	f1	103 (67h)	9615	155 (96h)	9615	207 (CFh)	9615
14400	f1	68 (44h)	14493	103 (67h)	14423	138 (8Ah)	14388
19200	f1	51 (33h)	19231	77 (46h)	19231	103 (67h)	19231
28800	f1	34 (22h)	28571	51 (33h)	28846	68 (44h)	28986
31250	f1	31 (1Fh)	31250	47 (2Fh)	31250	63 (3Fh)	31250
38400	f1	25 (19h)	38462	38 (26h)	38462	51 (33h)	38462
51200	f1	19 (13h)	50000	28 (1Ch)	51724	38 (26h)	51282

17.2.2 Selecting LSB First or MSB First

As shown in Figure 17.16, the UFORM bit in the UiC0 register (i=0 to 4) determines data transfer format. This function is available for 8-bit transfer data.

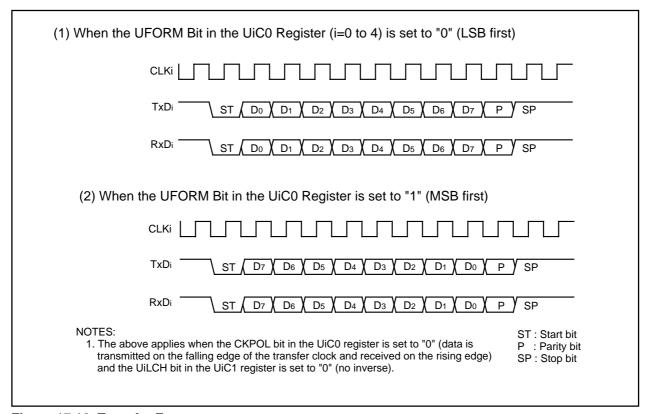


Figure 17.16 Transfer Format

17.2.3 Serial Data Logic Inverse

When the UiLCH bit (i=0 to 4) in the UiC1 register is set to "1" (inverse), data logic written in the UiTB register is inversed when transmitted. The inversed receive data logic can be read by reading the UiRB register. Figure 17.17 shows a switching example of the serial data logic.

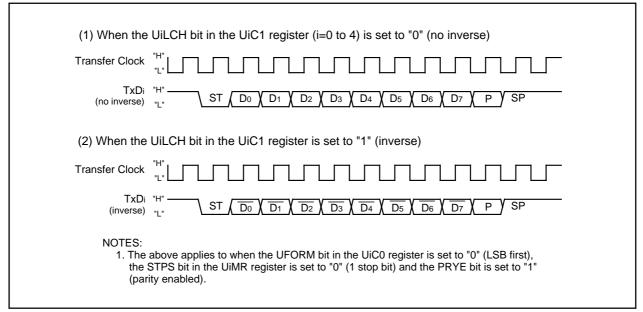


Figure 17.17 Serial Data Logic Inverse

17.2.4 TxD and RxD I/O Polarity Inverse

TxD pin output and RxD pin input are inversed. All I/O data level, including the start bit, stop bit and parity bit, are inversed. Figure 17.18 shows TxD and RxD I/O polarity inverse.

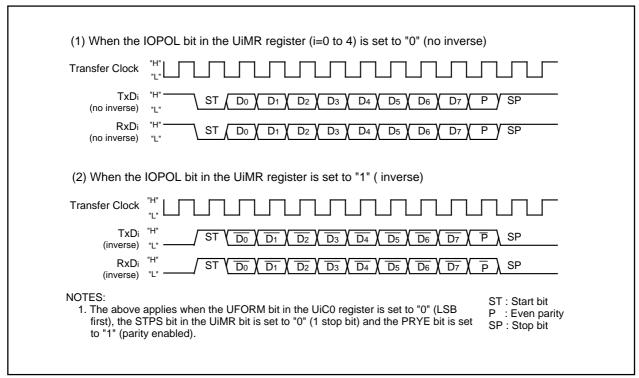


Figure 17.18 TxD and RxD I/O Polarity Inverse

17.3 Special Mode 1 (I²C Mode)

I²C mode is a mode to communicate with external devices with a simplified I²C. Table 17.12 lists specifications of I²C mode. Table 17.13 lists register settings, Table 17.14 lists each function. Figure 17.19 shows a block diagram of I²C mode. Figure 17.20 shows timings for transfer to the UiRB register and interrupts. Tables 17.15 to 17.17 list pin settings.

As shown in Table 17.12, I²C mode is entered when the SMD2 to SMD0 bits in the UiMR register is set to "0102" and the IICM bit in the UiSMR register is set to "1". Output signal from the SDAi pin changes after the SCLi pin level becomes low ("L") and stabilizes due to a SDAi transmit output via the delay circuit.

Table 17.12 I²C Mode Specifications

Item	Specifications
Interrupt	Start condition detect, stop condition detect, no acknowledgment detect, acknowledgment
	detect
Selectable Function	Arbitration lost
	The update timing of the ABT bit in the UiRB register can be selected.
	Refer to 17.3.3 Arbitration
	SDAi digital delay
	Selected from no digital delay or 2 to 8 cycle delay of the count source of the UiBRG register.
	Refer to 17.3.5 SDA Output
	Clock phase setting
	Selected from clock delay or no clock delay.
	Refer to 17.3.4 Transfer clock

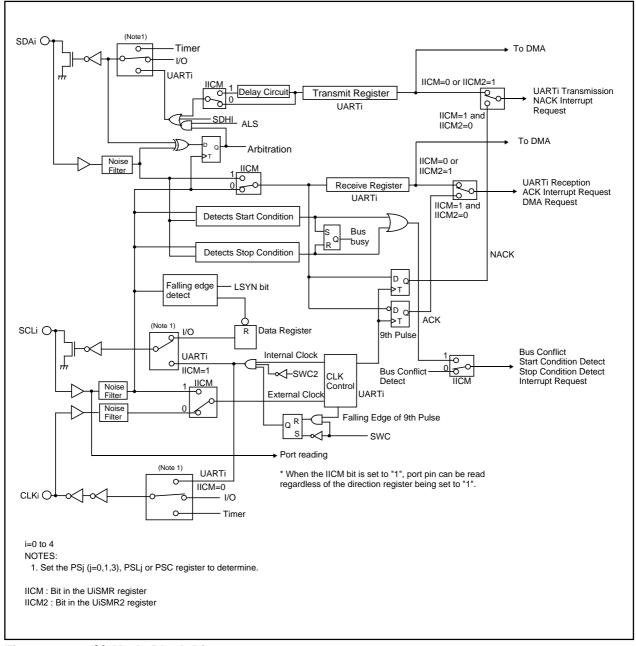


Figure 17.19 I²C Mode Block Diagram

Table 17.13 Register Settings in I²C Mode

Register	Bit	Function			
_		Master	Slave		
UiTB	7 to 0	Set transmit data			
UiRB	7 to 0	Received data can be read			
	8	ACK or NACK bit can be read			
	ABT	Arbitration lost detect flag	Disabled		
	OER	Overrun error flag			
UiBRG	7 to 0	Set bit rate Disabled			
UiMR	SMD2 to SMD0	Set to "0102"			
	CKDIR	Set to "0"	Set to "1"		
	IOPOL	Set to "0"			
UiC0	CLK1, CLK0	Select count source of the UiBRG register	Disabled		
	CRS	Disabled because the CRD bit is set to "1"			
	TXEPT	Transfer register empty flag			
	CRD, NCH	Set to "1"			
	CKPOL	Set to "0"			
	UFORM	Set to "1"			
UiC1	TE	Set to "1" to enable data transmission			
	TI	Transfer buffer empty flag			
	RE	Set to "1" to enable data reception			
	RI	Reception complete flag			
	UiRRM, UiLCH,	Set to "0"			
	UiERE				
UiSMR	IICM	Set to "1"			
	ABC	Select an arbitration lost detect timing	Disabled		
	BBS	Bus busy flag			
	7 to 3	Set to "000002"			
UiSMR2	IICM2	See Table 17.14			
	CSC	Set to "1" to enable clock synchronization	Set to "0"		
	SWC	Set to "1" to fix an "L" signal output from SCLi or	the falling edge of the ninth bit		
		of the transfer clock			
	ALS	Set to "1" to terminate SDAi output when	Not used. Set to "0"		
		detecting the arbitration lost			
	STC	Not used. Set to "0"	Set to "1" to reset UARTi		
			by detecting the start condition		
	SWC2	Set to "1" for an "L" signal output from SCL forcil	oly		
	SDHI	Set to "1" to disable SDA output			
	SU1HIM	Set to "0"			
UiSMR3	SSE	Set to "0"			
	CKPH	See Table 17.14			
	DINC, NODC, ERR	Set to "0"			
	DL2 to DL0	Set digital delay value			
UiSMR4	STAREQ	Set to "1" when generating a start condition	Not used. Set to "0"		
	RSTAREQ	Set to "1" when generating a restart condition			
	STPREQ	Set to "1" when generating a stop condition			
	STSPSEL	Set to "1" when using a condition generating function			
	ACKD	Select ACK or NACK	1		
	ACKC	Set to "1" for ACK data output			
	SCLHI	Set to "1" to enable SCL output stop when	Not used. Set to "0"		
		detecting stop condition			
	SWC9	Not used. Set to "0"	Set to "1" to fix an "L" signal output		
	30009	THUI USEU. SEL IU U	from SCLi on the falling edge of the		
			ninth bit of the transfer clock		
IFSR	IFSR6, IFSR7	Set to "1"	Time bit of the transfer Clock		
i=0 to 4	ii oko, ii ok <i>i</i>	OEL IO I			

i=0 to 4

Table 17.14 I²C Mode Functions

		I ² C Mode (SMD2	I ² C Mode (SMD2 to SMD0=0102, IICM=1)			
Function	Clock Synchronous Serial I/O Mode (SMD2 to SMD0=0012,	IICM2=0 (NACK/ACK inter	rupt)	IICM2=1 (UART transmit / UART receive interrupt)		
	IICM=0)	CKPH=0 (No clock delay)	CKPH=1 (Clock delay)	CKPH=0 (No clock delay)	CKPH=1 (Clock delay)	
Interrupt Numbers 39 to 41 Generated ⁽¹⁾ (See Figure 17.20)	-	Start condition or	stop condition	detect (See Table	÷ 17.18)	
Interrupt Number 17, 19, 33, 35 and 37 Generated ⁽¹⁾ (See Figure 17.20)	UARTi Transmission - Transmission started or completed (selected by the UilRS register)	No Acknowledger Detection (NACK Rising edge of 9th) -	UARTi Transmission - Rising edge of 9th bit of SCLi	UARTi Transmission - Next falling edge after the 9th bit of SCLi	
Interrupt Numbers 18, 20, 34, 36 and 38 Generated ⁽¹⁾ (See Figure 17.20)	UARTi Reception - Receiving at 8th bit CKPOL=0(rising edge) CKPOL=1(falling edge)	Acknowledgemer (ACK) - Rising edge of 9th		UARTi Reception Falling edge of 9t		
Data Transfer Timing from the UART Receive Shift Register to the UiRB Register	CKPOL=0(rising edge) CKPOL=1(falling edge)	Rising edge of 9th	n bit of SCLi	Falling edge of 9th bit of SCLi	Falling edge and rising edge of 9th bit of SCLi	
UARTi Transmit Output Delay	No delay	Delay	Delay			
P63, P67, P70, P92, P96 Pin Functions	TxDi output	SDAi input and output				
P62, P66, P71, P91, P97 Pin Functions	RxDi input	SCLi input and output				
P61, P65, P72, P90, P95 Pin Functions	Select CLKi input or output	- (Not used in I ²	C mode)			
Noise Filter Width	15ns	200ns				
Reading RxDi and SCLi Pin Levels	Can be read if port direction bit is set to "0"	Can be read rega	irdless of the po	ort direction bit		
Default Value of TxDi, SDAi Output	CKPOL=0 (H) CKPOL=1 (L)	Values set in the	port register be	efore entering I ² C n	node ⁽²⁾	
SCLi Default and End Value	-	н	L	н	L	
DMA Generated (See Figure 17.20)	UARTi reception	Acknowledgement (ACK)	detection	UARTi Reception Falling edge of 9t		
Store Received Date	1st to 8th bits of the received data are stored	1st to 8th bits of t	into bits 6 stored into		bits of the received data are stored to 0 in the UiRB register. 8th bit is bit 8 in the UiRB register.	
Store Received Data	into bits 7 to 0 in the UiRB register	data are stored into bits 7 to 0 in the UiRB register			1st to 8th bits are stored into bits 7 to 0 in the UiRB register ⁽³⁾	
Reading Received Data	The UiRB register status	regist to 1.			Bits 6 to 0 in the UiRB registerts ⁽⁴⁾ are read as bit 7 to 1. Bit 8 in the UiRB register is read as bit 0	

i=0 to 4

- 1. Follow the procedures below to change what causes an interrupt to be generated.
- (a) Disable interrupt of corresponding interrupt number.
- (b) Change what causes an interrupt to be generated.
- (c) Set the IR bit of a corresponding interrupt number to "0" (no interrupt requested).
- (d) Set the ILVL2 to ILVL0 bits of a corresponding interrupt number.
- 2. Set default value of the SDAi output when the SMD2 to SMD0 bits in the UiMR register are set to "0002" (serial I/O disabled).
- 3. Second data transfer to the UiRB register (on the rising edge of the ninth bit of SCLi).
- 4. First data transfer to the UiRB register (on the falling edge of the ninth bit of SCLi).

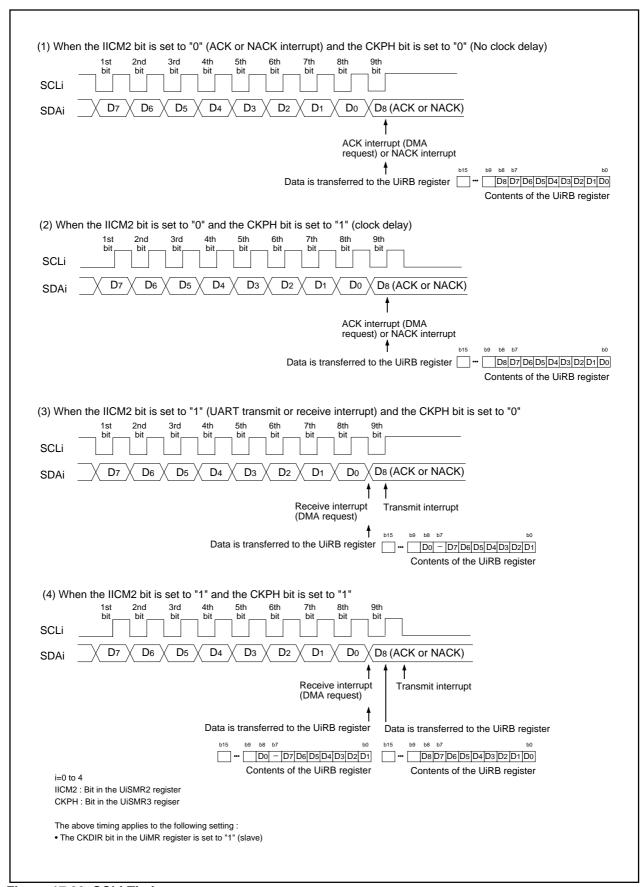


Figure 17.20 SCLi Timing

Table 17.15 Pin Settings in I²C Mode (1)

Port	Function	Setting				
		PS0 Register	PSL0 Register	PD6 Register		
P62	SCL0 output	PS0_2=1	PSL0_2=0	-		
	SCL0 input	PS0_2=0	-	PD6_2=0		
P63	SDA0 output	PS0_3=1	-	-		
	SDA0 input	PS0_3=0	-	PD6_3=0		
P66	SCL1 output	PS0_6=1	PSL0_6=0	-		
	SCL1 input	PS0_6=0	-	PD6_6=0		
P67	SDA1 output	PS0_7=1	-	-		
	SDA1 input	PS0_7=0	-	PD6_7=0		

Table 17.16 Pin Settings (2)

Port	Function	Setting			
Foit	T dilction	PS1 Register	PSL1 Register	PSC Register	PD7 Register
P70 ⁽¹⁾	SDA2 output	PS1_0=1	PSL1_0=0	PSC_0=0	_
	SDA2 input	PS1_0=0	_	_	PD7_0=0
P71 ⁽¹⁾	SCL2 output	PS1_1=1	PSL1_1=1	PSC_1=0	_
P/1 ⁽¹⁾	SCL2 input	PS1_1=0	_	_	PD7_1=0

NOTES:

1. P70 and P71 are ports for the N-channel open drain output.

Table 17.17 Pin Settings (3)

Port	Function		Setting			
		PS3 Register ⁽¹⁾	PSL3 Register	PSC3 Register	PD9 Register ⁽¹⁾	
P91	SCL3 output	PS3_1=1	PSL3_1=0	-	-	
	SCL3 input	PS3_1=0	-	-	PD9_1=0	
P92	SDA3 output	PS3_2=1	PSL3_2=0	-	-	
	SDA3 input	PS3_2=0	-	-	PD9_2=0	
P96	SDA4 output	PS3_6=1	-	PSC3_6=0	-	
	SDA4 input	PS3_6=0	-	-	PD9_6=0	
P97	SCL4 output	PS3_7=1	PSL3_7=0	-	-	
	SCL4 input	PS3_7=0	-	-	PD9_7=0	

NOTES:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

17.3.1 Detecting Start Condition and Stop Condition

The microcomputer detects either a start condition or stop condition. The start condition detect interrupt is generated when the SCLi (i=0 to 4) pin level is held high ("H") and the SDAi pin level changes "H" to low ("L"). The stop condition detect interrupt is generated when the SCLi pin level is held "H" and the SDAi pin level changes "L" to "H". The start condition detect interrupt shares interrupt control registers and vectors with the stop condition detect interrupt. The BBS bit in the UiSMR register determines which interrupt is requested.

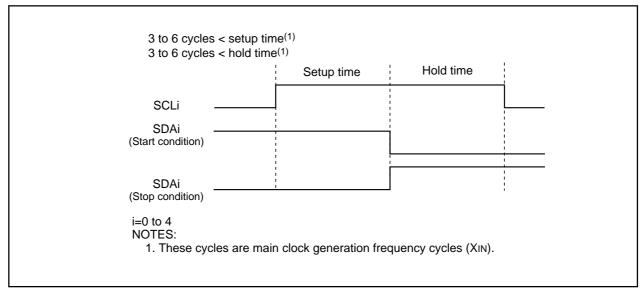


Figure 17.21 Start Condition or Stop Condition Detecting

17.3.2 Start Condition or Stop Condition Output

The start condition is generated when the STAREQ bit in the UiSMR4 register (i=0 to 4) is set to "1" (start). The restart condition is generated when the RSTAREQ bit in the UiSMR4 register is set to "1" (start). The stop condition is generated the STPREQ bit in the UiSMR4 is set to "1" (start).

The start condition is output when the STAREQ bit is set to "1" and the STSPSEL bit in the UiSMR4 register is set to "1" (start or stop condition generating circuit selected). The restart condition output is provided when the RSTAREQ bit and STSPSEL bit are set to "1". The stop condition output is provided when the STPREQ bit and the STSPSEL bit are set to "1".

When the start condition, stop condition or restart condition is output, do not generate an interrupt between the instruction to set the STAREQ bit, STPREQ bit or RSTAREQ bit to "1" and the instruction to set the STSPSEL bit to "1". When the start condition is output, set the STAREQ bit to "1" before the STSPSEL bit is set to "1".

Table 17.18 lists function of the STSPSEL bit. Figure 17.22 shows functions of the STSPSEL bit.

Table 17.18 STSPSEL Bit Function

Function	STSPSEL = 0	STSPSEL = 1
Start condition and stop condition output	Program with ports determines how the start condition or stop condition output is provided	The STAREQ bit, RSTAREQ bit and STPREQ bit determine how the start condition or stop condition output is provided
Timing to generate start condition and stop condition interrupt requests	The start condition and stop condition are detected	Start condition and stop condition generation are completed

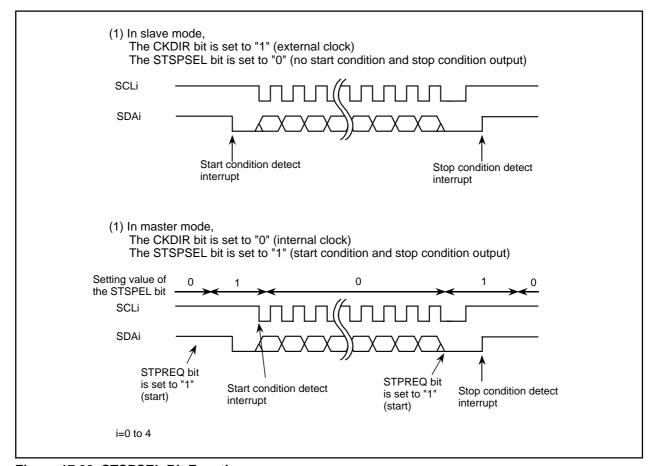


Figure 17.22 STSPSEL Bit Function

17.3.3 Arbitration

The ABC bit in the UiSMR register (i=0 to 4) determines an update timing for the ABT bit in the UiRB register. On the rising edge of the SCLi pin, the microcomputer determines whether a transmit data matches data input to the SDAi pin.

When the ABC bit is set to "0" (update per bit), the ABT bit is set to "1" (detected-arbitration is lost) as soon as a data discrepancy is detected. The ABT bit is set to "0" (not detected-arbitration is won) if not detected. When the ABC bit is set to "1" (update per byte), the ABT bit is set to "1" on the falling edge of the ninth bit of the transfer clock if any discrepancy is detected. When the ABT bit is updated per byte, set the ABT bit to "0" between an ACK detection in the first byte data and the next byte data to be transferred. When the ALS bit in the UiSMR2 register is set to "1" (SDA output stop enabled), the arbitration lost occurs. As soon as the ABT bit is set to "1", the SDAi pin is placed in a high-impedance state.

17.3.4 Transfer Clock

The transfer clock transmits and receives data as is shown in Figure 17.20.

The CSC bit in the UiSMR2 register (i=0 to 4) synchronizes an internally generated clock (internal SCLi) with the external clock applied to the SCLi pin. When the CSC bit is set to "1" (clock synchronous enabled) and the internal SCLi is held high ("H"), the internal SCLi become low ("L") if signal applied to the SCLi pin is on the falling edge. Value of the UiBRG register is reloaded to start counting for low level. A counter stops when the SCLi pin is held "L" and then the internal SCLi changes "L" to "H". Counting is resumed when the SCLi pin become "H". The transfer clock of UARTi is equivalent to the AND for signals from the internal SCLi and the SCLi pin.

The transfer clock is synchronized between a half cycle before the falling edge of first bit of the internal SCLi and the rising edge of the ninth bit. Select the internal clock as the transfer clock while the CSC bit is set to "1".

The SWC bit in the UiSMR2 register determines whether the SCLi pin is fixed to be an "L" signal output on the falling edge of the ninth cycle of the transfer clock or not.

When the SCLHI bit in the UiSMR4 register is set to "1" (enabled), a SCLi output stops when a stop condition is detected (high-impedance).

When the SWC2 bit in the UiSMR2 register is set to "1" (0 output), the SCLi pin focibly outputs an "L" signal while transmitting and receiving. The fixed "L" signal applied to the SCLi pin is cancelled by setting the SWC2 bit to "0" (transfer clock) and the transfer clock input to and output from the SCLi pin are provided. When the CKPH bit in the UiSMR3 register is set to "1" and the SWC9 bit in the UiSMR4 register is set to "1" (SCL "L" hold enabled), the SCLi pin is fixed to be an "L" signal output on the next falling edge after the ninth bit of the clock. The fixed "L" signal applied to the SCLi pin is cancelled by setting the SWC9 bit to "0" (SCL "L" hold disabled).

17.3.5 SDA Output

Values output set in bits 7 to 0 (D7 to D0) in the UiTB register (i=0 to 4) are provided in descending order from D7. The ninth bit (D8) is ACK or NACK.

Set the default value of SDAi transmit output when the IICM bit is set to "1" (I²C mode) and the SMD2 to SMD0 bits in the UiMR register are set to "0002" (serial I/O disabled).

The DL2 to DL0 bits in the UiSMR3 register determine no delay in the SDAi output or a delay of 2 to 8 UiBRG register count source cycles.

When the SDHI bit in the UiSMR2 register is set to "1" (SDA output disabled), the SDAi pin is forcibly placed in a high-impedance state. Do not set the SDHI bit on the rising edge of the UARTi transfer clock. The ABT bit in the UiRB register may be set to "1" (detected).

17.3.6 SDA Input

When the IICM2 bit in the UiSMR2 register (i=0 to 4) is set to "0", the first eight bits of received data are stored into bits 7 to 0 (D7 to D0) in the UiRB register. The ninth bit (D8) is ACK or NACK.

When the IICM2 bit is set to "1", the first seven bits (D7 to D1) of received data are stored into bits 6 to 0 in the UiRB register. Store the eighth bit (D0) into bit 8 in the UiRB register.

If the IICM2 bit is set to "1" and the CKPH bit in the UiSMR3 register is set to "1", the same data as that of when setting the IICM2 bit to "0" can be read. To read the data, read the UiRB register after the rising edge of the ninth bit of the transfer clock.

17.3.7 ACK, NACK

When the STSPSEL bit in the UiSMR4 register (i=0 to 4) is set to "0" (serial I/O circuit selected) and the ACKC bit in the UiSMR4 register is set to "1" (ACK data output), the SDAi pin provides the value output set in the ACKD bit in the UiSMR4 register.

If the IICM2 bit is set to "0", the NACK interrupt request is generated when the SDAi pin is held high ("H") on the rising edge of the ninth bit of the transfer clock. The ACK interrupt request is generated when the SDAi pin is held low ("L") on the rising edge of the ninth bit of the transfer clock.

When ACK is selected to generate a DMA request, the DMA transfer is activated by an ACK detection.

17.3.8 Transmit and Receive Reset

When the STC bit in the UiSMR2 register (i=0 to 4) is set to "1" (UARTi initialization enabled) and a start condition is detected,

- the transmit shift register is reset and the content of the UiTB register is transferred to the transmit shift register. The first bit starts transmitting when the next clock is input. UARTi output value remains unchanged between when the clock is applied and when the first bit data output is provided. The value remains the same as when start condition was detected.
- the receive shift register is reset and the first bit start receiving when the next clock is applied.
- the SWC bit is set to "1" (SCL wait output enabled). The SCLi pin becomes "L" on the falling edge of the ninth bit of the transfer clock.

If UARTi transmission and reception are started with this function, the TI bit in the UiC1 register remains unchanged. Select the external clock as the transfer clock when using this function.

17.4 Special Mode 2

In special mode 2, serial communication between one or multiple masters and multiple slaves is available. The \overline{SSi} input pin (i=0 to 4) controls the serial bus communication. Table 17.19 lists specifications of special mode 2. Table 17.20 lists register settings. Tables 17.21 to 17.23 list pin settings.

Table 17.19 Special Mode 2 Specifications

Item	Specification
Transfer Data Format	Transfer data: 8 bits long
Transfer Clock	• The CKDIR bit in the UiMR register (i=0 to 4) is set to "0" (internal clock selected): $f_i/2(m+1)$ $f_j = f_1$, f_8 , $f_2n^{(1)}$ m : setting value of the UiBRG register, 0016 to FF16
	The CKDIR bit to "1" (external clock selected) : input from the CLKi pin
Transmit/Receive Control	····
Transmit Start Condition	To start transmitting, the following requirements must be met ⁽²⁾ :
	- Set the TE bit in the UiC1 register to "1" (transmit enable)
	- Set the TI bit in the UiC1 register to "0" (data in the UiTB register)
Receive Start Condition	To start receiving, the following requirement must be met ⁽²⁾ :
	- Set the RE bit in the UiC1 register to "1" (receive enable)
	- Set the TE bit in the UiC1 register to "1" (transmit enable)
	- Set the TI bit in the UiC1 register to "0" (data in the UiTB register)
Interrupt Request	While transmitting, the following conditions can be selected:
Generation Timing	- The UiIRS bit in the UiC1 register is set to "0" (no data in a transmit buffer):
	when data is transferred from the UiTB register to the UARTi transmit register (transmission started)
	- The UiIRS register is set to "1" (transmission completed): when data transmission from UARTi transfer register is completed
	While receiving
	When data is transferred from the UARTi receive register to the UiRB register (reception completed)
Error Detection	• Overrun error ⁽³⁾
	This error occurs when the seventh bit of the next received data is read before reading the UiRB register
	• Fault error
	In master mode, the fault error occurs an "L" signal is applied to the SSi pin
Selectable Function	CLK polarity
	Select from the rising edge or falling edge of the transfer clock when transferred data is output and input are provided
	LSB first or MSB first
	Data is transmitted or received in either bit 0 or in bit 7
	Continuous receive mode
	Reception is enabled simultaneously by reading the UiRB register
	Serial data logic inverse
	This function inverses transmitted or received data logically
	TxD and RxD I/O polarity inverse
	TxD pin output and RxD pin input are inversed. All I/O data levels are also inversed
	Clock phase
	Select from one of 4 combinations of transfer data polarity and phases
	• SSi input pin function
	Output pin is placed in a high-impedance state to avoid data conflict between master and other masters or slaves

- 1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).
- 2. To start transmission/reception when selecting the external clock, these conditions must be met after the CKPOL bit in the UiC0 register is set to "0" (data is transmitted on the falling edge of the transfer clock and data is received on the rising edge) and the CLKi pin is held high ("H"), or when the CKPOL bit is set to "1" (Data is transmitted on the rising edge of the transfer clock and data is received on the falling edge) and the CLKi pin is held low ("L").
- 3. If an overrun error occurs, the UiRB register is in an indeterminate state. The IR bit in the SiRIC register does not change to "1" (interrupt requested).

Table 17.20 Register Settings in Special Mode 2

Register	Bit	Function
UiTB	7 to 0	Set transmit data
UiRB	7 to 0	Received data can be read
İ	OER	Overrun error flag
UiBRG	7 to 0	Set bit rate
UiMR	SMD2 to SMD0	Set to "0012"
Î	CKDIR	Set to "0" in master mode or "1" in slave mode
	IOPOL	Set to "0"
UiC0	CLK1, CLK0	Select count source for the UiBRG register
	CRS	Disabled because the CRD bit is set to "1"
	TXEPT	Transfer register empty flag
Î	CRD	Set to "1"
Ì	NCH	Select the output format of the TxDi pin
	CKPOL	Clock phase can be set by the combination of the CKPOL bit and the CKPH bit in
		the UiSMR3 register
Ì	UFORM	Select either LSB first or MSB first
UiC1	TE	Set to "1" to enable data transmission and reception
	TI	Transfer buffer empty flag
	RE	Set to "1" to enable data reception
	RI	Reception complete flag
	UilRS	Select what causes the UARTi transmit interrupt to be generated
	UiRRM	Set to "1" to enable continuous receive mode
	UiLCH, SCLKSTPB	Set to "0"
UiSMR	7 to 0	Set to "0016"
UiSMR2	7 to 0	Set to "0016"
UiSMR3	SSE	Set to "1"
Ì	СКРН	Clock phase can be set by the combination of the CKPH bit and the CKPOL bit
		in the UiC0 register
	DINC	Set to "0" in master mode or "1" in slave mode
Ì	NODC	Set to "0"
İ	ERR	Fault error flag
	7 to 5	Set to "0002"
UiSMR4	7 to 0	Set to "0016"

i=0 to 4

Table 17.21 Pin Settings in Special Mode 2 (1)

Port	Function	Setting			
		PS0 Register	PSL0 Register	PD6 Register	
P60	SS0 input	PS0_0=0	_	PD6_0=0	
P61	CLK0 input (slave)	PS0_1=0	_	PD6_1=0	
	CLK0 output (master)	PS0_1=1	_	_	
P62	RxD0 input (master)	PS0_2=0	_	PD6_2=0	
	STxD0 output (slave)	PS0_2=1	PSL0_2=1	_	
P63	TxD0 output (master)	PS0_3=1	_	_	
	SRxD0 input (slave)	PS0_3=0	_	PD6_3=0	
P64	SS1 input	PS0_4=0	_	PD6_4=0	
P65	CLK1 input (slave)	PS0_5=0	_	PD6_5=0	
	CLK1 output (master)	PS0_5=1	_	_	
P66	RxD1 input (master)	PS0_6=0	_	PD6_6=0	
	STxD1 output (slave)	PS0_6=1	PSL0_6=1	_	
P67	TxD1 output (master)	PS0_7=1	_	_	
	SRxD1 input (slave)	PS0_7=0	-	PD6_7=0	

Table 17.22 Pin Settings (2)

	5- ()				
Port	Function	Setting			
		PS1 Register	PSL1 Register	PSC Register	PD7 Register
P70 ⁽¹⁾	TxD2 output (master)	PS1_0=1	PSL1_0=0	PSC_0=0	_
	SRxD2 input (slave)	PS1_0=0	_	_	PD7_0=0
P71 ⁽¹⁾	RxD2 input (master)	PS1_1=0	_	_	PD7_1=0
	STxD2 output (slave)	PS1_1=1	PSL1_1=1	PSC_1=0	_
P72	CLK2 input (slave)	PS1_2=0	_	-	PD7_2=0
	CLK2 output (master)	PS1_2=1	PSL1_2=0	PSC_2=0	_
P73	SS2 input	PS1_3=0	_	_	PD7_3=0

NOTES:

Table 17.23 Pin Settings (3)

Port	Function	Setting				
		PS3 Register ⁽¹⁾	PSL3 Register	PD9 Register ⁽¹⁾		
P90	CLK3 input (slave)	PS3_0=0	_	PD9_0=0		
	CLK3 output (master)	PS3_0=1	_	_		
P91	RxD3 input (master)	PS3_1=0	_	PD9_1=0		
	STxD3 output (slave)	PS3_1=1	PSL3_1=1	_		
P92	TxD3 output (master)	PS3_2=1	PSL3_2=0	_		
	SRxD3 input (slave)	PS3_2=0	_	PD9_2=0		
P93	SS3 input	PS3_3=0	PSL3_3=0	PD9_3=0		
P94	SS4 input	PS3_4=0	PSL3_4=0	PD9_4=0		
P95	CLK4 input (slave)	PS3_5=0	PSL3_5=0	PD9_5=0		
	CLK4 output (master)	PS3_5=1	_	_		
P96	TxD4 output (master)	PS3_6=1	_	_		
	SRxD4 input (slave)	PS3_6=0	PSL3_6=0	PD9_6=0		
P97	RxD4 input (master)	PS3_7=0	_	PD9_7=0		
	STxD4 output (slave)	PS3_7=1	PSL3_7=1	_		

NOTES:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

^{1.} P70 and P71 are ports for the N-channel open drain output.

17.4.1 SSi Input Pin Function (i=0 to 4)

When the SSE bit in the UiSMR3 register is set to "1" (\$\overline{SS}\$ function enabled), the special mode 2 is selected, activating the pin function.

The DINC bit in the UiSMR3 register determines which microcomputer performs as master or slave. When multiple microcomputers perform as the masters (multi-master system), the \overline{SSi} pin setting determines which master microcomputer is active and when.

17.4.1.1 When Setting the DINC Bit to "1" (Slave Mode)

When a high-level ("H") signal is applied to the \overline{SSi} pin, the STxDi and SRxDi pins are placed in a high-impedance state and the transfer clock applied to the CLKi pin is ignored. When a low-level ("L") signal is applied to the \overline{SSi} input pin, the transfer clock input is valid and serial communication is enabled.

17.4.1.2 When Setting the DINC Bit to "0" (Master Mode)

When using the SSi pin functin in master mode, set the UilRS bit in the UiC1 register to "1" (transmission completed).

When an "H" signal is applied to the \$\overline{\SSi}\$ pin, serial communication is available due to transmission privilege. The master provides the transfer clock output. When an "L" signal is applied to the \$\overline{\SSi}\$ pin, it indicates that another master is active. The TxDi and CLKi pins are placed in high-impedance states and the ERR bit in the UiSMR3 register is set to "1" (fault error) Use the transmit complete interrupt routine to verify the ERR bit state.

To resume the serial communication after the fault error occurs, set the ERR bit to "0" while applying the "H" signal to the SSi pin. The TxDi and CLKi pins become ready for signal outputs.

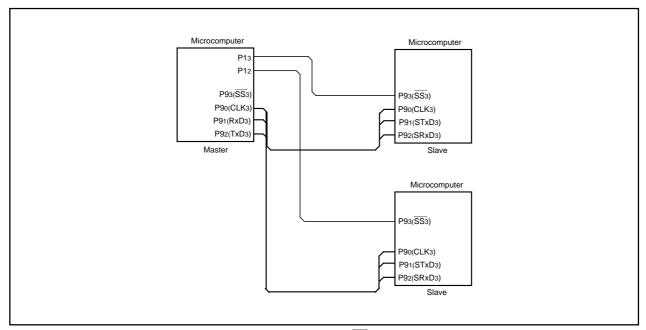


Figure 17.23 Serial Bus Communication Control with SS Pin

17.4.2 Clock Phase Setting Function

The CKPH bit in the UiSMR3 register (i=0 to 4) and the CKPOL bit in the UiC0 register select one of four combinations of transfer clock polarity and phases.

The transfer clock phase and polarity must be the same between the master and the slave involved in the transfer.

17.4.2.1 When setting the DINC Bit to "0" (Master (Internal Clock))

Figure 17.24 shows transmit and receive timing.

17.4.2.2 When Setting the DINC Bit to "1" (Slave (External Clock))

When the CKPH bit is set to "0" (no clock delay) and the \$\overline{SSi}\$ input pin is held high ("H"), the STxDi pin is placed in a high-impedance state. When the \$\overline{SSi}\$ input pin becomes low ("L"), conditions to start a serial transfer are met, but output is indeterminate. The serial transmission is synchronized with the transfer clock. Figure 17.25 shows the transmit and receive timing.

When the CKPH bit is set to "1" (clock delay) and the \overline{SSi} input pin is held high, the STxDi pin is placed in a high-impedance state. When the \overline{SSi} pin becomes low, the first data is output. The serial transmission is synchronized with the transfer clock. Figure 17.26 shows the transmit and receive timing.

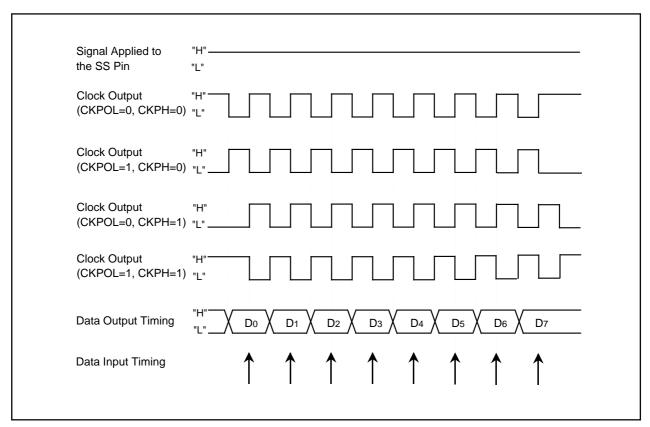


Figure 17.24 Transmit and Receive Timing in Master Mode (Internal Clock)

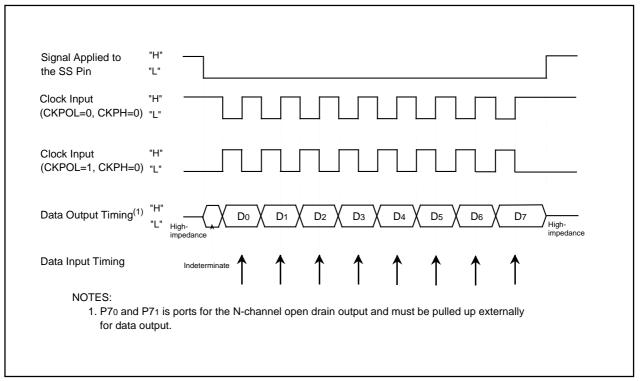


Figure 17.25 Transmit and Receive Timing in Slave Mode (External Clock) (CKPH=0)

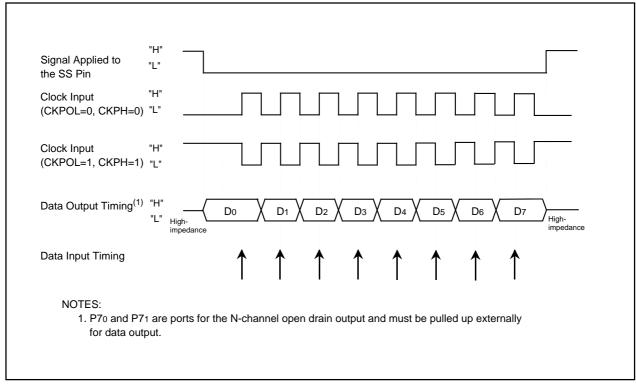


Figure 17.26 Transmit and Receive Timing in Slave Mode (External Clock) (CKPH=1)

17.5 Special Mode 3 (GCI Mode)

In GCI mode, the external clock is synchronized with the transfer clock used in the clock synchronous serial I/O mode.

Table 17.24 lists specifications of GCI mode. Table 17.25 lists registers settings. Tables 17.26 to 17.28 list pin settings.

Table17.24 GCI Mode Specifications

Item	Specification
Transfer Data Format	Transfer data: 8 bits long
Transfer Clock	The CKDIR bit in the UiMR register (i=0 to 4) is set to "1" (external clock selected):
	input from the CLKi pin
Clock Synchronization Function	Trigger signal input from the CTSi pin
Transmit/Receive Start	To start data transmission and reception, meet the following conditions and then apply a
Condition	trigger signal to the CTSi pin:
	- Set the TE bit in the UiC1 register to "1" (transmit enable)
	- Set the RE bit in the UiC1 register to "1" (receive enable)
	- Set the TI bit in the UiC1 register to "0" (Data in the UiTB register)
Interrupt Request	While transmitting, the following condition can be selected:
Generation Timing	- The UiIRS bit in the UiC1 register is set to "0" (UiTB register empty):
	when data is transferred from the UiTB register to the UARTi transmit register (transmission started)
	- The UiIRS bit is set to "1" (Transmit completed):
	when a data transmission from the UARTi transfer register is completed
	While receiving,
	when data is transferred from the UARTi receive register to the UiRB register (reception completed)
Error Detection	Overrun error ⁽¹⁾
	This error occurs when the seventh bit of the next received data is read before reading the UiRB register.

^{1.} If an overrun error occurs, the UiRB register is indeterminate. The IR bit in the SiRIC register does not change to "1" (interrupt requested).

Table 17.25 Register Settings in GCI Mode

UiTB	7 to 0	
	7 10 0	Set transmit data
UiRB	7 to 0	Received data
	OER	Overrun error flag
UiBRG	7 to 0	Set to "0016"
UiMR	SMD2 to SMD0	Set to "0012"
	CKDIR	Set to "1"
	IOPOL	Set to "0"
UiC0	CLK1, CLK0	Set to "002"
	CRS	Disabled because the CRD bit is set to "1"
	TXEPT	Transfer register empty flag
	CRD	Set to "1"
	NCH	Select the output format of the TxDi pin
	CKPOL	Set to "0"
	UFORM	Set to "0"
UiC1	TE	Set to "1" to enable data transmission and reception
	TI	Transfer buffer empty flag
	RE	Set to "1" to enable data reception
	RI	Reception complete flag
	UiIRS	Select what causes the UARTi transmit interrupt to be generated
	UiRRM, UiLCH	Set to "0"
	SCLKSTPB	Set to "0"
UiSMR	6 to 0	Set to "00000002"
	SCLKDIV	See Table 17.29
UiSMR2	6 to 0	Set to "00000002"
	SU1HIM	See Table 17.29
UiSMR3	2 to 0	Set to "0002"
	NODC	Set to "0"
	7 to 4	Set to "00002"
UiSMR4	7 to 0	Set to "0016"

i=0 to 4

Table 17.26 Pin Settings in GCI Mode (1)

Port	Function	Setting		
		PS0 Register	PSL0 Register	PD6 Register
P60	CTS0 input ⁽¹⁾	PS0_0=0	_	PD6_0=0
P61	CLK0 input	PS0_1=0	_	PD6_1=0
P62	RxD0 input	PS0_2=0	_	PD6_2=0
P63	TxD0 output	PS0_3=1	_	_
P64	CTS1 input ⁽¹⁾	PS0_4=0	_	PD6_4=0
P65	CLK1 input	PS0_5=0	_	PD6_5=0
P66	RxD1 input	PS0_6=0	_	PD6_6=0
P67	TxD1 output	PS0_7=1	_	_

NOTES:

1. CTS input is used as a trigger siganl input.

Table 17.27 Pin Settings (2)

Port	Function	Setting				
		PS1 Register	PSL1 Register	PSC Register	PD7 Register	
P70 ⁽¹⁾	TxD2 output	PS1_0=1	PSL1_0=0	PSC_0=0	-	
P71 ⁽¹⁾	RxD2 input	PS1_1=0	_	_	PD7_1=0	
P72	CLK2 input	PS1_2=0	_	_	PD7_2=0	
P73	CTS2 input ⁽²⁾	PS1_3=0	_	_	PD7_3=0	

NOTES:

- 1. P70 and P71 are ports for the N-channel open drain output.
- 2. CTS input is used as a trigger siganl input.

Table 17.28 Pin Settings (3)

Port	Function	Setting		
		PS3 Register ⁽¹⁾	PSL3 Register	PD9 Register ⁽¹⁾
P90	CLK3 input	PS3_0=0	_	PD9_0=0
P91	RxD3 input	PS3_1=0	_	PD9_1=0
P92	TxD3 output	PS3_2=1	PSL3_2=0	_
P93	CTS3 input ⁽²⁾	PS3_3=0	PSL3_3=0	PD9_3=0
P94	CTS4 input ⁽²⁾	PS3_4=0	PSL3_4=0	PD9_4=0
P95	CLK4 input	PS3_5=0	PSL3_5=0	PD9_5=0
P96	TxD4 output	PS3_6=1	_	_
P97	RxD4 input	PS3_7=0	_	PD9_7=0

- 1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.
- 2. CTS input is used for a trigger siganl input.

To generate the internal clock synchronized with the external clock, set the SU1HIM bit in the UiSMR2 register (i=0 to 4) and the SCLKDIV bit in the UiSMR register to values shown in Table 17.29. Then apply a trigger signal to the $\overline{\text{CTSi}}$ pin. Either the same clock cycle as the external clock or external clock divided by two can be selected as the transfer clock. The SCLKSTPB bit in the UiC1 register controls the transfer clock. Set the SCLKSTPB bit accordingly, to start or stop the transfer clock during an external clock operation. Figure 17.27 shows an example of the clock-divided synchronous function.

Table 17.29 Clock-Divided Synchronous Function Select

SCLKDIV Bit in	SU1HIM Bit in	Clock-Divided Synchronous Function	Example of Waveform
UiSMR Register	UiSMR2 Register		
0	0	Not synchronized	-
0	1	Same division as the external clock	A in Figure 17.27
1	0 or 1	Same division as the external clock	B in Figure 17.27
		divided by 2	

i=0 to 4

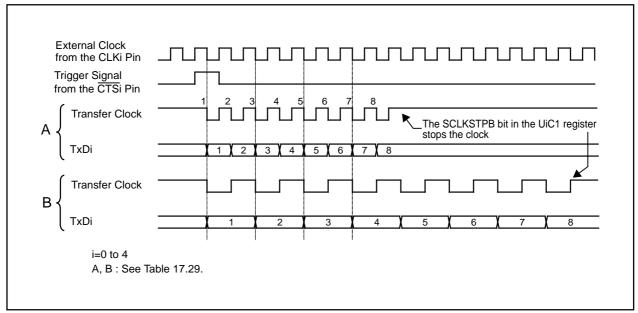


Figure 17.27 Clock-Divided Synchronous Function

17.6 Special Mode 4 (IE Mode)

In IE mode, devices connected with the IEBus can communicate in UART mode.

Table 17.30 lists register settings. Tables 17.31 to 17.33 list pin settings.

Table 17.30 Register Settings in IE Mode

Register	Bit	Function
UiTB	8 to 0	Set transmit data
UiRB	8 to 0	Received data can be read
	OER, FER,	Error flags
	PER, SUM	
UiBRG	7 to 0	Set bit rate
UiMR	SMD2 to SMD0	Set to "1102"
	CKDIR	Select the internal clock or external clock
	STPS	Set to "0"
	PRY	Disabled because the PRYE bit is set to "0"
	PRYE	Set to "0"
	IOPOL	Select TxD and RxD I/O polarity
UiC0	CLK1, CLK0	Select count source for the UiBRG register
	CRS	Disabled because the CRD bit is set to "1"
	TXEPT	Transfer register empty flag
	CRD	Set to "1"
	NCH	Select output format of the TxDi pin
	CKPOL	Set to "0"
	UFORM	Set to "0"
UiC1	TE	Set to "1" to enable data transmission
	TI	Transfer buffer empty flag
	RE	Set to "1" te enable data reception
	RI	Reception complete flag
	UilRS	Select what causes the UARTi transmit interrupt to be generated
	UiRRM, UiLCH,	Set to "0"
	SCLKSTPB	
UiSMR	3 to 0	Set to "00002"
	ABSCS	Select bus conflict detect sampling timing
	ACSE	Set to "1" to automatically clear the transmit enable bit
	SSS	Select transmit start condition
	SCLKDIV	Set to "0"
UiSMR2	7 to 0	Set to "0016"
UiSMR3	7 to 0	Set to "0016"
UiSMR4	7 to 0	Set to "0016"
IFSR	IFSR6, IFSR7	Select how the bus conflict interrupt occurs

i=0 to 4

Table 17.31 Pin Settings in IE Mode (1)

Port	Function	Setting		
		PS0 Register	PSL0 Register	PD6 Register
P61	CLK0 input	PS0_1=0	_	PD6_1=0
	CLK0 output	PS0_1=1	_	_
P62	RxD0 input	PS0_2=0	_	PD6_2=0
P63	TxD0 output	PS0_3=1	_	_
P65	CLK1 input	PS0_5=0	_	PD6_5=0
	CLK1 output	PS0_5=1	_	_
P66	RxD1 input	PS0_6=0	_	PD6_6=0
P67	TxD1 output	PS0_7=1	_	_

Table 17.32 Pin Settings (2)

Port	Function	Setting			
		PS1 Register	PSL1 Register	PSC Register	PD7 Register
P70 ⁽¹⁾	TxD2 output	PS1_0=1	PSL1_0=0	PSC_0=0	_
P71 ⁽¹⁾	RxD2 input	PS1_1=0	_	_	PD7_1=0
P72	CLK2 input	PS1_2=0	_	_	PD7_2=0
	CLK2 output	PS1_2=1	PSL1_2=0	PSC_2=0	_

NOTES:

1. P70 and P71 are ports for the N-channel open drain output.

Table 17.33 Pin Settings (3)

Port	Function	Setting		
		PS3 Register ⁽¹⁾	PSL3 Register	PD9 Register ⁽¹⁾
P90	CLK3 input	PS3_0=0	_	PD9_0=0
	CLK3 output	PS3_0=1	-	_
P91	RxD3 input	PS3_1=0	_	PD9_1=0
P92	TxD3 output	PS3_2=1	PSL3_2=0	_
P95	CLK4 input	PS3_5=0	PSL3_5=0	PD9_5=0
	CLK4 output	PS3_5=1	_	_
P96	TxD4 output	PS3_6=1	_	_
P97	RxD4 input	PS3_7=0	_	PD9_7=0

NOTES:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

If the output signal level of the TxDi pin (i=0 to 4) differs from the input signal level of the RxDi pin, an interrupt request is generated.

UART0 and UART3 are assigned software interrupt number 40. UART1 and UART4 are assigned number 41. When using the bus conflict detect function of UART0 or UART3, of UART1 or UART4, set the IFSR6 bit and the IFSR7 bit in the IFSR register accordingly.

When the ABSCS bit in the UiSMR register is set to "0" (rising edge of the transfer clock), it is determined, on the rising edge of the transfer clock, if the output level of the TxD pin and the input level of the RxD pin match. When the ABSCS bit is set to "1" (timer Aj underflow), it is determined when the timer Aj (timer A3 in UART0, timer A4 in UART1, timer A0 in UART2, timer A3 in UART3, the timer A4 in UART4) counter overflows. Use the timer Aj in one-shot timer mode.

When the ACSE bit in the UiSMR register is set to "1" (automatic clear at bus conflict) and the IR bit in the BCNiIC register to "1" (discrepancy detected), the TE bit in the UiC1 register is set to "0" (transmit disable).

When the SSS bit in the UiSMR register is set to "1" (synchronized with RxDi), data is transmitted from the TxDi pin on the falling edge of the RxDi pin. Figure 17.28 shows bits associated with the bus conflict detect function.

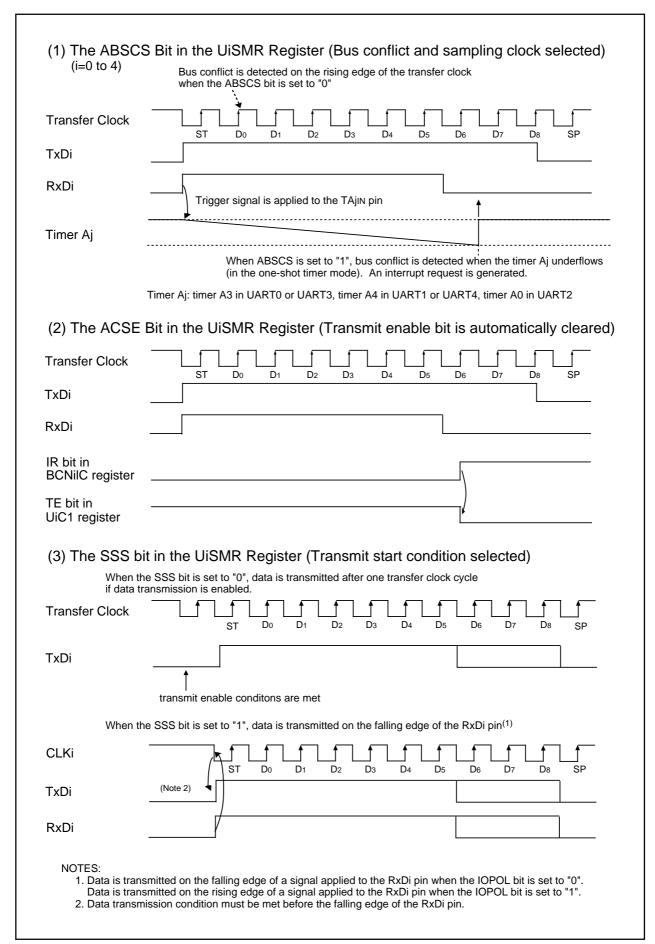


Figure 17.28 Bit Function Related Bus Conflict Detection

17.7 Special Mode 5 (SIM Mode)

In SIM mode, SIM interface devices can communicate in UART mode. Both direct and inverse formats are available and a low-level ("L") signal output can be provided from the TxDi pin (i=0 to 4) when a parity error is detected.

Table 17.34 lists specifications of SIM mode. Table 17.35 lists register settings. Tables 17.36 to 17.38 list pin settings.

Table 17.34 SIM Mode Specifications

Item			Specification	
Transfer Data Format	• Transfer data: 8-	bit UART mode	One stop bit	
	In direct format		• In inverse format	
	Parity:	Even	Parity:	Odd
	Data logic:	Direct	Data logic:	Inverse
	Transfer format:	LSB first	Transfer format:	MSB first
Transfer Clock			=0 to 4) is "0" (interna setting value of the U	I clock selected): IiBRG register, 0016 to FF16
	Do not set the CKI	OIR bit to "1" (externa	al clock selected)	
Transmit/Receive Control	The CRD bit in the	UiC0 register is set	to "1" (CTS, RTS fund	ction disabled)
Other Setting Items	The UiIRS bit in th	e UiC1 register is set	to "1" (transmission	completed)
Transmit Start Condition	To start transmitting	g, the following requ	irements must be me	t:
	- Set the TE bit in t	the UiC1 register to "	1" (transmit enable)	
	- Set the TI bit in th	ne UiC1 register to "C	" (data in the UiTB re	gister)
Receive Start Condition	To start receiving,	the following require	ments must be met:	
	- Set the RE bit in	the UiC1 register to "	1" (receive enable)	
	- Detect the start b	it		
Interrupt Request	While transmitting	g,		
Generation Timing		set to "1" (transmission in the UAF	n completed): RTi transfer register is	completed
	While receiving,			
	when data is transf	erred from the UARTi re	eceive register to the Ui	RB register (reception completed)
Error Detection	• Overrun error ⁽¹⁾			
	This error occu UiRB register	rs when the eighth bi	t of the next data is re	eceived before reading the
	Flaming error			
	This error occurs when the number of the stop bit set is not detected			
	Parity error			
	This error occurs when the number of "1" in parity bit and character bits differs from the number set			
	Error sum flag			
	The SUM bit is	set to "1" when an o	verrun error, framing	error or parity error occurs

- 1. If an overrun error occurs, the UiRB register is indeterminate. The IR bit in the SiRIC register does not change to "1" (interrupt requested).
- 2. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

Table 17.35 Register Settings in SIM Mode

Register	Bit	Function			
UiTB	7 to 0	Set transmit data			
UiRB 7 to 0		Received data can be read			
	OER, FER,	Error flags			
	PER, SUM				
UiBRG	7 to 0	Set bit rate			
UiMR	SMD2 to SMD0	Set to "1012"			
	CKDIR	Set to "0"			
	STPS	Set to "0"			
	PRY	Set to "1" for direct format or "0" for inverse format			
	PRYE	Set to "1"			
	IOPOL	Set to "0"			
UiC0	CLK1, CLK0	Select count source for the UiBRG register			
	CRS	Disabled because the CRD bit is set to "1"			
	TXEPT	Transfer register empty flag			
	CRD	Set to "1"			
	NCH	Set to "1"			
	CKPOL	Set to "0"			
	UFORM	Set to "0" for direct format or "1" for inverse format			
UiC1 TE Set to "1" to enable data transmission		Set to "1" to enable data transmission			
	TI	Transfer buffer empty flag			
	RE	Set to "1" to enable data reception			
	RI	Reception complete flag			
	UilRS	Set to "1"			
	UiRRM	Set to "0"			
	UiLCH	Set to "0" for direct format or "1" for inverse format			
	UiERE	Set to "1"			
UiSMR	7 to 0	Set to "0016"			
UiSMR2	7 to 0	Set to "0016"			
UiSMR3	7 to 0	Set to "0016"			
UiSMR4	7 to 0	Set to "0016"			

i=0 to 4

Table 17.36 Pin Settings in SIM Mode (1)

Port	Function	Setting		
		PS0 Register	PSL0 Register	PD6 Register
P62	RxD0 input	PS0_2=0	_	PD6_2=0
P63	TxD0 output	PS0_3=1	_	_
P66	RxD1 input	PS0_6=0	_	PD6_6=0
P67	TxD1 output	PS0_7=1	_	_

Table 17.37 Pin Settings (2)

Port	Function	Setting			
		PS1 Register	PSL1 Register	PSC Register	PD7 Register
P70 ⁽¹⁾	TxD2 output	PS1_0=1	PSL1_0=0	PSC_0=0	_
P71 ⁽¹⁾	RxD2 input	PS1_1=0	_	_	PD7_1=0

NOTES:

1. P70 and P71 are ports for the N-channel open drain output.

Table 17.38 Pin Settings (3)

Port	Function	Setting		
		PS3 Register ⁽¹⁾	PSL3 Register	PD9 Register ⁽¹⁾
P91	RxD3 input	PS3_1=0	_	PD9_1=0
P92	TxD3 output	PS3_2=1	PSL3_2=0	_
P96	TxD4 output	PS3_6=1	_	_
P97	RxD4 input	PS3_7=0	_	PD9_7=0

NOTES:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

Figure 17.29 shows an example of a SIM interface operation. Figure 17.30 shows an example of a SIM interface connection. Connect the TxDi pin to the RxDi pin for a pull-up.

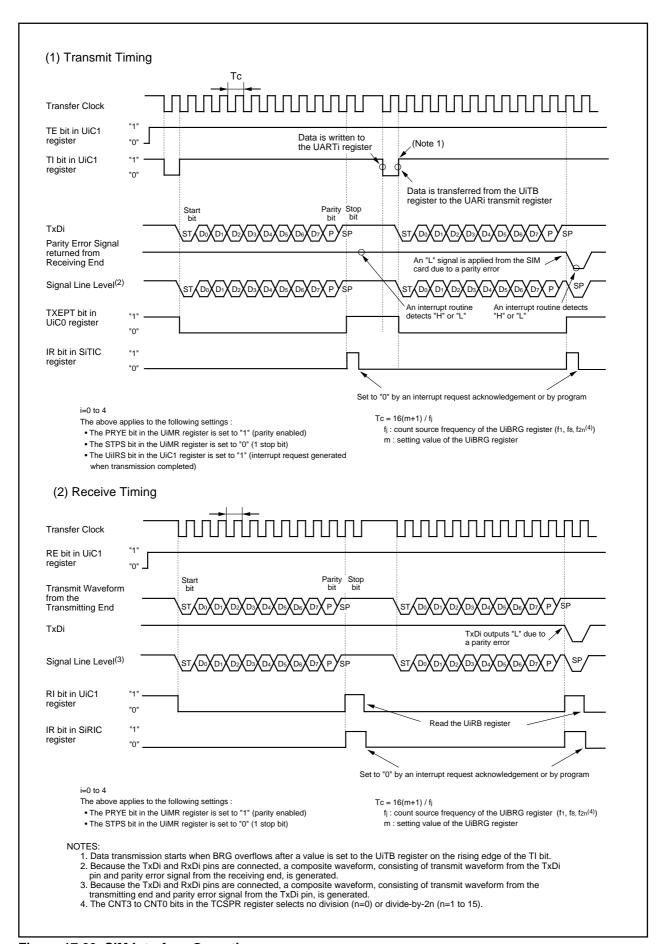


Figure 17.29 SIM Interface Operation

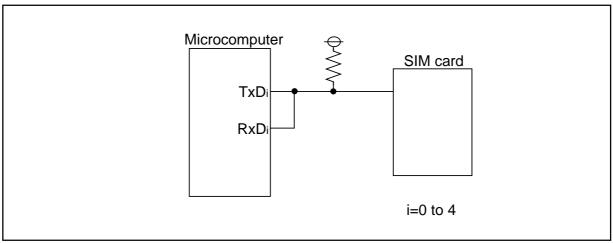


Figure 17.30 SIM Interface Connection

17.7.1 Parity Error Signal

17.7.1.1 Parity Error Signal Output Function

When the UiERE bit in the UiC1 register (i=0 to 4) is set to "1", the parity error signal output can be provided. The parity error signal output is provided when a parity error is detected upon receiving data. A low-level ("L") signal output is provided from the TxDi pin in the timing shown in Figure 17.31. When reading the UiRB register during a parity error output, the PER bit in the UiRB register is set to "0" and a high-level ("H") signal output is again provided simultaneously.

17.7.1.2 Parity Error Signal

To determine whether the parity error signal is output, the port that shares a pin with the RxDi pin is read by using an end-of-transmit interrupt routine.

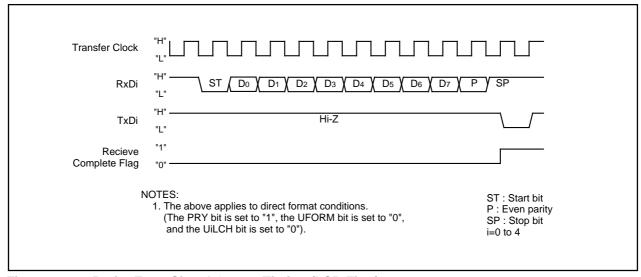


Figure 17.31 Parity Error Signal Output Timing (LSB First)

17.7.2 Format

17.7.2.1 Direct Format

Set the PRYE bit in the UiMR register (i=0 to 4) to "1" (parity enabled), the PRY bit to "1" (even parity), the UFORM bit in the UiC0 register to "0" (LSB first) and the UiLCH bit in the UiC1 register to "0" (not inversed). When data are transmitted, data set in the UiTB register are transmitted with the even-numbered parity, starting from Do. When data are received, received data are stored in the UiRB register, starting from Do. The even-numbered parity determines whether a parity error occurs.

17.7.2.2 Inverse Format

Set the PRYE bit to "1", the PRY bit to "0" (odd parity), the UFORM bit to "1" (MSB first) and the UiLCH bit to "1" (inversed). When data are transmitted, values set in the UiTB register are logically inversed and are transmitted with the odd-numbered parity, starting from D7. When data are received, received data are logically inversed to be stored in the UiRB register, starting from D7. The odd-numbered parity determines whether a parity error occurs.

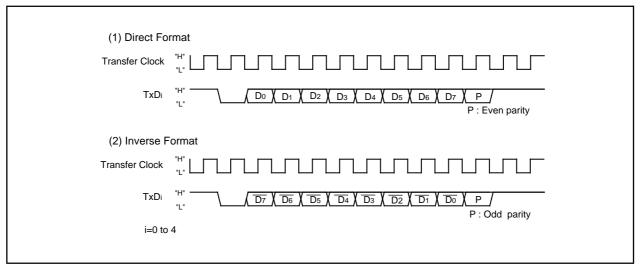


Figure 17.32 SIM Interface Format

18. A/D Converter

The A/D converter consists of one 10-bit successive approximation A/D converter with a capacitive coupling amplifier.

The result of an A/D conversion is stored into the A/D registers corresponding to selected pins. It is stored into the AD00 register only when DMAC operating mode is entered.

Table 18.1 lists specifications of the A/D converter. Figure 18.1 shows a block diagram of the A/D converter. Figures 18.2 to 18.6 show registers associated with the A/D converter.

NOTE •

This section is described in the 144-pin package only as an example. The AN150 to AN157 pins are not included in the 100-pin package.

Table 18.1 A/D Converter Specifications

Item	Specification
A/D Conversion Method	Successive approximation (with a capacitive coupling amplifier)
Analog Input Voltage ⁽¹⁾	0V to AVcc (Vcc1)
Operating Clock, ØAD(2)	fAD, fAD/2, fAD/3, fAD/4, fAD/6, fAD/8
Resolution	Select from 8 bits or 10 bits
Operating Mode	One-shot mode, repeat mode, single sweep mode, repeat sweep mode 0,
	repeat sweep mode 1, multi-port single sweep mode, multi-port repeat sweep
	mode 0
Analog Input Pins ⁽³⁾	34 pins
	8 pins each for AN (ANo to AN7), ANO (AN00 to AN07), AN2 (AN20 to AN27),
	AN15 (AN150 to AN157)
	2 extended input pins (ANEX0 and ANEX1)
A/D Conversion Start Condition	Software trigger
	The ADST bit in the AD0CON0 register is set to "1" (A/D conversion started) by
	program
	External trigger (re-trigger is enabled)
	When a falling edge is applied to the ADTRG pin after the ADST bit is set to "1" by
	program
	Hardware trigger (re-trigger is enabled)
	The timer B2 interrupt request of the three-phase motor control timer functions
	(after the ICTB2 counter completes counting) is generated after the ADST bit is
	set to "1" by program
Conversion Rate Per Pin	Without the sample and hold function
	8-bit resolution : 49 ØAD cycles
	10-bit resolution : 59 ØAD cycles
	With the sample and hold function
	8-bit resolution : 28 ØAD cycles
	10-bit resolution : 33 ØAD cycles

- 1. Analog input voltage is not affected by the sample and hold function status.
- 2. ØAD frequency must be under 16 MHz when Vcc1=5V.
 - ØAD frequency must be under 10 MHz when VCC1=3.3V.
 - Without the sample and hold function, the \varnothing AD frequency is 250 kHz or more.
 - With the sample and hold function, the \varnothing AD frequency is 1 MHz or more.
- 3. AVCC = VREF = VCC1 ≥ VCC2, A/D input voltage (for AN0 to AN7, AN150 to AN157, ANEX0 and ANEX1) ≤ VCC1, A/D input voltage (for AN00 to AN07 and AN20 to AN27) ≤ VCC2.

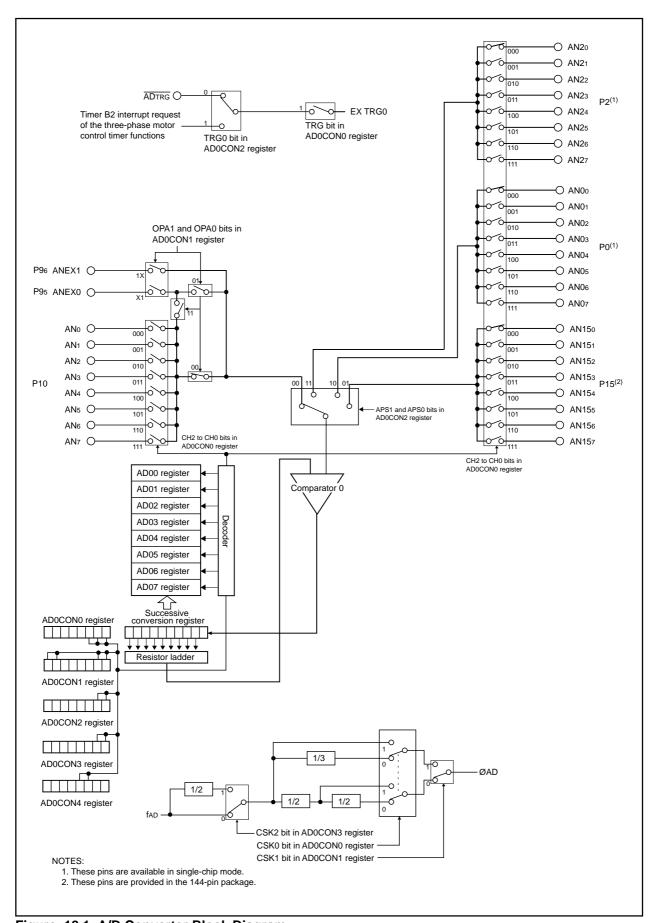
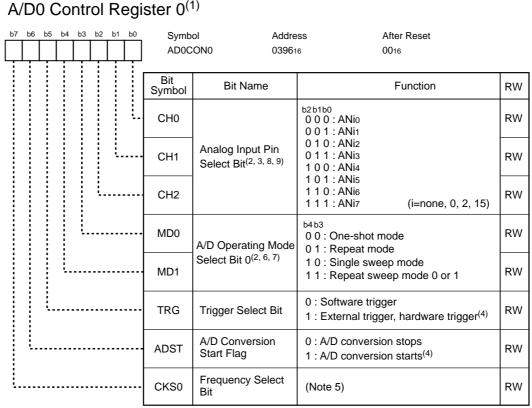



Figure 18.1 A/D Converter Block Diagram

- When the ADOCON0 register is rewritten during the A/D conversion, the conversion result is indeterminate.
- 2. Analog input pins must be set again after changing an A/D operating mode.
- 3. The CH2 to CH0 bit settings are enabled in one-shot mode and repeat mode.
- 4. To set the TRG bit to "1", select the cause of trigger by setting the TRG0 bit in the AD0CON2 register. Then set the ADST bit to "1" after the TRG bit is set to "1".
- ØAD frequency must be under 16 MHz when Vcc1=5V.
 ØAD frequency must be under 10 MHz when Vcc1=3.3V.
 Combination of the CKS0, CKS1 and CKS2 bits selects ØAD.

The CKS2 Bit in the AD0CON3 Register	The CKS0 Bit in the AD0CON0 Register	The CKS1 Bit in the AD0CON1 Register	Ø AD
	0	0	fad divided by 4
0	U	1	fad divided by 3
	1	0	fad divided by 2
	'	1	fad
1	0	0	fad divided by 8
	l ⁰	1	fad divided by 6

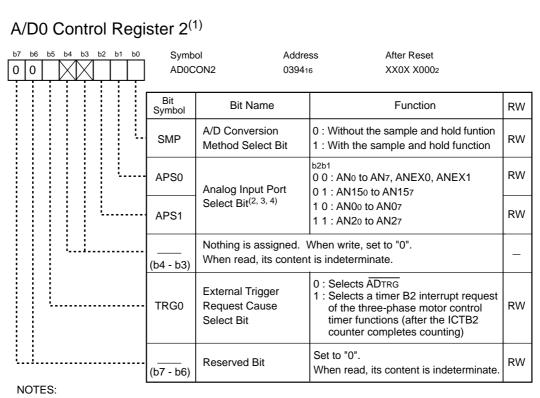

- 6. When the MSS bit in the AD0CON3 register is set to "1" (multi-port sweep mode enabled), set the MD1 and MD0 bits to "102" to enter multi-port single sweep mode and to "112" to enter multi-port repeat sweep mode 0.
- 7. When the MSS bit is set to "1", the MD1 and MD0 bits cannot be set to "002" or "012".
- 8. AVCC=VREF=VCC1≥VCC2, AD input voltage (for AN0 to AN7, AN150 to AN157, ANEX0, ANEX1) ≤ VCC1, AD input voltage (for AN00 to AN07, AN20 to AM27) ≤ VCC2.
- 9. Set the PSC_7 bit in the PSC register to "1" to use the P10 pin as an analog input pin.

Figure 18.2 AD0CON0 Register

A/D0 Control Register 1⁽¹⁾ Symbol Address After Reset AD0CON1 039716 0016 Bit Symbol Bit Name Function RW Single sweep mode and repeat sweep mode 0 b1 b0 0 0 : ANio, ANi1 SCANO RW 0 1: ANio to ANi3 1.0: ANio to ANis 1 1 : ANio to ANi7 Repeat sweep mode 1(3) A/D Sweep Pin 0 0 : ANio Select Bit(2, 10) 0 1: ANio, ANi1 1 0: ANio to ANi2 (i=none, 0, 2, 15) SCAN1 1 1 : ANio to ANi3 RW Multi-port single sweep mode and multi-port repeat sweep mode 0⁽⁴⁾ 11: ANio to ANi7 A/D Operating 0 : Any mode other than repeat sweep mode 1 RW MD2 Mode Select Bit 1 1 : Repeat sweep mode 1⁽⁵⁾ 8/10-Bit Mode 0:8-bit mode **BITS** RW Select Bit 1:10-bit mode Frequency Select CKS1 (Note 6) RW 0: No VREF connection(11) **VREF Connection VCUT** RW 1: VRFF connection b7 b6 OPA0 RW 0 0 : ANEX0 and ANEX1 are not used⁽⁸⁾ External Op-Amp 0 1 : Signal into ANEX0 is A/D converted Connection Mode Bit^(7, 9) 1 0 : Signal into ANEX1 is A/D converted OPA1 RW 11: External op-amp connection mode

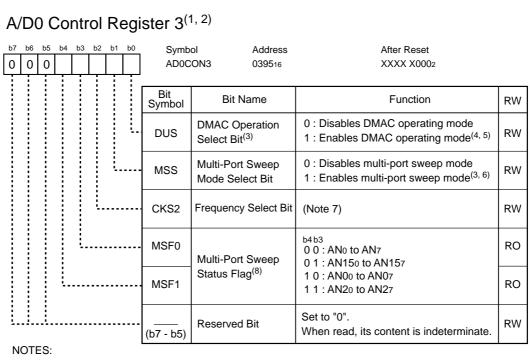

- 1. When the AD0CON1 register is rewritten during the A/D conversion, the conversion result is
- 2. The SCAN1 and SCAN0 bit settings are disabled in single sweep mode, repeat sweep mode 0, repeat sweep mode 1, mutli-port single sweep mode and multi-port repeat sweep mode 0.
- 3. This pin is commonly used in the A/D conversion when the MD2 bit is set to "1".
- 4. In multi-port single sweep mode or multi-port repeat sweep mode 0, do not set the SCAN1 and SCAN0 bits to any setting other than "112".
- 5. When the MSS bit in the AD0CON3 register is set to "1" (multi-port sweep mode enabled), set the MD2 bit to "0".
- 6. Refer to the note for the CKS0 bit in the AD0CON0 register.
- 7. In one-shot mode and repeat mode, the OPA1 and OPA0 bits can be set to "012" or "102" only. Do not set the OPA0 and OPA1 bits to "012" or "102" in other modes.
- 8. To set the OPA1 and OPA0 bits to "002", set the PSL3_5 bit in PSL3 register to "0" (other than ANEX0) and the PSL3_6 bit to "0" (other than ANEX1).
- 9. When the MSS bit is set to "1", set the OPA1 and OPA0 bits to "002".
- 10. AVcc=VREF=Vcc1≥Vcc2, AD input voltage (for AN₀ to AN7, AN15₀ to AN157, ANEX0, ANEX1) ≤ Vcc1, AD input voltage (for AN00 to AN07, AN20 to AM27) \leq VCC2.
- 11. Do not set the VCUT bit to "0" during the A/D conversion. VREF is a reference voltage for AD0 only. The VCUT bit setting does not affect the VREF performance

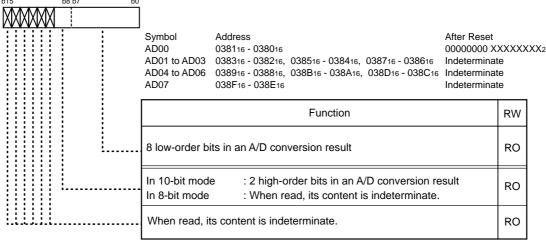
Figure 18.3 AD0CON1 Register

- When the ADOCON2 register is rewritten during the A/D conversion, the conversion result is indeterminate.
- When the MSS bit in the AD0CON3 register is set to "1" (multi-port sweep mode enabled), set the APS1 and APS0 bits to "012".
- 3. The APS1 and APS0 bits can be set to "012" in the 100-pin package only when the MSS bit in the AD0CON3 register is set to "1" (multi-port sweep mode enabled).
- 4. The APS1 and APS0 bits can be set to "102" or "112" in single-chip mode only.

Figure 18.4 AD0CON2 Register

- When the ADOCON3 register is rewritten during the A/D conversion, the conversion result is indeterminate.
- 2. The ADOCON3 may be read uncorrectly during the A/D conversion. It must be read or written after the A/D converter stops operating.
- 3. When the MSS bit is set to "1", set the DUS bit to "1".
- 4. When the DUS bit is set to "1", the AD00 register stores all A/D conversion results.
- 5. When the DUS bit is set to "1", set the DMAC.
- 6. When the MSS bit is set to "1", set the MD2 bit in the AD0CON1 register to "0" (other than repeat sweep mode 1), the APS1 and APS0 bits in the AD0CON2 register to "012" (AN150 to AN157) and the OPA1 and OPA0 bits in the AD0CON1 register to "002" (ANEX0 and ANEX1 not used).
- 7. Refer to the note for the CKS0 bit in the AD0CON0 register.
- 8. The MSF1 and MSF0 bit settings are enabled when the MSS bit is set to "1". Value in the bit is indeterminate when the MSS bit is set to "0".

Figure 18.5 AD0CON3 Register


A/D0 Control Register 4⁽¹⁾ Symbol Address After Reset 0 0 0 0 0 0 AD0CON4 039216 XXXX 00XX2 Bit Bit Name **Function** RW Symbol Set to "0" Reserved Bit RW When read, its content is indeterminate. (b1 - b0)b3 b2 MPS10 00: (Note 4) RW Multi-Port Sweep 0 1: ANo to AN7, AN150 to AN157 Port Select Bit(2, 3) 1 0 : ANo to AN7, AN00 to AN07 MPS11 RW 1 1: ANo to AN7, AN20 to AN27 Set to "0". Reserved Bit RW When read, its content is indeterminate. (b7 - b4)

NOTES:

- 1. When the AD0CON4 register is rewritten during the A/D conversion, the conversion result is
- 2. The MPS11 and MPS10 bits cannot be set to "012" in the 100-pin package.
- 3. The MPS11 and MPS10 bits can be set to "102" or "112" in single-chip mode only.
- 4. When the MSS bit in the AD0CON3 regsiter is set to "0" (multi-port sweep mode disabled), set the MPS11 and MPS10 bits to "002".

When the MSS bit is set to "1" (multi-port sweep mode enabled), set the MPS11 and MPS10 bits to "012", "102" or "112".

A/D0 Register i (i =0 to 7) $^{(1, 2, 3, 4, 5)}$

- 1. In DMAC operating mode, register value read by program is indeterminate.
- 2. Register value is indeterminate when written while the A/D conversion is stopped.
- 3. Register value is indeterminate if the next A/D conversion result is stored before reading the register.
- 4. The AD00 register is available in DMAC operating mode. Other registers are indeterminate.
- 5. In DMAC operating mode and 10-bit mode, set DMAC for a 16-bit transfer.

Figure 18.6 AD0CON4 Register and AD00 to AD07 Registers

18.1 Mode Description

18.1.1 One-shot Mode

In one-shot mode, analog voltage applied to a selected pin is converted to a digital code once. Table 18.2 lists specifications of one-shot mode.

Table 18.2 One-shot Mode Specifications

Item	Specification
Function	The CH2 to CH0 bits in the AD0CON0 register, the OPA1 and OPA0 bits in the
	AD0CON1 register and the APS1 and APS0 bits in the AD0CON2 register select a
	pin. Analog voltage applied to the pin is converted to a digital code once
Start Condition	• When the TRG bit in the AD0CON0 register is set to "0" (software trigger),
	the ADST bit in the AD0CON0 register is set to "1" (A/D conversion starts) by
	program
	When the TRG bit is set to "1" (external trigger, hardware trigger):
	- a falling edge is applied to the ADTRG pin after the ADST bit is set to "1" by
	program
	- The timer B2 interrupt request of three-phase motor control timer functions
	(after the ICTB2 register counter completes counting) is generated after the
	ADST bit is set to "1" by program
Stop Condition	• A/D conversion is completed (the ADST bit is set to "0" when the software trigger is
	selected)
	• The ADST bit is set to "0" (A/D conversion stopped) by program
Interrupt Request Generation Timing	A/D conversion is completed
Analog Voltage Input Pins	Select one pin from ANio to ANi7 (i=none, 0, 2, 15), ANEX0 or ANEX1
Reading of A/D Conversion Result	• When the DUS bit in the AD0CON3 register is set to "0" (DMAC operating
	mode disabled), the microcomputer reads the AD0j register (j=0 to 7) corre-
	sponding to selected pin
	• When the DUS bit is set to "1" (DMAC operating mode enabled), do not read the
	AD00 register. A/D conversion result is stored in the AD00 register after the A/D
	conversion is completed. DMAC transfers the conversion result to any memory
	space. Refer to 13. DMAC for DMAC settings

18.1.2 Repeat Mode

In repeat mode, analog voltage applied to a selected pin is repeatedly converted to a digital code. Table 18.3 lists specifications of repeat mode.

Table 18.3 Repeat Mode Specifications

Item	Specification
Function	The CH2 to CH0 bits in the AD0CON0 register, the OPA1 and OPA0 bits in the
	AD0CON1 register and the APS1 and APS0 bits in the AD0CON2 register select a
	pin. Analog voltage applied to the pin is repeatedly converted to a digital code
Start Condition	Same as one-shot mode
Stop Condition	The ADST bit in the AD0CON0 register is set to "0" (A/D conversion stopped) by
	program
Interrupt Request Generation Timing	• When the DUS bit in the AD0CON3 register is set to "0" (DMAC operating
	mode disabled), no interrupt request is generated.
	• When DUS bit is set to "1" (DMAC operating mode enabled), an interrupt request
	is generated every time an A/D conversion is completed.
Analog Voltage Input Pins	Select one pin from ANio to ANi7 (i=none, 0, 2, 15), ANEXO or ANEX1
Reading of A/D Conversion Result	• When the DUS bit is set to "0", the microcomputer reads the AD0j register (j=0 to
	7) corresponding to the selected pin.
	• When DUS bit is set to "1", do not read the AD00 register. A/D conversion result
	is stored in the AD00 register after the A/D conversion is completed. DMAC
	transfers the conversion result to any memory space.
	Refer to 13. DMAC for DMAC settings

18.1.3 Single Sweep Mode

In single sweep mode, analog voltage that is applied to selected pins is converted one-by-one to a digital code. Table 18.4 lists specifications of single sweep mode.

Table 18.4 Single Sweep Mode Specifications

Item	Specification
Function	The SCAN1 and SCAN0 bits in the AD0CON1 register and the APS1 and APS0
	bits in the AD0CON2 register select pins. Analog voltage applied to the pin is
	converted one-by-one to a digital code
Start Condition	Same as one-shot mode
Stop Condition	Same as one-shot mode
Interrupt Request Generation Timing	• When the DUS bit in the AD0CON3 register is set to "0" (DMAC operating
	mode disabled), an interrupt request is generated after a sweep is completed.
	• When DUS bit is set to "1" (DMAC operating mode enabled), an interrupt
	request is generated every time an A/D conversion is completed
Analog Voltage Input Pins	Select from ANio and ANi1 (2 pins) (i=none, 0, 2, 15), ANio to ANi3 (4 pins), ANio to
	ANis (6 pins) or ANio to ANi7 (8 pins)
Reading of A/D Conversion Result	• When the DUS bit is set to "0", the microcomputer reads the AD0j register corre-
	sponding to selected pins
	• When DUS bit is set to "1", do not read the AD00 register. A/D conversion result
	is stored in the AD00 register after the A/D conversion is completed. DMAC
	transfers the conversion result to any memory space. Refer to 13. DMAC for
	DMAC settings

18.1.4 Repeat Sweep Mode 0

In repeat sweep mode 0, analog voltage applied to selected pins is repeatedly converted to a digital code. Table 18.5 lists specifications of repeat sweep mode 0.

Table 18.5 Repeat Sweep Mode 0 Specifications

Item	Specification
Function	The SCAN1 and SCAN0 bits in the AD0CON1 register and the APS1 and APS0
	bits in the AD0CON2 register select pins. Analog voltage applied to the pins is
	repeatedly converted to a digital code
Start Condition	Same as one-shot mode
Stop Condition	The ADST bit in the AD0CON0 register is set to "0" (A/D conversion stopped) by
	program
Interrupt Request Generation Timing	• When the DUS bit in the AD0CON3 register is set to "0" (DMAC operating mode
	disabled), no interrupt request is generated
	• When DUS bit is set to "1" (DMAC operating mode enabled), an interrupt request
	is generated every time an A/D conversion is completed
Analog Voltage Input Pins	Select from ANio and ANi1 (2 pins) (i=none, 0, 2, 15), ANio to ANi3 (4 pins), ANio to
	ANis (6 pins) or ANio to ANi7 (8 pins)
Reading of A/D Conversion Result	• When the DUS bit is set to "0", the microcomputer reads the AD0j register (j=0 to
	7) corresponding to selected pins
	• When the DUS bit is set to "1", do not read the AD00 register. A/D conversion
	result is stored in the AD00 register after the A/D conversion is completed.
	DMAC transfers the conversion result to any memory space. Refer to 13. DMAC
	for DMAC settings

18.1.5 Repeat Sweep Mode 1

In repeat sweep mode 1, analog voltage selectively applied to eight pins is repeatedly converted to a digital code. Table 18.6 lists specifications of repeat sweep mode 1.

Table 18.6 Repeat Sweep Mode 1 Specifications

Item	Specification
Function	The SCAN1 and SCAN0 bits in the AD0CON1 register and the APS1 and APS0
	bits in the AD0CON2 register select 8 pins. Analog voltage selectively applied to
	8 pins is repeatedly converted to a digital code
	e.g., When ANio is selected (i =none, 0, 2, 15), analog voltage is converted to a
	digital code in the following order:
	ANio → ANi1 → ANio → ANi2→ ANio → ANi3 etc.
Start Condition	Same as one-shot mode (Any trigger generated during an A/D conversion is invalid)
Stop Condition	The ADST bit is set to "0" (A/D conversion stopped) by program
Interrupt Request Generation Timing	• When the DUS bit in the AD0CON3 register is set to "0" (DMAC operating
	mode disabled), no interrupt request is generated
	• When DUS bit is set to "1" (DMAC operating mode enabled), an interrupt request
	is generated every time an A/D conversion is completed
Analog Voltage Input Pins	ANio to ANi7 (8 pins)
Prioritized Pins	ANio (1 pin), ANio and ANi1 (2 pins), ANio to ANi2 (3 pins) or ANio to ANi3 (4 pins)
Reading of A/D Conversion Result	\bullet When the DUS bit is set to "0", the microcomputer reads the AD0j register (j=0 to
	7) corresponding to selected pins
	• When the DUS bit is set to "1", do not read the AD00 register. A/D conversion
	result is stored in the AD00 register after the A/D conversion is completed.
	DMAC transfers the conversion result to any memory space. Refer to 13. DMAC
	for DMAC settings

18.1.6 Multi-Port Single Sweep Mode

In multi-port single sweep mode, analog voltage applied to 16 selected pins is converted one-by-one to a digital code. Set the DUS bit in the AD0CON3 register to "1" (DMAC operating mode enabled). Table 18.7 lists specifications of multi-port single sweep mode.

Table 18.7 Multi-Port Single Sweep Mode Specifications

Item	Specification
Function	The MPS11 and MPS10 bits in the AD0CON4 register select 16 pins. Analog
	voltage applied to 16 pins is converted one-by-one to a digital code in the following
	order: ANo to AN7 → ANio to ANi7 (i=0, 2, 15)
	e.g., When the MPS11 and MPS10 bits are set to "102" (AN0 to AN7, AN00 to
	AN07), analog voltage is converted to a digital code in the following order:
	$AN_0 \rightarrow AN_1 \rightarrow AN_2 \rightarrow AN_3 \rightarrow AN_4 \rightarrow AN_5 \rightarrow AN_6 \rightarrow AN_7 \rightarrow$
	AN00 → AN01 → → AN06 → AN07
Start Condition	Same as one-shot mode
Stop Condition	The ADST bit in the AD0CON0 register is set to "0" (A/D conversion stopped) by
	program
Interrupt Request Generation Timing	An interrupt request is generated every time A/D conversion is completed
	(Set the DUS bit to "1")
Analog Voltage Input Pins	Select from AN0 to AN7 → AN150 to AN157, AN0 to AN7 → AN00 to AN07 or AN0 to
	AN7→AN20 to AN27
Reading of A/D Conversion Result	Do not read the AD00 register. A/D conversion result is stored in the AD00 regis-
	ter after the A/D conversion is completed. DMAC transfers the conversion result
	to any memory space. Refer to 13. DMAC for DMAC settings
	(Set the DUS bit to "1")

18.1.7 Multi-Port Repeat Sweep Mode 0

In multi-port repeat sweep mode 0, analog voltage that is applied to 16 selected pins is repeatedly converted to a digital code. Set the DUS bit in the AD0CON3 register to "1" (DMAC operating mode enabled). Table 18.8 lists specifications of multi-port repeat sweep mode 0.

Table 18.8 Multi-Port Repeat Sweep Mode 0 Specifications

Item	Specification	
Function	The MPS11 and MPS10 bits in the AD0CON4 register select 16 pins. Analog	
	voltage applied to the 16 pins is repeatedly converted to a digital code in the fol-	
	lowing order: ANo to AN7 → ANio to ANi7 (i=0, 2, 15)	
	e.g., When the MPS11 and MPS10 bits are set to "102" (AN0 to AN7, AN00 to AN07),	
	analog voltage is repeatedly converted to a digital code in the following order:	
	$AN_0 \rightarrow AN_1 \rightarrow AN_2 \rightarrow AN_3 \rightarrow AN_4 \rightarrow AN_5 \rightarrow AN_6 \rightarrow AN_7 \rightarrow$	
	AN00 → AN01 → → AN06 → AN07	
Start Condition	Same as one-shot mode	
Stop Condition	The ADST bit is set to "0" (A/D conversion stopped) by program	
Interrupt Request Generation Timing	ng An interrupt request is generated after each A/D conversion is completed	
	(Set the DUS bit to "1")	
Analog Voltage Input Pins	Selectable from AN₀ to AN7 → AN15₀ to AN157, AN₀ to AN7 → AN0₀ to AN07 or	
	AN0 to AN7→AN20 to AN27	
Reading of A/D Conversion Result	sult Do not read the AD00 register. A/D conversion result is stored in the AD00 regi	
	ter after the A/D conversion is completed. DMAC transfers the conversion resu	
	to any memory space. Refer to 13. DMAC for DMAC settings	
	(Set the DUS bit to "1")	

18.2 Functions

18.2.1 Resolution Select Function

The BITS bit in the AD0CON1 register determines the resolution. When the BITS bit is set to "1" (10-bit precision), the A/D conversion result is stored into bits 9 to 0 in the AD0j register (j = 0 to 7). When the BITS bit is set to "0" (8-bit precision), the A/D conversion result is stored into bits 7 to 0 in the AD0j register.

18.2.2 Sample and Hold Function

When the SMP bit in the AD0CON2 register is set to "1" (with the sample and hold function), A/D conversion rate per pin increases to 28 ØAD cycles for 8-bit resolution and 33 ØAD cycles for 10-bit resolution. The sample and hold function is available in all operating modes. Start the A/D conversion after selecting whether the sample and hold function is to be used or not.

18.2.3 Trigger Select Function

The TRG bit in the AD0CON0 register and the TRG0 bit in the AD0CON2 register select the trigger to start the A/D conversion. Table 18.9 lists settings of the trigger select function.

Table 18.9 Trigger Select Function Settings

Bit and Setting		Trigger
AD0CON0 Register	AD0CON2 Register	
TRG = 0	-	Software trigger
		The A/D0 starts the A/D conversion when the ADST bit in the AD0CON0 register is set to "1"
TRG = 1 ⁽¹⁾	TRG0 = 0	External trigger ⁽²⁾
		Falling edge of a signal applied to ADTRG
	TRG0 = 1	Hardware trigger ⁽²⁾
		The timer B2 interrupt request of three-phase motor control timer functions (after the ICTB2 counter completes counting)

NOTES:

- 1. A/D0 starts the A/D conversion when the ADST bit is set to "1" (A/D conversion started) and a trigger is generated.
- 2. The A/D conversion is restarted if an external trigger or a hardware trigger is inserted during the A/D conversion. (The A/D conversion in process is aborted.)

18.2.4 DMAC Operating Mode

DMAC operating mode is available with all operating modes. When the A/D converter is in multi-port single sweep mode or multi-port repeat sweep mode 0, the DMAC operating mode must be used. When the DUS bit in the AD0CON3 register is set to "1" (DMAC operating mode enabled), all A/D conversion results are stored into the AD00 register. DMAC transfers data from the AD00 register to any memory space every time an A/D conversion is completed in each pin. 8-bit DMA transfer must be selected for 8bit resolution and 16-bit DMA transfer for 10-bit resolution. Refer to 13. DMAC for instructions.

18.2.5 Extended Analog Input Pins

In one-shot mode and repeat mode, the ANEX0 and ANEX1 pins can be used as analog input pins. The OPA1 and OPA0 bits in the AD0CON1 register select which pins to use as analog input pins. An A/D conversion result for the ANEX0 pin is stored into the AD00 register. The result for the ANEX1 pin is stored into the AD01 register, but is stored into the AD00 register when the DUS bit in the AD0CON3 register is set to "1" (DMAC operating mode enabled).

Set the APS1 and APS0 bits in the AD0CON2 register to "002" (AN0 to AN7, ANEX0, ANEX1) and the MSS bit in the AD0CON3 register to "0" (multi-port sweep mode disabled).

18.2.6 External Operating Amplifier (Op-Amp) Connection Mode

In external op-amp connection mode, multiple analog voltage can be amplified by one external op-amp using extended analog input pins ANEX0 and ANEX1.

When the OPA1 and OPA0 bits in the AD0CON1 register are set to "112" (external op-amp connection), voltage applied to the AN0 to AN7 pins are output from ANEX0. Amplify this output signal by an external op-amp and apply it to ANEX1.

Analog voltage applied to ANEX1 is converted to a digital code and the A/D conversion result is stored into the corresponding AD0j register (j=0 to 7). A/D conversion rate varies depending on the response of the external op-amp. The ANEX0 pin cannot be connected to the ANEX1 pin directly.

Set the APS1 and APS0 bits in the AD0CON2 register to "002" (AN0 to AN7, ANEX0, ANEX1).

Figure 18.7 shows an example of an external op-amp connection.

Table 18.10 Extended Analog Input Pin Settings

AD0CON1 Register		ANEX0 Function	ANEX1 Function	
OPA1 Bit	OPA0 Bit			
0	0	Not used	Not used	
0	1	P95 as an analog input	Not used	
1	0	Not used P96 as an analog input		
1	1	Output to an external op-amp	Input from an external op-amp	

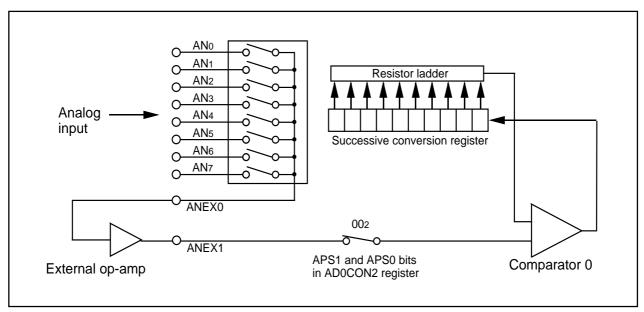


Figure 18.7 External Op-Amp Connection

18.2.7 Power Consumption Reducing Function

When the A/D converter is not used, the VCUT bit in the AD0CON1 register isolates the resistor ladder of the A/D converter from the reference voltage input pin (VREF). Power consumption is reduced by shutting off any current flow into the resistor ladder from the VREF pin.

When using the A/D converter, set the VCUT bit to "1" (VREF connection) before setting the ADST bit in the AD0CON0 register to "1" (A/D conversion started). Do not set the ADST bit and VCUT bit to "1" simultaneously, nor set the VCUT bit to "0" (no VREF connection) during the A/D conversion. The VCUT bit does not affect the VREF performance of the D/A converter.

18.2.8 Output Impedance of Sensor Equivalent Circuit under A/D Conversion

For perfect A/D converter performance, complete internal capacitor (C) charging, shown in Figure 18.8, for the specified period (T) as sampling time. Output Impedance of the sensor equivalent circuit (Ro) is determined by the following equations:

$$VC = VIN \left\{1 - e^{-\frac{1}{C(R0 + R)}t}\right\}$$
When $t = T$, $VC = VIN - \frac{X}{Y}VIN = VIN \left(1 - \frac{X}{Y}\right)$

$$e^{-\frac{1}{C(R0 + R)}T} = \frac{X}{Y}$$

$$-\frac{1}{C(R0 + R)}T = In \frac{X}{Y}$$

$$R0 = -\frac{T}{C \cdot In \frac{X}{Y}} - R$$

where:

Vc = Voltage between pins

R = Internal resistance of the microcomputer

X = Precision (error) of the A/D converter

Y = Resolution of the A/D converter (1024 in 10-bit mode, and 256 in 8-bit mode)

Figure 18.8 shows analog input pin and external sensor equivalent circuit. The impedance (R₀) can be obtained if the voltage between pins (Vc) changes from 0 to VIN-(0.1/1024) VIN in the time (T), when the difference between VIN and Vc becomes 0.1LSB.

(0.1/1024) means that A/D precision drop, due to insufficient capacitor charge, is held to 0.1LSB at time of A/D conversion in the 10-bit mode. Actual error, however, is the value of absolute precision added to 0.1LSB. When \emptyset AD = 10 MHz, T = 0.3 μ s in the A/D conversion mode with the sample and hold function. Output impedance (R₀) for sufficiently charging capacitor (C) in the time (T) is determined by the following equation:

Using T = 0.3
$$\mu$$
s, R = 7.8 $k\Omega$, C = 1.5 pF, X = 0.1, Y = 1024,

R0 =
$$-\frac{0.3 \times 10^{-6}}{1.5 \times 10^{-12} \cdot \ln \frac{0.1}{1024}}$$
 -7.8 ×10³ = 13.9 × 10³

Thus, the allowable output impedance of the sensor equivalent circuit, making the precision (error) 0.1LSB or less, is approximately 13.9 k Ω maximum.

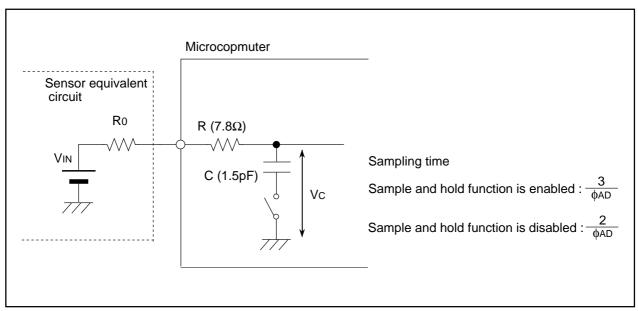


Figure 18.8 Analog Input Pin and External Sensor Equivalent Circuit

19. D/A Converter

The D/A converter consists of two separate 8-bit R-2R ladder D/A converters.

Digital code is converted to an analog voltage when a value is written to the corresponding DAi registers (i=0,1). The DAiE bit in the DACON register determines whether the D/A conversion result output is provided or not. Set the DAiE bit to "1" (output enabled) to disable a pull-up of a corresponding port.

Output analog voltage (V) is calculated from value n (n=decimal) set in the DAi register.

$$V = \frac{\text{VREF x } n}{256}$$
 (n = 0 to 255)

VREF: reference voltage (not related to VCUT bit setting in the AD0CON1 register)

Table 19.1 lists specifications of the D/A converter. Table 19.2 lists pin setting of the DA0 and DA1 pins. Figure 19.1 shows a block diagram of the D/A converter. Figure 19.2 shows the D/A control register. Figure 19.3 shows a D/A converter equivalent circuit.

When the D/A converter is not used, set the DAi register to "0016" and the DAiE bit to "0" (output disabled).

Table 19.1 D/A Converter Specifications

Item	Specification
D/A Conversion Method	R-2R
Resolution	8 bits
Analog Output Pin	2 channels

Table 19.2 Pin Settings

Port	Function	Bit and Setting			
		PD9 Register ⁽¹⁾	PS3 Register ⁽¹⁾	PSL3 Register	
P93	DA ₀ output	PD9_3=0	PS3_3=0	PSL3_3=1	
P94	DA1 output	PD9_4=0	PS3_4=0	PSL3_4=1	

NOTES:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

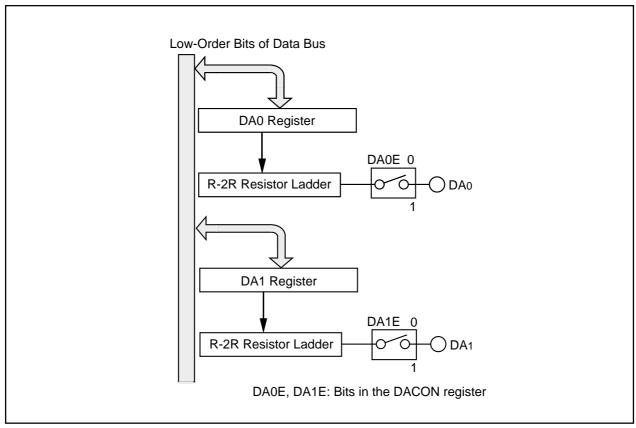


Figure 19.1 D/A Converter

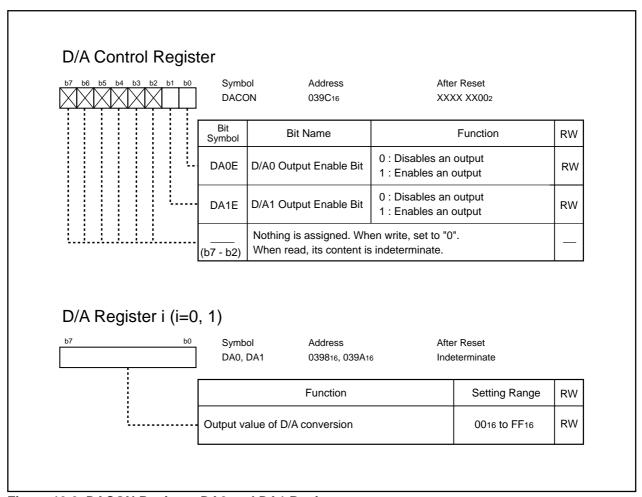


Figure 19.2 DACON Register, DA0 and DA1 Registers

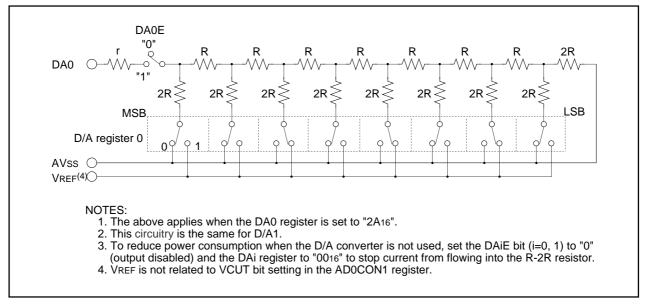


Figure 19.3 D/A Converter Equivalent Circuit

20. CRC Calculation

The CRC (Cyclic Redundancy Check) calculation detects an error in data blocks. A generator polynomial of CRC_CCITT ($X^{16} + X^{12} + X^5 + 1$) generates CRC code.

The CRC code is a 16-bit code generated for a block of data of desired length. This block of data is in 8-bit units. The CRC code is set in the CRCD register every time one-byte data is transferred to the CRCIN register after a default value is written to the CRCD register. CRC code generation for one-byte data is completed in two cycles.

Figure 20.1 shows a block diagram of a CRC circuit. Figure 20.2 shows associated registers. Figure 20.3 shows an example of the CRC calculation.

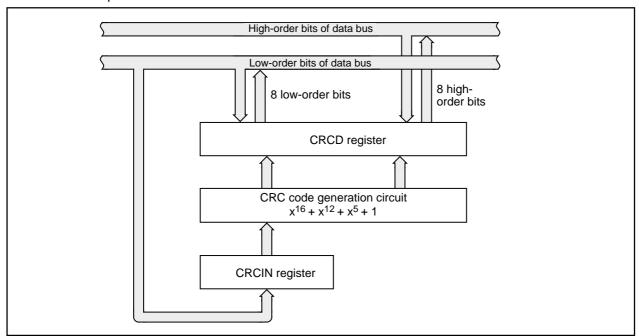


Figure 20.1 CRC Calculation Block Diagram

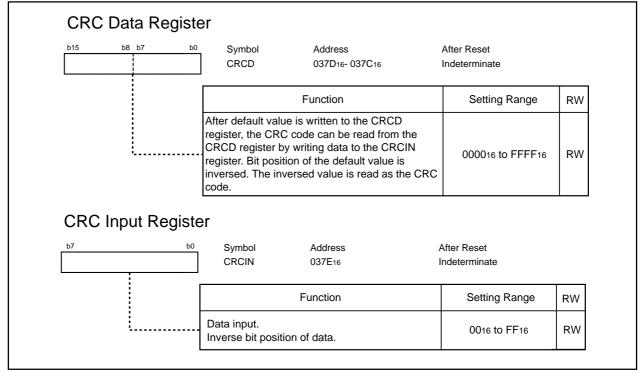


Figure 20.2 CRCD Register and CRCIN Register

CRC Calculation and Setup Procedure to Generate CRC Code for "80C416" O CRC Calculation for M32C value of the CRCIN register with inversed bit position CRC Code: a remainder of a division,generator polynomial Generator Polynomial : $X^{16} + X^{12} + X^5 + 1$ (1 0001 0000 0010 00012) O Setting Steps (1) Inverse a bit position of "80C416" per byte by program "8016" → "0116", "C416" → "2316" (2) Set "000016" (default value) CRCD register **CRCIN** register (3) Set "0116" Bit position of the CRC code for "8016" (918816) is inversed to "118916", which is stored into the CRCD register in 3rd cycle. CRCD register 118916 (4) Set "2316" **CRCIN** register Bit position of the CRC code for "80C416" (825016) is inversed to "0A4116", which is stored into the CRCD register in 3rd cycle. CRCD register 0A4116 O Details of CRC Calculation As shown in (3) above, bit position of "0116" (000000012) written to the CRCIN register is inversed and becomes "100000002" Add "1000 0000 0000 0000 0000 00002", as "100000002" plus 16 digits, to "000016" as the default value of the CRCD register to perform the modulo-2 division. 1000 1000 Modulo-2 Arithmetic is 1 0001 0000 0010 0001 1000 0000 0000 0000 0000 0000 calculated on the law below. 1000 1000 0001 0000 1 0 + 0 = 01000 0001 0000 1000 0 0 + 1 = 1Generator Polynomial 1000 1000 0001 0000 1 1 + 0 = 11001 0001 1000 1000 1 + 1 = 0-1 = 1CRC Code "0001 0001 1000 10012 (118916)", the remainder "1001 0001 1000 10002 (918816)" with inversed bit position, can be read from the CRCD register. When going on to (4) above, "2316 (001000112)" written in the CRCIN register is inversed and becomes Add "1100 0100 0000 0000 0000 0000 00002", as "110001002" plus 16 digits, to "1001 0001 1000 10002" as a remainder of (3) left in the CRCD register to perform the modulo-2 division.

Figure 20.3 CRC Calculation

"0000 1010 0100 00012 (0A4116)", the remainder with inversed bit position, can be read from CRCD register.

21. X/Y Conversion

The X/Y conversion rotates a 16 x 16 matrix data by 90 degrees and inverses high-order bits and low-order bits of a 16-bit data. Figure 21.1 shows the XYC register.

The 16-bit XiR register (i=0 to 15) and 16-bit YjR register (j=0 to 15) are allocated to the same address. The XiR register is a write-only register, while the YjR register is a read-only register. Access the XiR and YjR registers from an even address in 16-bit units. Performance cannot be guaranteed if the XiR and YiR registers are accessed in 8-bit units.

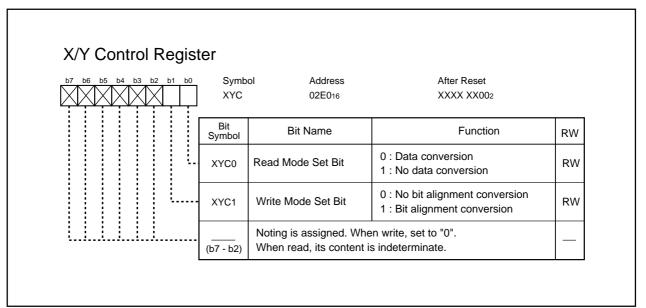


Figure 21.1 XYC Register

The XYC0 bit in the XYC register determines how to read the YjR register.

By reading the YjR register when the XYC0 bit is set to "0" (data conversion), bit j in the X0R to X15R registers can be read simultaneously.

For example, bit 0 in the X0R register can be read if reading bit 0 in the Y0R register, bit 0 in the X1R register if reading bit 1 in the Y0R register..., bit 0 in the X14R register if reading bit 14 in the Y0R register and bit 0 in the X15R register if reading bit 15 in the Y0R register.

Figure 21.2 shows the conversion table when the XYC0 bit is set to "0". Figure 21.3 shows an example of the X/Y conversion.

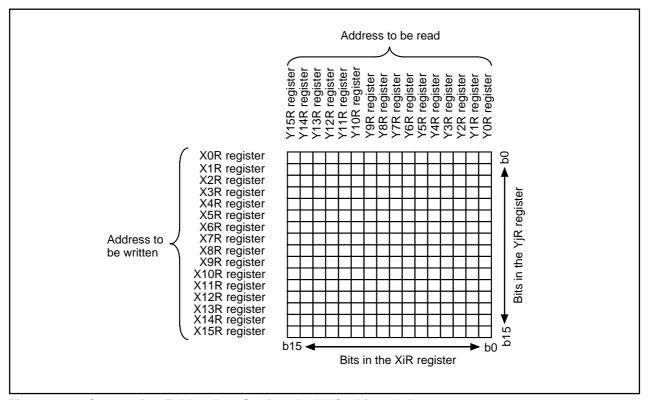


Figure 21.2 Conversion Table when Setting the XYC0 Bit to "0"

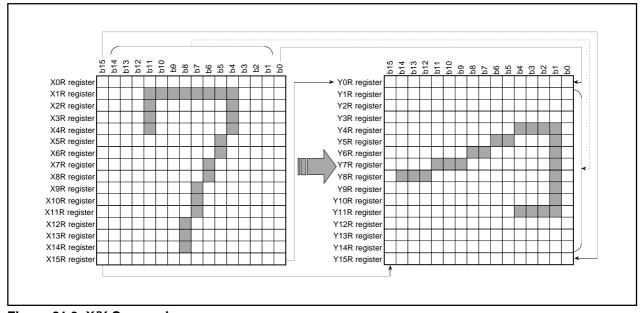


Figure 21.3 X/Y Conversion

By reading the YjR register when the XYC0 bit in the XYC register is set to "1" (no data conversion), the value written to the XiR register can be read directly. Figure 21.4 shows the conversion table when the XYC0 bit is set to "1."

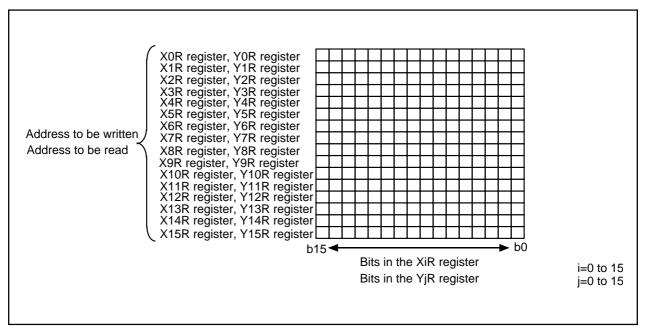


Figure 21.4 Conversion Table when Setting the XYC0 Bit to "1"

The XYC1 bit in the XYC register selects bit alignment of the value in the XiR register.

By writing to the XiR register while the XYC1 bit is set to "0" (no bit alignment conversion), bit alignment is written as is. By writing to the XiR register while the XYC1 bit is set to "1" (bit sequence replaced), bit alignment is written inversed.

Figure 21.5 shows the conversion table when the XYC1 bit is set to "1".

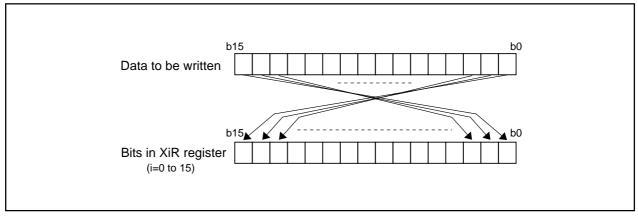


Figure 21.5 Conversion Table when Setting the XYC1 Bit to "1"

22. Intelligent I/O

The intelligent I/O is a multifunctional I/O port for time measurement, waveform generating, clock synchronous serial I/O, clock asynchronous serial I/O (UART), HDLC data processing and more.

The intelligent I/O has one 16-bit base timer for free-running operation, eight 16-bit registers for time measurement and waveform generating and two sets of two 8-bit shift registers for communications.

Table 22.1 lists functions and channels of the intelligent I/O.

Table 22.1 Intelligent I/O Functions and Channels

Function	Description	
Time Measurement ⁽¹⁾	8 channels	
Digital Filter	8 channels	
Trigger Input Prescaler	2 channels (channel 6 and channel 7)	
Trigger Input Gate	2 channels (channel 6 and channel 7)	
Waveform Generating ⁽¹⁾	8 channels	
Single-Phase Waveform Output Mode	8 channels	
Phase-Delayed Waveform Output Mode	8 channels	
SR Waveform Output Mode	8 channels	
Communication	Communication unit 0	Communication unit 1
Clock Synchronous Serial I/O Mode	Available	
UART Mode	Not Available	Available
HDLC Data Processing Mode	Available	

NOTES:

The time measurement function and waveform generating function can be selected for each channel. The communication function is available by a combining multiple channels.

^{1.} The time measurement function and the waveform generating function share a pin.

Figures 22.1 shows a block diagram of the intelligent I/O. Figure 22.2 shows a block diagram of the intelligent I/O communication.

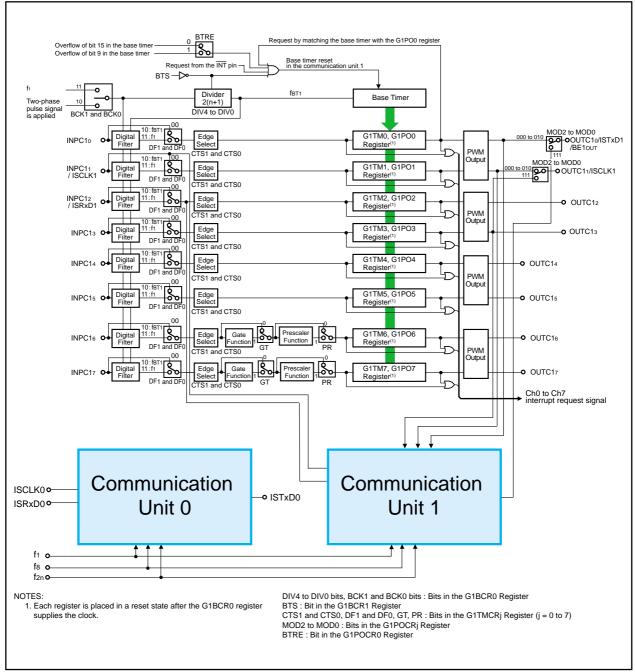


Figure 22.1 Intelligent I/O Block Diagram

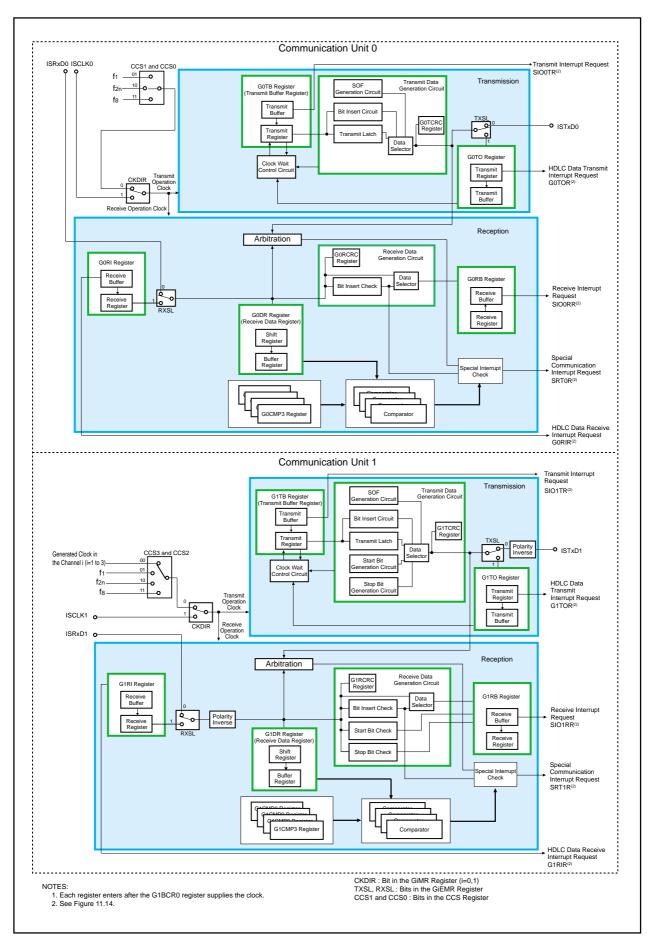
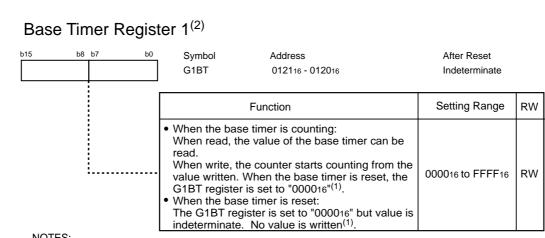
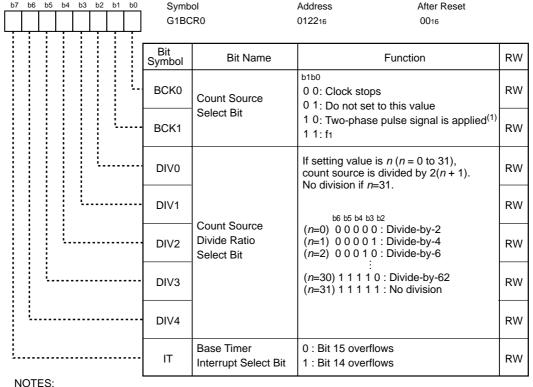
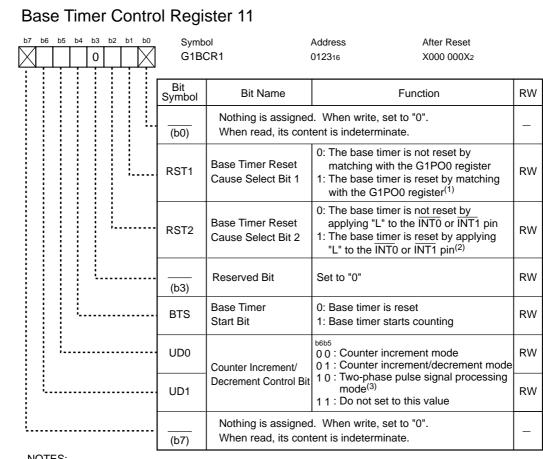



Figure 22.2 Intelligent I/O Communication Block Diagram

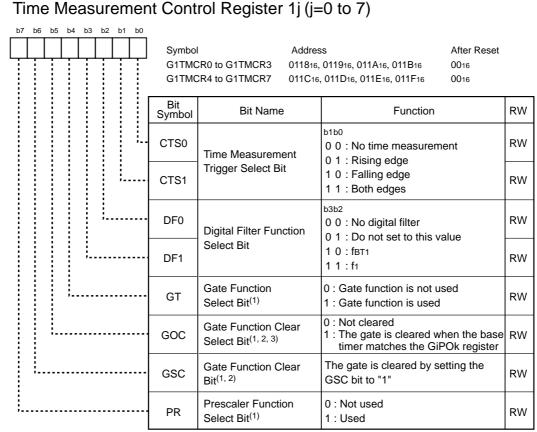

Figures 22.3 to 22.8 show registers associated with the intelligent I/O base timer, the time measurement function and waveform generating function. (For registers associated with the communication function, see Figures 22.19 to 22.28.)

NOTES:


- 1. The base timer stops only when the BCK1 and BCK0 bits in the G1BCR0 register are set to "002" (clock stopped). The base timer counts when the BCK1 and BCK0 bits are set to a value other than "002". When the BTS bit in the G1BCR1 register is set to "0", the base timer is reset continually, remaining set to "000016". This, in effect, places the base timer in a "no counting" state. When the BTS bit is set to "1", this state is cleared and counting starts.
- 2. The G1BT register reflects the value of the base timer, with a delay of one half fBT1 cycle.

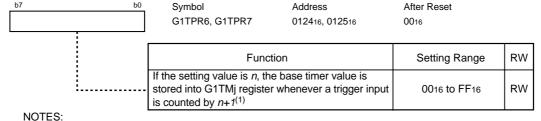
Base Timer Control Register 10

1. This setting can be used only when the UD1 and UD0 bits in the G1BCR1 register are set to "102" (two-phase signal processing mode). Do not set the BCK1 and BCK0 bits to "102" in other modes.


Figure 22.3 G1BT Register and G1BCR0 Register

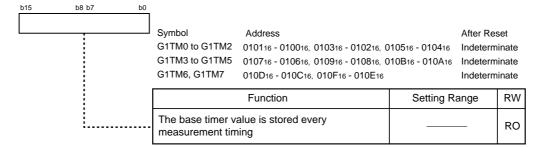
NOTES:

- 1. The base timer is reset two fBT1 clock cycles after the base timer matches the value set in the G1PO0 register. (See Figure 22.7 for details on the G1PO0 register.) When the RST1 bit is set to "1", the value of the G1POj register (j=1 to 7) for the waveform generating function and communication function must be set to a value smaller than that of the G1PO0 register.
- 2. The IPSA_0 bit in the IPSA register can select the INT0 or INT1 pin.
- 3. In two-phase pulse signal processing mode, the base timer is not reset, even when the RST1 bit is set to "1", if the counter is decremented two clock cycles after the base timer matches the value set in the G1PO0 register.


Figure 22.4 G1BCR1 Register

NOTES:

- These bits are in the G1TMCR6 and G1TMCR7 registers.
 Set all bits 7 to 4 in the G1TMCR0 to G1TMCR5 registers to "0".
- 2. These bits are enabled only when the GT bit is set to "1".
- 3. The GOC bit is set to "0" after the gate function is cleared. See **Figure 22.7** about the G1POk register (k=4 when j=6 and k=5 when j=7).


Time Measurement Prescaler Register 1j (j=6,7)

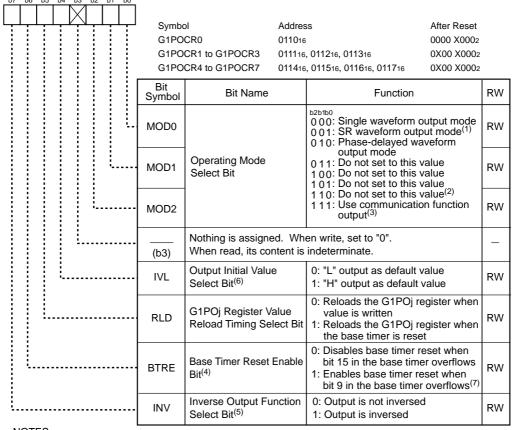

1. The first prescaler, after the PR bit in the G1TMCRj register is changed from "0" (prescaler function used) to "1" (prescaler function not used), may be divided by *n* rather than *n*+1. The subsequent prescaler is divided by *n*+1.

Figure 22.5 G1TMCR0 to G1TMCR7 Registers, G1TPR6 and G1TPR7 Registers

Time Measurement Register 1j (j=0 to 7)

Waveform Generating Control Register 1j (j=0 to 7)

NOTES:

- This setting is enabled only for even channels. In SR waveform output mode, values written to the corresponding odd channel (next channel after an even channel) are ignored. Even channels provides waveform output. Odd channels provides no waveform output.
- 2. To receive data in UART mode, set the G1POCR2 register to "0000 01102".
- 3. This setting is enabled only for channels 0 and 1. To use the ISTxD1 pin, set the MOD2 to MOD0 bits in the G1POCR0 register to "1112". To use the ISCLK1 pin for an output, set the MOD2 to MOD0 bits in the G1POCR1 register to "1112". Do not set the MOD2 to MOD0 bits to "1112" except in channels 0 and 1 and for the communication function.
- 4. The BTRE bit is provided in the G1POCR0 register only. Set each bit 6 in the G1POCR1 to G1POCR7 registers to "0".
- 5. The inverse output function is the final step in waveform generating process. When the INV bit is set to "1", an "H" signal is provided a default output by setting the IVL bit to "0"; and an "L" signal is provided by setting it to "1".
- 6. To provide either "H" or "L" signal output set in the IVL bit, set the FSCj bit in the G1FS register to "0" (the time measurement function selected) and IFEj bit in the G1FE register to "1" (functions for channel j enabled). Then set the IVL bit to "0" or "1".
- 7. When the BTRE bit is set to "1", set the BCK1 and BCK0 bits in the G1BCR0 register to "112" (f1) and the UD1 and UD0 bits in the G1BCR1 register to "002" (counter increment mode).

Figure 22.6 G1TM0 to G1TM7 Registers and G1POCR0 to G1POCR7 Registers

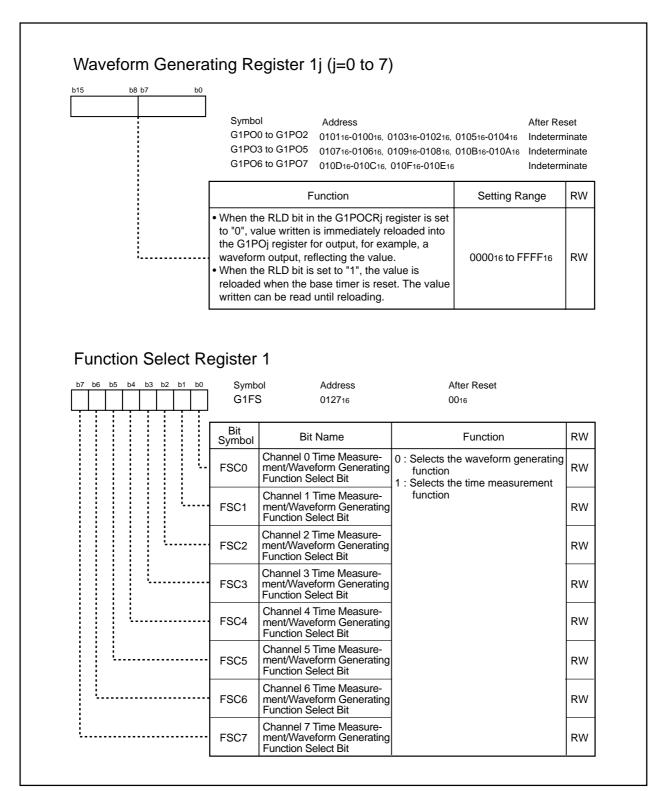


Figure 22.7 G1PO0 to G1PO7 Registers and G1FS Register

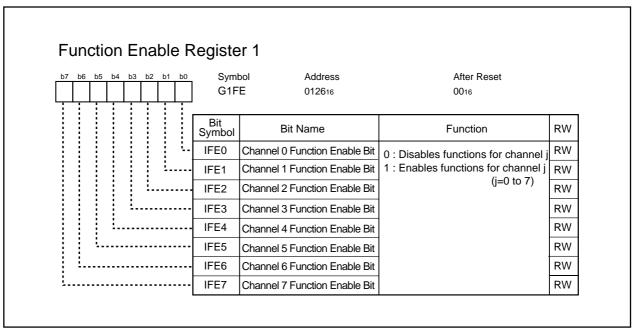


Figure 22.8 G1FE Register

22.1 Base Timer

The base timer is a free-running counter that counts an internally generated count source.

Table 22.2 lists specifications of the base timer. Figures 22.3 and 22.4 show registers associated with the base timer. Figure 22.9 shows a block diagram of the base timer. Figure 22.10 shows an example of the base timer in counter increment mode. Figure 22.11 shows an example of the base timer in counter increment/decrement mode. Figure 22.12 shows an example of two-phase pulse signal processing mode.

Table 22.2 Base Timer Specifications

Item	Specification	
Count Source (fBT1)	f1 divided by 2(n+1), two-phase pulse input divided by 2(n+1)	
	n determined by the DIV4 to DIV0 bits in the G1BCR0 register n =0 to 31; however no division when n =31	
Counting Operation	The base timer increments the counter value	
	The base timer increments and decrements the counter value Two-phase pulse signal processing	
Counter Start Condition	The BTS bit in the G1BCR1 register is set to "1" (base timer starts counting)	
Counter Stop Condition	The BTS bit in the G1BCR1 register is set to "0" (base timer reset)	
Base Timer Reset Condition	• The value of the base timer matches the value of the G1PO0 register	
	 An low-level ("L") signal is applied to the INTO or INT1 pin 	
	Bit 15 or bit 9 in the base timer overflows	
Value when the Base Timer is Reset	"000016"	
Interrupt Request	The BT1R bit in the IIO4IR register is set to "1" (interrupt requested) when bit 9, bit 14 or bit 15 in the base timer overflows (See Figure 11.14.)	
Read from Base Timer	The G1BT register indicates the counter value while the base timer is running	
	• The G1BT register is indeterminate when the base timer is reset	
Write to Base Timer	When a value is written while the base timer is running, the timer counter immediately starts counting from this value. No value can be written while the base timer is reset	
Selectable Function	 Counter increment/decrement mode The base timer starts counting when the BTS bit is set to "1". After incrementing to "FFFF16", the timer counter is then decremented back to "000016". If the RST1 bit in the G1BCR1 register is set to "1" (the base timer is reset by matching with the G1PO0 register), the timer counter decrements two counts after the base timer matches the G1PO0 register. The base timer increments the counter value again when the timer counter reaches "000016." (See Figure 22.11.) Two-phase pulse processing mode Two-phase pulse signals from P76 and P77 pins or P80 and P81 pins are counted as well. (See Figure 22.12.) The IPSA_0 bit in the IPSA register controls input pin selection. (Refer to 24. Programmable I/O Ports) 	
	P80 (P76) P81 (P77) The timer increments counter on all edge The timer decrements counter on all edges	

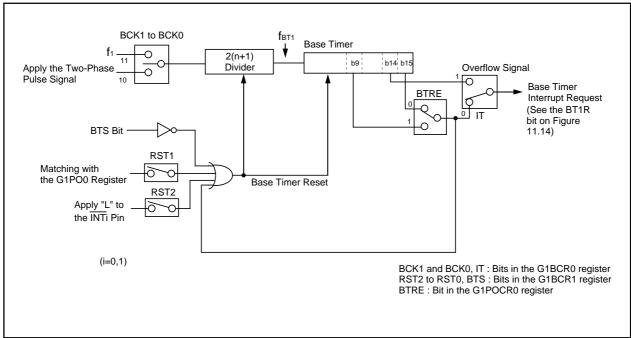


Figure 22.9 Base Timer Block Diagram

Table 22.3 Base Timer Associated Register Settings

(Also applies when using time measurement function, waveform generating function and communication function)

(Also applies when using time measurement function, waveform generating function and communication function)		
Register	Bit	Function
G1BCR0	BCK1, BCK0	Select count source
	DIV4 to DIV0	Select divide ratio of count source
	IT	Select the base timer interrupt
G1BCR1	RST2, RST1	Select source for a base timer reset
	BTS	Used to start the base timer independently
	UD1, UD0	Select how to count
G1POCR0	BTRE	Select source for a base timer reset
G1BT	-	Read or write base timer value

Set the following registers to set the RST1 bit to "1" (base timer reset by matching the base timer with the G1PO0 register).

	, 	, , , , , , , , , , , , , , , , , , , ,
G1POCR0	MOD2 to MOD0	Set to "0002" (single-phase waveform output mode)
G1PO0	-	Set reset cycle
G1FS	FSC0	Set to "0" (waveform generating function)
G1FE	IFE0	Set to "1" (channel operation start)

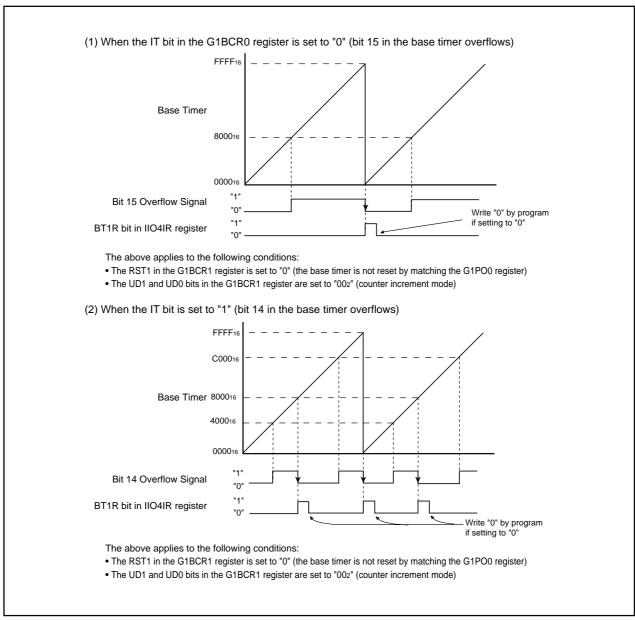


Figure 22.10 Counter Increment Mode

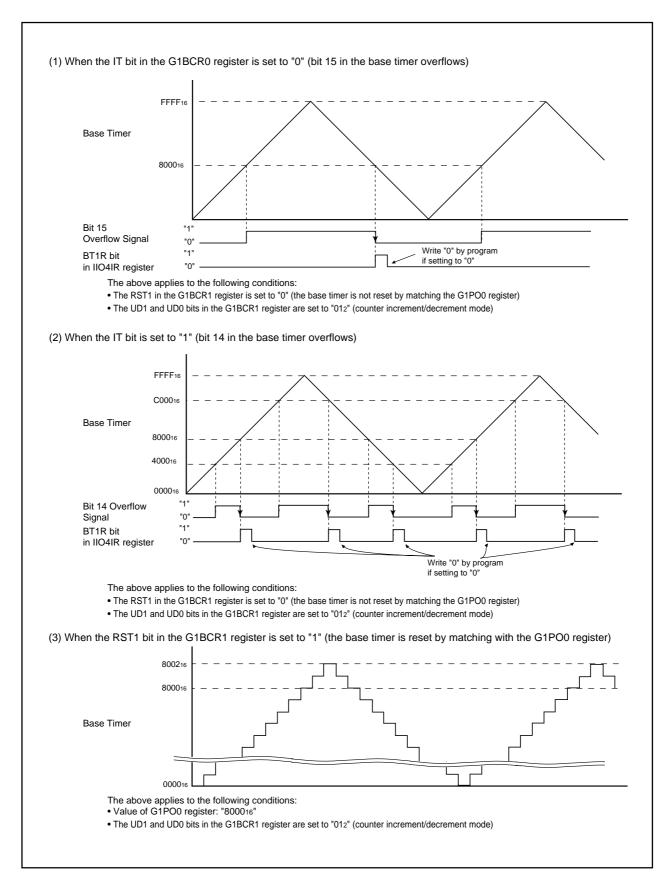


Figure 22.11 Counter Increment/Decrement Mode

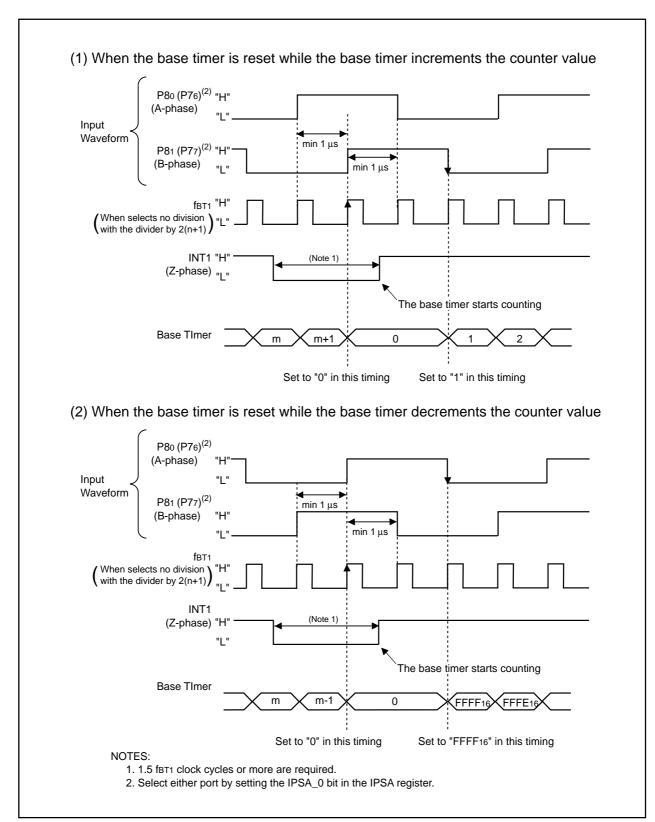


Figure 22.12 Base Timer Operation in Two-phase Pulse Signal Processing Mode

22.2 Time Measurement Function

When external trigger is applied, the value of the base timer is stored into the G1TMj register (j=0 to 7). Table 22.4 shows specifications of the time measurement function. Tables 22.5 and 22.6 list pin settings of the time measurement function. Figures 22.13 and 22.14 show operation examples of the time measurement function. Figure 22.15 shows an operation example of the prescaler function and gate function.

Table 22.4 Time Measurement Function Specifications

Item	Specification
Measurement Channel	Channels 0 to 7
Trigger Input Polarity	Rising edge, falling edge and both edges of the INPC1j pin
Measurement Start Condition	The IFEj bit in the G1FE register is set to "1" (channel j function enabled) when the FSCj bit (j=0 to 7) in the G1FS register is set to "1" (time measurement function selected)
Measurement Stop Condition	The IFEj bit is set to "0" (channel j function disabled)
Time Measurement Timing	 No prescaler: every time a trigger signal is applied Prescaler (for channel 6 and channel 7): every G1TPRk register (k=6,7) value +1 times a trigger signal is applied
Interrupt Request Generating Timing	The TM1jR bit in the interrupt request register (See Figure 11.14) is set to "1" (interrupt requested) at time measurement timing
INPC1j Pin Function	Trigger input pin
Selectable Function	 Digital filter function The digital filter samples a trigger input signal level every f1 or fBT1 cycles and passes pulse signals, matching trigger input signal level, three times
	 Prescaler function (for channel 6 and channel 7) Time measurement is executed every G1TPRk register value +1 times a trigger signal is applied Gate function (for channel 6 and channel 7) After time measurement by the first trigger input, trigger input cannot be accepted. However, while the GOC bit in the G1TMCRk register is set to "1" (gate cleared by matching the base timer with the G1POp register (p=4 when k=6, p=5 when k=7), trigger input can be accepted again by matching the base timer value with the G1POp register setting or by setting the GSC bit in the G1TMCRk register is set to "1"

Table 22.5 Pin Settings for Time Measurement Function

Pin	Bit and Setting		
	PS1, PS2, PS5, PS8 Registers	PD7, PD8, PD11, PD14 Registers	IPS Register
P70/INPC16	PS1_0 = 0	PD7_0 = 0	IPS1 = 0
P71/INPC17	PS1_1 = 0	PD7_1 = 0	
P73/INPC10	PS1_3 = 0	PD7_3 = 0	
P74/INPC11	PS1_4 = 0	PD7_4 = 0	
P75/INPC12	PS1_5 = 0	PD7_5 = 0	
P76/INPC13	PS1_6 = 0	PD7_6 = 0	
P77/INPC14	PS1_7 = 0	PD7_7 = 0	
P81/INPC15	PS2_1 = 0	PD8_1 = 0	
P110/INPC10 ⁽¹⁾	PS5_0 = 0	PD11_0 = 0	IPS1 = 1
P111/INPC11 ⁽¹⁾	PS5_1 = 0	PD11_1 = 0	
P112/INPC12 ⁽¹⁾	PS5_2 = 0	PD11_2 = 0	
P113/INPC13 ⁽¹⁾	PS5_3 = 0	PD11_3 = 0	
P140/INPC14 ⁽¹⁾	PS8_0 = 0	PD14_0 = 0	
P141/INPC15 ⁽¹⁾	PS8_1 = 0	PD14_1 = 0	
P142/INPC16 ⁽¹⁾	PS8_2 = 0	PD14_2 = 0	
P143/INPC17 ⁽¹⁾	PS8_3 = 0	PD14_3 = 0	

NOTES:

Table 22.6 Time Measurement Function Associated Register Settings

Register	Bit	Function
G1TMCRj	CTS1, CTS0	Select a time measurement trigger
	DF1, DF0	Select the digital filter function
	GT, GOC, GSC	Select the gate function
	PR	Select the prescaler function
G1TPRk	-	Setting value of the prescaler
G1FS	FSCj	Set to "1" (time measurement function)
G1FE	IFEj	Set to "1" (channel j function enabled)

j = 0 to 7 k = 6, 7

Bit configurations and functions vary with channels used.

Registers associated with the time measurement function must be set after setting registers associated with the base timer.

^{1.} This port is provided in the 144-pin package only.

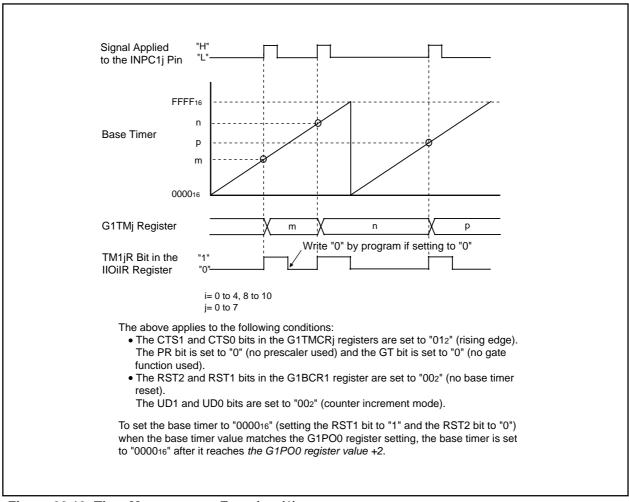


Figure 22.13 Time Measurement Function (1)

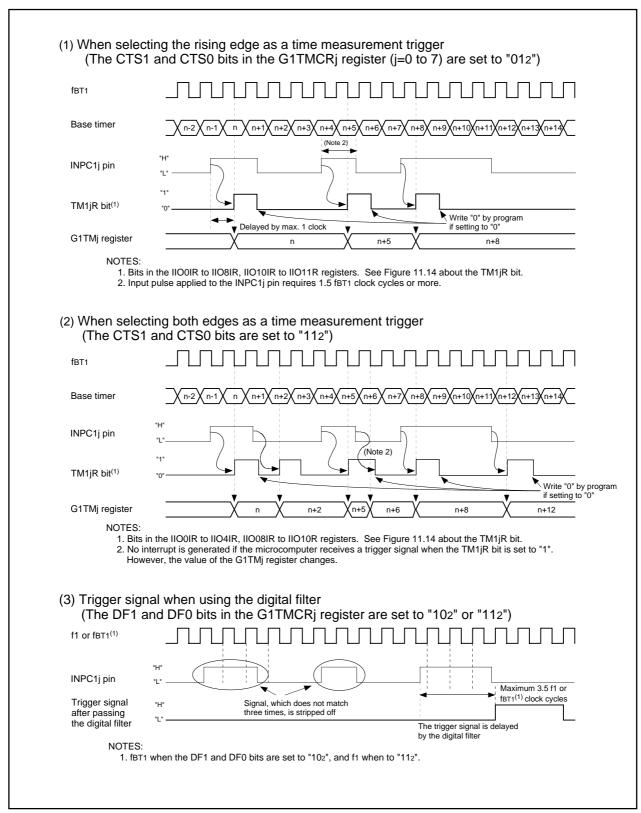


Figure 22.14 Time Measurement Function (2)

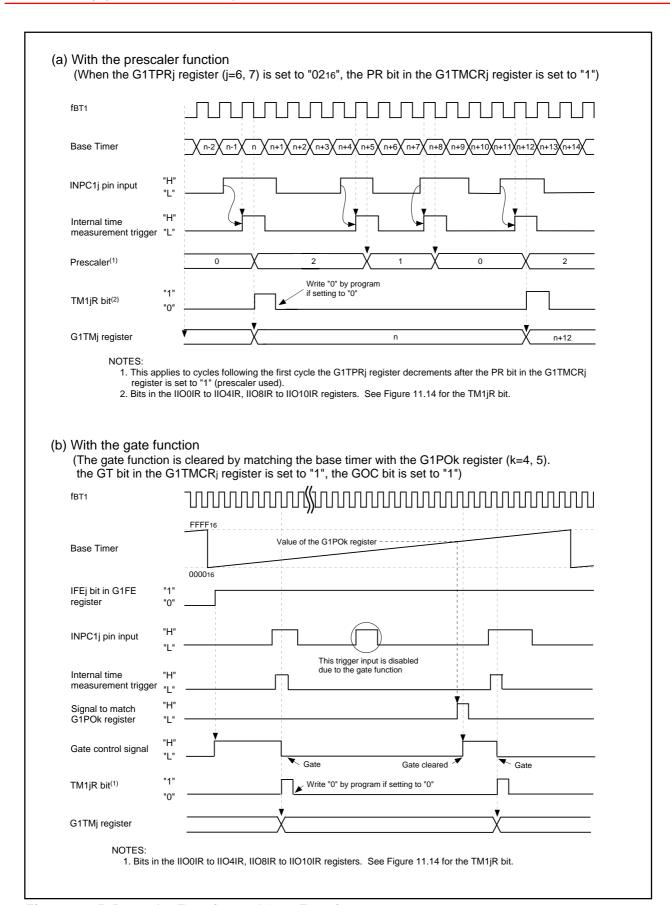


Figure 22.15 Prescaler Function and Gate Function

22.3 Waveform Generating Function

Waveforms are generated when the value of the base timer matches that of the G1POj register (j=0 to 7). The waveform generating function has the following three modes :

- Single-phase waveform output mode
- Phase-delayed waveform output mode
- Set/Reset waveform output (SR waveform output) mode

Table 22.7 lists pin settings of the waveform generating function. Table 22.8 lists registers associated with the waveform generating function.

Table 22.7 Pin Settings for Waveform Generating Function

Pin	Bit and Setting			
	PS1, PS2, PS5 to PS8 Registers	PSL1, PSL2 Registers	PSC, PSC2 Registers	PSD1 Register
P70/OUTC16	PS1_0 = 1	PSL1_0 = 0	PSC_0 = 1	PSD1_0=1
P71/OUTC17	PS1_1 = 1	PSL1_1 = 0	PSC_1 = 1	PSD1_1=1
P73/OUTC10	PS1_3 = 1	PSL1_3 = 0	PSC_3 = 1	-
P74/OUTC11	PS1_4 = 1	PSL1_4 = 0	PSC_4 = 1	-
P75/OUTC12	PS1_5 = 1	PSL1_5 = 1	-	-
P76/OUTC13	PS1_6 = 1	PSL1_6 = 0	PSC_6 = 0	PSD1_6=1
P77/OUTC14	PS1_7 = 1	PSL1_7 = 1	-	-
P81/OUTC15	PS2_1 = 1	PSL2_1 = 1	PSC2_1=1	-
P110/OUTC10 ⁽¹⁾	PS5_0 = 1	-	-	-
P111/OUTC11 ⁽¹⁾	PS5_1 = 1			
P112/OUTC12 ⁽¹⁾	PS5_2 = 1			
P113/OUTC13 ⁽¹⁾	PS5_3 = 1			
P140/OUTC14 ⁽¹⁾	PS8_0 = 1			
P141/OUTC15 ⁽¹⁾	PS8_1 = 1			
P142/OUTC16 ⁽¹⁾	PS8_2 = 1			
P143/OUTC17 ⁽¹⁾	PS8_3 = 1			

NOTES:

1. This port is provided in the 144-pin package only.

Table 22.8 Waveform Generating Function Associated Register Settings

Register	Bit	Function
G1POCRj	MOD2 to MOD0	Select waveform output mode
	IVL	Select default output value
	RLD	Select a timing to reload the value of the G1POj register
	INV	Select if output level is inversed
G1POj	-	Select when output waveform is inversed
G1FS	FSCj	Set to "0" (waveform generating function)
G1FE	IFEj	Set to "1" (enables a function on channel j)

j = 0 to 7

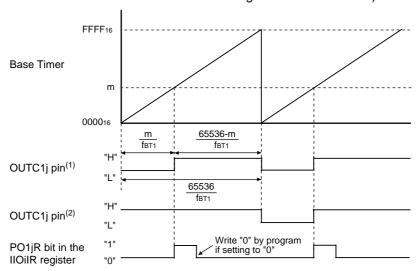
Bit configurations and functions vary with channels used.

Registers associated with the waveform generating measurement function must be set after setting registers associated with the base timer.

22.3.1 Single-Phase Waveform Output Mode

Output signal level of the OUTC1j pin becomes high ("H") when the value of the base timer matches that of the G1POj register (j=0 to 7). The "H" signal swithches to a low-level ("L") signal when the base timer reaches "000016". If the IVL bit in the G1POCRj register is set to "1" ("H" output as default value), an "H" signal output is provided when waveform output starts. If the INV bit is set to "1" (output inversed), the level of the waveform output is inversed. See Figure 22.16 for details on single-phase waveform output mode operation. Table 22.9 lists specifications of single-phase waveform output mode.

Table 22.9 Single-Phase Waveform Output Mode Specifications

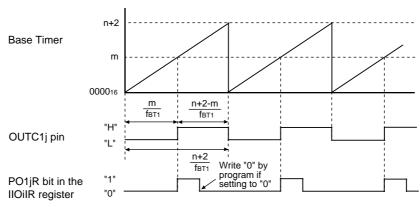

Item	Specification	
Output Waveform ⁽²⁾	Free-running operation	
	(the RST2 and RST1 bits in the G1BCR1 register are set to "002")	
	Cycle : 65536 fBT1	
	"L" width : m fвт1	
	"H" width : 65536-m fвт1	
	m : setting value of the G1POj register (j=0 to 7), 000016 to FFFF16	
	The base timer is cleared to "000016" by matching the base timer with the	
	G1PO0 register (the RST1 bit is set to "1" and the RST2 bit is set to "0")	
	Cycle : n+2 fBT1	
	"L" width : m fBT1	
	"H" width : n+2-m fBT1	
	m : setting value of the G1POj register (j=1 to 7), 000016 to FFFF16	
	n : setting value of the G1PO0 register, 000116 to FFFD16	
	If m ≥ n+2, the output level is fixed to "L"	
Waveform Output Start Condition ⁽¹⁾	The IFEj bit in the G1FE register is set to "1" (channel j function enabled)	
Waveform Output Stop Condition	The IFEj bit is set to "0" (channel j function disabled)	
Interrupt Request	The PO1jR bit in the interrupt request register is set to "1" (interrupt	
	requested) when the value of the base timer matches that of the G1POj	
	register. (See Figure 11.14)	
OUTC1j Pin	Pulse signal output pin	
Selectable Function	Default value set function: Set starting waveform output level	
	Inversed output function:	
	Waveform output signal is inversed and provided from the OUTC1j pin	

NOTES:

- 1. Set the FSCj bit in the G1FS register to "0" (waveform generating function selected).
- 2. When the INV bit in the G1POCRj register is set to "1" (output inversed), the "L" width and "H" width are inversed.

(1) Free-Running Operation (The RST2 to RST1 bits in the G1BCR1 register are set to "002")

i=0 to 4, 8 to 10; j=0 to 7


m: Setting value of the G1POj register, 000016 to FFFF16

NOTES:

- 1. Waveform output when the INV bit in the G1POCRj register is set to "0" (not inversed) and the IVL bit is set to "0" (output "L" as default value).
- 2. Waveform output when the INV bit is set to "0" (not inversed) and the IVL bit is set to "1" ("H" output as default value).

The above applies applies under the following condition:

- The RST2 and RST1 bits in the G1BCR1 register are set to "002" (no base timer reset) and the UD1 and UD0 bits to "002" (counter increment mode)
- (2) The Base Timer is Reset when the Base Timer Matches the G1PO0 Register (The RST1 bit is set to "1" and the RST2 bit is set to "0")

i=0 to 4, 8 to 10; j=1 to 7

m: Setting value of the G1POj register, 000016 to FFFF16

n: Setting value of the G1PO0 register, 000116 to FFFD16

The above diagram applies under the following conditions:

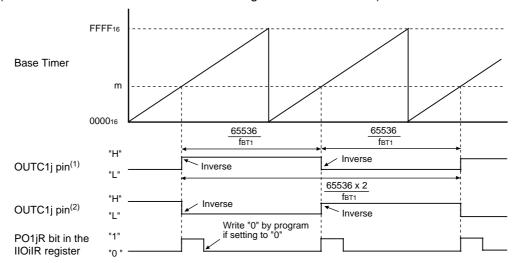
- The IVL bit in the G1POCRj register is set to "0" ("L" output as default value). The INV bit is set to "0" (not inversed).
- The UD1 and UD0 bits in the G1BCR1 register are set to "002" (counter increment mode)
- m<n+2

Figure 22.16 Single-Phase Waveform Output Mode

22.3.2 Phase-Delayed Waveform Output Mode

Output signal level of the OUTC1j pin is inversed every time the value of the base timer matches that of the G1POj register (j=0 to 7). Table 22.10 lists specifications of phase-delayed waveform output mode. Figure 22.17 lists an example of phase-delayed waveform output mode operation.

Table 22.10 Phase-Delayed Waveform Output Mode Specifications

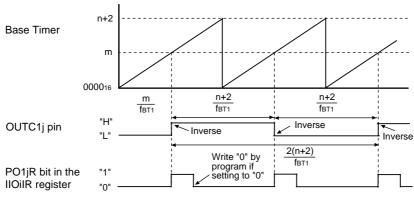

Item	Specification
Output Waveform	Free-running operation
	(the RST2 and RST1 bits in the G1BCR1 register are set to "002")
	Cycle : 65536 x 2 fbT1
	"H" and "L" widths : 65536 fbT1
	Setting value of the G1POj (j=0 to 7) register is 000016 to FFFF16
	• The base timer is cleared to "000016" by matching the base timer with the
	G1PO0 register (the RST1 bit is set to "1" and the RST2 bit is set to "0")
	Cycle : $\frac{2(n+2)}{f_{BT1}}$
	"H" and "L" widths : n+2 fвт1
	n : setting value of the G1PO0 register, 000116 to FFFD16
	Setting value of the G1POj (j=1 to 7) register is 000016 to FFFF16
	If G1POj register ≥ n+2, the output level is not inversed
Waveform Output Start Condition ⁽¹⁾	The IFEj bit (j=0 to 7) in the G1FE register is set to "1" (channel j function enabled)
Waveform Output Stop Condition	The IFEj bit is set to "0" (channel j function disabled)
Interrupt Request	The PO1jR bit in the interrupt request register is set to "1" (interrupt
	requested) when the value of the base timer matches that of the G1POj
	register. (See Figure 11.14)
OUTC1j Pin	Pulse signal output pin
Selectable Function	Default value set function: Set starting waveform output level
	Inversed output function
	Waveform output level is inversed to output a waveform from the OUTC1j pin

NOTES:

1. Set the FSCj bit in the G1FS register to "0" (waveform generating function selected).

(1) Free-Running Operation (The RST2 to RST1 bits in the G1BCR1 register are set to "002")

i=0 to 4, 8 to 10; j=0 to 7


m: Setting value of the G1POj register, 000016 to FFFF16

NOTES:

- 1. Waveform output when the INV bit in the G1POCRj register is set to "0" (not inversed) and the IVL bit is set to "0" ("L" output as default value).
- 2. Waveform output when the INV bit is set to "0" (not inversed) and the IVL bit is set to "1" ("H" output as default value).

The above diagram applies under the following condition:

- The RST2 and RST1 bits in the G1BCR1 register are set to "002" (no base timer reset) and the UD1 and UD0 bits to "002" (counter increment mode).
- (2) The Base Timer is Reset when the Base Timer Matches the G1PO0 Register (The RST1 bit is set to "1" and the RST2 bit is set to "0")

i=0 to 4, 8 to 10; j=1 to 7

m: Setting value of the G1POi register, 000016 to FFFF16

n: Setting value of the G1PO0 register, 000116 to FFFD16

The above diagram applies to the following conditions:

- The IVL bit in the G1POCRj register is set to "0" ("L" output as default value).
 The INV bit is set to "0" (not inversed).
- The UD1 and UD0 bits in the G1BCR1 register are set to "002" (counter increment mode).
- m<n+2

Figure 22.17 Phase-delayed Waveform Output Mode

22.3.3 Set/Reset Waveform Output (SR Waveform Output) Mode

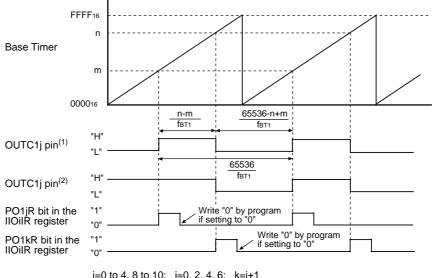
Output signal level of the OUTC1j pin becomes high ("H") when the value of the base timer matches that of the G1POj register (j=0, 2, 4, 6). The "H" signal switches to a low-level ("L") signal when the value of the base timer matches that of the G1POk register (k=j+1) or when the base timer is set to "000016". If the IVL bit in the G1POCRj register is set to "1" ("H" output as default value), an "H" signal output is provided when waveform output starts. If the INV bit is set to "1" (output inversed), the level of the output waveform is inversed. Table 22.11 lists specifications of SR waveform output mode. Figure 22.18 shows an example of a SR waveform output mode operation.

Table 22.11 SR Waveform Output Mode Specifications

Item	Specification
Output Waveform ⁽²⁾	Free-running operation
	(the RST2 and RST1 bits in the G1BCR1 register are set to "002")
	(1) m < n
	"H" width : <u>n-m</u> fBT1
	"L" width : $\frac{m^{(3)}}{fBT1}$ + $\frac{65536 - n^{(4)}}{fBT1}$
	(2) m ≥ n
	"H" width : 65536 - m fвт1
	"L" width : <u>m</u> fBT1
	m : setting value of the G1POj register (j=0, 2, 4, 6)
	n : setting value of the G1POk register (k=j+1)
	• The base timer is cleared to "000016" by matching the base timer with the G1PO0 register ⁽¹⁾ (the RST1 bit is set to "1" and the RST2 bit is set to "0")
	(1) m < n < p+2
	"H" width : <u>n-m</u>
	"L" width : $\frac{fBT1}{fBT1}$ + $\frac{p+2-n^{(4)}}{fBT1}$
	(2) m < p+2 ≤ n
	"H" width : <u>p + 2 - m</u> f _{BT1}
	"L" width : <u>m</u> fBT1
	(3) If $m \ge p+2$, the output level is fixed to "L"
	m : setting value of the G1POj register (j=2, 4, 6), 000016 to FFFF16
	n : setting value of the G1POk register (k=j+1), 000016 to FFFF16
	p : setting value of the G1PO0 register, 000116 to FFFD16

NOTES:

- 1. When the G1PO0 register resets the base timer, the channel 0 and 1 SR waveform generating functions are not available
- 2. When the INV bit in the G1POCRj register is set to "1" (output inversed), the "L" width and "H" width are inversed.
- 3. Waveform from base timer reset until when output level becomes "H".
- 4. Waveform from when output level becomes "L" until base timer reset.


Table 22.11 SR Waveform Output Mode Specifications (Continued)

Item	Specification
Waveform Output Start Condition ⁽⁵⁾	The IFEq bit (q=0 to 7) in the G1FE register is set to "1" (channel q function
	enabled)
Waveform Output Stop Condition	The IFEq bit is set to "0" (channel q function disabled)
Interrupt Request	The PO1jR bit in the interrupt request register is set to "1" (interrupt requested)
	when the value of the base timer matches that of the G1POj register.
	The PO1kR bit in the interrupt request register is set to "1" (imterrupt requested)
	when the value of the base timer matches that of the G1POk register. (See
	Figure 11.14)
OUTC1j Pin	Pulse signal output pin
Selectable Function	Default value set function: Set starting waveform output level
	Inversed output function
	Waveform output level is inversed to provide a waveform from the OUTC1j pin

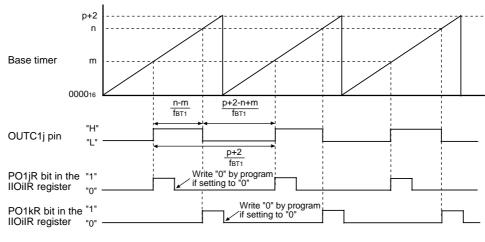
NOTES:

5. Set the FSCj bit in the G1FS register to "0" (waveform generating function selected).

i=0 to 4, 8 to 10; j=0, 2, 4, 6; k=j+1

m: Setting value of the G1POj register, 000016 to FFFF16

n: Setting value of the G1POk register, 000016 to FFFF16


NOTES:

- 1. Waveform output when the INV bit in the G1POCRj register is set to "0" (not inversed) and the IVL bit is set to "0" (output "L" as default value).
- 2. Waveform output when the INV bit is set to "0" (not inversed) and the IVL bit is set to "1" ("H" output as default value).

The diagram above applies under the following condition:

- The RST2 and RST1 bits in the G1BCR1 register are set to "002" (no base timer reset) and the UD1 and UD0 bits to "002" (counter increment mode).

(2) The Base Timer is Reset when the Base Timer Matches the G1PO0 Register (The RST1 bit is set to "1" and the RST2 bit is set to "0")

i=0 to 4, 8 to 10; j=2, 4, 6; k=j+1

m: Setting value of the G1POj register, 000016 to FFFF16

n: Setting value of the G1POk register, 000016 to FFFF16

p: Setting value of the G1PO0 register, 000116 to FFFD16

The diagram above applies to the following conditions:

- The IVL bit in the G1POCRj register is set to "0" ("L" output as default value). The INV bit is set to "0" (not inversed).
- The UD1 and UD0 bits in the G1BCR1 register are set to "002" (counter increment mode).
- m<n<p+2

Figure 22.18 SR Waveform Output Mode

22.4 Communication Unit 0 and 1 Communication Function

In the intelligent I/O communication unit 1, 8-bit clock synchronous serial I/O, 8-bit clock asynchronous serial I/O (UART) or HDLC data processing is available. In the communication unit 0, 8-bit clock synchronous serial I/O or HDLC data processing is available.

Figures 22.19 to 22.28 show registers associated with the communication function.

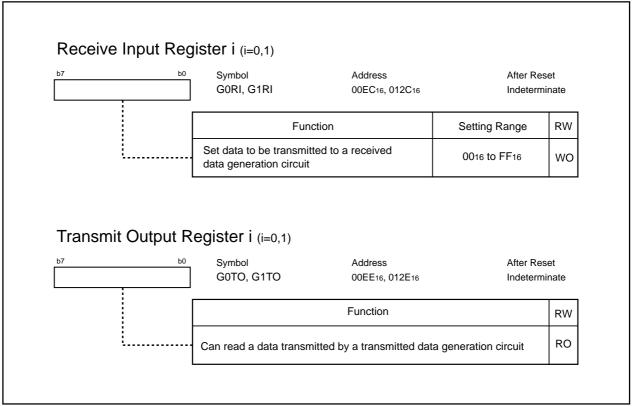
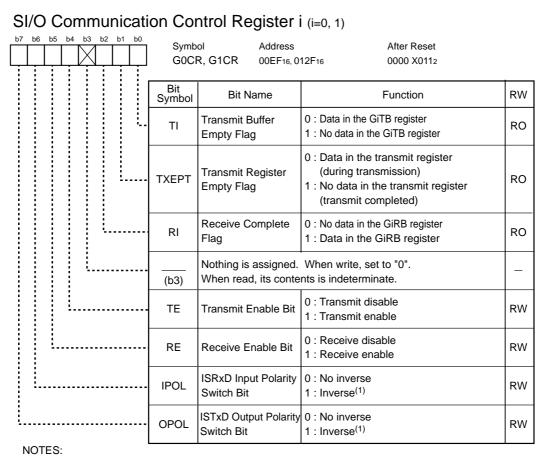
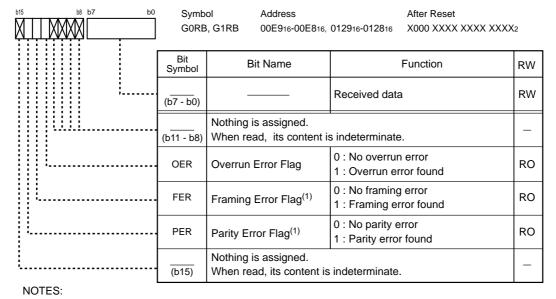




Figure 22.19 G0RI and G1RI Registers, G0TO and G1TO Registers

^{1.} Set this bit to "1" when using UART mode.

SI/O Receive Buffer Register i (i=0, 1)

Nothing is assigned in the FER and PER bits in the G0RB register.
 When read, its content is indeterminate.

Figure 22.20 G0CR and G1CR Registers, G0RB and G1RB Registers

SI/O Communication Mode Register 0 Symbol Address After Reset 0 0 **G0MR** 0 00ED₁₆ 0016 Bit Symbol Bit Name RW **Function** b1 b0 GMD0 RW 0 1: Clock synchronous serial I/O Communication Mode Select Bit GMD1 1 1: HDLC data processing mode⁽¹⁾ RW Internal/External Clock 0: Internal clock **CKDIR** RW Select Bit 1: External clock RW Reserved Bit Set to "0" (b5 - b3) 0: LSB first Transfer Format **UFORM** RW 1: MSB first Select Bit 0: No data in the G0TB register Transmit Interrupt RW **IRS** Cause Select Bit 1: Transmission is completed (TXEPT=1) NOTES:

SI/O Communication Mode Register 1

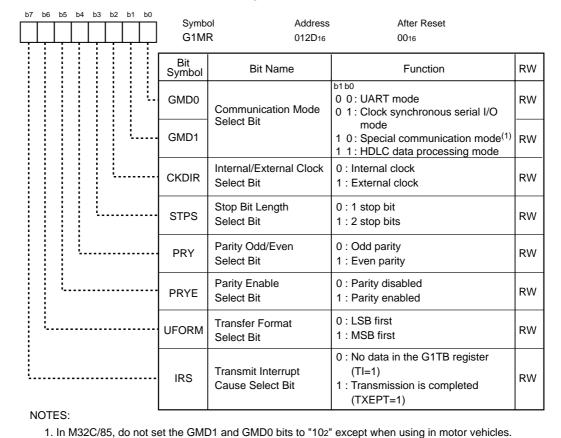
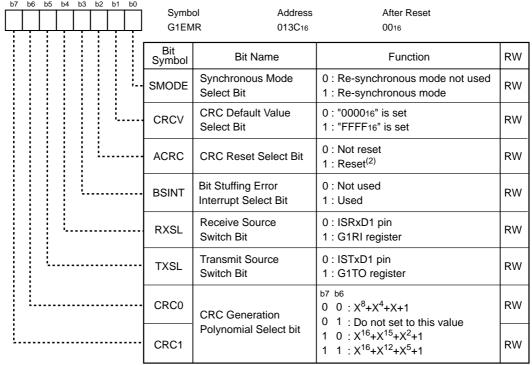


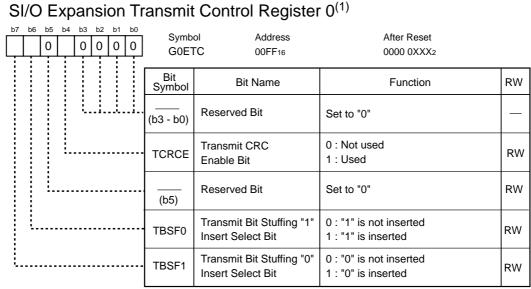
Figure 22.22 G0MR and G1MR Registers


^{1.} Do not set to any bit combinations except the above.

SI/O Expansion Mode Register 0⁽¹⁾ Symbol After Reset 0 G0EMR 00FC₁₆ 0016 Bit Symbol RW Bit Name Function Reserved Bit Set to "0" RW (b0) **CRC** Default Value 0 : Set to "000016" CRCV RW Select Bit 1 : Set to "FFFF16" 0: Not reset **ACRC CRC Reset Select Bit** RW 1 : Reset⁽²⁾ Bit Stuffing Error 0: Not used **BSINT** RW Interrupt Select Bit 1: Used Receive Source 0: ISRxD0 pin RW RXSI Switch Bit 1: G0RI register Transmit Source 0: ISTxD0 pin **TXSL** RW Switch Bit 1: G0TO register b7 b6 CRC0 RW $0.0: X^8 + X^4 + X + 1$ **CRC** Generation 0 1 : Do not set to this value Polynomial Select Bit 1 0 : $X^{16}+X^{15}+X^2+1$ CRC1 RW 1 1 : $X^{16}+X^{12}+X^{5}+1$

NOTES:

- 1. The G0EMR register is used in HDLC data processing mode. It must be in a reset state or set to "0016" in clock synchronous serial I/O mode.
- 2. CRC is reset when data in the G0CMP3 register matches received data.


SI/O Expansion Mode Register 1(1)

NOTES:

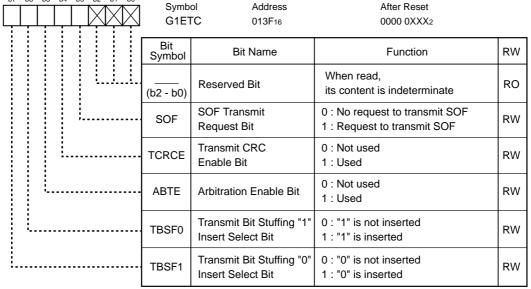
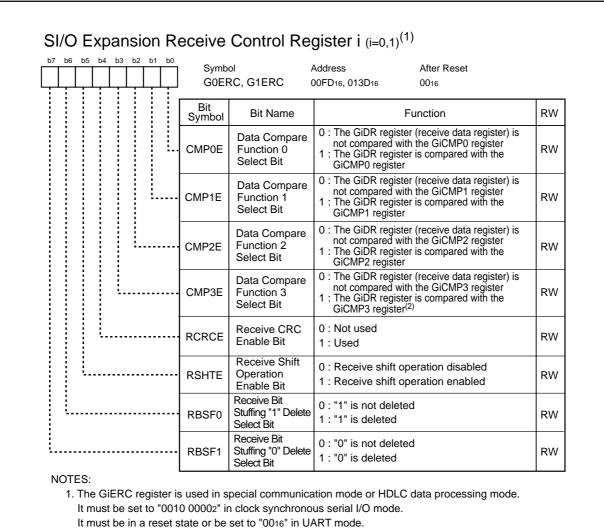

- The G1EMR register is used in special communication mode or HDLC data processing mode. It
 must be in a reset state or be set to "0016" in clock synchronous serial I/O mode or UART mode.
- 2. CRC is reset when data in the G1CMP3 register matches received data.

Figure 22.23 G0EMR and G1EMR Registers

NOTES:

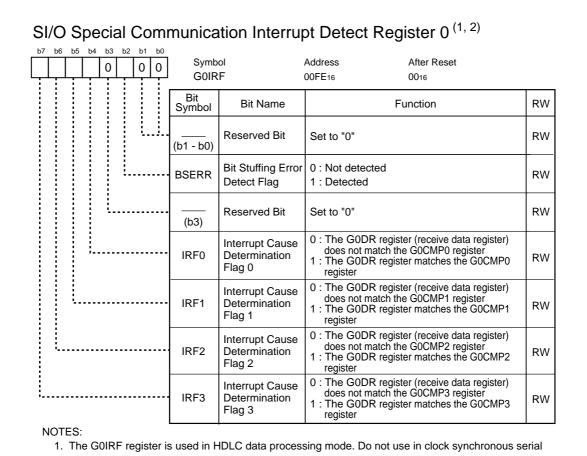
SI/O Expansion Transmit Control Register 1(1)



NOTES:

Figure 22.24 G0ETC and G1ETC Registers

^{1.} The G0ETC register is used in HDLC data processing mode. It must be in a reset state or set to "0016" in clock synchronous serial I/O mode.


The G1ETC register is used in special communication mode or HDLC data processing mode. It
must be in a reset state or set to "0016" in clock synchronous serial I/O mode or UART mode.

2. When the ACRC bit in the GiEMR register is set to "1" (CRC reset function used), set the CMP3E bit

to "1".

Figure 22.25 G0ERC and G1ERC Registers

2. The SRTOR bit in the IIO4IR register is set to "1" if the BSERR or IRF0 to IRF3 bit is set to "1".

Figure 22.26 G0IRF Register

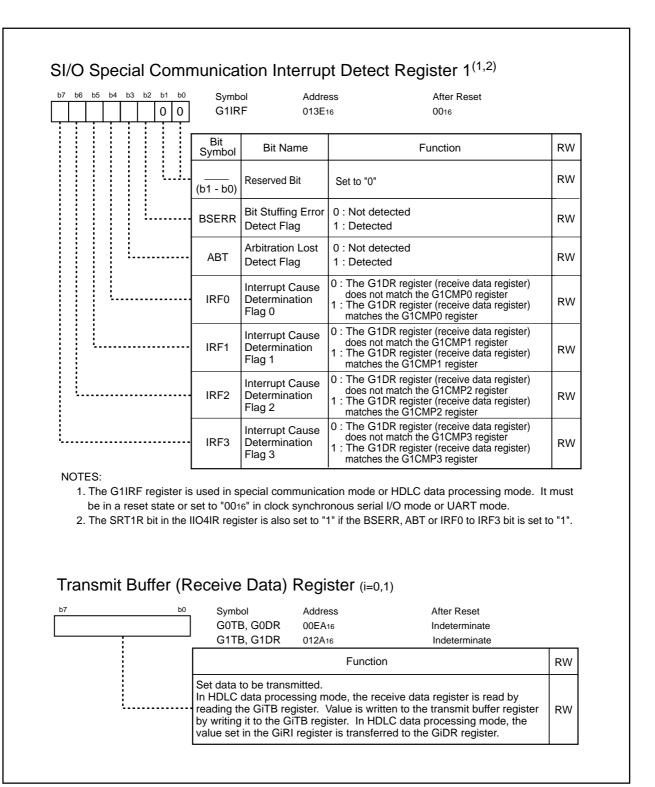
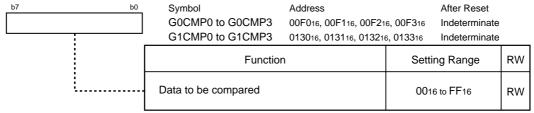
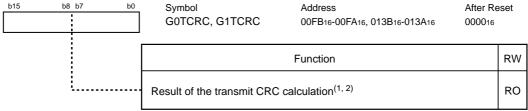



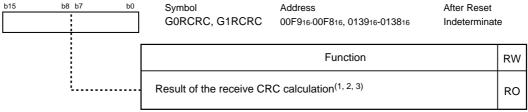
Figure 22.27 G1IRF Register, G0TB and G1TB / G0DR and G1DR Registers

Data Compare Register ij (i=0,1, j=0 to 3)


NOTES:

Set the GiMSK0 register to use the GiCMP0 register.
 Set the GiMSK1 register to use the GiCMP1 register.

Data Mask Register ij (i=0,1, j=0,1)


Transmit CRC Code Register i (i=0,1)

NOTES:

- The calculated result is reset by setting the TE bit in the GiCR register to "0" (transmit disabled).
 The CRCV bit in the GiEMR register selects a default value.
- Transmit CRC calculation is performed with each bit of data transmitted while the TCRCE bit in the GiETC register is set to "1" (used).

Receive CRC Code Register i (i=0,1)

NOTES:

- 1. The calculated result is reset by setting the RCRCE bit in the GiERC register to "0" (not used). If the ACRC bit in the GiEMR register is set to "1" (reset), the result is reset by matching data in the GiCMPj register (j=0 to 3) with the received data.
- The result is reset to the default value selected by the CRCV bit in the GiEMR register before reception starts.
- Receive CRC calculation is performed with every bit of data received while the RCRCE bit in the GiERC register is set to "1" (used).

Figure 22.28 G0CMP0 to G0CMP3 Registers and G1CMP0 to G1CMP3 Registers G0MSK0 and G0MSK1 Registers, G1MSK0 and G1MSK1 Registers G0TCRC and G1TCRC Registers, G0RCRC and G1RCRC Registers

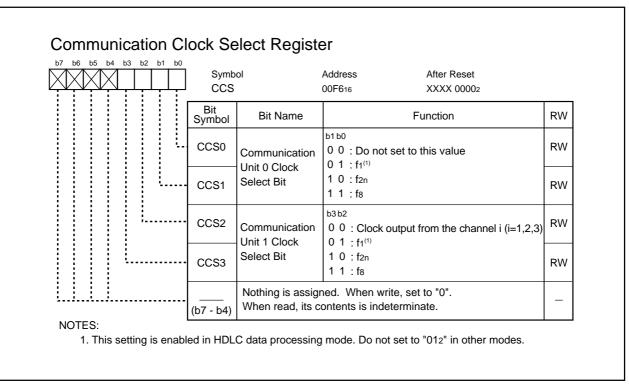


Figure 22.29 CCS Register

22.4.1 Clock Synchronous Serial I/O Mode (Communication Units 0 and 1)

In clock synchronous serial I/O mode, data is transmitted and received with the transfer clock. f8 or f2n can be selected as the communication unit 0 transfer clock. f8, f2n or the clock generated by channels 0 and 3 can be selected as the communication unit 1 transfer clock.

Table 22.12 lists specifications of clock synchronous serial I/O mode for the communication units 0 and 1. Tables 22.13 and 22.14 list clock settings. Table 22.15 lists register settings. Tables 22.16 to 22.19 list pin settings. Figure 22.29 shows an example of transmit and receive operation.

Table 22.12 Clock Synchronous Serial I/O Mode Specifications (Communication Units 0 and 1)

Item	Specification
Transfer Data Format	Transfer data: 8 bits long
Transfer Clock ⁽¹⁾	See Tables 22.13 and 22.14
Transmit Start Condition	Set registers associated with the waveform generating function, the GiMR register and GiERC register. Then, set as is written below after waiting at least one transfer clock cycle. • Set the TE bit in the GiCR register to "1" (transmit enable) • Set the TI bit in the GiCR register to "0" (data in the GiTB register)
Receive Start Condition	Set registers associated with the waveform generating function, the GiMR register and GiERC register. Then, set as is written below after waiting at least one transfer clock cycle. • Set the RE bit in the GiCR register to "1" (receive enable) • Set the TE bit to "1" (transmit enable) • Set the TI bit to "0" (data in the GiTB register)
Interrupt Request	 While transmitting, one of the following conditions can be selected to set the SIOiTR bit to "1" (interrupt requested) (see Figure 11.14): The IRS bit in the GiMR register is set to "0" (no data in the GiTB register) and data is transferred to the transmit register from the GiTB register The IRS bit is set to "1" (transmission completed) and data transfer from the transmit register is completed While receiving, the following condition can be selected to set SIOiRR bit is set to "1" (data reception is completed): Data is transferred from the receive register to the GiRB register
Error Detection	Overrun error ⁽²⁾ This error occurs, when the next data reception is started and the 8th bit of the next data is received before reading the GiRB register
Selectable Function	LSB first or MSB first Select either bit 0 or bit 7 to transmit or receive data ISTxDi and ISRxDi I/O polarity inverse ISTxDi pin output level and ISRxDi pin input level are inversed

NOTES:

- 1. In clock synchronous serial I/O mode, set the RSHTE bit in the GiERC register (i=0, 1) to "1" (receive shift operation enabled).
- 2. When an overrun error occurs, the GiRB register is indeterminate.

When the OPOL bit in the GiCR register is set to "0" (ISTxD output polarity not inversed), the ISTxDi pin puts in a high-level ("H") signal output after selecting operating mode until transfer starts. When the OPOL bit is set to "1" (ISTxD output polarity inversed), the ISTxDi pin puts in a low-level ("L") signal output.

Table 22.13 Clock Settings (Communication Unit 0)

Transfer Clock	G0MR Register	CCS R	egister
Transier Clock	CKDIR Bit	CCS0 Bit	CCS1 Bit
f8	0	1	1
f _{2n} (1)	0	0	1
Input from ISCLK0	1	-	-

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

Table 22.14 Clock Settings (Communication Unit 1)

		i	
Transfer Clock ⁽³⁾	G1MR Register	1MR Register CCS Register	
	CKDIR Bit	CCS2 Bit	CCS3 Bit
fBT1(1)	0	0	0
2(<i>n</i> +2)			
f8	0	1	1
f2n ⁽²⁾	0	0	1
Input from ISCLK1	1	-	-

 π . Setting value of the G1PO0 register, 000116 to FFFD16 NOTES:

- 1. The transfer clock is generated in phase-delayed waveform output mode of the channel 3 waveform generating function.
- 2. The CNT3 to CNT0 bits in the TCSPR register select no division (*n*=0) or divide-by-2*n* (*n*=1 to 15).
- 3. The transfer clock must be fBT1 divided by six or more.

Table 22.15 Register Settings in Clock Synchronous Serial I/O Mode (Communication Units 0 and 1)

Register	Bit	Fund	tion
		Communication Unit 1	Communication Unit 0
CCS	CCS1, CCS0	Setting not required when using only	Select transfer clock
1		communication unit 1	
ı	CCS3, CSS2	Select transfer clock	Setting not required when using only
G1BCR0 ⁽²⁾	BCK1, BCK0	Set to "112" (f1)	communication unit 0
ı	DIV4 to DIV0	Select divide ratio of count source	
ı	IT	Set to "0"	
G1BCR1 ⁽²⁾	7 to 0	Set to "0001 00102"	
G1POCR0 ⁽²⁾	7 to 0	Set to "0000 01112"	
G1POCR1 ⁽²⁾	7 to 0	Set to "0000 01112"	
G1POCR3 ⁽²⁾	MOD2 to MOD0	Set to "0102" ⁽¹⁾	
ı	IVL	Select default output value of ISCLKi ⁽¹⁾	
ı	RLD	Set to "0"	
ı	INV	Select whether ISCLKi puts in an	
		inversed signal or not ⁽¹⁾	
G1PO0 ⁽²⁾	15 to 0	Set bit rate	
		fBT1 = transfer clock	
		$\frac{\text{fBT1}}{2 \text{ x (setting value + 2)}} = \text{transfer clock} \\ \text{frequency}$	
G1PO3 ⁽²⁾	15 to 0	Set to a value smaller than the G1PO0	
		register ⁽¹⁾	
G1FS ⁽²⁾	FSC3,FSC1,FSC0	Set to "0" ⁽¹⁾	
G1FE ⁽²⁾	IFE3,IFE1,IFE0	Set to "1" ⁽¹⁾	
GiERC	7 to 0	Set to "0010 00002"	
GiMR	GMD1, GMD0	Set to "012"	
I	CKDIR	Select the internal clock or external clock	ck
ı	STPS	Set to "0"	
I	UFORM	Select either LSB first or MSB first	
, [IRS	Select how the transmit interrupt is gen	erated
GiCR	TI	Transmit buffer empty flag	
ĺ	TXEPT	Transmit register empty flag	
ĺ	RI	Receive complete flag	
ĺ	TE	Set to "1" to enable transmission and re	eception
, [RE	Set to "1" to enable reception	
, [IPOL	Select ISRxDi input polarity (usually se	
	OPOL	Select ISTxDi output polarity (usually se	et to "0")
GiTB	_	Write data to be transmitted	
GiRB	_	Received data and error flag are stored	

i = 0 to 1

NOTES:

- 1. The CKDIR bit in the GiMR register is set to "0" (internal clock).
- 2. These registers must be set, when f8 or f2n is selected as transfer clock source notwithstanding.

Table 22.16 Pin Settings in Clock Synchronous Serial I/O Mode (Communication Units 0 and 1)(1)

Port								
Name	Function	PS1 Register	PSL1 Register	PSC Register	PSD1 Register	PD7 Register	IPS Register	Register (1)
P73	ISTxD1 Output	PS1_3=1	PSL1_3=0	PSC_3=1	-	-	-	G1POCR0
P74	ISCLK1 Input	PS1_4=0	-	-	-	PD7_4=0	IPS1=0	-
	ISCLK1 Output	PS1_4=1	PSL1_4=0	PSC_4=1	-	-	-	G1POCR1
P75	ISRxD1 Input	PS1_5=0	-	-	-	PD7_5=0	IPS1=0	-
p76	ISTxD0 Output	PS1_6=1	PSL1_6=0	PSC_6=0	PSD1_6=0	-	-	-
p77	ISCLK0 Input	PS1_7=0	-	-	-	PD7_7=0	IPS0=0	-
	ISCLK0 Output	PS1_7=1	PSL1_7=0	-	-	-	-	-

NOTES:

1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output of the communication function used).

Table 22.17 Pin Settings (2)

Port	Function	Setting				
Name		PS2 Register PD8 Register IPS Register				
P80	ISRxD0 input	PS2_0 = 0	$PD8_0 = 0$	IPS0 = 0		

Table 22.18 Pin Settings (3)

Port	Function			Register ⁽¹⁾	
Name		PS5 Register	PD11 Register	IPS Register	
P110	ISTxD1 output	PS5_0 = 1	-	-	G1POCR0
P111	ISCLK1 input	PS5_1 = 0	PD11_1 = 0	IPS1 = 1	-
	ISCLK1 output	PS5_1 = 1	-	-	G1POCR1
P112	ISRxD1 input	PS5_2 = 0	PD11_2 = 0	IPS1 = 1	-

NOTES:

1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (communication function output used).

Table 22.19 Pin Settings (4)

		<u> </u>				
Port	Function	Setting				
Name		PS9 Register	PD15 Register	IPS Register		
P150	ISTxD0 output	PS9_0 = 1	-	-		
P151	ISCLK0 input	PS9_1 = 0	PD15_2 = 0	IPS0 = 1		
	ISCLK0 output	PS9_1 = 1	-	-		
P152	ISRxD0 input	-	PD15_2 = 0	IPS0 = 1		

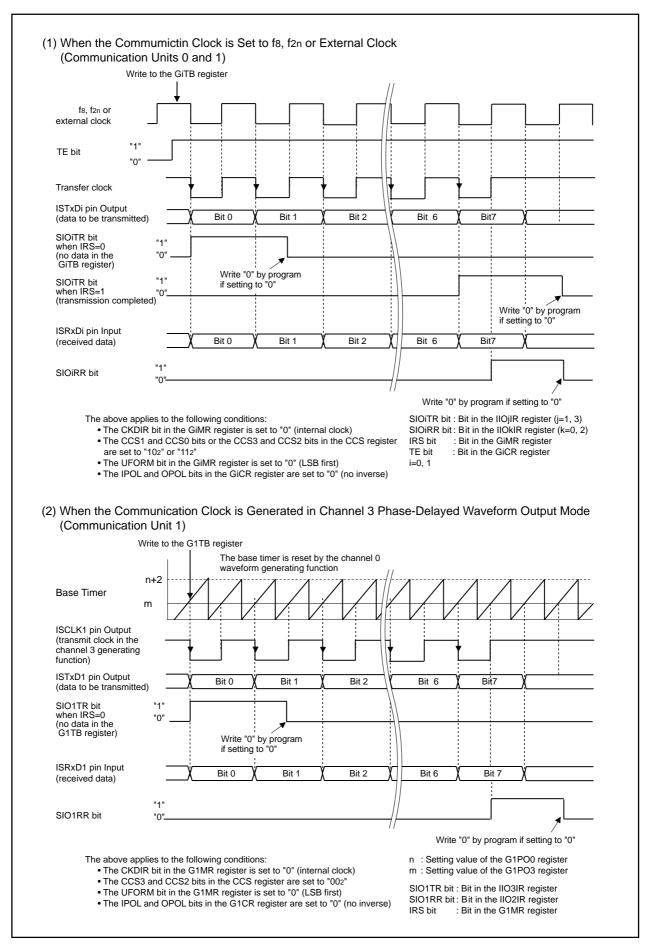


Figure 22.30 Transmit and Receive Operation

22.4.2 Clock Asynchronous Serial I/O (UART) Mode (Communication Unit 1)

In clock asynchronous serial I/O (UART) mode, data is transmitted at a desired bit rate and in a desired transfer data format. Table 22.20 lists specifications of UART mode in the communication unit 1. Table 22.21 lists clock settings. Table 22.22 lists register settings. Tables 22.23 and 22.24 list pin settings. Figure 22.30 shows an example of transmit operation. Figure 22.31 shows an example of receive operation.

Table 22.20 UART Mode Specifications (Communication Unit 1)

Item		Specification			
Transfer Data Format	Character Bit (transfer data):	8 bits long			
	Start bit :	1 bit long			
	Parity bit:	selected from odd, even, or none			
	Stop bit :	selected length from 1 bit or 2 bits			
Transfer Clock ⁽¹⁾	See Table 22.21				
Transmit Start Condition	Set registers associated with the v	vaveform generating function, the G1MR register and			
	G1ERC register. Then, set as writte	en below after at least one transfer clock cycle.			
	Set the TE bit in the G1CR register.	ster to "1" (transmit enable)			
	Set the TI bit in the G1CR regis	ter to "0" (data written to the G1TB register)			
Receive Start Condition	Set registers associated with the v	vaveform generating function, the G1MR register and			
	G1ERC register. Then, set as writte	en below after at least one transfer clock cycle.			
	Set the RE bit in the G1CR register to "1" (receive enable)				
	Detect the start bit				
Interrupt Request	While transmitting, one of the following conditions can be selected to set the				
	SIO1TR bit to "1" (interrupt requested) (See Figure 11.14.):				
	 The IRS bit in the G1MR regis 	ter is set to "0" (no data in the G1TB register) and data			
	is transferred to the transmit re	egister from the G1TB register.			
	- The IRS bit is set to "1" (tra	ansmission completed) and data transfer from the			
	transmit register is completed	d			
		ondition can be selected to set the SIO1RR bit is set			
	to "1":				
		ceive register to the G1RB register (data reception			
	is completed)				
Error Detection	• Overrun error ⁽²⁾				
		t data reception is started and the final stop bit of the			
	next data is received before rea	ding the G1RB register			
	Parity error				
	, ,	or occurs when the number of "1" in parity and char-			
	acter bits does not match the n	umber of "1" set			
	Framing error				
	This error occurs when the nun	nber of the stop bits set is not detected			
Selectable Function	Stop bit length				
	The length of the stop bit is sel	ected from 1 bit or 2 bits			
	LSB first or MSB first				
	Select either bit 0 or bit 7 to tra	nsmit or receive data			

NOTES:

- 1. The transfer clock must be fBT1 divided by six or more.
- 2. When an overrun error occurs, the G1RB register is indeterminate.

Table 22.21 Clock Settings (Communication Unit 1)

Transfer Clock ⁽³⁾	G1MR Register	CCS Register	
	CKDIR Bit	CCS2 Bit	CCS3 Bit
fBT1 (1, 2) 2(n+2)	0	0	0

π. Value of the G1PO0 register 000116 to FFFD16 NOTES:

- 1. Transmit clock is generated in phase-delayed waveform output mode of the channel 3 waveform generating function.
- 2. Received clock is generated when phase-delayed waveform mode of the channel 2 waveform generating function and the channel 2 time measurement function is simultaneously performed.
- 3. The transfer clock must be fBT1 divided by six or more.

Table 22.22 Register Settings in UART Mode (Communication Unit 1)

Register	Bit	Function
G1BCR0	BCK1, BCK0	Set to "112" (f1)
	DIV4 to DIV0	Select divide ratio of count source
	IT	Set to "0"
G1BCR1	7 to 0	Set to "0001 00102"
G1POCR0	7 to 0	Set to "0000 01112"
G1POCR2	7 to 0	Set to "0000 01102"
G1POCR3	7 to 0	Set to "0000 00102"
G1TMCR2	7 to 0	Set to "0000 00102"
G1PO0	15 to 0	Set bit rate
		fBT1
		2 x (setting value + 2) = transfer clock frequency
G1PO3	15 to 0	Set to a value smaller than the G1PO0 register
G1FS	FSC3 to FSC0	Set to "01002"
G1FE	IFE3 to IFE0	Set to "11012"
G1MR	GMD1, GMD0	Set to "002"
	CKDIR	Set to "0"
	STPS	Select length of stop bit
	PRY, PRYE	Select either parity enabled or disabled and either odd parity or even parity
	UFORM	Select either the LSB first or MSB first
	IRS	Select how the receive interrupt is generated
G1CR	TI	Transmit buffer empty flag
	TXEPT	Transmit register empty flag
	RI	Receive complete flag
	TE	Set to "1" to enable transmission and reception
	RE	Set to "1" to enable reception
	IPOL	Set to "1"
	OPOL	Set to "1"
G1TB	7 to 0	Write data to be transmitted
G1RB	15 to 0	Received data and error flag are stored
CCS	CCS3, CCS2	Set to "002"

Table 22.23 Pin Settings in UART Mode

Port	Function		Setting				Register ⁽¹⁾
Name		PS1 Register	PSL1 Register	PSC Register	PD7 Register	IPS Register	
P73	ISTxD1 output	PS1_3 = 1	PSL1_3 = 0	PSC_3 = 1	-	-	G1POCR0
P75	ISRxD1 input	PS1_5 = 0	-	1	PD7_5 = 0	IPS1 = 0	-

NOTES:

1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (communication function output used)

Table 22.24 Pin Settings (Continued)

Port	Function	Setting			Register ⁽¹⁾
Name		PS5 Register	PD11 Register	IPS Register	
P110	ISTxD1 output	PS5_0 = 1	-	-	G1POCR0
P112	ISRxD1 input	PS5_2 = 0	PD11_2 = 0	IPS1 = 1	-

NOTES:

1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output of the communication function used).

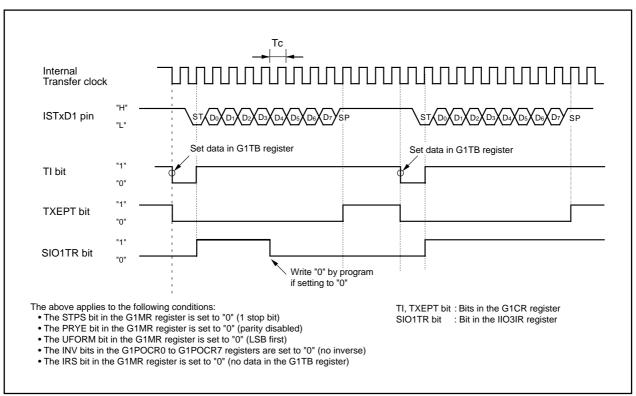


Figure 22.31 Transmit Operation

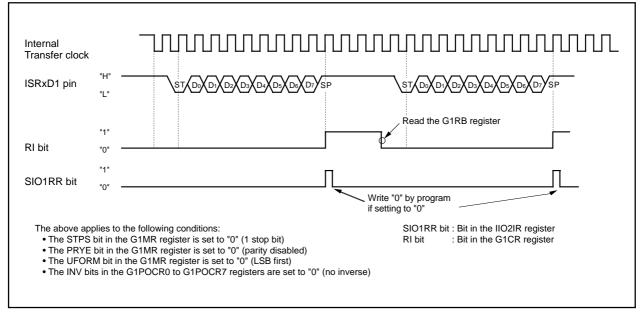


Figure 22.32 Receive Operation

22.4.3 HDLC Data Processing Mode (Communication Units 0 and 1)

In HDLC data processing mode, bit stuffing, flag detection, abort detection and CRC calculation are available for HDLC control. f1, f8 or f2n can become the communication unit 0 transfer clock. f1, f8, f2n or clock, generated in the channel 0 or 1, can become the communication unit 1 transfer clock. No pins are used. To convert data, data to be transmitted is written to the GiTB register (i=0,1) and the data conversion result is restored after data conversion. If any data are in the GiTO register after data conversion, the conversion is terminated. If no data is in the GiTO register, bit stuffing processing is executed regardless of there being no data in the transmit output buffer. A CRC value is calculated every time one bit is converted. If no data is in the GiRI register, received data conversion is terminated.

Table 22.25 list specifications of the HDLC data processing mode. Tables 22.26 and 22.27 list clock settings. Table 22.28 lists register settings.

Table 22.25 HDLC Processing Mode Specifications (Communication Units 0 and 1)

Item	Specification				
Input Data Format	8-bit data fixed, bit alignment is optional				
Output Data Format	8-bit data fixed				
Transfer Clock	See Tables 22.26 and 22.27				
I/O Method	During transmit data processing,				
	value set in the GiTB register is converted in HDLC data processing mode and				
	transferred to the GiTO register.				
	During received data processing,				
	value set in the GiRI register is converted in HDLC data processing mode and				
	transferred to the GiRB register. The value in the GiRI register is also transferred to				
	the GiTB register (received data register).				
Bit Stuffing	During transmit data processing, "0" following five continuous "1" is inserted.				
	During received data processing, "0" following five continuous "1" is deleted.				
Flag Detection	Write the flag data "7E16" to the GiCMPj register (j=0 to 3) to use the special commu-				
	nication interrupt (the SRTiR bit in the IIO4IR register)				
Abort Detection	Write the masked data "0116" to the GiMSKj register				
CRC	The CRC1 and CRC0 bits are set to "112" (X ¹⁶ +X ¹² +X ⁵ +1).				
	The CRCV bit is set to "1" (set to "FFFF16").				
	During transmit data processing,				
	CRC calculation result is stored into the GiTCRC register. The TCRCE bit in the				
GiETC register is set to "1" (transmit CRC used).					
The CRC calculation result is reset when the TE bit in the GiCR regi					
(transmit disabled).					
	During received data processing,				
	CRC calculation result is stored into the GiRCRC register. The RCRCE bit in the				
	GiERC register is set to "1" (receive CRC used).				
	The CRC calculation result is reset by comparing the flag data "7E16" and matching				
	the result with the value in the GiCMP3 register. The ACRC bit in the GiEMR regis-				
	ter is set to "1" (CRC reset).				
Data Processing Start The following conditions are required to start transmit data processing					
Condition	The TE bit in the GiCR register is set to "1" (transmit enable) Output Description:				
	Data is written to the GiTB register The following conditions are required to start require data processing:				
	The following conditions are required to start receive data processing:				
	 The RE bit in the GiCR register is set to "1" (receive enable) Data is written to the GiRI register 				
	Data is writter to the GIVI register				

Table 22.25 HDLC Processing Mode Specifications (Continued)

Item	Specification
Interrupt Request ⁽¹⁾	During transmit data processing,
	One of the following conditions can be selected to set the GiTOR bit in the
	interrupt request register to "1" (interrupt request) (see Figure 11.14).
	 When the IRS bit in the GiMR register is set to "0" (no data in the GiTB
	register) and data is transferred from the GiTB register to the transmit regis-
	ter (transmit start).
	 When the IRS bit is set to "1" (transmission completed) and data transfer from
	the transmit register to the GiTO register is completed.
	When data, which is already converted to HDLC data, is transferred from the
	receive register of the GiTO register to the transmit buffer, the GiTOR bit is set
	to "1"
	During received data processing,
	When data is transferred from the GiRI register to the GiRB register (reception
	completed), the GiRIR bit is set to "1" (See Figure 11.14).
	When received data is transferred from the receive buffer of the GiRI register to
	the receive register, the GiRIR bit is set to "1".
	When the GiTB register is compared to the GiCMPj register (j=0 to 3), the
	SRTiR bit is set to "1".

NOTES:

1. See Figure 11.14 for details on the GiTOR bit, GiRIR bit and SRTiR bit.

Table 22.26 Clock Settings (Communication Unit 0)

Transfer Clock ⁽¹⁾	CCS Register					
	CCS0 Bit	CCS1 Bit				
f1	1	0				
f8	1	1				
f _{2n} (2)	0	1				

NOTES:

- 1. The transfer clock for reception is generated when the RSHTE bit in the G0ERC register is set to "1" (receive shift operation enabled).
- 2. The CNT3 to CNT0 bits in the TCSPR register select no division (*n*=0) or divide-by-2*n* (*n*=1 to 15).

Table 22.27 Clock Settings (Communication Unit 1)

Transfer Clock ⁽¹⁾	CCS Register		
	CCS2 Bit	CCS3 Bit	
fBT1 (2) 2x(n+2)	0	0	
f1	1	0	
f8	1	1	
f2n ⁽³⁾	0	1	

n. Setting value of the G1PO0 register, 000116 to FFFD16 NOTES:

- 1. The transfer clock for reception is generated when the RSHTE bit in the G1ERC register is set to "1" (receive shift operation enabled).
- 2. The transfer clock is generated in single-phase waveform output mode of the channel 1.
- 3. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

Table 22.28 Register Settings in HDLC Processing Mode (Communication Units 0 and 1)

Register	Bit	Function	
G1BCR0	BCK1, BCK0	Select count source	
	DIV4 to DIV0	Select divide ratio of count source	
	IT	Select the base timer interrupt	
G1BCR1 ⁽¹⁾	7 to 0	Set to "0001 00102"	
G1POCR0 ⁽¹⁾	7 to 0	Set to "0000 00002"	
G1POCR1 ⁽¹⁾	7 to 0	Set to "0000 00002"	
G1PO0 ⁽¹⁾	15 to 0	Set bit rate	
G1PO1 ⁽¹⁾	15 to 0	Set the timing of the rising edge of the transfer clock.	
		Timing of the falling edge ("H" width of the transfer clock) is fixed.	
		Setting value of the G1PO1 register ≤ Setting value of the G1PO0 register	
G1FS ⁽¹⁾	FSC1, FSC0	Set to "002"	
G1FE ⁽¹⁾	IFE1, IFE0	Set to "112"	
GiMR	GMD1, GMD0	Set to "112"	
	CKDIR	Set to "0"	
	UFORM	Set to "0"	
	IRS	Select how the transmit interrupt is generated	
GiEMR	7 to 0	Set to "1111 01102"	
GiCR	TI	Transmit buffer empty flag	
	TXEPT	Transmit register empty flag	
	RI	Receive complete flag	
	TE	Fransmit enable bit	
	RE	Receive enable bit	
GiETC	SOF	Set to "0"	
	TCRCE	Select whether transmit CRC is used or not	
	ABTE	Set to "0"	
	TBSF1, TBSF0	Transmit bit stuffing	
GiERC	CMP2E to CMP0E	Select whether received data is compared or not	
	CMP3E	Set to "1"	
	RCRCE	Select whether receive CRC is used or not	
	RSHTE	Set to "1" to use it in the receiver	
	RBSF1, RBSF0	Receive bit stuffing	
GilRF	BSERR, ABT	Set to "0"	
	IRF3 to IRF0	Select how an interrupt is generated	
GiCMP0,	7 to 0	Write "FE16" to abort processing	
GiCMP1			
GiCMP2	7 to 0	Data to be compared	
GiCMP3	7 to 0	Write "7E16"	
GiMSK0,	7 to 0	Write "0116" to abort processing	
GiMSK1		-	
GiTCRC	15 to 0	Transmit CRC calculation result can be read	
GiRCRC	15 to 0	Receive CRC calculation result can be read	
GiTO	7 to 0	Data, which is output from a transmit data generation circuit, can be read	
GiRI	7 to 0	Set data input to a receive data generation circuit	
GiRB	7 to 0	Received data is stored	
GiTB	7 to 0	For transmission: write data to be transmitted	
		For reception : received data for comparison is stored	
ccs	CCS1, CCS0	Select the HDLC processing clock	
	CCS3, CCS2	Select the HDLC processing clock	
i=0 1	·		

i=0, 1

NOTES:

1. These register settings are required when the CCS3 and CCS2 bit in the CCS register are set to "002" (clock output from channel j (j=1,2,3)).

23. CAN Module

The CAN (Controller Area Network) module included in the M32C/85 group (M32C/85, M32C/85T) is a Full CAN module, compatible with CAN Specification 2.0 Part B. Two channels, CAN0 and CAN1, can be used. Table 23.1 lists specifications of the CAN module.

Table 23.1 CAN Module Specifications

Item	Specification			
Protocol	CAN Specification 2.0 Part B			
Message Slots	16 slots			
Polarity	Dominant: "L"			
	Recessive: "H"			
Acceptance Filter	Global mask: 1 (for message slots 0 to 13)			
	Local mask: 2 (for message slots 14 and 15 respectively)			
Baud Rate	Baud rate = 1 Max. 1 Mbps			
	Tq clock cycle = BRP + 1 CAN clock			
	Tq per bit = SS + PTS +PBS1+PBS2			
	Tq: Time quantum			
	BRP: Setting value of the C0BRP and C1BRP registers, 1-255			
	SS: Synchronization Segment; 1 Tq			
	PTS: Propagation Time Segment; 1 to 8 Tq			
	PBS1: Phase Buffer Segment 1; 2 to 8 Tq			
	PBS2: Phase Buffer Segment 2; 2 to 8 Tq			
Remote Frame Automatic	Message slot that receives the remote frame transmits the data frame			
Answering Function	automatically			
Time Stamp Function	Time stamp function with a 16-bit counter. Count source can be selected			
	from the CAN bus bit clock divided by 1, 2, 3 or 4			
	CAN bus bit clock = $\frac{1}{\text{CAN bit time}}$			
BasicCAN Mode	BasicCAN function can be used with the CANi message slots 14 and 15			
Transmit Abort Function	Transmit request is aborted			
Loopback Function	Frame transmitted by the CAN module is received by the same CAN module			
Forcible Error Active	The CAN module is forced into an error active state by resetting an error			
Transition Function	counter.			
Single-Shot Transmit Function	The CAN module does not transmit data again even if arbitration lost or			
	transmission error causes a transmission failure			
Self-Test Function	The CAN module communicates internally and diagnoses its CAN module			
	state			

NOTES:

1. Use an oscillator with maximum 1.58% oscillator tolerance.

Figure 23.1 shows a block diagram of the CAN module. Figure 23.2 shows CANi message slot (the message slot) j (j = 0 to 15) and CANi message slot buffer (i=0, 1). Table 23.2 lists pin settings of the CAN module.

The message slot cannot be accessed directly from the CPU. Allocate the message slot j to be used to the message slot buffer 0 or 1. The message slot j is accessed via the message slot buffer address. The CiSBS register selects the message slot j to be allocated. Figure 23.2 shows the 16-byte message slot buffer and message slot.

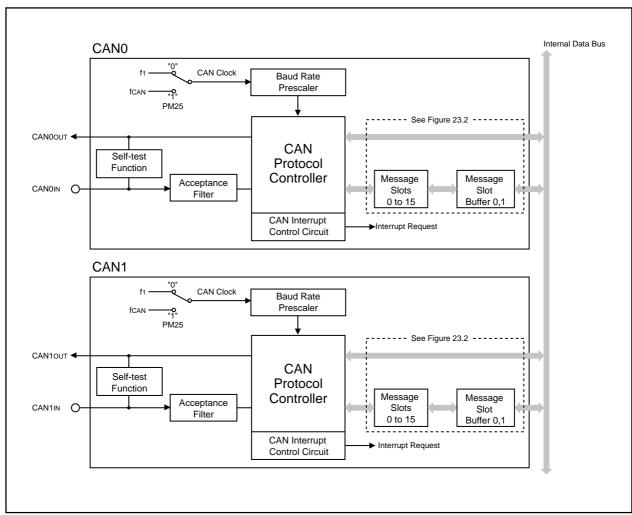


Figure 23.1 CAN Module Block Diagram

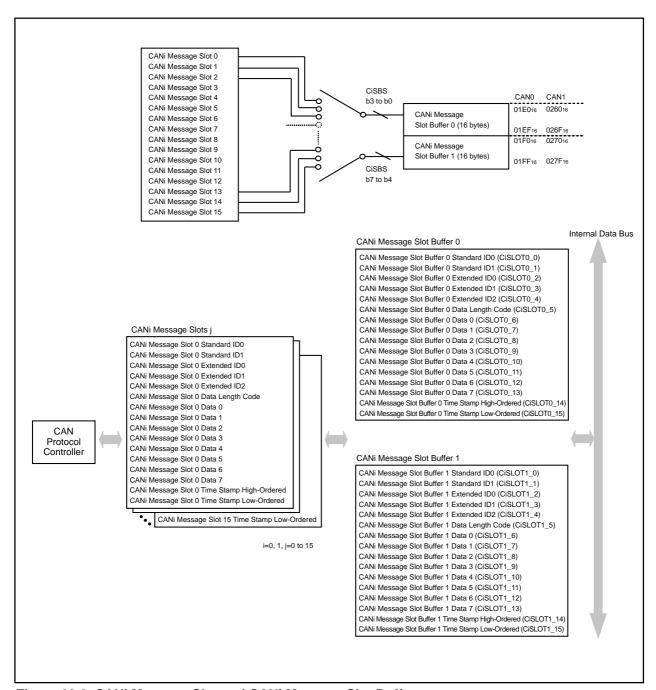


Figure 23.2 CANi Message Slot and CANi Message Slot Buffer

Table 23.2 Pin Settings

Port	Function	Bit and Setting				
		IPS, IPSA Registers	PS1, PS2, PS3 Registers ⁽¹⁾	PSL1, PSL2, PSL3 Registers	PSC, PSC2, PSC3 Registers	PD7, PD8, PD9 ⁽¹⁾ Regsiters
P76	CAN0оит	_	PS1_6=1	PSL1_6=0	PSC_6=1	_
P7 ₇	CAN0IN	IPS3=0	PS1_7=0	_	_	PD7_7=0
P82	CAN0оит	_	PS2_2=1	PSL2_2=1	PSC2_2=0	_
	CAN1оит	_	PS2_2=1	PSL2_2=1	PSC2_2=1	_
P83	CAN0IN	IPS3=1	_	_	_	PD8_3=0
P63	CAN1IN	IPSA_3=1	-	_	_	PD8_3=0
P95	CAN1 _{IN}	IPSA_3=0	PS3_5=0	PSL3_5=0	_	PD9_5=0
P96	CAN1оит	_	PS3_6=1	_	PSC3_6=1	_

NOTES:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

23.1 CAN-Associated Registers

Figures 23.3 to 23.18, and Figures 23.20 to 23.33 show registers associated with CAN. To access the CAN-associated registers, set the CM21 bit in the CM2 register to "0" (main clock or PLL clock as CPU clock) and the MCD4 to MCD0 bits in the MCD register to "100102" (no division mode). Or, set the PM24 bit in the PM2 register to "1" (main clock direct mode) and the PM25 bit in the PM2 register to "1" (CAN clock). Two wait states are added into the bus cycle.

Refer to 7. Processor Mode and 9. Clock Generation Circuit.

23.1.1 CANi Control Register 0 (CiCTLR0 Register) (i=0, 1)

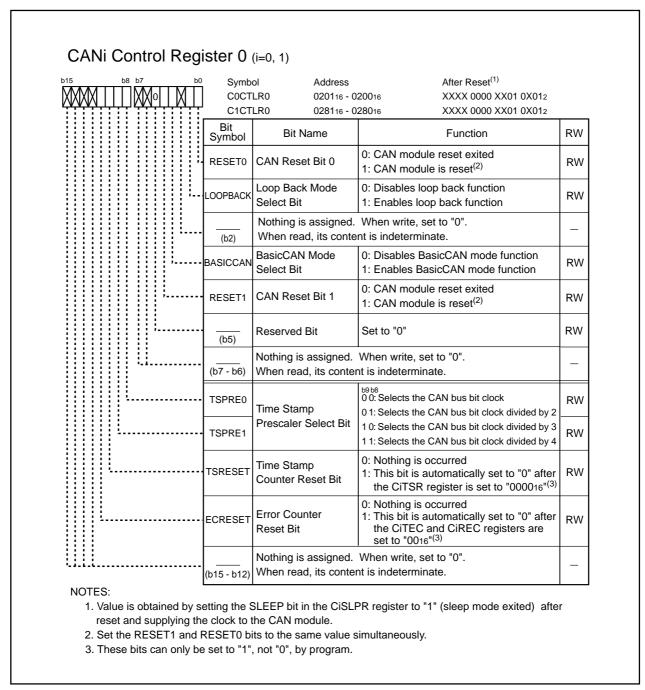


Figure 23.3 C0CTLR0 and C1CTLR0 Registers

23.1.1.1 RESET1 and RESET0 Bits

When both RESET1 and RESET0 bits are set to "1" (CAN module reset), the CAN module is immediately initialized regardless of ongoing CAN communication.

After the RESET1 and RESET0 bits are set to "1" and the CAN module reset is completed, the CiTSR register (i=0, 1) is set to "000016". The CiTEC and CiREC registers are set to "0016" and the STATE_ERRPAS and STATE_BUSOFF bits in the CiSTR register are set to "0" as well.

When both RESET1 and RESET0 bit settings are changed "1" to "0", the CiTSR register starts counting. CAN communication is available after 11 continuous recessive bits are detected. NOTES:

- 1. Set the same value in both RESET1 and RESET0 bits simultaneously.
- 2. Confirm that the STATE RESET bit in the CiSTR register is set to "1" (CAN module reset completed) after setting the RESET1 and RESET0 bits to "1".
- 3. The CANOUT pin puts in a high-level ("H") signal as soon as the RESET1 and RESET0 bits are set to "1". CAN bus error may occur when the RESET1 and RESET0 bits are set to "1" while the CAN frame is transmitting.
- 4. For CAN communication, set the PS1, PS2, PS3, PSL1, PSL2, PSL3, PSC, PSC2, PSC3, IPS, IPSA, PD7, PD8 and PD9 registers when the STATE_RESET bit is set to "1" (CAN module reset completed).

23.1.1.2 LOOPBACK Bit

When the LOOPBACK bit is set to "1" (loopback function enabled) and the receive message slot has a matched ID and frame format with a transmitted frame, the transmitted frame is stored to the receive message slot.

NOTES:

- 1. No ACK for the transmitted frame is returned.
- 2. Change the LOOPBACK bit setting only when the STATE_RESET bit is set to "1" (CAN module reset completed).

23.1.1.3 BASICCAN Bit

When the BASICCAN bit is set to "1", the message slots 14 and 15 enter BasicCAN mode.

In BasicCAN mode, the message slots 14 and 15 are used as dual-structured buffers. The message slots 14 and 15 alternately store a received frame having matched ID detected by acceptance filtering. ID in the message slot 14 and the CiLMAR0 to CiLMAR4 registers are used for acceptance filtering when the message slot 14 is active (the next received frame is to be stored in the message slot 14). ID in the message slot 15 and the CiLMBR0 to CiLMBR4 registers are used when the message slot 15 is active. Both data frame and remote frame can be received.

Use the following procedure to enter BasicCAN mode.

- (1) Set the BASICCAN bit to "1".
- (2) Set the same value into IDs in the message slots 14 and 15.
- (3) Set the same value in the CiLMAR0 to CiLMAR4 registers and CiLMBR0 to CiLMBR4 registers.
- (4) Set the IDE14 and IDE15 bits in the CiIDR register to select a frame format (standard or extended) for the message slots 14 and 15. (Set to the same format.)
- (5) Set the CiMCTL14 and CiMCTL15 registers in the message slots 14 and 15 to receive the data frame.

NOTES:

- 1. Change the BASICCAN bit setting only when the STATE_RESET bit is set to "1" (CAN module reset completed).
- 2. The message slot 14 is the first slot to become active after the RESET1 and RESET0 bits are set to "0".
- 3. The message slots 0 to 13 are not affected by entering BasicCAN mode.

23.1.1.4 TSPRE1, TSPRE0 Bits

The TSPRE1 and TSPRE0 bits determine which count source is used for the time stamp counter. NOTES:

1. Change the TSPRE1 and TSPRE0 bit settings only when the STATE_RESET bit is set to "1" (CAN module reset completed).

23.1.1.5 TSRESET Bit

When the TSRESET bit is set to "1", the CiTSR register is set to "000016". The TSRESET bit is automatically set to "0" after the CiTSR register is set to "000016".

23.1.1.6 ECRESET Bit

When the ECRESET bit is set to "1", the CiTEC and CiREC registers are set to "0016". The CAN module forcibly goes into an error active state.

The ECRESET bit is automatically set to "0" after the CAN module enters an error active state. NOTES:

- 1. In an error active state, the CAN module is ready to communicate when 11 continuous recessive bits are detected on the CAN bus.
- 2. The CANiout pin provides an "H" signal output as soon as the ECRESET bit is set to "1". The CAN bus error may occur when setting the ECRESET bit to "1" during CAN frame transmission.

CANi Control Register 1 (i=0, 1) After Reset(1) Symbol Address C0CTLR1 024116 X000 00XX2 0 0 0 C1CTLR1 025116 X000 00XX2 Bit Bit Name RW **Function** Symbol Nothing is assigned. When write, set to "0". When read, its content is indeterminate. (b1 - b0)Set to "0" Reserved Bit RW (b2) 0: Selects the message slot control BANKSEL CANi Bank Switch Bit RW register and single-shot register 1: Selects the mask register Reserved Bit Set to "0" RW (b5 - b4) CANi Interrupt Mode 0: Outputs 3 types of interrupts via OR INTSEL RW Select Bit 1: Outputs 3 types of interrupts separately Nothing is assigned. When write, set to "0". (b7) When read, its content is indeterminate. NOTES: 1. Value is obtained by setting the SLEEP bit in the CiSLPR register to "1" (sleep mode exited) after reset and supplying the clock to the CAN module.

23.1.2 CANi Control Register 1 (CiCTLR1 Register) (i=0, 1)

Figure 23.4 C0CTLR1 and C1CTLR1 Registers

23.1.2.1 BANKSEL Bit

The BANKSEL bit in the C0CTLR1 register selects the registers allocated to addresses 022016 to 023F16. The BANKSEL bit in the C1CTLR1 register selects registers allocated to addresses 02A016 to 02BF16.

The CiSSCTLR register, CiSSSTR register and the CiMCTL0 to CiMCTL15 registers can be accessed by setting the BANKSEL bit to "0". The CiGMR0 to CiGMR4 registers, CiLMAR0 to CiLMAR4 registers and CiLMBR0 to CiLMBR4 registers can be accessed by setting the BANKSEL bit to "1".

23.1.2.2 INTSEL Bit

The INTSEL bit determines whether the three types of interrupt outputs (CANi transmit interrupt, CANi receive interrupt and CANi error interrupt) are provided via OR or is separately.

Refer to 23.4 CAN Interrupts for details.

NOTES:

1. Change the INTSEL bit setting when the STATE_RESET bit is set to "1" (CAN module reset completed).

23.1.3 CANi Sleep Control Register (CiSLPR Register) (i=0, 1)

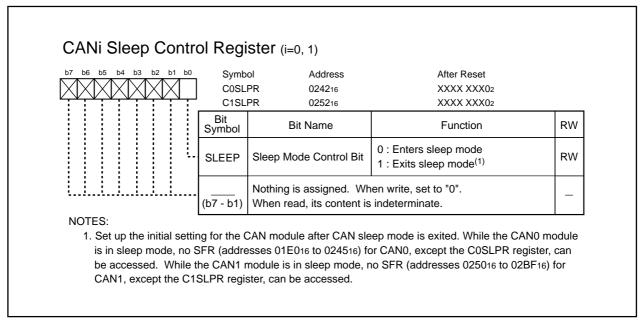


Figure 23.5 COSLPR and C1SLPR Registers

23.1.3.1 SLEEP Bit

When the SLEEP bit is set to "0", the clock supplied to the CAN module stops running and the CAN module enters sleep mode.

When the SLEEP bit is set to "1", the clock supplied to the CAN module starts running and the CAN module exits sleep mode.

NOTES:

1. Enter sleep mode after the STATE_RESET bit in the CiSTR register is set to "1" (CAN module reset completed).

CANi Status Register (i=0, 1) Symbol Address After Reset(1) C0STR 020316 - 020216 X000 0X01 0000 00002 C1STR 028316 - 028216 X000 0X01 0000 00002 Bit Name **Function** RW Symbol b3 b2 b1 b0 MBOX0 RO 0 0 0 0: Message slot 0 0 0 0 1: Message slot 1 0 0 1 0: Message slot 2 MBOX1 RO 0 0 1 1: Message slot 3 Active Slot **Determination Bit** RO MBOX2 1 1 0 1: Message slot 13 1 1 0 : Message slot 14 MBOX3 1 1 1 1: Message slot 15 RO Transmit Complete 0: Transmission is not completed TRMSUCC RO State Flag 1: Transmission is completed Receive Complete 0: Reception is not completed **RECSUCC** RO State Flag 1: Reception is completed 0: Not transmitting RO **TRMSTATE** Transmit State Flag 1: During transmission 0: Not receiving RO Receive State Flag RECSTATE 1: During reception 0: CAN module is operating STATE_RESET CAN Reset State Flag RO 1: CAN module reset is completed 0: Mode except Loop back mode RO Loop Back State Flag STATE LOOPBACK 1: Loop back mode Nothing is assigned. When write, set to "0". When read, its content is indeterminate. (b10) 0: Mode except BasicCAN mode STATE BASICCAN BasicCAN State Flag RO 1: BasicCAN mode 0: No error occurs STATE_BUSERROR CAN Bus Error State Flag RO 1: Error occurs 0: No error passive state Error Passive State Flag RO STATE ERRPAS 1: Error passive state 0: No bus-off state STATE BUSOFF Bus-Off State Flag RO 1: Bus-off state Nothing is assigned. When write, set to "0".

23.1.4 CANi Status Register (CiSTR Register) (i=0, 1)

Figure 23.6 COSTR and C1STR Registers

23.1.4.1 MBOX3 to MBOX0 Bits

The MBOX3 to MBOX0 bits store relevant slot numbers when the CAN module has completed transmitting data or storing received data.

1. Value is obtained by setting the SLEEP bit in the CiSLPR register to "1" (sleep mode exited) after reset

When read, its content is indeterminate.

23.1.4.2 TRMSUCC Bit

NOTES:

The TRMSUCC bit is set to "1" when the CAN module has transmitted data as expected.

The TRMSUCC bit is set to "0" when the CAN module has received data as expected.

(b15)

and supplying the clock to the CAN module.

23.1.4.3 RECSUCC Bit

The RECSUCC bit is set to "1" when the CAN module has received data as expected. (Whether received message has been stored in the message slot or not is irrelevant.) If the received message is transmitted in loopback mode, the TRMSUCC bit is set to "1" and the RECSUCC bit is set to "0". The RECSUCC bit is set to "0" when the CAN module has transmitted data as expected.

23.1.4.4 TRMSTATE Bit

The TRMSTATE bit is set to "1" when the CAN module is performing as a transmit node.

The TRMSTATE bit is set to "0" when the CAN module is in a bus-idle state or starts performing as a receive node.

23.1.4.5 RECSTATE Bit

The RECSTATE bit is set to "1" when the CAN module is performing as a receive node.

The RECSTATE bit is set to "0" when the CAN module is in a bus-idle state or starts performing as a transmit node.

23.1.4.6 STATE RESET Bit

After both RESET1 and RESET0 bits are set to "1" (CAN module reset), the STATE_RESET bit is set to "1" as soon as the CAN module is initialized.

The STATE_RESET bit is set to "0" when the RESET1 and RESET0 bits are set to "0".

23.1.4.7 STATE LOOPBACK Bit

The STATE_ LOOPBACK bit is set to "1" when the CAN module is in loopback mode.

The STATE_LOOPBACK bit is set to "1" when the LOOPBACK bit in the CiCTLR0 register is set to "1" (loop back function enabled).

The STATE_LOOPBACK bit is set to "0" when the LOOPBACK bit is set to "0" (loop back function disabled).

23.1.4.8 STATE_BASICCAN Bit

The STATE BASICCAN bit is set to "1" when the CAN module is in BasicCAN mode.

Refer to 23.1.1.3 BASICCAN bit for BasicCAN mode.

The STATE_BASICCAN bit is set to "0" when the BASICCAN bit is set to "0" (BasicCAN mode function disabled).

The STATE_BASICCAN bit is set to "1" when the BASICCAN bit is set to "1" (BasicCAN mode function enabled), the REMACTIVE bits in the CiMCTL14 and CiMCTL15 registers in the message slots 14 and 15 are set to "0" (data frame received).

23.1.4.9 STATE BUSERROR Bit

The STATE BUSERROR bit is set to "1" when an CAN communication error is detected.

The STATE_BUSERROR bit is set to "0" when the CAN module has transmitted or received data as expected. Whether a received message has been stored into the message slot or not is irrelevant. NOTES:

1. When the STATE_BUSERROR bit is set to "1", the STATE_BUSERROR bit remains unchanged even if both RESET1 and RESET0 bits are set to "1" (CAN module reset).

23.1.4.10 STATE_ERRPAS Bit

The STATE_ERRPAS bit is set to "1" when the value of the CiTEC or CiREC register (i=0, 1) exceeds 127 and the CAN module is placed in an error-passive state.

The STATE_ERRPAS bit is set to "0" when the CAN module in an error-passive state is placed in another error state.

The STATE_ERRPAS bit is set to "0" when both RESET1 and RESET0 bits are set to "1" (CAN module is reset).

23.1.4.11 STATE_BUSOFF Bit

The STATE_BUSOFF bit is set to "1" when the value of the CiTEC register exceeds 255 and the CAN module is placed in a bus-off state.

The STATE_BUSOFF bit is set to "0" when the CAN module in a bus-off state is placed in an erroractive state.

The STATE_BUSOFF bit is set to "0" when both RESET1 and RESET0 bits are set to "1" (CAN module reset).

23.1.5 CANi Extended ID Register (CiIDR Register) (i=0, 1)

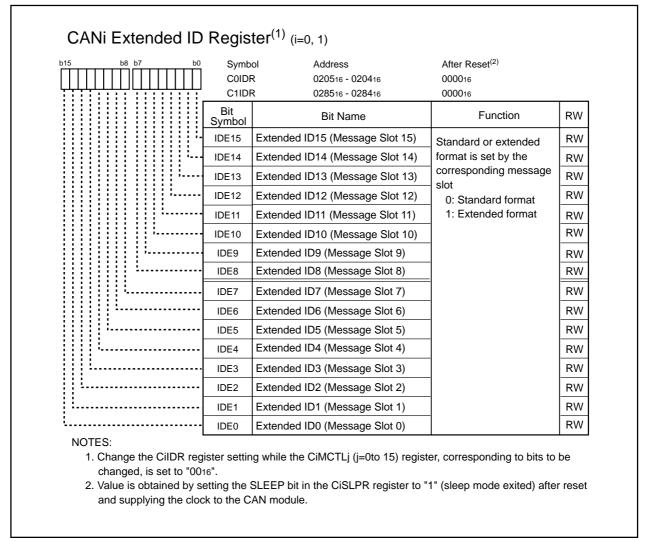


Figure 23.7 C0IDR and C1IDR Registers

Bits in the CiIDR register determine the frame format in the message slot corresponding to each bit. The standard format is selected when the bit is set to "0".

The extended format is selected when the bit is to set "1".

23.1.6 CANi Configuration Register (CiCONR Register) (i=0, 1)

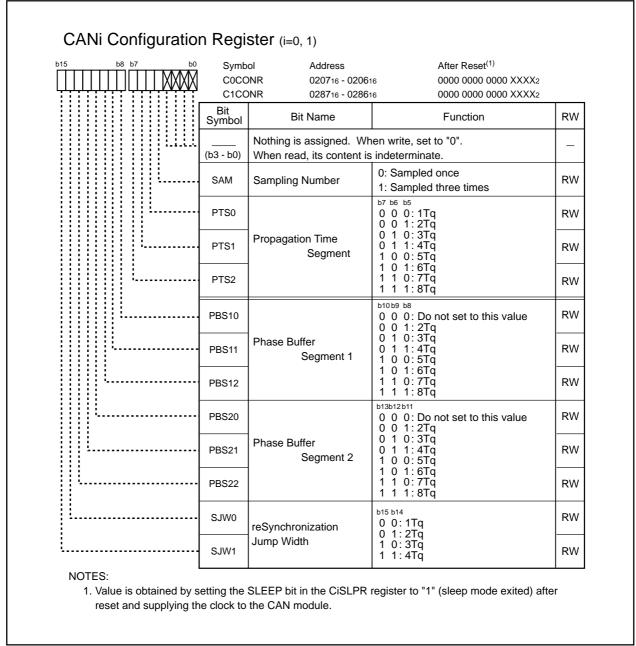


Figure 23.8 C0CONR and C1CONR Registers

23.1.6.1 SAM Bit

The SAM bit determines the number of sample points to be taken per bit.

When the SAM bit is set to "0", only one sample is taken per bit at the end of the Phase Buffer Segment 1 (PBS1) to determine the value of the bit.

When the SAM bit is set to "1", three samples per bit are taken; one time quantum and two time quanta before the end of PBS1, and at the end of PBS1. The sample result value which is detected more than twice becomes the value of the bit sampled.

23.1.6.2 PTS2 to PTS0 Bits

The PTS2 to PTS0 bits determine PTS width.

23.1.6.3 PBS12 to PBS10 Bits

The PBS12 to PBS10 bits determine PBS1 width. Set the PBS12 to 10 bits to "0012" or more.

23.1.6.4 PBS22 to PBS20 Bits

The PBS22 to PBS20 bits determine PBS2 width. Set the PBS22 to PBS20 bits to "0012" or more.

23.1.6.5 SJW1 and SJW0 Bits

The SJW1 and SJW0 bits determine SJW width. Set the SJW1 and SJW0 bits to values less than or equal to the PBS12 to PBS10 bit settings and the PBS22 to PBS20 bit settings.

Table 23.3 Bit Timing when CPU Clock = 30 MHz

						i e
Baud Rate	BRP	Tq Clock Cycles (ns)	Tq Per Bit	PTS+PBS1	PBS2	Sample Point
1Mbps	1	66.7	15	12	2	87%
	1	66.7	15	11	3	80%
	1	66.7	15	10	4	73%
	2	100	10	7	2	80%
	2	100	10	6	3	70%
	2	100	10	5	4	60%
500Kbps	2	100	20	16	3	85%
	2	100	20	15	4	80%
	2	100	20	14	5	75%
	3	133.3	15	12	2	87%
	3	133.3	15	11	3	80%
	3	133.3	15	10	4	73%
	4	166.7	12	9	2	83%
	4	166.7	12	8	3	75%
	4	166.7	12	7	4	67%
	5	200	10	7	2	80%
	5	200	10	6	3	70%
	5	200	10	5	4	60%

23.1.7 CANi Baud Rate Prescaler (CiBRP Register) (i=0, 1)

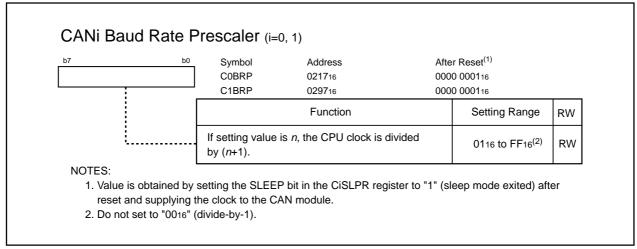


Figure 23.9 C0BRP and C1BRP Registers

The CiBRP register determines the Tq clock cycle of the CAN bit time. The baud rate is obtained from Tq clock cycle x Tq per bit.

Tq clock cycle = (BRP+1) / CAN clock Baud rate = Tq clcok cycle x Tq per bit Tq per bit = SS + PTS + PBS1 + PBS2

Tq: Time quantum SS: Synchronization Segment; 1 Tq PBS1: Phase Buffer Segment 1; 2 to 8 Tq BRP: Setting value of the CiBPR register; 1-255 PTS: Propagation Time Segment; 1 to 8 Tq PBS2: Phase Buffer Segment 2; 2 to 8 Tq

23.1.8 CANi Time Stamp Register (CiTSR Register) (i=0, 1)

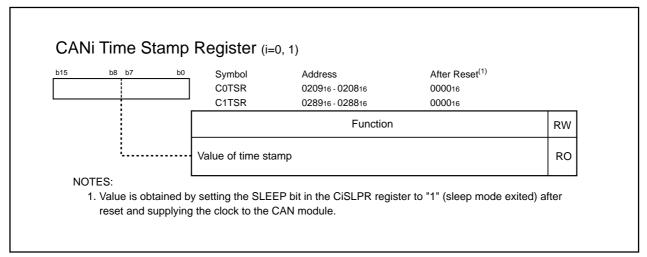


Figure 23.10 C0TSR and C1TSR Registers

The CiTSR register is a 16-bit counter. The TSPRE1 and TSPRE0 bits in the CiCTLR0 register select the CAN bus bit clock divided by 1, 2, 3 or 4 as the count source for the CiTSR register.

When data transmission or reception is completed, the value of the CiTSR register is automatically stored into the message slot.

In loopback mode, when either data frame receive message slot or remote frame receive message slot is available to store the message, the value of the CiTSR register is also stored into the message slot when data reception is completed. The value of the CiTSR register is not stored when data transmission is completed.

The CiTSR register starts a counter increment when the RESET1 and RESET0 bits in the CiCTLR0 register are set to "0".

The CiTSR register is set to "000016":

- at the next count timing after the CiTSR register is set to "FFFF16";
- when the RESET1 and RESET0 bits are set to "1" (CAN module reset) by program; or
- when the TSRESET bit is set to "1" (CiTSR register reset) by program.

CAN bus bit clock =
$$\frac{1}{\text{CAN bit time}}$$

23.1.9 CANi Transmit Error Count Register (CiTEC Register) (i=0, 1)

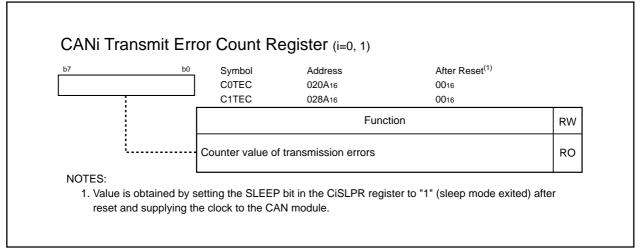


Figure 23.11 COTEC and C1TEC Registers

In an error active or an error passive state, the counting value of a transmission error is stored into the CiTEC register. The counter is decremented when the CAN module has transmitted data as expected or is incremented when an transmit error occurs.

In a bus-off state, an indeterminate value is stored into the CiTEC register. The CiTEC register is set to "0016" when the CAN module is placed in an error active state again.

23.1.10 CANi Receive Error Count Register (CiREC Register) (i=0, 1)

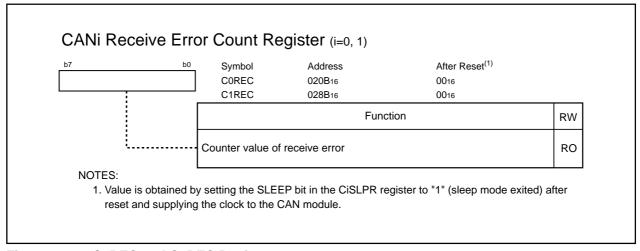


Figure 23.12 COREC and C1REC Registers

In an error active or an error passive state, a counting value of the reception error is stored into the CiREC register. The counter is decremented when the CAN module has received data as expected or it is incremented when a receive error occurs.

The CiREC register is set to 127 when the CiREC register is 128 (error passive state) or more and the CAN module has received as expected.

In a bus-off state, an indeterminate value is stored into the CiREC register. The CiREC register is set to "0016" when the CAN module is placed in an error active state again.

23.1.11 CANi Slot Interrupt Status Register (CiSISTR Register) (i=0, 1)

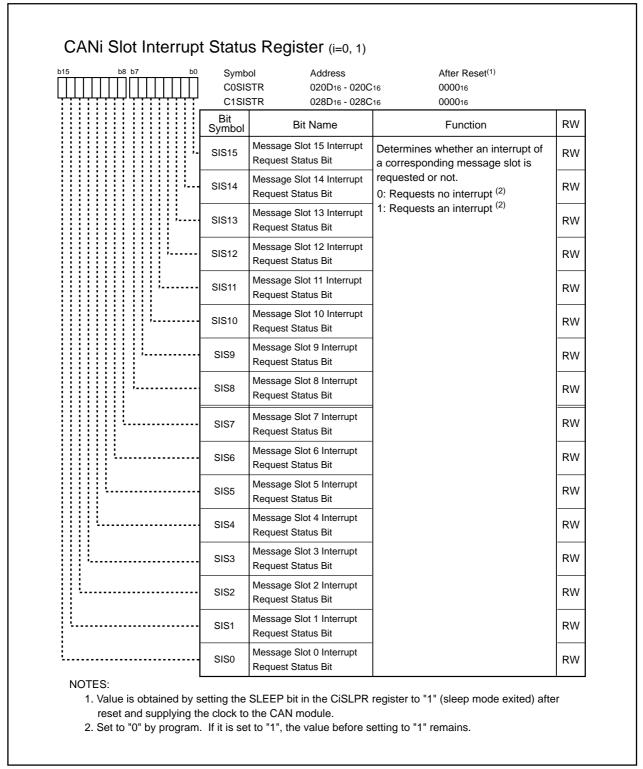


Figure 23.13 COSISTR and C1SISTR Registers

When using the CAN interrupt, the CiSISTR register (i=0, 1) indicates which message slot is requesting an interrupt. The SISj bits (j=0 to 15) are not automatically set to "0" (no interrupt requested) when an interrupt is acknowledged. Set the SISj bits to "0" by program.

Use the MOV instruction, instead of the bit clear instruction, to set the SISj bits to "0". The SISj bits, which are not being changed to "0", must be set to "1".

For example: To set the SIS0 bit to "0"

Assembly language: mov.w #07FFFh, C0SISTR

C language: c0sistr = 0x7FFF;

Refer to 23.4 CAN Interrupt for details.

23.1.11.1 Message Slot for Transmission

The SISj bit is set to "1" (interrupt requested) when the CiTSR register is stored into the message slot j after data transmission is completed.

23.1.11.2 Message Slot for Reception

The SISj bit is set to "1" (interrupt requested) when the received message is stored in the message slot j after data reception is completed.

NOTES:

- 1.If the automatic answering function is enabled in the remote frame receive message slot, the SISj bit is set to "1" after the remote frame is received and the data frame is transmitted.
- 2.In the remote frame transmit message slot, the SISj bit is set to "1" after the remote frame is transmitted and the data frame is received.
- 3. The SISj bit is set to "1" if the SISj bit is set to "1" by an interrupt request and "0" by program simultaneously.

23.1.12 CANi Slot Interrupt Mask Register (CiSIMKR Register) (i=0, 1)

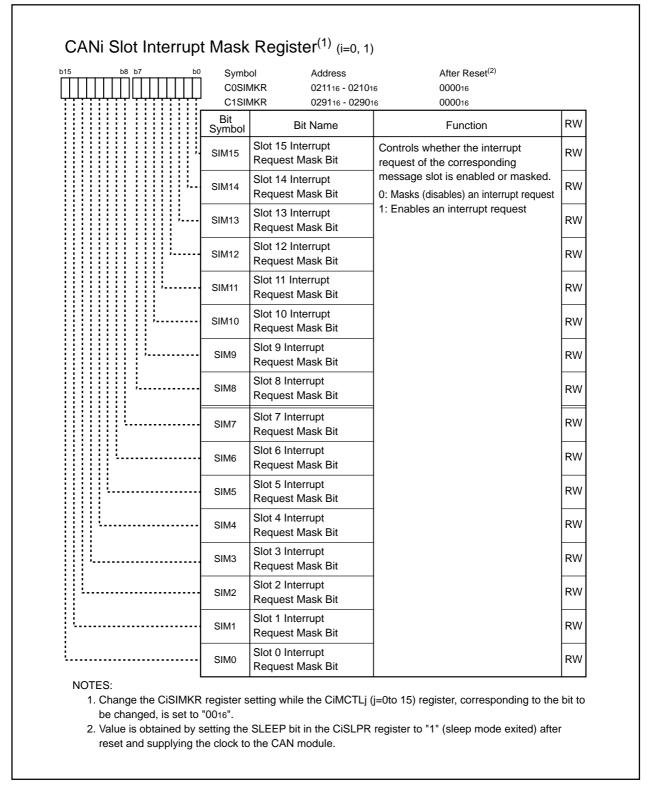


Figure 23.14 COSIMKR and C1SIMKR Registers

The CiSIMKR register determines whether an interrupt request, generated by a data transmission or reception in the corresponding message slot is enabled or disabled. When the SIMj bit (j=0 to 15) is set to "1" (no interrupt requested), an interrupt request generated by a data transmission or reception in the corresponding message slot is enabled. Refer to 23.4 CAN Interrupt for details.

CANi Error Interrupt Mask Register (i=0, 1) After Reset(1) Symbol Address C0EIMKR 021416 XXXX X0002 C1EIMKR 029416 XXXX X0002 Bit RW Bit Name **Function** Symbol **Bus-Off Interrupt** 0: Masks (disables) an interrupt request RW **BOIM** 1: Enables an interrupt request Mask Bit **Error-Passive Interrupt** 0: Masks (disables) an interrupt request RW **EPIM** Mask Bit 1: Enables an interrupt request CAN Bus-Error Interrupt | 0: Masks (disables) an interrupt request RW **BEIM** Mask Bit 1: Enables an interrupt request Nothing is assigned. When write, set to "0". When read, its content is indeterminate. (b7 - b3) NOTES: 1. Value is obtained by setting the SLEEP bit in the CiSLPR register to "1" (sleep mode exited) after reset and supplying the clock to the CAN module.

23.1.13 CANi Error Interrupt Mask Register (CiEIMKR Register) (i=0, 1)

Figure 23.15 C0EIMKR and C1EIMKR Registers

Refer to 23.4 CAN Interrupt for details.

23.1.13.1 BOIM Bit

The BOIM bit determines whether an interrupt request is enabled or disabled when the CAN module is placed in a bus-off state. When the BOIM bit is set to "1", the bus-off interrupt request is enabled.

23.1.13.2 EPIM Bit

The EPIM bit determines whether an interrupt request is enabled or disabled when the CAN module is placed in an error passive state. When the EPIM bit is set to "1", the error passive interrupt request is enabled.

23.1.13.3 BEIM Bit

The BEIM bit determines whether an interrupt request is enabled or disabled when a CAN bus error occurs. When the BEIM bit is set to "1", the CAN bus error interrupt request is enabled.

23.1.14 CANi Error Interrupt Status Register (CiEISTR Register) (i=0, 1)

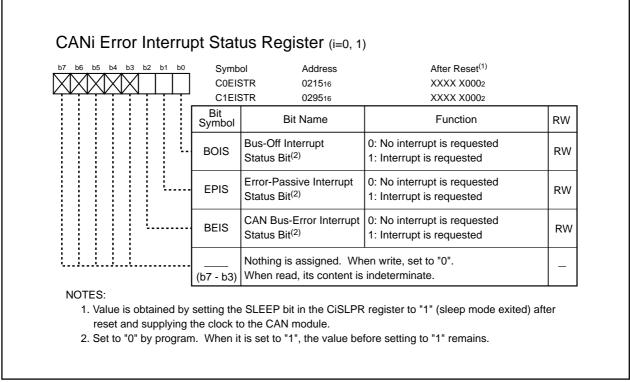


Figure 23.16 C0EISTR and C1EISTR Registers

When using the CAN interrupt, the CiEISTR register indicates the source of the generated error interrupt. The BOIS, EPIS and BEIS bits are not automatically set to "0" (no interrupt requested) even if an interrupt is acknowledged. Set these bits to "0" by program.

Use the MOV instruction, instead of the bit clear instruction, to set each bit in the CiEISTR register to "0".

Bits not being changed to "0" must be set to "1".

For example: To set the BOIS bit for CAN0 to "0"

Assembly language: mov.b#006h, C0EISTR

C language: c0eistr = 0x06;

Refer to 23.4 CAN Interrupt for details.

23.1.14.1 BOIS Bit

The BOIS bit is set to "1" when the CAN module is placed in a bus-off state.

23.1.14.2 EPIS Bit

The EPIS bit is set to "1" when the CAN module is placed in an error passive state.

23.1.14.3 BEIS Bit

The BEIS bit is set to "1" when a CAN bus error is detected.

23.1.15 CANi Error Factor Register (CiEFR Register) (i=0, 1)

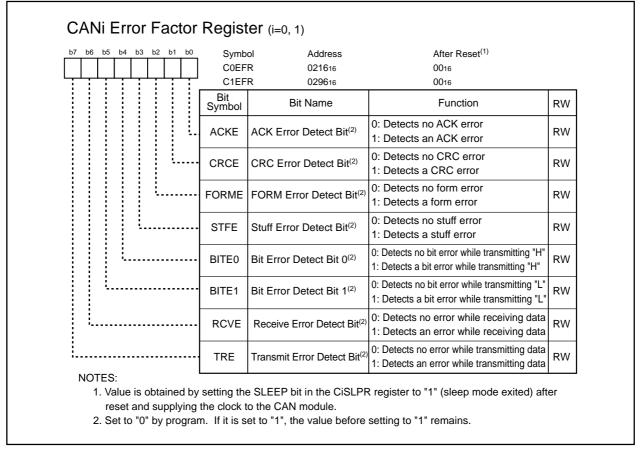


Figure 23.17 C0EFR and C1EFR Registers

The CiEFR register indicates the cause of error when a communication error is detected. Set the following bits to "0" by program because they are not changed "1" to "0" automatically.

Use the MOV instruction, instead of the bit clear instruction, to set each bit in the CiEFR register to "0".

Bits not being changed to "0" must be set to "1".

For example: To set the ACKE bit for CAN0 to "0" Assembly language: mov.b#0FEh, C0EFR

C language: c0efr = 0xFE;

23.1.15.1 ACKE Bit

The ACKE bit is set to "1" when an ACK error is detected.

23.1.15.2 CRCE Bit

The CRC bit is set to "1" when a CRC error is detected.

23.1.15.3 FORME Bit

The FORME bit is set to "1" when a form error is detected.

23.1.15.4 STFE Bit

The STFE bit is set to "1" when a stuff error is detected.

23.1.15.5 BITE0 Bit

The BITE0 bit is set to "1" when a bit error is detected while transmitting recessive "H".

23.1.15.6 BITE1 Bit

The BITE1 bit is set to "1" when a bit error is detected while transmitting dominant "L".

23.1.15.7 RCVE Bit

The RCVE bit is set to "1" when an error is detected while receiving data.

23.1.15.8 TRE Bit

The TRE bit is set to "1" when an error is detected while transmitting data.

CANi Mode Register (i=0, 1)(1) Symbol Address After Reset(2) **COMDR** 021916 XXXX XX002 C1MDR 029916 XXXX XX002 **Function** Bit Name RW Symbol RW 0 0: Normal operating mode **CAN Operating Mode** CMOD 0 1: Bus monitoring mode Select Bit 1.0: Self-test mode RW 1 1: Do not set to this value Nothing is assigned. When write, set to "0". When read, its content is indeterminate. (b7 - b2) NOTES: 1. Set the CiMDR register when the STATE_RESET bit in the CiSTR register is set to "1" (CAN module reset completed). 2. Value is obtained by setting the SLEEP bit in the CiSLPR register to "1" (sleep mode exited) after reset and supplying the clock to the CAN module.

23.1.16 CANi Mode Register (CiMDR Register) (i=0, 1)

Figure 23.18 COMDR and C1MDR Registers

23.1.16.1 CMOD Bit

The CMOD bit selects a CAN operating mode.

- Normal operating mode: The CAN module transmits and receives data as expected.
- Bus monitoring mode⁽¹⁾: The CAN module receives data. Output signal from the CANio∪T pin is fixed as a high-level ("H") signal in bus monitoring mode. The CAN mod ule transmits neither ACK nor error frame.
- Self-test mode: The CAN module connects the CANiout pin to the CANiin pin internally.
 The CAN module can communicate without additional device in loop back mode.
 Output signal from the CANiout pin is fixed as an "H" signal in self-test mode while transmitting data. Figure 23.19 shows an image diagram in self-test mode.

NOTES:

1. Do not generate a transmit request in bus monitoring mode.

The CAN module assumes the ACK bit is set to dominant "L" regardless of the ACK bit setting. Therefore, when the CRC delimiter is received as expected, the CAN module determines the data is received with no error regardless of the ACK bit setting.

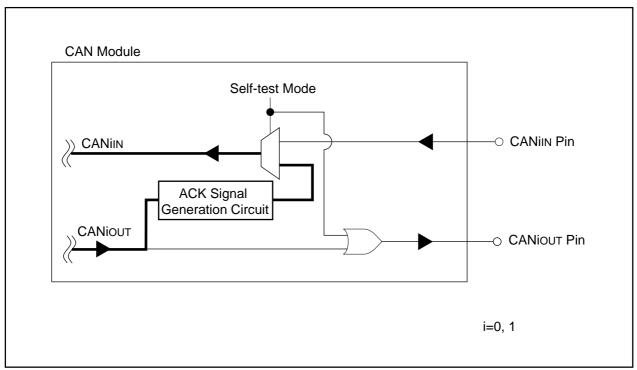


Figure 23.19 Self-Test Mode

RW

RW/

RW

RW

CANi Single-Shot Control Register (i=0, 1)(1, 2) Symbol After Reset(3) Address C0SSCTLR 022116 - 022016 000016 C1SSCTLR 02A116 - 02A016 000016 Bit RW Bit Name **Function** Symbol Message Slot 15 Single-Shot 0: Single-shot mode not used SSC15 RW 1: Use single-shot mode Message Slot 14 Single-Shot SSC14 RW Control Bit Message Slot 13 Single-Shot SSC13 RW Control Bit Message Slot 12 Single-Shot SSC12 RW Control Bit Message Slot 11 Single-Shot SSC11 RW Control Bit Message Slot 10 Single-Shot SSC10 RW Control Bit Message Slot 9 Single-Shot SSC9 RW Control Bit Message Slot 8 Single-Shot SSC8 RW Control Bit Message Slot 7 Single-Shot SSC7 RW Control Bit Message Slot 6 Single-Shot SSC6 RW Control Bit Message Slot 5 Single-Shot SSC5 RW Control Bit Message Slot 4 Single-Shot SSC4 RW Control Bit

23.1.17 CANi Single-Shot Control Register (CiSSCTLR Register) (i=0, 1)

NOTES:

1. Set the CiSSCTLR register after the CiMCTLj register (j=0 to 15) in a slot, corresponding to the bit to be changed, is set to "0016".

Message Slot 3 Single-Shot

Message Slot 2 Single-Shot

Message Slot 1 Single-Shot

Message Slot 0 Single-Shot

Control Bit

Control Bit

Control Bit

Control Bit

SSC3

SSC2

SSC₁

SSC0

- 2.The CiSSCTLR register can be accessed only when the BANKSEL bit in the CiCTLR1 register is set to "0" (message slot control register and single-shot register selected).
- 3. Value is obtained by setting the SLEEP bit in the CiSLPR register to "1" (sleep mode exited) after reset, supplying the clock to the CAN module, and setting the BANKSEL bit to "0".

Figure 23.20 COSSCTLR and C1SSCTLR Registers

According to the CAN Specification 2.0 Part B, if the arbitration lost or transmission error causes a transmit failure, the microcomputer continues transmitting data until the transmission is completed. The CiSSCTLR register determines whether or not, and from which slot, data is re-transmitted.

In single-shot mode, if the arbitration lost or transmission error causes a transmission failure, data is not transmitted again. When the SSCj bit (j=0 to 15) is set to "1", the corresponding message slot j is in single-shot mode.

CANi Single-Shot Status Register (i=0, 1)(1) Symbol After Reset(2) C0SSSTR 022516 - 022416 000016 C1SSSTR 02A516 - 02A416 000016 RW Bit Name **Function** Symbol Message Slot 15 Single-Shot 0: No arbitration is lost, or no **SSS15** RW Status Bit transmit error occurs 1: Arbitration is lost, or transmit Message Slot 14 Single-Shot SSS14 RW Status Bit error occurs (Note 3) Message Slot 13 Single-Shot SSS13 RW Status Bit Message Slot 12 Single-Shot SSS12 RW Status Bit Message Slot 11 Single-Shot SSS11 RW Status Bit Message Slot 10 Single-Shot SSS10 RW Status Bit Message Slot 9 Single-Shot SSS9 RW Status Bit Message Slot 8 Single-Shot SSS8 RW Status Bit Message Slot 7 Single-Shot RW SSS7 Status Bit Message Slot 6 Single-Shot RW SSS6 Status Bit Message Slot 5 Single-Shot SSS5 RW Status Bit Message Slot 4 Single-Shot SSS4 RW Status Bit Message Slot 3 Single-Shot RW SSS3 Status Bit Message Slot 2 Single-Shot SSS2 RW Status Bit Message Slot 1 Single-Shot SSS1 RW Status Bit Message Slot 0 Single-Shot SSSO RW Status Bit NOTES: 1. The CiSSSTR register can be accessed only when the BANKSEL bit in the CiCTLR1 is set to "0" (message slot control register and single-shot register selected).

23.1.18 CANi Single-Shot Status Register (CiSSSTR Register) (i=0, 1)

- 2. Value is obtained by setting the SLEEP bit in the CiSLPR register to "1" (sleep mode exited) after reset and supplying the clock to the CAN module.
- 3. Set to "0" by program. When it is set it to "1", the value before setting to "1" remains.

Figure 23.21 COSSSTR and C1SSSTR Registers

If the arbitration lost or transmission error causes a transmission failure, the bit corresponding to message slot j (j=0 to 15) is set to "1". The SSSj bit is set to "0" by program because it is not set to "0" automatically.

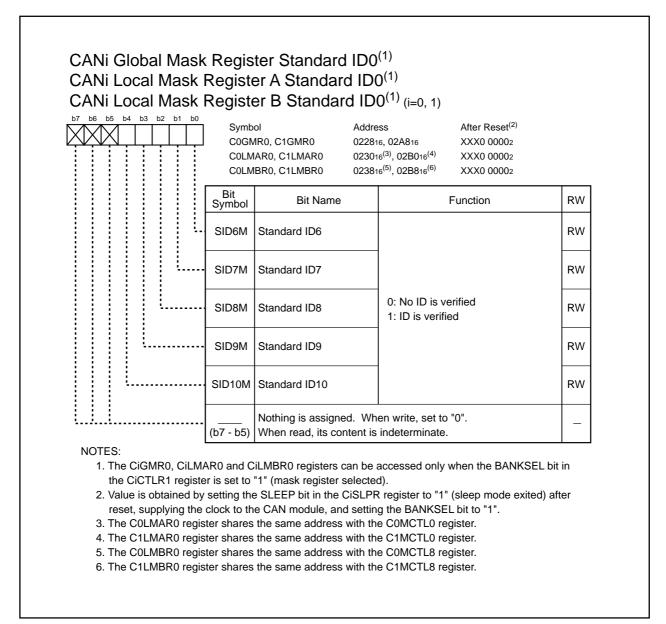
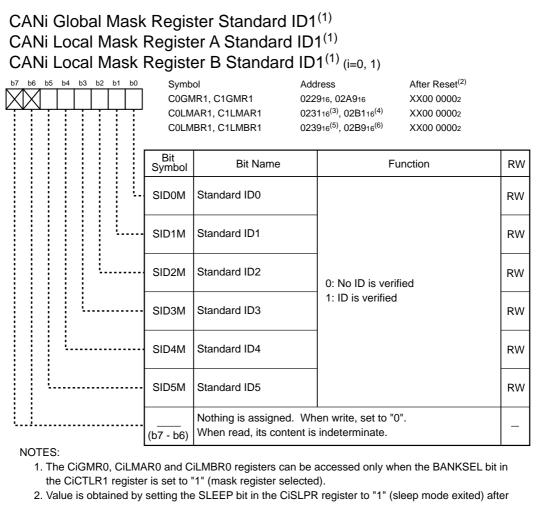
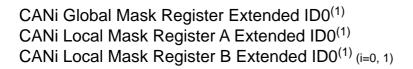
Use the MOV instruction, instead of the bit clear instruction, to set the SSSj bit to "0". Bits not being changed to "0" must be set to "1".

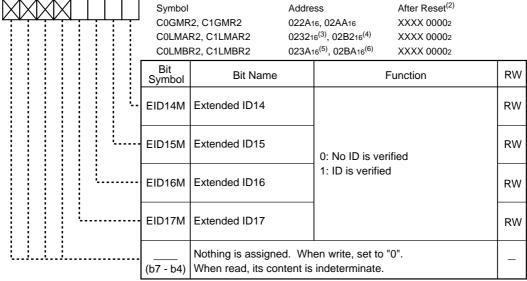
For example: To set the SSS0 bit for CAN0 to "0"

> Assembly language: mov.w #07FFFh, C0SSSTR

C language: cOssstr = 0x7FFF;

23.1.19 CANi Global Mask Register, CANi Local Mask Register A and CANi Local Mask Register B (CiGMRk, CiLMARk and CiLMBRk Registers) (i=0,1, k=0 to 4)


Figure 23.22 C0GMR0, C0LMAR0 and C0LMBR0 Registers C1GMR0, C1LMAR0 and C1LMBR0 Registers

- reset, supplying the clock to the CAN module, and setting the BANKSEL bit to "0".
- 3. The C0LMAR1 register shares the same address with the C0MCTL1 register.
- 4. The C1LMAR1 register shares the same address with the C1MCTL1 register.
- 5. The C0LMBR1 register shares the same address with the C0MCTL9 register.
- 6. The C1LMBR1 register shares the same address with the C1MCTL9 register.

Figure 23.23 C0GMR1, C0LMAR1 and C0LMBR1 Registers C1GMR1, C1LMAR1 and C1LMBR1 Registers

NOTES:

- 1. The CiGMR2, CiLMAR2 and CiLMBR2 registers can be accessed only when the BANKSEL bit in the CiCTLR1 register is set to "1" (mask register selected).
- Value is obtained by setting the SLEEP bit in the CiSLPR register to "1" (sleep mode exited) after reset, supplying the clock to the CAN module, and setting the BANKSEL bit to "0".
- 3. The C0LMAR2 register shares the same address with the C0MCTL2 register.
- 4. The C1LMAR2 register shares the same address with the C1MCTL2 register.
- 5. The C0LMBR2 register shares the same address with the C0MCTL10 register.
- 6. The C1LMBR2 register shares the same address with the C1MCTL10 register.

Figure 23.24 C0GMR2, C0LMAR2 and C0LMBR2 Registers C1GMR2, C1LMAR2 and C1LMBR2 Registers

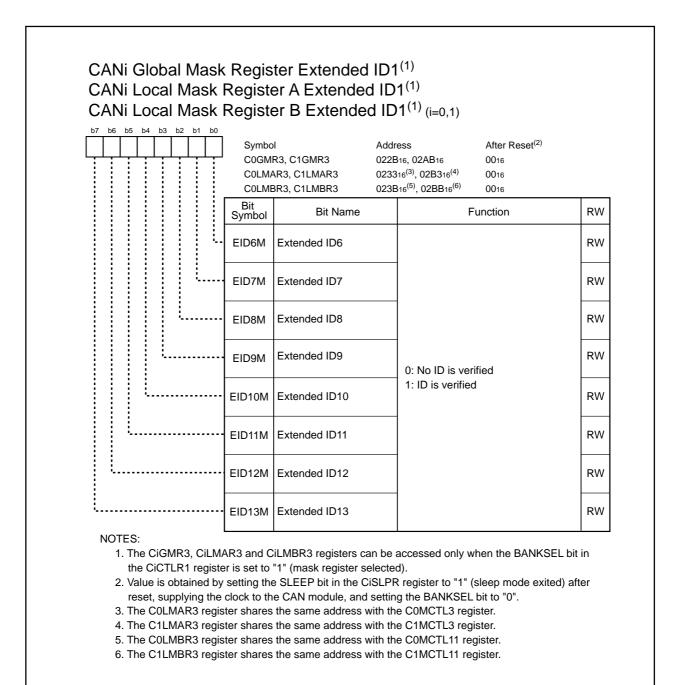
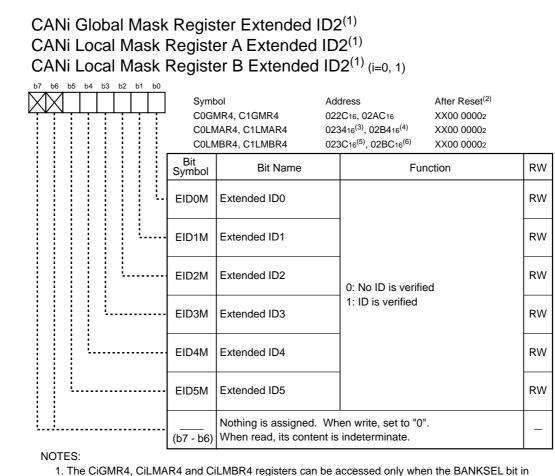



Figure 23.25 C0GMR3, C0LMAR3 and C0LMBR3 Registers C1GMR3, C1LMAR3 and C1LMBR3 Registers

- The CiGMR4, CiLMAR4 and CiLMBR4 registers can be accessed only when the BANKSEL bit in the CiCTLR1 register is set to "1" (mask register selected).
- 2. Value is obtained by setting the SLEEP bit in the CiSLPR register to "1" (sleep mode exited) after reset, supplying the clock to the CAN module, and setting the BANKSEL bit to "0".
- 3. The C0LMAR4 register shares the same address with the C0MCTL4 register.
- 4. The C1LMAR4 register shares the same address with the C1MCTL4 register.
- 5. The C0LMBR4 register shares the same address with the C0MCTL12 register.
- 6. The C1LMBR4 register shares the same address with the C1MCTL12 register.

Figure 23.26 C0GMR4, C0LMAR4 and C0LMBR4 Registers C1GMR4, C1LMAR4 and C1LMBR4 Registers

The CiGMRk, CiLMARk and CiLMBRk registers are used for acceptance filtering. The users can select and receive user-desired messages.

The CiGMRk register determines whether IDs in the message slots 0 to 13 are verified. The CiLMARk register determines whether ID in the message slot 14 is verified. The CiLMBRk register determines whether ID in the message slot 15 is verified.

- When bits in these registers are set to "0", each standard ID0 and standard ID1 bits (ID bit) and extended ID0 to extended ID2 bits in the CANi message slots j (j=0 to 15) corresponding to the bits in the above registers, is masked while acceptance filtering. (The corresponding bits are assumed to have matching IDs.)
- When bits in these registers are set to "1", corresponding ID bits are compared with received IDs while acceptance filtering. If the received ID matches the ID in the message slot j, the received data having the matched ID is stored into that message slot.

NOTES:

- 1. Change the CiGMRk register setting only when the message slots 0 to 13 have no receive request.
- 2. Change the CiLMARk register setting only when the message slot 14 has no receive request.
- 3. Change the CiLMBRk register setting only when the message slot 15 has no receive request.
- 4. More than two message slots are able to store a receive message ID, the ID is stored into the message slot, having the smallest slot number.

Figure 23.27 shows each mask register and corresponding message slot. Figure 23.28 shows the acceptance filtering.

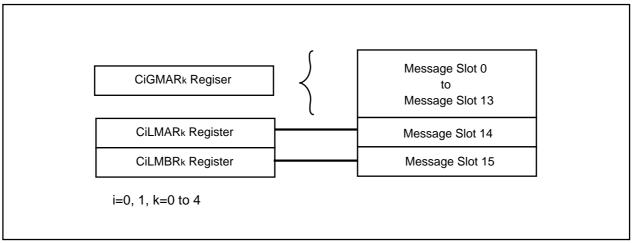


Figure 23.27 Mask Registers and Message Slots

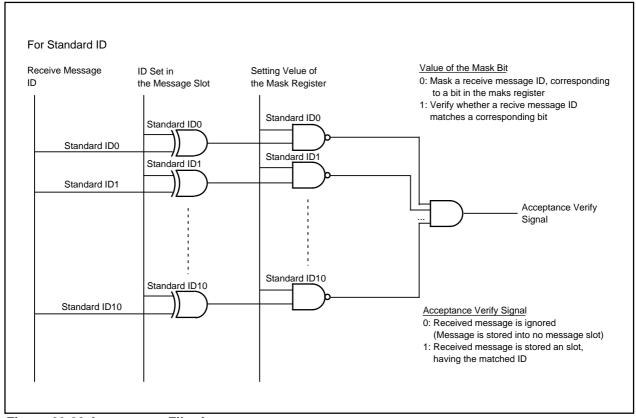


Figure 23.28 Acceptance Filtering

23.1.20 CANi Message Slot j Control Register (CiMCTLj Register) (i=0,1, j=0 to 15)

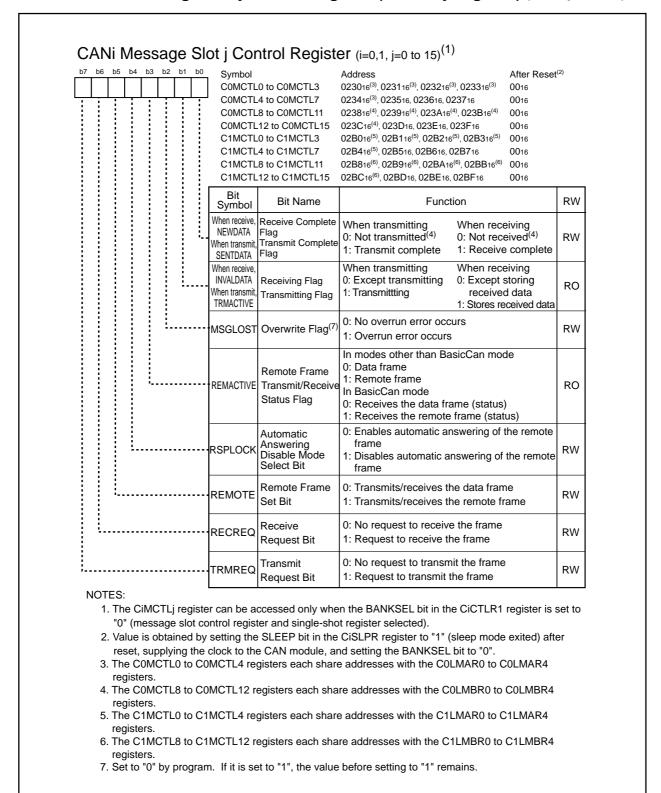


Figure 23.29 C0MCTL0 to C0MCTL15 Registers and C1MCTL0 to C1MCTL15 Registers

Settings for the CiMCTLj Register TRMREQ|RECREQ|REMOTE|RSPLOCK|REMACTIVE|MSGLOST|TRMACTIVE|SENTDATA|Transmit/Receive Mode INVALDATA NEWDATA 0 0 0 0 0 0 0 0 No frame is transmitted or received 0 1 0 0 0 0 0 0 Data frame is received 0 1 1 1 0 0 0 0 Remote frame is received (The data frame is transmitted or 0 after receiving the remote frame.) 0 0 0 0 0 0 0 Data frame is transmitted 1 0 1 0 0 0 0 0 Remote frame is transmitted (The data frame is received after transmitting the remote frame)

Table 23.4 CiMCTLj register(i=0,1, j= 0 to 15) Settings and Transmit/Receive Mode

23.1.20.1 SENTDATA/NEWDATA Bit

The SENTDATA/NEWDATA bit indicates that the CAN module has transmitted or received the CAN message. Set the SENTDATA/NEWDATA bit to "0" (not transmitted or not received) by program before data transmission and reception is started. The SENTDATA/NEWDATA bit is not set to "0" automatically. When the TRMACTIVE/INVALDATA bit is set to "1" (during transmission or storing received data), the SENTDATA/NEWDATA bit cannot be set to "0".

SENTDATA: The SENTDATA bit is set to "1" (transmit complete) when data transmission is com-

pleted in the transmit message slot.

NEWDATA: The NEWDATA bit is set to "1" (receive complete) when the message to be stored

into the message slot j (j=0 to 15) is received in the receive message slot as ex-

pected.

NOTES:

- 1. To read a received data from the message slot j, set the NEWDATA bit to "0" before reading. If the NEWDATA bit is set to "1" immediately after reading, this indicates that new received data has been stored into the message slot while reading and the read data contains an indeterminate value. In this case, discard the data with indeterminate value and then read the message slot again after the NEWDATA bit is set to "0".
- 2. When the remote frame is transmitted or received, the SENTDATA/NEWDATA bit remains unchanged after the remote frame transmission or reception is completed. The SENTDATA/ NEWDATA bit is set to "1" when a subsequent data frame transmission or reception is completed.

23.1.20.2 TRMACTIVE/INVALDATA Bit

The TRMACTIVE/INVALDATA bit indicates that the CAN protool controller is transmitting or receiving a message and accessing the message slot j. The TRMACTIVE/INVALDATA bit is set to "1" when the CAN module is accessing the message slot and to "0" when not accessing the message slot.

TRMACTIVE: The TRMACTIVE bit is set to "1" (except transmitting) when a data transmission is started in the message slot. If the CAN module loses in bus arbitration, the TRMACTIVE bit is set to "0" (stops transmitting) when a CAN bus error occurs or

when a data transmission is completed.

INVALDATA: The INVALDATA bit is set to "1" (storing received data) when receiving a received message into the message slot j, after a message reception is completed. Then the INVALDATA bit is set to "0" after a message storage is completed. Data, if read from the message slot j while this bit is set to "1", is indeterminate.

23.1.20.3 MSGLOST Bit

The MSGLOST bit is valid only when the message slot is set for reception. The MSGLOST bit is set to "1" (overrun error occurred) when the message slot j is overwritten by a new received message while the NEWDATA bit set to "1" (already received).

The MSGLOST bit is not automatically set to "0". Set to "0" (no overrun error occurred) by program.

23.1.20.4 REMACTIVE Bit

The CiMCTL0 to CiMCTL15 registers all have the same function when the STATE_BASICCAN bit is set to "0" (other than BasicCAN mode).

The REMACTIVE bit is set to "1" (remote frame) when the message slot j is set to transmit or receive the remote frame. The REMACTIVE bit is set to "0" (data frame) after the remote frame has been transmitted or received.

The functions of the CiMCTL14 and CiMCTL15 registers change when the STATE_BASICCAN bit is set to "1" (BasicCAN mode). When the REMACTIVE bit is set to "0", this indicates that a message stored into the message slot is the data frame. When the REMACTIVE bit is set to "1", this indicates a message stored into the message slot is the remote frame.

23.1.20.5 RSPLOCK Bit

The RSPLOCK bit is valid only when remote frame reception shown in Table 23.4 is selected. The RSPLOCK bit determines whether the received remote frame is processed or not.

When the RSPLOCK bit is set to "0" (automatic answering of the remote frame enabled), the slot automatically changes to a transmit slot after the remote frame is received and the message stored into the message slot is automatically transmitted as the data frame.

When the RSPLOCK bit is set to "1" (automatic answering of the remote frame disabled), message is not automatically transmitted upon receiving the remote frame.

Set the RSPLOCK bit to "0" to select any transmit/receive mode other than the remote frame reception.

23.1.20.6 REMOTE Bit

The REMOTE bit selects transmit/receive mode shown in Table 23.4. Set the REMOTE bit to "0" to transmit or receive data frame. Set to "1" to transmit or receive remote frame.

The followings occur during remote frame transmission or reception.

• Transmitting the remote frame

A message stored into the message slot j (j=0 to 15) is transmitted as the remote frame. After transmission, the slot automatically becomes ready to receive data frame.

If the data frame is received before the remote frame is transmitted, the data frame is stored into the message slot j. The remote frame is not transmitted.

Receiving the remote frame

The message slot receives the remote frame. The RSPLOCK bit determines whether or not to process the received remote frame.

23.1.20.7 RECREQ Bit

The RECREQ bit selects transmit/receive mode shown in Table 23.4. Set the RECREQ bit to "1" (receive requested) when data frame or remote frame is received. Set the RECREQ bit to "0" (no receive requested) when data frame or remote frame is transmitted.

When a data frame is automatically transmitted after a remote frame is received, the RECREQ bit remains set to "1". Set the RECREQ bit to "0" to transmit a remote frame. After a remote frame is transmitted, a data frame is automatically received while the RECREQ bit remains set to "0".

When setting the TRMREQ bit to "1" (transmit requested), do not set the RECREQ bit to "1" (receive requested).

23.1.20.8 TRMREQ Bit

The TRMREQ bit selects transmit/receive mode shown in Table 23.4. Set the TRMREQ bit to "1" (transmit requested) when data frame or remote frame is transmitted.

Set the TRMREQ bit to "0" (no request to transmit the frame) when data frame or remote frame is received.

When the data frame is automatically received after the remote frame is transmitted, the TRMREQ bit remains set to "1". Set the TRMREQ bit to "0" to receive the remote frame. After the remote frame is received, data frame is automatically transmitted while the TRMREQ bit remains set to "0".

If the RECREQ bit is set to "1" (request to receive the frame), do not set the TRMREQ bit to "1" (request to transmit the frame).

NOTES:

- 1. If some message slots are requested to transmit the data frame or remote frame, the message slot, having the smallest slot number starts transmitting.
- 2. In single-shot mode, the CiMCTLj register is set to "0016" when data transmission is failed, due to the arbitration lost or transmission error.

CANi Slot Buffer Select Register (i=0,1) After Reset(2) Symbol Address C0SBS 024016 0016 C1SBS 025016 0016 Bit Bit Name **Function** RW Symbol b3 b2 b1 b0 SBS00 RW 0 0 0 0: Message slot 0 0 0 0 1: Message slot 1 0 0 1 0: Message slot 2 SBS01 RW CANi Message 0 0 1 1: Message slot 3 Slot Buffer 0 (Note 1) Number Select Bit SBS02 RW 1 1 0 0: Message slot 12 1 1 0 1: Message slot 13 1 1 1 0: Message slot 14 **SBS03** RW 1 1 1 1: Message slot 15 SBS10 RW 0 0 0 0: Message slot 0 0 0 0 1: Message slot 1 0 0 1 0: Message slot 2 **SBS11** RW CANi Message 0 0 1 1: Message slot 3 Slot Buffer 1 (Note 1) Number Select Bit SBS12 RW 1 1 0 0: Message slot 12 1 1 0 1: Message slot 13 1 1 1 0: Message slot 14 SBS13 RW 1 1 1 1: Message slot 15 NOTES: 1. 16 CANi message slots are provided. Each message slot can be selected as a transmit or a receive 2. Value is obtained by setting the SLEEP bit in the CiSLPR register to "1" (sleep mode exited) after reset and supplying the clock to the CAN module.

23.1.21 CANi Slot Buffer Select Register (CiSBS Register) (i=0,1)

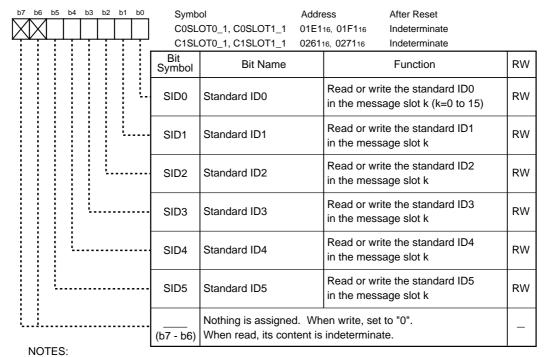
Figure 23.30 COSBS and C1SBS Registers

23.1.21.1 SBS03 to SBS00 Bits

If the SBS03 to SBS00 bits select a number j (j=0 to 15), the message slot j is allocated to the CANi message slot buffer 0. The message slot j can be accessed via addresses 01E016 to 01EF16, and 026016 to 026F16.

23.1.21.2 SBS13 to SBS10 Bits

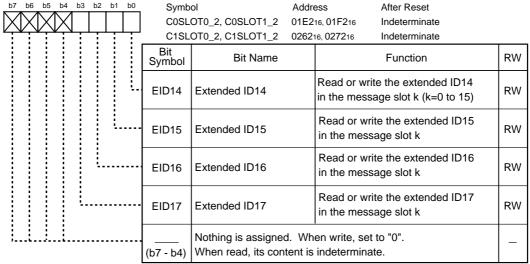
If the SBS13 to SBS10 bits select a number j, the message slot j is allocated to the CANi message slot buffer 1. The message slot j can be accessed via addresses 01F016 to 01FF16, and 027016 to 027F16.


23.1.22 CANi Message Slot Buffer j (i=0,1, j=0,1)

CANi Message Slot Buffer j Standard ID0 $(i=0,1,j=0,1)^{(1)}$

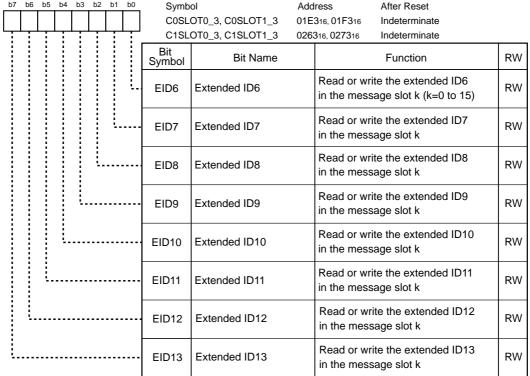
b7 b6 b5 b4 b3 b2 b1			ol OT0_0, C0SLOT1_0 OT0_0, C1SLOT1_0			After Reset Indeterminate Indeterminate	
		Bit Symbol	Bit Name			Function	RW
		SID6	Standard ID6		Read or write the standard ID6 in the message slot k (k=0 to 15)		RW
	<u></u>	SID7	Standard ID7		Read or write the standard ID7 in the message slot k		RW
		SID8	Standard ID8		Read or writ	te the standard ID8 age slot k	RW
		SID9	Standard ID9		Read or writ	te the standard ID9 age slot k	RW
		SID10	Standard ID10		Read or write the standard ID10 in the message slot k		RW
(b7 - b:			Nothing is assigned. When write, set to "0". When read, its content is indeterminate.				_
NOTES:							

1. Select, by setting the CiSBS register, the message slot k to be accessed by the CiSLOTj_0 register.


CANi Message Slot Buffer j Standard ID1 (i=0,1, j=0,1)⁽¹⁾

1. Select, by setting the CiSBS register, the message slot k to be accessed by the CiSLOTj_1 register.

Figure 23.31 C0SLOT0_0, C0SLOT1_0, C0SLOT0_1 and C0SLOT1_1 Registers C1SLOT0_0, C1SLOT1_0, C1SLOT0_1 and C1SLOT1_1 Registers


CANi Message Slot Buffer j Extended ID0 (i=0,1, j=0,1)^(1, 2)

NOTES:

- 1. If the receive slot is standard ID formatted, the EID17 to EID14 bits are indeterminate when received
- 2. Select, by setting the CiSBS register, the message slot k to be accessed by the CiSLOTj_2 register.

CANi Message Slot Buffer j Extended ID1 (i=0,1, j=0,1)^(1, 2)

NOTES:

- 1. If the receive slot is standard ID formatted, the EID13 to EID6 bits are indeterminate when received
- 2. Select, by setting the CiSBS register, the message slot k to be accessed by the CiSLOTi 3 register.

Figure 23.32 C0SLOT0_2, C0SLOT1_2, C0SLOT0_3 and C0SLOT1_3 Registers C1SLOT0_2, C1SLOT1_2, C1SLOT0_3 and C1SLOT1_3 Registers

CANi Message Slo	t Buffe	r j Extended ID	$2 (i=0,1,j=0,1)^{(1,2)}$	
b7 b6 b5 b4 b3 b2 b1 b0		OT0_4, C0SLOT1_4	Address After Reset 1E4 ₁₆ , 01F4 ₁₆ Indeterminate 264 ₁₆ , 0274 ₁₆ Indeterminate	
	Bit Symbol	Bit Name	Function	RW
	EID0	Extended ID0	Read or write the extended ID0 in the message slot k (k=0 to 15)	RW
	EID1	Extended ID1	Read or write the extended ID1 in the message slot k	RW
	EID2	Extended ID2	Read or write the extended ID2 in the message slot k	RW
	EID3	Extended ID3	Read or write the extended ID3 in the message slot k	RW
	EID4	Extended ID4	Read or write the extended ID4 in the message slot k	RW
	EID5	Extended ID5	Read or write the extended ID5 in the message slot k	RW
	 (b7 - b6)	Nothing is assigned. When write, set to "0". When read, its content is indeterminate.		

NOTES:

- 1. If the receive slot is standard ID formatted, the EID5 to EID0 bits are indeterminate when received data is stored.
- 2. Select, by setting the CiSBS register, the message slot k to be accessed by the CiSLOTj_4 register.

CANi Message Slot Buffer j Data Length Code (i=0,1, j=0,1)(1)

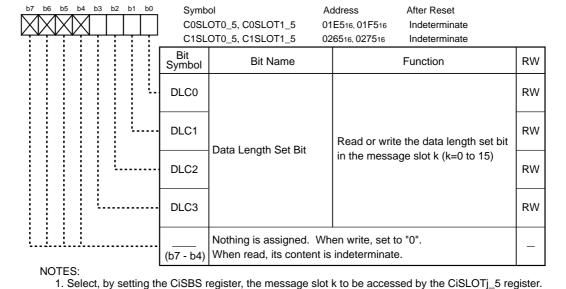
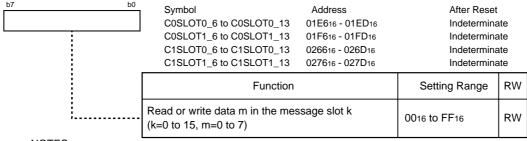
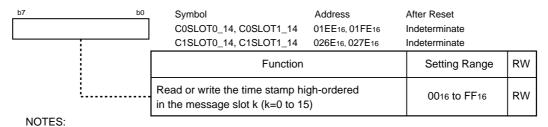
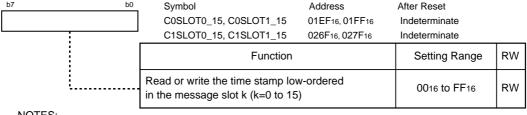



Figure 23.33 C0SLOT0_4, C0SLOT1_4, C0SLOT0_5 and C0SLOT1_5 Registers C1SLOT0_4, C1SLOT1_4, C1SLOT0_5 and C1SLOT1_5 Registers


CANi Message Slot Buffer j Data m (i=0,1, j=0,1)(1, 2)

NOTES:


- 1. Select, by setting the CiSBS register, the data m in the message slot k to be accessed by the CiSLOTj_6 to CiSLOTj_13 registers.
- 2. When the data frame is received, data with less than the data length selected by the CiSLOTj_5 register is indeterminate.

CANi Message Slot Buffer j Time Stamp High-Ordered (i=0,1, j=0,1)⁽¹⁾

1. Select, by setting the CiSBS register, the time stamp high-ordered in the message slot k to be accessed by the CiSLOTi_14 register.

CANi Message Slot Buffer j Time Stamp Low-Ordered (i=0,1, j=0,1)⁽¹⁾

NOTES:

1. Select, by setting the CiSBS register, the time stamp low-ordered in the message slot k to be accessed by the CiSLOTj_15 register.

Figure 23.34 C0SLOT0_6 to C0SLOT0_13, C0SLOT1_6 to C0SLOT1_13, C0SLOT0_14, C0SLOT1_14, C0SLOT0_15 and C0SLOT1_15 Registers C1SLOT0_6 to C1SLOT0_13, C1SLOT1_6 to C1SLOT1_13, C1SLOT0_14, C1SLOT1_14, C1SLOT0_15 and C1SLOT1_15 Registers

The message slot, selected by setting the CiSBS register, is read by reading the message slot buffer. A message can be written in the message slot selected by the CiSBS register if the message is written to the message slot buffer.

Write to the message slot k (k=0 to 15) while the corresponding CiMCTLk register is set to "0016".

23.1.23 CANi Acceptance Filter Support Register (CiAFS Register) (i=0,1)

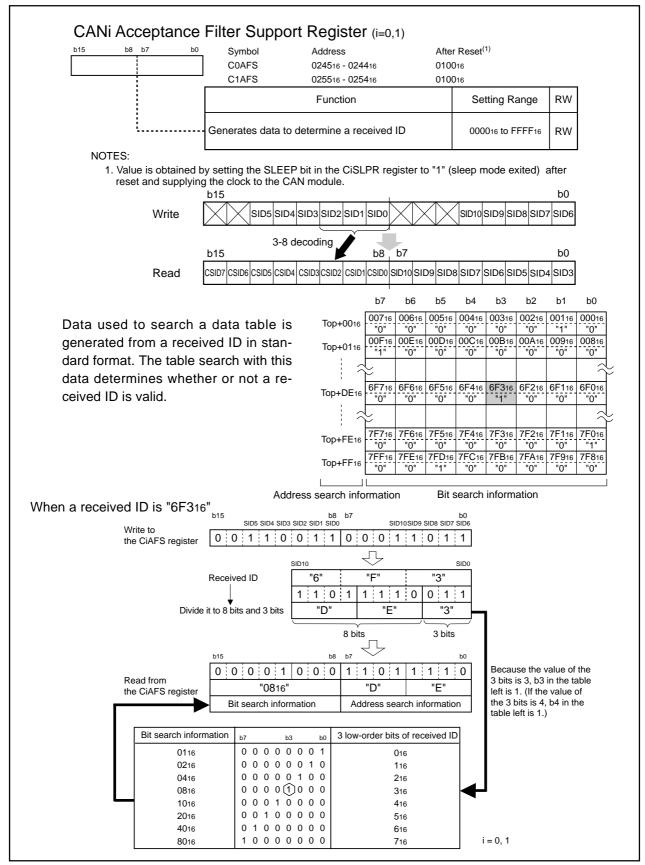


Figure 23.35 COAFS Register and C1AFS Register

The CiAFS register enables prompt performance of the table search to determine the varidity of a received ID. This function is for standard-formatted ID only.

23.2 CAN Clock

The CAN clock is the operating clock for the CAN module. f1 or fCAN can be selected as the CAN clock. fCAN has the same frequency as the main clock. The PM25 bit in the PM2 register determines the CAN clock. Refer to **9. Clock Generation Circuit** for details.

23.2.1 Main Clock Direct Mode

fCAN becomes the CAN clock in main clock direct mode. The CAN module must enter main clock direct mode while the PM25 bit is set to "1" (main clock). Set the PM25 bit in CAN sleep mode.

Set the PM24 bit in the PM2 register to "1" (main clock) before accessing CAN-associated registers in main clock direct mode. Do not enter wait mode or stop mode when the PM24 bit is set to "1".

Table 23.5 lists CAN clock settings. Figure 23.36 shows a flow chart of accessing procedure for CAN-associated registers.

Table 23.5 CAN Clock Settings

CAN	Clock Source	CM0 Register	CM1 Register	CM2 Register	PM2 Register		MCD Register
Clock	Clock Source	CM07 Bit	CM17 Bit	CM21 Bit	PM24 Bit	PM25 Bit	MCD4 to MCD0 bits
fcan	Main Clock (Main Clock Direct Mode)	0	1	0	1	1	
f ₁	Main Clock	0	0	0	0	0	100102
	PLL Clock	0	1	0	0	0	100102

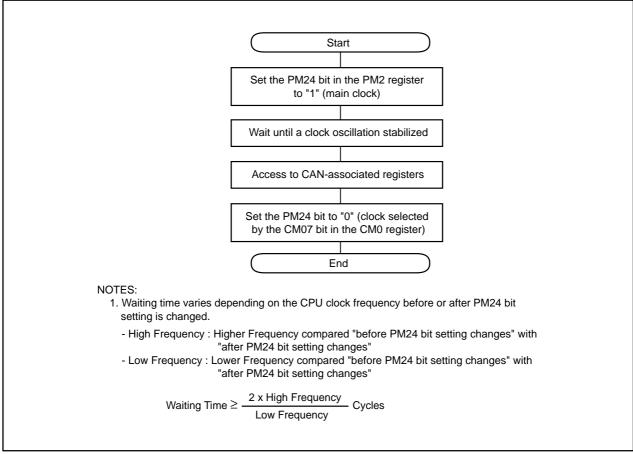


Figure 23.36 Accessing Procedure for CAN-Associated Registers

23.3 Timing with CAN-Associated Registers

23.3.1 CAN Module Reset Timing

Figure 23.37 shows an operation example of when the CAN module is reset.

- (1) The CAN module can be reset when the STATE_RESET bit in the CiSTR register (i=0,1) is set to "1" (CAN module reset completed) after the RESET1 and RESET0 bits in the CiCTLR0 register are set to "1" (CAN module reset).
- (2) Set necessary CAN-associated registers.
- (3) CAN communication can be established after the STATE_RESET bit is set to "0" (resetting) after the RESET1 and RESET0 bits are set to "0" (CAN module reset exited) .

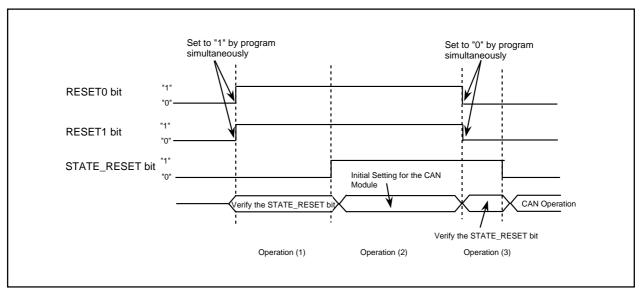


Figure 23.37 Example of CAN Module Reset Operation

23.3.2 CAN Transmit Timing

Figure 23.38 shows an operation example of when the CAN transmits a frame.

- (1) When the TRMREQ bit in the CiMCTLj register (j=0 to 15) is set to "1" (request to transmit the data frame) while the CAN bus is in an idle state, the TRMACTIVE bit in the CiMCTLj register is set to "1" (during transmission) and the TRMSTATE bit in the CiSTR register is set to "1" (during transmission). The CAN starts transmitting the frame.
- (2) After a CAN frame transmission is completed, the SENTDATA bit in the CiMCTLj register is set to "1" (already transmitted), the TRMSUCC bit in the CiSTR register to "1" (transmission completed) and the SISj bit in the CiSISTR register to "1" (interrupt requested). The MBOX3 to MBOX0 bits in the CiSTR register store transmitted message slot numbers.

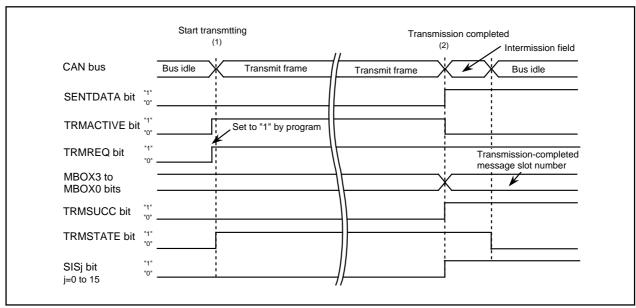


Figure 23.38 Example of CAN Data Frame Transmit Operation

23.3.3 CAN Receive Timing

Figure 23.39 shows an operation example of when the CAN receives a frame.

- (1) When the RECREQ bit in the CiMCTLj register (i=0,1, j= 0 to 15) is set to "1" (receive requested), the CAN is ready to receive the frame at anytime.
- (2) When the CAN starts receiving the frame, the RECSTATE bit in the CiSTR register is set to "1" (during reception).
- (3) After the CAN frame reception is completed, the INVALDATA bit in the CiMCTLj register is set to "1" (storing received data), the NEWDATA bit in the CiMCTLj register is set to "1" (receive complete) and the RECSUCC bit in the CiSTR register is set to "1" (reception completed).
- (4) After data is written to the message slot, the INVALDATA bit is set to "0" (storing receiving data) and the SISj bit in the CiSISTR register is set to "1" (interrupt requested). The MBOX3 to MBOX0 bits in the CiSTR register store received message slot numbers.

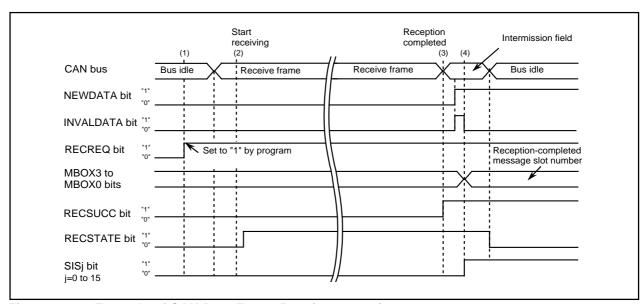


Figure 23.39 Example of CAN Data Frame Receive Operation

23.3.4 CAN Bus Error Timing

Figure 23.40 shows an operation example of when a CAN bus error occurs.

(1) When a CAN bus error is detected, the STATE_BUSERROR bit in the CiSTR register is set to "1", (error occurred) and the BEIS bit in the CiEISTR register is set to "1" (interrupt requested). The CAN starts transmitting the error frame.

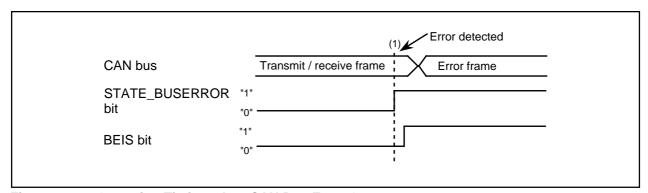


Figure 23.40 Operation Timing when CAN Bus Error Occurs

23.4 CAN Interrupts

The CAN1 wake-up interrupt and CANij interrupts (i=0,1,j=0 to 2) are provided as the CAN interrupt.

23.4.1 CAN1 Wake-Up Interrupt

When a signal applied to the CAN1WU pin is on the falling edge, the CAN1WUR bit in the IIO5IR register is set to "1" (interrupt requested). At this time, the IR bit in the CAN5IC register is set to "1" (interrupt requested) if the CAN1WUE bit in the IIO5IE register is set to "1" (interrupt enabled).

If P77 (CAN0IN) is used as a CAN0 input port, the CAN0 wake-up interrupt is available by using event counter mode of Timer A3 (TA3IN) that shares a pin with CAN0.

If P83 (CAN0IN/CAN1IN) is used as a CAN input port, the CAN0 and CAN1 wake-up interrupts are available by using INT1 that shares a pin with CAN0IN/CAN1IN.

23.4.2 CANij Interrupts

Figure 23.41 shows a block diagram of the CANij interrupts. The followings cause the CAN-associated interrupt request to be generated.

- The CANi slot k (k=0 to 15) completes a transmission
- The CANi slot k completes a reception
- The CANi module detects a bus error
- The CANi module moves into an error-passive state
- The CANi module moves into a bus-off state

The INTSEL bit in the CiCTLR1 register determines how an interrupt request is generated. When the INTSEL bit is set to "0", one of the above CANi interrupt request source causes the CANij interrupts to be generated by the OR circuit. When the INTSEL bit is set to "1", CANi transmission completed, CANi reception completed and CANi errors (CANi bus error detection, CANi module into error-passive state and CANi module into bus-off state) cause the CANij interrupt corresponding to each source to be generated.

23.4.2.1 When the INTSEL Bit is Set to "0"

If the CAN-associated interrupt is generated by one of the interrupt request source listed in **23.4.2 CANij Interrupts**, the corresponding bit in the CiSISTR register (i=0,1) is set to "1" (interrupt requested) when the CANi slot k completes a transmission or a reception. The corresponding bit in the CiEISTR register is set to "1" (interrupt requested) when the CANi module detects a bus error, moves into an error-passive state, or moves into a bus-off state.

The CANi interrupt request signal is set to "1" when the corresponding bit in the CiSISTR or CiEISTR is set to "1" and the corresponding bit in the CiSIMKR or CiEIMKR is set to "1"

When the CAN0 interrupt request signal changes "0" to "1", all CAN0jR bits (j=0 to 2) in the IIO9IR to IIO11IR registers are set to "1" (interrupt requested).

If at least one of the CAN0jE bits in the IIO9IE to IIO11IE registers is set to "1" (interrupt enabled), the IR bits in the corresponding CAN0IC to CAN2IC registers are set to "1" (interrupt requested). The CAN0 interrupt request signal remains set to "1" if another interrupt request source causes a corresponding bit in the COSISTR or COEISTR to be set to "1" and the corresponding bit in the COSIMKR or COEIMKR to be set to "1" after the CAN0 interrupt request signal changes "0" to "1". The CAN0jR and IR bits also remain unchanged.

When the CAN1 interrupt request signal changes "0" to "1", all three CAN1jR bits in the IIO0IR to IIO1IR and IIO5IR registers are set to "1" (interrupt requested).

If at least one of the CAN1jE bits in the IIO0IE to IIO1IE and IIO5IE registers is set to "1", the IR bits in the corresponding CAN3IC to CAN5IC registers are set to "1". The CAN0 interrupt request signal remains set to "1" if another interrupt request causes the corresponding bit in the C1SISTR or C1EISTR to be set to "1" and the corresponding bit in the C1SIMKR or C1EIMKR to be set to "1" after the CAN1 interrupt request signal changes "0" to "1". The CAN1jR and IR bits also remain unchanged.

Bits in the CiSISTR or CiEISTR register and CANijR bits (i=0,1, j=0 to 2) in the IIO0IR to IIO1IR, IIO5IR or IIO9IR to IIO11IR registers are not set to "0" automatically, interrupt acknowledgment notwithstanding. Set these bits to "0" by program.

The CANi interrupts are acknowledged when the CANijR bit in the IIO0IR to IIO1IR, IIO5IR or IIO9IR to IIO11IR register and the corresponding bit in the CiSISTR or CiEISTR register are set to "0". If these bits remain set to "1", all CAN-associated interrupt request source become invalid.

23.4.2.2 When the INTSEL Bit is Set to "1"

If the CAN-associated interrupt is generated by one of the interrupt request source listed in 23.3.2 CANij Interrupts, the corresponding bit in the CiSISTR register (i=0,1) is set to "1" (interrupt requested) when the CANi slot k completes a transmission or a reception. The corresponding bit in the CiEISTR register is set to "1" (interrupt requested) when the CANi module detects a bus error, goes into an error-passive state, or goes into a bus-off state.

The CANi receive interrupt request signal is set to "1" if the corresponding bit in the CiSIMKR register is set to "1" (interrupt request enabled) and the corresponding bit in the CiSISTR register is set to "1" when the CANi module completes a reception.

The CANi transmit interrupt request signal is set to "1" if the corresponding bit in the CiSIMKR register is set to "1" and the corresponding bit in the CiSISTR register is set to "1" when the CANi module completes a transmission.

The CANi error interrupt request signal is set to "1" if corresponding bits in the CiEIMKR register are set to "1" and the corresponding bit in the CiEISTR register is set to "1" when the CANi module detects a bus error, goes into an error-passive state, or goes into a bus-off state.

When the CANi receive interrupt request signal changes "0" to "1", the CAN00R bit in the IIO9IR register and the CAN10R bit in the IIO0IR registers are set to "1" (interrupt requested). If the CAN00E in the IIO9IE register is set to "1" (interrupt enabled), the IR bit in the CAN0IC register is set to "1" (interrupt requested). If the CAN10E bit in the IIO0IE register is set to "1" (interrupt enabled), the IR bit in the CAN3IC register is set to "1" (interrupt requested).

When the CANi transmit interrupt request signal changes "0" to "1", the CAN01R bit in the IIO10IR register and the CAN11R bit in the IIO1IR registers are set to "1" (interrupt requested). If the CAN01E in the IIO10IE register is set to "1" (interrupt enabled), the IR bit in the CAN1IC register is set to "1" (interrupt requested). If the CAN11E bit in the IIO1IE register is set to "1" (interrupt enabled), the IR bit in the CAN4IC register is set to "1" (interrupt requested).

When the CANi error interrupt request signal changes "0" to "1", the CAN02R bit in the IIO11IR register and CAN12R bit in the IIO5IR register are set to "1" (interrupt requested). If the CAN02E in the IIO11IE register is set to "1" (interrupt enabled), the IR bit in the CAN2IC register is set to "1" (interrupt requested). If the CAN12E bit in the IIO5IE register is set to "1" (interrupt enabled), the IR bit in the CAN5IC register is set to "1" (interrupt requested).

The CANi error interrupt request signal remains set to "1" if another interrupt request causes the corresponding bit in the CiEIMKR register is set to "1" and the corresponding bit in the CiEISTR to be set to "1" after the CANi error interrupt request signal changes "0" to "1". The CAN02R, CAN12R and IR bits also remain unchanged.

Bits in the CiSISTR or CiEISTR register and CANijR bits (i=0,1, j=0 to 2) in the IIO0IR to IIO1IR, IIO5IR or IIO9IR to IIO11IR registers are not set to "0" automatically, interrupt acknowledgment notwithstanding. Set these bits to "0" by program.

The CANi receive interrupt and CANi transmit interrupt are acknowledged when the CAN00R bit in the IIO9IR register, the CAN01R bit in the IIO10IR register, the CAN10R bit in the IIO0IR register and the CAN11R bit in the IIO1IR register are set to "0". Corresponding bits in the CiSISTR register can be set to either "0" or "1".

The CANi error interrupt is acknowledged when the CAN02R bit in the IIO11IR register, the CAN12R bit in the IIO5IR register and corresponding bits in the CiEISTR register are set to "0".

If these bits remain set to "1", all CAN-associated interrupt request source become invalid.

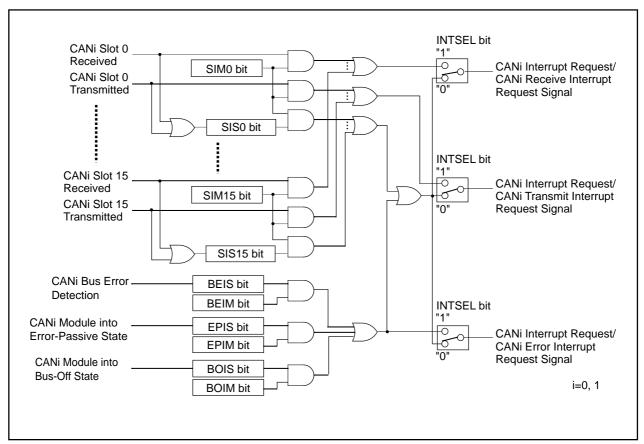


Figure 23.41 CAN Interrupts

24. Programmable I/O Ports

87 programmable I/O ports from P0 to P10 (excluding P85) are available in the 100-pin package and 123 programmable I/O ports from P0 to P15 (excluding P85) are in the 144-pin package. The direction registers determine each port status, input or output. The pull-up control registers determine whether the ports, divided into groups of four ports, are pulled up or not. P85 is an input port and no pull-up for this port is allowed. The P8_5 bit in the P8 register indicates an $\overline{\text{NMI}}$ input level since P85 shares pins with $\overline{\text{NMI}}$.

Figures 24.1 to 24.4 show programmable I/O port configurations.

Each pin functions as the programmable I/O port, an I/O pin for internal peripheral functions or the bus control pin.

To use the pins as input or output pins for internal peripheral functions, refer to the explanations for each fuction. Refer to **8. Bus** when used as the bus control pin.

The registers associated with the programmable I/O ports are as follows.

24.1 Port Pi Direction Register (PDi Register, i=0 to 15)

Figure 24.5 shows the PDi register.

The PDi register selects input or output status of a programmable I/O port. Each bit in the PDi register corresponds to a port.

In memory expansion and microprocessor mode, the PDi register cannot control pins being used as bus control pins (Ao to A22, A23, Do to D15, CS0 to CS3, WRL/WR, WRH/BHE, RD, BCLK/ALE/CLKOUT, HLDA/ALE, HOLD, ALE and RDY). No bit controlling P85 is provided in the direction registers.

24.2 Port Pi Register (Pi Register, i=0 to 15)

Figure 24.6 shows the Pi register.

The Pi register writes and reads data to communicate with external devices. The Pi register consists of a port latch to hold output data and a circuit to read pin states. Each bit in the Pi register corresponds to a port. In memory expansion and microprocessor mode, the Pi register cannot control pins being used as bus control pins (Ao to A22, A23, Do to D15, CSO to CS3, WRL/WR, WRH/BHE, RD, BCLK/ALE/CLKOUT, HLDA/ALE, HOLD, ALE and RDY).

24.3 Function Select Register Aj (PSj Register) (j=0 to 3, 5, 8, 9)

Figures 24.7 to 24.10 show the PSj registers.

The PSj register selects either I/O port or peripheral function output if an I/O port shares pins with a peripheral function output (excluding DA0 and DA1.)

When multiple peripheral function outputs are assigned to a pin, set the PSL0 to PSL3, PSC, PSC2, PSC3 and PSD1 registers to select which function is used.

Tables 24.3 to 24.10 list peripheral function output control settings for each pin.

24.4 Function Select Register B0 to B3 (PSL0 to PSL3 Registers)

Figures 24.11 and 24.12 show the PSL0 to PSL3 registers.

When multiple peripheral function outputs are assigned to a pin, the PSL0 to PSL3 registers select which peripheral function output is used.

Refer to **24.10** Analog Input and Other Peripheral Function Input for the PSL3_6 to PSL3_3 bits in the PSL3 register.

24.5 Function Select Register C (PSC, PSC2, PSC3 Registers)

Figures 24.13 and 24.14 show the PSC, PSC2 and PSC3 registers.

When multiple peripheral function outputs are assigned to a pin, the PSC register, the PSC2 register and the PSC3 register select which peripheral function output is used.

Refer to 24.10 Analog Input and Other Peripheral Function Input for the PSC_7 bit in the PSC register.

24.6 Function Select Register D (PSD1 Register)

Figure 24.14 shows the PSD1 register.

When multiple peripheral function outputs are assigned to a pin, the PSD1 register selects which peripheral function output is used.

24.7 Pull-up Control Register 0 to 4 (PUR0 to PUR4 Registers)

Figures 24.15 and 24.16 show the PUR0 to PUR4 registers.

The PUR0 to PUR4 registers select whether the ports, divided into groups of four ports, are pulled up or not. Ports with bits in the PUR0 to PUR4 registers set to "1" (pull-up) and the direction registers set to "0" (input mode) are pulled up.

Set bits in the PUR0 and PUR1 registers in P0 to P5, running as bus, to "0" (no pull-up) in memory expansion mode and microprocessor mode. P0, P1 and P40 to P43 can be pulled up when they are used as input ports in memory expansion mode and microprocessor mode.

24.8 Port Control Register (PCR Register)

Figure 24.17 shows the PCR register.

The PCR register selects either CMOS output or N-channel open drain output as the P1 output format. If the PCR0 bit is set to "1", N-channel open drain output is selected because the P-channel in the CMOS port is turned off. This is, however, not a perfect open drain. Therefore, the absolute maximum rating of the input voltage is between -0.3V and Vcc2 + 0.3V.

If P1 is used as the data bus in memory expansion mode and microprocessor mode, set the PCR0 bit to "0". If P1 is used as a port in memory expansion mode and microprocessor mode, the PCR0 bit determines the output format.

24.9 Input Function Select Register (IPS and IPSA Registers)

Figures 24.17 and 24.18 show the IPS and IPSA registers.

The IPS3, IPS1 and IPS0 bits in the IPS register and the IPSA_3 and IPSA_0 bits in the IPSA register select which pin is assigned for the intelligent I/O or CAN input functions.

Refer to 24.10 Analog Input and Other Peripheral Function Input for the IPS2 bit.

24.10 Analog Input and Other Peripheral Function Input

The PSL3_6 to PSL3_3 bits in the PSL3 register, the PSC_7 bit in the PSC register and the IPS2 bit in the IPS register each separate analog I/O ports from other peripheral functions. Setting the corresponding bit to "1" (analog I/O) to use the analog I/O port (DA0, DA1, ANEX0, ANEX1, AN4 to AN7 or AN150 to AN157) prevents an intermediate potential from being impressed to other peripheral functions. The impressed intermediate potential may cause increase in power consumption.

Set the corresponding bit to "0" (except analog I/O) when analog I/O is not used. All peripheral function inputs except the analog I/O port are available when the corresponding bit is set to "0". These inputs are indeterminate when the bit is set to "1". When the PSC_7 bit is set to "1", key input interrupt request remains unchanged regardless of $\overline{\text{Klo}}$ to $\overline{\text{Klo}}$ pin input level change.

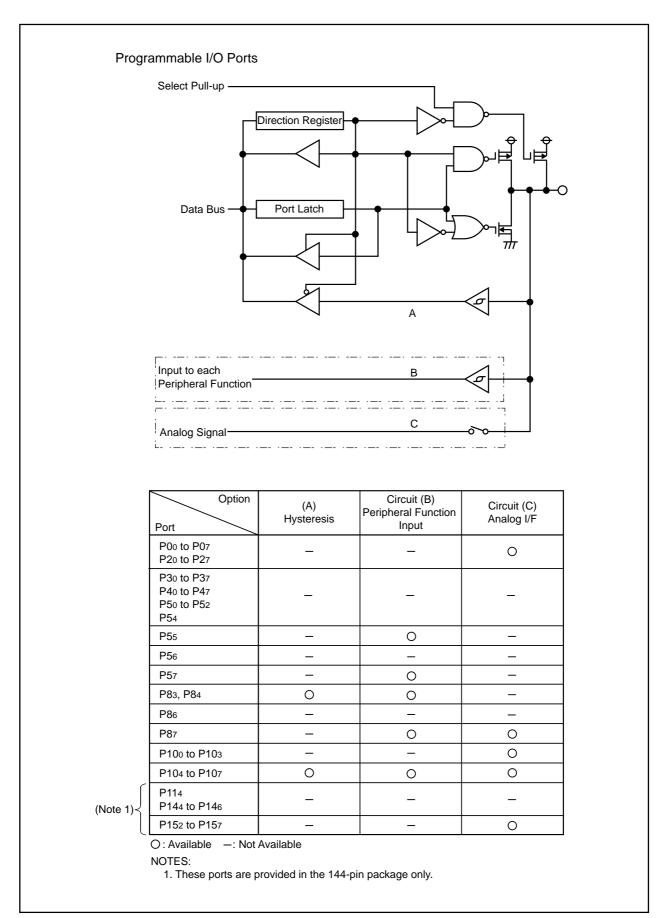


Figure 24.1 Programmable I/O Ports (1)

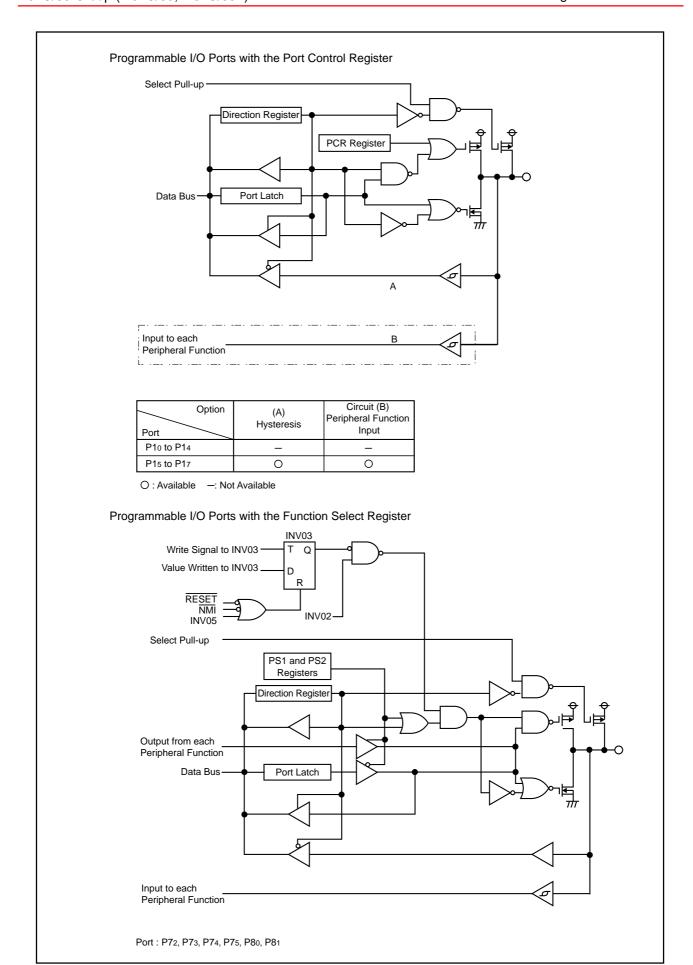


Figure 24.2 Programmable I/O Ports (2)



Figure 24.3 Programmable I/O Ports (3)

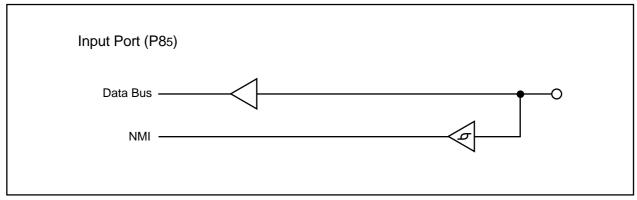
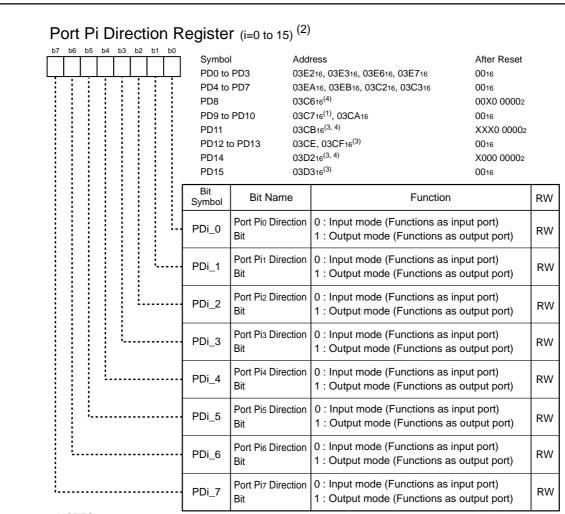
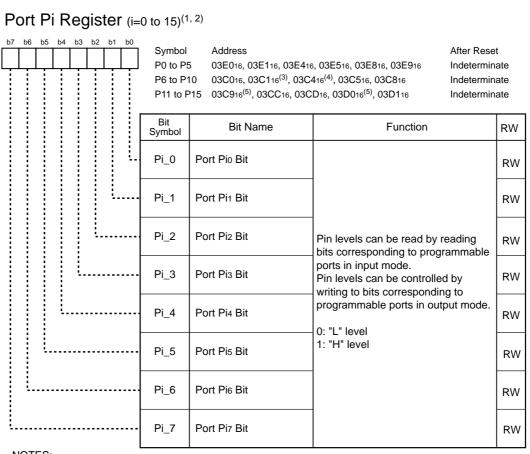




Figure 24.4 Programmable I/O Ports (4)

- 1. Set the PD9 register immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set the PRC2 bit to "1" and the instruction to set the PD9 register.
- 2. In memory expansion mode and microprocessor mode, the PDi register cannot control pins being used as bus control pins (Ao to A22, A23, Do to D15, CS0 to CS3, WRL/WR, WRH/BHE, BCLK/ALE/CLKOUT, RD, HLDA/ALE, HOLD, ALE and RDY).
 M32C/85T cannot be used in memory expansion mode and microprocessor mode.
- 3. Set the PD11 to PD15 registers to "FF16" in the 100-pin package.
- 4. Nothing is assigned in the PD8_5 bit in the PD8 register, the PD11_7 to PD11_5 bits in the PD11 register (144-pin package only) and the P14_7 bit in the PD14 register (144-pin package only). If write, set these bits to "0". When read, their contents are indeterminate.

Figure 24.5 PD0 to PD15 Registers

- 1. In memory expansion mode and microprocessor mode, the Pi register cannot control pins being used as bus control pins (A0 to A22, A23, D0 to D15, CS0 to CS3, WRL/WR, WRH/BHE, RD, BCLK/ALE/CLKout, HLDA/ALE, HOLD, ALE and RDY).
 - M32C/85T cannot be used in memory expansion mode and microprocessor mode.
- 2. The P11 to P15 registers are provided in the 144-pin package only.
- 3. P70 and P71 are ports for the N-channel open drain output. The pins go into high-impedance states when P70 and P71 output "H" signal.
- 4. The P8_5 bit is for read only.
- 5. Nothing is assigned in the P11_7 to P11_5 bits in the P11 register and the P14_7 bit in the P14 register. If write, set these bits to "0". When read, their contents are indeterminate.

Figure 24.6 P0 to P15 Registers

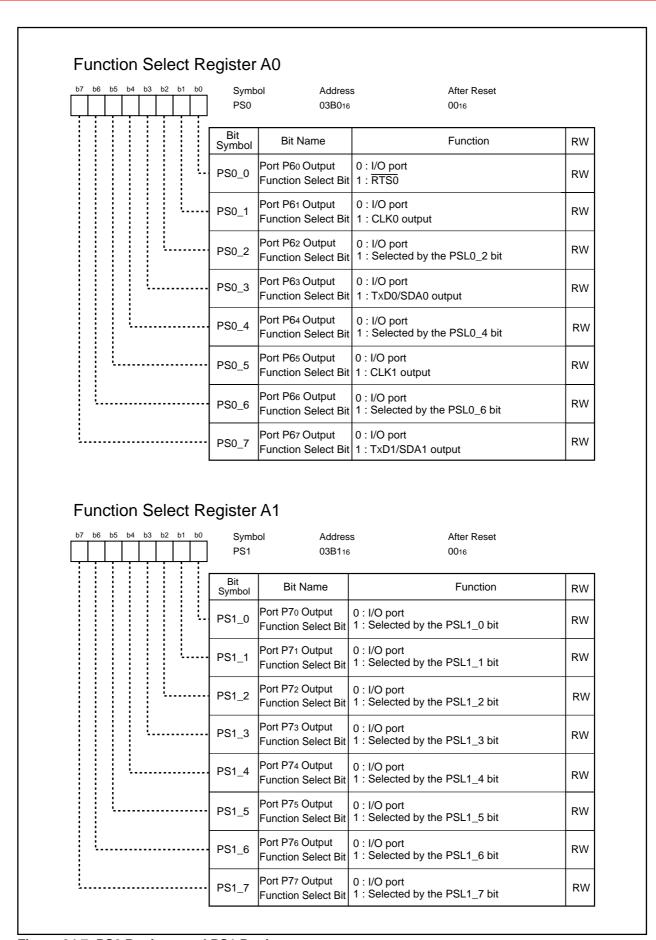
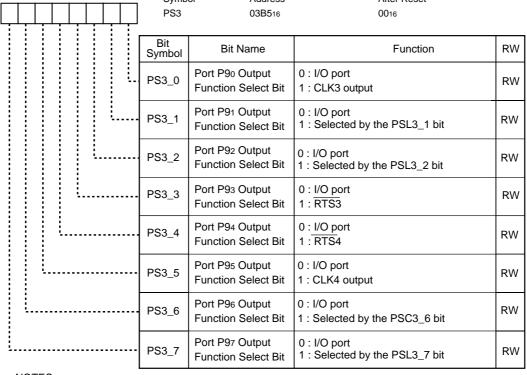



Figure 24.7 PS0 Register and PS1 Register

Function Select Register A2 Symbol Address After Reset 0 0 0 0 PS2 03B4₁₆ 00X0 00002 RW Bit Name **Function** Symbol Port P80 Output 0: I/O port PS2_0 RW 1 : Selected by the PSL2_0 bit Function Select Bit Port P81 Output 0: I/O port PS2_1 RW 1 : Selected by the PSL2_1 bit Function Select Bit Port P82 Output 0: I/O port PS2_2 RW 1 : Selected by the PSL2_2 bit **Function Select Bit** Reserved Bit Set to "0" RW (b4 - b3) Nothing is assigned. When write, set to "0". (b5) When read, its content is indeterminate. Reserved Bit Set to "0" RW (b7 - b6) Function Select Register A3⁽¹⁾ b6 b5 b3 b2 b1 b0 b4 Symbol Address After Reset

NOTES:

Set the PS3 register immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do
not generate an interrupt or a DMA transfer between the instruction to set the PRC2 bit to "1" and the
instruction to set the PS3 register.

Figure 24.8 PS2 Register and PS3 Register

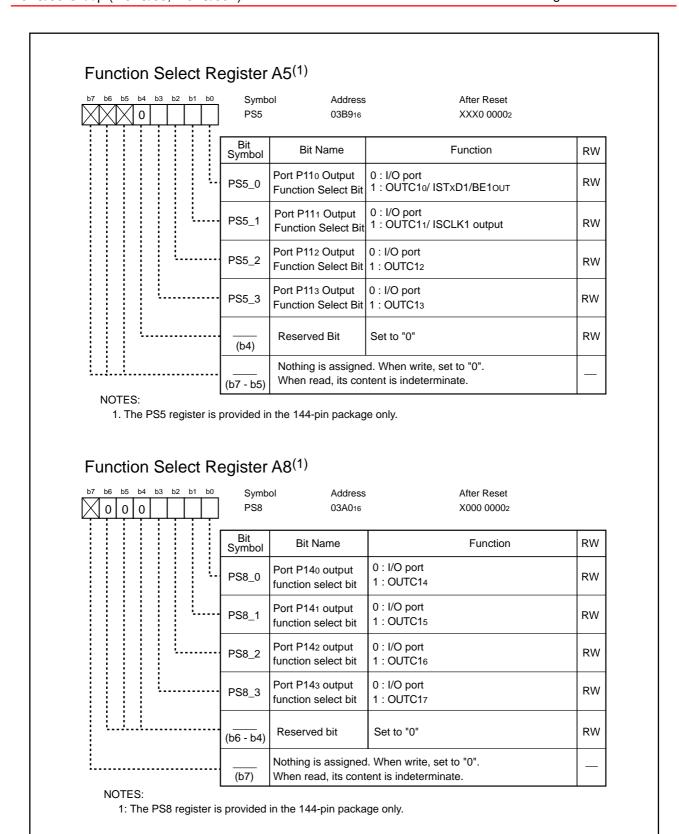


Figure 24.9 PS5 Register and PS8 Register

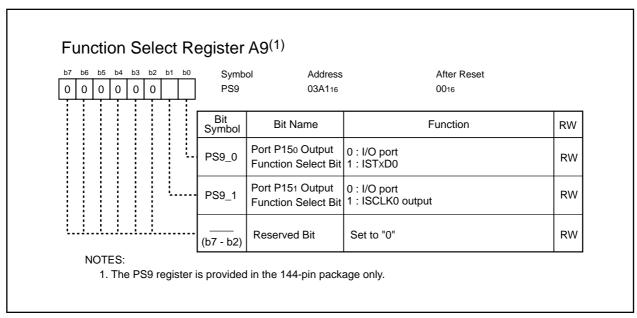


Figure 24.10 PS9 Register

Function Select Register B0 Symbol Address After Reset PSL0 03B216 0 0 0 0016 Bit Symbol Bit Name **Function** RW Reserved Bit Set to "0" RW (b1 - b0)Port P62 Output Peripheral 0: SCL0 output PSL0_2 RW Function Select Bit 1: STxD0 Reserved Bit Set to "0" RW (b3)Port P64 Output Peripheral 0: RTS1 PSL0_4 RW Function Select Bit 1: Do not set to this value Reserved Bit RW Set to "0" (b5) Port P66 Output Peripheral 0: SCL1 output PSL0_6 RW Function Select Bit 1: STxD1 Reserved Bit Set to "0" RW (b7)Function Select Register B1 Symbol Address After Reset PSL1 03B316 0016 Bit Symbol Bit Name Function RW Port P70 Output Peripheral 0 : Selected by the PSC_0 bit PSL1_0 RW 1: TA0ouT output(1) Function Select Bit Port P71 Output Peripheral 0 : Selected by the PSC_1 bit 1 : $STxD2^{(1)}$ PSL1_1 RW Function Select Bit Port P72 Output Peripheral 0 : Selected by the PSC_2 bit PSL1_2 RW 1 : TA1ouT output⁽¹⁾ Function Select Bit Port P73 Output Peripheral 0 : Selected by the PSC_3 bit 1 : $\overline{V}^{(1)}$ PSL1_3 RW Function Select Bit Port P74 Output Peripheral 0 : Selected by the PSC_4 bit PSL1_4 RW Function Select Bit 1: W⁽¹⁾ Port P75 Output Peripheral 0 : W PSL1_5 RW Function Select Bit 1: OUTC12 Port P76 Output Peripheral 0: Selected by the PSC_6 bit PSL1_6 RW 1: TA3ouT output(1) Function Select Bit Port P77 Output Peripheral 0: ISCLK0 output PSL1_7 RW 1: OUTC14 Function Select Bit NOTES: 1. When setting the PSL1_i (i = 0 to 4, 6) bit to "1", set the corresponding PSC_i bit in the PSC register to "0".

Figure 24.11 PSL0 Register and PSL1 Register

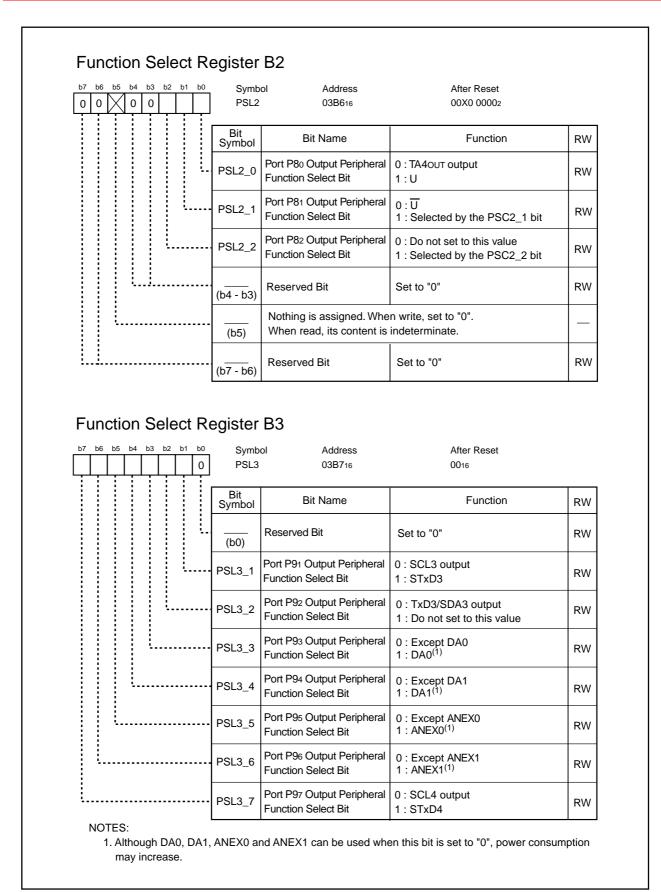
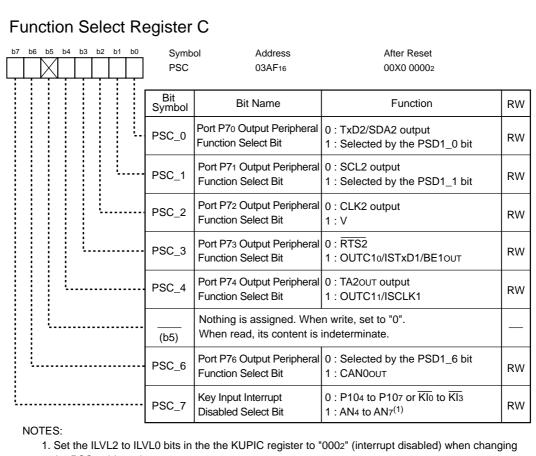



Figure 24.12 PSL2 Register and PSL3 Register

Although AN4 to AN7 can be used when this bit is set to "0", power consumption may increase.

Function Select Register C2

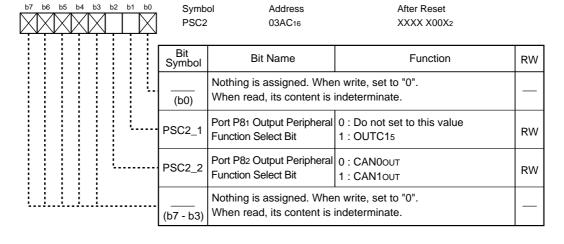
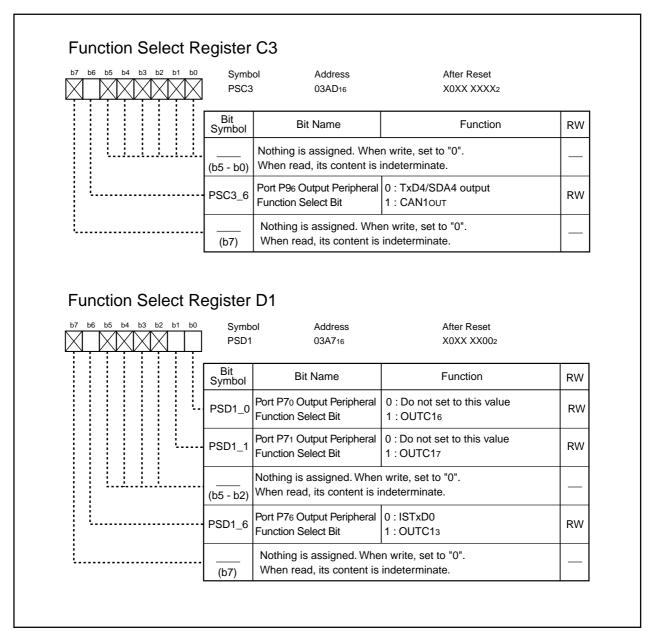
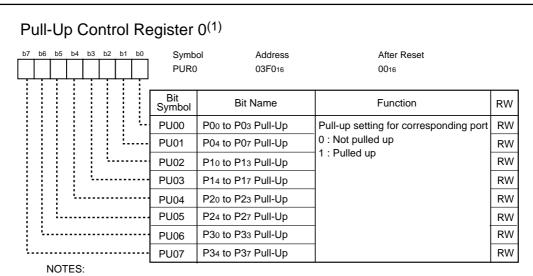
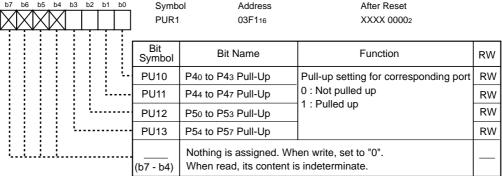


Figure 24.13 PSC Register and PSC2 Register

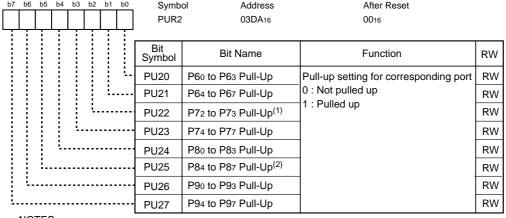




Figure 24.14 PSC3 Register and PSD1 Register

1. Set each bit in the PUR0 register, corresponding to P0 to P5 operating as bus control pins in the memory expansion mode and microprocessor mode, to "0". When using the ports as I/O ports, pull-up or no pull-up setting can be selected.

M32C/85T cannot be used in memory expansion mode and microprocessor mode.

Pull-Up Control Register 1⁽¹⁾



NOTES:

1. Set each bit in the PUR1 register, corresponding to P0 to P5 operating as bus control pins in memory expansion mode and microprocessor mode, to "0". When using the ports as I/O ports, pull-up or no pull-up setting can be selected.

M32C/85T cannot be used in memory expansion mode and microprocessor mode.

Pull-Up Control Register 2

- 1. P70 and P71 cannot be pulled up.
- 2. P85 cannot be pulled up.

Figure 24.15 PUR0 Register, PUR1 Register and PUR2 Register

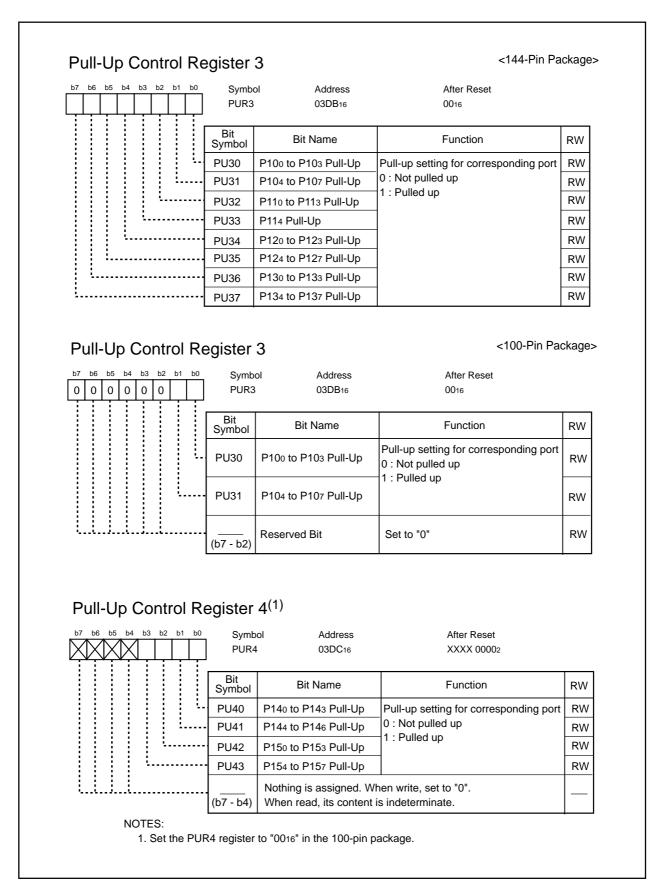


Figure 24.16 PUR3 Register and PUR4 Register

Port Control Register⁽¹⁾ Symbol After Reset Address 0 PCR 03FF16 0 XXXX XXX02 Bit Symbol Bit Name **Function** RW Port P1 Control 0: CMOS output PCR0 RW 1: N-channel open drain output(2) Reserved Bit Set to "0" RW (b2 - b1)Nothing is assigned. When write, set to "0". When read, its content is indeterminate. (b7 - b3)

NOTES:

- Set the PCR0 bit to "0" when P1 operates as a data bus in memory expansion mode and microprocessor mode. When using the ports as I/O ports, CMOS port or N-channel open drain output port can be selected.
 - M32C/85T cannot be used in memory expansion mode and microprocessor mode.
- This function is designed, not to make port P1 a full open drain, but to turn off the P channel in the CMOS port.

Absolute maximum rating of the input voltage is between -0.3V and Vcc2 + 0.3V.

Input Function Select Register

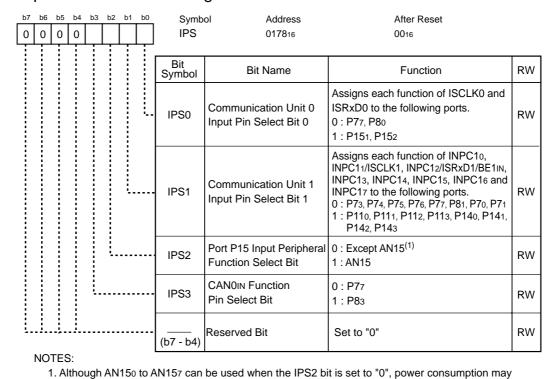


Figure 24.17 PCR Register and IPS Register

increase.

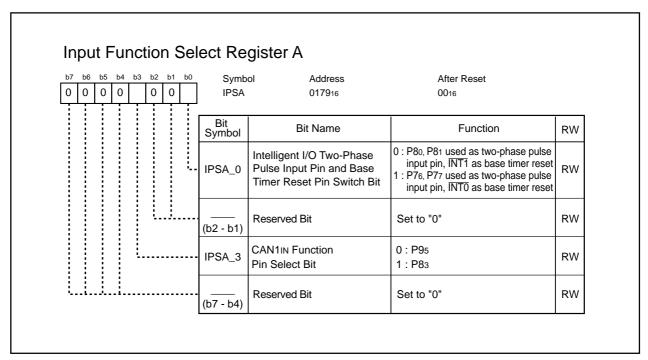


Figure 24.18 IPSA Register

Table 24.1 Unassigned Pin Settings in Single-Chip Mode

Pin Name	Setting		
P0 to P15	Enter input mode and connect each pin to Vss via a resistor (pull-down);		
(excluding P85) ^(1,2,3,4,6)	or enter output mode and leave the pins open		
Хоит ⁽⁵⁾	Leave pin open		
NMI(P85)	Connect pin to Vcc1 via a resistor (pull-up)		
AVcc	Connect pin to Vcc1		
AVSS, VREF, BYTE	Connect pins to Vss		

NOTES:

- 1. P11 to P15 are provided in the 144-pin package only.
- 2. If the port enters output mode and is left open, it is in input mode before output mode is entered by program after reset. While the port is in input mode, voltage level on the pins is indeterminate and power consumption may increase.
 - Direction register settings may be changed by noise or failure caused by noise. Configure direction register settings regulary to increase the reliability of the program.
- 3. Use the shortest possible wiring to connect the microcomputer pins to unassigned pins (within 2 cm).
- 4. P70 and P71 must put in low-level ("L") signal outputs if they are in output mode. They are N-channel open-drain outputs.
- 5. When the external clock is applied to the XIN pin, set the pin as written above.
- 6. In the 100-pin package, set "FF16" in the following addresses, in addition to the above settings: Addresses 0003CB16, 0003CE16, 0003CF16, 0003D216, 0003D316

Table 24.2 Unassigned Pin Setting in Memory Expansion Mode and Microprocessor Mode

Pin Name	Setting	
P6 to P15	Enter input mode and connect each pin to Vss via a resistor (pull-down);	
(excluding P85) ^(1,2,3,4,6)	or enter output mode and leave the pins open	
BHE, ALE, HLDA,	Leave pin open	
Χουτ ⁽⁵⁾ , BCLK		
NMI(P85)	Connect pin to Vcc1 via a resistor (pull-up)	
RDY, HOLD	Connect pins to VCC2 via a resistor (pull-up)	
AVcc	Connect pin to VCC1	
AVSS, VREF	Connect pins to Vss	

- 1. P11 to P15 are provided in the 144-pin package only.
- 2. If the port enters output mode and is left open, it is in input mode before output mode is entered by program after reset. While the port is in input mode, voltage level on the pins is indeterminate and power consumption may increase.
 - Direction register settings may be changed by noise or failure caused by noise. Configure direction register settings regulary to increase the reliability of the program.
- 3. Use the shortest possible wiring to connect the microcomputer pins to unassigned pins (within 2 cm).
- 4. P70 and P71 must put in low-level ("L") signal outputs if they are in output mode. They are N-channel open-drain outputs.
- 5. When the external clock is applied to the XIN pin, set the pin as written above.
- 6. In the 100-pin package, set "FF16" in the following addresses, in addition to the above settings: Addresses 0003CB16, 0003CE16, 0003CF16, 0003D216, 0003D316

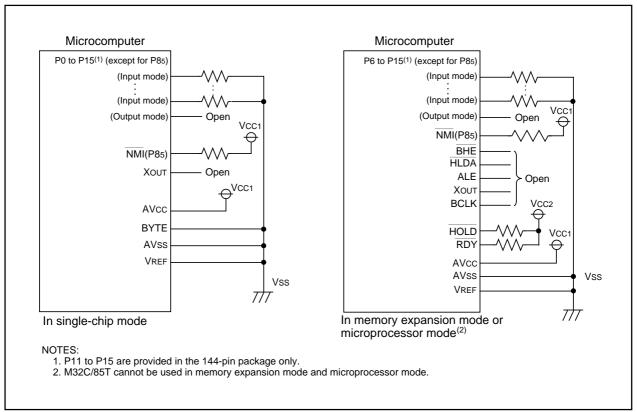


Figure 24.19 Unassigned Pin Handling

Table 24.3 Port P6 Peripheral Function Output Control

	PS0 Register	PSL0 Register
Bit 0	0: P60/CTS0/SS0 1: RTS0	Set to "0"
Bit 1	0: P61/CLK0(input) 1: CLK0(output)	Set to "0"
Bit 2	0: P62/RxD0/SCL0(input) 1: Selected by the PSL0 register	0: SCL0(output) 1: STxD0
Bit 3	0: P63/SRxD0/SDA0 (input) 1: TxD0/SDA0 (output)	Set to "0"
Bit 4	0: P64/CTS1/SS1 1: Selected by the PSL0 register	0: RTS1 1: Do not set this value
Bit 5	0: P65/CLK1(input) 1: CLK1(output)	Set to "0"
Bit 6	0: P66/RxD1/SCL1(input) 1: Selected by the PSL0 register	0: SCL1(output) 1: STxD1
Bit 7	0: P67/SRxD1/SDA1 (input) 1: TxD1/SDA1 (output)	Set to "0"

Table 24.4 Port P7 Peripheral Function Output Control

	PS1 Register	PSL1 Register	PSC Register ⁽¹⁾	PSD1 Register
Bit 0	0: P70/TA0ouT(input)/SRxD2 INPC16/SDA2 (input)	0: Selected by the PSC register	0: TxD2/SDA2(output)	0: Do not set to this value
	1: Selected by the PSL1 register	1: TA0out(output)	1: Selected by the PSD1 register	1: OUTC16
Bit 1	0: P71/TB5IN/TA0IN/RxD2/ INPC17/SCL2 (input)	0: Selected by the PSC register	0: SCL2(output)	0: Do not set to this value
	1: Selected by the PSL1 register	1: STxD2	1: Selected by the PSD1 register	1: OUTC17
Bit 2	0: P72/TA10UT(input)/ CLK2(input)	0: Selected by the PSC register	0: CLK2(output)	Set to "0"
	1: Selected by the PSL1 register	1: TA1o∪⊤(output)	1: V	
Bit 3	0: P73/TA1IN/CTS2/SS2/ INPC10	0: Selected by the PSC register	0: RTS2	Set to "0"
	1: Selected by the PSL1 register	1: ∇	1: OUTC10/ISTxD1/BE10UT	
Bit 4	0: P74/INPC11/ISCLK1(input)/ TA20UT(input)	0: Selected by the PSC register	0: TA2out(output)	Set to "0"
	1: Selected by the PSL1 register	1: W	1: OUTC11/ISCLK1(output)	
Bit 5	0: P75/TA2IN/INPC12/ ISRxD1/BE1IN	0: W	Set to "0"	Set to "0"
	1: Selected by the PSL1 register	1: OUTC12		
Bit 6	0: P76/INPC13/TA3ouT(input)	,	0: Selected by the PSD1 register	
	1: Selected by the PSL1 register	1: TA3o∪T(output)	1: CAN0out	1: OUTC13
Bit 7	0: P77/TA3IN/CAN0IN/	0: ISCLK0(output)	0: P104 to P107 or KI0 to KI3	Set to "0"
	ISCLK0(input)/INPC14	A. OUTCA	4. ANI4 to ANI-	
	1: Selected by the PSL1 register	1: OUTC14 	1: AN4 to AN7 (No relation to P77)	

NOTES:

1. When setting the PSL1_i bit (i=0 to 4, 6) to "1", set the corresponding PSC_i bit to "0".

Table 24.5 Port P8 Peripheral Function Output Control

	PS2 Register	PSL2 Register	PSC2 Register
Bit 0	0: P80/ISRxD0/TA4o∪T(input)	0: TA4out(output)	Set to "0"
	1: Selected by the PSL2 register	1: U	
Bit 1	0: P81/TA4IN/INPC15	0: U	0: Do not set to this value
	1: Selected by the PSL2 register	1: Selected by the PSC2 register	1: OUTC15
Bit 2	0: P82/INT0	0: Do not set to this value	0: CAN0out
	1: Selected by the PSL2 register	1: Selected by the PSC2 register	1: CAN1out
Bit 3 to 7	Set to "000002"		

Table 24.6 Port P9 Peripheral Function Output Control

	PS3 Register	PSL3 Register	PSC3 Register
Bit 0	0: P90/TB0IN/CLK3(input) 1: CLK3(output)	Set to "0"	Set to "0"
L			
Bit 1	0: P91/TB1IN/RxD3/SCL3(input)	0: SCL3(output)	Set to "0"
	1: Selected by the PSL3 register	1: STxD3	
Bit 2	0: P92/TB2IN/SRxD3/SDA3(input)	0: TxD3/SDA3(output)	Set to "0"
	1: Selected by the PSL3 register	1: Do not set to this value	
Bit 3	0: P93/TB3IN/CTS3/SS3/DA0(output)	0: Except DA0	Set to "0"
	1: RTS3	1: DA0	
Bit 4	0: P94/TB4IN/CTS4/SS4/DA1(output)	0: Except DA1	Set to "0"
	1: RTS4	1: DA1	
Bit 5	0: P95/ANEX0/CLK4(input)/CAN1IN/	0: Except ANEX0	Set to "0"
	CAN1WU		
	1: CLK4(output)	1: ANEX0	
Bit 6	0: P96/SRxD4/ANEX1/SDA4(input)	0: Except ANEX1	0: TxD4/SDA4
	1: Selected by the PSC3 register	1: ANEX1	1: CAN1out
Bit 7	0: P97/RxD4/ADTRG/SCL4(input)	0: SCL4(output)	Set to "0"
	1: Selected by the PSL3 register	1: STxD4	

Table 24.7 Port P10 Peripheral Function Input Control

	PSC Register
Bit 7	0: P104 to P107 or KI0 to KI3
	1: AN4 to AN7

Table 24.8 Port P11 Peripheral Function Output Control

	PS5 Register
Bit 0	0: P110/INPC10
	1: OUTC10/ISTxD1/BE1OUT
Bit 1	0: P111/INPC11/ISCLK1(input)
	1: OUTC11/ISCLK1(output)
Bit 2	0: P112/INPC12/ISRxD1/BE1IN
	1: OUTC12
Bit 3	0: P113/INPC13
	1: OUTC13
Bit 4 to 7	Set to "00002"

Table 24.9 Port P14 Peripheral Function Output Control

	PS8 Register
Bit 0	0: P14 ₀ /INPC1 ₄
	1: OUTC14
Bit 1	0: P141/INPC15
	1: OUTC15
Bit 2	0: P142/INPC16
	1: OUTC16
Bit 3	0: P143/INPC17
	1: OUTC17
Bit 4 to 7	Set to "00002"

Table 24.10 Port P15 Peripheral Function Output Control

	PS9 Register
Bit 0	0: P150/AN150
	1: ISTxD0
Bit 1	0: P151/AN151/ISCLK0(input)
	1: ISCLK0(output)
Bit 2 to 7	Set to "0000002"

25. Flash Memory Version

Aside from the built-in flash memory, the flash memory version microcomputer has the same functions as the masked ROM version.

In the flash memory version, rewrite operation to the flash memory can be performed in three modes: CPU rewrite mode, standard serial I/O mode and parallel I/O mode.

Table 25.1 lists specifications of the flash memory version. See Tables 1.1 and 1.2 for the items not listed in Table 25.1.

Table 25.1 Flash Memory Version Specifications

Item		Specification	
Flash Memory Operating Mode		3 modes (CPU rewrite, standard serial I/O, parallel I/O)	
Erase Block	User ROM Area	See Figure 25.1	
	Boot ROM Area	1 block (4 Kbytes) ⁽¹⁾	
Program Method		Per word (16 bytes), per byte (8 bits) ⁽²⁾	
Erase Method		All block erase, erase per block	
Program and Erase Control Method		Software commands control programming and erasing on the flash memory	
Protect Method		The lock bit protects each block in the flash memory	
Number of Commands		8 commands	
Program and Erase Endurance		100 times ⁽³⁾	
Data Retention		10 years	
ROM Code Protection		Standard serial I/O mode and parallel I/O mode supported	

- 1. The rewrite control program for standard serial I/O mode is stored in the boot ROM area before shipment. This space can be rewritten in parallel I/O mode only.
- 2. Programming per byte is available in parallel I/O mode only.
- 3. Program and erase endurance refers to the number of times a block erase can be performed. Every block erase performed after writing data of one word or more counts as one program and erase operation.

Table 25.2 Flash Memory Rewrite Mode Overview

Flash Memory Rewrite Mode	CPU Rewrite Mode	Standard Serial I/O Mode	Parallel I/O Mode
Function	Software command execution by CPU rewrites the user ROM area. EW mode 0: Rewritable in areas other than flash memory EW mode 1: Rewritable in flash memory	A dedicated serial programmer rewrites the user ROM area. Standard serial I/O mode 1: Clock synchronous serial I/O Standard serial I/O mode 2: UART Standard serial I/O mode 3: CAN	A dedicated parallel programmer rewrites the boot ROM area and user ROM area.
Space which can be rewritten	User ROM area	User ROM area	User ROM area Boot ROM area
Operating mode	Single-chip mode Memory expansion mode (EW mode 0) Boot mode (EW mode 0)	Boot mode	Parallel I/O mode
Programmer	None	Serial programmer	Parallel programmer

25.1 Memory Map

The flash memory includes the user ROM area and the boot ROM area. The user ROM area has space to store the microcomputer operating programs in single-chip mode or memory expansion mode, and a separate 4-kbyte space as the block A. Figure 25.1 shows a block diagram of the flash memory.

The user ROM area is divided into several blocks, each of which can be protected (locked) from program or erase. The user ROM area can be rewritten in CPU rewrite mode, standard serial I/O mode and parallel I/O mode.

The boot ROM area is located at the same addresses as the user ROM area. It can only be rewritten in parallel I/O mode. A program in the boot ROM area is executed after a hardware reset occurs while a high-level ("H") signal is applied to the CNVss and P50 pins and a low-level ("L") signal is applied to the P55 pin. A program in the user ROM area is executed after a hardware reset occurs while an "L" signal is applied to the CNVss pin. Consequently, the boot ROM area cannot be read.

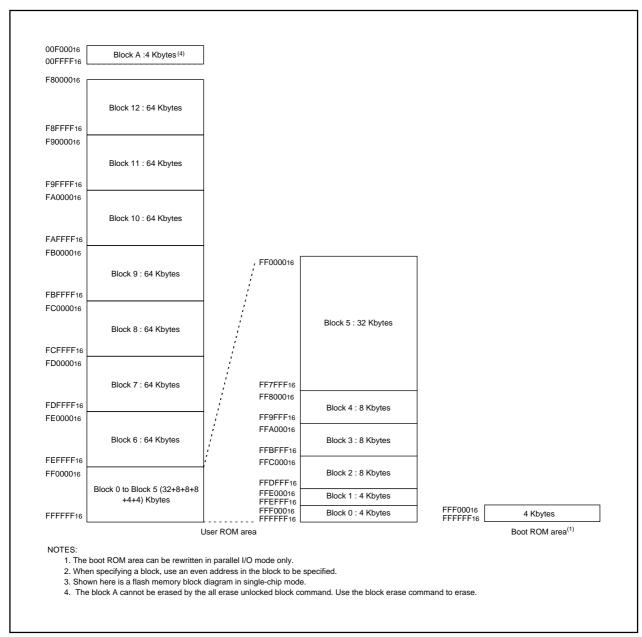


Figure 25.1 Flash Memory Block Diagram

25.1.1 Boot Mode

The microcomputer enters boot mode when a hardware reset is performed while a high-level ("H") signal is applied to the CNVss and P50 pins and a low-level ("L") signal is applied to the P55 pin. A program in the boot ROM area is executed.

In boot mode, the FMR05 bit in the FMR0 register selects access to either the boot ROM area or the user ROM area

In the factory setting, the rewrite control program for standard serial I/O mode is stored into the boot ROM area.

The boot ROM area can be rewritten in parallel I/O mode only. If any rewrite control program using erase-write mode 0 (EW mode 0) is written in the boot ROM area, the flash memory can be rewritten according to the system implemented.

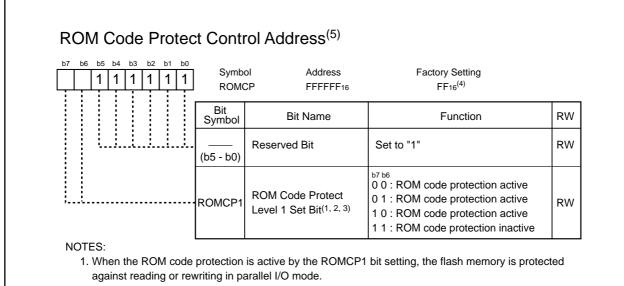
25.2 Functions to Prevent the Flash Memory from Rewriting

The flash memory has the ROM code protect function for parallel I/O mode and the ID code verify function for standard I/O mode to prevent the flash memory from reading or rewriting.

25.2.1 ROM Code Protect Function

The ROM code protect function prevents the flash memory from reading and rewriting in parallel I/O mode.

Figure 25.2 shows the ROMCP register. The ROMCP register is located in the user ROM area.


The ROM code protect function is enabled when the ROMCP1 bit is set to "002", "012" or "102".

25.2.2 ID Code Verify Function

Use the ID code verify function in standard serial I/O mode. The ID code sent from the serial programmer is compared with the ID code written in the flash memory for a match. If the ID codes do not match, commands sent from the serial programmer are not accepted. However, if the four bytes of the reset vector are "FFFFFFF16", ID codes are not compared, allowing all commands to be accepted.

The ID codes are 7-byte data stored consecutively, starting with the first byte, into addresses 0FFFDF16, 0FFFFE316, 0FFFFE316, 0FFFFF316, 0FFFFF316, 0FFFFFB16. The flash memory must have a program with the ID codes set in these addresses.

- 2. Set the bit 5 to bit 0 to "11111112" when the ROMCP1 bit is set to a value other than "112". If the bit 5 to bit 0 are set to values other than "1111112", the ROM code protection may not become active by setting the ROMCP1 bit to a value other than "112".
- 3. To make the ROM code protection inactive, erase a block including the ROMCP address in standard serial I/O mode or CPU rewrite mode.
- 4. The ROMCP address is set to "FF16" when a block, including the ROMCP address, is erased.
- 5. When a value of the ROMCP address is "0016" or "FF16", the ROM code protect function is disabled.

Figure 25.2 ROMCP Address

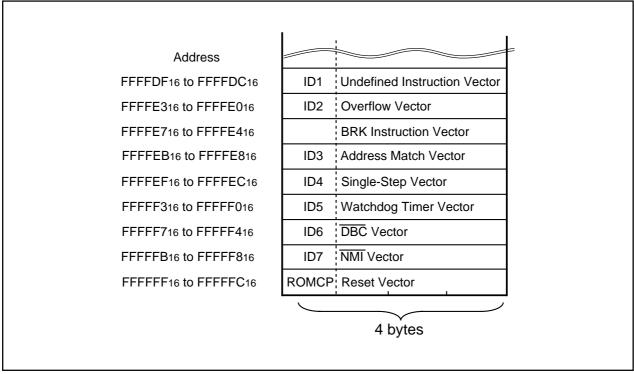


Figure 25.3 Address for ID Code Stored

25.3 CPU Rewrite Mode

In CPU rewrite mode, the user ROM area can be rewritten when the CPU executes software commands, The user ROM area can be rewritten with the microcomputer mounted on a board without using a parallel or serial programmer.

In CPU rewrite mode, only the user ROM area shown in Figure 25.1 can be rewritten. The boot ROM area cannot be rewritten. The program and block erase commands are executed only for each block in the user ROM area.

Erase-write (EW) mode 0 and erase-write mode 1 are provided as CPU rewrite mode. Table 25.3 lists differences between EW mode 0 and EW mode 1.

Table 25.3 EW Mode 0 and EW Mode 1

Item	EW mode 0	EW mode 1		
Operating Mode	Single-chip mode Memory expansion mode Boot mode	Single-chip mode		
Space where the rewrite control program can be placed	User ROM area Boot ROM area	User ROM area		
Space where the rewrite control program can be executed	The rewrite control program must be transferred to any space other than the flash memory (e.g.,RAM) before being executed	The rewrite control program can be executed in the user ROM area		
Space which can be rewritten	User ROM area	User ROM area However, this excludes blocks with the rewrite control program		
Software Command Restriction	None	Program and block erase commands cannot be executed in a block having the rewrite control program. Frase all unlocked block command cannot be executed when the lock bit in a block having the rewrite control program is set to "1"(unlocked) or when the FMR02 bit in the FMR0 register is set to "1"(lock bit disabled). Read status register command cannot be used.		
Mode after Programming or Erasing	Read status register mode	Read array mode		
CPU State during Auto Program and Erase Operation	Operating	In a hold state (I/O ports maintains the state before the command was executed) ⁽¹⁾		
Flash Memory State Detection	Read the FMR00, FMR06 and FMR07 bits in the FMR0 register by program Execute the read status register command to read the SR7, SR5 and SR4 bits in the SRD register	Read the FMR00, FMR06 and FMR07 bits in the FMR0 register by program		

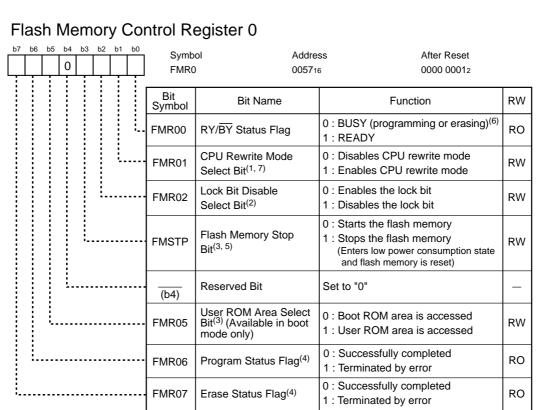
NOTES:

1. Do not generate an interrupt (except NMI interrupt) or a DMA transfer.

25.3.1 EW Mode 0

The microcomputer enters CPU rewrite mode by setting the FMR01 bit in the FMR0 register to "1" (CPU rewrite mode enabled) and is ready to accept commands. EW mode 0 is selected by setting the FMR11 bit in the FMR1 register to "0". To set the FMR01 bit to "1", set to "1" after first writing "0".

The software commands control programming and erasing. The FMR0 register or the SRD register indicates whether a program or erase operation is completed as expected or not.


25.3.2 EW Mode 1

EW mode 1 is selected by setting the FMR11 bit to "1" after the FMR01 bit is set to "1". (Both bits must be set to "0" first before setting to "1".)

The FMR0 register indicates whether or not a program or erase operation has been completed as expected. The SRD register cannot be read in EW mode 1.

25.3.3 Flash Memory Control Register (FMR0 Register and FMR1 Register)

NOTES:

- 1. Set the FMR01 bit while the NMI pin is held "H". Set it by program in a space other than the flash memory in EW mode 0.
- 2. Set the FMR02 bit to "1" in 8-bit unit immediately after setting it first to "0" while the FMR01 bit is set to "1". Do not generate an interrupt or a DMA transfer between setting the FMR02 bit to "0" and setting it to "1"
- 3. Set the FMSTP and FMR05 bits by program in a space other than the flash memory.
- 4. The FMR07 and FMR06 bits is set to "0" by executing the clear status command.
- 5. FMSTP bit setting is enabled when the FMR01 bit is set to "1" (CPU rewrite mode enabled). The FMSTP bit can be set to "1" when the FMR01 bit is set to "0", but the flash memory does not enter low-power consumption state nor is reset.
- Write and read operations by the lock bit program command and read lock bit status command are included.
- 7. To change a FMR01 bit setting from "0" to "1", set the FMR01 bit to "1" immediately after setting it first to "0" in 8-bit unit. Do not generate an interrupt or a DMA transfer between setting the FMR01 bit to "0" and setting it to "1".

To change a FMR01 bit setting from "1" to "0", enter read array mode to write to addresses 005716 in 16-bit unit. Write "0016" into 8 high-order bits.

e. g., to change a FMR01 bit setting from "1" to "0";

Assembly language: mov.w #0000h, 0057h

Figure 25.4 FMR0 Register

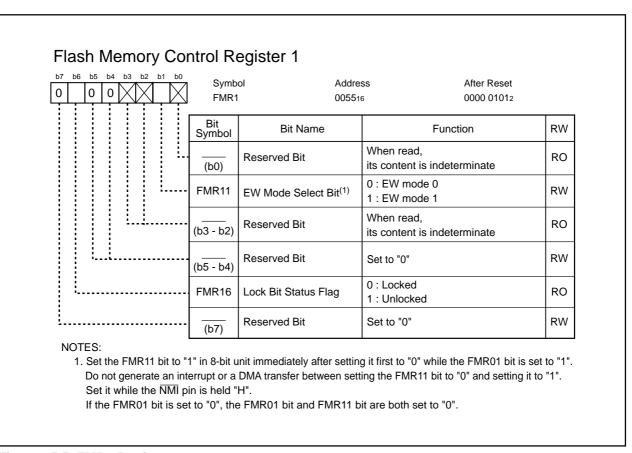


Figure 25.5 FMR1 Register

25.3.3.1 FMR00 Bit

The FMR00 bit indicates the flash memory operating state. It is set to "0" while the program, block erase, erase all unlocked block, lock bit program, or read lock bit status command is being executed; otherwise, it is set to "1".

25.3.3.2 FMR01 Bit

The microcomputer can accept commands when the FMR01 bit is set to "1" (CPU rewrite mode). Set the FMR05 bit to "1" (user ROM area access) as well if in boot mode.

25.3.3.3 FMR02 Bit

The lock bit is invalid by setting the FMR02 bit to "1" (lock bit disabled). (Refer to **25.3.6 Data Protect Function**.) The lock bit is valid by setting the FMR02 bit to "0" (lock bit enabled).

The FMR02 bit does not change the lock bit status but disables the lock bit function. If the block erase or erase all unlocked block command is executed when the FMR02 bit is set to "1", the lock bit status changes "0" (locked) to "1" (unlocked) after command execution is completed.

25.3.3.4 FMSTP Bit

The FMSTP bit resets the flash memory control circuits and minimizes power consumption in the flash memory. Access to the flash memory is disabled when the FMSTP bit is set to "1". Set the FMSTP bit by program in a space other than the flash memory.

Set the FMSTP bit to "1" if one of the followings occurs:

- A flash memory access error occurs while erasing or programming in EW mode 0 (FMR00 bit does not switch back to "1" (ready)).
- Low-power consumption mode or on-chip low-power consumption mode is entered.

Use the following the procedure to change the FMSTP bit setting.

- (1) Set the FMSTP bit to "1"
- (2) Set tps (the wait time to stabilize flash memory circuit)
- (3) Set the FMSTP bit to "0"
- (4) Set tps (the wait time to stabilize flash memory circuit)

Figure 25.8 shows a flow chart illustrating how to start and stop the flash memory before and after entering low power mode. Follow the procedure on this flow chart.

When entering stop or wait mode, the flash memory is automatically turned off. When exiting stop or wait mode, the flash memory is turned back on. The FMR0 register does not need to be set.

25.3.3.5 FMR05 Bit

The FMR05 bit selects the boot ROM or user ROM area in boot mode. Set to "0" to access (read) the boot ROM area or to "1" (user ROM access) to access (read, write or erase) the user ROM area.

25.3.3.6 FMR06 Bit

The FMR06 bit is a read-only bit indicating an auto program operation state. The FMR06 bit is set to "1" when a program error occurs; otherwise, it is set to "0". Refer to **25.3.8 Full Status Check**.

25.3.3.7 FMR07 Bit

The FM07 bit is a read-only bit indicating the auto erase operation state. The FMR07 bit is set to "1" when an erase error occurs; otherwise, it is set to "0". For details, refer to **25.3.8 Full Status Check**.

Figure 25.6 shows how to enter and exit EW mode 0. Figure 25.7 shows how to enter and exit EW mode 1.

25.3.3.8 FMR11 Bit

EW mode 0 is entered by setting the FMR11 bit to "0" (EW mode 0).

EW mode 1 is entered by setting the FMR11 bit to "1" (EW mode 1).

25.3.3.9 FMR16 Bit

The FMR16 bit is a read-only bit indicating the execution result of the read lock bit status command. When the block, where the read lock bit status command is executed, is locked, the FMR16 bit is set to "0". When the block, where the read lock bit status command is executed, is unlocked, the FMR16 bit is set to "1".

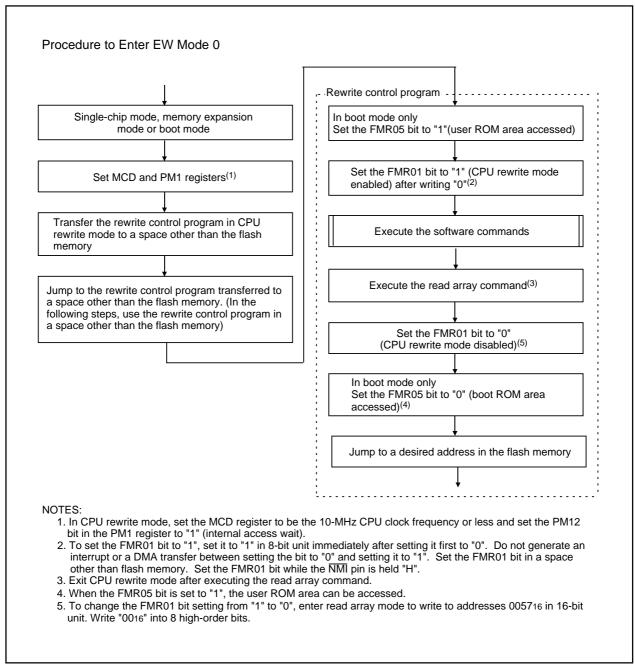


Figure 25.6 How to Enter and Exit EW Mode 0

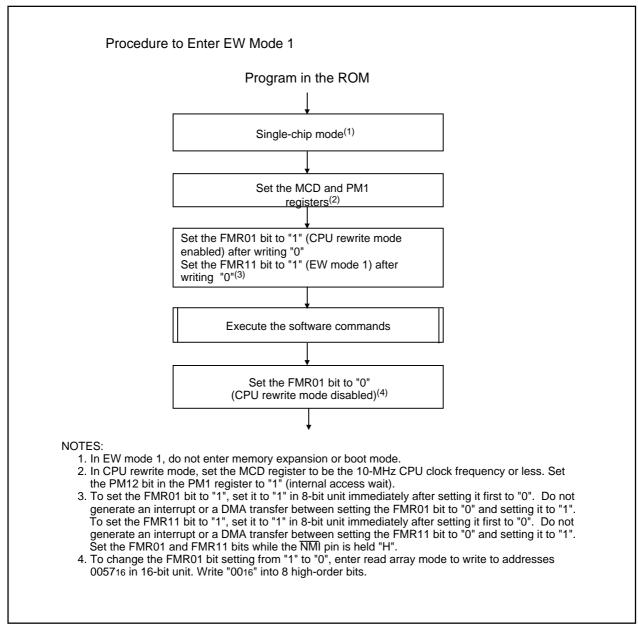


Figure 25.7 How to Enter and Exit EW Mode 1

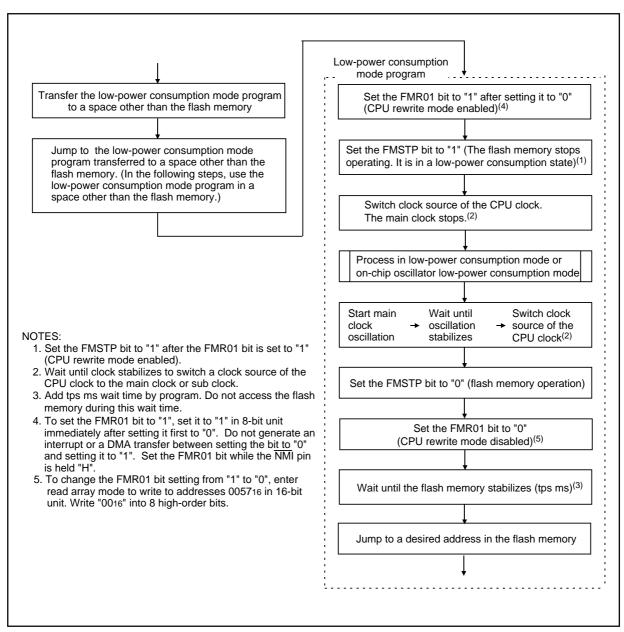


Figure 25.8 Handling Before and After Low Power Consumption Mode

25.3.4 Precautions in CPU Rewrite Mode

25.3.4.1 Operating Speed

Set the MCD4 to MCD0 bits in the MCD register to CPU clock frequency of 10 MHz or less before entering CPU rewrite mode (EW mode 0 or EW mode 1). Also, set the PM12 bit in the PM1 register to "1" (wait state).

25.3.4.2 Prohibited Instructions

The following instructions cannot be used in EW mode 0 because the CPU tries to read data in the flash memory: the UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction.

25.3.4.3 Interrupts (EW Mode 0)

- To use interrupts having vectors in a relocatable vector table, the vectors must be relocated to the RAM area.
- The NMI and watchdog timer interrupts are available since the FMR0 and FMR1 registers are forcibly reset when either interrupt occurs. Allocate the forward addresses for each interrupt routine to the fixed vector table. Flash memory rewrite operation is aborted when the NMI or watchdog timer interrupt occurs. Execute the rewrite program again after exiting the interrupt routine.
- The address match interrupt is not available since the CPU tries to read data in the flash memory.

25.3.4.4 Interrupts (EW Mode 1)

- Do not acknowledge any interrupts with vectors in the relocatable vector table or address match interrupt during the auto program or auto erase period.
- Do not use the watchdog timer interrupt.
- The NMI interrupt is available since the FMR0 and FMR1 registers are forcibly reset when either interrupt occurs. Allocate the forward address for the interrupt routine to the fixed vector table. Flash memory rewrite operation is aborted when the NMI interrupt occurs. Execute the rewrite program again after exiting the interrupt routine.

25.3.4.5 How to Access

To set the FMR01, FMR02 in the FMR0 register or FMR11 bit in the FMR1 register to "1", set to "1" in 8-bit units immediately after setting to "0". Do not generate an interrupt or a DMA transfer between the instruction to set the bit to "0" and the instruction to set the bit to "1". Set the bit while a high-level ("H") signal is applied to the NMI pin.

To change the FMR01 bit from "1" to "0", enter read array mode first, and write into address 005716 in 16-bit units. Eight high-order bits must be set to "0016".

25.3.4.6 Rewriting in the User ROM Area (EW Mode 0)

If the supply voltage drops while rewriting the block where the rewrite control program is stored, the flash memory cannot be rewritten because the rewrite control program is not rewritten as expected. If this error occurs, rewrite the user ROM area while in standard serial I/O mode or parallel I/O mode.

25.3.4.7 Rewriting in the User ROM Area (EW Mode 1)

Do not rewrite the block where the rewrite control program is stored.

25.3.4.8 DMA Transfer

In EW mode 1, do not generate a DMA transfer while the FMR00 bit in the FMR0 register is set to "0" (busy-programming or erasing).

25.2.4.9 Writing Command and Data

Write commands and data to even addresses in the user ROM area.

25.3.4.10 Wait Mode

When entering wait mode, set the FMR01 bit in the FMR0 register to "0" (CPU rewrite mode disabled) before executing the WAIT instruction.

25.3.4.11 Stop Mode

When entering stop mode, the following settings are required:

- Set the FMR01 bit to "0" (CPU rewrite mode disabled). Disable a DMA transfer before setting the CM10 bit to "1" (stop mode).
- Execute the instruction to set the CM10 bit to "1" (stop mode) and then the JMP.B instruction.

0, CM1 ; Stop mode e.g., **BSET** JMP.B L1 L1:

Program after exiting stop mode

25.3.4.12 Low-Power Consumption Mode and On-Chip Oscillator Low-Power Consumption Mode

If the CM05 bit is set to "1" (main clock stopped), do not execute the following commands:

- Program
- Block erase
- Erase all unlocked blocks
- Lock bit program
- · Read lock bit status

25.3.5 Software Commands

Read or write 16-bit commands and data from or to even addresses in the user ROM area, in 16-bit units. When writing a command code, 8 high-order bits (D₁₅ to D₈) are ignored.

Table 25.4 Software Commands

Command	First Bus Cycle		Second Bus Cycle			
	Mode	Address	Data (D ₁₅ to D ₀)	Mode	Address	Data (D ₁₅ to D ₀)
Read Array	Write	X	xxFF16			
Read Status Register	Write	X	xx7016	Read	X	SRD
Clear Status Register	Write	Х	xx5016			
Program	Write	WA	xx4016	Write	WA	WD
Block Erase	Write	Х	xx2016	Write	ВА	xxD016
Erase All Unlocked Block(1)	Write	Х	xxA716	Write	X	xxD016
Lock Bit Program	Write	ВА	xx7716	Write	ВА	xxD016
Read Lock Bit Status	Write	Х	xx7116	Write	ВА	xxD016

NOTES:

1. Blocks 0 to 12 can be erased by the erase all unlocked block command.

Block A cannot be erased. The block erase command must be used to erase the block A.

SRD: Data in the SRD register (D7 to D0)

Address to be written (The address specified in the the first bus cycle is the same even address WA:

as the address specified in the second bus cycle.)

WD: 16-bit write data

BA: Highest-order block address (must be an even address)

X: Any even address in the user ROM space 8 high-order bits of command code (ignored) XX.

25.3.5.1 Read Array Command

The read array command reads the flash memory.

Read array mode is entered by writing command code "xxFF16" in the first bus cycle. Content of a specified address can be read in 16-bit units after the next bus cycle.

The microcomputer remains in read array mode until another command is written. Therefore, contents from multiple addresses can be read consecutively.

25.3.5.2 Read Status Register Command

The read status register command reads the SRD register (refer to 25.3.7 Status Register for detail). By writing command code "xx7016" in the first bus cycle, the SRD register can be read in the second bus cycle. Read an even address in the user ROM area.

Do not execute this command in EW mode 1.

25.3.5.3 Clear Status Register Command

The clear status register command clears the SRD register. By writing "xx5016" in the first bus cycle, the FMR07 and FMR06 bits in the FMR0 register are set to "002" and the SR5 and SR4 bits in the SRD register are set to "002".

25.3.5.4 Program Command

The program command writes 1-word, or 2-byte, data to the flash memory.

Auto program operation (data program and verify) will start by writing command code "xx4016" in the first bus cycle and data to the write address in the second bus cycle. The address value specified in the first bus cycle must be the same even address as the write address specified in the second bus cycle.

The FMR00 bit in the FMR0 register indicates whether or not an auto program operation has been completed. The FMR00 bit is set to "0" (busy) during auto program and to "1" (ready) when the auto program operation is completed.

After the completion of auto program operation, the FMR06 bit in the FMR0 register indicates whether or not the auto program operation has been completed as expected. (Refer to **25.3.8 Full Status Check**.)

An address that is already written cannot be altered or rewritten.

Figure 25.9 shows a flow chart of the program command programming.

The lock bit can protect each block from being programmed inadvertently. (Refer to **25.3.6 Data Protect Function**.)

In EW mode 1, do not execute this command on the block where the rewrite control program is allocated. In EW mode 0, the microcomputer enters read status register mode as soon as an auto program operation starts. The SRD register can be read. The SR7 bit in the SRD register is set to "0" at the same time an auto program operation starts. It is set to "1" when an auto program operation is completed. The microcomputer remains in read status register mode until the read array command is written. After completion of an auto program operation, the SRD register indicates whether or not the auto program operation has been completed as expected.

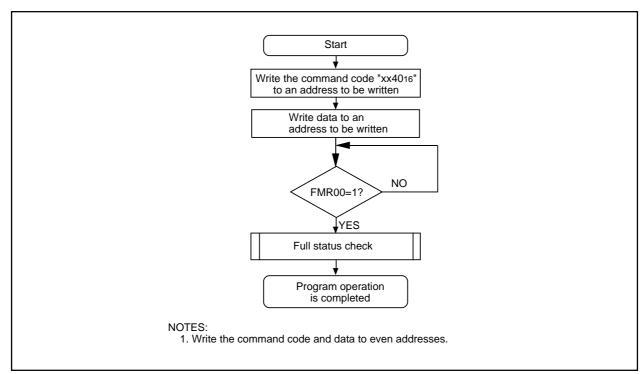


Figure 25.9 Program Command

25.3.5.5 Block Erase Command

The block erase command erases each block.

Auto erase operation (erase and verify) will start in the specified block by writing command code "xx2016" in the first bus cycle and "xxD016" to the highest-order even address of a block in the second bus cycle.

The FMR00 bit in the FMR0 register indicates whether or not an auto erase operation has been completed. The FMR00 bit is set to "0" (busy) during auto erase and to "1" (ready) when the auto erase operation is completed.

After the completion of an auto erase operation, the FMR07 bit in the FMR0 register indicates whether or not the auto erase operation has been completed as expected. (Refer to 25.3.8 Full Status Check.)

Figure 25.10 shows a flow chart of the block erase command programming.

The lock bit can protect each block from being programmed inadvertently. (Refer to 25.3.6 Data **Protect Function.**)

In EW mode 1, do not execute this command on the block where the rewrite control program is allocated. In EW mode 0, the microcomputer enters read status register mode as soon as an auto erase operation starts. The SRD register can be read. The SR7 bit in the SRD register is set to "0" at the same time an auto erase operation starts. It is set to "1" when an auto erase operation is completed. The microcomputer remains in read status register mode until the read array command or read lock bit status command is written.

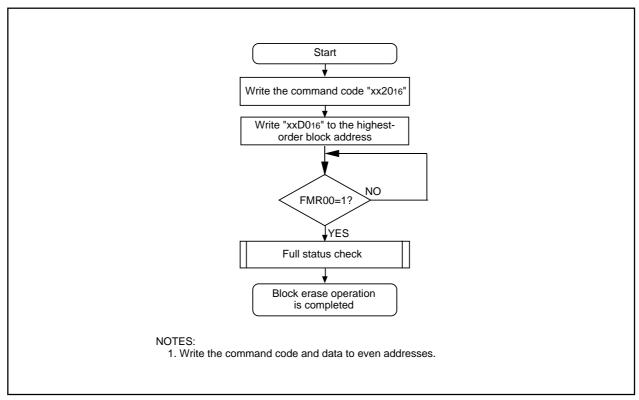


Figure 25.10 Block Erase Command

25.3.5.6 Erase All Unlocked Block Command

The erase all unlocked block command erases all blocks except the block A.

By writing command code "xxA716" in the first bus cycle and "xxD016" in the second bus cycle, auto erase (erase and verify) operation will run continuously in all blocks except the block A.

The FMR00 bit in the FMR0 register indicates whether or not an auto erase operation has been completed.

After the completion of an auto erase operation, the FMR07 bit in the FMR0 register indicates whether or not the auto erase operation has been completed as expected.

The lock bit can protect each block from being programmed inadvertently. (Refer to 25.3.6 Data **Protect Function.**)

In EW mode 1, do not execute this command when the lock bit for any block storing the rewrite control program is set to "1" (unlocked) or when the FMR02 bit in the FMR0 register is set to "1" (lock bit disabled).

In EW mode 0, the microcomputer enters read status register mode as soon as an auto erase operation starts. The SRD register can be read. The SR7 bit in the SRD register is set to "0" (busy) at the same time an auto erase operation starts. It is set to "1" (ready) when an auto erase operation is completed. The microcomputer remains in read status register mode until the read array command or read lock bit status command is written.

Only blocks 0 to 12 can be erased by the erase all unlocked block command. The block A cannot be erased. Use the block erase command to erase the block A.

25.3.5.7 Lock Bit Program Command

The lock bit program command sets the lock bit for a specified block to "0" (locked).

By writing command code "xx7716" in the first bus cycle and "xxD016" to the highest-order even address of a block in the second bus cycle, the lock bit for the specified block is set to "0". The address value specified in the first bus cycle must be the same highest-order even address of a block specified in the second bus cycle.

Figure 25.11 shows a flow chart of the lock bit program command programming. Execute read lock bit status command to read lock bit state (lock bit data).

The FMR00 bit in the FMR0 register indicates whether a lock bit program operation is completed.

Refer to 25.3.6 Data Protect Function for details on lock bit functions and how to set it to "1" (unlocked).

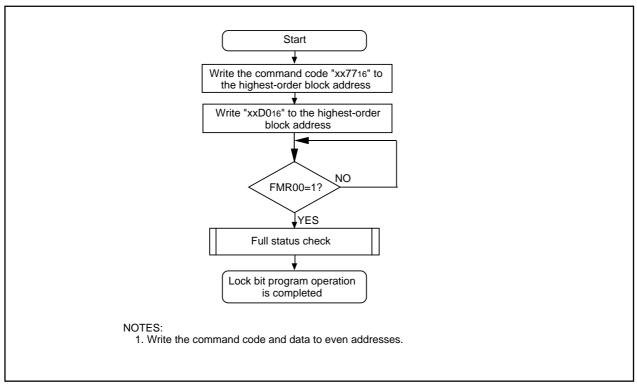


Figure 25.11 Lock Bit Program Command

25.3.5.8 Read Lock Bit Status Command

The read lock bit status command reads the lock bit state (the lock bit data) of a specified block.

By writing command code "xx7116" in the first bus cycle and "xxD016" to the highest-order even address of a block in the second bus cycle, the FMR16 bit in the FMR1 register stores information on whether or not the lock bit of a specified block is locked. Read the FMR16 bit after the FMR00 bit in the FMR0 register is set to "1" (ready).

Figure 25.12 shows a flow chart of the read lock bit status command programming.

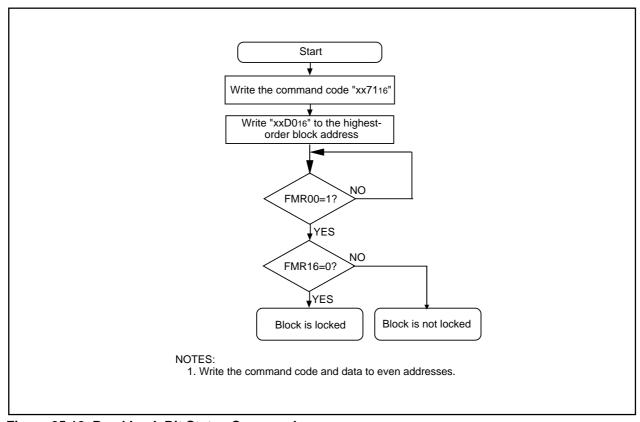


Figure 25.12 Read Lock Bit Status Command

25.3.6 Data Protect Function

Each block in the flash memory has a nonvolatile lock bit. The lock bit is enabled by setting the FMR02 bit to "0" (lock bit enabled). The lock bit individually protects (locks) each block against program and erase. This prevents data from being inadvertently written to or erased from the flash memory.

- When the lock bit status is set to "0", the block is locked (block is protected against program and erase).
- When the lock bit status is set to "1", the block is not locked (block can be programmed or erased).

The lock bit status is set to "0" (locked) by executing the lock bit program command and to "1" (unlocked) by erasing the block. The lock bit status cannot be set to "1" by any commands.

The lock bit status can be read by the read lock bit status command.

The lock bit function is disabled by setting the FMR02 bit to "1". All blocks are unlocked. However, individual lock bit status remains unchanged. The lock bit function is enabled by setting the FMR02 bit to "0". Lock bit status is retained.

If the block erase or erase all unlocked block command is executed while the FMR02 bit is set to "1", the target block or all blocks are erased regardless of lock bit status. The lock bit status of each block are set to "1" after an erase operation is completed.

Refer to 25.3.5 Software Commands for details on each command.

25.3.7 Status Register (SRD Register)

The SRD register indicates the flash memory operating state and whether or not an erase or program operation is completed as expected. The FMR00, FMR06 and FMR07 bits in the FMR0 register indicate SRD register states.

Table 25.5 shows the SRD register.

In EW mode 0, the SRD register can be read when the followings occur.

- Any even address in the user ROM area is read after writing the read status register command
- Any even address in the user ROM area is read from when the program, block erase, erase all unlocked block, or lock bit program command is executed until when the read array command is executed.

25.3.7.1 Sequencer Status (SR7 and FMR00 Bits)

The sequencer status indicates the flash memory operating state. It is set to "0" while the program, block erase, erase all unlocked block, lock bit program, or read lock bit status command is being executed; otherwise, it is set to "1".

25.3.7.2 Erase Status (SR5 and FMR07 Bits)

Refer to 25.3.8 Full Status Check.

25.3.7.3 Program Status (SR4 and FMR06 Bits)

Refer to 25.3.8 Full Status Check.

Table 25.5 Status Register

Bits in SRD	Bits in FMR0	Status	Status Definition			
register	Register	Name	"0"	"1"	after Reset	
SR7 (D7)	FMR00	Sequencer status	BUSY	READY	1	
SR6 (D6)		Reserved bit	-	-	-	
SR5 (D5)	FMR07 ⁽¹⁾	Erase status	Successfully completed	Error	0	
SR4 (D4)	FMR06 ⁽¹⁾	Program status	Successfully completed	Error	0	
SR3 (D3)		Reserved bit	-	-	-	
SR2 (D2)		Reserved bit	-	-	-	
SR1 (D1)		Reserved bit	-	-	-	
SR0 (D0)		Reserved bit	-	-	-	

Do to D7: These data buses are read when the read status register command is executed. NOTES:

1. The FMR07 (SR5) and FMR06 (SR4) bits are set to "0" by executing the clear status register command. When the FMR07 (SR5) or FMR06 (SR4) bit is set to "1", the program, block erase, erase all unlocked block and lock bit program commands are not accepted.

25.3.8 Full Status Check

If an error occurs when a program or erase operation is completed, the FMR07 and FMR06 bits in the FMR0 register are set to "1", indicating a specific error. Therefore, execution results can be confirmed by verifying these bits (full status check).

Table 25.6 lists errors and FMR0 register state. Figure 25.13 shows a flow chart of the full status check and handling procedure for each error.

Table 25.6 Errors and FMR0 Register State

(SRD F	FMR0 Register (SRD Register) State		Error Occurrence Conditions
FMR07	FMR06		
(SR5)	(SR4)		
1	1	Command	An incorrect command is written
		sequence error	• A value other than "xxD016" or "xxFF16" is written in the second
			bus cycle of the lock bit program, block erase or erase all unlocked block command ⁽¹⁾
1	0	Erase error	• The block erase command is executed on a locked block ⁽²⁾
			• The block erase or erase all unlocked block command is ex-
			ecuted on an unlock block, but the erase operation is not com-
			pleted as expected
0	1	Program error	The program command is executed on locked blocks ⁽²⁾
			• The program command is executed on an unlocked block, but the
			program operation is not completed as expected
			• The lock bit program command is executed but the program op-
			eration is not completed as expected

NOTES:

- 1. The flash memory enters read array mode when command code "xxFF16" is written in the second bus cycle of these commands. The command code written in the first bus cycle becomes invalid.
- 2. When the FMR02 bit is set to "1" (lock bit disabled), no error occurs even under the conditions above.

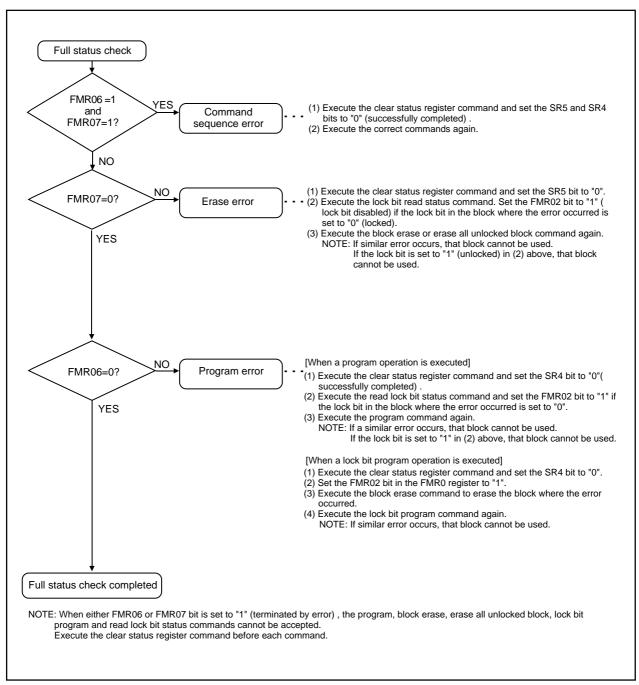


Figure 25.13 Full Status Check and Handling Procedure for Each Error

25.4 Standard Serial I/O Mode

In standard serial I/O mode, the serial programmer supporting the M32C/85 group (M32C/85, M32C/85T) can be used to rewrite the flash memory user ROM area, while the microcomputer is mounted on a board. For more information about the serial programmer, contact your serial programmer manufacturer. Refer to the user's manual included with your serial programmer for instructions.

Table 25.7 lists pin descriptions (flash memory standard serial I/O mode). Figures 25.14 to 25.16 show pin connections in serial I/O mode.

25.4.1 ID Code Verify Function

The ID code verify function determines whether or not the ID codes sent from the serial programmer matches those written in the flash memory. (Refer to 25.2 Functions to Prevent Flash Memory from Rewriting.)

Table 25.7 Pin Description (Flash Memory Standard Serial I/O Mode)

Symbol	Function	I/O Type	Supply Voltage	Description
Vcc	Power supply	I	_	Apply the guaranteed program/erase supply voltage to the Vcc1 pin.
Vss	input			Apply 0 V to the Vss pin
CNVss	CNVss	I	VCC1	Connect this pin to VCC1
RESET	Reset input	I	VCC1	Reset input pin. Apply 20 or more clock cycles to the XIN pin while "L'
	·			is applied to the RESET pin
XIN	Clock input	ı	VCC1	Connect a ceramic resonator or crystal oscillator between XIN
7	o.com.n.put		100.	and XOUT
Xout	Clock output	0	VCC1	To use the external clock, input the clock from XIN and leave XOUT
7001	Clock output		VCC1	•
BYTE	BYTE input	ı	VCC1	Open Connect this pin to Vss or Vcc1
		•	VCC1	<u> </u>
AVCC	Analog power	I	_	Connect AVcc to Vcc1
AVss	supply input			Connect AVss to Vss
VREF	Reference	I	_	Reference voltage input pin for the A/D converter
D0 / D0	voltage input			
P00 to P07	Input port P0	l	VCC2	Apply "H" or "L" to this pin, or leave open
P10 to P17	Input port P1	l ·	VCC2	Apply "H" or "L" to this pin, or leave open
P20 to P27	Input port P2	I	VCC2	Apply "H" or "L" to this pin, or leave open
P30 to P37	Input port P3	I	VCC2	Apply "H" or "L" to this pin, or leave open
P40 to P47	Input port P4	I	VCC2	Apply "H" or "L" to this pin, or leave open
P50	CE input	 	VCC2	Apply "H" to this pin
P55	EPM input	<u> </u>	VCC2	Apply "L" to this pin
P51 to P54	Input port P5	I	VCC2	Apply "H" or "L" to this pin, or leave open
P56, P57				
P60 to P63	Input port P6	 - - -	VCC1	Apply "H" or "L" to this pin, or leave open
P64	BUSY output	0	VCC1	Standard serial I/O mode 1: BUSY signal output pin
				Standard serial I/O mode 2: Program running verify monitor
			L	Standard serial I/O mode 3: Leave open
P65	SCLK input	_ ī _	VCC1	Standard serial I/O mode 1: Serial clock input pin
				Standard serial I/O mode 2, 3: Apply "L" to this pin
P66	RxD	I	VCC1	Standard serial I/O mode 1, 2: Serial data input pin
	Data input			Standard serial I/O mode 3: Apply "H" to this pin
P67	TxD	_ Ō _	VCC1	Standard serial I/O mode 1, 2: Serial data output pin
	Data output			Standard serial I/O mode 3: Leave open
P70 to P75	Input port P7	ı	VCC1	Apply "H" or "L" to this pin, or leave open
P76	CAN output	_ o _	VCC1	Standard serial I/O mode 1, 2: Apply "H" or "L" to this pin, or leave open
				Standard serial I/O mode 3: CAN output pin
P77	CAN input		VCC1	Standard serial I/O mode 1, 2: Apply "H" or "L" to this pin, or leave open
				Standard serial I/O mode 3: CAN input pin
P80 to P84	Input port P8	ı	VCC1	Apply "H" or "L" to this pin, or leave open
P86, P87	• •			
P85	NMI input	- - -	VCC1	Connect this pin to Vcc1
P90 to P97	Input port P9	ı	VCC1	Apply "H" or "L" to this pin, or leave open
P100 to P107	Input port P10	ı	VCC1	Apply "H" or "L" to this pin, or leave open
P110 to P114	Input port P11	i	VCC2	Apply "H" or "L" to this pin, or leave open ⁽¹⁾
P120 to P127	Input port P12	ı	VCC2	Apply "H" or "L" to this pin, or leave open ⁽¹⁾
P130 to P137	Input port P13	ı	VCC2	Apply "H" or "L" to this pin, or leave open ⁽¹⁾
P140 to P146	Input port P14	1	VCC2	Apply "H" or "L" to this pin, or leave open ⁽¹⁾
	πιραιρυπ ΓΙ4		I VUUT	I ADDIV II OI L IO IIIIO DIII. UI IEAVE UDEII''

NOTES:

1. These pins are provided in the 144-pin package only.

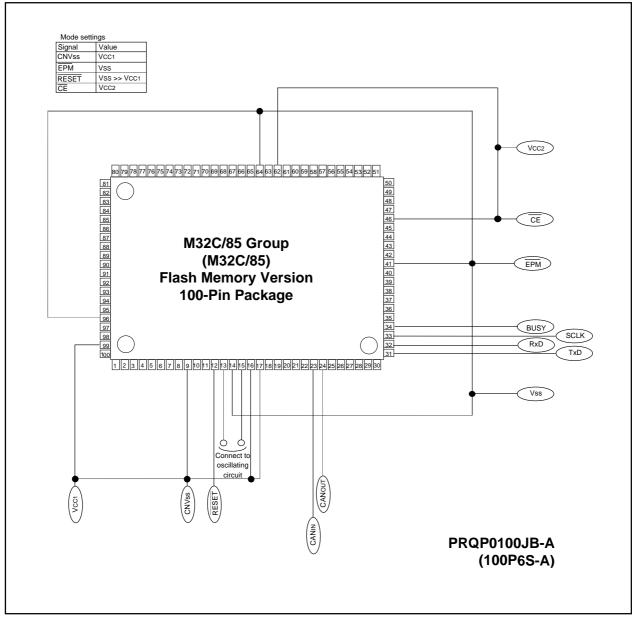


Figure 25.14 Pin Connections in Standard Serial I/O Mode (1)

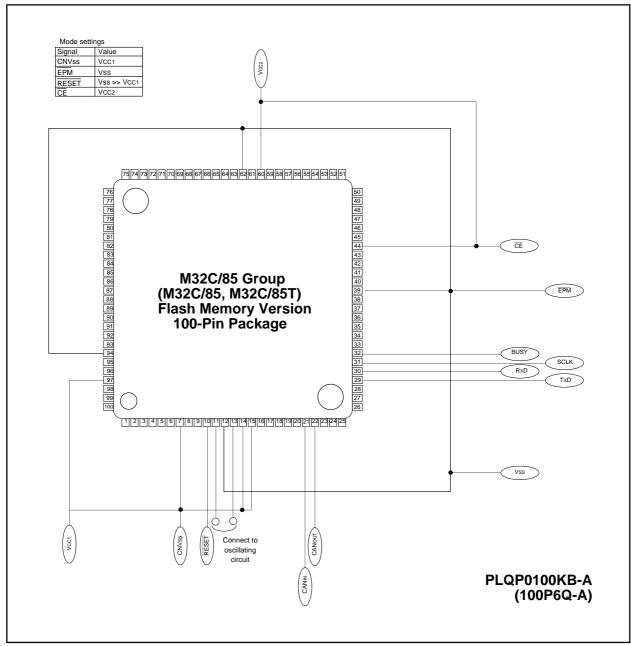


Figure 25.15 Pin Connections in Standard Serial I/O Mode (2)

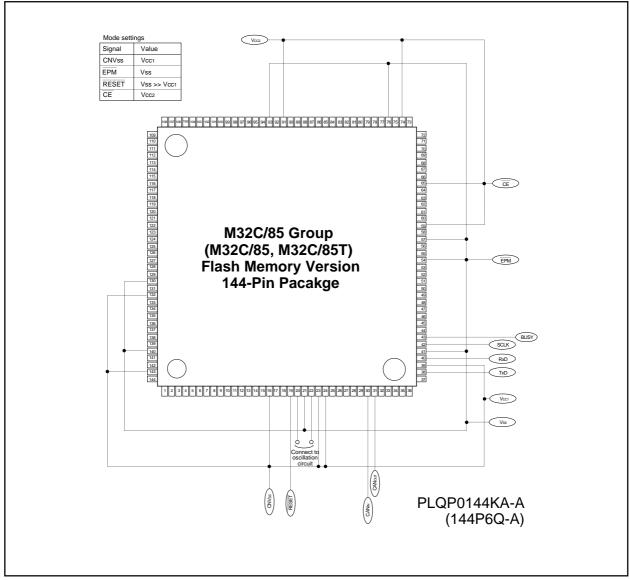


Figure 25.16 Pin Connections in Standard Serial I/O Mode (3)

25.4.2 Circuit Application in Standard Serial I/O Mode

Figure 25.17 shows an example of a circuit application in standard serial I/O mode 1. Figure 25.18 shows an example of a circuit application serial I/O mode 2. Figure 25.19 shows an example of a circuit application serial I/O mode 3. Refer to the user's manual of your serial programmer to handle pins controlled by the serial programmer.

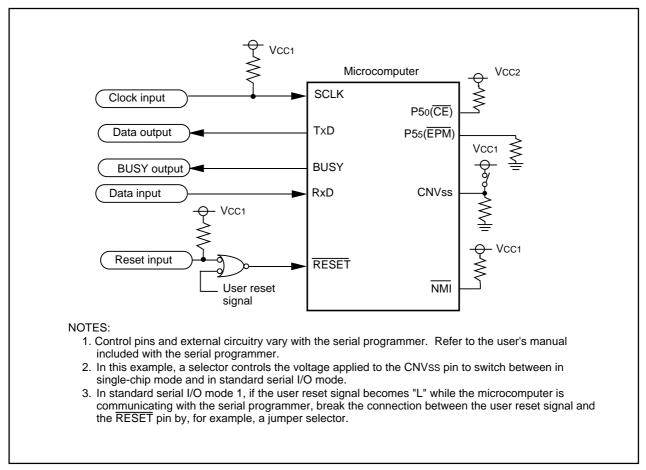


Figure 25.17 Circuit Application in Standard Serial I/O Mode 1

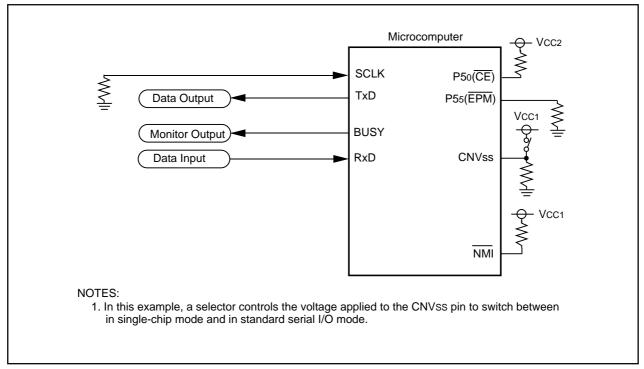


Figure 25.18 Circuit Application in Standard Serial I/O Mode 2

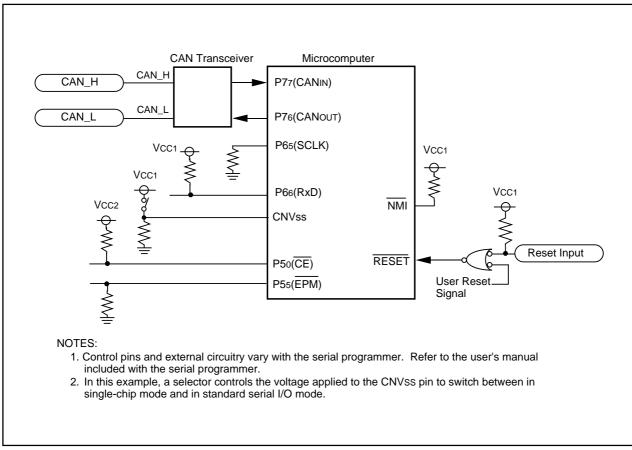


Figure 25.19 Circuit Application in Standard Serial I/O Mode 3

25.5 Parallel I/O Mode

In parallel I/O mode, the user ROM area and the boot ROM area can be rewritten by a parallel programmer supporting the M32C/85 Group (M32C/85, M32C/85T). Contact your parallel programmer manufacturer for more information on the parallel programmer. Refer to the user's manual included with your parallel programmer for instructions.

25.5.1 Boot ROM Area

An erase block operation in the boot ROM area is applied to only one 4-Kbyte block. The rewrite control program in standard serial I/O mode is written in the boot ROM area before shipment. Do not rewrite the boot ROM area if using the serial programmer.

In parallel I/O mode, the boot ROM area is located in addresses FFF00016 to FFFFF16. Rewrite this address range only if rewriting the boot ROM area. (Do not access addresses other than addresses FFF00016 to FFFFF16.)

25.5.2 ROM Code Protect Function

The ROM code protect function prevents the flash memory from being read and rewritten in parallel I/O mode. (Refer to **25.2 Functions to Prevent Flash Memory from Rewriting**.)

26. Electrical Characteristics

26.1 Electrical Characteristics (M32C/85)

Table 26.1 Absolute Maximum Ratings

Symbol		Parameter	Condition	Value	Unit
VCC1, VCC2	Supply Voltage		Vcc1=AVcc	-0.3 to 6.0	V
Vcc2	Supply Voltage		-	-0.3 to Vcc1	V
AVcc	Analog Supply V	'oltage	Vcc1=AVcc	-0.3 to 6.0	V
Vı	Input Voltage	RESET, CNVss, BYTE, P60-P67, P72-P77, P80-P87, P90-P97, P100-P107, P140-P146, P150-P157 ⁽¹⁾ , VREF, XIN		-0.3 to Vcc1+0.3	V
		P00-P07, P10-P17, P20-P27, P30-P37, P40- P47, P50-P57, P110-P114, P120-P127, P130- P137 ⁽¹⁾		-0.3 to Vcc2+0.3	
		P70, P71		-0.3 to 6.0	
Vo	Output Voltage	P60-P67, P72-P77, P80-P84, P86, P87, P90- P97, P100-P107, P140-P146, P150-P157 ⁽¹⁾ , XOUT		-0.3 to Vcc1+0.3	V
		P00-P07, P10-P17, P20-P27, P30-P37, P40- P47, P50-P57, P110-P114, P120-P127, P130- P137 ⁽¹⁾		-0.3 to Vcc2+0.3	
		P7 ₀ , P7 ₁		-0.3 to 6.0	1
Pd	Power Dissipation	n	Topr=25° C	500	mW
Topr	Operating Ambient	erating during CPU operation		-20 to 85/ -40 to 85 ⁽²⁾	° C
Topr	Temperature	during flash memory program and erase operation		0 to 60	
Tstg	Storage Temper	ature		-65 to 150	° C

NOTES:

^{1.} P11 to P15 are provided in the 144-pin package only.

^{2.} Contact Renesas Technology Sales Co., Ltd, if temperature range of -40 to 85° C is required.

Table 26.2 Recommended Operating Conditions
(VCC1= VCC2=3.0V to 5.5V at Topr=- 20 to 85°C unless otherwise specified)

Cumbal	Parameter			Standa	rd	Unit
Symbol			Min.	Тур.	Max.	Unit
VCC1, VCC2	Supply Voltage (V	CC1≥ VCC2)	3.0	5.0	5.5	V
AVcc	Analog Supply Vo	Itage		Vcc1		V
Vss	Supply Voltage			0		V
AVss	Analog Supply Vo	Itage		0		V
ViH	Input High ("H") Voltage	P20-P27, P30-P37, P40-P47, P50-P57, P110-P114, P120- P127, P130-P137 ⁽⁴⁾	0.8Vcc2		Vcc2	V
		P60-P67, P72-P77, P80-P87 ⁽³⁾ , P90-P97, P100-P107, P140- P146, P150-P157 ⁽⁴⁾ , XIN, RESET, CNVss, BYTE	0.8Vcc1		Vcc1	
		P7 ₀ , P7 ₁	0.8Vcc1		6.0	
		P00-P07, P10-P17 (in single-chip mode)	0.8Vcc2		Vcc2	
		P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ (in memory expansion mode and microprocesor mode)	0.5Vcc2		Vcc2	
VIL	Input Low ("L") Voltage	P20-P27, P30-P37, P40-P47, P50-P57, P110-P114, P120- P127, P130-P137 ⁽⁴⁾	0		0.2Vcc2	V
		P60-P67, P70-P77, P80-P87 ⁽³⁾ , P90-P97, P100-P107, P140- P146, P150-P157 ⁽⁴⁾ , XIN, RESET, CNVss, BYTE	0		0.2Vcc1	
		P0o-P07, P1o-P17 (in single-chip mode)	0		0.2Vcc2	
		P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ (in memory expansion mode and microprocesor mode)	0		0.16Vcc2	
IOH(peak)	Peak Output High ("H") Current ⁽²⁾	P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60-P67, P72-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110-P114, P120-P127, P130-P137, P140-P146, P150-P157 ⁽⁴⁾			-10.0	mA
IOH(avg)	Average Output High ("H") Current ⁽¹⁾	P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60-P67, P72-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110-P114, P120-P127, P130-P137, P140-P146, P150-P157 ⁽⁴⁾			-5.0	mA
I _{OL(peak)}	Peak Output Low ("L") Current ⁽²⁾	P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60-P67, P70-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110-P114, P120-P127, P130-P137, P140-P146, P150-P157 ⁽⁴⁾			10.0	mA
lOL(avg)	Average Output Low ("L") Current ⁽¹⁾	P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60-P67, P70-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110-P114, P120-P127, P130-P137, P140-P146, P150-P157 ⁽⁴⁾			5.0	mA

NOTES:

- 1. Typical values when average output current is 100ms.
- 2. Total IoL(peak) for P0, P1, P2, P86, P87, P9, P10, P11, P14 and P15 must be 80mA or less.

Total IoL(peak) for P3, P4, P5, P6, P7, P80 to P84, P12 and P13 must be 80mA or less.

Total IoH(peak) for P0, P1, P2, and P11 must be -40mA or less.

Total IoH(peak) for P86, P87, P9, P10, P14 and P15 must be -40mA or less.

Total IOH(peak) for P3, P4, P5, P12 and P13 must be -40mA or less.

Total IoH(peak) for P6, P7, and P80 to P84 must be -40mA or less.

- 3. V_{IH} and V_{IL} reference for P8₇ applies when P8₇ is used as a programmable input port. It does not apply when P8₇ is used as XC_{IN}.
- 4. P11 to P15 are provided in the 144-pin package only.

Table 26.2 Recommended Operating Conditions (Continued) (VCC1=VCC2=3.0V to 5.5V at Topr=-20 to 85°C unless otherwise specified)

Cumbal	Doromotor	Parameter			Standard			
Symbol	Farameter		Min.	Тур.	yp. Max. 32 24 32 24	Unit		
f(BCLK)	CPU Clock Frequency	Vcc1=4.2 to 5.5V	0		32	MHz		
		Vcc1=3.0 to 5.5V	0		24	MHz		
f(XIN)	Main Clock Input Frequency	Vcc1=4.2 to 5.5V	0		32	MHz		
		Vcc1=3.0 to 5.5V	0		24 [MHz		
f(Xcin)	Sub Clock Frequency			32.768	50	kHz		
f(Ring)	On-chip Oscillator Frequency (Vcc1=Vcc2=5.0V, Top	or=25° C)	0.5	1	2	MHz		
f(PLL)	PLL Clock Frequency	Vcc1=4.2 to 5.5V	10		32	MHz		
		Vcc1=3.0 to 5.5V	10		24	MHz		
tsu(PLL)	Wait Time to Stabilize PLL Frequency Synthesizer	Vcc1=5.0V			5	ms		
		Vcc1=3.3V			10	ms		

Table 26.3 Electrical Characteristics (VCC1=VCC2=4.2 to 5.5V, Vss=0V at Topr= -20 to 85°C, f(BCLK)=32MHz unless otherwise specified)

Symbol		Parameter			ndition	St	andard	I	Unit
Symbol		Faiailletei			indition	Min.	Тур.	Max.	Offic
Vон	Output High ("H") Voltage	P00-P07, P10-P17, P20- P50-P57, P110-P114, P1		Iон=-5r	nA	Vcc2-2.0		Vcc2	V
					nA	Vcc1-2.0		Vcc1	1
		P97, P100-P107, P140-F		1011- 01		VCC1-2.0		****	
		P00-P07, P10-P17, P20-		Іон=-20	ΩιιΑ	Vcc2-0.3		Vcc2	V
		P50-P57, P110-P114, P1			, oper .	VCC2-0.3			
		P60-P67, P72-P77, P80-	· · · · · · · · · · · · · · · · · · ·	Іон=-20)Ou.A	Vcc1-0.3		Vcc1	1
		P97, P100-P107,P140-P				VCC1-0.3			
		Хоит		Iон=-1r	nA	3.0		Vcc1	V
		Хсоит	High Power	No loa	d applied		2.5		V
			Low Power	No loa	d applied		1.6		1
Vol	Output Low ("L")	P00-P07, P10-P17, P20-		loL=5m	A			2.0	V
	Voltage	P50-P57, P60-P67, P70-							
		P87, P90-P97, P100-P10							
		P127, P130-P137, P140-							
		P00-P07, P10-P17, P20-	P27, P30-P37, P40-P47,	IoL=200)μA			0.45	V
		P50-P57, P60-P67, P70-	P77, P80-P84, P86,						
		P87, P90-P97, P100-P10)7, P110-P114, P120-						
		P127, P130-P137, P140-	-P146, P150-P157 ⁽¹⁾						
		Хоит		loL=1m	A			2.0	V
		Хсоит	High Power	No loa	d applied		0		V
		Low Power No load applied 0							
VT+-VT-	Hysteresis	HOLD, RDY, TA0in-TA	⊥ 4in, TB0in-TB5in,			0.2		1.0	V
		INTO-INT5, ADTRG, CTS							
		TA0out-TA4out, NMI, F							
		SCL0-SCL4, SDA0-SD	A4						
		RESET				0.2		1.8	V
Іін	Input High ("H")	P00-P07, P10-P17, P20-	P27, P30-P37, P40-P47,	Vı=5V				5.0	μА
	Current	P50-P57, P60-P67, P70-	P77, P80-P87, P90-P97,						
		P100-P107, P110-P114,	P120-P127, P130-						
		P137, P140-P146, P150-	-P157 ⁽¹⁾ , XIN, RESET,						
		CNVss, BYTE							
lı∟	Input Low ("L")	P00-P07, P10-P17, P20-	P27, P30-P37, P40-P47,	VI=0V				-5.0	μΑ
	Current	P50-P57, P60-P67, P70-	P77, P80-P87, P90-P97,						
		P100-P107, P110-P114,	P120-P127, P130-						
		P137, P140-P146, P150-	-P157 ⁽¹⁾ , XIN, RESET,						
		CNVss, BYTE							
RPULLUP	Pull-up Resistance	P00-P07, P10-P17, P20-	P27, P30-P37, P40-P47,	VI=0V	Flash	30	50	167	kΩ
		P50-P57, P60-P67, P72-	P77, P80-P84, P86,		Memory				
		P87, P90-P97, P100-P107, P110-P114, P120-		Masked	20	40	167		
		P127, P130-P137, P140-P146, P150-P157 ⁽¹⁾					<u> </u>		
Rfxin	Feedback Resistance	XIN					1.5		МΩ
Rfxcin	Feedback Resistance	Xcin					10		MΩ
Vram	RAM Standby Voltage	In stop mode				2.0			V

NOTES:

1. P11 to P15 are provided in the 144-pin package only.

Table 26.3 Electrical Characteristics (Continued)

(VCC1=VCC2=4.2 to 5.5V, Vss=0V at Topr= -20 to 85°C, f(BCLK)=32MHz unless otherwise specified)

Symbol	Parameter		Measurement Condition		Standard			Unit
Symbol	Farameter		Measurement Condition		Min.	Тур.	Max.	Offic
Icc	Power Supply Current	mode, output pins No division			28	45	mA	
		other nine are	oins are cited to Vss. In low-power consumption mode, Program running on ROM	Flash Memory		430		μΑ
		connected to vas.		Masked ROM		25		
			f(BCLK)=32 kHz, In low-power consumption mode, Program running on RAM ⁽¹⁾			25		μА
			f(BCLK)=32 kHz, In wait mode, Top	or=25° C		10		μΑ
			While clock stops, Topr=25° C			8.0	5	μΑ
			While clock stops, Topr=85° C				50	μΑ

NOTES:

^{1.} Value is obtained when setting the FMSTP bit in the FMR0 register to "1" (flash memory stopped).

Table 26.4 A/D Conversion Characteristics (Vcc1=Vcc2=AVcc=VREF=4.2 to 5.5V, Vss= AVss = 0V at Topr=-20 to 85°C, f(BCLK) = 32MHz unless otherwise specified)

Symbol	Parameter	Measurement Condition		Standard			Unit
Symbol	raiametei	ivicasuren	ient Condition	Min.	Тур.	Max.	Offic
-	Resolution	VREF=VCC1				10	Bits
		ANo to AN7, AN0o to AN07, AN2o to AN27,		±3		LSB	
INL	Integral Nonlinearity Error	VREF=VCC1=VCC2=5V	AN150 to AN157, ANEX0, ANEX1				LSB
			External op-amp			±7	LSB
			connection mode				LSB
DNL	Differential Nonlinearity Error		-			±1	LSB
-	Offset Error					±3	LSB
-	Gain Error					±3	LSB
RLADDER	Resistor Ladder	VREF=VCC1		8		40	kΩ
tconv	10-bit Conversion Time ^(1, 2)			2.06			μs
tconv	8-bit Conversion Time ^(1, 2)			1.75			μs
tsamp	Sampling Time ⁽¹⁾			0.188			μs
VREF	Reference Voltage			2		Vcc1	V
VIA	Analog Input Voltage			0		VREF	V

NOTES:

- 1. Divide f(XIN), if exceeding 16 MHz, to keep ϕ AD frequency at 16 MHz or less.
- 2. With using the sample and hold function.

Table 26.5 D/A Conversion Characteristics (VCC1=VCC2=VREF=4.2 to 5.5V, Vss=AVss=0V at Topr=-20 to 85°C, f(BCLK) = 32MHz unless otherwise specified)

Symbol	Parameter	Measurement Condition	(Unit		
Cymbol	r drameter	Wedsdrement Condition	Min.	Тур.	Max.	
-	Resolution				8	Bits
-	Absolute Accuracy				1.0	%
tsu	Setup Time				3	μs
Ro	Output Resistance		4	10	20	kΩ
IVREF	Reference Power Supply Input Current	(Note 1)			1.5	mA

NOTES:

1. Measurement when using one D/A converter. The DAi register (i=0, 1) of the D/A converter, not being used, is set to "0016". The resistor ladder in the A/D converter is excluded. IVREF flows even if the VCUT bit in the AD0CON1 register is set to "0" (no VREF connection).

Table 26.6 Flash Memory Version Electrical Characteristics (Vcc1=4.5 to 5.5V, 3.0 to 3.6V at Topr=0 to 60°C unless otherwise specified)

Symbol	Doromoto	Parameter				Unit
Symbol	Faramete	I	Min.	Тур.	Max.	Offic
-	Program and Erase Endurance ⁽²⁾		100			cycles
-	Word Program Time (Vcc1=5.0V, Topr=	Vord Program Time (Vcc1=5.0V, Topr=25° C)		25	200	μs
-	Lock Bit Program Time		25	200	μs	
-	Block Erase Time	4-Kbyte Block		0.3	4	S
	(Vcc1=5.0V, Topr=25° C)	8-Kbyte Block		0.3	4	S
		32-Kbyte Block		0.5	4	s
		64-Kbyte Block		0.8	4	s
-	All-Unlocked-Block Erase Time(1)				4 x <i>n</i>	s
tps	Wait Time to Stabilize Flash Memory C	ircuit			15	μs
-	Data Hold Time (Topr=-40 to 85 ° C)		10			years

NOTES:

- 1. ndenotes the number of block to be erased.
- 2. Number of program-erase cycles per block.

If Program and Erase Endurance is ncycle (n=100), each block can be erased and programmed ncycles. For example, if a 4-Kbyte block A is erased after programming a word data 2,048 times, each to a different address, this counts as one program and erase endurance. Data can not be programmed to the same address more than once without erasing the block. (rewrite prohibited).

Table 26.7 Voltage Detection Circuit Electrical Characteristics (VCC1=VCC2=3.0 to 5.5V, Vss=0V at Topr=25°C unless otherwise specified)

Symbol	Parameter	Measurement Condition	5	Unit		
- Cynnon	T didinotor	Wododiomoni Condition	Min.	Тур.	Max.	0
Vdet4	Low Voltage Detection Voltage ⁽¹⁾			3.8		V
Vdet3	Reset Space Detection Voltage ⁽¹⁾	Vcc1=3.0 to 5.5V		3.0		V
Vdet3s	Low Voltage Reset Hold Voltage	VCC1=3.0 to 5.5 v	2.0			V
Vdet3r	Low Voltage Reset Release Voltage ⁽²⁾			3.1		V

NOTES:

- 1. Vdet4 > Vdet3
- 2. Vdet3r >Vdet3 is not guaranteed.

Table 26.8 Power Supply Timing

Symbol	Parameter	Measurement Condition	9	Standa	rd	Unit
	T didmotel		Min.	Тур.	Max.	
td(P-R)	Wait Time to Stabilize Internal Supply Voltage when Power-on	Vcc1=3.0 to 5.5V			2	ms
td(S-R)	Wait Time to Release Brown-out. Detection Reset	Vcc1=Vdet3r to 5.5V		6 ⁽¹⁾	20	ms
td(E-A)	Start-up Time for Low Voltage Detection Circuit Operation	Vcc1=3.0 to 5.5V			20	μs

NOTES:

1. Vcc1=5V

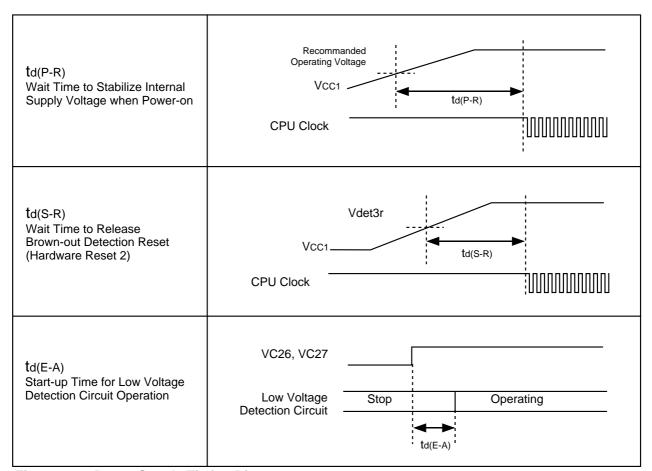


Figure 26.1 Power Supply Timing Diagram

Timing Requirements

(VCC1=VCC2=4.2 to 5.5V, Vss=0V at Topr=-20 to 85°C unless otherwise specified)

Table 26.9 External Clock Input

Symbol	Parameter	Stan	ndard	Unit
	Falanielei	Min.	Max.	
tc	External Clock Input Cycle Time	31.25		ns
tw(H)	External Clock Input High ("H") Width	13.75		ns
tw(L)	External Clock Input Low ("L") Width	13.75		ns
tr	External Clock Rise Time		5	ns
tf	External Clock Fall Time		5	ns

Table 26.10 Memory Expansion Mode and Microprocessor Mode

Symbol	Parameter	Star	ndard	Unit
Symbol	Falanielei	Min.	Max.	Offic
tac1(RD-DB)	Data Input Access Time (RD standard)		(Note 1)	ns
tac1(AD-DB)	Data Input Access Time (AD standard, CS standard)		(Note 1)	ns
tac2(RD-DB)	Data Input Access Time (RD standard, when accessing a space with the multiplexrd bus)		(Note 1)	ns
tac2(AD-DB)	Data Input Access Time (AD standard, when accessing a space with the multiplexed bus)		(Note 1)	ns
tsu(DB-BCLK)	Data Input Setup Time	26		ns
tsu(RDY-BCLK)	RDY Input Setup Time	26		ns
tsu(HOLD-BCLK)	HOLD Input Setup Time	30		ns
th(RD-DB)	Data Input Hold Time	0		ns
th(BCLK-RDY)	RDY Input Hold Time	0		ns
th(BCLK-HOLD)	HOLD Input Hold Time	0		ns
td(BCLK-HLDA)	HLDA Output Delay Time		25	ns

NOTES

1. Values can be obtained from the following equations, according to BCLK frequenccy and external bus cycles. Insert a wait state or lower the operation frequency, f(BCLK), if the calculated value is negative.

$$tac1(RD-DB) = \frac{10^9 \text{ X m}}{f(BCLK) \text{ X 2}} - 35 \qquad \text{[ns] (if external bus cycle is a} \phi + b \phi, m=(bx2)+1)$$

$$tac1(AD-DB) = \frac{10^9 \text{ X n}}{f(BCLK)} - 35 \qquad \text{[ns] (if external bus cycle is a} \phi + b \phi, n=a+b)$$

$$tac2(RD-DB) = \frac{10^9 \text{ X m}}{f(BCLK) \text{ X 2}} - 35 \qquad \text{[ns] (if external bus cycle is a} \phi + b \phi, m=(bx2)-1)$$

$$tac2(AD-DB) = \frac{10^9 \text{ X p}}{f(BCLK) \text{ X 2}} - 35 \qquad \text{[ns] (if external bus cycle is a} \phi + b \phi, p=\{(a+b-1)x2\}+1)$$

Timing Requirements

(VCC1=VCC2=4.2 to 5.5V, Vss=0V at Topr=-20 to 85°C unless otherwise specified)

Table 26.11 Timer A Input (Count Source Input in Event Counter Mode)

Symbol	Parameter	Stan	dard	Unit
	r didifictor	Min.	Max.	Onne
tc(TA)	TAin Input Cycle Time	100		ns
tw(TAH)	TAin Input High ("H") Width	40		ns
tw(TAL)	TAin Input Low ("L") Width	40		ns

Table 26.12 Timer A Input (Gate Input in Timer Mode)

Symbol	Davamatan	Stan	ndard	l lait
	Symbol	Parameter	Min.	Max.
tc(TA)	TAin Input Cycle Time	400		ns
tw(TAH)	TAin Input High ("H") Width	200		ns
tw(TAL)	TAin Input Low ("L") Width	200		ns

Table 26.13 Timer A Input (External Trigger Input in One-Shot Timer Mode)

Symbol	Parameter	Stan	dard	Unit
	Falanielei	Min.	Max.	
tc(TA)	TAin Input Cycle Time	200		ns
tw(TAH)	TAin Input High ("H") Width	100		ns
tw(TAL)	TAin Input Low ("L") Width	100		ns

Table 26.14 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter	Standard		Unit
	r didiffetet	Min.	Max.	
tw(TAH)	TAin Input High ("H") Width	100		ns
tw(TAL)	TAin Input Low ("L") Width	100		ns

Table 26.15 Timer A Input (Counter Increment/Decrement Input in Event Counter Mode)

Symbol	Parameter	Stan	ndard	Unit
	Falameter	Min.	Max.	Unit
tc(UP)	TAiout Input Cycle Time	2000		ns
tw(UPH)	TAio∪⊤ Input High ("H") Width	1000		ns
tw(UPL)	TAio∪⊤ Input Low ("L") Width	1000		ns
tsu(UP-TIN)	TAiout Input Setup Time	400		ns
th(TIN-UP)	TAiout Input Hold Time	400		ns

Timing Requirements

(VCC1 = VCC2 = 4.2 to 5.5V, VSS = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 26.16 Timer B Input (Count Source Input in Event Counter Mode)

Symbol	Parameter	Star	andard	Unit
	Faidilletei	Min.	Max.	
tc(TB)	TBiin Input Cycle Time (counted on one edge)	100		ns
tw(TBH)	TBin Input High ("H") Width (counted on one edge)	40		ns
tw(TBL)	TBin Input Low ("L") Width (counted on one edge)	40		ns
tc(TB)	TBiin Input Cycle Time (counted on both edges)	200		ns
tw(TBH)	TBiin Input High ("H") Width (counted on both edges)	80		ns
tw(TBL)	TBiin Input Low ("L") Width (counted on both edges)	80		ns

Table 26.17 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Stan	dard	Unit
	r didilielei	Min.	Max.	
tc(TB)	TBiin Input Cycle Time	400		ns
tw(TBH)	TBiin Input High ("H") Width	200		ns
tw(TBL)	TBiin Input Low ("L") Width	200		ns

Table 26.18 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Stan	ıdard	Unit
	Falametei	Min.	Max.	Ornic
tc(TB)	TBiin Input Cycle Time	400		ns
tw(TBH)	TBiin Input High ("H") Width	200		ns
tw(TBL)	TBiin Input Low ("L") Width	200		ns

Table 26.19 A/D Trigger Input

Symbol	Parameter	Stan	dard	Unit
	raidilletei	Min.	Max	Offic
tc(AD)	ADTRG Input Cycle Time (required for trigger)	1000		ns
tw(ADL)	ADTRG Input Low ("L") Width	125		ns

Table 26.20 Serial I/O

Symbol	Parameter	Star	Unit		
Syllibol	raianietei		Max.		
tc(ck)	CLKi Input Cycle Time	200		ns	
tw(CKH)	CLKi Input High ("H") Width	100		ns	
tw(CKL)	CLKi Input Low ("L") Width	100		ns	
td(C-Q)	TxDi Output Delay Time		80	ns	
th(C-Q)	TxDi Hold Time	0		ns	
tsu(D-C)	RxDi Input Setup Time	30		ns	
th(C-Q)	RxDi Input Hold Time	90		ns	

Table 26.21 External Interrupt INTi Input

Symbol	Parameter		Standard		
Symbol	Symbol	Min.	Max.	Unit	
tw(INH)	INTi Input High ("H") Width	250		ns	
tw(INL)	INTi Input Low ("L") Width	250		ns	

Switching Characteristics

(VCC1 = VCC2 = 4.2 to 5.5V, VSS = 0V at Topr = -20 to 85° C unless otherwise specified)

Table 26.22 Memory Expansion Mode and Microprocessor Mode (when accessing external memory space)

Symbol	Parameter	Measurement Condition	Stan	Unit	
		Condition	Min.	Max.]
td(BCLK-AD)	Address Output Delay Time			18	ns
th(BCLK-AD)	Address Output Hold Time (BCLK standard)		-3		ns
th(RD-AD)	Address Output Hold Time (RD standard)(3)		0		ns
th(WR-AD)	Address Output Hold Time (WR standard)(3)		(Note 1)		ns
td(BCLK-CS)	Chip-Select Signal Output Delay Time			18	ns
th(BCLK-CS)	Chip-Select Signal Output Hold Time (BCLK standard)		-3		ns
th(RD-CS)	Chip-Select Signal Output Hold Time (RD standard)(3)	See Figure 26.2	0		ns
th(WR-CS)	Chip-Select Signal Output Hold Time (WR standard)(3)	Oce i igule 20.2	(Note 1)		ns
td(BCLK-RD)	RD Signal Output Delay Time			18	ns
th(BCLK-RD)	RD Signal Output Hold Time		-5		ns
td(BCLK-WR)	WR Signal Output Delay Time			18	ns
th(BCLK-WR)	WR Signal Output Hold Time		-5		ns
td(DB-WR)	Data Output Delay Time (WR standard)		(Note 2)		ns
th(WR-DB)	Data Output Hold Time (WR standard)(3)		(Note 1)		ns
tw(WR)	WR Output Width		(Note 2)		ns

NOTES:

1. Values can be obtained from the following equations, according to BCLK frequency.

$$th(WR - DB) = \frac{10^{9}}{f(BCLK) \times 2} - 10 \quad [ns]$$

$$th(WR - AD) = \frac{10^{9}}{f(BCLK) \times 2} - 10 \quad [ns]$$

$$th(WR - CS) = \frac{10^{9}}{f(BCLK) \times 2} - 10 \quad [ns]$$

2. Values can be obtained from the following equations, according to BCLK frequency and external bus cycles.

$$tw(WR) = \frac{10^9 \, \text{X n}}{f_{(BCLK)} \, \text{X 2}} - 15 \quad [\text{ns}] \quad (\text{if external bus cycle is a} \phi + b \phi, \, \text{n=(bx2)-1})$$

$$td(DB - WR) = \frac{10^9 \, \text{X m}}{f_{(BCLK)}} - 20 \quad [\text{ns}] \quad (\text{if external bus cycle is a} \phi + b \phi, \, \text{m= b})$$

3. tc ns is added when recovery cycle is inserted.

Switching Characteristics

(Vcc = 4.2 to 5.5V, Vss = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 26.23 Memory Expansion Mode and Microprocessor Mode (when accessing an external memory space with the multiplexed bus)

Symbol	Parameter	Measurement	Stan	Unit	
		Condition	Min.	Max.	
td(BCLK-AD)	Address Output Delay Time			18	ns
th(BCLK-AD)	Address Output Hold Time (BCLK standard)		-3		ns
th(RD-AD)	Address Output Hold Time (RD standard) ⁽⁵⁾		(Note 1)		ns
th(WR-AD)	Address Output Hold Time (WR standard) ⁽⁵⁾		(Note 1)		ns
td(BCLK-CS)	Chip-Select Signal Output Delay Time	1		18	ns
th(BCLK-CS)	Chip-Select Signal Output Hold Time (BCLK standard)	1	-3		ns
th(RD-CS)	Chip-Select Signal Output Hold Time (RD standard) ⁽⁵⁾	1	(Note 1)		ns
th(WR-CS)	Chip-Select Signal Output Hold Time (WR standard) ⁽⁵⁾	1	(Note 1)		ns
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 26.2		18	ns
th(BCLK-RD)	RD Signal Output Hold Time		-5		ns
td(BCLK-WR)	WR Signal Output Delay Time			18	ns
th(BCLK-WR)	WR Signal Output Hold Time		-5		ns
td(DB-WR)	Data Output Delay Time (WR standard)		(Note 2)		ns
th(WR-DB)	Data Output Hold Time (WR standard) ⁽⁵⁾	1	(Note 1)		ns
td(BCLK-ALE)	ALE Signal Output Delay Time (BCLK standard)	1		18	ns
th(BCLK-ALE)	ALE Signal Output Hold Time (BCLK standard)		-2		ns
td(AD-ALE)	ALE Signal Output Delay Time (address standard)		(Note 3)		ns
th(ALE-AD)	ALE Signal Output Hold Time (address standard)	1	(Note 4)		ns
tdz(RD-AD)	Address Output Float Start Time	1		8	ns

NOTES:

1. Values can be obtained from the following equations, according to BCLK frequency.

$$th(RD - AD) = \frac{10^{9}}{f(BCLK) \times 2} - 10 \quad [ns]$$

$$th(WR - AD) = \frac{10^{9}}{f(BCLK) \times 2} - 10 \quad [ns]$$

$$th(RD - CS) = \frac{10^{9}}{f(BCLK) \times 2} - 10 \quad [ns]$$

$$th(WR - CS) = \frac{10^{9}}{f(BCLK) \times 2} - 10 \quad [ns]$$

$$th(WR - DB) = \frac{10^{9}}{f(BCLK) \times 2} - 10 \quad [ns]$$

2. Values can be obtained from the following equations, according to BCLK frequency and external bus cycle.

$$td(DB - WR) = \frac{10^9 X m}{f(BCLK) X 2} - 25$$
 [ns] (if external bus cycle is a\phi + b\phi, m= (bx2)-1)

3. Values can be obtained from the following equations, according to BCLK frequency and external bus cycle.

$$td(AD-ALE) = \frac{10^{9}X \text{ n}}{f(BCLK) X 2} - 20 \quad \text{[ns] (if external bus cycle is a} \phi + b\phi, n=a)$$

4. Values can be obtained from the following equations, according to BCLK frequency and external bus cycle.

$$th(ALE-AD) = \frac{10^9 \, \text{X n}}{f(BCLK) \, \text{X 2}} - 10 \quad \text{[ns] (if external bus cycle is a} \phi + b\phi, \, n=a)$$

5. tc ns is added when recovery cycle is inserted.

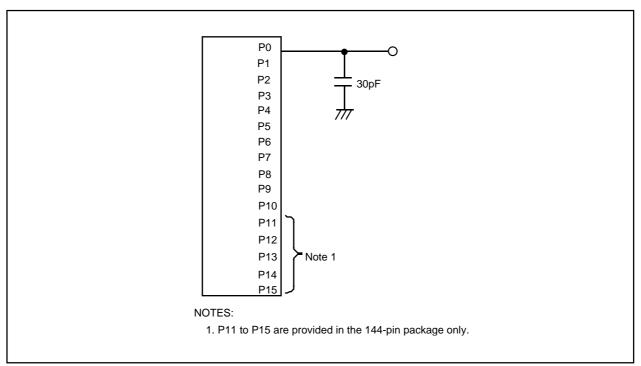


Figure 26.2 P0 to P15 Measurement Circuit

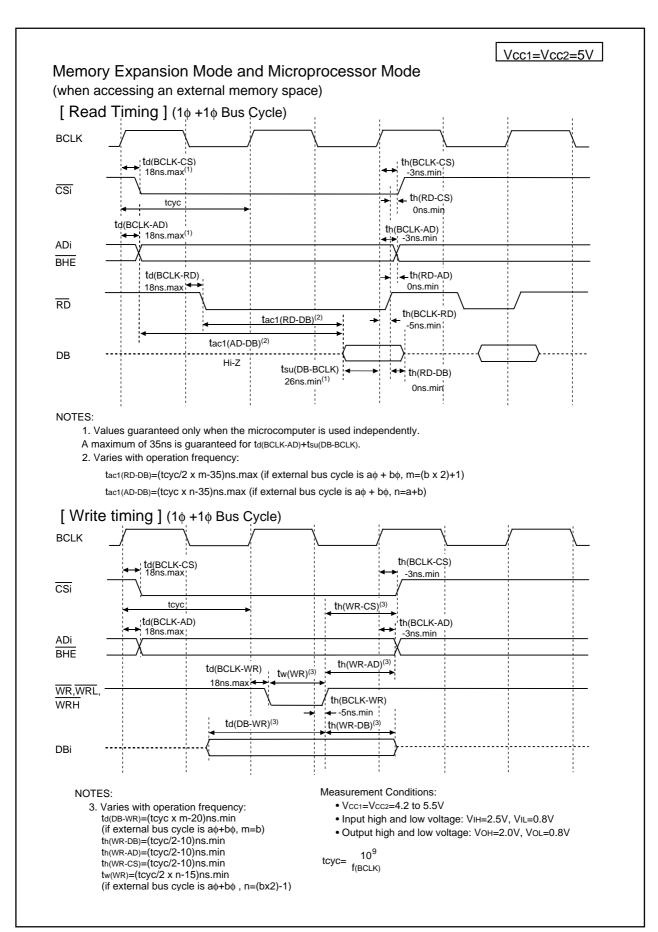


Figure 26.3 Vcc1=Vcc2=5V Timing Diagram (1)

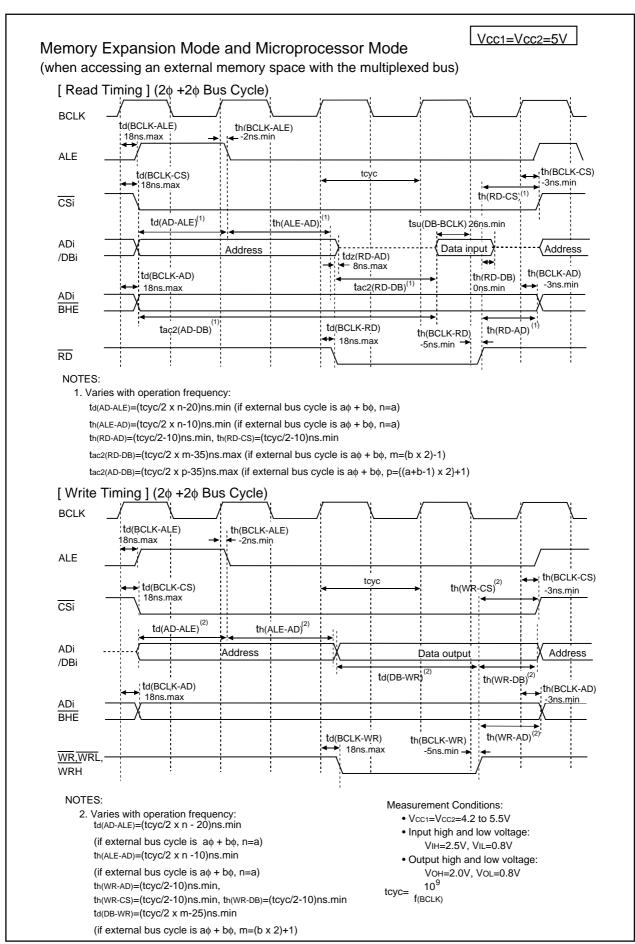


Figure 26.4 Vcc1=Vcc2=5V Timing Diagram (2)

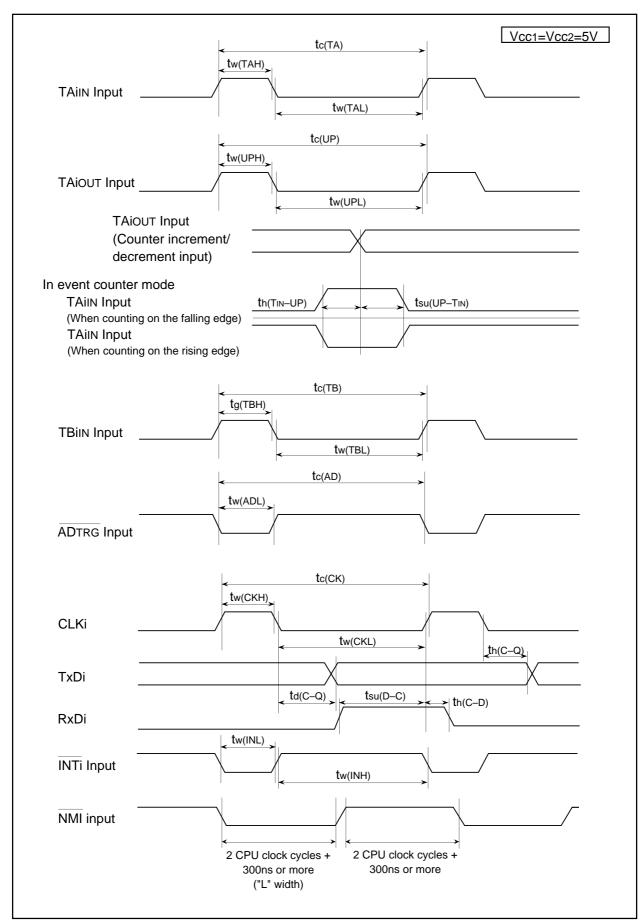


Figure 26.5 VCC1=VCC2=5V Timing Diagram (3)

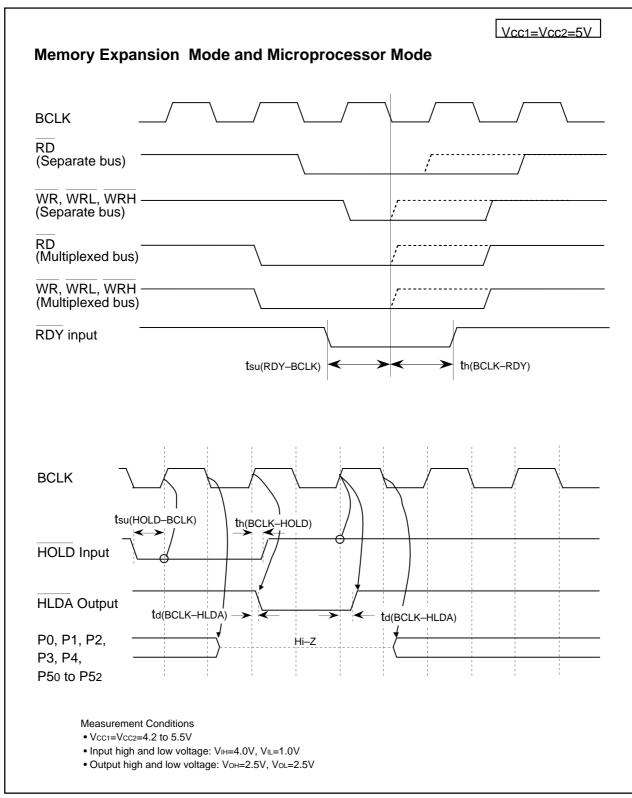


Figure 26.6 Vcc1=Vcc2=5V Timing Diagram (4)

VCC1=VCC2=3.3V

Table 26.24 Electrical Characteristics (VCC1=VCC2=3.0 to 3.6V, VSS=0V at Topr = -20 to 85°C, f(BCLK)=24MHz unless otherwise specified)

Symbol	Parameter		Cor	ndition	Standard			Unit	
						Min.	Тур.	Max.	
Vон	Output High ("H")	P00-P07, P10-P17, P20-P2		Iон=-1m	nΑ	Vcc2-0.6		Vcc2	V
	Voltage	P50-P57, P110-P114, P12							
		P60-P67, P72-P77, P80-P				Vcc1-0.6		Vcc1	V
		P97, P100-P107, P140-P1	146, P150-P157 ⁽¹⁾						
		Хоит		Іон=-0.1	mA	2.7		Vcc1	V
		Хсоит	High Power	No load	applied		2.5		V
			Low Power	No load	applied		1.6		V
Vol	Output Low ("L")	P00-P07, P10-P17, P20-P	27, P30-P37, P40-	loL=1m/	4			0.5	V
	Voltage	P47, P50-P57, P60-P67, P	P70-P77, P80-P84,						
		P86, P87, P90-P97, P100-	·P107, P110-P114,						
		P120-P127, P130-P137, F	P140-P146, P150-						
		P157 ⁽¹⁾							
		Хоит		loL=0.1r	mΑ			0.5	V
		Хсоит	High Power	No load	applied		0		V
			Low Power	No load	applied		0		V
\/\/_	Hysteresis	HOLD, RDY, TA0IN-TA4I			• • • • • • • • • • • • • • • • • • • •	0.2		1.0	V
V 1+- V 1-	liysteresis	INTO-INT5, ADTRG, CTS				0.2		1.0	"
		CLK4, TA0out-TA4out, N							
		RxD4, SCL0-SCL4, SDA							
		RESET	10-3DA4			0.2		1.8	V
IIH	Input High ("H")	P00-P07, P10-P17, P20-P	27. P30-P37. P40-	Vı=3V		0.2		4.0	μA
	Current	P47, P50-P57, P60-P67, P							•
		P90-P97, P100-P107, P11							
		P130-P137, P140-P146, F							
		RESET, CNVss, BYTE	, ,						
lıL	Input Low ("L")	P00-P07, P10-P17, P20-P	27, P30-P37, P40-	V _I =0V				-4.0	μА
	Current	P47, P50-P57, P60-P67, P							'
		P90-P97, P100-P107, P11							
		P130-P137, P140-P146, F	P150-P157 ⁽¹⁾ , XIN,						
		RESET, CNVss, BYTE							
RPULLUP	Pull-up Resistance	P00-P07, P10-P17, P20-P2	27, P30-P37, P40-P47,	Vı=0V	Flash	66	120	500	kΩ
		P50-P57, P60-P67, P72-P7	77, P80-P84, P86,		Memory				
		P87, P90-P97, P100-P107,	, P110-P114, P120-		Masked	40	70	500	kΩ
		P127, P130-P137, P140-P	146, P150-P157 ⁽¹⁾		ROM				
Rfxin	Feedback Resistance	XIN					3.0		МΩ
Rfxcin	Feedback Resistance	Xcin					20.0		МΩ
VRAM	RAM Standby Voltage	e in stop mode				2.0			V
Icc	Power Supply Current	Measurement condition: In single-chip mode,	f(BCLK)=24 MHz, S division	•			22	35	mA
		output pins are left open and other pins are connected to Vss.	f(BCLK)=32 kHz, In Topr=25° C	wait mo	de,		10		μА
			While clock stops, To	opr=25°	С		0.8	5	μА
			While clock stops, To		С			50	μА

NOTES:

1. P11 to P15 are provided in the 144-pin package only.

VCC1=VCC2=3.3V

Table 26.25 A/D Conversion Characteristics (VCC1=VCC2=AVCC=VREF= 3.0 to 3.6V, VSS=AVSS=0V at Topr = -20 to 85°C, f(BCLK) = 24MHz unless otherwise specified)

Symbol	Parameter		Measurement Condition	5	Unit		
Cymbol			Wooddi official Condition	Min.	Тур.	Max.	
-	Resolution		VREF=VCC1			10	Bits
INL	Integral Nonlinearity Error	No S&H (8-bit)	VCC1=VCC2=VREF=3.3V			±2	LSB
DNL	Differential Nonlinearity Error	No S&H (8-bit)				±1	LSB
-	Offset Error	No S&H (8-bit)				±2	LSB
-	Gain Error	No S&H (8-bit)				±2	LSB
RLADDER	Resistor Ladder	•	VREF=VCC1	8		40	kΩ
tconv	8-bit Conversion Time ^(1, 2)			6.1			μs
VREF	Reference Voltage			3		Vcc1	V
VIA	Analog Input Voltage			0		VREF	V

S&H: Sample and Hold

NOTES:

- 1. Divide f(XIN), if exceeding 10 MHz, to keep ϕ AD frequency at 10 MHz or less.
- 2. S&H not available.

Table 26.26 D/A Conversion Characteristics (VCC1=VCC2=VREF=3.0 to 3.6V, VSS=AVSS=0V at Topr = -20 to 85°C, f(BCLK) = 24MHz unless otherwise specified)

Symbol	Parameter	Measurement Condition	5	Unit		
			Min.	Тур.	Max.	01111
-	Resolution				8	Bits
-	Absolute Accuracy				1.0	%
tsu	Setup Time				3	μs
Ro	Output Resistance		4	10	20	kΩ
Ivref	Reference Power Supply Input Current	(Note 1)			1.0	mΑ

NOTES:

Measurement results when using one D/A converter. The DAi register (i=0, 1) of the D/A converter, not being used, is set to "0016". The resistor ladder in the A/D converter is excluded.
 IVREF flows even if the VCUT bit in the ADOCON1 register is set to "0" (no VREF connection).

VCC1=VCC2=3.3V

Timing Requirements

(VCC1=VCC2= 3.0 to 3.6V, VSS = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 26.27 External Clock Input

Symbol	Parameter	Stan	Unit	
Symbol	raiametei	Min.	Max.	Offic
tc	External Clock Input Cycle Time	41		ns
tw(H)	External Clock Input High ("H") Width	18		ns
tw(L)	External Clock Input Low ("L") Width	18		ns
tr	External Clock Rise Time		5	ns
tf	External Clock Fall Time		5	ns

Table 26.28 Memory Expansion Mode and Microprocessor Mode

Symbol	Parameter		ndard	Unit
Symbol			Max.	Offic
tac1(RD-DB)	Data Input Access Time (RD standard)		(Note 1)	ns
tac1(AD-DB)	Data Input Access Time (AD standard, CS standard)		(Note 1)	ns
tac2(RD-DB)	Data Input Access Time (RD standard, when accessing a space with the multiplexed bus)		(Note 1)	ns
tac2(AD-DB)	Data Input Access Time (AD standard, when accessing a space with the multiplexed bus)		(Note 1)	ns
tsu(DB-BCLK)	Data Input Setup Time	30		ns
tsu(RDY-BCLK)	RDY Input Setup Time	40		ns
tsu(HOLD-BCLK)	HOLD Input Setup Time	60		ns
th(RD-DB)	Data Input Hold Time	0		ns
th(BCLK-RDY)	RDY Input Hold Time	0		ns
th(BCLK-HOLD)	HOLD Input Hold Time	0		ns
td(BCLK-HLDA)	HLDA Output Delay Time		25	ns

NOTES:

1. Values can be obtained from the following equations, according to BCLK frequency and external bus cycles. Insert a wait state or lower the operation frequency, f(BCLK), if the calculated value is negative.

$$tac1(RD - DB) = \frac{10^9 \text{ X m}}{f(BCLK) \text{ X 2}} - 35 \qquad \text{[ns] (if external bus cycle is a} + b + b + m = (bx2) + 1)$$

$$tac1(AD - DB) = \frac{10^9 \text{ X n}}{f(BCLK)} - 35 \qquad \text{[ns] (if external bus cycle is a} + b + b + m = (bx2) + 1)$$

$$tac2(RD - DB) = \frac{10^9 \text{ X m}}{f(BCLK) \text{ X 2}} - 35 \qquad \text{[ns] (if external bus cycle is a} + b + b + m = (bx2) + 1)$$

$$tac2(AD - DB) = \frac{10^9 \text{ X p}}{f(BCLK) \text{ X 2}} - 35 \qquad \text{[ns] (if external bus cycle is a} + b + b + m = (bx2) + 1)$$

VCC1=VCC2=3.3V

Timing Requirements

(VCC1=VCC2= 3.0 to 3.6V, VSS= 0V at Topr = -20 to 85°C unless otherwise specified)

Table 26.29 Timer A Input (Count Source Input in Event Counter Mode)

Symbol	Parameter	Stan	ndard	Unit
	i didifictor	Min. Max.	Max.	
tc(TA)	TAin Input Cycle Time	100		ns
tw(TAH)	TAin Input High ("H") Width	40		ns
tw(TAL)	TAin Input Low ("L") Width	40		ns

Table 26.30 Timer A Input (Gate Input in Timer Mode)

Symbol	Davamatan	Standard		l lait
	Parameter	Min. Max.	Max.	Unit
tc(TA)	TAin Input Cycle Time	400		ns
tw(TAH)	TAin Input High ("H") Width	200		ns
tw(TAL)	TAin Input Low ("L") Width	200		ns

Table 26.31 Timer A Input (External Trigger Input in One-Shot Timer Mode)

Symbol	Parameter	Stan	dard	Unit
	Falanielei	Min. Max.	Max.	
tc(TA)	TAil Input Cycle Time	200		ns
tw(TAH)	TAin Input High ("H") Width	100		ns
tw(TAL)	TAin Input Low ("L") Width	100		ns

Table 26.32 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter	Standard		Unit
	raiametei	Min. Max.	Oill	
tw(TAH)	TAin Input High ("H") Width	100		ns
tw(TAL)	TAin Input Low ("L") Width	100		ns

Table 26.33 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit
	Falametei	Min. Max.	Max.	Unit
tc(UP)	TAiout Input Cycle Time	2000		ns
tw(uph)	TAio∪⊤ Input High ("H") Width	1000		ns
tw(UPL)	TAiout Input Low ("L") Width	1000		ns
tsu(UP-TIN)	TAio∪⊤ Input Setup Time	400		ns
th(TIN-UP)	TAiout Input Hold Time	400		ns

VCC1=VCC2=3.3V

Timing Requirements

(VCC1=VCC2= 3.0 to 3.6V, VSS = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 26.34 Timer B Input (Count Source Input in Event Counter Mode)

Symbol	Parameter	Star	Standard	Unit
	raidilletei	Min.	Max.	Offic
tc(TB)	TBiin Input Cycle Time (counted on one edge)	100		ns
tw(TBH)	TBin Input High ("H") Width (counted on one edge)	40		ns
tw(TBL)	TBin Input Low ("L") Width (counted on one edge)	40		ns
tc(TB)	TBiin Input Cycle Time (counted on both edges)	200		ns
tw(TBH)	TBin Input High ("H") Width (counted on both edges)	80		ns
tw(TBL)	TBiin Input Low ("L") Width (counted on both edges)	80		ns

Table 26.35 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Stan	dard	Unit
	Falametei	Min.	Min. Max.	Offic
tc(TB)	TBiin Input Cycle Time	400		ns
tw(TBH)	TBiin Input High ("H") Wdth	200		ns
tw(TBL)	TBiin Input Low ("L") Width	200		ns

Table 26.36 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Stan	dard	Unit
	Falametei	Min.	Max.	Offic
tc(TB)	TBiin Input Cycle Time	400		ns
tw(TBH)	TBiin Input High ("H") Width	200		ns
tw(TBL)	TBiเท Input Low ("L") Width	200		ns

Table 26.37 A/D Trigger Input

Symbol	Parameter	Standard		Unit
	Faidilletei	Min. Max.	Max.	Offic
tc(AD)	ADTRG Input Cycle Time (required for trigger)	1000		ns
tw(ADL)	ADTRG Input Low ("L") Width	125		ns

Table 26.38 Serial I/O

Symbol	Parameter	Standard	Unit	
Syllibol	Faidilletei	Min.	Max.	Ollit
tc(CK)	CLKi Input Cycle Time	200		ns
tw(ckh)	CLKi Input High ("H") Width	100		ns
tw(CKL)	CLKi Input Low ("L") Width	100		ns
td(C-Q)	TxDi Output Delay Time		80	ns
th(C-Q)	TxDi Hold Time	0		ns
tsu(D-C)	RxDi Input Setup Time	30		ns
th(C-Q)	RxDi Input Hold Time	90		ns

Table 26.39 External Interrupt INTi Input

Symbol	Parameter	Star	ndard	Unit
	Falanielei	Min. Max.		
tw(INH)	INTi Input High ("H") Width	250		ns
tw(INL)	INTi Input Low ("L") Width	250		ns

VCC1=VCC2=3.3V

Switching Characteristics

(VCC1=VCC2=3.0 to 3.6V, VSS = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 26.40 Memory Expansion Mode and Microprocessor Mode (when accessing external memory space)

Symbol	Parameter	Measurement Condition	Standard		Unit
-		Condition	Min.	Max.	1
td(BCLK-AD)	Address Output Delay Time			18	ns
th(BCLK-AD)	Address Output Hold Time (BCLK standard)		0		ns
th(RD-AD)	Address Output Hold Time (RD standard)(3)		0		ns
th(WR-AD)	Address Output Hold Time (WR standard) ⁽³⁾		(Note 1)		ns
td(BCLK-CS)	Chip-Select Signal Output Delay Time			18	ns
th(BCLK-CS)	Chip-Select Signal Output Hold Time (BCLK standard)		0		ns
th(RD-CS)	Chip-Select Signal Output Hold Time (RD standard)(3)	See Figure 26.2	0		ns
th(WR-CS)	Chip-Select Signal Output Hold Time (WR standard)(3)		(Note 1)		ns
td(BCLK-RD)	RD Signal Output Delay Time			18	ns
th(BCLK-RD)	RD Signal Output Hold Time		-3		ns
td(BCLK-WR)	WR Signal Output Delay Time			18	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(DB-WR)	Data Output Delay Time (WR standard)		(Note 2)		ns
th(WR-DB)	Data Output Hold Time (WR standard)(3)		(Note 1)		ns
tw(WR)	WR Output Width		(Note 2)		ns

NOTES:

1. Values can be obtained from the following equations, according to BCLK frequency.

$$th(WR - DB) = \frac{10^{9}}{f(BCLK) X 2} - 20 \quad [ns]$$

$$th(WR - AD) = \frac{10^{9}}{f(BCLK) X 2} - 10 \quad [ns]$$

$$th(WR - CS) = \frac{10^{9}}{f(BCLK) X 2} - 10 \quad [ns]$$

2. Values can be obtained from the following equations, according to BCLK frequency and external bus cycles.

$$t_{W(WR)} = \frac{10^9 x \text{ n}}{f_{(BCLK)} \text{ X 2}} - 15 \quad \text{[ns]} \quad \text{(if external bus cycle is a} \phi + b \phi, \ n=(b \text{ x 2})-1)$$

$$t_{d(DB-WR)} = \frac{10^9 x \text{ m}}{f_{(BCLK)}} - 20 \quad \text{[ns]} \quad \text{(if external bus cycle is a} \phi + b \phi, \ m=b)$$

3. tc ns is added when recovery cycle is inserted.

Switching Characteristics

(VCC1 = VCC2 = 3.0 to 3.6V, VSS = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 26.41 Memory Expansion Mode and Microprocessor Mode (when accessing an external memory space with the multiplexed bus)

Symbol	Parameter	Measurement Condition	Stan	Unit	
•		Condition	Min.	Max.	
td(BCLK-AD)	Address Output Delay Time			18	ns
th(BCLK-AD)	Address Output Hold Time (BCLK standard)		0		ns
th(RD-AD)	Address Output Hold Time (RD standard) ⁽⁵⁾		(Note 1)		ns
th(WR-AD)	Address Output Hold Time (WR standard) ⁽⁵⁾		(Note 1)		ns
td(BCLK-CS)	Chip-Select Signal Output Delay Time			18	ns
th(BCLK-CS)	Chip-Select Signal Output Hold Time (BCLK standard)		0		ns
th(RD-CS)	Chip-Select Signal Output Hold Time (RD standard) ⁽⁵⁾		(Note 1)		ns
th(WR-CS)	Chip-Select Signal Output Hold Time (WR standard) ⁽⁵⁾		(Note 1)		ns
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 26.2		18	ns
th(BCLK-RD)	RD Signal Output Hold Time		-3		ns
td(BCLK-WR)	WR Signal Output Delay Time			18	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(DB-WR)	Data Output delay Time (WR standard)		(Note 2)		ns
th(WR-DB)	Data Output Hold Time (WR standard) ⁽⁵⁾		(Note 1)		ns
td(BCLK-ALE)	ALE Signal Output Delay Time (BCLK standard)			18	ns
th(BCLK-ALE)	ALE Signal Output Hold Time (BCLK standard)		-2		ns
td(AD-ALE)	ALE Signal Output Delay Time (address standard)		(Note 3)		ns
th(ALE-AD)	ALE Signal Output Hold Time (address standard)		(Note 4)		ns
tdz(RD-AD)	Address Output Float Start Time			8	ns

NOTES:

1. Values can be obtained by the following equations, according to BLCK frequency.

$$th(RD - AD) = \frac{10^9}{f(BCLK) \times 2} - 10 \quad [ns]$$

$$th(WR - AD) = \frac{10^9}{f(BCLK) \times 2} - 10 \quad [ns]$$

$$th(RD - CS) = \frac{10^9}{f(BCLK) \times 2} - 10 \quad [ns]$$

$$th(WR - CS) = \frac{10^9}{f(BCLK) \times 2} - 10 \quad [ns]$$

$$th(WR - DB) = \frac{10^9}{f(BCLK) \times 2} - 20 \quad [ns]$$

2. Values can be obtained by the following equations, according to BLCK frequency and external bus cycles.

$$td(DB-WR) = \frac{-10^9 X m}{f(BCLK) X 2} -25$$
 [ns] (if external bus cycle is a\phi + b\phi, m=(b+2)-1)

3. Values can be obtained by the following equations, according to BLCK frequency and external bus cycles.

$$td(AD - ALE) = \frac{10^9 x n}{f(BCLK) X 2} - 20$$
 [ns] (if external bus cycle is a\phi + b\phi, n=a)

4. Values can be obtained by the following equations, according to BLCK frequency and external bus cycles.

$$th(ALE - AD) = \frac{10^9 x \text{ m}}{f(BCLK) \text{ X } 2} - 10$$
 [ns] (if external bus cycle is $a\phi + b\phi$, n=a)

5. tc ns is added when recovery cycle is inserted.

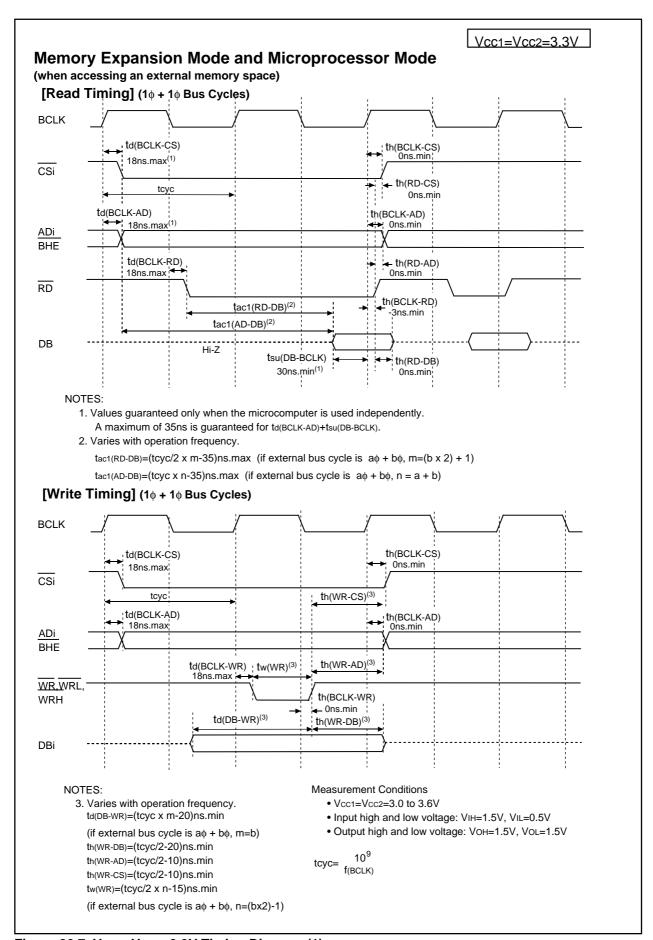


Figure 26.7 VCC1=VCC2=3.3V Timing Diagram (1)

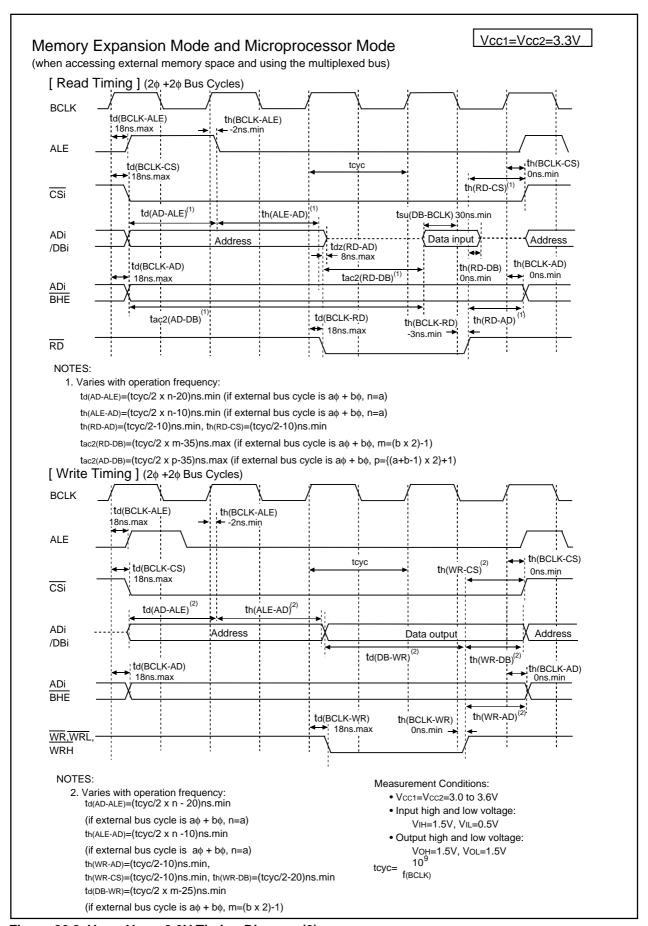


Figure 26.8 Vcc1=Vcc2=3.3V Timing Diagram (2)

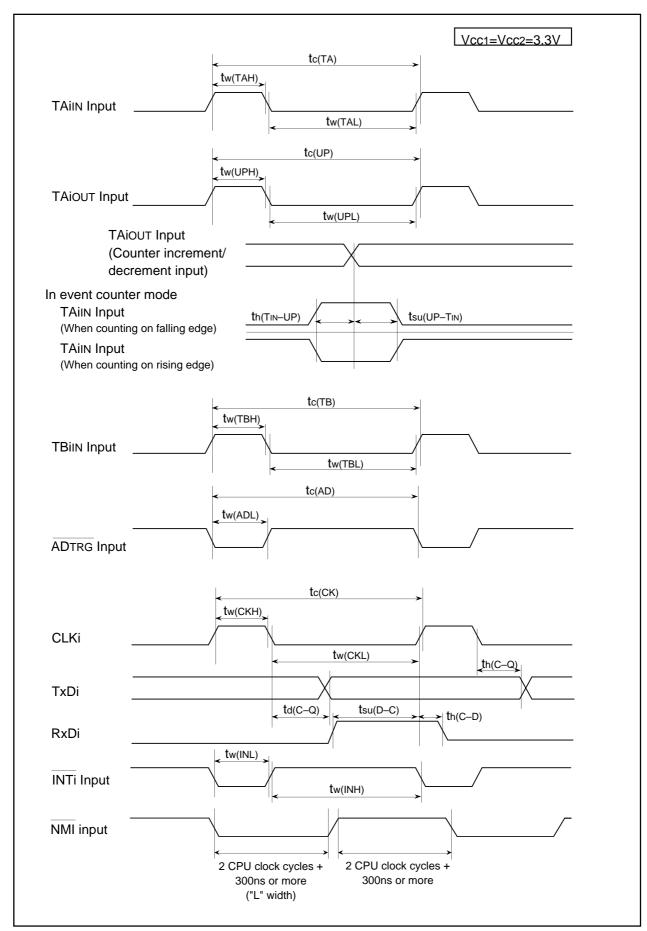


Figure 26.9 Vcc1=Vcc2=3.3V Timing Diagram (3)

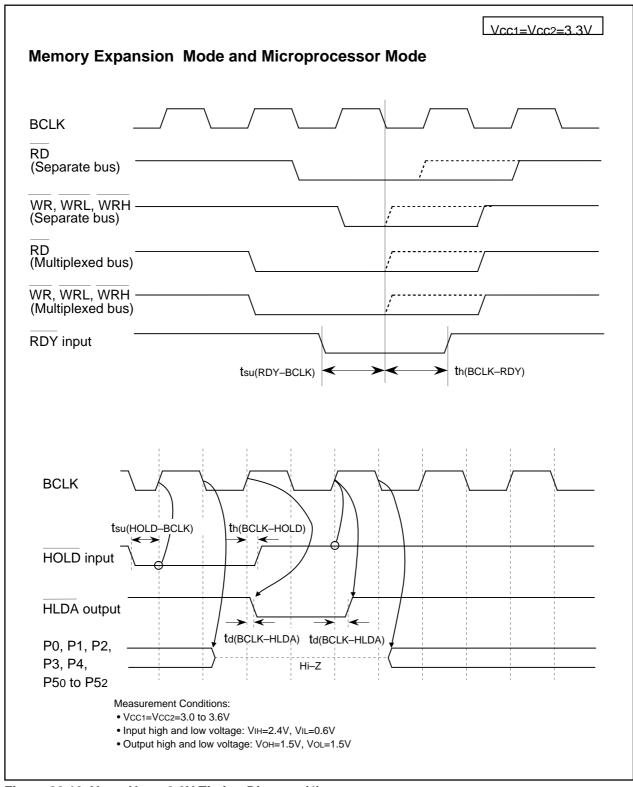


Figure 26.10 Vcc1=Vcc2=3.3V Timing Diagram (4)

26.2 Electrical Characteristics (M32C/85T)

Table 26.42 Absolute Maximum Ratings

Symbol		Parameter	Condition	Value	Unit
VCC1, VCC2	Supply Voltage		Vcc1=Vcc2=AVcc	-0.3 to 6.0	V
AVcc	Analog Supply	Voltage	Vcc1=Vcc2=AVcc	-0.3 to 6.0	V
Vı	Input Voltage	RESET, CNVss, BYTE, P60-P67, P72-P77, P80-P87, P90-P97, P100-P107, P140-P146, P150-P157 ⁽¹⁾ , VREF, XIN		-0.3 to Vcc1+0.3	V
		P00-P07, P10-P17, P20-P27, P30-P37, P40- P47, P50-P57, P110-P114, P120-P127, P130- P137 ⁽¹⁾		-0.3 to Vcc2+0.3	
		P7 ₀ , P7 ₁		-0.3 to 6.0	1
Vo	Output Voltage	P60-P67, P72-P77, P80-P84, P86, P87, P90- P97, P100-P107, P140-P146, P150-P157 ⁽¹⁾ , XOUT		-0.3 to Vcc1+0.3	V
		P00-P07, P10-P17, P20-P27, P30-P37, P40- P47, P50-P57, P110-P114, P120-P127, P130- P137 ⁽¹⁾		-0.3 to Vcc2+0.3	
		P70, P71		-0.3 to 6.0	
Pd	Power Dissipation	on	Topr=25° C	500	mW
	Operating	during CPU operation	T version	-40 to 85	
Topr	Ambient Temperature	during flash memory program and erase operation	0 to 60		°C
Tstg	Storage Tempe	rature		-65 to 150	°C

^{1.} P11 to P15 are provided in the 144-pin package only.

Table 26.43 Recommended Operating Conditions

(VCC1=VCC2=4.2 to 5.5V, Vss=0V at Topr = -40 to 85°C (T version) unless otherwise specified)

Currele el	Parameter		Standard			Unit
Symbol		Parameter		Тур.	Max.	Ullit
VCC1, VCC2	Supply Voltage (V	rcc1≥ Vcc2)	4.2	5.0	5.5	V
AVcc	Analog Supply Vo	Analog Supply Voltage		Vcc1		V
Vss	Supply Voltage			0		V
AVss	Analog Supply Vo	nalog Supply Voltage				V
	Input High ("H") Voltage	P20-P27, P30-P37, P40-P47, P50-P57, P110-P114, P120-P127, P130-P137 ⁽⁴⁾	0.8Vcc2		Vcc2	V
		P60-P67, P72-P77, P80-P87 ⁽³⁾ , P90-P97, P100-P107, P140- P146, P150-P157 ⁽⁴⁾ , XIN, RESET, CNVss, BYTE	0.8Vcc1		Vcc1	
		P70, P71	0.8Vcc1		6.0	
		P0o-P07, P1o-P17	0.8Vcc2		Vcc2	
VIL	Input Low ("L") Voltage	P20-P27, P30-P37, P40-P47, P50-P57, P110-P114, P120- P127, P130-P137 ⁽⁴⁾	0		0.2Vcc2	V
		P60-P67, P70-P77, P80-P87 ⁽³⁾ , P90-P97, P100-P107, P140- P146, P150-P157 ⁽⁴⁾ , XIN, RESET, CNVss, BYTE	0		0.2Vcc1	
		P00-P07, P10-P17	0		0.2Vcc2	
IOH(peak)	Peak Output High ("H") Current ⁽²⁾	P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60-P67, P72-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110-P114, P120-P127, P130-P137, P140-P146, P150-P157 ⁽⁴⁾			-10.0	mA
IOH(avg)	Average Output High ("H") Current ⁽¹⁾	P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60-P67, P72-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110-P114, P120-P127, P130-P137, P140-P146, P150-P157 ⁽⁴⁾			-5.0	mA
IOL(peak)	Peak Output Low ("L") Current ⁽²⁾	P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60-P67, P70-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110-P114, P120-P127, P130-P137, P140-P146, P150-P157 ⁽⁴⁾			10.0	mA
IOL(avg)	Average Output Low ("L") Current ⁽¹⁾	P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60-P67, P70-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110-P114, P120-P127, P130-P137, P140-P146, P150-P157 ⁽⁴⁾			5.0	mA

NOTES:

- 1. Typical values when average output current is 100ms.
- 2. Total IoL(peak) for P0, P1, P2, P86, P87, P9, P10, P11, P14 and P15 must be 80mA or less.

Total IoL(peak) for P3, P4, P5, P6, P7, P80 to P84, P12 and P13 must be 80mA or less.

Total IoH(peak) for P0, P1, P2, and P11 must be -40mA or less.

Total IOH(peak) for P86, P87, P9, P10, P14 and P15 must be -40mA or less.

Total IOH(peak) for P3, P4, P5, P12 and P13 must be -40mA or less.

Total IOH(peak) for P6, P7, and P80 to P84 must be -40mA or less.

- 3. VIH and VIL reference for P87 applies when P87 is used as a programmable input port. It does not apply when P87 is used as Xcin.
- 4. P11 to P15 are provided in the 144-pin package only.

Table 26.43 Recommended Operating Conditions (Continued)

(VCC1=VCC2=4.2 to 5.5V, Vss=0V at Topr = -40 to 85°C (T version) unless otherwise specified)

Symbol	Parameter			Standard	d	Unit
Symbol	T drameter			Тур.	Max.	
f(BCLK)	CPU Input Frequency	Vcc1=4.2 to 5.5V	0		32	MHz
f(XIN)	Main Clock Input Frequency	Vcc1=4.2 to 5.5V	0		32	MHz
f(Xcin)	Sub Clock Frequency	Sub Clock Frequency		32.768	50	kHz
f(Ring)	On-chip Oscillator Frequency (Vcc1=Vcc2=5.0V, Top	or=25° C)	0.5	1	2	MHz
f(PLL)	PLL Clock Frequency	Vcc1=4.2 to 5.5V	10		32	MHz
tsu(PLL)	Wait Time to Stabilize PLL Frequency Synthesizer	Vcc1=5.0V			5	ms

Table 26.44 Electrical Characteristics (VCC1=VCC2=4.2 to 5.5V, Vss=0V at Topr = -40 to 85°C (T version), f(BCLK)=32MHz unless otherwise specified)

Symbol		Paramete	r	Con	dition	St	andard		Unit
Symbol		raiamete	l	Con	uitiori	Min.	Тур.	Max.	Offic
Vон	Output High ("H")	P00-P07, P10-P1	7, P20-P27, P30-P37, P40-P47,	Iон=-5m/	4	Vcc2-2.0		Vcc2	V
	Voltage	P50-P57, P110-P	1114, P120-P127, P130-P137						
		P60-P67, P72-P7	7, P80-P84, P86, P87, P90-	Iон=-5m/	4	Vcc1-2.0		Vcc1	
			P14 ₀ -P14 ₆ , P15 ₀ -P15 ₇ ⁽¹⁾						
		P00-P07, P10-P1	7, P20-P27, P30-P37, P40-P47,	Іон=-200	μΑ	Vcc2-0.3		Vcc2	V
		P50-P57, P110-P	114, P120-P127, P130-P137						
		P60-P67, P72-P7	7, P80-P84, P86, P87, P90-	Іон=-200	μΑ	Vcc1-0.3		Vcc1	
		P97, P100-P107,	P14 ₀ -P14 ₆ , P15 ₀ -P15 ₇ ⁽¹⁾						
		Хоит		Iон=-1m/	4	3.0			V
		Хсоит	High Power	No load	applied		2.5		V
			Low Power	No load	applied		1.6		
Vol	Output Low ("L")	P00-P07, P10-P1	7, P20-P27, P30-P37, P40-P47,	loL=5mA				2.0	V
	Voltage		i7, P70-P77, P80-P84, P86,						
			100-P107, P110-P114, P120-						
			7, P140-P146, P150-P157 ⁽¹⁾						
				loL=200µ	ιA			0.45	V
			i7, P70-P77, P80-P84, P86,	,					
			100-P107, P110-P114, P120-						
		1 '	7, P140-P146, P150-P157 ⁽¹⁾						
		Хоит	· · · · · · · · · · · · · · · · · · ·	loL=1mA				2.0	V
		Хсоит	High Power	No load	applied		0		V
			Low Power	No load	applied		0		
VT+ - VT-	Hysteresis	HOLD RDY TA	.0in-TA4in, TB0in-TB5in,			0.2		1.0	V
	.,, 5.5.5.5		RG, CTS0-CTS4, CLK0-CLK4,			0.2			
			NMI, KIO-KI3, RxD0-RxD4,						
		SCL0-SCL4, SD							
		RESET				0.2		1.8	V
IIH	Input High ("H")		7, P20-P27, P30-P37, P40-P47,	V _I =5V				5.0	μΑ
	Current		67, P70-P77, P80-P87, P90-P97,					0.0	
			o-P114, P120-P127, P130-						
			s, P15 ₀ -P15 ₇ ⁽¹⁾ , X _{IN} , RESET,						
		CNVss, BYTE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
lı∟	Input Low ("L")		7, P20-P27, P30-P37, P40-P47,	\/ı=0\/				-5.0	μΑ
"-	Current	1	67, P70-P77, P80-P87, P90-P97,					0.0	μ.,
			o-P114, P120-P127, P130-						
			s, P15 ₀ -P15 ₇ ⁽¹⁾ , Xin, RESET,						
		CNVss, BYTE	5, 1 150-1 157···, XIII, IXEGET,						
RPULLUP	Pull-up Resistance		7, P20-P27, P30-P37, P40-P47,	Vi=0V F	lash	30	50	167	kΩ
			67, P72-P77, P80-P84, P86,		Memory		-		
			100-P107, P110-P114, P120-						
			7, P14 ₀ -P14 ₆ , P15 ₀ -P15 ₇ ⁽¹⁾						
Rfxin	Feedback Resistance	XIN	,,,				1.5		ΜΩ
Rfxcin	Feedback Resistance	Xcin					10		ΜΩ
VRAM	RAM Standby Voltage					2.0			V
	,	1.55						1	

NOTES:

1. P11 to P15 are provided in the 144-pin package only.

Table 26.44 Electrical Characteristics (Continued) (VCC1=VCC2=4.2 to 5.5V, Vss=0V at Topr = -40 to 85°C (T version), f(BCLK)=32MHz unless otherwise specified)

Symbol	Parameter	Moasuro	ment Condition	Standard			Unit
Symbol	Farameter	ivieasure	ment Condition	Min.	Тур.	Max.	Offic
Icc	Power Supply Current	In single-chip mode, output pins are left open and other	f(BCLK)=32 MHz, Square wave, No division		28	50	mA
		pins are connected to Vss.	f(BCLK)=32 kHz, In low-power consumption mode, Program running on ROM		430		μА
			f(BCLK)=32 kHz, In low-power consumption mode, Program running on RAM ⁽¹⁾		25		μА
			f(BCLK)=32 kHz, In wait mode, Topr=25° C		10		μА
			While clock stops, Topr=25° C		0.8	5	μΑ
			While clock stops, Topr=85° C			50	μΑ

NOTES:

^{1.} Value is obtained when setting the FMSTP bit in the FMR0 register to "1" (flash memory stopped).

Table 26.45 A/D Conversion Characteristics (Vcc1=Vcc2=4.2 to 5.5V, Vss=0V at Topr= -40 to 85°C (T version), f(BCLK)=32MHz unless otherwise specified)

Symbol	Parameter	Measurement Condition		Standard			Unit
Gyrribor	i didilietei	IVICASUICII	ient Condition	Min.	Тур.	Max.	Offic
-	Resolution	VREF=VCC1				10	Bits
		ANo to AN7, AN0o to AN07, AN2o to AN27,		±3	LSB		
INL	Integral Nonlinearity Error	VREF=VCC1=VCC2=5V	AN150 to AN157, ANEX0, ANEX1				LSB
			External op-amp			±7	LSB
			connection mode				LSB
DNL	Differential Nonlinearity Error					±1	LSB
-	Offset Error					±3	LSB
-	Gain Error					±3	LSB
RLADDER	Resistor Ladder	VREF=VCC1		8		40	kΩ
tconv	10-bit Conversion Time ^(1, 2)			2.06			μs
tconv	8-bit Conversion Time ^(1, 2)			1.75			μs
tsamp	Sampling Time ⁽¹⁾			0.188			μs
VREF	Reference Voltage			2		Vcc1	V
VIA	Analog Input Voltage			0		VREF	V

NOTES:

- 1. Divide f(X_{IN}), if exceeding 16 MHz, to keep ϕ AD frequency at 16 MHz or less.
- 2. With using the sample and hold function.

Table 26.46 D/A Conversion Characteristics (Vcc1=Vcc2=4.2 to 5.5V, Vss=0V at Topr= -40 to 85°C (T version), f(BCLK)=32MHz unless otherwise specified)

Symbol	Parameter	Measurement Condition	Ş	Unit		
Cymbol		measurement senamen	Min.	Тур.	Max.	
-	Resolution				8	Bits
-	Absolute Accuracy				1.0	%
tsu	Setup Time				3	μs
Ro	Output Resistance		4	10	20	kΩ
Ivref	Reference Power Supply Input Current	(Note 1)			1.5	mA

NOTES:

1. Measurement when using one D/A converter. The DAi register (i=0, 1) of the D/A converter, not being used, is set to "0016". The resistor ladder in the A/D converter is excluded. IVREF flows even if the VCUT bit in the AD0CON1 register is set to "0" (no VREF connection).

Table 26.47 Flash Memory Version Electrical Characteristics (VCC1=4.5 to 5.5V, 3.0 to 3.6V at Topr= 0 to 60°C unless otherwise specified)

Symbol	Parameter		Standard			Unit
Symbol	raiainetei		Min.	Тур.	Max.	
-	Program and Erase Endurance ⁽²⁾		100			cycles
-	Word Program Time (Vcc1=5.0V, Topr=25° C)			25	200	μs
-	Lock Bit Program Time			25	200	μs
-	Block Erase Time	4-Kbyte Block		0.3	4	S
	(Vcc1=5.0V, Topr=25° C)	8-Kbyte Block		0.3	4	S
		32-Kbyte Block		0.5	4	S
		64-Kbyte Block		0.8	4	S
-	All-Unlocked-Block Erase Time(1)				4 x n	S
tps	Wait Time to Stabilize Flash Memory Circuit				15	μs
-	Data Hold Time (Topr=-40 to 85 ° C)		10			years

NOTES:

- 1. ndenotes the number of block to be erased.
- 2. Number of program-erase cycles per block.

If Program and Erase Endurance is ncycle (/≥100), each block can be erased and programmed ncycles. For example, if a 4-Kbyte block A is erased after programming a word data 2,048 times, each to a different address, this counts as one program and erase endurance. Data can not be programmed to the same address more than once without erasing the block. (rewrite prohibited).

Table 26.48 Power Supply Timing

Symbol	Parameter	Measurement Condition	Standard			Unit
	1 diamotor	Wicadaromonic Condition	Min.		Max.	J
td(P-R)	Wait Time to Stabilize Internal Supply Voltage when Power-on	Vcc1=3.0 to 5.5V			2	ms

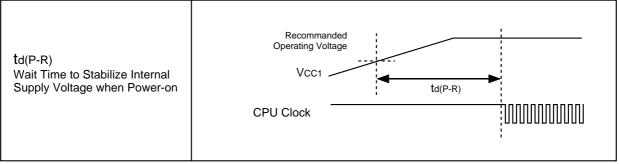


Figure 26.11 Power Supply Timing Diagram

Timing Requirements

(VCC1=VCC2=4.2 to 5.5V, Vss=0V at Topr= -40 to 85°C (T version) unless otherwise specified)

Table 26.49 External Clock Input

Symbol	Parameter	Stan	Unit	
	r arameter	Min.	Max.	Onic
tc	External Clock Input Cycle Time	31.25		ns
tw(H)	External Clock Input High ("H") Width	13.75		ns
tw(L)	External Clock Input Low ("L") Width	13.75		ns
tr	External Clock Rise Time		5	ns
tf	External Clock Fall Time		5	ns

Timing Requirements

(VCC1=VCC2=4.2 to 5.5V, Vss=0V at Topr= -40 to 85°C (T version) unless otherwise specified)

Table 26.50 Timer A Input (Count Source Input in Event Counter Mode)

Symbol	Parameter		Standard		
	i didificio	Min.	Max.	Unit	
tc(TA)	TAin Input Cycle Time	100		ns	
tw(TAH)	TAin Input High ("H") Width	40		ns	
tw(TAL)	TAin Input Low ("L") Width	40		ns	

Table 26.51 Timer A Input (Gate Input in Timer Mode)

Symbol	Davamatan	Standard		Unit
	Parameter	Min.	Max.	Unit
tc(TA)	TAin Input Cycle Time	400		ns
tw(TAH)	TAin Input High ("H") Width	200		ns
tw(TAL)	TAin Input Low ("L") Width	200		ns

Table 26.52 Timer A Input (External Trigger Input in One-Shot Timer Mode)

Symbol	Parameter	Stan	dard	Unit
Symbol		Min.	Max.	
tc(TA)	TAin Input Cycle Time	200		ns
tw(TAH)	TAin Input High ("H") Width	100		ns
tw(TAL)	TAin Input Low ("L") Width	100		ns

Table 26.53 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Cumbal	Parameter	Star	ıdard	Unit
Symbol	Falanielei	Min. Max.		
tw(TAH)	TAin Input High ("H") Width	100		ns
tw(TAL)	TAin Input Low ("L") Width	100		ns

Table 26.54 Timer A Input (Counter Increment/Decrement Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit
Symbol	raiametei	Min.	Max.	Office
tc(UP)	TAiout Input Cycle Time	2000		ns
tw(UPH)	TAio∪⊤ Input High ("H") Width	1000		ns
tw(UPL)	TAiout Input Low ("L") Width	1000		ns
tsu(UP-TIN)	TAiout Input Setup Time	400		ns
th(TIN-UP)	TAiout Input Hold Time	400		ns

Timing Requirements

(VCC1=VCC2=4.2 to 5.5V, VSS=0V at Topr= -40 to 85°C (T version) unless otherwise specified)

Table 26.55 Timer B Input (Count Source Input in Event Counter Mode)

Cumbal	Parameter	Standard		Unit
Symbol	raiametei	Min.	Max.	JOHN
tc(TB)	TBiin Input Cycle Time (counted on one edge)	100		ns
tw(TBH)	TBiin Input High ("H") Width (counted on one edge)	40		ns
tw(TBL)	TBiin Input Low ("L") Width (counted on one edge)	40		ns
tc(TB)	TBiin Input Cycle Time (counted on both edges)	200		ns
tw(TBH)	TBin Input High ("H") Width (counted on both edges)	80		ns
tw(TBL)	TBin Input Low ("L") Width (counted on both edges)	80		ns

Table 26.56 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Stan	dard	Unit
Symbol	Falanielei	Min.	Min. Max.	
tc(TB)	TBiin Input Cycle Time	400		ns
tw(TBH)	TBiin Input High ("H") Width	200		ns
tw(TBL)	TBiin Input Low ("L") Width	200		ns

Table 26.57 Timer B Input (Pulse Width Measurement Mode)

Symbol	Deremeter	Parameter Standa	ıdard	Unit
Symbol	Symbol Parameter		Max.	
tc(TB)	TBiin Input Cycle Time	400		ns
tw(TBH)	TBiin Input High ("H") Width	200		ns
tw(TBL)	TBiin Input Low ("L") Width	200		ns

Table 26.58 A/D Trigger Input

Symbol	Parameter	Stan	dard	Unit
Symbol	Faidilletei	Min.	Max	Offic
tc(AD)	ADTRG Input Cycle Time (required for trigger)	1000		ns
tw(ADL)	ADTRG Input Low ("L") Pulse Width	125		ns

Table 26.59 Serial I/O

Symbol	Parameter	Standard Min. Max.		Unit
Syllibol	Faidilletei			
tc(CK)	CLKi Input Cycle Time	200		ns
tw(CKH)	CLKi Input High ("H") Width	100		ns
tw(CKL)	CLKi Input Low ("L") Width	100		ns
td(C-Q)	TxDi Output Delay Time		80	ns
th(C-Q)	TxDi Hold Time	0		ns
tsu(D-C)	RxDi Input Setup Time	30		ns
th(C-Q)	RxDi Input Hold Time	90		ns

Table 26.60 External Interrupt INTi Input

Symbol	Parameter	Stan	dard	Unit
Symbol	r didilielei	Min. Max.		Offic
tw(INH)	INTi Input High ("H") Width	250		ns
tw(INL)	INTi Input Low ("L") Width	250		ns

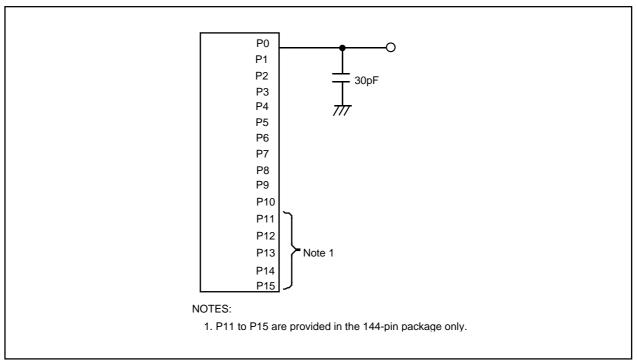


Figure 26.12 P0 to P15 Measurement Circuit

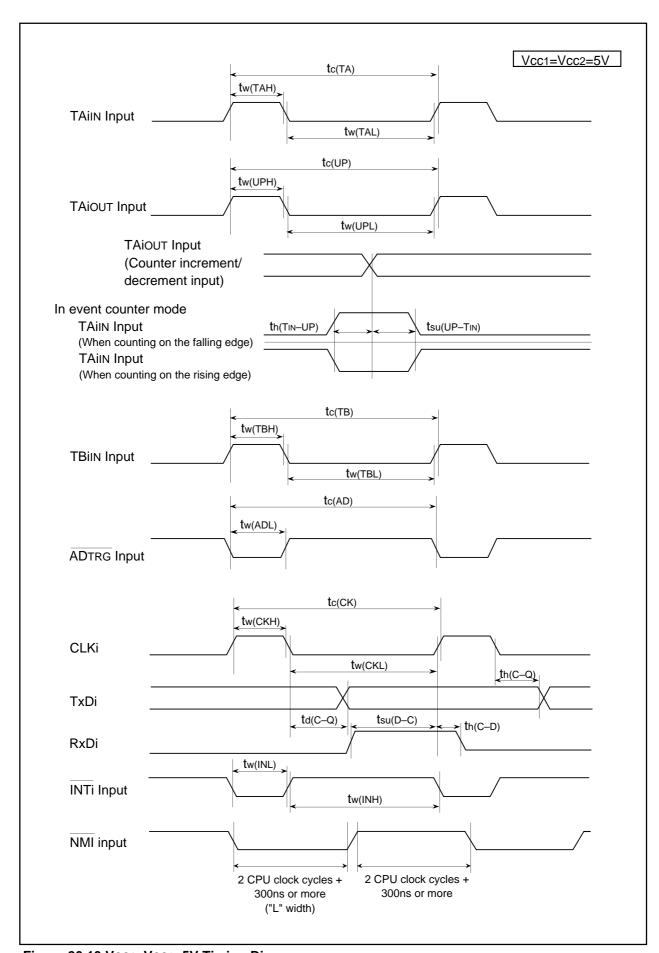


Figure 26.13 VCC1=VCC2=5V Timing Diagram

27. Precautions

27.1 Restrictions to Use M32C/85T (High-Reliability Version)

The M32C/85T microcomputer (high-reliability version) has the following usage restrictions:

- The supply voltage of M32C/85T must be Vcc1=Vcc2.
- M32C/85T must be used in single-chip mode only. M32C/85T cannot be used in memory expansion mode and microprocessor mode.
- Bus control pins (A0 to A22, A23, D0 to D15, CS0 to CS3, WRL/WR, WRH/BHE, RD, BCLK/ALE, HLDA/ALE, HOLD, ALE, RDY) and BCLK pins in M32C/85T cannot be used.
- The voltage detection circuit in M32C/85T cannot be used. Low voltage detection interrupt and brownout detection reset cannot also be used.
- The DS register, VCR1 register, VCR2 register, D4INT register and EWCR0 to EWCR3 registers in M32C/85T cannot be used.

27.2 Reset

Voltage applied to the VCC1 pin must meet the SVCC standard.

Table 27.1 Power Supply Increasing Slope

Symbol	Parameter	;	Standar	d	Unit
Cymbol	T dramotor	Min. Typ. Max.			
SVcc	Power Supply Increasing Slope (Vcc1)	0.05			V/ms

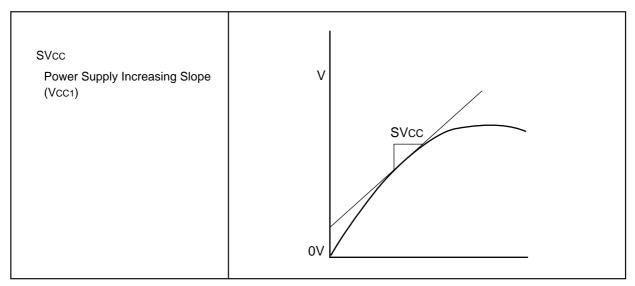


Figure 27.1 SVcc Timing

27.3 Bus

27.3.1 HOLD Signal

When entering microprocessor mode or memory expansion mode from single-chip mode and using HOLD input, set the PM01 and PM00 bits to "112" (microprocessor mode) or to "012" (memory expansion mode) after setting the PD4_7 to PD4_0 bits in the PD4 register and the PD5_2 to PD5_0 bits in the PD5 register to "0" (input mode).

P40 to P47 (A16 to A22, \$\overline{A23}\$, \$\overline{CS0}\$ to \$\overline{CS3}\$, MA8 to MA12) and P50 to P52 (\$\overline{RD/WR/BHE}\$, \$\overline{RD/WRL/WRH}\$) are not placed in high-impedance states even when a low-level ("L") signal is applied to the HOLD pin, if the PM01 and PM00 bits are set to "112" (microprocessor mode) or to "012" (memory expansion mode) after setting the PD4_7 to PD4_0 bits in the PD4 register and the PD5_2 to PD5_0 bits in the PD5 register to "1" (output mode) in single-chip mode.

27.3.2 External Bus

The internal ROM cannot be read when a high-level ("H") signal is applied to the CNVss pin and the hardware reset (hardware reset 1 or brown-out detection reset) occurs.

27.4 SFR

27.4.1 100-Pin Package

Set address spaces 03CB16, 03CE16, 03CF16, 03D216, 03D316 to "FF16" after reset when using the 100-pin package. 03DC16 must be set to "0016" after reset.

27.4.2 Register Settings

Table 27.2 lists registers containing bits which can only be written to. Set these registers with immediate values. When establishing the next value by altering the present value, write the present value to the RAM as well as to the register. Transfer the next value to the register after making changes in the RAM.

Table 27.2 Registers with Write-only Bits

Register	Address	Register	Address
WDTS Register	000E16	U3BRG Register	032916
G0RI Register	00EC16	U3TB Register	032B16, 032A16
G1RI Register	012C ₁₆	U2BRG Register	033916
U1BRG Register	02E916	U2TB Register	033B16, 033A16
U1TB Register	02EB16, 02EA16	UDF Register	034416
U4BRG Register	02F916	TA0 Register ⁽¹⁾	034716, 034616
U4TB Register	02FB16, 02FA16	TA1 Register ⁽¹⁾	034916, 034816
TA11 Register	030316, 030216	TA2 Register ⁽¹⁾	034B16, 034A16
TA21 Register	030516, 030416	TA3 Register ⁽¹⁾	034D16, 034C16
TA41 Register	030716, 030616	TA4 Register ⁽¹⁾	034F16, 034E16
DTT Register	030C16	U0BRG Register	036916
ICTB2 Register	030D16	U0TB Register	036B16, 36A16

NOTES:

1. In one-shot timer mode and pulse width modulation mode only.

27.5 Clock Generation Circuit

27.5.1 CPU Clock

- When the CPU operating frequency is 24 MHz or more, use the following procedure for better EMC (Electromagnetic Compatibility) performance.
 - 1) Oscillator connected between the XIN and XOUT pins, or external clock applied to the XIN pin, has less than 24 MHz frequency.
 - 2) Use the PLL frequency synthesizer to multiply the main clock.
- In M32C/85T, the main clock frequency must be 24 MHz or less.

27.5.2 Sub Clock

Set the CM03 bit to "0" (XCIN-XCOUT drive capacity "LOW") when selecting the sub clock (XCIN-XCOUT) as the CPU clock, or Timer A or Timer B count source (fC32).

27.5.2.1 Sub Clock Oscillation

When oscillating the sub clock, set the CM04 bit in the CM0 register to "1" (XCIN-XCOUT oscillation function) after setting the CM07 bit in the CM0 register to "0" (clock other than sub clock) and the CM03 bit to "1" (XCIN-XCOUT drive capacity "HIGH"). Set the CM03 bit to "0" after sub clock oscillation

Set the sub clock as the CPU clock, or Timer A or Timer B count source (fc32) after the above settings are completed.

27.5.2.2 Using Stop Mode

When the microcomputer enters stop mode, the CM03 bit is automatically set to "1" (XCIN-XCOUT drive capacity "HIGH"). Use the following procedure to select the main clock as the CPU clock when entering stop mode.

- 1) Set the CM17 bit in the CM1 register to "0" (main clock).
- 2) Set the CM21 bit in the CM2 register to "0" (clock selected by the CM17 bit).
- 3) Set the CM07 bit in the CM0 register to "0" (clock selected by the CM21 bit divided by the MCD register setting).

After exiting stop mode, wait for the sub clock oscillation to stabilize. Then set the CM03 bit to "0" and the CM07 bit to "1" (sub clock).

27.5.2.3 Oscillation Parameter Matching

If the sub slock oscillation parameters have only been evaluated with the drive capacity "HIGH", the parameters should be reevaluated for drive capacity "LOW".

Contact your oscillator manufacturer for details on matching parameters.

27.5.3 PLL Frequency Synthesizer

Stabilize supply voltage to meet the power supply standard when using the PLL frequency synthesizer.

Table 27.3 Power Supply Ripple

Symbol	Parameter		Standard			Unit
			Min.	Тур.	Max.	
f(ripple)	Power Supply Ripple Tolerable Frequency (Vcc1)	Vcc1=5V			10	kHz
		Vcc1=3.3V			100	Hz
VP-P(ripple)	Power Supply Ripple Voltage Fluctuation Range	Vcc1=5V			0.5	V
		Vcc1=3.3V			0.2	V
Vcc(V/ T)	Power Supply Ripple Voltage Fluctuation Rate	Vcc1=5V			1	V/ms
		Vcc1=3.3V			0.1	V/ms

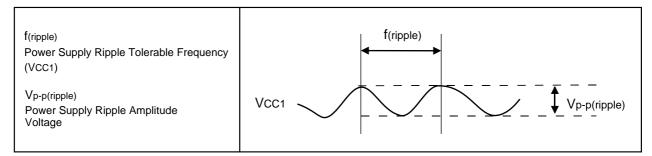


Figure 27.2 Power Supply Fluctuation Timing

27.5.4 External Clock

Do not stop an external clock running if the main clock is selected as the CPU clock while the external clock is applied to the XIN pin.

Do not set the CM05 bit in the CM0 register to "1" (main clock stopped) while the external clock input is used for the CPU clock.

27.5.5 Clock Divide Ratio

Set the PM12 bit in the PM1 register to "0" (no wait state) when changing the MCD4 to MCD0 bit settings in the MCD register.

27.5.6 Power Consumption Control

Stabilize the main clock, sub clock or PLL clock to switch the CPU clock source to each clock.

27.5.6.1 Wait Mode

When entering wait mode while the CM02 bit in the CM0 register is set to "1" (peripheral function stop in wait mode), set the MCD4 to MCD0 bits in the MCD register to maintain the 10-MHz CPU clock frequency or less.

When entering wait mode, the instruction queue reads ahead to instructions following the WAIT instruction, and the program stops. Write at least 4 NOP instructions after the WAIT instruction.

27.5.6.2 Stop Mode

- Use the following procedure to select the main clock as the CPU clock when entering stop mode.
 - 1) Set the CM17 bit in the CM1 register to "0" (main clock).
 - 2) Set the CM21 bit in the CM2 register to "0" (clock selected by the CM17 bit).
- 3) Set the CM07 bit in the CM0 register to "0" (clock selected by the CM21 bit divided by the MCD register setting).

If the PLL clock is selected as the CPU clock source, set the CM17 bit to "0" (main clock) and the PLC07 bit in the PLC0 register to "0" (PLL off) before entering stop mode.

- The microcomputer cannot enter stop mode if a low-level signal ("L") is applied to the NMI pin. Apply a high-level ("H") signal instead.
- If stop mode is exited by any reset, apply an "L" signal to the RESET pin until a main clock oscillation is stabilized enough.
- If using the NMI interrupt to exit stop mode, use the following procedure to set the CM10 bit in the CM1 register (all clocks stopped).
- 1) Exit stop mode with using the NMI interrupt.
- 2) Generate a dummy interrupt.
- 3) Set the CM10 bit to "1".

```
e.g.,
            int
                   #63
                                      ; dummy interrupt
            bset cm1
                                      ; all clocks stopped
            /* dummy interrupt handling */
        dummy
          reit
```

· When entering stop mode, the instruction queue reads ahead to instructions following the instruction setting the CM10 bit in the CM1 register to "1" (all clocks stopped), and the program stops. When the microcomputer exits stop mode, the instruction lined in the instruction queue is executed before the interrupt routine for recovery is done.

Write the JMP.B instruction, as follows, after the instruction setting the CM10 bit in the CM1 register to "1" (all clocks stopped).

```
bset 0, prcr
e.g.,
                                       ; protection removed
             bset 0, cm1
                                       ; all clocks stopped
```

jmp.b LABEL_001 ; JMP.B instruction executed (no instuction between JMP.B

; and LABEL.)

LABEL 001:

; NOP (1) nop ; NOP (2) nop nop ; NOP (3) ; NOP (4) nop mov.b #0, prcr ; Protection set

27.5.6.3 Suggestions for Reducing Power Consumption

The followings are suggestions for reducing power consumption when programming or designing systems.

Ports: I/O ports maintains the same state despite the microcomputer entering wait mode or stop mode. Current flows through active output ports. Feedthrough current flows through input ports in a high-impedance state. Set unassigned ports as input ports and stabilize electrical potential before entering wait mode or stop mode.

A/D Converter: If the A/D conversion is not performed, set the VCUT bit in the AD0CON1 register to "0" (no VREF connection). Set the VCUT bit to "1" (VREF connection) and wait at least 1μ s before starting the A/D conversion.

D/A Converter: Set the DAi bit (i=0, 1) in the DACON register to "0" (output disabled) and set the DAi register to "0016" when the D/A conversion is not performed.

Peripheral Function Stop: Set the CM02 bit in the CM0 register while in wait mode to stop unnecessary peripheral functions. However, this does not reduce power consumption because the peripheral function clock (fc32) generating from the sub clock does not stop. When in low-speed mode and low-power consumption mode, do not enter wait mode when the CM02 bit is set to "1" (peripheral clock stops in wait mode).

27.6 Protection

The PRC2 bit setting in the PRCR register is changed to "0" (write disable) when an instruction is written to any address after the PRC2 bit is set to "1" (write enable). Write instruction immediately after setting the PRC2 bit to "1" to change registers protected by the PRC2 bit. Do not generate an interrupt or a DMA transfer between the instruction to set the PRC2 bit to "1" and the following instruction.

27.7 Interrupts

27.7.1 ISP Setting

After reset, the ISP is set to "00000016". The program runs out of control if an interrupt is acknowledged before the ISP is set. Therefore, the ISP must be set before an interrupt request is generated. Set the ISP to an even address, which allows interrupt sequences to be executed at a higher speed.

To use $\overline{\text{NMI}}$ interrupt, set the ISP at the beginning of the program. The $\overline{\text{NMI}}$ interrupt can be acknowledged after the first instruction has been executed after reset.

27.7.2 NMI Interrupt

- NMI interrupt cannot be denied. Connect the NMI pin to Vcc via a resistor (pull-up) when not in use.
- The P8_5 bit in the P8 register indicates the NMI pin value. Read the P8_5 bit only to determine the pin level after a NMI interrupt occurs.
- "H" and "L" signals applied to the NMI pin must be over 2 CPU clock cycles + 300 ns wide.
- NMI interrupt request may not be acknowledged if this and other interrupt requests are generated simultaneously.

27.7.3 INT Interrupt

Edge Sensitive

"H" and "L" signals applied to the $\overline{\text{INT0}}$ to $\overline{\text{INT5}}$ pins must be at least 250 ns wide, regardless of the CPU clock.

Level Sensitive

"H" and "L" signals applied to the $\overline{\text{INT}}0$ to $\overline{\text{INT}}5$ pins must be at least 1 CPU clock cycle + 200 ns wide. For example, "H" and "L" must be at least 234ns wide if XIN=30MHz with no division.

• The IR bit may change to "1" (interrupt requested) when switching the polarity of the INT0 to INT5 pins. Set the IR bit to "0" (no interrupt requested) after selecting the polarity. Figure 27.3 shows an example of the switching procedure for the INT interrupt.

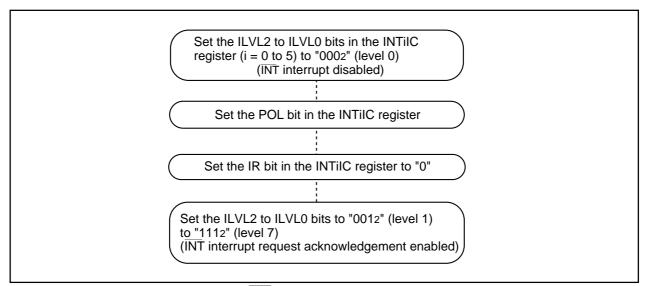


Figure 27.3 Switching Procedure for INT Interrupt

27.7.4 Watchdog Timer Interrupt

Reset the watchdog timer after a watchdog timer interrupt occurs.

27.7.5 Changing Interrupt Control Register

To change the interrupt control register while the interrupt request is denied, follow the instructions below.

Changing IR bit

The IR bit setting may not change to "0" (no interrupt requested) depending on the instructions written. If this is a problem, use the following instruction to change the register: MOV

Changing Bits Except IR Bit

When an interrupt request is generated while executing an instruction, the IR bit may not be set to "1" (interrupt requested) and the interrupt may be ignored. If this is a problem, use the following instructions to change the register: AND, OR, BCLR, BSET

27.7.6 Changing IIOiIR Register (i = 0 to 5, 8 to 11)

Use the following instructions to set bits 1 to 7 in the IIOiIR register to "0" (no interrupt requested): AND, **BCLR**

27.7.7 Changing RLVL Register

The DMAII bit is indeterminate after reset. When using the DMAII bit to generate an interrupt, set the interrupt control register after setting the DMAII bit to "0" (interrupt priority level 7 available for interrupts).

27.8 DMAC

- Set DMAC-associated registers while the MDi1 and MDi0 bits (i=0 to 3) in the channel to be used are set to "002" (DMA disabled). Set the MDi1 and MDi0 bits to "012" (single transfer) or "112" (repeat transfer) at the end of setup procedure to start DMA requests.
- Do not set the DRQ bit in the DMiSL register to "0" (no request).
 If a DMA request is generated but the receiving channel is not ready to receive⁽¹⁾, the DMA transfer does not occur and the DRQ bit is set to "0".

NOTES:

- 1. The MDi1 and MDi0 bits are set to "002" or the DCTi register is set to "000016" (transferred 0 times).
- To start a DMA transfer by a software trigger, set the DSR bit and DRQ bit in the DMiSL register to "1" simultaneously.

e.g.,

OR.B #0A0h, DMiSL

; Set the DSR and DRQ bits to "1" simultaneously

- Do not generate a channel i DMA request when setting the MDi1 and MDi0 bits in the DMDj register (j=0,1) corresponding to channel i to "012" (single transfer) or "112" (repeat transfer), if the DCTi register of channel i is set to "1".
- Select the peripheral function which causes the DMA request after setting the DMA-associated registers. If none of the conditions above (setting INT interrupt as DMA request source) apply, do not write "1" to the DCTi register.
- Enable DMA⁽²⁾ after setting the DMiSL register (i=0 to 3) and waiting six BCLK cycles or more by program.

NOTES:

2. DMA is enabled when the values set in the MDi1 to MDi0 bits in the DMDj register are changed from "002" (DMA disabled) to "012" (single transfer) or "112" (repeat transfer).

27.9 Timer

27.9.1 Timers A and B

Timers stop after reset. Set the TAiS(i=0 to 4) bit or TBjS(j=0 to 5) bit in the TABSR register or TBSR register to "1" (starts counting) after setting operating mode, count source and counter.

The following registers and bits must be set while the TAiS bit or TBjS bit is set to "0" (stops counting).

- TAiMR, TBjMR register
- TAi, TBj register
- UDF register
- TAZIE, TA0TGL, TA0TGH bits in the ONSF register
- TRGSR register

27.9.2 Timer A

The TA1out, TA2out and TA4out pins are placed in high-impedance states when a low-level ("L") signal is applied to the NMI pin while the INV03 and INV02 bits in the INVC0 register are set to "112" (forced cutoff of the three-phase output by an "L" signal applied to the $\overline{\text{NMI}}$ pin).

27.9.2.1 Timer A (Timer Mode)

- The TAiS bit (i=0 to 4) in the TABSR register is set to "0" (stops counting) after reset. Set the TAiS bit to "1" (starts counting) after selecting an operating mode and setting the TAi register.
- The TAi register indicates the counter value during counting at any given time. However, the counter is "FFFF16" when reloading. The setting value can be read after setting the TAi register while the counter stops and before the counter starts counting.

27.9.2.2 Timer A (Event Counter Mode)

- The TAiS (i=0 to 4) bit in the TABSR register is set to "0" (stops counting) after reset. Set the TAiS bit to "1" (starts counting) after selecting an operating mode and setting the TAi register.
- The TAi register indicates the counter values during counting at any given time. However, the counter will be "FFFF16" during underflow and "000016" during overflow, when reloading. The setting value can be read after setting the TAi register while the counter stops and before the counter starts counting.

27.9.2.3 Timer A (One-shot Timer Mode)

- The TAiS (i=0 to 4) bit in the TABSR register is set to "0" (stops counting) after reset. Set the TAiS bit to "1" (starts counting) after selecting an operating mode and setting the TAi register.
- The followings occur when the TABSR register is set to "0" (stops counting) while counting:
- The counter stops counting and the microcomputer reloads contents of the reload register.
- The TAIOUT pin becomes low ("L").
- The IR bit in the TAilC register is set to "1" (interrupt requested) after one CPU clock cycle.
- The output of the one-shot timer is synchronized with an internal count source. When set to an external trigger, there is a delay of one count source cycle maximum, from trigger input to the TAIN pin to the one-shot timer output.
- The IR bit is set to "1" when the following procedures are performed to set timer mode:
 - selecting one-shot timer mode after reset.
 - switching from timer mode to one-shot timer mode.
 - switching from event counter mode to one-shot timer mode.

Therefore, set the IR bit to "0" to generate a timer Ai interrupt (IR bit) after performing these procedures.

- When a trigger is generated while counting, the reload register reloads and continues counting
 after the counter has decremented once following a re-trigger. To generate a trigger while counting,
 wait at least 1 count source cycle after the previous trigger has been generated and generate a retrigger.
- If an external trigger input is selected to start counting in timer A one-shot timer mode, do not provide another external trigger input again for 300 ns before the timer A counter value reaches "000016". One-shot timer may stop counting.

27.9.2.4 Timer A (Pulse Width Modulation Mode)

- The TAiS(i=0 to 4) bit in the TABSR register is set to "0" (stops counting) after reset. Set the TAiS bit to "1" (starts counting) after selecting an operating mode and setting the TAi register.
- The IR bit is set to "1" when the following procedures are performed to set timer mode:
- Selecting PWM mode after reset
- Switching from timer mode to PWM mode
- Switching from event counter mode to PWM mode

Therefore, set the IR bit to "0" by program to generate a timer Ai interrupt (IR bit) after performing these procedures.

- The followings occur when the TAiS bit is set to "0" (stops counting) while PWM pulse is output:
- The counter stops counting
- Output level changes to low ("L") and the IR bit changes to "1" when the TAiout pin is held high ("H")
- The IR bit and the output level remain unchanged when TAiouT pin is held "L"

27.9.3 Timer B

27.9.3.1 Timer B (Timer Mode, Event Counter Mode)

- The TBiS (i=0 to 5) bit is set to "0" (stops counting) after reset. Set the TBiS bit to "1" (starts counting) after selecting an operating mode and setting TBi register.
- The TB2S to TB0S bits are bits 7 to 5 in the TABSR register. The TB5S to TB3S bits are bits 7 to 5 in the TBSR register.
- The TBi register indicates the counter value during counting at any given time. However, the counter is "FFFF16" when reloading. The setting value can be read after setting the TBi register while the counter stops and before the counter starts counting.

27.9.3.2 Timer B (Pulse Period/Pulse Width Measurement Mode)

- The IR bit in the TBiIC (i=0 to 5) register is set to "1" (interrupt requested) when the valid edge of a pulse to be measured is input and when the timer Bi counter overflows. The MR3 bit in the TBiMR register determines the interrupt source within an interrupt routine.
- Use another timer to count how often the timer counter overflows when an interrupt source cannot be determined by the MR3 bit, such as when a pulse to be measured is input at the same time the timer counter overflows.
- To set the MR3 bit in the TBiMR register to "0" (no overflow), set the TBiMR register after the MR3 bit is set to "1" (overflow) and one or more cycles of the count source are counted, while the TBiS bits in the TABSR and TBSR registers are set to "1" (starts counting).
- The IR bit in the TBilC register is used to detect overflow only. Use the MR3 bit only to determine interrupt source within an interrupt routine.
- Indeterminate values are transferred to the reload register during the first valid edge input after counting is started. Timer Bi interrupt request is not generated at this time.
- The counter value is indeterminate when counting is started. Therefore, the MR3 bit setting may change to "1" (overflow) and causes timer Bi interrupt requests to be generated until a valid edge is input after counting is started.
- The IR bit may be set to "1" (interrupt requested) if the MR1 and MR0 bits in the TBiMR register are set to a different value after a count begins. If the MR1 and MR0 bits are rewritten, but to the same value as before, the IR bit remains unchanged.
- Pulse width measurement measures pulse width continuously. Use program to determine whether measurement results are high (""H") or low ("L").

27.10 Serial I/O

27.10.1 Clock Synchronous Serial I/O Mode

The $\overline{RTS}2$ and CLK2 pins are placed in high-impedance states when a low-level ("L") signal is applied to the \overline{NMI} pin while the INV03 to INV02 bits in the INVC0 register are set to "112" (forced cutoff of the three-phase output by an "L" signal applied to the \overline{NMI} pin).

27.10.1.1 Transmission / Reception

When the \overline{RTS} function is used while an external clock is selected, the output level of the \overline{RTSi} pin is held "L" indicating that the microcomputer is ready for reception. The transmitting microcomputer is notified that reception is possible. The output level of the \overline{RTSi} pin becomes high ("H") when reception begins. Therefore, connecting the \overline{RTSi} pin to the \overline{CTSi} pin of the transmitting microcomputer synchronizes transmission and reception. The \overline{RTS} function is disabled if an internal clock is selected.

27.10.1.2 Transmission

When an external clock is selected while the CKPOL bit in the UiC0 (i=0 to 4) register is set to "0" (data is transmitted on the falling edge of the transfer clock and received on the rising edge) and the external clock is held "H", or when the CKPOL bit is set to "1" (data is transmitted on the rising edge of the transfer clock and received on the falling edge) and the external clock is held "L", meet the following conditions:

- Set the TE bit in the UiC1 register to "1" (receive enabled)
- Set the TI bit in the UiC1 register to "0" (data in the UiTB register)
- Apply "L" signal to the CTSi pin if the CTS function is selected

27.10.1.3 Reception

Activating the transmitter in clock synchronous serial I/O mode generates the shift clock. Therefore, set for transmission even if the microcomputer is used for reception only. Dummy data is output from the TxDi pin while receiving.

If an internal clock is selected, the shift clock is generated when the TE bit in the UiC1 registers is set to "1" (receive enabled) and dummy data is set in the UiTB register. If an external clock is selected, the shift clock is generated when the external clock is input into CLKi pin while the TE bit is set to "1" (receive enabled) and dummy data is set in the UiTB register.

When receiving data consecutively while the RE bit in the UiC1 register is set to "1" (data in the UiRB register) and the next data is received by the UARTi reception register, an overrun error occurs and the OER bit in the UiRB register is set to "1" (overrun error). In this case, the UiRB register is indeterminate. When overrun error occurs, program both reception and transmission registers to retransmit earlier data. The IR bit in the SiRIC does not change when an overrun error occurs.

When receiving data consecutively, feed dummy data to the low-order byte in the UiTB register every time a reception is made.

When an external clock is selected while the CKPOL bit in the UiC0 register is set to "0" (data is transmitted on the falling edge of the transfer clock and received on the rising edge) and the external clock is held "H" or when the CKPOL bit is set to "1" (data is transmitted on the rising edge of the transfer clock and received on the falling edge) and the external clock is held "L", meet the following conditions:

- Set the RE bit in the UiC1 register to "1" (receive enabled)
- Set the TE bit in the UiC1 register to "1" (transmit enabled)
- Set the TI bit in the UiC1 register to "0" (data in the UiTB register)

27.10.2 UART Mode

Set the UiERE bit (i=0 to 4) in the UiC1 register after setting the UiMR register.

27.10.3 Special Mode 1 (I²C Mode)

To generate the start condition, stop condition or restart condition, set the STSPSEL bit in the UiSMR4 register to "0" first. Then, change each condition generating bit (the STAREQ bit, STPREQ bit or RSTAREQ bit) setting from "0" to "1" after going through a half cycle of the transfer clock.

27.11 A/D Converter

- Set the AD0CON0 (bit 6 excluded), AD0CON1, AD0CON2, AD0CON3, and AD0CON4 registers while the A/D conversion is stopped (before a trigger is generated).
- Wait a minimum of 1µs before starting the A/D conversion when changing the VCUT bit setting in the AD0CON1 register from "0" (VREF no connection) to "1" (VREF connection). Change the VCUT bit setting from "1" to "0" after the A/D conversion is completed.
- Insert capacitors between the AVCC pin, VREF pin, analog input pin ANij (i=none, 0, 2, 15; j=0 to 7) and AVSS pin to prevent latch-ups and malfunctions due to noise, and to minimize conversion errors. The same applies to the VCC and VSS pins. Figure 27.4 shows the use of capacitors to reduce noise.

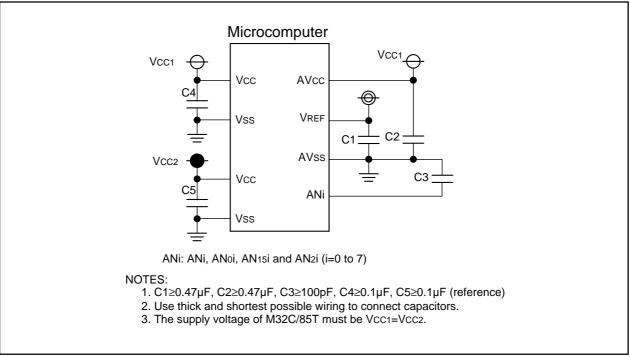


Figure 27.4 Use of Capacitors to Reduce Noise

- Set the bit in the port direction register, which corresponds to the pin being used as the analog input, to "0" (input mode). Set the bit in the port direction register, which corresponds to the ADTRG pin, to "0" (input mode) if the TRG bit in the AD0CON0 register is set to "1" (external trigger).
- When generating a key input interrupt, do not use the AN4 to AN7 pins as analog input pins (key input interrupt request is generated when the A/D input voltage becomes "L").
- The frequency of φAD must be 16MHz or less. When the sample and hold function is not activated, φAD frequency must be 250 kHz or more. If the sample and hold function is activated, φAD frequency must be 1MHz or more.
- Set the CH2 to CH0 bits in the AD0CON0 register or the SCAN1 and SCAN0 bits in the AD0CON1 register to re-select analog input pins when changing A/D conversion mode.

- AVCC = VREF = VCC1 ≥ VCC2, A/D input voltage (for ANo to AN7, AN150 to AN157, ANEX0, and ANEX1) ≤ VCC1, A/D input voltage (for AN00 to AN07, and AN20 to AN27) \leq VCC2.
- Wrong values are stored in the AD0i register (i=0 to 7) if the CPU reads the AD0i register while the AD0i register stores results from a completed A/D conversion. This occurs when the CPU clock is set to a divided main clock or a sub clock.

In one-shot mode or single sweep mode, read the corresponding AD0i register after verifying that the A/D conversion has been completed. The IR bit in the AD0IC register determines the completion of the A/D conversion.

In repeat mode, repeat sweep mode 0, repeat sweep mode 1, multi-port single sweep mode, and multiport repeat sweep mode 0, use an undivided main clock as the CPU clock.

- Conversion results of the A/D converter are indeterminate if the ADST bit in the AD0CON0 register is set to "0" (A/D conversion stopped) and the conversion is forcibly terminated by program during the A/D conversion. The AD0i register not performing the A/D conversion may also be indeterminate. If the ADST bit is changed to "0" by program, during the A/D conversion, do not use any values obtained from the AD0i registers.
- External triggers cannot be used in DMAC operating mode. Do not read the AD00 register by program.
- Do not perform the A/D conversion in wait mode.
- Set the MCD4 to MCD0 bits in the MCD register to "100102" (no division) if using the sample and hold function.
- Do not acknowledge any interrupt requests, even if generated, before setting the ADST bit, if the A/D conversion is terminated by setting the ADST bit in the AD0CON0 register to "0" (A/D conversion stopped) while the microcomputer is A/D converting in single sweep mode.

27.12 Intelligent I/O

27.12.1 Register Setting

Operations, controlled by the values written to the G1BT, G1BCR1, G1TMCR0 to G1TMCR7, G1TPR6, G1TPR7, G1TM0 to G1TM7, G1POCR0 to G1POCR7, G1PO0 to G1PO7, G1FS and G1FE registers, are affected by the count source (fBT1) set in the BCK1 and BCK0 bits in the G1BCR0 register. Set the BCK1 and BCK0 bits before setting the G1BT, G1BCR1, G1TMCR0 to G1TMCR7, G1TPR6, G1TPR7, G1TM0 to G1TM7, G1POCR0 to G1POCR7, G1PO0 to G1PO7, G1FS and G1FE registers.

Operations, controlled by the values written to the G0RI and G1RI, G0TO and G1TO, G0CR and G1CR, G0RB and G1RB, G0MR and G1MR, G0EMR and G1EMR, G0ETC and G1ETC, G0ERC and G1ERC, G0IRF, G1IRF, G0TB and G1TB, G0CMP0 to G0CMP3, G1CMP0 to G1CMP3, G0MSK0 and G0MSK1, G1MSK0 and G1MSK1, G0TCRC and G1TCRC, G0RCRC and G1RCRC registers are affected by the transfer clock

Set trasfer clock before setting the G0RI and G1RI, G0TO and G1TO, G0CR and G1CR, G0RB and G1RB, G0MR and G1MR, G0EMR and G1EMR, G0ETC and G1ECT, G0ERC and G1ERC, G0IRF and G1IRF, G0TB and G1TB, G0CMP0 to G0CMP3, G1CMP0 to G1CMP3, G0MSK0 and G0MSK1, G1MSK0 and G1MSK1, G0TCRC and G1TCRC, G0RCRC and G1RCRC registers.

27.13 Programmable I/O Ports

• Because ports P72 to P75, P80, and P81 have three-phase PWM output forced cutoff function, they are affected by the three-phase motor control timer function and the NMI pin when these ports are set for output functions (port output, timer output, three-phase PWM output, serial I/O output, intelligent I/O output).

Table 27.4 shows the INVC0 register setting, the $\overline{\text{NMI}}$ pin input level and the state of output ports.

Table 27.4 INVC0 Register and the NMI Pin

Setting Value of IN	IVC0 Register	Input Level States of P72 to P75, P80, and P81	
INV02 bit	INV03 bit	to NMI Pin	Pins (when setting an output pin)
0 (not using three-phase motor control function)	-	-	Output functions selected by the PS1, PSL1, PSC, PS2, and PSL2 registers
1 (using three-phase motor control timer function	0 (three-phase PWM output disabled)	-	High-impedance state
	1 (three-phase PWM output enabled) ⁽¹⁾	Н	Output functions selected by the PS1, PSL1, PSC, PS2, and PSL2 registers
		L (forcibly terminated)	High-impedance state

NOTES:

- 1. The INV03 bit is set to "0" after a low-level ("L") signal is applied to the $\overline{\text{NMI}}$ pin.
- The availability of pull-up resistors is indeterminate until internal power voltage stabilizes, if the RESET pin is held "L".
- The input threshold voltage varies between programmable I/O ports and peripheral functions. Therefore, if the lelvel of the voltage applied to a pin shared by both programmable I/O ports and peripheral functions is not within the recommended operating condition, VIH and VIL (neither "H" nor "L"), the level may vary depending on the programmable ports and peripheral functions.

27.14 Flash Memory Version

27.14.1 Differences Between Flash Memory Version and Masked ROM Version

Due to differences in internal ROM and layout pattern, flash memory version and masked ROM version have varying electrical characteristics such as attributes, performance margins, noise endurance capacity, and noise radiation. When switching to masked ROM version, administer system evaluation tests equal to those held on the flash memory version.

27.14.2 Boot Mode

I/O pins may not be placed in high-impedance states until internal voltage stabilizes, when power is turned on in boot mode. Follow the procedure below to turn on power in boot mode.

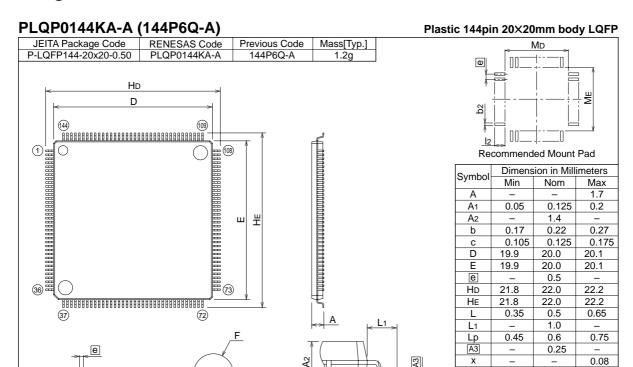
- 1) Apply an "L" signal to the RESET and the CNVss pin
- 2) Wait a minimum of 2ms after VCC1 reaches 2.7V or above (until internal voltage stabilizes)
- 3) Apply an "H" signal to the CNVss pin
- 4) Apply an "H" signal to the RESET pin (reset exited)

27.15 Noise

Connect a bypass capacitor (0.1µF or more) between Vcc and Vss by shortest path, using thick wires.

0.1

8°


0.225

20.4

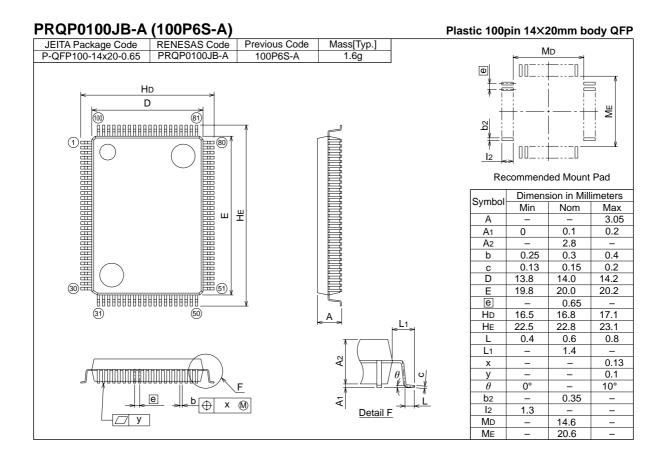
20.4

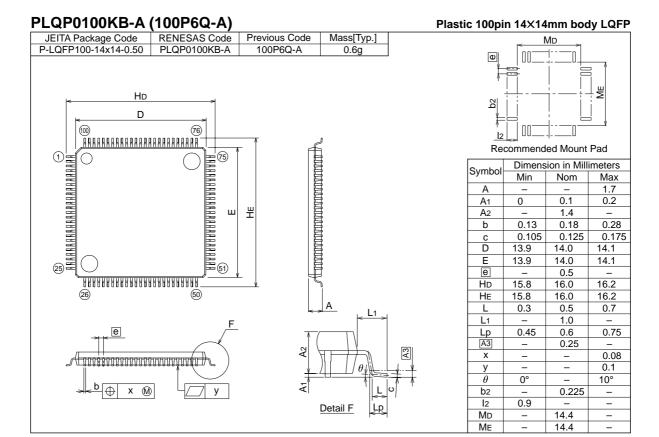
Package Dimensions

<u>р</u> — х

Detail F

y y


 θ


b2

12

MD ME 0°

0.95

Register Index

ADDO to ADDO
ADOCONO 247 ADOCONO 248 ADOCONI 248 ADOCONI 248 ADOCONI 249 ADOCONI 250 ADOCONI 251 AIER 124 COSLOTO_15 361 COSLOTO_15 361 COSLOTO_15 361 COSLOTO_15 361 COSLOTO_15 361 COSLOTO_15 361 COSLOTO_15 361 COSLOTI_0 358 COSLOTI_1 358 CC COSLOTI_1 358 CC COSLOTI_2 359 COSLOTI_2 359 COSLOTI_2 359 COSLOTI_3 360 COSLOTI_5 360 COSLOTI_5 360 COSLOTI_5 360 COSLOTI_5 360 COSLOTI_5 360 COSLOTI_1 360 COSLOTI_5 360 COSLOTI_5 360 COSLOTI_1 4 360 COSLOTI_6 to COSLOTI_13 361 COCTLR0 322 COSLOTI_14 361 COSLOTI_15 361 COSLOTI_16 to COSLOTI_13 361 COSLOTI_15 361 COSLOTI_16 to COSLOTI_13 361 COSLOTI_15 361 COSLOTI_16 to COSLOTI_13 361 COSLOTI_15 361 COSLOTI_16 to COSLOTI_13 361 COSLOTI_16 to COSLOTI_13 361 COSLOTI_16 to COSLOTI_13 361 COSLOTI_16 to COSLOTI_13 361 COSLOTI_16 to COSLOTI_13 361 COSLOTI_16 to COSLOTI_13 361 COSLOTI_16 to COSLOTI_16 to COSLOTI_16 to COSLOTI_16 to COSLOTI_16 to COSLOTI_16 to COSLOTI_16 to COSLOTI_16 to COSLOTI_16 to COSLOTI_16 to COSLOTI_16 to COSLOTI_17 361 COSLOTI_16 to COSLOTI_17 361 COSLOTI_17 360 COSLOTI_18 361 COSLOTI_18 361 COSLOTI_18 361 COSLOTI_19 4 360 COSLOTI_19 4 4 4 4 4 4
ADOCON1 248 ADOCON2 249 ADOCON3 250 ADOCON4 251 ALER 124 COSLOTO_15 361 COSLOTO_15 361 COSLOTO_15 361 COSLOTO_15 361 COSLOTI_0 358 ALER 124 COSLOTI_1 358 C C COSLOTI_2 359 COSLOTI_2 359 COSLOTI_3 359 COSLOTI_3 359 COSLOTI_3 359 COSLOTI_4 360 COSLOTI_5 360 COSLOTI_5 360 COSLOTI_5 360 COSLOTI_5 360 COSLOTI_1 356 COSLOTI_1 356 COSLOTI_1 356 COSLOTI_1 361 COSLOTI_1 36
ADOCON2 249 ADOCON3 250 ADOCON4 251 ADOCON4 251 AIER 124 COSLOT1_0 358 COSLOT1_1 358 CC COSLOT1_1 358 CC COSLOT1_2 359 COSLOT1_3 359 COSLOT1_3 359 COSLOT1_3 359 COSLOT1_4 360 COSLOT1_5 360 COSLOT1_5 360 COSLOT1_5 360 COSLOT1_5 360 COSLOT1_5 361 COSLOT1_5 360 COSLOT1_5 361 COSLOT1_5 361 COSLOT1_5 361 COSLOT1_5 361 COSLOT1_5 361 COSLOT1_5 361 COSLOT1_5 361 COSLOT1_14 361 COSLOT1_14 361 COSLOT1_14 361 COSLOT1_15 361 COSLOT1_14 361 COSLOT1_15 361 COSLOT1_16 10 COSLOTI_16 10 COSLOTI_16 10 COSLOTI_16 10 COSLOTI_16 10
ADDCON3 250 ADDCON4 251 ADDCON4 251 ALER 124 COSLOT1_0 358 COSLOT1_1 358 COSLOT1_1 358 COSLOT1_2 359 COSLOT1_3 359 COSLOT1_3 359 COSLOT1_3 359 COSLOT1_4 360 COSLOT1_5 360 COSLOT1_5 360 COSLOT1_5 360 COSLOT1_5 360 COSLOT1_1 325 COSLOT1_1 361 COSLOT1_5 360 COSLOT1_1 361
ADDCON4 251 AIER 124 COSLOT1_0 358 COSLOT1_1 358 C COSLOT1_2 359 COSLOT1_2 359 COSLOT1_3 359 COSLOT1_4 360 COSLOT1_5 360 COSLOT1_5 360 COSLOT1_5 360 COSLOT1_5 360 COSLOT1_1 325 COSLOT1_1 325 COSLOT1_1 361 COSLOT1_1 361 COSLOT1_1 361 COSLOT1_1 361 COSLOT1_1 361 COSLOT1_1 361 COSLOT1_1 361 COSLOT1_1 361 COSLOT1_1 361 COSLOT1_1 361 COSLOT 326 COSLOT1_1 361 COSLOT 326 COSLOT 344 COSSSTR 345 COSSSTR 345 COSSSTR 345 COGMR0 346 COSSSTR 345 COGMR1 347 COTEC 335 COGMR2 348 COGMR3 349 COLAFS 362 COMBR 350 COLAFS 362 COMBR 350 COLAFS 362 COLARR 346 COLARR 347 COLARR 346 COLARR 347 COLARR 346 COLARR 347 COLARR 348 COLARR 349 COLARR 348 COLARR 349 COLARR 349 COLARR 350 COLARR
COSLOTI_0 388 COSLOTI_1 358 COSLOTI_1 358 COSLOTI_2 359 COSLOTI_3 359 COSLOTI_4 360 COSLOTI_5 360 COSLOTI_5 360 COSLOTI_6 0 COSLOTI_13 361 COCONR 331 COSLOTI_6 0 COSLOTI_13 361 COCTLR0 322 COSLOTI_14 361 COSLOTI_15 361 COSLOTI_16 to COSLOTI_13 361 COSLOTI_16 to COSLOTI_13 361 COSLOTI_16 to COSLOTI_13 361 COSLOTI_16 to COSLOTI_13 361 COSLOTI_16 to COSLOTI_13 361 COSLOTI_16 to COSLOTI_13 361 COSLOTI_16 to COSLOTI_13 361 COSLOTI_16 to COSLOTI_13 361 COSLOTI_16 to COSLOTI_13 361 COSLOTI_16 to COSLOTI_13 361 COSLOTI_16 to COSLOTI_13 361 COSLOTI_16 to COSLOTI_16 COSLOTI_16 to COSLOTI_13 361 COSLOTI_16 to COSLOTI_115 COSLOTI_16 to COSLOTI_13 361 COSLOTI_16 to COSLOTI_115 COSLOTI_16 to COSLOTI_13 COSLOTI_16 to COSLOTI_115 COSLOTI_16 to COSLOTI_16 COSLOTI_16 to COSLOTI_16 COSLOTI_16 to COSLOTI_16 COSLOTI_16
COSLOTI_1 358 COSLOTI_2 359 COSLOTI_3 359 COSLOTI_3 359 COSLOTI_4 360 COSLOTI_5 360 COSLOTI_5 360 COSLOTI_5 360 COSLOTI_15 361 COSLOTI_14 361 COSLOTI_15 361 COSLOTI_16 TO COSLOTI_13 361 COSLOTI_15 361 COSLOTI_10 326 COSLOTI_10 326 COSLOTI_10 327 COTEC 335 COSLOTI_10 327 COTEC 335 COTEC
COAFS 362 COBPR 333 COCONR 331 COCONR 322 COSLOT1_6 to COSLOT1_13 361 COCTLRO 322 COSLOT1_14 361 COSLOT1_15 361 COSLOT1_15 361 COSLOT1_15 361 COSLOT1_15 361 COSLOT1_15 361 COSLOT1_15 361 COSLOTS 326 COSLOT1_15 361 COSLOTS 326 COSLOT1_15 361 COSLOTS 326 COSSCTLR 344 COSSSTR 345 COGMRO 346 COSSSTR 345 COGMRO 346 COSSTR 327 COTEC 335 COGMR2 348 COGMR3 349 C1AFS 362 C1AFS 362 C1BRP 333 COLMARO 346 C1CONR 331 COLMARO 346 C1CONR 331 COLMARO 346 C1CTLRO 322 C1CONR 331 COLMARO 346 C1CTLRO 322 C1CTLR1 325 COLMARO 346 C1CTLR1 325 COLMBRO 346 C1CMBRO 346 C1GMRO 348 COLMBRO 348 COLMBRO 349
COAFS 362 COBPR 333 COCONR 331 COCONR 331 COCTLRO 322 COCTLR1 325 COEFR 341 COEIMKR 339 COESCTLR 344 COGMRO 346 COGMRO 348 COGMR3 349 COGMRA 350 COGMRA 350 COLMARO 346 COLMARO 348 COLMARO 346 COLMBRO 346 COLMBRO 346 COLMBRO 346 COLMBRO 348 COLMBRO 349
COBPR 333 COCONR 331 COCONR 331 COCTLR0 322 COCTLR1 325 COEFR 341 COEIMKR 339 COESCTLR 345 COGMR0 346 COGMR1 347 COGMR2 348 COGMR3 349 COGMR4 350 COLMAR0 346 COLMAR1 347 COLMAR0 346 COLMAR1 347 COLMAR0 348 COLMAR1 347 COLMAR1 347 COLMAR0 348 COLMAR1 347 COLMAR1 347 COLMAR2 348 COLMAR2 348 COLMAR3 349 COLMAR4 350 COLMAR4 350 COLMBR0 346 COLMBR0 346 COLMBR0 346 COLMBR1 347 COLMBR2 348 COLMBR2 348 COLMBR3 349
COCONR 331 COCTLR0 322 COCTLR1 325 COEFR 341 COEIMKR 339 COEISTR 340 COGMR0 346 COGMR1 347 COGMR2 348 COGMR3 349 COIDR 330 COLMAR0 346 COLMAR1 347 COLMAR2 348 COLMAR2 348 COLMAR3 349 COLMAR2 348 COLMAR3 349 COLMAR2 348 COLMAR3 349 COLMAR4 350 COLMAR5 360 COLMAR5 360 COLMAR6 360 COLMAR7 37 COLMAR7 37 COLMAR7 380 COLMAR8 370 COLMAR8 380 COL
COCTLR0 322 COCTLR1 325 COEFR 341 COEIMKR 339 COEISTR 340 COGMR0 346 COGMR1 347 COGMR2 348 COGMR3 349 COGMR4 350 COLMAR0 346 COLMAR1 347 COLMAR2 348 COLMAR2 348 COLMAR3 349 COLMAR4 350 COLMAR4 350 COLMAR4 350 COLMAR4 350 COLMAR5 348 COLMAR5 348 COLMAR5 348 COLMAR6 346 COLMAR7 348 COLMAR7 348 COLMAR8 349 COLMAR8 349 COLMAR8 349 COLMAR8 349 COLMAR8 349 COLMAR8 349 COLMAR8 350 COLMAR8 350 COLMAR8 350 COLMAR9 348 COLMAR9 348 COLMAR9 348 COLMAR9 348 COLMAR9 349 COLMAR9 346 COLMAR9 346 COLMBR0 346 COLMBR0 346 COLMBR0 346 COLMBR0 346 COLMBR1 347 COLMBR2 348 COLMBR2 348 COLMBR3 349 COLMBR3 349 COLMBR3 349 COLMBR3 349 COLMBR3 349 COLMBR3 349 COLMBR4 350 COLMBR3 349 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350
COCTLR1 325 COEFR 341 COEIMKR 339 COEISTR 340 COGNR0 346 COGMR1 347 COGMR2 348 COGMR3 349 COGMR4 350 COLMAR0 346 COLMAR1 347 COLMAR2 348 COLMAR2 348 COLMAR3 349 COLMAR3 349 COLMAR4 350 COLMAR3 349 COLMAR3 349 COLMAR3 349 COLMAR3 349 COLMAR4 350 COLMAR4 350 COLMAR5 362 COLMAR5 362 COLMAR6 346 COLMAR7 347 COLMAR7 348 COLMAR8 349 COLMAR8 349 COLMAR9 348 COLMAR9 348 COLMAR9 348 COLMAR9 349 COLMAR9 346 COLMBR0 346 COLMBR0 346 COLMBR1 347 COLMBR2 348 COLMBR2 348 COLMBR3 349 COLMBR3 349 COLMBR3 349 COLMBR4 350 COLMBR3 349 COLMBR4 350 COLMBR3 349 COLMBR4 350 COLMBR4 350
COEFR 341 COEIMKR 339 COEISTR 340 COGMR0 346 COGMR1 347 COGMR2 348 COGMR3 349 COGMR4 350 COLMAR0 346 COLMAR1 347 COLMAR2 348 COLMAR2 348 COLMAR3 349 COLMAR3 349 COLMAR3 349 COLMAR4 350 COLMAR5 346 COLMAR5 346 COLMAR6 346 COLMAR7 348 COLMAR7 348 COLMAR8 COLM
COEIMKR 339 COEISTR 340 COEISTR 340 COGMR0 346 COGMR1 347 COGMR1 347 COGMR2 348 COGMR3 349 COGMR4 350 COIDR 330 COLMAR0 346 COLMAR1 347 COLMAR2 348 COLMAR3 349 COLMAR3 349 COLMAR3 349 COLMAR4 350 COLMAR4 350 COLMAR5 348 COLMAR5 348 COLMAR5 348 COLMAR6 346 COLMAR7 347 COLMAR8 349 COLMAR8 349 COLMAR8 350 COLMAR8 350 COLMAR8 350 COLMAR8 350 COLMAR8 350 COLMAR8 350 COLMAR8 350 COLMAR8 350 COLMAR8 350 COLMAR8 346 COLMBR0 346 COLMBR1 347 COLMBR2 348 COLMBR3 349 COLMBR3 349 COLMBR3 349 COLMBR3 349 COLMBR3 349 COLMBR4 350 COLMBR4 350 COLMBR3 349 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350
COEISTR 340 COGMR0 346 COGMR1 347 COGMR2 348 COGMR3 349 COGMR4 350 COIDR 330 COLMAR0 346 COLMAR1 347 COLMAR2 348 COLMAR3 349 COLMAR3 349 COLMAR3 349 COLMAR3 349 COLMAR3 349 COLMAR3 349 COLMAR3 349 COLMAR4 350 COLMAR4 350 COLMAR4 350 COLMAR4 350 COLMAR4 350 COLMBR0 346 COLMBR0 346 COLMBR1 347 COLMBR1 347 COLMBR2 348 COLMBR3 349 COLMBR3 349 COLMBR3 349 COLMBR3 349 COLMBR3 349 COLMBR4 350 COLMBR3 349 COLMBR4 350 COLMBR4 350 COLMBR3 349 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350
COGMR0 346 COGMR1 347 COGMR2 348 COGMR3 349 COGMR4 350 COIDR 330 COLMAR0 346 COLMAR1 347 COLMAR2 348 COLMAR3 349 COLMAR3 349 COLMAR3 349 COLMAR4 350 COLMAR3 349 COLMAR4 350 COLMAR3 349 COLMAR4 350 COLMAR4 350 COLMAR4 350 COLMBR0 346 COLMBR0 346 COLMBR1 347 COLMBR1 347 COLMBR2 348 COLMBR3 349 COLMBR3 349 COLMBR3 349 COLMBR3 349 COLMBR3 349 COLMBR4 350 COLMBR3 349 COLMBR4 350 COLMBR4 350 COLMBR3 349 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350
COGMR1 347 COGMR2 348 COGMR3 349 COGMR4 350 COIDR 330 COLMAR0 346 COLMAR1 347 COLMAR2 348 COLMAR3 349 COLMAR3 349 COLMAR4 350 COLMAR4 350 COLMAR4 350 COLMAR4 350 COLMAR4 350 COLMAR4 350 COLMAR4 350 COLMAR4 350 COLMBR0 346 COLMBR0 346 COLMBR1 347 COLMBR2 348 COLMBR3 349 COLMBR3 349 COLMBR3 349 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR3 349 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350
COGMR2 348 COGMR3 349 COGMR4 350 COIDR 330 COLMARO 346 COLMAR1 347 COLMAR2 348 COLMAR3 349 COLMAR3 349 COLMAR4 350 COLMAR4 350 COLMAR4 350 COLMAR4 350 COLMAR4 350 COLMBR0 346 COLMBR0 346 COLMBR1 347 COLMBR1 347 COLMBR2 348 COLMBR3 349 COLMBR3 349 COLMBR3 349 COLMBR3 349 COLMBR3 349 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350
COGMR3 349 COGMR4 350 COIDR 330 COLMARO 346 COLMAR1 347 COLMAR2 348 COLMAR3 349 COLMAR4 350 COLMAR4 350 COLMAR4 350 COLMBR0 346 COLMBR0 346 COLMBR0 346 COLMBR1 347 COLMBR1 347 COLMBR2 348 COLMBR1 347 COLMBR2 348 COLMBR3 349 COLMBR3 349 COLMBR3 349 COLMBR4 350
COGMR4 350 COIDR 330 COLMARO 346 COLMARI 347 COLMAR2 348 COLMAR3 349 COLMAR4 350 COLMAR4 350 COLMBRO 346 COLMBRO 346 COLMBRO 346 COLMBRO 346 COLMBRI 347 COLMBRI 347 COLMBR2 348 COLMBR2 348 COLMBR2 348 COLMBR3 349 COLMBR3 349 COLMBR3 349 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350
COLMARO 346 COLMARI 347 COLMAR2 348 COLMAR3 349 COLMAR4 350 COLMBRO 346 COLMBRO 346 COLMBRO 346 COLMBRI 347 COLMBRI 347 COLMBRI 347 COLMBRI 347 COLMBRI 348 COLMBRI 349 COLMBRI 349 COLMBRI 349 COLMBRI 349 COLMBRI 349 COLMBRI 349 COLMBRI 350 COLMBRI 350 COLMBRI 350
COLMARO 346 COLMAR1 347 COLMAR2 348 COLMAR3 349 COLMAR4 350 COLMBR0 346 COLMBR0 346 COLMBR1 347 COLMBR1 347 COLMBR2 348 COLMBR2 348 COLMBR3 349 COLMBR3 349 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350
COLMAR1 347 COLMAR2 348 COLMAR3 349 COLMAR4 350 COLMBR0 346 COLMBR1 347 COLMBR1 347 COLMBR2 348 COLMBR2 348 COLMBR3 349 COLMBR3 349 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350
COLMAR2 348 COLMAR3 349 COLMAR4 350 COLMBR0 346 COLMBR1 347 COLMBR2 348 COLMBR2 348 COLMBR3 349 COLMBR3 349 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350 COLMBR4 350
COLMAR3 349 C1EIMKR 339 COLMAR4 350 C1EISTR 340 COLMBR0 346 C1GMR0 346 COLMBR1 347 C1GMR1 347 COLMBR2 348 C1GMR2 348 COLMBR3 349 C1GMR3 349 COLMBR4 350 C1GMR4 350
COLMAR4 350 C1EISTR 340 COLMBR0 346 C1GMR0 346 COLMBR1 347 C1GMR1 347 COLMBR2 348 C1GMR2 348 COLMBR3 349 C1GMR3 349 COLMBR4 350 C1GMR4 350
COLMBR0 346 COLMBR1 347 COLMBR2 348 COLMBR3 349 COLMBR4 350 C1GMR0 346 C1GMR1 347 C1GMR2 348 C1GMR3 349 C1GMR4 350
COLMBR1 347 COLMBR2 348 COLMBR3 349 COLMBR4 350 C1GMR1 347 C1GMR2 348 C1GMR2 349 C1GMR3 349 C1GMR4 350
COLMBR2 348 COLMBR3 349 COLMBR4 350 C1GMR2 348 C1GMR3 349 C1GMR4 350
C1GMR3 349 C1GMR4 350
C1GMR4 350
COMCTL0 to COMCTL15 353 C1IDR 330
COMDR 342 C1LMAR0 346
COREC 335 C1LMAR1 347
COSBS 357 COSBS 357 C1LMAR2 348
COSIMKR 338 C1LMAR3 349
COSISTR 336 C1LMAR4 350
C0SLOT0_0 358 C0SLOT0_1 358 C1LMBR0 346

C1LMBR2 348	DCT0 to DCT3 138
C1LMBR3 349	DM0SL to DM3SL 135
C1LMBR4 350	DMA0 to DMA3 139
C1MCTL0 to C1MCTL15 353	DMD0, DMD1 137
C1MDR 342	DRA0 to DRA3 139
C1REC 335	DRC0 to DRC3 138
C1SBS 357	DS 62
C1SIMKR 338	DSA0 to DSA3 139
C1SISTR 336	DTT 185
C1SLOT0_0 358	_
C1SLOT0_1 358	E
C1SLOT0_14 361	EWCR0 to EWCR3 68
C1SLOT0_15 361	F
C1SLOT0_2 359	Г
C1SLOT0_3 359	FMR0 399
C1SLOT0_4 360	FMR1 400
C1SLOT0_5 360	G
C1SLOT0_6 to C1SLOT0_13 361	G
C1SLOT1_0 358	G0CMP0 to G0CMP3 306
C1SLOT1_1 358	G0CR, G1CR 299
C1SLOT1_14 361	G0DR, G1DR 305
C1SLOT1_15 361	G0EMR 301
C1SLOT1_2 359	G0ERC, G1ERC 303
C1SLOT1_3 359	G0ETC 302
C1SLOT1_4 360	G0IRF 304
C1SLOT1_5 360	G0MR 300
C1SLOT1_6 to C1SLOT1_13 361	G0MSK0, G0MSK1 306
C1SLPR 326	G0RB, G1RB 299
C1SSCTLR 344	G0RCRC, G1RCRC 306
C1SSSTR 345	G0RI, G1RI 298
C1STR 327	G0TB, G1TB 305
C1TEC 335	G0TCRC, G1TCRC 306
C1TSR 334	G0TO, G1TO 298
CCS 307	G1BCR0 274
CM0 81, 131	G1BCR1 275
CM1 82	G1BT 274
CM2 84	G1CMP0 to G1CMP3 306
CPSRF 85	G1EMR 301
CRCD 266	G1ETC 302
CRCIN 266	G1FE 279
D	G1FS 278
	G1IRF 305
D4INT 53	G1MR 300
DA0, DA1 265	G1MSK0, G1MSK1 306
DACON 265	

G1PO0 to G1PO7 278	PSC2 383
G1POCR0 to G1POCR7 277	PSC3 384
G1TM0 to G1TM7 277	PSD1 384
G1TMCR0 to G1TMCR7 276	PSL0 381
G1TPR6, G1TPR7 276	PSL1 381
1	PSL2 382
•	PSL3 382
ICTB2 186	PUR0 385
IDB0, IDB1 185	PUR1 385
IFSR 122, 200	PUR2 385
IIO0IE to IIO5IE 128	PUR3 386
IIO0IR to IIO5IR 127	PUR4 386
IIO8IE to IIO11IE 128	R
IIO8IR to IIO11IR 127	N.
Interrupt Control 113, 114	RLVL 115, 145
INVC0 183	RMAD0 to RMAD7 124
INVC1 184	ROMCP 397
IPS 387	Т
IPSA 388	•
М	TA0 to TA4 155
W	TA0MR to TA4MR 156 , 161 , 164 , 167 , 169
MCD 83	TA1, TA2, TA4, TA11, TA21, TA41 186
0	TA1MR, TA2MR, TA4MR 188
	TABSR 156, 172, 187
ONSF 157	TB0 to TB5 171
P	TB0MR to TB5MR 172, 174, 176, 178
•	TB2 187
P0 to P15 376	TB2MR 188
PCR 387	TB2SC 186
PD0 to PD15 375	TBSR 173
PLC0 86	TCSPR 85 , 158
PLC1 86	TRGSR 158, 187
PM0 59	U
PM1 60	o
PM2 87	U0BRG to U4BRG 194
PRCR 104	U0C0 to U4C0 195
PS0 377	U0C1 to U4C1 196
PS1 377	U0MR to U4MR 194
PS2 378	U0RB to U4RB 193
PS3 378	U0SMR to U4SMR 196
PS5 379	U0SMR2 to U4SMR2 197
PS8 379	U0SMR3 to U4SMR3 198
PS9 380	U0SMR4 to U4SMR4 199
PSC 383	U0TB to U4TB 193
	UDF 157

٧

VCR1 **52** VCR2 **52**

W

WDC **51**, **130** WDTS **130**

X

X0R to X15R **268** XYC **268**

Υ

Y0R to Y15R 268

Rev.	Date		Description
		Page	Summary
0.20	Jan., 03		New Document
0.30	Dec., 03	All Pages	New chapters added
			Chapter, Table and Figure numbers modified
			Chapter sequence modified
			Overview
		2, 3	Table 1.1 and 1.2 M32C/85 Group Performance
			"Option" deleted from Serial I/O, I ² C bus, and IEBus
			"Oscillation Stop Detect Function" added
		4	• Figure 1.1 M32C/85 Group Block Diagram Note 2 deleted
		5	• Figure 1.2 ROM/RAM Capacity, Table 1.3 M32C/85 Group modified
			• Table 1.3 M32C/85 Group Note1 deleted
		6	Figure 1.3 Product Numbering System ROM capacity modified
		7, 11, 12	• Figure 1.4 Pin Assignment for 144-Pin Package, Figure 1.5 and 1.6 Pin As-
			signment for 100-Pin Package
			Annotation added: P70 and P71 are ports for the N-channel open drain input.
			Memory
		23	• Figure 3.1 Memory Map modified
			SFR
		24 - 45	"X: Nothing is assigned" modified to "X: Indeterminate"
			"?: Indeterminate" modified to "X: Indeterminate"
			"Users cannot use any symbols with *" deleted
			• Register names, symbols, value after RESET of addresses 001F16 to 002516,
			002B16, 003016 to 003516, 005416, and 005616 deleted
			Value after RESET of CM0, PM2, PLC0, PLC1, EWCR0 to EWCR3, RLVL,
			IIO0IR to IIO5IR, IIO8IR to IIO11IR, IIO0IE to IIO5IE, IIO8IE to IIO11IE, G0CR,
			G1CR, G1POCR, IPSA, C0MDR, C1MDR, C0CTLR1, C1CTLR, IDB0, IDB1,
			TA0MR to TA4MR, DM0SL to DM3SL, AD00, AD0CON2, and AD0CON3 regis-
			ters revised
		44, 45	Annotations added within SFR list
			Reset
		46	• 5.1.1 Hardware Reset 1 New information added
		47	• 5.2 Software Reset, Watchdog Timer Reset Reference added
		48	• Figure 5.2 Reset Sequence Figure modified; note 1 added
		49	• Table 5.1 Pin States Notes 2 and 3 added; P56 pin state modified
		50	• 5.5 Voltage Detection Circuit New information added
		51	• Figure 5.5 WDC Register and VCR1 Register Watchdog Timer Control Regis-
		50	ter added
		52	• Figure 5.6 VCR2 Register NOTES modified

Rev.	Date		Description
		Page	Summary
		53	• Figure 5.7 D4INT Register Bit name and function of the D41 bit modified; b7 to
			b6 changed to RO reserved bits; Note 2 modified
		55	• 5.5.1 Voltage Down Detection Interrupt New information added
			• Table 5.2 Conditions to Generate the Voltage Down Detect Interrupt Request
			Table revised; Note 2 modified; Note 3 added
		56	• Figure 5.9 Voltage Down Detect Interrupt Generation Circuit revised
			• Figure 5.10 Voltage Down Detect Interrupt Generation Circuit Operation
			Example revised
		57	• 5.6 Limitations on Exiting Stop/Wait Mode modified
			Processor Mode
			PM2 register moved to Clock Generation Circuit
		60	• Figure 6.2 PM1 Register Value after RESET modified; b6 bit changed to re-
			served bit
		61	• Figure 6.3 Memory Map in Each Processor Mode Block A changed to re-
			served space
			Bus
		63	• 7.1.3.1 Separate Bus modified
		64	Table 7.2 Processor Mode and Functions Original Note 4 deleted and Note 5
			moved up to become new Note 4
		68	• 7.2.4 Bus Timing modified
			• Figure 7.3 EWCR0 to EWCR3 Register Notes 1 to 3 added
		75	• 7.2.4.1 Bus Cycle with Recovery Cycle Added modified
		76	• 7.2.5 Page Mode Control Function modified
		76, 77	• Figure 7.10 PWCR0 Register, Figure 7.11 PWCR1 Register Note 2 added
		78	• Figure 7.12 External Bus with the page Mode Control Function modified
		80	• Figure 7.14 RD Signal Output Extended by RDY Signal revised
			Clock Generation Circuit
			Chapter title modified from "System Clock"
		82	• Table 8.1 Clock Generation Circuit Specifications revised
		83	• Figure 8.1 Clock Generation Circuit revised
		84	• Figure 8.2 CM0 Register b3 bit changed from Reserved Bit to the CM03 bit; Bit
		0.5	name and function of the CM07 bit modified; Note 11 added
		85	• Figure 8.3 CM1 Register Bit name of the CM 17 bit modified
		86	• Figure 8.4 MCD Register Value after RESET modified; b5 to b7 bits changed to RO reserved bits
		87	• Figure 8.5 CM2 Register Bit name and function of the CM21 bit modified; Bit name of the CM23 bit modified; Note 6 modified; Note 7 deleted
		88	• Figure 8.6 TCSPR and CPSRF Registers b4 to b6 bits in the TCSPR register changed to RO reserved bits

Rev.	Date		Description
		Page	Summary
		89	• Figure 8.7 PLC0 and PLC1 Registers b3 in the PLC0 register changed to RO
			reserved bit; Value after RESET for the PLC1 register modified; b4 bit modified
			to RO; Note 3 modified
		90	Figure 8.8 PM2 Register added
		91	• 8.1.1 Main Clock modified
		92	• 8.1.2 Sub Clock modified
		93	• 8.1.3.1 Oscillation Stop Detect Function modified
		94	Figure 8.11 Switching Procedure from On-chip Oscillator Clock to Main
			Clock modified
		95	• 8.1.4 PLL Clock modified
		96	8.2 CPU Clock and BCLK modified
			• 8.3.1 f1, f8, f32 and f2n modified
		97	• 8.3.2 fAD modified
		98	• 8.5.1.6 On-chip Oscillator Low-Power Consumption Mode Note 1 modified
		99	• 8.5.2.1 Peripheral Function Clock Stop Function modified
			• 8.5.2.2 Entering Wait Mode modified
		100	• 8.5.2.4 Exiting Wait Mode modified
			Table 8.7 Interrupts to Exit Stop Mode revised
		101	• 8.5.3 Stop Mode modified
			• 8.5.3.1 Entering Stop Mode modified
			• 8.5.3.3 Exiting Stop Mode modified
			Interrupts
		106	Figure 10.1 Interrupts "Voltage Down Detect" added
		107	• 10.3.1.4 Voltage Down Detection Interrupt added
		109	Table 10.1 Fixed Vector Table modified
		110	Table 10.2 Relocatable Vector Tables Table and Note 2 modified
		113	Figure 10.3 Interrupt Control Register (1) modified
		115	• Figure 10.5 RLVL Register Value after RESET, and Note 3 modified; Note 4
			added
			• 10.6.2.3 RLVL2 to RLVL0 Registers modified
		118	Table 10.5 Interrupts without Interrupt Priority Levels and IPL modified
		120	Figure 10.8 Interrupt Priority revised
		121	Figure 10.9 Interrupt Priority Level Select Circuit revised
		123	• 10.8 NMI Interrupt modified
		127	• Figure 10.14 IIO0IR to IIO5IR, IIO8IR to IIO11IR Registers b0 and b3 bit
			changed to reserved bits; value after RESET modified
		128	• Figure 10.14 IIO0IE to IIO5IE, IIO8IE to IIO11IE Registers b3 bit changed to
			reserved bit; value after RESET modified
			Precautions compiled into one chapter, 25. Precautions

REVISION HISTORY	M32C/85 Group(M32C/85, M32C/85T) Hardware Manual
------------------	--

Rev.	Date		Description
	24.0	Page	Summary
		19	Watchdog Timer
		129	• 11.1 Count Source Protection Mode modified
			DMAC
		133	Table 12.1 DMAC Specifications CAN Interrupt Request added to DMAC
			Request Factors
		134	• Figure 12.2 DM0SL to DM3SL Registers Value after RESET modified; b6 bit
			changes to RO reserved bit
		135	Table 12.2 DMiSL Register Function Intelligent I/O Interrupt 5 Request
			changed to CAN5 Interrupt Request; Intelligent I/O Interrupt 11 Request
			changed to CAN2 Interrupt Request; Notes 6 and 9 deleted
		141	Table 12.4 Coefficient j, k revised
		142	Precautions compiled into one chapter, 25. Precautions
			DMAC II
		143	Table 13.1 DMAC II Specifications Note 2 added
		144	• Figure 13.1 RLVL Register Value after RESET modified; Note 3 modified;
			Note 4 added
		147	• 13.3 Transfer Data modified
		148	• 13.4.2 Burst Transfer modified
		149	• 13.4.4 Chained Transfer modified
			Timer
		151	Figure 14.1 Timer A Configuration modified
		152	Figure 14.2 Timer B Configuration modified
		155	• Figure 14.5 TA0MR to TA4MR Registers and TABSR Register Value after
			RESET of the TA0MR to TA4MR registers modified; b2 bit changed to RW re-
			served bit
		157	• Figure 14.7 TRGSR Register and TCSPR Register Value after RESET of the
			TRGSR register modified; b4 to b6 bits changed to RO reserved bits
		160 - 168	• Figure 14.8, 14.9, 14.12, and 14.13 Value after RESET of the TA0MR to
			TA4MR registers modified in each mode; b2 changed to RO reserved bit
			Three-Phase Motor Control Timer Functions
		180	Table 15.2 Pin Settings revised
		181	• Figure 15.1 Three-Phase Motor Control Timer Functions Block Diagram
			revised
		182	Figure 15.2 INVC0 Register revised
		183	Figure 15.3 INVC1 Register revised
		184	• Figure 15.4 IDB0, IDB1 and DTT Registers Value after RESET of the IDB0
			and IDB1 registers modified; b6 and b7 bits changed to RO reserved bits
		185	• Figure 15.5 ICTB2 Register, TA1, TA2, TA4, TA11, TA21 and TA41 Registers,
			and TB2SC Register Note 2 added

REVISION HISTORY M32C/85 Group(M32C/85, M32C/85T) Hardware Manual

Rev.	Date		Description
		Page	Summary
		187	• Figure 15.7 TA1MR, TA2MR, TA4 MR Registers Value after RESET
			modified; b2 bit changed to RW reserved bit
		188	Figure 15.8 Triangular Wave Modulation Operation revised
		189	Figure 15.9 Sawtooth Wave Modulation Operation revised
			Serial I/O
		195	• Figure 16.5 U0C1 to U4C1 Registers and U0SMR to U4SMR Registers
			Corrections to the UiERE bit function in the U0C1 to U4C1 registers
		202	Table 16.5 Pin Settings (3) revised
		203	• Figure 16.10 Transmit and Receive Operation Diagram for (2) Receive
			Timing modified
		207	• Table 16.7 Registers to be Used and Settings in UART UIERE bit function in
			the UiC1 register modified
		209	Figure 16.14 Transmit Operation revised
		215	• Table 16.13 I ² C Mode Functions Note 1 modified
		216	Figure 16.20 SCLi Timing revised
		228	• Table 16.24 Registers to be Used and Settings in GCI Mode Function of the
			CLK1 to CLK0 bits in the UiC0 register modified
		238	Figure 16.29 SIM Interface Operation revised: Note 2 modified
		240	• 16.7.2.1 Direct Format modified
			• 16.7.2.2 Inverse Format modified
			A/D Converter
		244	• Figure 17.2 AD0CON0 Register Note 2 added
		248	• Figure 17.6 AD0CON4 Register and AD00 to AD07 Registers Value after
			RESET modified
		250	• Table 17.4 Single Sweep Mode Specifications Specifications for Interrupt
			Request Generation Timing modified
		254	Table 17.10 Extended Analog Input Pin Settings modified
		255	Precautions compiled into one chapter, 25. Precautions
			Intelligent I/O
		265	Figure 21.1 Intelligent I/O Block Diagram revised
		266	Figure 21.2 Intelligent I/O Communication revised
		268	• Figure 21.4 G1BCR1 Register Note 3 added
		270	• Figure 21.6 G1TM0 to G1TM7 Registers Note 2 added
		273	• Table 21.1 Base Time Specifications Condition added to Base Timer Reset Con-
			dition; Counter increment/decrement mode of the Selectable Function modified
		274	Figure 21.9 Base Timer Block Diagram revised
		275	Figure 21.10 Counter Increment Mode revised
		276	Figure 21.11 Counter Increment/Decrement Mode revised
		279	• Table 21.5 Pin Settings for Time Measurement Function P80 changed to P81

Rev.	Date		Description
		Page	Summary
		284	• 21.3.1 Single-Phase Waveform Output Mode modified
		285	Figure 21.16 Single-Phase Waveform Output Mode modified
		287	Figure 21.17 Phase-Delayed Waveform Output Mode modified
		288	• 21.3.3 Set/Reset Waveform Output modified
		289	Figure 21.18 SR Waveform Output Mode modified
		291	• Figure 21.20 G0CR to G1CR Registers TXEPT bit in the G0CR register and b3 modified
		293	• Figure 21.22 G0MR to G1MR Registers b4 bit in the G1MR register changed to the PRY bit; b5 bit in the G1MR register changed to the PRYE bit
		294	• Figure 21.23 G0EMR to G1EMR Registers Note 1 added to the G0EMR register; Note 2 modified
		295	• Figure 21.24 G0ETC to G1ETC Registers b0 to b2 in the G1ETC register changed to RO bits; b3 changed to a RW bit; Note 1 added
		297	• Figure 21.26 G0IRF Register Note 1 and 2 added; b0 to b1, and b3 changed to RW bits
		298	• Figure 21.27 G1IRF Register and G0TB to G1TB Registers b0 to b1 bits in the G1IRF register changed to reserved bits; Note 2 modified; G1TB register changed to G1DR register
		299	• Figure 21.28 G0CMP0 to GOCMP3, G1CMP0 to G1CMP3, G0MSK0 to G0MSK1, G1MSK0 to G1MSK1, G0TCRC to G1TCRC, G0RCRC to G1RCRC Registers Note 1 modified and Note 2 added to the G0TCRC to G1TCRC register;
		300	Note 1 and 3 in the G0RCRC to G1RCRC register modified • Figure 21.29 CCS Register f1 added to clock selection: b4 to b7 bits changed from reserved bits to bits with nothing assigned
		303	• Table 21.17 Pin Settings (2) PD8 register setting changed from PD8_2=0 to PD8_0=0
		308	Table 21.25 HDLC Processing Mode Specifications CRC modified
			CAN Module
		315	• 22.1.1.3 BASICCAN Bit modified
		335	• Figure 22.20 COSSCTLR Register and C1SSCTLR Register Note 2 added
		336	Figure 22.21 C0SSSTR Register and C1SSSTR Register Note 1 added
		344	• 22.1.20.4 REMACITVE Bit modified
		345	• 22.1.20.5 RSPLOCK Bit modified
		358	Programmable I/O Port • 23.3 Function Select Register Aj (PSj Register, j= 0 to 5, 8, 9) modified • 23.4 Function Select Register B0 to B3 (PSL0 toPSL3 Registers) modified
		359	 23.5 Function Select Register C (PSC, PSC2, PSC3 Registers) modified 23.6 Function Select Register D (PSD1 Register) modified 23.8 Port Control Register (PCR Register) modified

REVISION HISTORY M32C/85 Group(M32C/85, M32C/85T) Hardware Manu

Rev.	Date		Description		
1.01.	Date	Page	Summary		
		364	Figure 23.6 P0 toP15 Registers modified		
		369	• Figure 23.11 PSL0 Register and PSL1 Register Note 1 added to PSL1		
			register		
		373	• Figure 23.15 PUR0 Register, PUR1 Register and PUR2 Register "Address		
		0,0	bus" changed to "bus control pins"		
		376	• Figure 23.18 IPSA Register b0 bit changed to IPSA_0 bit		
		0,0	Flash Memory Version		
		383	• 24.2.1 ROM Code Protect Function modified		
		303	• 24.2.2 ID Code Check Function modified		
		385	Table 24.3 EW0 Mode and EW1 Mode Note 1 modified		
		390	• Figure 24.6 How to Enter and Exit EW1 Note 3 modified		
		390	• 24.3.4.4 Interrupts (EW1 Mode) modified		
		409	• Figure 24.18 Circuit Application in Standard Serial I/O Mode revised		
		410	• 24.5.2 ROM Control Protect Function modified		
		410	Precautions		
		411 - 433	Overall Structural Revision		
0.41	Mar., 04	411-433	Overview		
0.71	mai., 04	2 - 3	• Tables 1.1 and 1.2 M32C/85 Group Performance Shortest Instruction		
		2-3	Execution Time and Power Consumption modified		
			SFR		
		28	Value after RESET of G0RB register revised		
		20	Reset		
		46	• 5.1.2 Hardware Reset 2 revised		
		47	• Figure 5.2 Reset Sequence modified		
		50	• 5.5 Voltage Detect Circuit revised		
			Figure 5.4 Reset Circuit Block Diagram modified		
		51	• Figure 5.5 WDC Register Note 2. revised		
		52	• Figure 5.6 VCR1 and VCR2 Registers Bit 5 changed to reserved bit; Notes 3		
		02	and 4 deleted		
		54	• Figure 5.8 Hardware Reset 2 modified		
			Processor Mode		
		58	• 6.2.2 Applying VSS to CNVSS Pin revised		
			Bus		
		63	• 7.1.3.2 Multiplexed Bus revised		
			Clock Generation Circuit		
		82	• Table 8.1 Clock Generation Circuit Specifications Reference added to PLL		
			Frequency Synthesizer		
		83	Figure 8.1 Clock Genration Circuit modified		
		84	• Figure 8.2 CM0 Register Note 6 revised		
		<u> </u>	1.3 0 0 0 0 0 0		

Rev.	Date		Description
		Page	Summary
		85	• Figure 8.3 CM1 Register Note 3 revised
		86	• Figure 8.4 MCD Register Notes 2 and 4 revised
		96	8.2 CPU Clock and BCLK revised
		99	• 8.5.2.1 Peripheral Function Clock Stop Function revised
			• 8.5.2.2 Before Entering Wait Mode revised
		100	• 8.5.2.5 Entering Wait Mode revised
		101	• 8.5.3.1 Before Entering Stop Mode revised
		102	• 8.5.3.4 Entering Stop Mode revised
			• Figure 8.13 Status Transition in Wait Mode and Stop Mode Notes 2 and 4
			revised
		104	8.6 System Clock Protection Function revised
			Interrupts
		115	Figure 10.5 RLVL Register modified
		121	Figure 10.9 Interrupt Priorty Level Select Circuit modified
			Watchdog Timer
		131	• Figure 11.3 CM0 Register added
		132	• 11.1 Count Source Protection Mode Information added
			DMAC
		133	• 12. DMAC revised
		134	Table 12.1 DMAC Specifications Note 1 revised
			DMAC II
		145	Figure 13.1 RLVL Register modified
			Timer
		154	Figure 14.3 Timer A Block Diagram modified
		159	• Table 14.1 Pin Settings for Output from TAiouT Pin (i=0 to 4) modified
		164	Figure 14.9 TA0MR to TA4MR Register modified
		168	Table 14.7 Specifications in Pulse Width Modulation Mode
			Values for 16-bit PWM and 8-bit PWM modified
		171	Figure 14.16 Timer B Block Diagram modified
			Three-Phase Motor Control Timer Functions
		181	Table 15.2 Pin Settings modified
		186	• Figure 15.5 ICTB2 Register, TA1, TA2, TA4, TA11, TA21 and TA41 Registers
			and TB2SC Register ICTB2 register modified and Notes 2 and 3 revised
		189	Figure 15.8 Triangular Wave Modulation Operation modified
		190	Figure 15.9 Sawtooth Wave Modulation Operation modified
			Serial I/O
		193	Figure 16.2 U0TB to U4TB Register and U0RB to U4RB Register
			Note 3 added to the U0RB to U4RB registers
		203	• Table 16.3 Pin Settings in Clock Synchronous Serial I/O Mode (1) revised

REVISION HISTORY M32C/85 Group(M32C/85, M32C/85T) Hardware Manu

Rev.	Date		Description
		Page	Summary
		204	• Figure 16.10 Transmit and Receive Operation (2) Receive Timing modified
		209	Table 16.9 Pin Settings in UART (2) modified
		224	Table 16.21 Pin Settings in Special Mode 2 (2) modified
		230	Table 16.27 Pin Settings in CGI Mode (2) modified
		239	Figure 16.29 SIM Interface Operation modified
			A/D Converter
		243	• Table 17.1 A/D Converter Specifications Explanation for A/D Conversion
			Start Condition revised; Note 2 revised
		245	• Figure 17.2 AD0CON0 Register Note 5 modified
		250	Table 17.2 One-shot Mode Specifications Explanation for Start Condition
			revised
		254	Figure 16.29 Trigger Select Function Settings modified; Note 2 added
			Intelligent I/O
		266	• Figure 21.3 G1TB Register and G1BCR0 Register Note 2 added to G1BT
			register
		269	• Figure 21.4 G1BCR1 Register Note 3 revised
		271	Figure 21.6 G1TM0 to G1TM7 Registers and G1POCR0 to G1POCR7
			Registers modified
		274	Table 21.2 Base Timer Specificaitons Conditions added to Base Timer Reset
			Condition; Explanation for Counter increment/decrement mode in Selectable
			Function revised
		278	• Figure 21.12 Base Timer Operation in Two-phase Signal Processing Mode
			Figure modified; Note 1 revised; Note 2 added
		280	Table 21.5 Pin Settings for Time Measurement Function modified
		283	Figure 21.15 Prescaler Function and Gate Function
		284	Table 21.7 Pin Settings for Waveform Generation Function modified
		285	• Table 21.9 Single-phase Waveform Output Mode Specfications Specifica-
			tions for Output Waveform revised; Note 2 added
		286	Figure 21.16 Single-Phase Waveform Output Mode modified
		287	Table 21.10 Phase-Delayed Waveform Output Mode Specifications Specifi-
			cations for Output Waveform modified
		288	Figure 21.17 Phase-Delayed Waveform Output Mode modified
		289	Table 21.11 SR Waveform Output Mode Specifications Specifications for
			Output Waveform modified; Notes 3, 4, 5 added
		291	Figure 21.18 SR Waveform Output Mode modified
		293	• Figure 21.20 G0CR to G1CR Registers, G0RB to G1RB Registers modified
		295	• Figure 21.23 G0EMR to G1EMR Registers Note 1 revised
		296	• Figure 21.24 G0ETC to G1ETC Registers Note 1 revised
		298	• Figure 21.26 G0IRF Register Notes 1 and 2 revised

Rev.	Date		Description
		Page	Summary
		299	• Figure 21.27 G1IRF Register and G0TB to G1TB Registers Note 2 of G1IRF
			register revised
		301	Figure 21.29 CCS Register modified; Note 1 added
		302	• 21.4.1 Clock Synchronous Serial I/O Mode (Communication units 0 and 1)
			revised
			Table 21.12 Clock Synchronous Serial I/O Mode Specifications (Communi-
			cation units 0 and 1) Note 1 deleted
		303	• Table 21.14 Clock Settings (Communication Unit 1) Note 4 added
			• Table 21.15 Registers to be Used and Settings Divided into Communication
			Unit 1 and Communication Unit 2
		304	• Table 21.16 Pin Settings in Clock Synchronous Serial I/O Mode (Communi-
			cation Unit 0 and 1) (1) modified
		308	• Figure 21.31 Transmit Operation modified
			• Figure 21.32 Receive Operation modified
		310	• Table 21.26 Clock Settings (Communication Unit 0) f1 added
			• Table 21.27 Clock Settings (Communication Unit 1) f1 added
			CAN Module
		350	• Figure 22.31 C0SLOT0_4, C0SLOT1_4, C1SLOT0_4, and C1SLOT1_4
		050	Registers modified
		356	• 22.3.2.1 When the INTSEL Bit is Set to "0" modified
		360	Programmable I/O Ports
		364	• 23.9 Input Function Select Register (IPS and IPSA Registers) • Figure 23.5 PD0 to PD15 Registers Note 4 revised
		379	• Table 23.4 Port P7 Peripheral Function Output Control modified; Note 1
		373	added
		381	Table 23.8 Port P11 Peripheral Function Output Control modified
		001	Table 23.9 Port P14 Peripheral Function Output Control modified
			Table 23.10 Port P15 Peripheral Function Output Control modified
			Flash Memory Version
		382	• Table 24.1 Flash Memory Version Specifications Note 3 added
		383	• Figure 24.1 Flash Memory Block Diagram modified
		388	• Figure 24.4 FMR0 and FMR1 Registers FMR1 register modified
		389	• 24.3.3.1 FMR00 Bit Information added
			• 24.3.3.3 FMR02 Bit revised
		390	• Figure 24.5 How to Enter and Exit EW0 Mode Note 1 revised
		391	• Figure 24.6 How to Enter and Exit EW1 Mode Note 2 revised
		392	• Figure 24.7 Handling Before and After Low Power Consumption Mode
			Note 3 revised
		393	• 24.3.4.1 Operating Speed revised

Rev.	Date		Description
		Page	Summary
		393	• 24.3.4.12 Low-Power Consumption Mode and On-chip Oscillator Low-
			Power Consumption Mode Information added
		395	• 24.3.5.3 Clear Status Register revised
		396	• 24.3.5.12 Program Command revised
		400	• 24.3.6 Data Protect Function revised
			• 24.3.7.1 Sequence Status (SR7 and FMR00 Bits) revised
		405	• Table 24.7 Pin Description (Flash Memory Standard Serial I/O Mode) modified
		410	Figure 24.18 Circuit Application in Standard Serial I/O Mode 3 revised
			Flash Memory Version
		388	• Figure 24.4 FMR0 and FMR1 Registers Note 7 added
			Electrical Characteristics
			New characteristics added
			Precautions
		444	• 26.4.5.1 Entering Wait Mode revised
			• 26.4.6.1 Entering Stop Mode revised
		446	• 26.4.7 Sub Clock revised
		450	• 26.7 DMAC Information added
		457	26.11 A/D Converter revised; block diagram modified
		460	• Table 26.2 INVC0 Register and the NMI Pin modified
			• 26.16 Options deleted
0.50	Jun., 04	All pages	Words standardized: On-chip oscillator, A/D converter and D/A converter
			Interrupts
		128	• Figure 10.15 IIO0IE to IIO5IE, IIO8IE to IIO11IE Registers Note 2 added
			Watchdog Timer
		129	Figure 11.1 Watchdog Timer Block Diagram modified
			Three-Phase Motor Control Timer Functions
		186	• Figure 15.5 ICTB Register, TA1, TA2, TA4, TA11, TA21 and TA41 Registers and
			TB2SC Register Note 7 for TA1, TA2, TA4, TA11, TA21 and TA41 registers deleted
			Flash Memory Version
		387	• Figure 24.4 FMR0 Register Notes 1 and 7 revised
		388	• Figure 24.5 FMR1 Register Notes 1 revised
		390	• Figure 24.6 How to Enter and Exit EW0 Mode Note 2 revised; note 5 added
		391	• Figure 24.7 How to Enter and Exit EW1 Mode Note 3 revised; note 4 added
		392	• Figure 24.8 Handling Before and After Low Power Consumption Mode
		200	Notes 4 and 5 added
		393	• 24.3.4.5 How to Access Description modified
		440	Electrical Characteristics
		413	• Table 25.2 Recommended Operating Conditions f(ripple), Vp-p(ripple), VCC,
			SVcc and note 1 deleted

Rev.	Date		Description
		Page	Summary
		415	Table 25.3 Electrical Characteristics RPULLUP value for the masked ROM
			version added
		416	• Table 25.4 A/D Conversion Characteristics tSMP value modified; note 1 added
		418	Table 25.7 Low Voltage Detection Circuit Electrical Characteristics added
			Table 25.8 Power Supply Timing added
			Figure 25.1 Power Supply Timing Diagram added
		425	• Figure 25.3 Vcc1=Vcc2=5V Timing Diagram (1) tac1(AD-DB) arithmetic expression modified
		429	Table 25.24 Electrical Characteristics RPULLUP value for the masked ROM
			version added
		430	Table 25.25 A/D Conversion Characteristics tCONV value modified
		436	• Figure 25.7 Vcc1=Vcc2=5V Timing Diagram (1) tac1(AD-DB) arithmetic expres-
			sion modified
			Precautions
		-	Section of Three-Phase Control Timer Functions delected
1.00	Dec., 04	-	M32C/85T (High-Reliability Version) added
			Description for the reserved bits on register diagrams modified
			Overview
		1	• 1.1 Applications Automobiles added
		2, 3	• Tables 1.1 and 1.2 M32C/85 Group (M32C/85, M32C/85T) Performance M32C/
			85T added; supply voltage on Power Consumption row modified; note 3 added
		4	• 1.3 Block Diagram Dscription deleted
			• Figure 1.1 M32C/85 Group (M32C/85, M32C/85T) Block Diagram Note 3 added
		5	• 1.4 Product Information Dscription modified; ROM/RAM Capacity deleted
			• Table 1.3 M32C/85 Group (M32C/85, M32C/85T) Information updated;
			M32C/85T product information added
		6	Figure 1.2 Product Numbering System Classification modified
		7	• Figure 1.3 Pin Assignment for 144-Pin Package Note 3 added
		8 - 10	Table 1.4 Pin Characteristics for 144-Pin Package Note 1 added
		12	• Figure 1.5 Pin Assignment for 100-Pin Package Note 5 added
		13, 14	Table 1.5 Pin Characteristics for 100-Pin Package Note 1 added
		15	Table 1.6 Pin Description Notes 2 and 3 added
			Memory
		22	• Figure 3.1 Memory Map Type number table modified; note 2 modified; notes 4
			and 5 added
			SFR
		23	The DS, VCR2, VCR1 and D4INT registers Note 2 added
		24	The EWCR0 to EWCR3 registers Note 1 added

Rev.	Date		Description
		Page	Summary
			The RMR0 register Value after reset added
		26	The RLVL register Value after reset modified
		29	The G1BCR1 register Value after reset modified
			The G1RB register Value after reset modified
		37	The IDB0 and IDB1 registers Value after reset modified
		40	The DM0SL to DM3SL registers Value after reset modified
		43	The PSC register Value after reset modified
			Reset
		-	Hardware Reset 2 changed to Low Voltage Detection Reset
			Chapter structure modified
		45	• 5. Reset Hardware Reset 1 and Low Voltage Detection Reset added to the description
			• 5.1 Hardware Reset Section deleted
			Figure 5.1 Reset Circuit Note 1 modified
		46	• Figure 5.2 Reset Sequence Diagram modified; notes 1, 2, and 3 added
		47	Table 5.1 Pin State while RESET Pin is Held "L" Note 3 added to P56
			• 5.2 Low Voltage Detection Reset td(P-R) changed to td(S-R); note 1 added
			Voltage Detection Circuit
		-	New Chapter
		50	6. Voltage Detection Circuit Note added; description modified
			Figure 6.1 Reset Circuit Block Diagram modified
		51	• Figure 6.2 WDC Register and VCR1 Register Note 3 added to the WDC register;
			note 1 deleted from and note 2 added to the VCR1 register
		52	Figure 6.3 VCR2 Register Note 2 deleted; notes 5 and 6 added
		53	Figure 6.4 D4INT Register Note 6 added
		54	6.1 Low Voltage Detection Interrupt Description modified
			Table 6.1 Conditions to Generate the Low Voltage Detection Interrupt Re-
			quest D42 bit setting modified
		55	• Figure 6.5 Low Voltage Detection Interrupt Generation Circuit Component
			name modified
		56	• 6.2 Cold Start-up / Warm Start-up Determine Function Newly added
			Processor Mode
		57	Chapter structuer modified
		59	• Figure 7.1 PM0 Register Notes 2 and 8 added
		60	• Figure 7.2 PM1 Register Note 3 added
		61	• Figure 7.3 Memory Map in Each Processor Mode Diagram modified; note 3 added
			Bus
		62	8. Bus Note added
			• Figure 8.1 DS Register Note 1 modified
		68	• Figure 8.3 EWCR0 to EWCR3 Registers Note 3 added

Rev.	Date		Description
		Page	Summary
			Clock Generation Circuit
		80	Figure 9.1 Clock Generation Circuit Block diagram modified; fCAN added
		85	• Figure 9.6 TCSPR and CPSRF Registers Note 2 added to the TCSPR register
		87	• Figure 9.8 PM2 Register The PM24 and PM25 bits newly available
		90	Table 9.2 Bit Settings for On-Chip Oscillator Start Condition
		93	Table 9.4 CPU Clock Source and Bit Settings Main clock (main clock direct)
			mode), the PM24 bit in the PM2 register and note 1 added
		94	• 9.3.4 fcan Newly added
			• Table 9.6 BCLK/CLKout Pin in Memory Expansion Mode and Microproces-
			sor Mode Note 4 added
		97	Table 9.6 Pin States in Wait Mode Note 1 added
		99	9.5.3 Stop Mode Interrupt usable to exit stop mode added; note 1 added
			Table 9.9 Pin Status in Stop Mode Note 1 added
		101	• Figure 9.13 Status Transition in Wait Mode and Stop Mode Diagram modi-
			fied; note re-ordering due to previous note 2 deletion
		102	• Figure 9.14 Status Transition Note 5 modified
			Interrupts
		105	• Figure 11.1 Interrupts Note 3 added
		107	• 11.3.1.4 Low Voltage Detection Interrupt Note 1 added
		109	Table 11.1 Fixed Vector Table Note 1 added
		115	Figure 11.5 RLVL Register Value after reset changed
		117	11.6.4 Interrupt Response Time Description modified
		118	Table 11.5 Interrupts without Interrupt Priority Levels and IPL Note1 added
		119	11.6.6 Saving a Register Description modified; note 1 added
		120	Figure 11.8 Interrupt Priority Note 1 added
		120	Figure 11.9 Interrupt Priority Level Select Circuit Note 1 added
			Watchdog Timer
		129	Figure 12.1 Watchdog Timer Block Diagram Diagram modified
		130	• Figure 12.2 WDC Register and WDTS Register Note 3 added to the WDC register
			DMAC
		135	Figure 13.2 DM0SL to DM3SLRegister Value after reset changed
		136	Table 13.2 DMiSL Register Function Note 3 modified
			DMACII
		145	Figure 14.1 RLVL Register Value after reset changed; note 4 deleted
		151	14.8 Execution Time Description modified
			Figure 14.5 Transfer Cycle The number of cycles changed
			Timer
		152	Figure 15.1 Timer A Configuration Figure modified
		153	Figure 15.2 Timer B Configuration Figure modified

Rev.	Date		Description
		Page	Summary
		158	• Figure 15.7 TRGSR Register and TCSPR Register Added note 2 to the
			TCSPR register
			Three-Phase Motor Control Timer Functions
		185	• Figure 16.4 DM0SL to DM3SLRegister Value after reset changed
		189	• Figure 16.8 Triangular Wave Modulation Operation Figure modified
		190	• Figure 16.9 Sawtooth Wave Modulation Operation Figure modified
			Serial I/O
		193	• Figure 17.2 U0TB to U4TB Registers and U0RB to U4RB Registers Note 3
			for the U0RB to U4RB registers modified
		195	• Figure 17.4 U0C0 to U4C0 Registers Note 3 added
		196	• Figure 17.5 U0C1 to U4C1 Registers and U0SMR to U4SMR Registers Note
			2 for the U0C1 to U4C1 registers added
		197	• Figure 17.6 U0SMR2 to U4SMR2 Registers Reference on note 1 changed
		208	• Table 17.7 Registers to be Used and Settings in UART UiLCH bit function
			modified
		211	• Figure 17.15 Receive Operation Figure modified
			Table 17.11 Transfer Speed added
		219	• Figures 17.15 to 17.17 Pin Settings in I ² C Mode Input settings added to tables
			• Table 17.16 Pin Settings (3) PSC3 reigster added
		230	• Table17.24 GCI Mode Specifications Transmit/receive start condition modified
			A/D Converter
		245	• Table 18.1 A/D Converter Specifications Note 2 modified; note 3 added
		246	• Figure 18.1 A/D Converter Block Diagram modified
		247	• Figure 18.2 AD0CON0 Register Note 5 modified; notes 8 and 9 added
		248	• Figure 18.3 AD0CON1 Register Notes 10 and 11 added
		252-258	• Tables 18.2 to 18.8 Each mode specification Note 1 added
		261	• 18.2.8 Output Impedance of Sensor at A/D Conversion added
			• Figure 18.8 Analog Input Pin and External Sensor Equivalent Circuit Value
			for the condenser changed
			Intelligent I/O
		275	• Figure 22.4 G1BCR1 Register RST2 bit function changed
		277	• Figure 22.6 G1TM0 to G1TM7 Registers and G1POCR0 to G1POCR7 Registers
			Notes 6 and 7 added to the G1POCR0 to G1POCR7 registers
		280	• Table 22.2 Base Timer Specifications Base timer reset condition modified
		281	• Figure 22.9 Base Timer Block Diagram Block diagram modified
		285	• Table 22.4 Time Measurement Function Specifications Description for the
			gate function modified
		288	• Figure 22.14 Time Measurement Function (2) Figure modified
		289	• Figure 22.15 Prescaler Function and Gate Function Item modified

Rev.	Date		Description
		Page	Summary
		291	• Table 22.9 Single-Phase Waveform Output Mode Specifications Setting
			value of the G1PO0 register changed
		292	• Figure 22.16 Single-Phase Waveform Output Mode Setting value of registers
			added; condition added
		293	• Table 22.10 Phase-Delayed Waveform Output Mode Specifications Setting
			value of the G1PO0 register changed
		294	• Figure 22.17 Phase-Delayed Waveform Output Mode Setting value of regis-
			ters added; condition added
		295	• Table 22.11 SR Waveform Output Mode Specifications Setting value of the
			G1PO0 register changed
		297	• Figure 22.18 SR Waveform Output Mode Setting value of registers added;
			condition added
		299	• Figure 22.20 G0CR to G1CR Registers, G0RB to G1RB Registers B14 in the
			G0RB to G1RBregisters changed to PER bit
		309	• Table 22.14 Clock Settings (Group 1) Setting value of the G1PO0 register changed
		310	Table 22.16 Pin Settings (1) Registers set for P76 and P77 deleted
			• Table 22.16 Pin Settings (4) Registers set for P150 and P151 deleted
		312	• Table 22.20 UART Mode Specifications ISTxD1 and ISRxD1 Polarity Inverse
			function deleted
		313	Table 22.21 Clock Settings Input from ISCLK1 deleted; note 4 deleted
			• Table 22.22 Registers to be Used and Settings UFORM bit function modified;
			CSS3 to CSS2 bit functions modified
		314	• Figure 22.31 Transmit Operation Figure modified
			• Figure 22.32 Receive Operation Figure modified
		315	• 22.4.3 HDLC Data Processing Mode Description modified
			• Table 22.25 HDLC Processing Mode Specifications Transmit Start Condition
			and Receive Start Condition brought together to Data Processing Start Condition
		317	• Table 22.28 Registers to be Used and Settings G1PO1 register function modified
			Programmable I/O Ports
		368	• Figure 24.1 Programmable I/O Ports (1) P150 and P151 deleted; P152 and
			P157 added
		370	• Figure 24.3 Programmable I/O Ports (3) P15 deleted; P150 added
		371	• Figure 24.5 PD0 to PD15 Register Note 2 modified
		372	• Figure 24.6 P0 to P15 Register Note 1 modified
		381	• Figure 24.15 PUR0 Register, PUR1 Register and PUR2 Register Note 1 each
			added to the PUR0 Register and PUR1 Register
		383	• Figure 24.17 PCR Register and IPS Register Note 1 added to the PCR register

Rev.	Date		Description
		Page	Summary
		384	• Figure 24.18 IPSA Register Bit name and function for the IPSA_0 bit changed
		385	Table 24.1 Unassigned Pin Setting in Single-Chip Mode Notes modified
		385	Table 24.2 Unassigned Pin Setting in Memory Expansion Mode and Micro-
			processor Mode Table modified; notes modified
		386	• Figure 24.19 Unassigned Pin Handling Figure modified
		387	• Table 24.3 Port P6 Peripheral Function Output Control Bits 3, 6 and 7 modified
			• Table 24.4 Port P7 Peripheral Function Output Control Bits 0 and 1 modified
		388	• Table 24.6 Port P9 Peripheral Function Output Control Bits 2 and 6 modified
			Flash Memory Version
		390	Table 25.1 Flash Memory Version Specificatins Item modified
		392	• 25.2.1 ROM Code Protect Function Description modified
		393	• Figure 25.2 ROMCP Register Bits 4 and 5 deleted; notes 2, 3 and 4 modified
		414 - 416	• Figures 25.14 to 25.16 Pin Connections in Standard Serial I/O Mode Figures modified
		417, 418	• Figure 25.19 Circuit Application in Standard Serial I/O Mode Figures modified
		,	Electrical Characteristics
		451	• 26.2 Electrical Characteristics (M32C/85T) Newly added
		421	• Table 26.2 Recommended Operating Conditions (1) f(ripple), Vp-p(ripple), Vcc,
			SVcc and note 1 added
		422	Table 26.2 Recommended Operating Conditions (2) Condition and Standard
			value of f(Ring) added
		426	• Table 26.3 Electrical Characteristics Standard value of VOH modified; stan-
			dard value of Icc, when f(BCLK)=32MHz, modifed standard value of Icc in low
			power consumption mode added
		428	Table 26.6 Flash Memory Electrical Characteristics Notes modified
		433	• Table 26.22 Memory Expansion Mode and Microprocessor Mode Note 3
			added
		434	• Table 26.23 Memory Expansion Mode and Microprocessor Mode Note 5
			added
		438	• Figure 26.5 Vcc1=Vcc2=5V Timing (3) NMI input added
		426	• Table 26.24 Electrical Characteristics Standard value of Voн modified
		445	Table 26.40 Memory Expansion Mode and Microprocessor Mode Note 3 added
		446	Table 26.41 Memory Expansion Mode and Microprocessor Mode Note 5 added
		447	• Figure 26.7 Vcc1=Vcc2=3.3V Timing (1) Formula of th(WR-DB) on note 3 modified
		449	• Figure 26.9 Vcc1=Vcc2=3.3V Timing (3) NMI input added
			Precautions
		-	Section of Processor Mode delected
		462	• 27.1 Restrictions to Use M32C/85T (High-Reliability Version) Newly added
		463	• 27.2 Reset added

REVISION HISTORY M32C/85 Group(M32C/85, M32C/85T) Hardware Manual

Rev.	Date		Description
		Page	Summary
		465	• 27.5 Clock Generation Circuit Section structure modified; description modified
		466	Table 27.3 Power Supply Ripple added
			Figure 27.2 Power Supply Fluctuation Timing added
		473	• 27.8 DMAC Description modified
		474	• 27.9 Timer Ordering changed; description for Timer A modified
		477	• 27.10 Serial I/O Ordering changed
		479	• 27.11 A/D Converter Description modified
			Figure 27.3 Use of Capacitors to Reduce Noise Note 3 added
1.01	Jan., 05		Reset
		46	• Figure 5.2 Reset Sequence Figure modified
			Bus
		68	• Figure 8.3 EWCR0 to EWCR3 Registers Note 3 revised
		69	Table 8.5 Software Wait State and Bus Cycle EWCRi04 to EWCRi00 Bits
			revised
			Clock Generation Circuit
		82	• Figure 9.3 CM1 Register Note mark position changed
			Interrupts
		114	• Figure 11.4 Interrupt Control Register (2) Note mark position changed
			Programmable I/O Port
		369	• Figure 24.2 Programmable I/O Ports (2) Figure in Programmable I/O Ports
			with the Function Select modified
		371	• Figure 24.5 PD0 to PD15 Registers Note 1 modified
		374	• Figure 24.8 PS2 Register and PS3 Register Note 1 modified
			Flash Memory Version
		414	• Table 25.7 Pin Description (Flash Memory Standard Serial I/O Mode) De-
			scription of P76 and P77 pins revised
1.02	Mar., 05	22	Memory
			• Figure 3.1 Memory Map Note 3 modified
			SFR
		24	Value after reset of the RLVL register revised
		43	Value after reset of the PSC register revised
			Voltage Detection Circuit
		54	• Table 6.2 Samping Time Table modified
			Processor Mode
		58	• 7.2 Setting of Pcocessor Mode description added
			Bus Suppose Fixed Park Alice Street
		68	• Figure 8.3 EWCR0 to EWCR3 Registers Note 3 modified
		69	• Table 8.5 Software Wait State and Bus Cycle The value "001102" on "EWCRi
			Register" column and "4 BCLK cycles" modified to "010102"

Rev.	Date		Description
		Page	Summary
			Clock Generation Circuit
		85	• Figure 9.6 TCSPR Register Value after reset revised
		87	• Figure 9.8 PM2 Register Note 3 modified
		96-98	9.5.2 Wait Mode Section structure modified; description modified
		99-100	9.5.3 Stop Mode Section structure modified; description modified
			Interrupts
		113	• Figure 11.3 Interrupt Control Register(1) Some symbols modified
		115	• Figure 11.5 RLVL Register Note 3 modified; value after reset revised
		116	• 11.6.4 Interrupt Response Time The number of cycles in the description
			modifieddditional instructions added to the description
		123	• Figure 11.11 Key Input Interrupt Diagram modified
			DMAC
		113	• 13. DMAC Last sentence on the page modified
		137	• Figure 13.3 DMD1 Register Value after reset modified
			DMAC II
		145	• Figure 14.1 RLVL Register Note 3 modified; value after reset revised
			Timer (Timer A)
		156	• Figure 15.5 TA0MR to TA4MR Register Value after reset revised
			Three-Phase Motor Control Timer Function
		188	• Figure 16.7 TB2MR Register Symbol revised
			• Figure 16.8 Triangular Wave Modulation Operation Diagram modified
			Serial I/O
		192	Figure 14.1 UARTi Block Diagram Diagram modified
		210	• Figure 17.14 Transmit Operation Diagram modified
		211	• Figure 17.15 Receive Operation Bit symbol in note 1 revised
		241	Figure 17.29 SIM Interface Operation Diagram modified
			A/D Converter
		246	• Figure 18.1 A/D Converter Block Diagram Diagram modified
		248	• Figure 18.3 TA0MR to TA4MR Register Note 2 modified
		252-258	• Tables 18.2 to 18.8 Mode Specification Note 1 deleted on all tables
			D/A Converter
		246	• Tables 19.3 D/A Converter Equivalent Circuit Diagram modified; the
			AD1CON1 register in note 4 deleted
			Intelligent I/O
		246	• Figure 22.4 G1BCR1 Register Value after reset revised
		289	• Figure 22.15 Prescaler Function and Gate Function Diagram modified
		314	• Figure 22.31 Transmit Operation Diagram modified
			• Figure 22.32 Receive Operation Diagram modified

REVISION HISTORY M32C/85 Group(M32C/85, M32C/85T) Hardware Manual

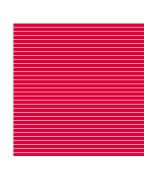
Rev.	Date		Description
		Page	Summary
			CAN Module
			Chapter structure and contents modified
			Programmable I/O Ports
		373	• Figure 24.2 Programmable I/O Ports (2) Diagram modified
		383	• Figure 24.13 PSC Register Bit name for PSC_7 modified
			Flash Memory
		400	• Figure 25.5 FMR1 Register Value after reset revised
		417	Table 25.7 Pin Discription P76 and P77 functions modified
			Electrical Characteristics
		429	Table 26.3 Electrical Characteristics ICC standard value revised
		431	Table 26.6 Flash Memory Electrical Characteristics Topr value modified
		432	Table 26.7 Voltage Detection Circuit Electrical Characteristics Vcc1 value modified
		440	• Figure 26.4 Vcc1=Vcc2=5V Timing Diagram (2) Diagram modified
		443	Table 26.24 Electrical Characteristics Icc standard value revised
		445	• Table 26.28 Memory Expansion Mode and Microprocessor Mode tac1(AD-
			DB) expression modified
		458	Table 26.44 Electrical Characteristics Icc standard value revised
		460	• Table 26.47 Flash Memory Electrical Characteristics Topr value modified
			Precaution
		471	• 27.5.6.1 Wait Mode Description modified
		479	• 27.9.2.3 Timer A (One-shot Timer Mode) Description Added
1.03	Jul., 05	All pages	Package code changed: 144P6Q-A to PLQP0144KA-A, 100P6Q-A to
			PLQP0100KB-A, 100P6S-A to PRQP0100JB-A
		All pages	"Low Voltage Detection Reset" changed to "Brown-out Detection Reset"
			Special Function Register (SFR)
		27	The G0RB register Value after reset modified
		39	The TCSPR register Value after reset modified
			Reset
		46	• Figure 5.2 Reset Sequence Figure modified; BCLK cycle value for Mask ROM
			version added
			Voltage Detection Circuit
		53	• Figure 6.4 D4INT Register Note 6 added
			Processor Mode
		60	• Figure 7.2 PM1 Register PM13 bit function changed
			Bus
		64	Table 8.2 Processor Mode and Port Function Note 3 modified
			Clock Generation Circuit
		85	• Figure 9.6 TCSPR Register Value after reset modified

REVISION HISTORY	M32C/85 Group(M32C/85, M32C/85T) Hardware Manual

Rev.	Date		Description
		Page	Summary
		96	9.5.2.2 Entering Wait Mode Description modified
		102	Figure 9.14 Status Transition Note 4 repleaced to note 5
		103	9.6 System Clock Protection Function Description modified
			Interrupt
		111	Table 11.2 Relocatable Vector Table Fault Error deleted; Note 4 deleted
		122	Figure 11.10 IFSR Register IFSR6 and IFSR7 bit functions changed
		123	Figure 11.11 Key Input Interrupt Diagram modified
			Watchdog Timer
		129	Chapter description modified
			Timer
		160	• Table 15.3 Timer Mode Specifications Write to Timer specification changed
		162	• Table 15.4 Event Counter Mode Specifications Write to Timer specification
			changed
		163	• Table 15.5 Event Counter Mode Specifications Write to Timer specification
			changed
		168	• Table 15.7 Pulse Width Modulation Mode Specifications Write to Timer
			specification changed
		169	• Figure 15.13 TA0MR to TA4MR Registers Value after reset modified
		174	• Table 15.9 Timer Mode Specifications Write to Timer specification changed
		175	• Table 15.10 Event Counter Mode Specifications Write to Timer specification
			changed
		176	• Figure 15.21 TB0MR to TB5MR Registers TCK1 bit name modified
		178	• Figure 15.22 TB0MR to TB5MR Registers Notes 1 and 2 modified
			Serial I/O
		194	Figure 17.1 UARTi Block Diagram Diagram modified
		194	• Figure 17.3 U0MR to U4MR Registers Value after reset modified
		195	• Figure 17.4 U0C0 to U4C0 Registers Note 1 modified
		196	• Figure 17.5 U0C1 to U4C1 Registers Note 2 modified
		200	• Figure 17.9 IFSR Register IFSR6 and IFSR7 bit functions changed
		216	• Table 17.13 Register Settings in I ² C Mode SWC and ALS bit functions modified
		223	• 17.3.6 SDA Input The IICM bit in the description modified to the IICM2 bit
		224	• Table 17.19 Special Mode 2 Specifications Transmit/Receive Control speci-
			fication changed; Transmit Start Condision specification changed; Error Detec-
			tion specification changed
		225	• Table 17.20 Register Settings in Special Mode 2 The IFSR6 register and its
			function deleted
		227	• 17.4.1.2 When Setting the DINC Bit to "0" (Master Mode) Description Modified
		241	Figure 17.29 SIM Interface Operation Diagram modified
		242	• Figure 17.31 Parity Error Signal Output Timing (LSB First) Diagram modified

Rev.	Date		Description
		Page	Summary
			Intelligent I/O
		272	• Figure 22.1 Intelligent I/O Block Diagram BE10UT added
		273	• Figure 22.2 Intelligent I/O Communication Block Diagram Diagram modified
		287	• Figure 22.13 Timer Measurement Function (1) The second condition modified
		290	Table 22.8 Waveform Generating Function Associated Register Settings
			Note modified
		299	• Figure 22.20 G0RB and G1RB Registers Value after reset modified
		300	• Figure 22.22 G0MR and G1MR Registers UFORM bit name changed
		301	• Figure 22.23 G0EMR and G1EMR Registers Bit 0 modified to RW
		302	• Figure 22.24 G1ETC Register Bits 2 to 0 function changed
		305	• Figure 22.27 G1IRF Register Note 2 modified
		310	• Table 22.19 Pin Settings (4) P152 setting with the PS9 register changed
			CAN Module
		318	• Table 23.1 CAN Module Specifications Time Stamp Function specification
			modified
		320	Figure 23.2 Message Slot Buffer and Message Slot Diagram modified
		321	Table 23.2 Pin Settings P83 setting with the IPS register changed
		322	• Figure 23.3 C0CTLR0 and C1CTLR0 Registers Note 3 added
		323	• 23.1.1.3 BASICCAN Bit Procedure (5) modified
		324	• 23.1.1.6 ECRESET Bit The CAN0OUT pin on Note 2 modified to the CANiouT pin
		332	• 23.1.6.5 SJW1 and SJW0 Bits Description modified
		333	• Figure 23.9 C0BRP and C1BRP Registers Value after reset modified
		342	• 23.1.16.1 CMOD Bit Note 1 modified
		351	Subsection description modified
		361	Subsection description modified
		365	• Figure 23.39 Example of CAN Data Frame Receive Operation Diagram
			modified
		366	• Figure 23.40 Operation Timing when CAN Bus Error Occurs Diagram modified
		368	• 23.4.2.2 When the INTSEL Bit is Set to "1" Description modified
			Programmable I/O Ports
		370	• 24.3 Function Select Register Aj (PSJ Register) (i=0 to 5, 8, 9) changed to (i=0
			to 3, 5, 8, 9)
		373	• Figure 24.2 Programmable I/O Ports (2) Diagram modified
		376	• Figure 24.6 P0 to P15 Registers Note 4 modified
		385	• Figure 24.15 PUR2 Register Note 3 deleted
		387	• Figure 24.17 IPS Register Note 2 modified
			Flash Memory Version
		399	• Figure 25.4 FMR0 Register Note 5 modified
		401	• 25.3.3.4 FMSTP Bit Description modified

Rev.	Date		Description
		Page	Summary
		418	Table 25.7 Pin Description P66 and P67 functions modified
		422	• Figure 25.17 Circuit Application in Standard Serial I/O Mode 1 Diagram
			modified
			Electrical Characteristics
		427	• Table 26.2 Electrical Characteristics Parameter f(BCLK) and its values added
		431	Table 26.6 Flash Memory Version Electrical Characteristics Mesurement
		400	condition changed
		433	• Table 26.10 Memory Expansion Mode and Microprocessor Mode tact(RD-DB)
		400	expression on Note 1 modified; <i>tac2(RD-DB)</i> expression on Note 1 added
		439	• Figure 26.3 Vcc1=Vcc2=5V Timing Diagram (1) tw(ER) expression on Note 3 modified; tcyc expression added
		440	• Figure 26.4 Vcc1=Vcc2=5V Timing Diagram (2) tac2(AD-DB) expression on
			Note 1 modified; <i>th(ALE-AD)</i> expressions on Notes 1 and 2 modified; <i>tcyc</i> expression added
		445	• Table 26.28 Memory Expansion Mode and Microprocessor Mode tac1(RD-DB)
			expression on Note 1 modified; <i>tac2(RD-DB)</i> expression on Note 1 added
		450	• Figure 26.7 Vcc1=Vcc2=3.3V Timing Diagram (1) tw(ER) expression on Note 3
			modified; <i>tcyc</i> expression added
		451	• Figure 26.8 Vcc1=Vcc2=3.3V Timing Diagram (2) tac2(RD-DB) expression on
			Note 1 modified; th(ALE-AD) expressions on Notes 1 and 2 modified; th(WR-CS)
			expression on Note 2 modified; tcyc expression added
		456	• Table 26.43 Electrical Characteristics Parameter f(BCLK) and its values added
		460	• Table 26.47 Flash Memory Version Electrical Characteristics Mesurement condition changed
			Precautions
		470	• 27.5.1 CPU Clock Descripion modified
		471	• 27.5.6.1 Wait Mode Descripion modified
		476	• 27.7.7 Changing RLVL Register Descripion modified
		480	• 27.9.3.2 Timer B (Pulse Period/Pulse Width Measurement Mode)
		100	Descripion modified
		483	• 27.11 A/D Converter Descripion modified
		100	• Figure 27.4 Use of capacitors to Reduce Noise Diagram modified
			Tigure 27.4 Gae of Supucitors to Reduce Rolace Biogram modified


RENESAS 16/32-BIT SINGLE-CHIP MICROCOMPUTER HARDWARE MANUAL M32C/85 Group (M32C/85, M32C/85T)

Publication Data: Rev.0.20 Jan. 2003

Rev.1.03 Jul. 01, 2005

Published by: Sales Strategic Planning Div. Renesas Technology Corp.

© 2005. Renesas Technology Corp., All rights reserved. Printed in Japan.

