ardware

M32C/80 Group

Hardware Manual

RENESAS 16/32-BIT SINGLE-CHIP MICROCOMPUTER
M16C FAMILY / M32C/80 SERIES

Before using this material, please visit our website to verify that this is the most current document available.

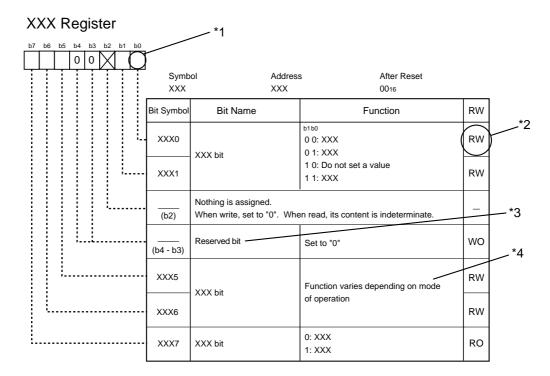
Rev. 1.00 Revision Date: Nov. 01, 2005

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/ or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.


How to Use This Manual

1. Introduction

This hardware manual provides detailed information on the M32C/80 Group microcomputers. Users are expected to have basic knowledge of electric circuits, logical circuits and microcomputers.

2. Register Diagram

The symbols, and descriptions, used for bit function in each register are shown below.

Blank: Set to "0" or "1" according to the application

0: Set to "0"

1: Set to "1"

X: Nothing is assigned

*2

*1

RW: Read and write

RO: Read only

WO: Write only

Nothing is assigned

*3

• Reserved bit

Reserved bit. Set to specified value.

*4

· Nothing is assigned

Nothing is assigned to the bit concerned. As the bit may be use for future functions, set to "0" when writing to this bit.

• Do not set a value

The operation is not guaranteed when a value is set.

• Function varies depending on mode of operation

Bit function varies depending on peripheral function mode.

Refer to respective register for each mode.

3. M16C Family Documents

The following documents were prepared for the M16C family. (1)

Document	Contents
Short Sheet	Hardware overview
Data Sheet	Hardware overview and electrical characteristics
Hardware Manual	Hardware specifications (pin assignments, memory maps, peripheral
	specifications, electrical characteristics, timing charts)
Software Manual	Detailed description of assembly instructions and microcomputer perfor-
	mance of each instruction
Application Note	Application examples of peripheral functions
	Sample programs
	Introduction to the basic functions in the M16C family
	Programming method with Assembly and C languages
RENESAS TECHNICAL UPDATE	Preliminary report about the specification of a product, a document, etc.

NOTES:

1. Before using this material, please visit the our website to verify that this is the most current document available.

Table of Contents

Quick Reference by Address	B-1
1. Overview	1
1.1 Applications	1
1.2 Performance Overview	
1.3 Block Diagram	3
1.4 Product Information	4
1.5 Pin Assignment	5
1.6 Pin Description	9
2. Central Processing Unit (CPU)	12
2.1 General Registers	
2.1.1 Data Registers (R0, R1, R2 and R3)	
2.1.2 Address Registers (A0 and A1)	13
2.1.3 Static Base Register (SB)	13
2.1.4 Frame Base Register (FB)	
2.1.5 Program Counter (PC)	13
2.1.6 Interrupt Table Register (INTB)	13
2.1.7 User Stack Pointer (USP), Interrupt Stack Pointer (I	SP)13
2.1.8 Flag Register (FLG)	13
2.2 High-Speed Interrupt Registers	
2.3 DMAC-Associated Registers	14
3. Memory	15
4. Special Function Registers (SFRs)	
5. Reset	30
5.1 Hardware Reset 1	30
5.1.1 Reset on a Stable Supply Voltage	30
5.1.2 Power-on Reset	
5.2 Software Reset	33
5.3 Watchdog Timer Reset	33
5.4 Internal Space	33
6. Processor Mode	34
6.1 Types of Processor Mode	
6.2 Setting of Processor Mode	

7. Bus	39
7.1 Bus Settings	
7.1.1 Selecting External Address Bus	40
7.1.2 Selecting External Data Bus	40
7.1.3 Selecting Separate/Multiplexed Bus	40
7.2 Bus Control	42
7.2.1 Address Bus and Data Bus	42
7.2.2 Chip-Select Signal	42
7.2.3 Read and Write Signals	44
7.2.4 Bus Timing	45
7.2.5 ALE Signal	53
7.2.6 RDY Signal	53
7.2.8 External Bus Status when Accessing Internal Space	55
7.2.7 HOLD Signal	55
7.2.9 BCLK Output	55
8. Clock Generation Circuit	56
8.1 Types of the Clock Generation Circuit	56
8.1.1 Main Clock	65
8.1.2 Sub Clock	66
8.1.3 On-Chip Oscillator Clock	67
8.1.4 PLL Clock	69
8.2 CPU Clock and BCLK	70
8.3 Peripheral Function Clock	70
8.3.1 f1, f8, f32 and f2n	70
8.3.2 fAD	70
8.3.3 fc32	71
8.4 Clock Output Function	71
8.5 Power Consumption Control	72
8.5.1 Normal Operating Mode	72
8.5.2 Wait Mode	73
8.5.3 Stop Mode	75
8.6 System Clock Protect Function	80
9. Protection	81
10. Interrupts	
10.1 Types of Interrupts	

10.2 Software Interrupts	83
10.2.1 Undefined Instruction Interrupt	83
10.2.2 Overflow Interrupt	83
10.2.3 BRK Interrupt	83
10.2.4 BRK2 Interrupt	83
10.2.5 INT Instruction Interrupt	83
10.3 Hardware Interrupts	84
10.3.1 Special Interrupts	84
10.3.2 Peripheral Function Interrupt	84
10.4 High-Speed Interrupt	85
10.5 Interrupts and Interrupt Vectors	85
10.5.1 Fixed Vector Tables	86
10.5.2 Relocatable Vector Tables	86
10.6 Interrupt Request Acknowledgement	
10.6.1 I Flag and IPL	89
10.6.2 Interrupt Control Register and RLVL Register	89
10.6.3 Interrupt Sequence	
10.6.4 Interrupt Response Time	94
10.6.5 IPL Change when Interrupt Request is Acknowledged	95
10.6.6 Saving a Register	96
10.6.7 Restoration from Interrupt Routine	96
10.6.8 Interrupt Priority	97
10.6.9 Interrupt Priority Level Select Circuit	97
10.7 INT Interrupt	
10.8 NMI Interrupt	100
10.9 Key Input Interrupt	
10.10 Address Match Interrupt	
10.11 Intelligent I/O Interrupt	102
11. Watchdog Timer	105
11.1 Count Source Protection Mode	108
12. DMAC	109
12.1 Transfer Cycle	
12.1.1 Effect of Source and Destination Addresses	
12.1.2 Effect of the DS Register	
12.1.3 Effect of Software Wait State	
12.1.4 Effect of RDY Signal	
12.2 DMAC Transfer Cycle	
12.3 Channel Priority and DMA Transfer Timing	118

13. DMAC II	120
13.1 DMAC II Settings	
13.1.1 RLVL Register	
13.1.2 DMAC II Index	
13.1.3 Interrupt Control Register for the Periphera	al Function124
13.1.4 Relocatable Vector Table for the Periphera	l Function124
13.1.5 IRLT Bit in the IIOiIE Register (i=0 to 4)	124
13.2 DMAC II Performance	124
13.3 Transfer Data	124
13.3.1 Memory-to-memory Transfer	124
13.3.2 Immediate Data Transfer	125
13.3.3 Calculation Transfer	125
13.4 Transfer Modes	125
13.4.1 Single Transfer	125
13.4.2 Burst Transfer	125
13.5 Multiple Transfer	125
13.6 Chained Transfer	126
13.7 End-of-Transfer Interrupt	126
13.8 Execution Time	127
14. Timer	128
14.1 Timer A	
14.1.1 Timer Mode	136
14.1.2 Event Counter Mode	138
14.1.3 One-Shot Timer Mode	142
14.1.4 Pulse Width Modulation Mode	144
14.2 Timer B	
14.2.1 Timer Mode	150
14.2.2 Event Counter Mode	151
14.2.3 Pulse Period/Pulse Width Measurement Mo	ode 153
15. Three-Phase Motor Control Time	r Functions 156
16. Serial I/O	167
16.1 Clock Synchronous Serial I/O Mode	
16.1.1 Selecting CLK Polarity Selecting	
16.1.2 Selecting LSB First or MSB First	
16.1.3 Continuous Receive Mode	
16.1.4 Serial Data Logic Inverse	
—	

16.2 Clock Asynchronous Se	erial I/O (UART) Mode	183
16.2.1 Bit Rate		187
16.2.2 Selecting LSB First	or MSB First	188
16.2.3 Serial Data Logic In	verse	188
16.2.4 TxD and RxD I/O Po	olarity Inverse	189
16.3 Special Mode 1 (I ² C Mod	de)	190
16.3.1 Detecting Start Con	ndition and Stop Condition	196
16.3.2 Start Condition or S	Stop Condition Output	196
16.3.3 Arbitration		198
16.3.4 Transfer Clock		198
16.3.5 SDA Output		198
16.3.6 SDA Input		199
16.3.7 ACK, NACK		199
16.3.8 Transmit and Recei	ve Reset	199
16.4 Special Mode 2		200
16.4.1 SSi Input Pin Funct	ion (i=0 to 4)	203
16.4.2 Clock Phase Setting	g Function	204
16.5 Special Mode 3 (GCI Mo	ode)	206
16.6 Special Mode 4 (IE Mode	e)	210
16.7 Special Mode 5 (SIM Mo	ode)	214
16.7.1 Parity Error Signal .		218
16.7.2 Format		219
17. A/D Converter		220
<u>•</u>	<u>,</u>	
•	e 0	
·	e 1	
	· · · · · · · · · · · · · · · · · · ·	
	unction	
	unction	
_	etion	
	ode	
	put Pins	
_	Amplifier (Op-Amp) Connection Mode	
•	n Reducing Function	
<u>-</u>	_	
17.2.0 Outbut imbedance c	of Sensor Equivalent Circuit under A/D Conversion	234

18. D/A Converter	2
19. CRC Calculation	2
20. X/Y Conversion	
21. Intelligent I/O	
21.1 Communication Unit 0 and 1 Communication Function	
21.1.1 Clock Synchronous Serial I/O Mode (Communication Ur	
21.1.2 HDLC Data Processing Mode (Communication Units 0 a	nd 1)
22. Programmable I/O Ports	2
22.1 Port Pi Direction Register (PDi Register, i=0 to 10)	
22.2 Port Pi Register (Pi Register, i=0 to 10)	
22.3 Function Select Register Aj (PSj Register) (j=0 to 3)	
22.4 Function Select Register B0 to B3 (PSL0 to PSL3 Registers)	
22.5 Function Select Register C (PSC and PSC3 Registers)	
22.6 Function Select Register D (PSD1 Register)	
22.7 Pull-up Control Register 0 to 3 (PUR0 to PUR3 Registers)	
22.8 Port Control Register (PCR Register)	
22.9 Analog Input and Other Peripheral Function Input	
23. Electrical Characteristics	2
24. Precautions	3
24.1 Reset	
24.2 Bus	
24.2.1 HOLD Signal	
24.3 Special Function Registers (SFRs)	
24.3.1 Register Settings	
24.4 Clock Generation Circuit	
24.4.1 CPU Clock	
24.4.2 Sub Clock	
24.4.3 PLL Frequency Synthesizer	
24.4.4 External Clock	
24.4.5 Clock Divide Ratio	
24.4.6 Power Consumption Control	
24.5 Protection	
24.6 Interrupts	
24.6.1 ISP Setting	
24.6.2 NMI Interrupt	

24.6.3 INT Interrupt	315
24.6.4 Watchdog Timer Interrupt	316
24.6.5 Changing Interrupt Control Register	316
24.6.6 Changing IIOiIR Register (i = 0 to 4)	316
24.6.7 Changing RLVL Register	316
24.7 DMAC	317
24.8 Timer	318
24.8.1 Timers A and B	318
24.8.2 Timer A	318
24.8.3 Timer B	320
24.9 Serial I/O	321
24.9.1 Clock Synchronous Serial I/O Mode	321
24.9.2 UART Mode	322
24.9.3 Special Mode 1 (I ² C Mode)	322
24.10 A/D Converter	323
24.11 Intelligent I/O	325
24.11.1 Register Setting	325
24.12 Programmable I/O Ports	326
24.13 Noise	
Package Dimensions	328
Register Index	329

0000116 0000216 0000216 0000216 0000216 0000216 0000216 0000216 0000216 0000216 0000216 0000216 0000216 0000216 0000216 0000216 0000216 0000216 0000216 00002216 00002216 00002216 00002216 00002216 00002216 0000216 0000216 00002216 0000216 0000216 00002216 000002216 00000000000000000000000000000000000	Address	Register	Page
000216 000316 000316 0000316 0000516	000016		
000316 000416 Processor Mode Register 0 (PM0) 36 000516 Processor Mode Register 1 (PM1) 37 37 000616 System Clock Control Register 0 (CM0) 58 000716 System Clock Control Register 1 (CM1) 59 000816 000916 Address Match Interrupt Enable Register (AIER) 101 0000416 Protect Register (PRCR) 81 0000416 External Data Bus Width Control Register (DS) 39 0000616 Main Clock Division Register (MCD) 60 000016 Oscillation Stop Detection Register (CM2) 61 0000616 Watchdog Timer Start Register (WDTS) 106 001016	000116		†
000416 Processor Mode Register 0 (PM0) 36 000516 Processor Mode Register 1 (PM1) 37 000616 System Clock Control Register 0 (CM0) 58 000716 System Clock Control Register 0 (CM0) 58 000716 System Clock Control Register 0 (CM1) 59 000816 000916 Address Match Interrupt Enable Register (AIER) 101 000816 External Data Bus Width Control Register (DS) 39 000C16 Main Clock Division Register (MCD) 60 000D16 Oscillation Stop Detection Register (WD2) 61 000E16 Watchdog Timer Start Register (WDC) 106 001016 Watchdog Timer Control Register (WDC) 101 00116 Address Match Interrupt Register 0 (RMAD0) 101 001216 Address Match Interrupt Register 1 (RMAD1) 101 001816 001916 Address Match Interrupt Register 2 (RMAD2) 101 001816 001916 Address Match Interrupt Register 3 (RMAD3) 101 001816 001916 Address Match Interrupt Register 3 (RMAD3) 101 001	000216		†
000516 Processor Mode Register 1 (PM1) 37 000616 System Clock Control Register 0 (CM0) 58 000716 System Clock Control Register 1 (CM1) 59 000816 000916 Address Match Interrupt Enable Register (AIER) 101 000816 External Data Bus Width Control Register (DS) 39 000C16 Main Clock Division Register (MCD) 60 000D16 Oscillation Stop Detection Register (WDZ) 61 000E16 Watchdog Timer Start Register (WDTS) 106 000F16 Watchdog Timer Control Register (WDC) 106 001016 Address Match Interrupt Register 0 (RMAD0) 101 001216 Address Match Interrupt Register 1 (RMAD1) 101 001316 Processor Mode Register 2 (PM2) 64 001416 Address Match Interrupt Register 1 (RMAD1) 101 001516 Address Match Interrupt Register 2 (RMAD2) 101 001B16 001C16 001D16 Address Match Interrupt Register 3 (RMAD3) 101 001E16 002016 002016 002016 002016 002016	000316		Ī
000616 System Clock Control Register 0 (CM0) 58 000716 System Clock Control Register 1 (CM1) 59 000816 000916 Address Match Interrupt Enable Register (AIER) 101 0000416 Protect Register (PRCR) 81 0000416 External Data Bus Width Control Register (DS) 39 000C16 Main Clock Division Register (MCD) 60 000D16 Oscillation Stop Detection Register (CM2) 61 000E16 Watchdog Timer Start Register (WDTS) 106 000F16 Watchdog Timer Control Register (WDC) 100 001016 Address Match Interrupt Register 0 (RMAD0) 101 001216 Processor Mode Register 2 (PM2) 64 001416 Address Match Interrupt Register 1 (RMAD1) 101 001516 Address Match Interrupt Register 2 (RMAD2) 101 001816 Address Match Interrupt Register 3 (RMAD3) 101 001B16 001D16 Address Match Interrupt Register 3 (RMAD3) 101 001E16 002216 002216 002216 0002216 002216 002216 <td>000416</td> <td>Processor Mode Register 0 (PM0)</td> <td>36</td>	000416	Processor Mode Register 0 (PM0)	36
000716 System Clock Control Register 1 (CM1) 59 000816 000916 Address Match Interrupt Enable Register (AIER) 101 000016 Protect Register (PRCR) 81 000016 External Data Bus Width Control Register (DS) 39 000C16 Main Clock Division Register (MCD) 60 000D16 Oscillation Stop Detection Register (CM2) 61 000F16 Watchdog Timer Start Register (WDTS) 106 000116 Address Match Interrupt Register (WDC) 101 00116 Address Match Interrupt Register 0 (RMAD0) 101 001216 Address Match Interrupt Register 1 (RMAD1) 101 001516 Address Match Interrupt Register 2 (RMAD2) 101 001616 001916 Address Match Interrupt Register 3 (RMAD3) 101 001716 001916 Address Match Interrupt Register 3 (RMAD3) 101 001816 001916 Address Match Interrupt Register 3 (RMAD3) 101 001816 002216 002216 002216 0019216 002216 002216 002216 00	000516	Processor Mode Register 1 (PM1)	37
000816 Address Match Interrupt Enable Register (AIER) 101 000916 Address Match Interrupt Enable Register (AIER) 101 000816 External Data Bus Width Control Register (DS) 39 000C16 Main Clock Division Register (MCD) 60 000D16 Oscillation Stop Detection Register (CM2) 61 000E16 Watchdog Timer Start Register (WDTS) 106 000F16 Watchdog Timer Control Register (WDC) 106 001016 Address Match Interrupt Register 0 (RMAD0) 101 001216 Processor Mode Register 2 (PM2) 64 001416 Address Match Interrupt Register 1 (RMAD1) 101 001516 Address Match Interrupt Register 2 (RMAD2) 101 001816 001916 Address Match Interrupt Register 3 (RMAD3) 101 001B16 001C16 001D16 001E16 001C16 001D16 00216 00216 002216 002216 002216 002216 002216 002216 002216 002216 002216 002216 002216 <td>000616</td> <td>System Clock Control Register 0 (CM0)</td> <td>58</td>	000616	System Clock Control Register 0 (CM0)	58
000916 Address Match Interrupt Enable Register (AIER) 101 000A16 Protect Register (PRCR) 81 000B16 External Data Bus Width Control Register (DS) 39 000C16 Main Clock Division Register (MCD) 60 000D16 Oscillation Stop Detection Register (CM2) 61 000E16 Watchdog Timer Start Register (WDTS) 106 001016 Watchdog Timer Control Register (WDC) 101 001116 Address Match Interrupt Register 0 (RMAD0) 101 001216 Address Match Interrupt Register 1 (RMAD1) 101 001516 Address Match Interrupt Register 2 (RMAD2) 101 001416 Address Match Interrupt Register 2 (RMAD2) 101 001416 Address Match Interrupt Register 3 (RMAD3) 101 001D16 Address Match Interrupt Register 3 (RMAD3) 101 001E16 002016 002016 002216 002216 002216 002216 002216 002216 002216 002216 002216 002216 002216 002216	000716	System Clock Control Register 1 (CM1)	59
000A16 Protect Register (PRCR) 81 000B16 External Data Bus Width Control Register (DS) 39 000C16 Main Clock Division Register (MCD) 60 000D16 Oscillation Stop Detection Register (CM2) 61 000E16 Watchdog Timer Start Register (WDTS) 106 001016 Watchdog Timer Control Register (WDC) 101 001116 Address Match Interrupt Register 0 (RMAD0) 101 001216 Address Match Interrupt Register 1 (RMAD1) 101 001516 Address Match Interrupt Register 2 (RMAD2) 101 001816 Address Match Interrupt Register 2 (RMAD2) 101 001B16 Address Match Interrupt Register 3 (RMAD3) 101 001E16 Address Match Interrupt Register 3 (RMAD3) 101 001E16 002016 002016 002216 002216 002216 002216 002216 002216 002216 PLL Control Register 0 (PLC0) 68 002816 002916 Address Match Interrupt Register 4 (RMAD4) 101 002B16 002B16	000816		
000B16 External Data Bus Width Control Register (DS) 39 000C16 Main Clock Division Register (MCD) 60 000D16 Oscillation Stop Detection Register (CM2) 61 000E16 Watchdog Timer Start Register (WDTS) 106 001016 Watchdog Timer Control Register (WDC) 101 001116 Address Match Interrupt Register 0 (RMAD0) 101 001216 Address Match Interrupt Register 1 (RMAD1) 101 001516 Address Match Interrupt Register 2 (RMAD1) 101 001616 Address Match Interrupt Register 2 (RMAD2) 101 001816 Address Match Interrupt Register 3 (RMAD3) 101 001B16 Address Match Interrupt Register 3 (RMAD3) 101 001E16 001E16 002016 002016 002216 002216 002216 002216 002216 002216 002216 002216 002216 002216 002216 002416 002216 002516 002516 002216 002616 PLL Control Register 1 (PLC1)	000916	Address Match Interrupt Enable Register (AIER)	101
000C16 Main Clock Division Register (MCD) 60 000D16 Oscillation Stop Detection Register (CM2) 61 000E16 Watchdog Timer Start Register (WDTS) 106 000F16 Watchdog Timer Control Register (WDC) 106 001016 Address Match Interrupt Register 0 (RMAD0) 101 001216 Processor Mode Register 2 (PM2) 64 001316 Processor Mode Register 2 (PM2) 64 001416 Address Match Interrupt Register 1 (RMAD1) 101 001516 Address Match Interrupt Register 2 (RMAD2) 101 001816 001916 Address Match Interrupt Register 3 (RMAD3) 101 001E16 001D16 Address Match Interrupt Register 3 (RMAD3) 101 001E16 002016 002016 002016 002216 002216 002216 002216 002216 002216 002616 PLL Control Register 0 (PLC0) 68 002216 002616 PLL Control Register 1 (PLC1) 68 002216 002216 002216 002216 002216	000A16	Protect Register (PRCR)	81
000C16 Main Clock Division Register (MCD) 60 000D16 Oscillation Stop Detection Register (CM2) 61 000E16 Watchdog Timer Start Register (WDTS) 106 000F16 Watchdog Timer Control Register (WDC) 106 001016 Address Match Interrupt Register 0 (RMAD0) 101 001216 Processor Mode Register 2 (PM2) 64 001316 Processor Mode Register 2 (PM2) 64 001416 Address Match Interrupt Register 1 (RMAD1) 101 001516 Address Match Interrupt Register 2 (RMAD2) 101 001816 001916 Address Match Interrupt Register 3 (RMAD3) 101 001E16 001D16 Address Match Interrupt Register 3 (RMAD3) 101 001E16 002016 002016 002016 002216 002216 002216 002216 002216 002216 002616 PLL Control Register 0 (PLC0) 68 002216 002616 PLL Control Register 1 (PLC1) 68 002216 002216 002216 002216 002216	000B16	External Data Bus Width Control Register (DS)	39
000E16 Watchdog Timer Start Register (WDTS) 000F16 Watchdog Timer Control Register (WDC) 001016 O01016 001116 Address Match Interrupt Register 0 (RMAD0) 101 001216 Processor Mode Register 2 (PM2) 64 001416 O01516 Address Match Interrupt Register 1 (RMAD1) 101 001516 Address Match Interrupt Register 2 (RMAD2) 101 001816 001916 Address Match Interrupt Register 3 (RMAD3) 101 001E16 001D16 Address Match Interrupt Register 3 (RMAD3) 101 001E16 002016 002016 002016 002216 002216 002216 002216 002216 002216 002216 002216 002216 PLL Control Register 0 (PLC0) 68 002216 002716 Address Match Interrupt Register 4 (RMAD4) 101 002816 002916 Address Match Interrupt Register 4 (RMAD4) 101	000C16		60
106 106	000D16	Oscillation Stop Detection Register (CM2)	61
106 106	000E16		
001016 001116 001116 0011316 Processor Mode Register 2 (PM2) 64 001416 001516 Address Match Interrupt Register 1 (RMAD1) 101 001616 001716 001816 001916 Address Match Interrupt Register 2 (RMAD2) 101 001616 001016 00116 001016	000F16		106
001216 001316 Processor Mode Register 2 (PM2) 64 001416 001516 Address Match Interrupt Register 1 (RMAD1) 101 001616 001716 001816 001916 Address Match Interrupt Register 2 (RMAD2) 101 001A16 001B16 001C16 001D16 001D16 001E16 002016 002216 002216 002316 002416 002516 002516 002716 PLL Control Register 0 (PLC0) 68 002916 002916 Address Match Interrupt Register 4 (RMAD4) 101 002B16 002B16 002C16	001016		
001216 001316 Processor Mode Register 2 (PM2) 64 001416 001516 Address Match Interrupt Register 1 (RMAD1) 101 001616 001716 001816 001916 Address Match Interrupt Register 2 (RMAD2) 101 001A16 001B16 001C16 001D16 001D16 001E16 002016 002216 002216 002316 002416 002516 002516 002716 PLL Control Register 0 (PLC0) 68 002916 002916 Address Match Interrupt Register 4 (RMAD4) 101 002B16 002B16 002C16	001116	Address Match Interrupt Register 0 (RMAD0)	101
001416 001516 001616 001716 001816 001916 00101818 001018	001216	, ,	
001416 001516 001616 001716 001816 001916 00101818 001018	001316	Processor Mode Register 2 (PM2)	64
001616 001716 001816 001916 001016 00	001416		
001716 001816 001916 Address Match Interrupt Register 2 (RMAD2) 101 001A16 001B16 001D16 001D16 Address Match Interrupt Register 3 (RMAD3) 101 001E16 001F16 002016 002216 002216 002216 002216 002216 002216 002216 002616 PLL Control Register 0 (PLC0) 002716 PLL Control Register 1 (PLC1) 002816 002916 002916 Address Match Interrupt Register 4 (RMAD4) 101 002A16 002B16 002C16	001516	Address Match Interrupt Register 1 (RMAD1)	101
001816 001916 001016 001A16 001B16 001C16 001D16 001E16 001E16 001F16 002016 002216 002216 002316 002416 002516 002616 PLL Control Register 0 (PLC0) 002716 PLL Control Register 1 (PLC1) 002816 002916 002916 002916 002916 002916 002016 002016 001E16 002016 002016 001E16 002016	001616	, ,	
001916	001716		
001A16 001B16 001C16 001D16 001E16 001F16 002016 002216 002216 002216 002216 002216 002216 002616 PLL Control Register 0 (PLC0) 002716 PLL Control Register 1 (PLC1) 002816 002916 Address Match Interrupt Register 4 (RMAD4) 101 002A16 002B16 002C16	001816		
001B16 001C16 001D16 001E16 001E16 002016 002216 002216 002316 002416 002516 002616 PLL Control Register 0 (PLC0) 002716 PLL Control Register 1 (PLC1) 002816 002916 002916 002916 002016 00216 002016 002016 002016 002016	001916	Address Match Interrupt Register 2 (RMAD2)	101
001C16 001D16 001D16 Address Match Interrupt Register 3 (RMAD3) 101 001E16 002016 002016 002216 002316 002416 002516 002616 PLL Control Register 0 (PLC0) 002716 PLL Control Register 1 (PLC1) 002816 002916 Address Match Interrupt Register 4 (RMAD4) 101 002A16 002B16 002C16	001A16		
001D16	001B16		
001E16 001F16 002016 002116 002216 002216 002316 002416 002516 002616 PLL Control Register 0 (PLC0) 002716 PLL Control Register 1 (PLC1) 002816 002916 Address Match Interrupt Register 4 (RMAD4) 002B16 002B16 002C16	001C16		
001F16 002016 002116 002216 002216 0022316 0022416 002516 002616 PLL Control Register 0 (PLC0) 002716 PLL Control Register 1 (PLC1) 002816 002916 Address Match Interrupt Register 4 (RMAD4) 002B16 002B16 002C16	001D16	Address Match Interrupt Register 3 (RMAD3)	101
002016 002116 002216 002216 002316 002416 002516 002616 PLL Control Register 0 (PLC0) 002716 PLL Control Register 1 (PLC1) 002816 002916 Address Match Interrupt Register 4 (RMAD4) 002A16 002B16 002C16	001E16		
002116 002216 002316 002416 002516 002616 PLL Control Register 0 (PLC0) 002716 PLL Control Register 1 (PLC1) 002816 002916 Address Match Interrupt Register 4 (RMAD4) 101 002A16 002B16 002B16	001F16		
002216 002316 002416 002516 002616 PLL Control Register 0 (PLC0) 002716 PLL Control Register 1 (PLC1) 002816 002916 Address Match Interrupt Register 4 (RMAD4) 002B16 002B16 002C16	002016		†
002316 002416 002516 002616 PLL Control Register 0 (PLC0) 002716 PLL Control Register 1 (PLC1) 002816 002916 Address Match Interrupt Register 4 (RMAD4) 002A16 002B16 002C16	002116		†
002416 002516 002616 PLL Control Register 0 (PLC0) 002716 PLL Control Register 1 (PLC1) 002816 002916 Address Match Interrupt Register 4 (RMAD4) 002A16 002B16 002C16	002216		†
002516 002616 PLL Control Register 0 (PLC0) 68 002716 PLL Control Register 1 (PLC1) 68 002816 002916 Address Match Interrupt Register 4 (RMAD4) 101 002A16 002B16 002C16 002C	002316		†
002616 PLL Control Register 0 (PLC0) 68 002716 PLL Control Register 1 (PLC1) 68 002816 002916 Address Match Interrupt Register 4 (RMAD4) 101 002A16 002B16 002C16	002416		†
002716 PLL Control Register 1 (PLC1) 002816 002916 Address Match Interrupt Register 4 (RMAD4) 002A16 002B16 002C16	002516		†
002/16 PLL Control Register 1 (PLC1) 002816 002916 Address Match Interrupt Register 4 (RMAD4) 101 002A16 002B16 002C16	002616	PLL Control Register 0 (PLC0)	2.5
002916 Address Match Interrupt Register 4 (RMAD4) 101 002A16 002B16 002C16	002716	PLL Control Register 1 (PLC1)	68
002A16 002B16 002C16	002816		
002B16 002C16	002916	Address Match Interrupt Register 4 (RMAD4)	101
002C16	002A16		[
	002B16		
002D ₁₆ Address Match Interrupt Register 5 (RMAD5) 101	002C16		
	002D16	Address Match Interrupt Register 5 (RMAD5)	101
	002E16	· - · · · · · · · · · · · · · · · · · ·	
002F16	002F16		

Address	Register	Page
003016		
003116		
003216		
003316		
003416		
003516		
003616		
003716		
003816		
003916	Address Match Interrupt Register 6 (RMAD6)	101
003A16		
003B16		
003C16		
003D16	Address Match Interrupt Register 7 (RMAD7)	1201
003E16	, , ,	
003F16		
004016		
004116		
004216		
004316		
004416		
004516		
004616		
004716		
004816	External Space Wait Control Register 0 (EWCR0)	
004916	External Space Wait Control Register 1 (EWCR1)	
004A16		45
004B16	External Space Wait Control Register 3 (EWCR3)	
004C16	Zaternar Opaco Trait Control Register C (217010)	
004D16		
004E16		
004F16		
005016		
005116		
005216		
005316		
005416		
005516		
005616		
005616		
005716		
005916		
005A16		
005B16		
005C16		
005D16		
005E16		
005F16		

006016 006116 006216 006216 006216 006216 006216 006216 006316 006316 006516 006516 006616 006716 006816 DMA0 Interrupt Control Register (DMOIC) 006916 Timer B5 Interrupt Control Register (TBSIC) 006816 DMA2 Interrupt Control Register (DMZIC) 006816 UART2 Receive /ACK Interrupt Control Register (S2RIC) 006D16 UART3 Receive /ACK Interrupt Control Register (S3RIC) 006E16 Timer A0 Interrupt Control Register (TAOIC) 006D16 UART3 Receive /ACK Interrupt Control Register (S4RIC) 007016 Timer A1 Interrupt Control Register (TA4IC) UART3 Receive /ACK Interrupt Control Register (S4RIC) 007016 Timer A4 Interrupt Control Register (TA4IC) UART0 Bus Conflict Detect Interrupt Control Register (BCN0IC) UART3 Bus Conflict Detect Interrupt Control Register (BCN0IC) UART3 Bus Conflict Detect Interrupt Control Register (BCN0IC) UART3 Bus Conflict Detect Interrupt Control Register (BCN0IC) UART0 Receive/ACK Interrupt Control Register (BCN0IC) UART1 Receive/ACK Interrupt Control Register (BCN0IC) 007216 UART0 Receive/ACK Interrupt Control Register (BCN0IC) 007516 Timer B1 Interrupt Control Register (CAN3IC) 007516 Timer B1 Interrupt Control Register (TB3IC) 007616 Timer B3 Interrupt Control Register (TB3IC) 007616 Timer B3 Interrupt Control Register (TB3IC) 007616 Timer B3 Interrupt Control Register (INT5IC) 91 007D16 008D16	Address	Register	Page
006216 006316 006416 006516 006616 0	006016		
006316 006616 0	006116		
006416 006516 006616 006716 006816 006716 006816 006716 006816 0042 006816 0042 0	006216		
006516 006616 0	006316		
006616 006716 006816 DMA0 Interrupt Control Register (DMOIC) 006916 Timer B5 Interrupt Control Register (DMOIC) 006916 DMA2 Interrupt Control Register (DMIC) 006016 UART2 Receive /ACK Interrupt Control Register (SZRIC) 006C16 Timer A0 Interrupt Control Register (TADIC) 006D16 UART3 Receive /ACK Interrupt Control Register (SZRIC) 006E16 UART3 Receive /ACK Interrupt Control Register (SZRIC) 006F16 UART4 Receive /ACK Interrupt Control Register (SZRIC) 006T16 UART5 Receive /ACK Interrupt Control Register (SZRIC) 007016 Timer A4 Interrupt Control Register (TA4IC) 007116 UART6 Bus Conflict Detect Interrupt Control Register (BCNOIC)/ 007216 UART6 Receive/ACK Interrupt Control Register (SZRIC) 007216 UART7 Receive/ACK Interrupt Control Register (SZRIC) 007316 A/DO Conversion Interrupt Control Register (ADDIC) 007416 UART1 Receive/ACK Interrupt Control Register (ADDIC) 007516 CAN Interrupt 3 Control Register (CAN3IC) 007616 Timer B1 Interrupt Control Register (TB1IC) 007716 Intelligent I/O Interrupt Control Register (TB3IC) 007816 Intelligent I/O Interrupt Control Register (TB3IC) 007816 Intelligent I/O Interrupt Control Register (INT5IC) 007816 INT5 Interrupt Control Register (INT5IC) 007B16 INT1 Interrupt Control Register (INT5IC) 007B16 O07C16 INT5 Interrupt Control Register (INT5IC) 007B16 O08216 O08316 OMA1 Interrupt Control Register (DM1IC) 008816 UART3 Transmit /NACK Interrupt Control Register (SZTIC) 008816 UART3 Transmit /NACK Interrupt Control Register (SZTIC) 008C16 Timer A1 Interrupt Control Register (TA1IC) 008D16 UART3 Transmit /NACK Interrupt Control Register (SZTIC) 008C16 Timer A3 Interrupt Control Register (TA1IC)	006416		
006716	006516		
006816 DMA0 Interrupt Control Register (DM0IC) 006916 Timer B5 Interrupt Control Register (TBSIC) 006A16 DMA2 Interrupt Control Register (DM2IC) 006B16 UART2 Receive /ACK Interrupt Control Register (S2RIC) 006C16 Timer A0 Interrupt Control Register (TAOIC) 006D16 UART3 Receive /ACK Interrupt Control Register (S3RIC) 006E16 Timer A2 Interrupt Control Register (TA2IC) 007016 UART4 Receive /ACK Interrupt Control Register (S4RIC) 007016 Timer A4 Interrupt Control Register (TA4IC) 04716 UART0 Bus Conflict Detect Interrupt Control Register (BCN0IC) 00716 UART3 Bus Conflict Detect Interrupt Control Register (S0RIC) 007216 UART0 Receive/ACK Interrupt Control Register (S0RIC) 007216 UART1 Receive/ACK Interrupt Control Register (S1RIC) 007316 A/D0 Conversion Interrupt Control Register (S1RIC) 007516 Intelligent I/O Interrupt Control Register (S1RIC) 007516 Intelligent I/O Interrupt Control Register (INT3IC) 007716 Intelligent I/O Interrupt Control Register (INT3IC) 007816 Interrupt Control Register (INT3IC) 007B16 INT3 Interrupt Control Register	006616		
006916 Timer B5 Interrupt Control Register (TBSIC) 006A16 DMA2 Interrupt Control Register (DM2IC) 006B16 UART2 Receive /ACK Interrupt Control Register (S2RIC) 006C16 Timer A0 Interrupt Control Register (TADIC) 006D16 UART3 Receive /ACK Interrupt Control Register (S3RIC) 006E16 Timer A2 Interrupt Control Register (TAZIC) 007616 UART4 Receive /ACK Interrupt Control Register (S4RIC) 007016 Timer A4 Interrupt Control Register (TAJIC) 007116 UART0 Bus Conflict Detect Interrupt Control Register (BCN0IC) 007116 UART3 Bus Conflict Detect Interrupt Control Register (BCN3IC) 007216 UART0 Receive/ACK Interrupt Control Register (S0RIC) 007316 A/D0 Conversion Interrupt Control Register (G1RIC) 007416 UART1 Receive/ACK Interrupt Control Register (G1RIC) 007516 Intelligent I/O Interrupt Control Register (INTO) 007516 Timer B1 Interrupt Control Register (TB3IC) 007716 Intelligent I/O Interrupt Control Register (INTSIC) 007716 Intelligent I/O Interrupt Control Register (INTSIC) 007B16 INT3 Interrupt Control Register (INTSIC) 007C16 INT3 Interrupt Contro	006716		
006A16 DMA2 Interrupt Control Register (DM2IC) 006B16 UART2 Receive /ACK Interrupt Control Register (S2RIC) 006C16 Timer A0 Interrupt Control Register (TA0IC) 006D16 UART3 Receive /ACK Interrupt Control Register (S3RIC) 006E16 Timer A2 Interrupt Control Register (TA2IC) 006F16 UART4 Receive /ACK Interrupt Control Register (S4RIC) 007016 Timer A4 Interrupt Control Register (TA4IC) 007116 UART0 Bus Conflict Detect Interrupt Control Register (BCN0IC) 007116 UART3 Bus Conflict Detect Interrupt Control Register (BCN3IC) 007216 UART0 Receive/ACK Interrupt Control Register (S0RIC) 007216 UART1 Receive/ACK Interrupt Control Register (AD0IC) 007416 UART1 Receive/ACK Interrupt Control Register (INT0IC) 007516 Intelligent I/O Interrupt Control Register (CAN3IC) 007516 Intelligent I/O Interrupt Control Register (INT3IC) 007716 Intelligent I/O Interrupt Control Register (INT5IC) 007716 Intelligent I/O Interrupt Control Register (INT5IC) 007716 Intelligent I/O Interrupt Control Register (INT5IC) 007816 Interrupt Control Register (INT5IC) 007B16 INT3	006816	DMA0 Interrupt Control Register (DM0IC)	
006B16 UART2 Receive /ACK Interrupt Control Register (S2RIC) 006C16 Timer A0 Interrupt Control Register (TAOIC) 006D16 UART3 Receive /ACK Interrupt Control Register (S3RIC) 006E16 Timer A2 Interrupt Control Register (TA2IC) 006F16 UART4 Receive /ACK Interrupt Control Register (S4RIC) 007016 Timer A4 Interrupt Control Register (TA4IC) 007016 Timer A4 Interrupt Control Register (TA4IC) 007116 UART3 Bus Conflict Detect Interrupt Control Register (BCN0IC) 007116 UART3 Bus Conflict Detect Interrupt Control Register (BCN3IC) 007216 UART0 Receive/ACK Interrupt Control Register (S0RIC) 007316 A/D0 Conversion Interrupt Control Register (AD0IC) 007416 UART1 Receive/ACK Interrupt Control Register (S1RIC) 007516 Intelligent I/O Interrupt Control Register (ISRIC) 007616 Timer B1 Interrupt Control Register (CAN3IC) 007616 Timer B3 Interrupt Control Register (TB3IC) 007916 Intelligent I/O Interrupt Control Register (INT5IC) 007816 Intelligent I/O Interrupt Control Register 4 (IIO4IC) 007A16 INT5 Interrupt Control Register (INT5IC) 007B16 007C16 INT3 Interrupt Control Register (INT3IC) 007B16 007C16 INT3 Interrupt Control Register (INT3IC) 007B16 007C16 INT1 Interrupt Control Register (INT1IC) 008116 008216 008316 008416 008516 008616 008716 008816 DMA1 Interrupt Control Register (DM1IC) 008916 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 008A16 DMA3 Interrupt Control Register (DM3IC) 008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 008C16 Timer A1 Interrupt Control Register (TA1IC)	006916	Timer B5 Interrupt Control Register (TB5IC)	
006C16 Timer A0 Interrupt Control Register (TA0IC) 006D16 UART3 Receive /ACK Interrupt Control Register (S3RIC) 006E16 Timer A2 Interrupt Control Register (TA2IC) 006F16 UART4 Receive /ACK Interrupt Control Register (S4RIC) 007016 Timer A4 Interrupt Control Register (TA4IC) 007116 UART0 Bus Conflict Detect Interrupt Control Register (BCN0IC)/ 007216 UART3 Bus Conflict Detect Interrupt Control Register (BCN3IC) 007216 UART0 Receive/ACK Interrupt Control Register (S0RIC) 007316 A/D0 Conversion Interrupt Control Register (AD0IC) 007416 UART1 Receive/ACK Interrupt Control Register (S1RIC) 1007516 Intelligent I/O Interrupt Control Register (IIO0IC)/ 0AN Interrupt 3 Control Register (TB1IC) 107716 Intelligent I/O Interrupt Control Register 2 (IIO0IC)/ 007816 Timer B1 Interrupt Control Register (TB3IC) 107916 Intelligent I/O Interrupt Control Register 4 (IIO4IC) 107716 Intelligent I/O Interrupt Control Register 4 (IIO4IC) 107816 Timer B3 Interrupt Control Register (INT5IC) 107816 INT5 Interrupt Control Register (INT5IC) 107816 INT5 Interrupt Control Register (INT3IC) 107B16 107C16 INT1 Interrupt Control Register (INT3IC) 107C16 INT1 Interrupt Control Register (INT1IC) 107F16 1008116 1008216 1008316 1008416 1008516 1008616 1008416 1008516 1008616 1008616 1008616 1008716 1008616 100	006A16	DMA2 Interrupt Control Register (DM2IC)	
006C16 Timer A0 Interrupt Control Register (TA0IC) 006D16 UART3 Receive /ACK Interrupt Control Register (S3RIC) 006E16 Timer A2 Interrupt Control Register (TA2IC) 006F16 UART4 Receive /ACK Interrupt Control Register (S4RIC) 007016 Timer A4 Interrupt Control Register (TA4IC) 007116 UART0 Bus Conflict Detect Interrupt Control Register (BCN0IC)/ 007216 UART3 Bus Conflict Detect Interrupt Control Register (BCN3IC) 007216 UART0 Receive/ACK Interrupt Control Register (S0RIC) 007316 A/D0 Conversion Interrupt Control Register (AD0IC) 007416 UART1 Receive/ACK Interrupt Control Register (S1RIC) 1007516 Intelligent I/O Interrupt Control Register (IIO0IC)/ 0AN Interrupt 3 Control Register (TB1IC) 107716 Intelligent I/O Interrupt Control Register 2 (IIO0IC)/ 007816 Timer B1 Interrupt Control Register (TB3IC) 107916 Intelligent I/O Interrupt Control Register 4 (IIO4IC) 107716 Intelligent I/O Interrupt Control Register 4 (IIO4IC) 107816 Timer B3 Interrupt Control Register (INT5IC) 107816 INT5 Interrupt Control Register (INT5IC) 107816 INT5 Interrupt Control Register (INT3IC) 107B16 107C16 INT1 Interrupt Control Register (INT3IC) 107C16 INT1 Interrupt Control Register (INT1IC) 107F16 1008116 1008216 1008316 1008416 1008516 1008616 1008416 1008516 1008616 1008616 1008616 1008716 1008616 100	006B16	UART2 Receive /ACK Interrupt Control Register (S2RIC)	
006D16 UART3 Receive /ACK Interrupt Control Register (S3RIC) 006E16 Timer A2 Interrupt Control Register (TA2IC) 006F16 UART4 Receive /ACK Interrupt Control Register (S4RIC) 007016 Timer A4 Interrupt Control Register (TA4IC) 007116 UART0 Bus Conflict Detect Interrupt Control Register (BCN0IC)/ 007116 UART3 Bus Conflict Detect Interrupt Control Register (BCN3IC) 007216 UART0 Receive/ACK Interrupt Control Register (S0RIC) 007316 A/D0 Conversion Interrupt Control Register (AD0IC) 007416 UART1 Receive/ACK Interrupt Control Register (S1RIC) 1007516 Intelligent I/O Interrupt Control Register 0 (IIO0IC)/ CAN Interrupt 3 Control Register (CAN3IC) 007616 Timer B1 Interrupt Control Register (TB1IC) 1007716 Intelligent I/O Interrupt Control Register (IIO2IC) 1007816 Timer B3 Interrupt Control Register (TB3IC) 1007816 INT5 Interrupt Control Register (INT5IC) 1007B16 INT5 Interrupt Control Register (INT5IC) 1007B16 INT3 Interrupt Control Register (INT3IC) 1007D16 INT1 Interrupt Control Register (INT3IC) 1007D16 INT1 Interrupt Control Register (INT1IC) 1007B16 INT1 Interrupt Control Register (INT1IC) 1008B16 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 1008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 1008D16 UART4 Transmit /NACK Interrupt Control Register (S4TIC) 1008B16 UART4 Transmit /NACK Interrupt Control Register (S4TIC) 1008E16 Timer A3 Interrupt Control Register (TA3IC)	006C16	• • • • • • • •	
006E16 Timer A2 Interrupt Control Register (TA2IC) 006F16 UART4 Receive /ACK Interrupt Control Register (S4RIC) 007016 Timer A4 Interrupt Control Register (TA4IC) 007116 UART0 Bus Conflict Detect Interrupt Control Register (BCN0IC)/UART3 Bus Conflict Detect Interrupt Control Register (BCN3IC) 007216 UART0 Receive/ACK Interrupt Control Register (S0RIC) 007316 A/D0 Conversion Interrupt Control Register (AD0IC) 007416 UART1 Receive/ACK Interrupt Control Register (S1RIC) 007516 Intelligent I/O Interrupt Control Register (CAN3IC) 007516 Timer B1 Interrupt Control Register (TB1IC) 007616 Timer B3 Interrupt Control Register (TB3IC) 007716 Intelligent I/O Interrupt Control Register (INT5IC) 007916 Intelligent I/O Interrupt Control Register (INT5IC) 007916 Intelligent I/O Interrupt Control Register (INT5IC) 007816 INT3 Interrupt Control Register (INT5IC) 007B16 INT3 Interrupt Control Register (INT3IC) 007C16 INT1 Interrupt Control Register (INT1IC) 007F16 008216 008216 008216 008416 008216 008416	006D16		
O06F16	006E16	• • • • • • • •	
007016 Timer A4 Interrupt Control Register (TA4IC) 007116 UART0 Bus Conflict Detect Interrupt Control Register (BCN0IC)/ UART3 Bus Conflict Detect Interrupt Control Register (BCN3IC) 007216 UART0 Receive/ACK Interrupt Control Register (SORIC) 007316 A/D0 Conversion Interrupt Control Register (AD0IC) 007416 UART1 Receive/ACK Interrupt Control Register (S1RIC) Intelligent I/O Interrupt Control Register 0 (IIO0IC)/ CAN Interrupt 3 Control Register (CAN3IC) 007616 Timer B1 Interrupt Control Register 2 (IIO2IC) 007716 Intelligent I/O Interrupt Control Register 2 (IIO2IC) 007816 Timer B3 Interrupt Control Register (TB3IC) 007916 Intelligent I/O Interrupt Control Register 4 (IIO4IC) 007A16 INT5 Interrupt Control Register (INT5IC) 007B16 007C16 INT3 Interrupt Control Register (INT3IC) 007D16 007E16 INT1 Interrupt Control Register (INT1IC) 007F16 008016 008116 008216 008316 008416 008416 008516 008616 008716 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 008A16 DMA3 Interrupt Control Register (DM3IC) 008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 008C16 Timer A1 Interrupt Control Register (TA1IC) 008D16 UART4 Transmit /NACK Interrupt Control Register (S4TIC) 008E16 Timer A3 Interrupt Control Register (TA3IC)			
UARTO Bus Conflict Detect Interrupt Control Register (BCN0IC)/ UART3 Bus Conflict Detect Interrupt Control Register (BCN3IC) 007216 UARTO Receive/ACK Interrupt Control Register (SORIC) 007316 A/D0 Conversion Interrupt Control Register (AD0IC) 007416 UART1 Receive/ACK Interrupt Control Register (S1RIC) Intelligent I/O Interrupt Control Register 0 (IIIO0IC)/ CAN Interrupt 3 Control Register (CAN3IC) 007616 Timer B1 Interrupt Control Register (TB1IC) 007716 Intelligent I/O Interrupt Control Register 2 (IIO2IC) 007816 Timer B3 Interrupt Control Register (TB3IC) 007916 Intelligent I/O Interrupt Control Register 4 (IIO4IC) 007A16 INT5 Interrupt Control Register (INT5IC) 007B16 007C16 INT3 Interrupt Control Register (INT3IC) 007E16 INT1 Interrupt Control Register (INT1IC) 007F16 008016 008116 008216 008316 008416 008516 008616 008716 008816 DMA1 Interrupt Control Register (DM1IC) 008916 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 008B16 UART4 Transmit /NACK Interrupt Control Register (S4TIC) 008D16 UART4 Transmit /NACK Interrupt Control Register (S4TIC) 008D16 Timer A1 Interrupt Control Register (TA1IC)	<u> </u>	• • • • • • • •	
007116 UART3 Bus Conflict Detect Interrupt Control Register (BCN3IC) 007216 UART0 Receive/ACK Interrupt Control Register (SORIC) 007316 A/D0 Conversion Interrupt Control Register (AD0IC) 007416 UART1 Receive/ACK Interrupt Control Register (S1RIC) Intelligent I/O Interrupt Control Register 0 (IIO0IC)/ CAN Interrupt 3 Control Register (CAN3IC) 007616 Timer B1 Interrupt Control Register (TB1IC) 007716 Intelligent I/O Interrupt Control Register 2 (IIO2IC) 007816 Timer B3 Interrupt Control Register (TB3IC) 007916 Intelligent I/O Interrupt Control Register 4 (IIO4IC) 007A16 INT5 Interrupt Control Register (INT5IC) 91 007B16 007C16 INT3 Interrupt Control Register (INT3IC) 91 007D16 007E16 INT1 Interrupt Control Register (INT1IC) 91 007F16 008016 008116 008216 008316 008416 008516 008616 008716 008816 DMA1 Interrupt Control Register (DM1IC) 008916 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 008A16 DMA3 Interrupt Control Register (DM3IC) 008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 008C16 Timer A1 Interrupt Control Register (TA1IC) 008D16 UART4 Transmit /NACK Interrupt Control Register (S4TIC) 008D16 Timer A3 Interrupt Control Register (TA3IC)			
007216 UART0 Receive/ACK Interrupt Control Register (S0RIC) 007316 A/D0 Conversion Interrupt Control Register (AD0IC) 007416 UART1 Receive/ACK Interrupt Control Register (S1RIC) 107516 Intelligent I/O Interrupt Control Register (CAN3IC) 007516 CAN Interrupt 3 Control Register (CAN3IC) 007616 Timer B1 Interrupt Control Register (TB1IC) 007716 Intelligent I/O Interrupt Control Register 2 (IIO2IC) 007816 Timer B3 Interrupt Control Register (TB3IC) 007916 Intelligent I/O Interrupt Control Register 4 (IIO4IC) 007A16 INT5 Interrupt Control Register (INT5IC) 007B16 007C16 INT3 Interrupt Control Register (INT3IC) 007D16 007E16 INT1 Interrupt Control Register (INT1IC) 007F16 008016 008116 008216 008316 008416 008516 008616 008716 008816 DMA1 Interrupt Control Register (DM1IC) 008916 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 008A16 DMA3 Interrupt Control Register (DM3IC) 008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 008C16 Timer A1 Interrupt Control Register (TA1IC)	007116	, , , ,	90
007316 A/D0 Conversion Interrupt Control Register (AD0IC) 007416 UART1 Receive/ACK Interrupt Control Register (S1RIC) Intelligent I/O Interrupt Control Register 0 (IIO0IC)/ CAN Interrupt 3 Control Register (CAN3IC) 007616 Timer B1 Interrupt Control Register (TB1IC) 007716 Intelligent I/O Interrupt Control Register 2 (IIO2IC) 007816 Timer B3 Interrupt Control Register (TB3IC) 007916 Intelligent I/O Interrupt Control Register 4 (IIO4IC) 007A16 INT5 Interrupt Control Register (INT5IC) 007B16 007C16 INT3 Interrupt Control Register (INT3IC) 007D16 007E16 INT1 Interrupt Control Register (INT1IC) 007F16 008016 008116 008216 008316 008416 008516 008616 008716 008816 DMA1 Interrupt Control Register (DM1IC) 008916 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 008A16 DMA3 Interrupt Control Register (DM3IC) 008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 008C16 Timer A1 Interrupt Control Register (TA1IC)	007216	1 0 , ,	
007416 UART1 Receive/ACK Interrupt Control Register (S1RIC) Intelligent I/O Interrupt Control Register 0 (IIOOIC)/ CAN Interrupt 3 Control Register (CAN3IC) 007616 Timer B1 Interrupt Control Register (TB1IC) 007716 Intelligent I/O Interrupt Control Register 2 (IIO2IC) 007816 Timer B3 Interrupt Control Register (TB3IC) 007916 Intelligent I/O Interrupt Control Register 4 (IIO4IC) 007A16 INT5 Interrupt Control Register (INT5IC) 007B16 007C16 INT3 Interrupt Control Register (INT3IC) 007D16 007E16 INT1 Interrupt Control Register (INT1IC) 007F16 008016 008116 008216 008316 008416 008516 008616 008716 008816 DMA1 Interrupt Control Register (DM1IC) 008916 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 008C16 Timer A1 Interrupt Control Register (TA1IC)			
Intelligent I/O Interrupt Control Register 0 (IIOOIC)/ CAN Interrupt 3 Control Register (CAN3IC) 007616 Timer B1 Interrupt Control Register (TB1IC) 007716 Intelligent I/O Interrupt Control Register 2 (IIO2IC) 007816 Timer B3 Interrupt Control Register (TB3IC) 007916 Intelligent I/O Interrupt Control Register 4 (IIO4IC) 007A16 INT5 Interrupt Control Register (INT5IC) 017B16 007C16 INT3 Interrupt Control Register (INT3IC) 007D16 007E16 INT1 Interrupt Control Register (INT1IC) 007F16 008116 008216 008316 008416 008516 008616 008716 008816 DMA1 Interrupt Control Register (DM1IC) 008916 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 008C16 Timer A1 Interrupt Control Register (TA1IC) 008E16 Timer A3 Interrupt Control Register (S4TIC) 008E16 Timer A3 Interrupt Control Register (TA3IC)			
007516 CAN Interrupt 3 Control Register (CAN3IC) 007616 Timer B1 Interrupt Control Register (TB1IC) 007716 Intelligent I/O Interrupt Control Register 2 (IIO2IC) 007816 Timer B3 Interrupt Control Register 4 (IIO4IC) 007916 Intelligent I/O Interrupt Control Register 4 (IIO4IC) 007A16 INT5 Interrupt Control Register (INT5IC) 007B16 007C16 INT3 Interrupt Control Register (INT3IC) 007D16 007E16 INT1 Interrupt Control Register (INT1IC) 007F16 008016 00816 008416 008416 008516 008616 008716 008816 DMA1 Interrupt Control Register (DM1IC) 008916 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 008A16 DMA3 Interrupt Control Register (DM3IC) 008B16 UART3 Transmit /NACK Interrupt Control Register (S4TIC) 008D16 Timer A1 Interrupt Control Register (TA3IC)			
007616 Timer B1 Interrupt Control Register (TB1IC) 007716 Intelligent I/O Interrupt Control Register 2 (IIO2IC) 007816 Timer B3 Interrupt Control Register (TB3IC) 007916 Intelligent I/O Interrupt Control Register 4 (IIO4IC) 007A16 INT5 Interrupt Control Register (INT5IC) 007B16 007C16 INT3 Interrupt Control Register (INT3IC) 007D16 007E16 INT1 Interrupt Control Register (INT1IC) 007F16 008016 00816 008416 008416 008516 008616 008716 008816 DMA1 Interrupt Control Register (DM1IC) 008916 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 008A16 DMA3 Interrupt Control Register (DM3IC) 008B16 Timer A1 Interrupt Control Register (TA1IC) 008D16 UART4 Transmit /NACK Interrupt Control Register (S4TIC) 008E16 Timer A3 Interrupt Control Register (TA3IC)	007516	, , ,	
007716 Intelligent I/O Interrupt Control Register 2 (IIO2IC) 007816 Timer B3 Interrupt Control Register (TB3IC) 007916 Intelligent I/O Interrupt Control Register 4 (IIO4IC) 007A16 INT5 Interrupt Control Register (INT5IC) 91 007B16 007C16 INT3 Interrupt Control Register (INT3IC) 91 007D16 007E16 INT1 Interrupt Control Register (INT1IC) 91 007F16 008016 008016 00816 008316 008416 008516 008516 008616 008716 008816 DMA1 Interrupt Control Register (DM1IC) 008916 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 008A16 DMA3 Interrupt Control Register (DM3IC) 008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 90 008C16 Timer A1 Interrupt Control Register (TA1IC) 90 008E16 Timer A3 Interrupt Control Register (TA3IC)	007616		
007816 Timer B3 Interrupt Control Register (TB3IC) 007916 Intelligent I/O Interrupt Control Register 4 (IIO4IC) 007A16 INT5 Interrupt Control Register (INT5IC) 91 007B16 007C16 INT3 Interrupt Control Register (INT3IC) 91 007D16 007E16 INT1 Interrupt Control Register (INT1IC) 91 007F16 008016 008116 008216 008416 008516 008616 008716 008716 008716 008716 008716 008916 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 008A16 DMA3 Interrupt Control Register (DM3IC) 008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 90 008C16 Timer A1 Interrupt Control Register (TA1IC) 90 008E16 Timer A3 Interrupt Control Register (TA3IC) 90			
007916 Intelligent I/O Interrupt Control Register 4 (IIO4IC) 007A16 INT5 Interrupt Control Register (INT5IC) 91 007B16 007C16 INT3 Interrupt Control Register (INT3IC) 91 007D16 007E16 INT1 Interrupt Control Register (INT1IC) 91 007F16 008016 008116 90 008216 008316 008416 008516 008616 008616 008716 008816 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 008816 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 90 008C16 Timer A1 Interrupt Control Register (TA1IC) 90 008D16 UART4 Transmit /NACK Interrupt Control Register (S4TIC) 008E16 Timer A3 Interrupt Control Register (TA3IC) 008E16 Timer A3 Interrupt Control Register (TA3IC)			
007A16 INT5 Interrupt Control Register (INT5IC) 91 007B16 007C16 INT3 Interrupt Control Register (INT3IC) 91 007D16 007E16 INT1 Interrupt Control Register (INT1IC) 91 007F16 008016 008116 008216 008316 008416 008516 008516 008616 008716 008916 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 008A16 DMA3 Interrupt Control Register (DM3IC) 008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 008C16 Timer A1 Interrupt Control Register (TA1IC) 008D16 UART4 Transmit /NACK Interrupt Control Register (S4TIC) 008E16 Timer A3 Interrupt Control Register (TA3IC)			
007B16 007C16 INT3 Interrupt Control Register (INT3IC) 91 007D16 007E16 INT1 Interrupt Control Register (INT1IC) 91 007F16 008016 00816 00816 008216 008316 008416 008516 008616 008716 008816 DMA1 Interrupt Control Register (DM1IC) 008916 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 008A16 DMA3 Interrupt Control Register (DM3IC) 008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 008C16 Timer A1 Interrupt Control Register (TA1IC) 008D16 UART4 Transmit /NACK Interrupt Control Register (S4TIC) 008E16 Timer A3 Interrupt Control Register (TA3IC)	007A16		91
007D16 007E16 INT1 Interrupt Control Register (INT1IC) 007F16 008016 008116 008216 008316 008416 008516 008616 008716 008816 DMA1 Interrupt Control Register (DM1IC) 008916 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 008A16 DMA3 Interrupt Control Register (DM3IC) 008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 008C16 Timer A1 Interrupt Control Register (TA1IC) 008D16 UART4 Transmit /NACK Interrupt Control Register (S4TIC) 008E16 Timer A3 Interrupt Control Register (TA3IC)	007B16		
007D16 007E16 INT1 Interrupt Control Register (INT1IC) 007F16 008016 008116 008216 008316 008416 008516 008616 008716 008816 DMA1 Interrupt Control Register (DM1IC) 008916 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 008A16 DMA3 Interrupt Control Register (DM3IC) 008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 008C16 Timer A1 Interrupt Control Register (TA1IC) 008D16 UART4 Transmit /NACK Interrupt Control Register (S4TIC) 008E16 Timer A3 Interrupt Control Register (TA3IC)	007C16	INT3 Interrupt Control Register (INT3IC)	91
007F16 008016 008116 008216 008316 008416 008516 008616 008716 008816 DMA1 Interrupt Control Register (DM1IC) 008916 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 008A16 DMA3 Interrupt Control Register (DM3IC) 008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 008C16 Timer A1 Interrupt Control Register (TA1IC) 008D16 UART4 Transmit /NACK Interrupt Control Register (S4TIC) 008E16 Timer A3 Interrupt Control Register (TA3IC)	007D16		
007F16 008016 008116 008216 008316 008416 008516 008616 008716 008816 DMA1 Interrupt Control Register (DM1IC) 008916 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 008A16 DMA3 Interrupt Control Register (DM3IC) 008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 008C16 Timer A1 Interrupt Control Register (TA1IC) 008D16 UART4 Transmit /NACK Interrupt Control Register (S4TIC) 008E16 Timer A3 Interrupt Control Register (TA3IC)	007E16	INT1 Interrupt Control Register (INT1IC)	91
008016 008116 008216 008316 008416 008516 008616 008716 008816 DMA1 Interrupt Control Register (DM1IC) 008916 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 008A16 DMA3 Interrupt Control Register (DM3IC) 008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 008C16 Timer A1 Interrupt Control Register (TA1IC) 008D16 UART4 Transmit /NACK Interrupt Control Register (S4TIC) 008E16 Timer A3 Interrupt Control Register (TA3IC)	007E16		
008216 008316 008416 008516 008616 008716 008816 DMA1 Interrupt Control Register (DM1IC) 008916 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 008A16 DMA3 Interrupt Control Register (DM3IC) 008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 008C16 Timer A1 Interrupt Control Register (TA1IC) 008D16 UART4 Transmit /NACK Interrupt Control Register (S4TIC) 008E16 Timer A3 Interrupt Control Register (TA3IC)			
008316 008416 008516 008616 008716 008816 008916 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 008A16 DMA3 Interrupt Control Register (DM3IC) 008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 008C16 Timer A1 Interrupt Control Register (TA1IC) 008D16 UART4 Transmit /NACK Interrupt Control Register (S4TIC) 008E16 Timer A3 Interrupt Control Register (TA3IC)	008116		
008316 008416 008516 008616 008716 008816 008916 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 008A16 DMA3 Interrupt Control Register (DM3IC) 008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 008C16 Timer A1 Interrupt Control Register (TA1IC) 008D16 UART4 Transmit /NACK Interrupt Control Register (S4TIC) 008E16 Timer A3 Interrupt Control Register (TA3IC)	008216		
008516 008716 008816 DMA1 Interrupt Control Register (DM1IC) 008916 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 008A16 DMA3 Interrupt Control Register (DM3IC) 008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 008C16 Timer A1 Interrupt Control Register (TA1IC) 008D16 UART4 Transmit /NACK Interrupt Control Register (S4TIC) 008E16 Timer A3 Interrupt Control Register (TA3IC)	008316		
008616 008716 008816 DMA1 Interrupt Control Register (DM1IC) 008916 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 008A16 DMA3 Interrupt Control Register (DM3IC) 008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 008C16 Timer A1 Interrupt Control Register (TA1IC) 008D16 UART4 Transmit /NACK Interrupt Control Register (S4TIC) 008E16 Timer A3 Interrupt Control Register (TA3IC)	008416		
008616 008716 008816 DMA1 Interrupt Control Register (DM1IC) 008916 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 008A16 DMA3 Interrupt Control Register (DM3IC) 008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 008C16 Timer A1 Interrupt Control Register (TA1IC) 008D16 UART4 Transmit /NACK Interrupt Control Register (S4TIC) 008E16 Timer A3 Interrupt Control Register (TA3IC)			
008816 DMA1 Interrupt Control Register (DM1IC) 008916 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 008A16 DMA3 Interrupt Control Register (DM3IC) 008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 008C16 Timer A1 Interrupt Control Register (TA1IC) 008D16 UART4 Transmit /NACK Interrupt Control Register (S4TIC) 008E16 Timer A3 Interrupt Control Register (TA3IC)	008616		
008816 DMA1 Interrupt Control Register (DM1IC) 008916 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 008A16 DMA3 Interrupt Control Register (DM3IC) 008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 008C16 Timer A1 Interrupt Control Register (TA1IC) 008D16 UART4 Transmit /NACK Interrupt Control Register (S4TIC) 008E16 Timer A3 Interrupt Control Register (TA3IC)	008716		
008916 UART2 Transmit /NACK Interrupt Control Register (S2TIC) 008A16 DMA3 Interrupt Control Register (DM3IC) 008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 008C16 Timer A1 Interrupt Control Register (TA1IC) 008D16 UART4 Transmit /NACK Interrupt Control Register (S4TIC) 008E16 Timer A3 Interrupt Control Register (TA3IC)		DMA1 Interrupt Control Register (DM1IC)	
008A16 DMA3 Interrupt Control Register (DM3IC) 008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 008C16 Timer A1 Interrupt Control Register (TA1IC) 008D16 UART4 Transmit /NACK Interrupt Control Register (S4TIC) 008E16 Timer A3 Interrupt Control Register (TA3IC)	008916	, , , ,	
008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC) 008C16 Timer A1 Interrupt Control Register (TA1IC) 008D16 UART4 Transmit /NACK Interrupt Control Register (S4TIC) 008E16 Timer A3 Interrupt Control Register (TA3IC)		, , ,	
008C16 Timer A1 Interrupt Control Register (TA1IC) 008D16 UART4 Transmit /NACK Interrupt Control Register (S4TIC) 008E16 Timer A3 Interrupt Control Register (TA3IC)	-	, , , ,	
008D16 UART4 Transmit /NACK Interrupt Control Register (S4TIC) 008E16 Timer A3 Interrupt Control Register (TA3IC)	-	, , ,	90
008E16 Timer A3 Interrupt Control Register (TA3IC)			
		, , ,	
		, , , ,	

Address	5	Page
009016	UART0 Transmit /NACK Interrupt Control Register (S0TIC)	
0004.5	UART1 Bus Conflict Detect Interrupt Control Register (BCN1IC)/	
009116	UART4 Bus Conflict Detect Interrupt Control Register (BCN4IC)	
009216	UART1 Transmit/NACK Interrupt Control Register (S1TIC)	
009316	Key Input Interrupt Control Register (KUPIC)	
009416	Timer B0 Interrupt Control Register (TB0IC)	
	Intelligent I/O Interrupt Control Register 1 (IIO1IC)/	91
009516	CAN Interrupt 4 Control Register (CAN4IC)	
009616	Timer B2 Interrupt Control Register (TB2IC)	
009716	Intelligent I/O Interrupt Control Register 3 (IIO3IC)	
009816	Timer B4 Interrupt Control Register (TB4IC)	
009916	, , ,	
009A16	INT4 Interrupt Control Register (INT4IC)	91
009B16	. ,	
009C16	INT2 Interrupt Control Register (INT2IC)	91
009D16	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
009E16	INT0 Interrupt Control Register (INT0IC)	91
009F16	Exit Priority Control Register (RLVL)	92
00A016	Interrupt Request Register 0 (IIO0IR)	
00A116	Interrupt Request Register 1 (IIO1IR)	
00A216	Interrupt Request Register 2 (IIO2IR)	
00A216	Interrupt Request Register 3 (IIO3IR)	103
00A316	Interrupt Request Register 4 (IIO4IR)	
00A516	Interrupt Request Register 5 (IIO5IR)	
00A616		
00A716		
00A816		
00A916		
00AA16		
00AB ₁₆		
00AC16		
00AD16		
00AE16		
00AF16		
00B016	Interrupt Enable Register 0 (IIO0IE)	
00B116	Interrupt Enable Register 1 (IIO1IE)	
00B216	Interrupt Enable Register 2 (IIO2IE)	104
00B316	Interrupt Enable Register 3 (IIO3IE)	
00B416	Interrupt Enable Register 4 (IIO4IE)	
00B516		
00B516 00B616		
00B616		
00B616 00B716		
00B616 00B716 00B816		
00B616 00B716 00B816 00B916		
00B616 00B716 00B816 00B916 00BA16		
00B616 00B716 00B816 00B916 00BA16 00BB16		
00B616 00B716 00B816 00B916 00BA16 00BB16		

00C016 00C116 00C216 00C316 00C416 00C516	
00C216 00C316 00C416	
00C316 00C416	
00C416	
00C516	
1000010	
00C616	
00C716	
00C816	
00C916	
00CA16	
00CB16	
00CC16	
00CD16	
00CE16	
00CF16	
00D016	
00D116	
00D216	
00D316	
00D416	
00D516	
00D616	
00D716	
00D816	
00D916	
00DA16	
00DB16	
00DC16	
00DD16	
00DE16	
00DF16	
00E016	
00E116	
00E216	
00E316	
00E416	
00E516	
00E616	
00E716	
00E816	
00E916 SI/O Receive Buffer Register0 (G0RB)	247
	253
00EB16	
	246
	248
	246
	247

Address	Register	Page
00F016	Data Compare Register 00 (G0CMP0)	
00F116	Data Compare Register 01 (G0CMP1)	
00F216	Data Compare Register 02 (G0CMP2)	25.4
00F316	Data Compare Register 03 (G0CMP3)	254
00F416	Data Mask Register 00 (G0MSK0)	
00F516	Data Mask Register 01 (G0MSK1)	
00 F6 16	Communication Clock Select Register (CCS)	255
00F716		
00F816	D : 000 0 1 D : (0000000)	
00F916	Receive CRC Code Register 0 (G0RCRC)	
00FA16	T (100000 1 0 1 0 1 0 100000)	254
00FB16	Tramsmit CRC Code Register 0 (G0TCRC)	
00FC16	SI/O Extended Mode Register 0 (G0EMR)	249
00FD16	SI/O Extended Receive Control Register 0 (G0ERC)	251
00FE16	SI/O Special Communication Interrupt Detect Register 0 (G0IRF)	252
00FF16	SI/O Extended Transmit Control Register 0 (G0ETC)	250
010016	. ,	
010116		
010216		
010316		
010416		
010516		
010616		
010716		
010816		
010916		
010A16		
010B ₁₆		
010C16		
010D16		
010E16		
010F16		
011016		
011116		
011216		
011316		
011416		
011516		
011616		
011716		
011816		
011916		
011A16		
011B ₁₆		
0110		
011016		
011C ₁₆		
011C ₁₆ 011D ₁₆ 011E ₁₆		

Address	Register	Page	Address	Register	Page
012016	Register	- age	015016	register	1 age
012116			015116		
012216			015216		
012316			015316		
012416			015416		
012516			015516		
012616			015616		
012716			015716		
012816			015816		
012916	SI/O Receive Buffer Register 1 (G1RB)	247	015916		
012A16	Transmit Buffer/Receive Data Register 1 (G1TB/G1DR)	253	015A16		
012B16	Transmit Bandiff (Control Batta Hogister 1 (Control Bit)		015B16		
	Receive Input Register 1 (G1RI)	246	015C16		
	SI/O Communication Mode Register 1 (G1MR)	248	015D16		
012E16	Transmit Output Register 1 (G1TO)	246	015E16		
012F16	SI/O Communication Control Register 1 (G1CR)	247	015F16		
013016	Data Compare Register 10 (G1CMP0)		016016		
013116	Data Compare Register 11 (G1CMP1)		016116		
013116	Data Compare Register 12 (G1CMP2)		016216		
013316	Data Compare Register 13 (G1CMP3)	254	016316		
013416	Data Mask Register 10 (G1MSK0)		016416		
013516	Data Mask Register 11 (G1MSK1)		016516		
013616	Data Wask Register 11 (OTWSR1)		016616		
013016			016716		
013716			016816		
013916	Receive CRC Code Register1 (G1RCRC)		016916		
013A16		254	016A16		
013B16	Transmit CRC Code Register1 (G1TCRC)		016B16		
	SI/O Extended Mode Register 1 (G1EMR)	249	016C16		
		251	016D16		
	SI/O Special Communication Interrupt Detect Register 1 (G1IRF)	253	016E16		
013F16	SI/O Extended Transmit Control Register 1 (G1ETC)	250	016F16		
014016	One Extended Transmit Control Register 1 (CTE10)		017016		
014116			017116		
014216			017216		
014316			017316		
014416			017416		
014516			017516		
014616			017616		
014716			017716		
014816			017816		
014916			017916		
014A16			017A16		
014B16			017B16		
014C16			017C16		
014D16			017D16		
014E16			to		
014F16			02AF16		
U 171 10			02AI 10		

Address	Register	Page
02B016		
02B116		
02B216		
02B316		
02B416		
02B516		
02B616		
02B716		
02B816		
02B916		
02BA16		
02BB16		
02BC16		
02BD16		
02BE16		
02BF16		
02C016	Vo B Vo B	
02C116	X0 Register Y0 Register (X0R,Y0R)	
02C216	W. B	
02C316	X1 Register Y1 Register (X1R,Y1R)	
02C416		
02C516	X2 Register Y2 Register (X2R,Y2R)	
02C616		
02C716	X3 Register Y3 Register (X3R,Y3R)	
02C816		
02C916	X4 Register Y4 Register (X4R,Y4R)	
02CA16		
02CB16	X5 Register Y5 Register (X5R,Y5R)	
02CC16	Va D. J Va D. J (VaD. VaD.)	
02CD16	X6 Register Y6 Register (X6R,Y6R)	
02CE16	VZ Danieta VZ Danieta (VZD VZD)	
02CF16	X7 Register Y7 Register (X7R,Y7R)	0.44
02D016	VO De sister VO De sister (VOD VOD)	241
02D116	X8 Register Y8 Register (X8R,Y8R)	
02D216	VO Desistes VO Desistes (VOD VOD)	
02D316	X9 Register Y9 Register (X9R,Y9R)	
02D416	VAO Basistas VAO Basistas (VAOB VAOB)	
02D516	X10 Register Y10 Register (X10R,Y10R)	
02D616	VAA Dadda VAA Dadda (CAAD VAAD)	
02D716	X11 Register Y11 Register (X11R,Y11R)	
02D816	VAO De sister VAO De siste (VAOD VAOD)	
02D916	X12 Register Y12 Register (X12R,Y12R)	
02DA16	VAO De sister VAO De siste (CASD VAOD)	
02DB16	X13 Register Y13 Register (X13R,Y13R)	
02DC16	VAA Da siatas VAA Da siata (0/445)/(45)	
02DD16	X14 Register Y14 Register (X14R,Y14R)	
02DE16	VAE Donietes VAE Donietes (VAED VAED)	
02DF16	X15 Register Y15 Register (X15R,Y15R)	

Address	Register	Page
02E016	X/Y Control Register (XYC)	241
02E116		
02E216		
02E316		
02E416	UART1 Special Mode Register 4 (U1SMR4)	175
02E516	UART1 Special Mode Register 3 (U1SMR3)	174
02E616	UART1 Special Mode Register 2 (U1SMR2)	173
02E716	UART1 Special Mode Register (U1SMR)	172
02E816	UART1 Transmit/Receive Mode Register (U1MR)	470
02E916	UART1 Bit Rate Register (U1BRG)	170
02EA ₁₆		
02EB16	UART1 Transmit Buffer Register (U1TB)	169
02EC16	UART1 Transmit/Receive Control Register 0 (U1C0)	171
02ED16	UART1 Transmit/Receive Control Register 1 (U1C1)	172
02EE16	HADTA Deceive Duffer Decision (HADD)	400
02EF16	UART1 Receive Buffer Register (U1RB)	169
02F016		
02F116		
02F216		
02F316		
02F416	UART4 Special Mode Register 4 (U4SMR4)	175
02F516	UART4 Special Mode Register 3 (U4SMR3)	174
02F616	UART4 Special Mode Register 2 (U4SMR2)	173
02F7 ₁₆	UART4 Special Mode Register (U4SMR)	
02F816	UART4 Transmit/Receive Mode Register (U4MR)	
02F916	UART4 Bit Rate Register (U4BRG)	170
02FA ₁₆		
02FB ₁₆	UART4 Transmit Buffer Register (U4TB)	169
02FC16	UART4 Transmit/Receive Control Register 0 (U4C0)	171
02FD16	UART4 Transmit/Receive Control Register 1 (U4C1)	172
02FE16	UART4 Receive Buffer Register (U4RB)	169
02FF16	<u> </u>	103
030016	Timer B3,B4,B5 Count Start Flag (TBSR)	149
030116		
030216	Timer A1-1 Register (TA11)	
030316	Timer ATT Negister (TATT)	
030416	Timer A2-1 Register (TA21)	162
030516	Timer A2-1 Register (TA21)	102
030616	Timer A4.1 Pegister (TA44)	
030716	Timer A4-1 Register (TA41)	
030816	Three-Phase PWM Control Register 0 (INVC0)	159
030916	Three-Phase PWM Control Register 1 (INVC1)	160
030A16	Three-Phase Output Buffer Register 0 (IDB0)	
030B16	Three-Phase Output Buffer Register 1 (IDB1)	
030C16	Dead Time Timer (DTT)	161
030D16	Timer B2 Interrupt Generating Frequency Set Counter (ICTB2)	162
030E16		
030F16		

	Register	Page
031016	Times B2 Decistes (TD2)	
031116	Timer B3 Register (TB3)	
031216	Time and DA De minter (TDA)	4.47
031316	Timer B4 Register (TB4)	147
031416	Time on DE De ciatan (TDE)	
031516	Timer B5 Register (TB5)	
031616		
031716		
031816		
031916		
031A16		
031B ₁₆	Timer B3 Mode Register (TB3MR)	
031C ₁₆	Timer B4 Mode Register (TB4MR)	148
031D16	Timer B5 Mode Register (TB5MR)	
031E16		
031F16	External Interrupt Request Source Select Register (IFSR)	99
032016		
032116		
032216		
032316		
032416	UART3 Special Mode Register 4 (U3SMR4)	175
	UART3 Special Mode Register 3 (U3SMR3)	174
032616	UART3 Special Mode Register 2 (U3SMR2)	173
	UART3 Special Mode Register (U3SMR)	172
	UART3 Transmit/Receive Mode Register (U3MR)	
	UART3 Bit Rate Register (U3BRG)	170
032A16		
032B16	UART3 Transmit Buffer Register (U3TB)	169
032C16	UART3 Transmit/Receive Control Register 0 (U3C0)	171
	UART3 Transmit/Receive Control Register 1 (U3C1)	172
032E16		
032F16	UART3 Receive Buffer Register (U3RB)	169
033016		
033116		
033216		
033316		
	UART2 Special Mode Register 4 (U2SMR4)	175
	UART2 Special Mode Register 3 (U2SMR3)	174
	UART2 Special Mode Register 2 (U2SMR2)	173
	UART2 Special Mode Register (U2SMR)	172
	UART2 Transmit/Receive Mode Register (U2MR)	
	UART2 Bit Rate Register (U2BRG)	170
033A16		
	LIART2 Transmit Buffer Register (LI2TR)	
	UART2 Transmit/Receive Control Register 1 (U2C1)	171 172
033E16		
	UART2 Receive Buffer Register (U2RB)	169

Address	Register	Page
034016	Count Start Flag (TABSR)	132
034116	Clock Prescaler Reset Flag (CPSRF)	62
034216	One-Shot Start Flag (ONSF)	133
034316	Trigger Select Register (TRGSR)	134
034416	Up/Down Flag (UDF)	133
034516	1 0 ()	
034616		
034716	Timer A0 Register (TA0)	
034816		
034916	Timer A1 Register (TA1)	
034A16		
034B ₁₆	Timer A2 Register (TA2)	131
034C16		
034D16	Timer A3 Register (TA3)	
034E ₁₆		
034F16	Timer A4 Register (TA4)	
035016		
035116	Timer B0 Register (TB0)	
035216		
035316	Timer B1 Register (TB1)	147
035416		
	Timer B2 Register (TB2)	
035516	Timer AO Made Degister (TAOMD)	
035616	Timer A0 Mode Register (TA0MR)	
035716	Timer A1 Mode Register (TA1MR)	122
035816	Timer A2 Mode Register (TA2MR)	132
035916	Timer A3 Mode Register (TA3MR)	
035A16	Timer A4 Mode Register (TA4MR)	
035B ₁₆	Timer B0 Mode Register (TB0MR)	4.40
035C16	Timer B1 Mode Register (TB1MR)	148
035D16	Timer B2 Mode Register (TB2MR)	
035E16	Timer B2 Special Mode Register (TB2SC)	162
035F16	Count Source Prescaler Register (TCSPR)	62
036016		
036116		
036216		
036316		
036416	UART0 Special Mode Register 4 (U0SMR4)	175
036516	UART0 Special Mode Register 3 (U0SMR3)	174
036616	UART0 Special Mode Register 2 (U0SMR2)	173
036716	UART0 Special Mode Register (U0SMR)	172
036816	UART0 Transmit/Receive Mode Register (U0MR)	
036916	UART0 Bit Rate Register (U0BRG)	
036A16	LIARTO Transmit Buffor Posictor (LIATE)	169
036B16	UART0 Transmit Buffer Register (U0TB)	
036C16	UART0 Transmit/Receive Control Register 0 (U0C0)	
036D16	UART0 Transmit/Receive Control Register 1 (U0C1)	172
036E16	LIADTO Deceive Duffer Decistes (LIADD)	100
036F16	UART0 Receive Buffer Register (U0RB)	169

Address	Register	Page	Address	
037016	1109.0101	19	03A016	
037116		-	03A116	
037216		-	03A216	
037316		-	03A316	
037416		-	03A416	
037516		_	03A516	
037616		-	03A616	
037716		-	03A716	Function
037816	DMA0 Request Source Select Register (DM0SL)		03A816	Tunction
037916	DMA1 Request Source Select Register (DM1SL)	_	03A916	
037A16	DMA2 Request Source Select Register (DM2SL)	111	03AA16	
037B16	DMA3 Request Source Select Register (DM3SL)		03AB16	
037C16	DIVIAS Request Source Select Register (DIVISSE)		03AC16	
037D16	CRC Data Register (CRCD)	239	03AC16	Function 9
037E16	CRC Input Register (CRCIN)	239	03AD16	Function
	CRC input Register (CRCIN)			Franctica (
037F16			03AF16	Function
038016	A/D0 Register0 (AD00)		03B016	Function
038116			03B116	Function
038216	A/D0 Register1 (AD01)		03B216	Function
038316			03B316	Function :
038416	A/D0 Register2 (AD02)		03B416	Function
038516	, ,		03B516	Function
038616	A/D0 Register3 (AD03)		03B616	Function
038716	, ,	226	03B716	Function :
038816	A/D0 Register4 (AD04)		03B816	
038916	, ,		03B916	
038A16	A/D0 Register5 (AD05)		03BA16	
038B16	, ,	-	03BB16	
038C16	A/D0 Register6 (AD06)		03BC16	
038D16	,	-	03BD16	
038E16	A/D0 Register7 (AD07)		03BE16	
038F16			03BF16	
039016			03C016	Port P6 R
039116			03C116	Port P7 R
039216			03C216	Port P6 D
039316				Port P7 D
039416	A/D0 Control Register 2 (AD0CON2)	224	03C416	Port P8 R
039516	A/D0 Control Register 3 (AD0CON3)	225	03C516	Port P9 R
039616	A/D0 Control Register 0 (AD0CON0)	222	03C616	Port P8 D
039716	A/D0 Control Register 1 (AD0CON1)	223	03C716	Port P9 D
039816	D/A Register 0 (DA0)	238	03C816	Port P10
039916			03C916	
039A16	D/A Register 1 (DA1)	238	03CA16	Port P10
039B16			03CB16	
039C16	D/A Control Register (DACON)	238	03CC16	
039D16			03CD16	
039E16			03CE16	
039F16			03CF16	

Address	Register	Page
03A016		
03A116		
03A216		
03A316		
03A416		
03A516		
03A616		
03A716	Function Select Register D1 (PSD1)	274
03A816	C , ,	
03A916		
03AA16		
03AB ₁₆		
03AC16		
	Function Select Register C3 (PSC3)	274
03AE16	2 2 2 2 2 2 3 3 3 3 3 4 3 4 3 5 3 7	
03AF16	Function Select Register C (PSC)	273
03B016	Function Select Register A0 (PS0)	
03B116	Function Select Register A1 (PS1)	269
03B216	Function Select Register B0 (PSL0)	
03B316	Function Select Register B1 (PSL1)	271
03B416	Function Select Register A2 (PS2)	
03B516	Function Select Register A3 (PS3)	270
03B516	Function Select Register A3 (133)	
03B716	Function Select Register B3 (PSL3)	272
03B716	Tunction Select Register B3 (1 SE3)	
03B016		
03BA16		
03BB16		
03BC16		
03BD16		
-		
03BE16		
03BF16	Port D6 Pogistor (D6)	
03C016	3 ()	268
03C116	Port P6 Direction Register (RD6)	
03C216	3 ()	267
03C316	3 ()	
03C416	Port P8 Register (P8)	268
03C516	Port P9 Register (P9)	
03C616	Port P8 Direction Register (PD8)	267
03C716	Port P9 Direction Register (PD9)	
03C816	Port P10 Register (P10)	268
03C916		
03CA16	Port P10 Direction Register (PD10)	267
03CB16		
03CC16		
03CD16		
03CE16		
03CF16		

Address	Register	Page
03D016		
03D116		
03D216		
03D316		
03D416		
03D516		
03D616		
03D716		
03D816		
03D916		
03DA16	Pull-Up Control Register 2 (PUR2)	275
03DB16	Pull-Up Control Register 3 (PUR3)	276
03DC16		
03DD16		
03DE16		
03DF16		
03E016	Port P14 Register (P0)	
03E116	Port P14 Register (P1)	268
03E216	Port P14 Direction Register (PD0)	
03E316	Port P14 Direction Register (PD1)	267
03E416	Port P14 Register (P2)	
03E516	Port P14 Register (P3)	268
03E616	Port P14 Direction Register (PD2)	
03E716	Port P14 Direction Register (PD3)	267
03E816	Port P14 Register (P4)	
03E916	Port P14 Register (P5)	268
03EA ₁₆	Port P14 Direction Register (PD4)	
03EB ₁₆	Port P14 Direction Register (PD5)	267
03EC ₁₆		
03ED16		
03EE16		
03EF16		
03F016	Pull-up Control Register 0 (PUR0)	
03F1 ₁₆	Pull-up Control Register 1 (PUR1)	275
03F216		
03F316		
03F416		
03F516		
03F616		
03F716		
03F816		
03F916		
03FA16		
03FB16		
03FC16		
03FD16		
03FE16		
03FF16	Port Control Register (PCR)	276

M32C/80 Group

SINGLE-CHIP 16/32-BIT CMOS MICROCOMPUTER

1. Overview

The M32C/80 Group microcomputer is a single-chip control unit that utilizes high-performance silicon gate CMOS technology with the M32C/80 series CPU core. The M32C/80 Group is available in 100-pin plastic molded LQFP/QFP package.

With a 16-Mbyte address space, this microcomputer combines advanced instruction manipulation capabilities to process complex instructions by less bytes and execute instructions at higher speed.

It incorporates a multiplier and DMAC adequate for office automation, communication devices and industrial equipments and other high-speed processing applications.

The M32C/80 Group is ROMless device. Use the M32C/80 Group in microprocessor mode after reset.

1.1 Applications

Audio, cameras, office equipment, communications equipment, portable equipment, etc.

1.2 Performance Overview

Table 1.1 lists performance overview of the M32C/80 Group.

Table 1.1 M32C/80 Group Performance

	Item	Performance
CPU	Basic Instructions	108 instructions
	Minimum Instruction Execution Time	31.3 ns (f(BCLK)=32 MHz, Vcc1=4.2 to 5.5 V)
		41.7 ns (f(BCLK)=24 MHz, Vcc1=3.0 to 5.5 V)
	Operating Mode	Single-chip mode, Memory expansion mode, Microprocessor mode
	Memory Space	16 Mbytes
	Memory Capacity	See Table 1.2
Peripheral	I/O Port	47 I/O pins (when using 16-bit bus) and 1 input pin
function	Multifunction Timer	Timer A: 16 bits x 5 channels, Timer B: 16 bits x 6 channels
		Three-phase motor control circuit
	Intelligent I/O Communication Function	2 channels
	Serial I/O	5 channels
		Clock synchronous serial I/O, Clock asynchronous serial I/O, IEBus ⁽¹⁾ , I ² C Bus ⁽²⁾
	A/D Converter	10-bit A/D converter: 1 circuit, 10 channels
	D/A Converter	8 bits x 2 channels
	DMAC	4 channels
	DMAC II	Can be activated by all peripheral function interrupt sources
		Immediate transfer, operation and chain transfer function
	CRC Calculation Circuit	CRC-CCITT
	X/Y Converter	16 bits x 16 bits
	Watchdog Timer	15 bits x 1 channel (with prescaler)
	Interrupt	34 internal sources and 8 external sources, 5 software sources
		Interrupt priority level: 7
	Clock Generation Circuit	4 circuits
		Main Clock oscillation circuit (*), Sub clock oscillation circuit (*),
		On-chip oscillator, PLL frequency synthesizer
		(*)Equipped with a built-in feedback resistor
	Oscillation Stop Detect Function	Main clock oscillation stop detect circuit
Electrical	Supply Voltage	VCC1=4.2 to 5.5 V, VCC2=3.0 to VCC1 (f(BCLK)=32 MHz)
Charact-		VCC1=3.0 to 5.5 V, VCC2=3.0 to VCC1 (f(BCLK)=24 MHz)
eristics	Power Consumption	22 mA (VCC1=VCC2=5 V, f(BCLK)=32 MHz)
		17 mA (VCC1=VCC2=3.3 V, f(BCLK)=24 MHz)
		10 μA (Vcc1=Vcc2=3.3 V, f(BCLK)=32 kHz, in wait mode)
	AmbientTemperature	-20 to 85°C, -40 to 85°C(optional)
Package		100-pin plastic molded LQFP/QFP

NOTES:

- 1. IEBus is a trademark of NEC Electronics Corporation.
- 2. I²C bus is a trademark of Koninklijke Philips Electronics N. V.

All options are on a request basis.

1.3 Block Diagram

Figure 1.1 shows a block diagram of the M32C/80 Group microcomputer.

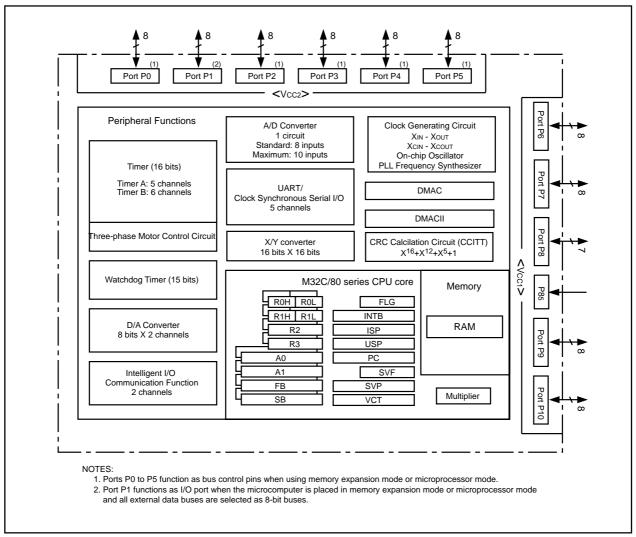


Figure 1.1 M32C/80 Group Block Diagram

1.4 Product Information

Table 1.2 lists the product information. Figure 1.2 shows the product numbering system.

Table 1.2 M32C/80 Group

As of November, 2005

Type Number	Package Type	ROM Capacity	RAM Capacity	Remarks
M30800SAGP	PLQP0100KB-A (100P6Q-A)		- 8к	ROMless
M30800SAFP	PRQP0100JB-A (100P6S-A)	_		ROMess
M30800SAGP-BL	PLQP0100KB-A (100P6Q-A)	_		ROMless with
M30800SAFP-BL	PRQP0100JB-A (100P6S-A)			on-chip boot loader

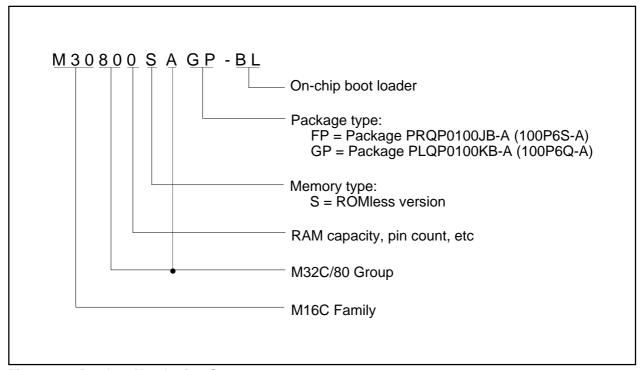


Figure 1.2 Product Numbering System

1.5 Pin Assignment

Figures 1.3 and 1.4 show pin assignments (top view).

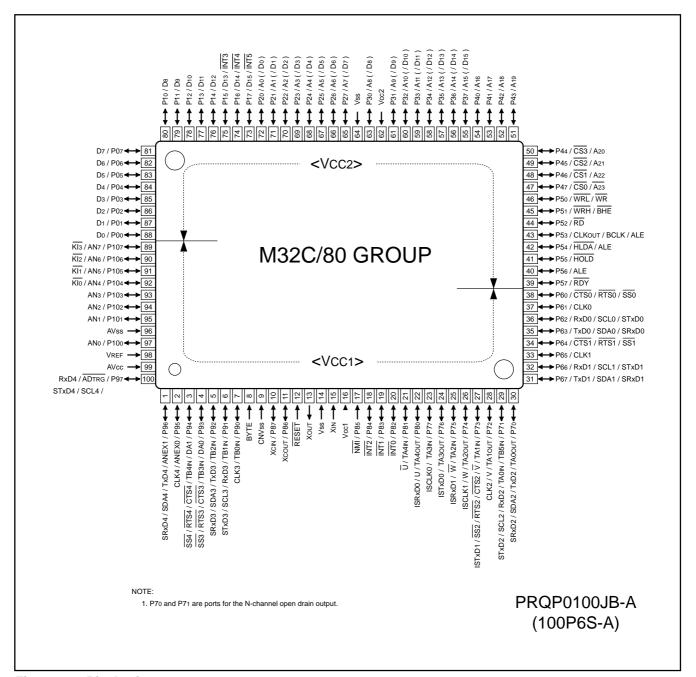


Figure 1.3 Pin Assignment

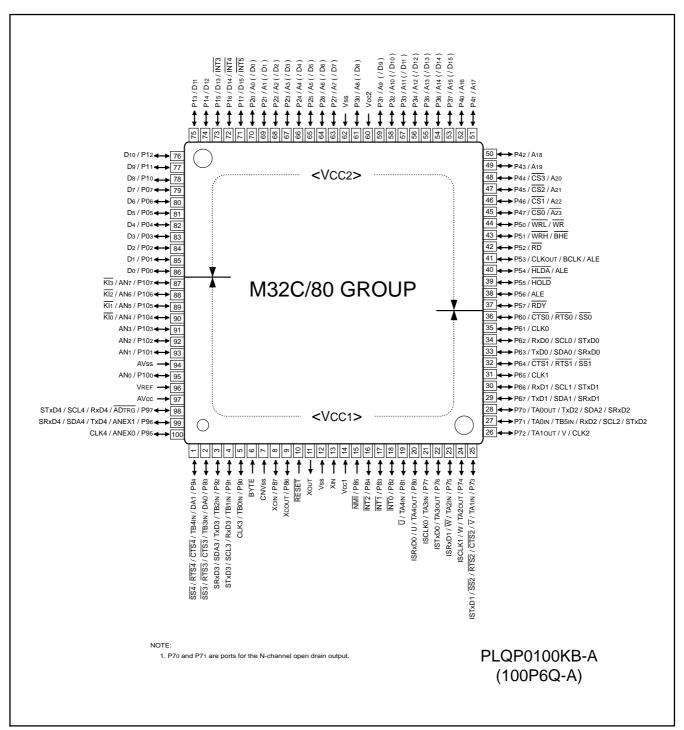


Figure 1.4 Pin Assignment

Table 1.3 Pin Characteristics

	kage No	Control	Port	Interrupt		UART	Analog	Bus control	Intelligent I/O
FP	GP	pins		pins	pins	pins	pins	pins	pins
1	99		P96			TxD4/SDA4/SRxD4	ANEX1		
2	100		P95			CLK4	ANEX0		
3	1		P94		TB4IN	CTS4/RTS4/SS4	DA1		
4	2		P93		TB3iN	CTS3/RTS3/SS3	DA0		
5	3		P92		TB2IN	TxD3/SDA3/SRxD3			
6	4		P91		TB1in	RxD3/SCL3/STxD3			
7	5		P90		TB0in	CLK3			
8	6	BYTE							
9	7	CNVss							
10	8	Xcin	P87						
11	9	Хсоит	P86						
12	10	RESET							
13	11	Хоит							
14	12	Vss							
15	13	XIN							
16	14	Vcc1							
17	15		P85	NMI					
18	16		P84	INT2					
19	17		P83	INT1					
20	18		P82	INTO					
<u>20 </u>	19		P81	IIII	TA4ın/Ū				
22	20		P80		TA4out/U				ISRxD0
23	21		P77		TA3in				ISCLK0
<u>23 </u>	22		P76		TA3out				ISTxD0
	23		P75		TA3001				ISRxD1
25	24		P74		TA2III/W				ISCLK1
26			P73		TA1IN/V	CTS2/RTS2/SS2			ISTxD1
27	25		P72		TA1IN/V	CLK2			ISTADI
28	26		P71		TB5in/TA0in				
29	27		P70		TA0out	RxD2/SCL2/STxD2			
30	28		P67		140001	TxD2/SDA2/SRxD2			
31	29					TxD1/SDA1/SRxD1			
32	30		P66			RxD1/SCL1/STxD1			
33	31		P65			CLK1			
34	32		P64			CTS1/RTS1/SS1			
35	33		P63			TxD0/SDA0/SRxD0			
36	34		P62			RxD0/SCL0/STxD0			
37	35		P61			CLK0			
38	36		P60			CTS0/RTS0/SS0			
39	37		P57					RDY	
40	38		P56					ALE	
41	39		P5 ₅					HOLD	
42	40		P54					HLDA/ALE	
43	41		P53					CLKout/BCLK/ALE	
44	42		P52					RD	
45	43		P51					WRH/BHE	
46	44		P50					WRL/WR	
47	45		P47					CS0/A23	
48	46		P46					CS1/A22	
49	47		P45					CS2/A21	
50	48		P44					CS3 /A ₂₀	

Table 1.3 Pin Characteristics (Continued)

Pack pin	age No	Control	Port	Interrupt	Timer	UART	Analog	Bus control	Intelligent I/O
FP	GP	pins		pins	pins	pins	pins	pins	pins
51	49		P43					A19	
52	50		P42					A18	
53	51		P41					A17	
54	52		P40					A16	
55	53		P37					A15(/D15)	
56	54		P36					A14(/D14)	
57	55		P35					A13(/D13)	
58	56		P34					A12(/D12)	
59	57		P33					A11(/D11)	
60	58		P32					A10(/D10)	
61	59		P31					A9(/D9)	
62	60	VCC2						,	
63	61		P30					A8(/D8)	
64	62	Vss							
65	63		P27					A7(/D7)	
66	64		P26					A6(/D6)	
67	65		P25					A5(/D5)	
68	66		P24					A4(/D4)	
69	67		P23					A3(/D3)	
70	68		P22					A2(/D2)	
71	69		P21					A1(/D1)	
72	70		P20					Ao(/Do)	
73	71		P17	ĪNT5				D15	
74	72		P16	INT4				D14	
75	73		P15	INT3				D13	
76	74		P14	11113				D12	
77	75		P13					D11	
78	76		P12					D10	
79	77		P11					D9	
80	78		P10					D8	
81	79		P07					D7	
82	80		P06					D ₆	
83	81		P05					D5	
84	82		P04					D4	
85	83		P03					D3	
86	84		P02					D ₂	
87	85		P01					D1	
88	86		P00					D ₀	
	87		P107	KI3			AN ₇	50	
89			P106	KI3 KI2			AN ₆		
90	88		P105	KI2 KI1					
91	89		P105				AN ₅		
92	90		P104	KI ₀			AN ₄		
93	91		P103				AN ₃		
94	92		P102				AN ₂		
95	93	AVss	F 101				AN ₁		
96	94	AV 33	D10-				A N I .		
97	95		P10 ₀				AN ₀		
98	96	۸\/۵۵					VREF		
99	97	AVcc	DC			D D (() () ()	100		
100	98		P97			RxD4/SCL4/STxD4	ADTRG		

1.6 Pin Description

Table 1.4 Pin Description

Signal name	Pin name	I/O type	Supply voltage	Description		
Power supply	VCC1, VCC2	CC2 I -		Apply 3.0 to 5.5 V to both Vcc1 and Vcc2 pins. Apply 0 V to the		
	Vss			Vss pin. Vcc₁ ≥ Vcc₂ ⁽¹⁾		
Analog power	AVcc	I	VCC1	Supplies power for the A/D converter. Connect the AVcc pin to		
supply input	AVss			Vcc1 and the AVss pin to Vss		
Reset input	RESET	I	VCC1	The microcomputer is in a reset state when "L" is applied to the		
				RESET pin		
CNVss	CNVss	I	VCC1	Connect this pin to VCC1		
External data	BYTE	I	VCC1	Switches the data bus in external memory space 3. The data		
bus width				bus is 16 bits long when the this pin is held "L" and 8 bits long		
select input				when the this pin is held "H". Set it to either one.		
Bus control	Do to D7	I/O	VCC2	Inputs and outputs data (D ₀ to D ₇) while accessing an external		
pins				memory space with separate bus		
	D8 to D15	I/O	VCC2	Inputs and outputs data (D8 to D15) while accessing an external		
				memory space with 16-bit separate bus		
	Ao to A22	0	VCC2	Outputs address bits (A0 to A22)		
	A23	0	VCC2	Outputs inversed address bit A23		
	Ao/Do to	I/O	VCC2	Inputs and outputs data (D ₀ to D ₇) and outputs 8 low-order		
	A7/D7			address bits (Ao to A7) by time-sharing while accessing an		
				external memory space with multiplexed bus		
	A8/D8 to	I/O	VCC2	Inputs and outputs data (D8 to D15) and outputs 8 middle-order		
	A15/D15			address bits (A8 to A15) by time-sharing while accessing an		
				external memory space with multiplexed bus		
	CS0 to CS3	0	VCC2	Output CS0 to CS3 that are chip-select signals specifying an external space		
	WRL/WR	0	VCC2	Outputs WRL, WRH, (WR, BHE) and RD signals. WRL and WRH		
	WRH/BHE			can be switched with WR and BHE by program		
	RD			■ WRL, WRH and RD are selected:		
				If external data bus is 16 bits wide, data is writtenn to an even		
				address when WRL is held "L".		
				Data is written to an odd address when WRH is held "L".		
				Data is read when \overline{RD} is held "L".		
				■ WR, BHE and RD are selected		
				Data is written to external memory space when WR is held "L".		
				Data is read when \overline{RD} is held "L".		
				An odd address is accessed when BHE is held "L".		
				Select WR, BHE and RD for an external 8-bit data bus		
	ALE	0	VCC2	ALE is a signal latching address		
	HOLD	I	VCC2	The microcomputer is placed in a hold state while the HOLD pin		
				is held "L"		
	HLDA	0	VCC2	Outputs an "L" siganl while the microcomputer is placed in a hold state		
	RDY	I	VCC2	Bus is placed in a wait state while the RDY pin is held "L"		

I: Input O: Output I/O: Input and output NOTE:

^{1.} In this manual, hereafter, VCC refers to VCC1 unless otherwise noted.

Table 1.4 Pin Description (Continued)

Signal name	Pin name	I/O type	Supply voltage	Description
Main clock input	XIN	I	VCC1	I/O pins for the main clock generation circuit. Connect a ceramic
Main clock	Xout	0	VCC1	resonator or crystal oscillator between XIN and XOUT. To apply
output				external clock, input the clock from XIN and leave XOUT open
Sub clock input	XCIN	I	VCC1	I/O pins for a sub clock oscillation circuit. Connect a crystal
Sub clock	Хсоит	0	VCC1	oscillator between XCIN and XCOUT. To apply external clock,
output				input the clock from XCIN and leave XCOUT open
BCLK output	BCLK	0	VCC2	Outputs BCLK signal
Clock output	CLKout	0	VCC2	Outputs clock having thesame frequency as fc, f8, or f32
INT interrupt	INT0 to INT2	I	VCC1	Input pins for the INT interrupt
input	INT3 to INT5		VCC2	
NMI interrupt input	NMI	I	VCC1	Input pin for the NMI interrupt
Key input interrupt	KI ₀ to KI ₃	I	VCC1	Input pins for the key input interrupt
Timer A	TA0out to	I/O	VCC1	I/O pins for the timer A0 to A4
	TA4out			(TA0out is a pin for the N-channel open drain output.)
	TA0IN to	I	VCC1	Input pins for the timer A0 to A4
	TA4IN			
Timer B	TB0IN to	I	VCC1	Input pins for the timer B0 to B5
	TB5IN			
Three-phase motor	U, Ū, V, Ū,	0	VCC1	output pins for the three-phase motor control timer
control output	W, W			
Serial I/O	CTS0 to	I	VCC1	Input pins for data transmission control
	CTS4			
	RTS0 to	0	VCC1	Output pins for data reception control
	RTS4			
	CLK0 to	I/O	VCC1	Inputs and outputs the transfer clock
	CLK4			
	RxD0 to	I	VCC1	Inputs serial data
	RxD4			
	TxD0 to	0	VCC1	Outputs serial data (TxD2 is a pin for the N-channel open drain
	TxD4			output.)
I ² C mode	SDA0 to	I/O	VCC1	Inputs and outputs serial data (SDA2 is a pin for for the N-
	SDA4			channel open drain output.)
	SCL0 to	I/O	VCC1	Inputs and outputs the transfer clock (SCL2 is a pin for the N-
	SCL4			channel open drain output.)
Serial I/O	STxD0 to	I	VCC1	Outputs serial data when slave mode is selected (SDA2 is a pin
special function	STxD4			for the N-channel open drain output.)
	SRxD0 to	I	VCC1	Inputs serial data when slave mode is selected
	SRxD4			
	SS0 to SS4	I	VCC1	Input pins to control serial I/O special function
l· Innut O· Ou	1/0-	Input and	14	,

I: Input O: Output I/O: Input and output

Table 1.5 Pin Description (Continued)

Signal name	Pin name	I/O type	Supply voltage	Description
Reference voltage input	VREF	I	-	Applies reference voltage for the A/D converter and D/A converter
A/D converter	ANo to AN7	I	VCC1	Analog input pins for the A/D converter
	ADTRG	ı	VCC1	Input pin for an external A/D trigger
	ANEX0	I/O	VCC1	Extended analog input pin for the A/D converter and output pin in
				external op-amp connection mode
	ANEX1	I	VCC1	Extended analog input pin for the A/D converter
D/A converter	DA0, DA1	0	VCC1	Output pin for the D/A converter
Intelligent I/O	ISCLK0	I/O	VCC1	Inputs and outputs clock for the intelligent I/O communication
communication	ISCLK1			fucntion
function	ISTxD0	0	VCC1	Outputs data for the intelligent I/O communication fucntion
	ISTxD1			
	ISRxD0	I	VCC1	Inputs data for the intelligent I/O communication fucntion
	ISRxD1			
I/O port	P00 to P07 ⁽¹⁾	I/O	VCC2	I/O ports fro CMOS. Each port can be programmed for nput or
	P10 to P17 ⁽²⁾			output under the control of the direction register. An input port
	P20 to P27 ⁽¹⁾			can be set, by program, for a pull-up resistor available or for no
	P30 to P37 ⁽¹⁾			pull-up resistor available in 4-bit units
	P40 to P47 ⁽¹⁾			
	P50 to P57 ⁽¹⁾			
	P60 to P67	I/O	VCC1	I/O ports having equivalent functions to P0
	P70 to P77			(P70 and P71 are ports for the N-channel open drain output.)
	P90 to P97			
	P100 to P107			
	P80 to P84,	I/O	VCC1	I/O ports having equivalent functions to P0
	P86, P87			
	P85	I	VCC1	Shares a pin with NMI. NMI input state can be got by reading P85

I: Input O: Output I/O: Input and output NOTES:

^{1.} Ports P0 to P5 function as bus control pins when using memory expansion mode or microprocessor mode. They cannot be used as I/O ports.

^{2.} Port P1 functions as I/O port when the microcomputer is placed in memory expansion mode or microprocessor mode and all external data buses are selected as 8-bit buses.

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU registers.

The register bank is comprised of 8 registers (R0, R1, R2, R3, A0, A1, SB and FB) out of 28 CPU registers. Two sets of register banks are provided.

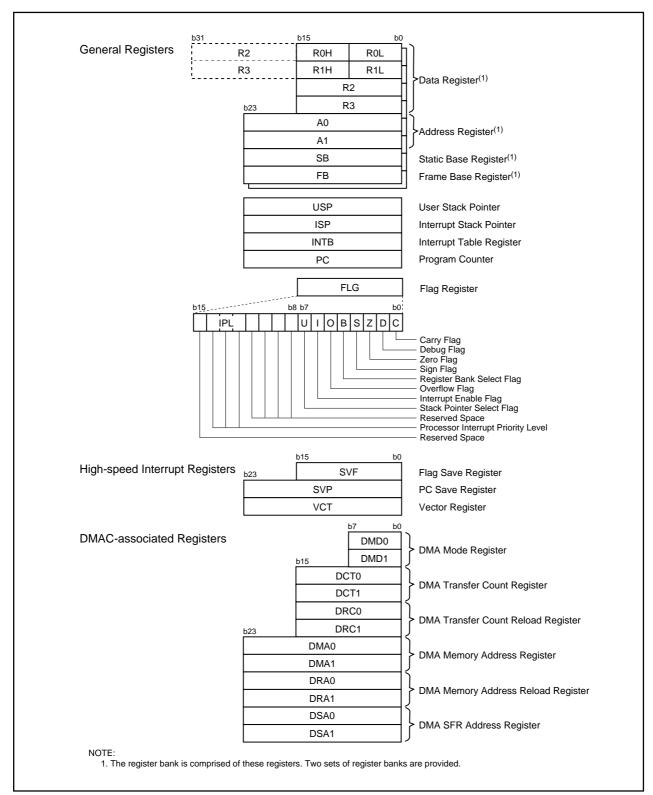


Figure 2.1 CPU Register

2.1 General Registers

2.1.1 Data Registers (R0, R1, R2 and R3)

R0, R1, R2 and R3 are 16-bit registers for transfer, arithmetic and logic operations. R0 and R1 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R0 can be combined with R2 to be used as a 32-bit data register (R2R0). The same applies to R1 and R3.

2.1.2 Address Registers (A0 and A1)

A0 and A1 are 24-bit registers for A0-/A1-indirect addressing, A0-/A1-relative addressing, transfer, arithmetic and logic operations.

2.1.3 Static Base Register (SB)

SB is a 24-bit register for SB-relative addressing.

2.1.4 Frame Base Register (FB)

FB is a 24-bit register for FB-relative addressing.

2.1.5 Program Counter (PC)

PC, 24 bits wide, indicates the address of an instruction to be executed.

2.1.6 Interrupt Table Register (INTB)

INTB is a 24-bit register indicating the starting address of an relocatable interrupt vector table.

2.1.7 User Stack Pointer (USP), Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP and ISP, are 24 bits wide each. The U flag is used to switch between USP and ISP. Refer to **2.1.8 Flag Register (FLG)** for details on the U flag. Set USP and ISP to even addresses to execute an interrupt sequence efficiently.

2.1.8 Flag Register (FLG)

FLG is a 16-bit register indicating a CPU state.

2.1.8.1 Carry Flag (C)

The C flag indicates whether carry or borrow has occurred after executing an instruction.

2.1.8.2 Debug Flag (D)

The D flag is for debug only. Set to "0".

2.1.8.3 Zero Flag (Z)

The Z flag is set to "1" when the value of zero is obtained from an arithmetic operation; otherwise "0".

2.1.8.4 Sign Flag (S)

The S flag is set to "1" when a negative value is obtained from an arithmetic operation; otherwise "0".

2.1.8.5 Register Bank Select Flag (B)

The register bank 0 is selected when the B flag is set to "0". The register bank 1 is selected when this flag is set to "1".

2.1.8.6 Overflow Flag (O)

The O flag is set to "1" when the result of an arithmetic operation overflows; otherwise "0".

2.1.8.7 Interrupt Enable Flag (I)

The I flag enables a maskable interrupt.

Interrupt is disabled when the I flag is set to "0" and enabled when the I flag is set to "1". The I flag is set to "0" when an interrupt is acknowledged.

2.1.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to "0". USP is selected when this flag is set to "1".

The U flag is set to "0" when a hardware interrupt is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.1.8.9 Processor Interrupt Priority Level (IPL)

IPL, 3 bits wide, assigns processor interrupt priority levels from level 0 to level 7.

If a requested interrupt has greater priority than IPL, the interrupt is enabled.

2.1.8.10 Reserved Space

When writing to a reserved space, set to "0". When reading, its content is indeterminate.

2.2 High-Speed Interrupt Registers

Registers associated with the high-speed interrupt are as follows:

- Flag save register (SVF)
- PC save register (SVP)
- Vector register (VCT)

Refer to **10.4 High-Speed Interrupt** for details.

2.3 DMAC-Associated Registers

Registers associated with DMAC are as follows:

- DMA mode register (DMD0, DMD1)
- DMA transfer count register (DCT0, DCT1)
- DMA transfer count reload register (DRC0, DRC1)
- DMA memory address register (DMA0, DMA1)
- DMA SFR address register (DSA0, DSA1)
- DMA memory address reload register (DRA0, DRA1)

Refer to 12. DMAC for details.

M32C/80 Group 3. Memory

3. Memory

Figure 3.1 shows a memory map of the M32C/80 Group.

The M32C/80 Group provides 16-Mbyte address space addressed from 00000016 to FFFFF16.

The fixed interrupt vectors are allocated from address FFFDC16 to FFFFF16. It stores the starting address of each interrupt routine.

The internal RAM is allocated from address 00040016 to higher. For example, a 8-Kbyte internal RAM is allocated from address 00040016 to 0023FF16. Besides storing data, it becomes stacks when the subroutine is called or an interrupt is acknowledged.

SFRs, consisting of control registers for peripheral functions such as I/O port, A/D converter, serial I/O, timers, is allocated from address 00000016 to 0003FF16. All blank spaces within SFRs are reserved and cannot be accessed by users.

The special page vector table is addressed from FFFE0016 to FFFFDB16. It is used for the JMPS instruction and JSRS instruction. Refer to the Renesas publication **M32C/80 Series Software Manual** for details. In microprocessor mode, some spaces are reserved and cannot be accessed by users.

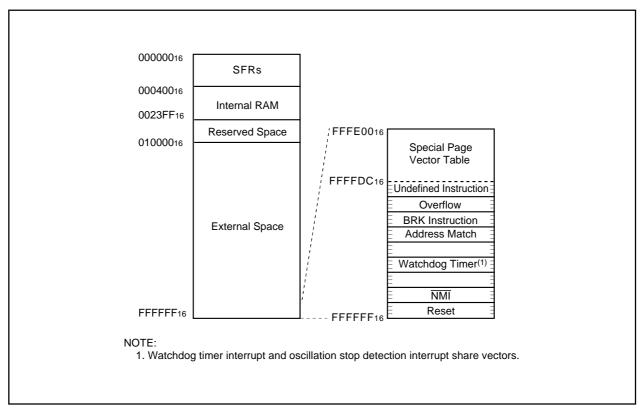


Figure 3.1 Memory Map

4. Special Function Registers (SFRs)

Address	Register	Symbol	Value after RESET
000016			
000116			
000216			
000316			
000416	Processor Mode Register ⁽¹⁾	PM0	0000 00112(CNVss pin ="H")
000516	Processor Mode Register 1	PM1	0016
000616	System Clock Control Register 0	CM0	0000 10002
000716	System Clock Control Register 1	CM1	0010 00002
000816			
000916	Address Match Interrupt Enable Register	AIER	0016
000A16	Protect Register	PRCR	XXXX 00002
000/110	Trottoot regiotor	111011	XXXX 10002(BYTE pin ="L")
000B16	External Data Bus Width Control Register	DS	XXXX 00002(BYTE pin ="H")
000C16	Main Clock Division Register	MCD	XXXX 00002(B112 pii1 = 11)
000D16	Oscillation Stop Detection Register	CM2	0016
000D16	Watchdog Timer Start Register	WDTS	XX16
000E16	Watchdog Timer Control Register	WDC	000X XXXX2
000116	Watchdog Timer Control Register	VVDC	000/1/1/2
001016	Address Match Interrupt Register 0	RMAD0	0000016
001116	Address Match Interrupt Register 0	RIVIADO	00000016
	Dunananan Maria Danistan O	DMO	0040
001316 001416	Processor Mode Register 2	PM2	0016
001416	Address Match Interrupt Degister 1	DMAD4	00000040
	Address Match Interrupt Register 1	RMAD1	00000016
001616			
001716			
001816		5,445	
001916	Address Match Interrupt Register 2	RMAD2	00000016
001A16			
001B16			
001C16			
001D16	Address Match Interrupt Register 3	RMAD3	00000016
001E16			
001F16			
002016			
002116			
002216			
002316			
002416			
002516			
002616	PLL Control Register 0	PLC0	0001 X0102
002716	PLL Control Register 1	PLC1	000X 00002
002816			
002916	Address Match Interrupt Register 4	RMAD4	0000016
002A16			
002B16			
002C16			
002D16	Address Match Interrupt Register 5	RMAD5	00000016
002E16			
002F16			

X: Indeterminate

Blank spaces are reserved. No access is allowed.

NOTE:

1. The PM01 and PM00 bits in the PM0 register maintain values set before reset, even after software reset or watchdog timer reset has been performed.

Address	Register	Symbol	Value after RESET
003016	•		
003116			
003216			
003316			
003416			
003516			
003616			
003716			
003816			
003916	Address Match Interrupt Register 6	RMAD6	0000016
003A16			
003B16			
003C16			
003D16	Address Match Interrupt Register 7	RMAD7	00000016
003E16	Additional materials register in	T (IVI)	
003F16			
0031 16			
004116			
004116			
004216			
004316			
004416			
004516			
004716			
004716	External Space Wait Control Register 0	EWCR0	X0X0 00112
004916	External Space Wait Control Register 1	EWCR1	X0X0 00112 X0X0 00112
004916 004A16	External Space Wait Control Register 2	EWCR2	X0X0 00112 X0X0 00112
004A16	External Space Wait Control Register 2 External Space Wait Control Register 3	EWCR3	X0X0 00112 X0X0 00112
004B16	External Space Wall Control Negister 5	LVVCING	X0X0 00112
004C16			
004E16			
004E16			
005016			
005016			
005116			+
005216			+
005316			
005516			
005516			+
005616			
005716			
005916			
005A16			
005B16			
005C16			
005D16			
005E16		1	
005F16			

X: Indeterminate

Address	Register	Symbol	Value after RESET
006016			
006116			
006216			
006316			
006416			
006516			
006616			
006716			
006816	DMA0 Interrupt Control Register	DM0IC	XXXX X0002
006916	Timer B5 Interrupt Control Register	TB5IC	XXXX X0002
006A16	DMA2 Interrupt Control Register	DM2IC	XXXX X0002
006B16	UART2 Receive /ACK Interrupt Control Register	S2RIC	XXXX X0002
006C16	Timer A0 Interrupt Control Register	TAOIC	XXXX X0002
006D16	UART3 Receive /ACK Interrupt Control Register	S3RIC	XXXX X0002
006E16	Timer A2 Interrupt Control Register	TA2IC	XXXX X0002
006F16	UART4 Receive /ACK Interrupt Control Register	S4RIC	XXXX X0002
007016	Timer A4 Interrupt Control Register	TA4IC	XXXX X0002
007116	UART0/UART3 Bus Conflict Detect Interrupt Control Register	BCN0IC/BCN3IC	XXXX X0002
007216	UART0 Receive/ACK Interrupt Control Register	SORIC	XXXX X0002
007316	A/D0 Conversion Interrupt Control Register	AD0IC	XXXX X0002
007416	UART1 Receive/ACK Interrupt Control Register	S1RIC	XXXX X0002
007516	Intelligent I/O Interrupt Control Register 0	IIO0IC	XXXX X0002
007616	Timer B1 Interrupt Control Register	TB1IC	XXXX X0002
007716	Intelligent I/O Interrupt Control Register 2	IIO2IC	XXXX X0002
007816	Timer B3 Interrupt Control Register	TB3IC	XXXX X0002
007916	Intelligent I/O Interrupt Control Register 4	IIO4IC	XXXX X0002
007A16	INT5 Interrupt Control Register	INT5IC	XX00 X0002
007B16			
007C16	INT3 Interrupt Control Register	INT3IC	XX00 X0002
007D16			
007E16	INT1 Interrupt Control Register	INT1IC	XX00 X0002
007F16			
008016			
008116			
008216			
008316			
008416			
008516			
008616			
008716			
008816	DMA1 Interrupt Control Register	DM1IC	XXXX X0002
008916	UART2 Transmit /NACK Interrupt Control Register	S2TIC	XXXX X0002
008A16	DMA3 Interrupt Control Register	DM3IC	XXXX X0002
008B16	UART3 Transmit /NACK Interrupt Control Register	S3TIC	XXXX X0002
008C16	Timer A1 Interrupt Control Register	TA1IC	XXXX X0002
008D16	UART4 Transmit /NACK Interrupt Control Register	S4TIC	XXXX X0002
008E16	Timer A3 Interrupt Control Register	TA3IC	XXXX X0002
008F16	UART2 Bus Conflict Detect Interrupt Control Register	BCN2IC	XXXX X0002

Address	Register	Symbol	Value after RESET
009016	UART0 Transmit /NACK Interrupt Control Register	SOTIC	XXXX X0002
009116	UART1/UART4 Bus Conflict Detect Interrupt Control Register	BCN1IC/BCN4IC	XXXX X0002
009216	UART1 Transmit/NACK Interrupt Control Register	S1TIC	XXXX X0002
009316	Key Input Interrupt Control Register	KUPIC	XXXX X0002
009416	Timer B0 Interrupt Control Register	TB0IC	XXXX X0002
009516	Intelligent I/O Interrupt Control Register 1	IIO1IC	XXXX X0002
009616	Timer B2 Interrupt Control Register	TB2IC	XXXX X0002
009716	Intelligent I/O Interrupt Control Register 3	IIO3IC	XXXX X0002
009816	Timer B4 Interrupt Control Register	TB4IC	XXXX X0002
009916			
009A16	INT4 Interrupt Control Register	INT4IC	XX00 X0002
009B16			
009C16	INT2 Interrupt Control Register	INT2IC	XX00 X0002
009D16			
009E16	INT0 Interrupt Control Register	INT0IC	XX00 X0002
009F16	Exit Priority Control Register	RLVL	XXXX 00002
00A016	Interrupt Request Register 0	IIO0IR	0000 000X2
00A116	Interrupt Request Register 1	IIO1IR	0000 000X2
00A216	Interrupt Request Register 2	IIO2IR	0000 000X2
00A316	Interrupt Request Register 3	IIO3IR	0000 000X2
00A416	Interrupt Request Register 4	IIO4IR	0000 000X2
00A516			
00A616			
00A716			
00A816			
00A916			
00AA16			
00AB16			
00AC16			
00AD16			
00AE16			
00AF16			
00B016	Interrupt Enable Register 0	IIO0IE	0016
00B116	Interrupt Enable Register 1	IIO1IE	0016
00B216	Interrupt Enable Register 2	IIO2IE	0016
00B316	Interrupt Enable Register 3	IIO3IE	0016
00B416	Interrupt Enable Register 4	IIO4IE	0016
00B516			
00B616			
00B716			
00B816			
00B916			
00BA16			
00BB16			
00BC16			
00BD16			
00BE16			
00BF16			

Address	Register	Symbol	Value after RESET
00C016	3		
00C116			
00C216			
00C316			
00C416			
00C516			
00C616			
00C716			
00C816			
00C916			
00CA16			
00CB16			
00CC16			
00CD16			
00CE16			
00CF16			
00D016			
00D116			
00D216			
00D316			
00D416			
00D516			
00D616			
00D716			
00D816			
00D916			
00DA16			
00DB16			
00DC16			
00DD16			
00DE16			
00DF16			
00E016			
00E116			
00E216			
00E316			
00E416			
00E516			
00E616			
00E716			
00E816	OVO December Deffer Decists C	0000	XXXX XXXX2
00E916	SI/O Receive Buffer Register 0	G0RB	XXX0 XXXX2
00EA16	Transmit Buffer/Receive Data Register 0	G0TB/G0DR	XX16
00EB16			
00EC16	Receive Input Register 0	G0RI	XX16
00ED16	SI/O Communication Mode Register 0	G0MR	0016
00EE16	Transmit Output Register 0	G0TO	XX16
00EF16	SI/O Communication Control Register 0	G0CR	0000 X0112

Address	Register	Symbol	Value after RESET
00F016	Data Compare Register 00	G0CMP0	XX16
00F116	Data Compare Register 01	G0CMP1	XX16
00F216	Data Compare Register 02	G0CMP2	XX16
00F316	Data Compare Register 03	G0CMP3	XX16
00F416	Data Mask Register 00	G0MSK0	XX16
00F516	Data Mask Register 01	G0MSK1	XX16
00F616	Communication Clock Select Register	ccs	XXXX 00002
00F716			
00F816			XX16
00F916	Receive CRC Code Register 0	G0RCRC	XX16
00FA16			0016
00FB16	Transmit CRC Code Register 0	G0TCRC	0016
00FC16	SI/O Expansion Mode Register 0	G0EMR	0016
00FD16	SI/O Expansion Receive Control Register 0	G0ERC	0016
00FE16	SI/O Special Communication Interrupt Detect Register 0	GOIRF	0016
00FF16	SI/O Expansion Transmit Control Register 0	GOETC	0000 0XXX2
010016	CAS Expansion Transmit Control Register o	30210	0000 0/////2
010016			
010116			
010216			
010316			
010416			
010516			
0107 ₁₆ 0108 ₁₆			
010916 010A16			
010A16			
010B16			
010C16			
010D16			
010F16			
011016			
011116			
011216			
011316			
011416			
011516			
011616			
011716			
011816			
011916			
011A16			
011B ₁₆			
011C16			
011D16			
011E ₁₆			
011F ₁₆			

Address	Register	Symbol	Value after RESET
012016	•		
012116			
012216			
012316			
012416			
012516			
012616			
012716			
012816			XXXX XXXX2
012916	SI/O Receive Buffer Register 1	G1RB	XXX0 XXXX2
012A16	Transmit Buffer/Receive Data Register 1	G1TB/G1DR	XX16
012B16			
012C16	Receive Input Register 1	G1RI	XX16
012D16	SI/O Communication Mode Register 1	G1MR	0016
012E16	Transmit Output Register 1	G1TO	XX16
012F16	SI/O Communication Control Register 1	G1CR	0000 X0112
013016	Data Compare Register 10	G1CMP0	XX16
013116	Data Compare Register 11	G1CMP1	XX16
013216	Data Compare Register 12	G1CMP2	XX16
013316	Data Compare Register 13	G1CMP3	XX16
013416	Data Mask Register 10	G1MSK0	XX16
013516	Data Mask Register 11	G1MSK1	XX16
013616	· ·		
013716			
013816			XX16
013916	Receive CRC Code Register 1	G1RCRC	XX16
013A16			0016
013B ₁₆	Transmit CRC Code Register 1	G1TCRC	0016
013C16	SI/O Expansion Mode Register 1	G1EMR	0016
013D16	SI/O Expansion Receive Control Register 1	G1ERC	0016
013E16	SI/O Special Communication Interrupt Detection Register 1	G1IRF	0016
013F16	SI/O Expansion Transmit Control Register 1	G1ETC	0000 0XXX2
014016			
014116			
014216			
014316			
014416			
014516			
014616			
014716			
014816			
014916			
014A16			
014B16			
014C16			
014D16			
to			
02AF16			
U2AF16			

Address	Register	Symbol	Value after RESET
02B116			
02B216			
02B316			
02B416			
02B516			
02B616			
02B716			
02B816			
02B916			
02BA16			
02BB16			
02BC16			
02BD16			
02BE16			
02BF16			
02C016			XX16
02C116	X0 Register Y0 Register	X0R,Y0R	XX16
02C216			XX16
02C316	X1 Register Y1 Register	X1R,Y1R	XX16
02C416			XX16
02C516	X2 Register Y2 Register	X2R,Y2R	XX16
02C616			XX16
02C716	X3 Register Y3 Register	X3R,Y3R	XX16
02C816			XX16
02C916	X4 Register Y4 Register	X4R,Y4R	XX16
02CA16			XX16 XX16
02CB ₁₆	X5 Register Y5 Register	X5R,Y5R	XX16
02CC16			XX16 XX16
02CD16	X6 Register Y6 Register	X6R,Y6R	XX16
02CE16			XX16 XX16
02CF16	X7 Register Y7 Register	X7R,Y7R	XX16
02D016			XX16 XX16
02D016	X8 Register Y8 Register	X8R,Y8R	XX16 XX16
02D116			XX16 XX16
02D216	X9 Register Y9 Register	X9R,Y9R	XX16 XX16
02D316 02D416			XX16
	X10 Register Y10 Register	X10R,Y10R	
02D516 02D616			XX16 XX16
02D616 02D716	X11 Register Y11 Register	X11R,Y11R	
	<u> </u>		XX16 XX16
02D816	X12 Register Y12 Register	X12R,Y12R	
02D916	-		XX16
02DA16	X13 Register Y13 Register	X13R,Y13R	XX16
02DB16		,,	XX16
02DC16	X14 Register Y14 Register	X14R,Y14R	XX16
02DD16	. g	, ,	XX16
02DE16	X15 Register Y15 Register	X15R,Y15R	XX16
02DF16		7,101,1101	XX16

Register	Symbol	Value after RESET
X/Y Control Register	XYC	XXXX XX002
UART1 Special Mode Register 4	U1SMR4	0016
UART1 Special Mode Register 3	U1SMR3	0016
UART1 Special Mode Register 2	U1SMR2	0016
UART1 Special Mode Register	U1SMR	0016
UART1 Transmit/Receive Mode Register	U1MR	0016
UART1 Bit Rate Register	U1BRG	XX16
	=	XX16
UART1 Transmit Buffer Register	U1TB	XX16
UART1 Transmit/Receive Control Register 0	U1C0	0000 10002
UART1 Transmit/Receive Control Register 1	U1C1	0000 00102
		XX16
UART1 Receive Buffer Register	U1RB	XX16
UART4 Special Mode Register 4	U4SMR4	0016
	U4SMR3	0016
	U4SMR2	0016
· · · · · · · · · · · · · · · · · · ·	U4SMR	0016
	U4MR	0016
-	U4BRG	XX16
		XX16
UART4 Transmit Buffer Register	U4TB	XX16
UART4 Transmit/Receive Control Register 0	U4C0	0000 10002
	U4C1	0000 00102
		XX16
UART4 Receive Buffer Register	U4RB	XX16
Timer B3. B4. B5 Count Start Flag	TBSR	000X XXXX2
		XX16
Timer A1-1 Register	TA11	XX16
		XX16
Timer A2-1 Register	TA21	XX16
		XX16
Timer A4-1 Register	TA41	XX16
Three-Phase PWM Control Register 0	INVC0	0016
		0016
į	IDB0	XX11 11112
, , ,		XX11 11112
Dead Time Timer	DTT	XX16
Timer B2 Interrupt Generation Frequency Set Counter	ICTB2	XX16
Timer B2 Interrupt Generation Frequency Set Counter	ICTB2	XX16
	WY Control Register UART1 Special Mode Register 3 UART1 Special Mode Register 2 UART1 Special Mode Register 2 UART1 Special Mode Register UART1 Transmit/Receive Mode Register UART1 Transmit/Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register UART1 Receive Buffer Register UART4 Special Mode Register 4 UART4 Special Mode Register 3 UART4 Special Mode Register 2 UART4 Special Mode Register 2 UART4 Transmit/Receive Mode Register UART4 Transmit/Receive Mode Register UART4 Transmit/Receive Control Register UART4 Transmit/Receive Control Register 0 UART4 Transmit/Receive Control Register 1 UART4 Receive Buffer Register Timer B3, B4, B5 Count Start Flag Timer A1-1 Register Timer A2-1 Register Timer A4-1 Register Timer-Phase PWM Control Register 0 Three-Phase PWM Control Register 1 Three-Phase Output Buffer Register 0 Three-Phase Output Buffer Register 0 Three-Phase Output Buffer Register 1	X/Y Control Register XYC UART1 Special Mode Register 4 UART1 Special Mode Register 3 UART1 Special Mode Register 2 UART1 Special Mode Register 9 UART1 Special Mode Register UISMR2 UART1 Special Mode Register UART1 Special Mode Register UISMR2 UART1 Special Mode Register UISMR UART1 Special Mode Register UIBRG UART1 Bit Rate Register U1BRG UART1 Transmit/Receive Control Register 0 U1C0 UART1 Transmit/Receive Control Register 1 U1C1 UART1 Receive Buffer Register U1RB UART4 Special Mode Register 3 UASMR3 UART4 Special Mode Register 3 UASMR3 UART4 Special Mode Register 9 UAFMR2 UART4 Special Mode Register 9 UART4 Special Mode Register 1 UART4 Transmit/Receive Mode Register 1 UART4 Transmit/Receive Mode Register 1 UART4 Transmit/Receive Control Register 1 UART4 Transmit/Receive Control Register 0 UAC0 UART4 Transmit/Receive Control Register 1 UART4 Receive Buffer Register UART4 Receive Buffer Register TAL1 Timer A2-1 Register TAL1 Timer A4-1 Register TAL1 Timer A4-1 Register TAL1 Timer A4-1 Register TAL1 Timer Phase DWM Control Register 0 INVC0 Three-Phase Output Buffer Register 0 IDB0 Three-Phase Output Buffer Register 1 IDB1

Address	Register	Symbol	Value after RESET
031016			XX16
031116	Timer B3 Register	TB3	XX16
031216			XX16
031316	Timer B4 Register	TB4	XX16
031416			XX16
031516	Timer B5 Register	TB5	XX16
031616			
031716			
031816			
031916			
031A16			
031B ₁₆	Timer B3 Mode Register	TB3MR	00XX 00002
031C ₁₆	Timer B4 Mode Register	TB4MR	00XX 00002
031D16	Timer B5 Mode Register	TB5MR	00XX 00002
031E16	-		
031F16	External Interrupt Request Source Select Register	IFSR	0016
032016	· · ·		
032116			
032216			
032316			
032416	UART3 Special Mode Register 4	U3SMR4	0016
032516	UART3 Special Mode Register 3	U3SMR3	0016
032616	UART3 Special Mode Register 2	U3SMR2	0016
032716	UART3 Special Mode Register	U3SMR	0016
032816	UART3 Transmit/Receive Mode Register	U3MR	0016
032916	UART3 Bit Rate Register	U3BRG	XX16
032A16			XX16
032B16	UART3 Transmit Buffer Register	U3TB	XX16
032C16	UART3 Transmit/Receive Control Register 0	U3C0	0000 10002
032D16	UART3 Transmit/Receive Control Register 1	U3C1	0000 00102
032E16			XX16
032F16	UART3 Receive Buffer Register	U3RB	XX16
033016			
033116			
033216			
033316			
033416	UART2 Special Mode Register 4	U2SMR4	0016
033516	UART2 Special Mode Register 3	U2SMR3	0016
033616	UART2 Special Mode Register 2	U2SMR2	0016
033716	UART2 Special Mode Register	U2SMR	0016
033816	UART2 Transmit/Receive Mode Register	U2MR	0016
033916	UART2 Bit Rate Register	U2BRG	XX16
033A16	LIADTO Transmit Duffer Degister	LIOTE	XX16
033B16	UART2 Transmit Buffer Register	U2TB	XX16
033C16	UART2 Transmit/Receive Control Register 0	U2C0	0000 10002
033D16	UART2 Transmit/Receive Control Register 1	U2C1	0000 00102
033E16	LIART2 Receive Buffer Register	LIODD	XX16
033F16	UART2 Receive Buffer Register	U2RB	XX16

Address	Register	Symbol	Value after RESET
034016	Count Start Flag	TABSR	0016
034116	Clock Prescaler Reset Flag	CPSRF	0XXX XXXX2
034216	One-Shot Start Flag	ONSF	0016
034316	Trigger Select Register	TRGSR	0016
034416	Up/Down Flag	UDF	0016
034516			
034616			XX16
034716	Timer A0 Register	TA0	XX16
034816			XX16
034916	Timer A1 Register	TA1	XX16
034A16			XX16
034B16	Timer A2 Register	TA2	XX16
034C16			XX16
034D16	Timer A3 Register	TA3	XX16
034E16			XX16
034F16	Timer A4 Register	TA4	XX16
035016			XX16
035116	Timer B0 Register	TB0	XX16
035216			XX16
035316	Timer B1 Register	TB1	XX16
035416			XX16
035516	Timer B2 Register	TB2	XX16
035616	Timer A0 Mode Register	TAOMR	0016
035716	Timer A1 Mode Register	TA1MR	0016
035816	Timer A2 Mode Register	TA2MR	0016
035916	Timer A3 Mode Register	TA3MR	0016
035A16	Timer A4 Mode Register	TA4MR	0016
035B ₁₆	Timer B0 Mode Register	TB0MR	00XX 00002
035C16	Timer B1 Mode Register	TB1MR	00XX 00002
035D16	Timer B2 Mode Register	TB2MR	00XX 00002
035E16	Timer B2 Special Mode Register	TB2SC	XXXX XXX02
035F16	Count Source Prescaler Register ⁽¹⁾	TCSPR	0XXX 00002
036016	Count Source Prescaler Register*	ICSFR	0AAA 00002
036116			
036216			
036216			
	UART0 Special Mode Register 4	LIOCMD 4	0046
036416	<u> </u>	U0SMR4	0016
036516	UARTO Special Mode Register 3	U0SMR3	0016
036616	UARTO Special Mode Register 2	U0SMR2	0016
036716	UARTO Special Mode Register	UOSMR	0016
036816	UART0 Transmit/Receive Mode Register	UOMR	0016
036916	UART0 Bit Rate Register	U0BRG	XX16
036A16	UART0 Transmit Buffer Register	U0TB	XX16
036B16	<u> </u>		XX16
036C16	UART0 Transmit/Receive Control Register 0	U0C0	0000 10002
036D16	UART0 Transmit/Receive Control Register 1	U0C1	0000 00102
036E16	UART0 Receive Buffer Register	U0RB	XX16
036F16		30.12	XX16

Blank spaces are reserved. No access is allowed.

NOTE:

1. The TCSPR register maintains values set before reset, even after software reset or watchdog timer reset has been performed.

Address	Register	Symbol	Value after RESET
037016	·		
037116			
037216			
037316			
037416			
037516			
037616			
037716			
037816	DMA0 Request Source Select Register	DM0SL	0X00 00002
037916	DMA1 Request Source Select Register	DM1SL	0X00 00002
037A16	DMA2 Request Source Select Register	DM2SL	0X00 00002
037B ₁₆	DMA3 Request Source Select Register	DM3SL	0X00 00002 XX16
	CRC Data Register	CRCD	
037D16			XX16
037E16	CRC Input Register	CRCIN	XX16
037F16			2000/2007
038016	A/D0 Register 0	AD00	XXXX XXXX2
038116		7.200	0000 00002
038216	A/D0 Register 1	AD01	XX16
038316	Who Kedister I	7,001	XX16
038416	A/D0 Register 2	AD02	XX16
038516		ADUZ	XX16
038616	A/D0 Register 3	AD03	XX16
038716	A/D0 Register 3	AD03	XX16
038816	A/DO Desister A	AD04	XX16
038916	A/D0 Register 4	AD04	XX16
038A16	1/20 D. 1	4500	XX16
038B16	A/D0 Register 5	AD05	XX16
038C16			XX16
038D16	A/D0 Register 6	AD06	XX16
038E16			XX16
038F16	A/D0 Register 7	AD07	XX16
039016			
039116			
039216			
039316			
039416	A/D0 Control Register 2	AD0CON2	XX0X X0002
039516	A/D0 Control Register 3	AD0CON3	XXXX X0002
039616	A/D0 Control Register 0	AD0CON0	0016
039716	A/D0 Control Register 1	AD0CON1	0016
039816	D/A Register 0	DA0	XX16
039916		2,10	7.5.1.0
039A16	D/A Register 1	DA1	XX16
039B16	DIT NOGISTOL 1	DAT	7/10
039D16	D/A Control Register	DACON	XXXX XX002
039C16	DIA CONTION LEGISTER	DACON	^^^ ^^\
039E16			
039F16	arminato		

Address	Register	Symbol	Value after RESET
03A016			
03A116			
03A216			
03A316			
03A416			
03A516			
03A616			
03A716	Function Select Register D1	PSD1	X0XX XX002
03A816			
03A916			
03AA16			
03AB16			
03AC16			
03AD16	Function Select Register C3	PSC3	X0XX XXXX2
03AE16		. 233	
03AF16	Function Select Register C	PSC	00X0 00002
03B016	Function Select Register A0	PS0	0016
03B116	Function Select Register A1	PS1	0016
03B216	Function Select Register B0	PSL0	0016
03B316	Function Select Register B1	PSL1	0016
03B416	Function Select Register A2	PS2	00X0 00002
03B516	Function Select Register A3	PS3	00/16
03B616	Function Select Register B2	PSL2	00X0 00002
03B016	Function Select Register B3	PSL3	
03B716	Fullction Select Register B3	FSLS	0016
03B916			
03BA16			
03BB16			
03BC16			
03BD16			
03BE16			
03BF16			
03C016	Port P6 Register	P6	XX16
03C116	Port P7 Register	P7	XX16
03C216	Port P6 Direction Register	PD6	0016
03C316	Port P7 Direction Register	PD7	0016
03C416	Port P8 Register	P8	XX16
03C516	Port P9 Register	P9	XX16
03C616	Port P8 Direction Register	PD8	00X0 00002
03C716	Port P9 Direction Register	PD9	0016
03C816	Port P10 Register	P10	XX16
03C916			
03CA16	Port P10 Direction Register	PD10	0016
03CB16			
03CC16			
03CD16			
03CE16			
03CF16			

Address	Register	Symbol	Value after RESET
03D016			
03D116			
03D216			
03D316			
03D416			
03D516			
03D616			
03D716			
03D816			
03D916			
03DA16	Pull-Up Control Register 2	PUR2	0016
03DB16	Pull-Up Control Register 3	PUR3	0016
03DC16			
03DD16			
03DE16			
03DF16			
03E016	Port P0 Register ⁽¹⁾	P0	XX16
03E116	Port P1 Register ⁽¹⁾	P1	XX16
03E216	Port P0 Direction Register ⁽¹⁾	PD0	0016
03E316	Port P1 Direction Register ⁽¹⁾	PD1	0016
03E416	Port P2 Register ⁽¹⁾	P2	XX16
03E516	Port P3 Register ⁽¹⁾	P3	XX16
03E616	Port P2 Direction Register ⁽¹⁾	PD2	0016
03E716	Port P3 Direction Register ⁽¹⁾	PD3	0016
03E816	Port P4 Register ⁽¹⁾	P4	XX16
03E916	Port P5 Register ⁽¹⁾	P5	XX16
03EA16	Port P4 Direction Register ⁽¹⁾	PD4	0016
03EB16	Port P5 Direction Register ⁽¹⁾	PD5	0016
03EC16	•		
03ED16			
03EE16			
03EF16			
03F016	Pull-up Control Register 0	PUR0	0016
03F116	Pull-up Control Register 1	PUR1	XXXX 00002
03F216			
03F316			
03F416			
03F516			
03F616			
03F716			
03F816			
03F916			
03FA16			
03FB ₁₆			
03FC16			
03FD16			
03FE16			
03FF16	Port Control Register	PCR	XXXX XXX02

Blank spaces are reserved. No access is allowed.

NOTE:

1. Pins, functioning as bus control pins, cannot be selected as $\ensuremath{\text{I/O}}$ ports.

5. Reset

Hardware reset 1, software reset, and watchdog timer reset are available to reset the microcomputer.

5.1 Hardware Reset 1

Pins, the CPU and SFRs are reset by setting the RESET pin. If the supply voltage meets the recommended operating conditions, all pins are reset when a low-level ("L") signal is applied to the RESET pin (see **Table 5.1**). The oscillation circuit is also reset and the main clock starts oscillating. The CPU and SFR are reset when the signal applied to the RESET pin changes "L" to high level ("H"). The microcomputer executes the program in an address indicated by the reset vector. The internal RAM is not reset. When an "L" signal is applied to the RESET pin while writing data to the internal RAM, the internal RAM is in an indeterminate state

Figure 5.1 shows an example of the reset circuit. Figure 5.2 shows a reset sequence. Table 5.1 lists pin states while the RESET pin is held "L".

5.1.1 Reset on a Stable Supply Voltage

- (1) Apply an "L" signal to the RESET pin
- (2) Provide 20 or more clock cycle inputs into the XIN pin
- (3) Apply an "H" signal to the RESET pin

5.1.2 Power-on Reset

- (1) Apply an "L" signal to the RESET pin
- (2) Raise the supply voltage to the recommended operating level
- (3) Insert td(P-R) ms as wait time for the internal voltage to stabilize
- (4) Provide 20 or more clock cycle inputs into the XIN pin
- (5) Apply an "H" signal to the RESET pin

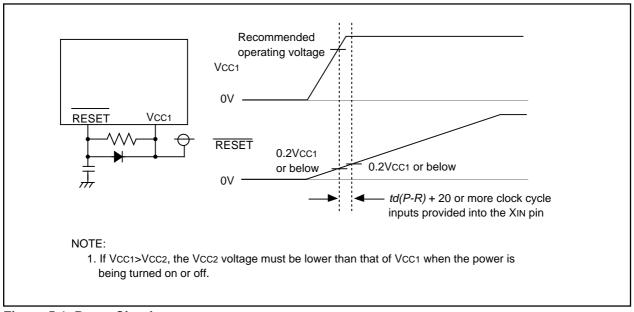


Figure 5.1 Reset Circuit

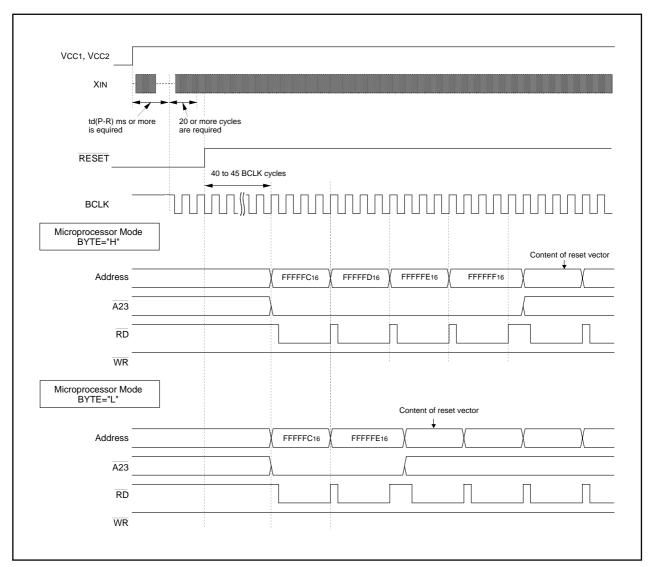


Figure 5.2 Reset Sequence

Table 5.1 Pin States while RESET Pin is Held "L"

		Pin States ⁽¹⁾		
Pin Name	CNVss=Vss	CNVss=Vcc		
		BYTE=Vss	BYTE=Vcc	
P0	Input port (high-impedance)	Inputs data (high-impedance)		
P1	Input port (high-impedance)	Inputs data (high-impedance)	Input port (high-impedance)	
P2, P3, P4	Input port (high-impedance)	Output addresses (indeterminate)		
P50	Input port (high-impedance)	Outputs the WR signal ("H")(2)		
P51	Input port (high-impedance)	Outputs the BHE signal (indeterminate)		
P52	Input port (high-impedance)	Outputs the RD signal ("H") ⁽²⁾		
P53	Input port (high-impedance)	Outputs the BCLK ⁽²⁾		
P54	Input port (high-impedance)	Outputs the HLDA signal (Output signal depends on an input		
		signal to the HOLD pin)(2)		
P55	Input port (high-impedance)	Inputs the HOLD signal (high-impedance)		
P56	Input port (high-impedance)	Outputs an "H" signal ⁽²⁾		
P57	Input port (high-impedance)	Inputs the RDY signal (high-impedance)		
P6 to P10	Input port (high-impedance)	Input port (high-impedance)		

NOTES:

- 1. The availability of pull-up resistors is indeterminate until internal supply voltage stabilizes.
- 2. Each port is in this state after power is on and internal supply voltage stabilizes, but in an indeterminate state until internal supply voltage stabilizes.

5.2 Software Reset

Pins, the CPU and SFRs are reset when the PM03 bit in the PM0 register is set to "1" (microcomputer reset). Then the microcomputer executes the program in an address determined by the reset vector. Set the PM03 bit to "1" while the main clock is selected as the CPU clock and the main clock oscillation is stable.

In the software reset, the microcomputer does not reset a part of SFR. Refer to **4. Special Function Registers (SFRs)** for details. Processor mode remains unchanged since the PM01 and PM00 bits in the PM0 register are not reset.

5.3 Watchdog Timer Reset

Pins, the CPU and SFRs are reset when the CM06 bit in the CM0 register is set to "1" (reset) and the watchdog timer underflows. Then the microcomputer executes the program in an address determined by the reset vector

In the watchdog timer reset, the microcomputer does not reset a part of the SFR. Refer to **4. Special Function Registers (SFRs)** for details. Processor mode remains unchanged since the PM01 and PM00 bits in the PM0 register are not reset.

5.4 Internal Space

Figure 5.3 shows CPU register states after reset. Refer to **4. Special Function Registers (SFRs)** for SFR states after reset.

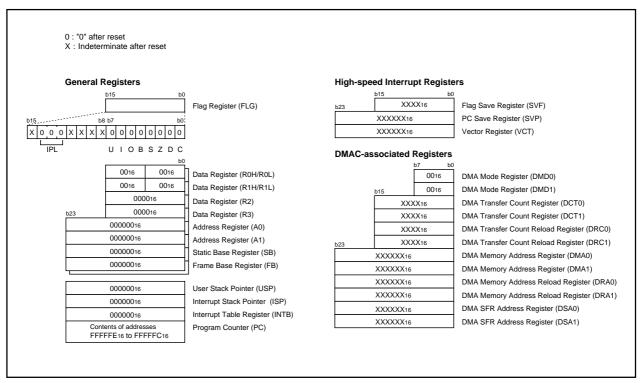


Figure 5.3 CPU Register States after Reset

6. Processor Mode

NOTE

The M32C/80 Group is ROMless device. Connect the CNVss pin to Vcc1. Use the M32C/80 Group in microprocessor mode after reset.

6.1 Types of Processor Mode

Single-chip mode, memory expansion mode, or microprocessor mode can be selected as a processor mode. Table 6.1 lists a feature of the processor mode.

Table 6.1 Processor Mode Feature

Processor Mode	Accessable Space	Pin Status as I/O Ports	
Single-chip Mode	SFRs, Internal RAM	All pins assigned to I/O ports or to I/O pins for the peripheral functions	
Memory Expansion Mode	SFRs, Internal RAM, External Space ⁽¹⁾	Some pins assigned to bus control pins ⁽¹⁾	
Microprocessor Mode	SFRs, Internal RAM, External Space ⁽¹⁾	Some pins assigned to bus control pins ⁽¹⁾	

NOTE:

^{1.} Refer to 7. Bus for details.

6.2 Setting of Processor Mode

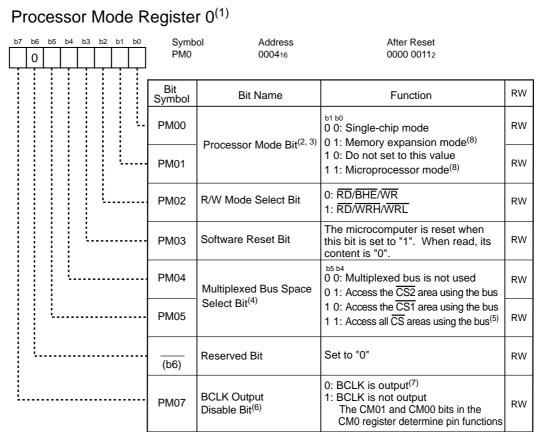
The CNVss pin state and the PM01 and PM00 bit settings in the PM0 register determine which processor mode is selected. Table 6.2 lists processor mode after hardware reset. Table 6.3 lists processor mode selected by PM01 and PM00 bit settings.

Table 6.2 Processor Mode after Hardware Reset

Input Level into the CNVss pin	Processor Mode
Vcc1 ⁽¹⁾	Microprocessor Mode

NOTE:

Table 6.3 Processor Mode Selected by the PM01 and PM00 bit Settings

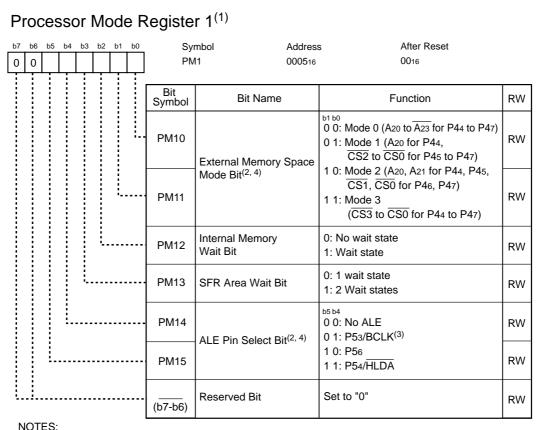

PM01 and PM00 Bits	Processor Mode
002	Single-chip Mode
012	Memory Expansion Mode
102	Do not set to this value
112	Microprocessor Mode

If the PM01 and PM00 bits are rewritten, the PM01 and PM00 bits select a mode regardless of CNVss pin level.

Do not change the PM01 and PM00 bits to "012" (memory expansion mode) or "112" (microprocessor mode) when the PM07 to PM02 bits in the PM0 register are being rewritten.

Figures 6.1 and 6.2 show the PM0 register and PM1 register. Figure 6.3 shows a memory map in each processor mode.

^{1.} Multiplex bus cannot be assigned to all \overline{CS} areas.



NOTES:

- 1. Rewrite the PM0 register after the PRC1 bit in the PRCR register is set to "1"(write enabled).
- The PM01 and PM00 bits maintain values set before reset, even after software reset or watchdog timer reset has performed.
- 3. Do not change the PM01 and PM00 bits to "012" and "112" when the PM07 to PM02 bits are being rewritten. Set PM07 to PM02 bits, then the PM01 and PM00 bits.
- 4. The PM04 and PM05 bits are available in memory expansion mode or microprocessor mode.
 - Set the PM05 and PM04 bits to "002" in mode 0.
 - Do not set the PM05 and PM04 bits to "012" in mode 2.
- 5. The PM05 and PM04 bits cannot be set to "112" in microprocessor mode since the microcomputer starts up with separate bus after reset.
 - When the PM05 and PM04 bits are set to "112" in memory expansion mode, the microcomputer can access each 64-Kbyte chip-select-assigned address space. The multiplexed bus is not available in mode 0. The microcomputer accesses the $\overline{CS0}$ to $\overline{CS2}$ in mode 1, $\overline{CS0}$ and $\overline{CS1}$ in mode 2 and $\overline{CS0}$ to $\overline{CS3}$ in mode 3.
- 6. No BCLK is output in single-chip mode even if the PM07 bit is set to "0". When a clock output is terminated in microprocessor mode or memory expansion mode, set the PM07 bit to "1" and the CM01 and CM00 bits in the CM0 register to "002" (I/O port P53). P53 outputs "L".
- 7. When the PM07 bit is set to "0" (BCLK output), set the CM01 and CM00 bits to "002".

Figure 6.1 PM0 Register

6. Processor Mode M32C/80 Group

- 1. Rewrite the PM1 register after the PRC1 bit in the PRCR register is set to "1" (write enabled).
- 2. The PM15 and PM14 bit setting, PM11 and PM10 bit setting are enabled in memory expansion mode or microprocessor mode.
- 3. Set the CM01 and CM00 bits in the CM0 register to "002" (I/O port P53) when the PM15 and PM14 bits are set to "012" (P53/BCLK selected).

Figure 6.2 PM1 Register

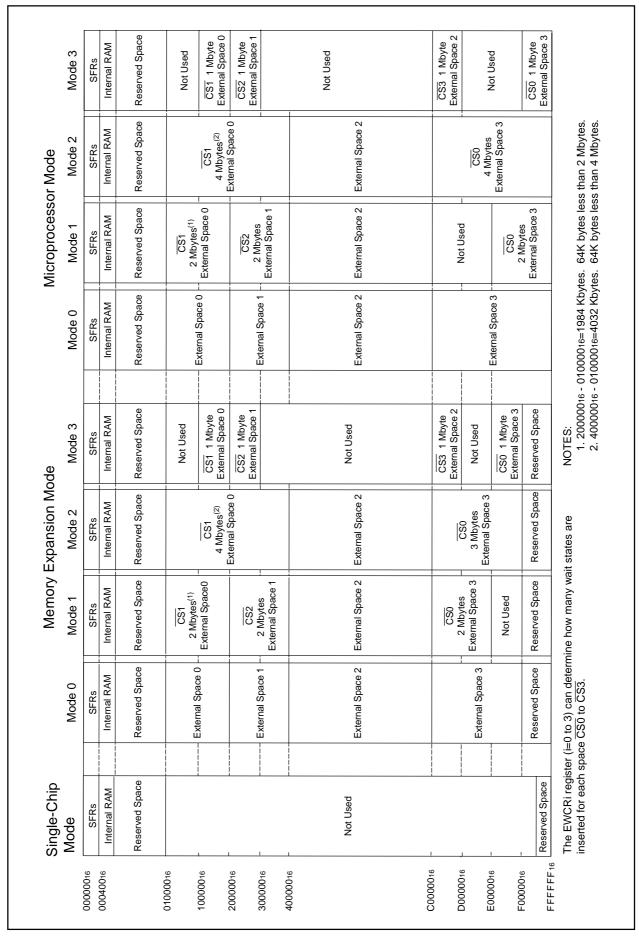


Figure 6.3 Memory Map in Each Processor Mode

7. Bus

In memory expansion mode or microprocessor mode, some pins function as bus control pins to control the address bus and data bus. At to A22, $\overline{\text{A23}}$, Do to D15, $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$, $\overline{\text{WRL/WR}}$, $\overline{\text{WRH/BHE}}$, $\overline{\text{RD}}$, BCLK/ALE, $\overline{\text{HLDA}}$ /ALE, $\overline{\text{HOLD}}$, ALE, $\overline{\text{RDY}}$ are used as bus control pins.

7.1 Bus Settings

The BYTE pin, the DS register, the PM05 and PM04 bits in the PM0 register, and the PM11 and PM10 bits in the PM1 register determine bus settings.

Table 7.1 lists how to change bus settings. Figure 7.1 shows the DS register.

Table 7.1 Bus Settings

Bus Setting	Changed By
Selecting External Address Bus Width	DS register
Setting Bus Width after Reset	BYTE pin (external space 3 only)
Selecting Between Separate Bus or Multiplexed Bus	PM05 and PM04 bits in PM0 register
Number of Chip-select	PM11 and PM10 bits in PM1 register

Figure 7.1 DS Register

7.1.1 Selecting External Address Bus

The number of externally-output address buses, the number of chip-select signals and chip-select-assigned address space ($\overline{\text{CS}}$ area) vary depending on each external space mode. The PM11 and PM10 bits in the PM1 register determine the external space mode.

7.1.2 Selecting External Data Bus

The DS register selects either external 8-bit or 16-bit data bus per external space. The data bus in the external space 3, after reset, becomes 16 bits wide when a low-level ("L") signal is applied to the BYTE pin and 8 bits wide when a high-level ("H") signal is applied. Keep the BYTE pin input level while the microcomputer is operating. Internal bus is always 16 bits wide.

7.1.3 Selecting Separate/Multiplexed Bus

The PM05 and PM04 bits in the PM0 register determine either separate or multiplexed bus as bus format.

7.1.3.1 Separate Bus

The separate bus is a bus format which allows the microcomputer to input and output data and address separatelly. The DS register selects 8-bit or 16-bit data bus as the external data bus per external space. If all DSi bits in the DS register (i=0 to 3) are set to "0" (8-bit data bus), port P0 becomes the data bus and port P1, the programmable I/O port. If one of the DSi bits is set to "1" (16-bit data bus), ports P0 and P1 become the data bus. Port P1 is indeterminate when the microcomputer accesses a space where the DSi bit is set to "0".

The EWCRi register (i=0 to 3) determines the number of software wait states inserted, when the microcomputer accesses space using the separate bus.

7.1.3.2 Multiplexed Bus

The multiplexed bus is a bus format which allow the microcomputer to input and output data and address by timesharing. Do to D7 are multiplexed with A0 to A7 in space accessed by the 8-bit data bus. Do to D15 are multiplexed with A0 to A15 in space accessed by the 16-bit data bus. The DSi bit controls the data bus width. The EWCRi register (i=0 to 3) controls the number of software wait states inserted, when the microcomputer accesses a space using the multiplexed bus. Refer to **7.2.4 Bus Timing** for details.

The multiplexed bus can be assigned to access the $\overline{\text{CS1}}$ area, $\overline{\text{CS2}}$ area or all $\overline{\text{CS}}$ areas. However, because the microcomputer starts operation using the separate bus after reset, the multiplexed bus cannot be assigned to access all $\overline{\text{CS}}$ areas in microprocessor mode. When the PM05 and PM04 bits in the PM0 register are set to "112" (access all $\overline{\text{CS}}$ areas with the bus), 16 low-order bits, from Ao to A15, of an address are output. See **Table 7.2** for details.

7. Bus M32C/80 Group

Table 7.2 Processor Mode and Port Function

Processor Mode	Single- Chip Mode	Memo	ry Expansion Mo	Memory Expansion Mode			
PM05 to PM04 Bits in PM0 Register		"012", "102" Access CS1 or CS2 using the Multiplexed Bus Access All Other CS Areas using the Separate Bus		"002" (Access all CS Areas using the Separate Bus		"112" ⁽¹⁾ (Access all CS Areas using the Multiplexed Bus	
Data Bus Width		Access all external space with 8-bit data bus	Access one or more external space with 16-bit data bus	Access all external space with 8-bit data bus	Access one or more external space with 16-bit data bus	Access all external space with 8-bit data bus	Access one or more external space with 16-bit data bus
P00 to P07	I/O port	Data bus Do to D7	Data bus Do to D7	Data bus Do to D7	Data bus Do to D7	I/O port	I/O port
P10 to P17	I/O port	I/O port	Data bus D8 to D15	I/O port	Data bus D8 to D15	I/O port	I/O port
P20 to P27	I/O port	Address bus Data bus(2) Data bus(2) Ao/Do to A7/D7 Ao/Do to A7/D7		Address bus Ao to A7	Address bus A ₀ to A ₇	Address bus Data bus Ao/Do to A7/D7	Address bus Data bus Ao/Do to A7/D7
P30 to P37	I/O port	Address bus A8 to A15	Address bus/ Data bus ⁽²⁾ A8/D8 to A15/D15	Address bus A8 to A15	Address bus A8 to A15	Address bus A8 to A15	Address bus/ Data bus A8/D8 to A15/D15
P40 to P43	I/O port	Address bus A16 to A19	Address bus A16 to A19	Address bus A16 to A19	Address bus A16 to A19	I/O port	I/O port
P44 to P46	I/O port	CS (Chip-select signal) or Address bus (A20 to A22) (Refer to 7.2 Bus Control for details)(4)					
P47	I/O port	CS (Chip-select signal) or Address bus (A23) (Refer to 7.2 Bus Control for details)(4)					
P50 to P53	I/O port	Outputs \overline{RD} , \overline{WRL} , \overline{WRH} and BCLK or outputs \overline{RD} , \overline{BHE} , \overline{WR} and BCLK (Refer to 7.2 Bus Control for details)(3)					
P54	I/O port	HDLA (3)	HDLA (3)	HDLA (3)	HDLA (3)	HDLA (3)	HDLA (3)
P55	I/O port	HOLD	HOLD	HOLD	HOLD	HOLD	HOLD
P56	I/O port	ALE (3)	ALE (3)	ALE (3)	ALE (3)	ALE (3)	ALE (3)
P57	I/O port	RDY	RDY	RDY	RDY	RDY	RDY

NOTES:

4. The PM11 and PM10 bits in the PM1 register determine the CS signal and address bus.

The PM05 and PM04 bits cannot be set to "112" (access all CS areas using multiplexed bus) in microprocessor mode because the microcomputer starts operation using the separate bus after reset. When the PM05 and PM04 bits are set to "112" in memory expansion mode, the microcomputer accesses 64-Kbyte memory space per chip-select using the address bus .

These ports become address buses when accessing space using the separate bus.
 The PM15 and PM14 bits in the PM1 register determines which pin outputs the ALE signal. The PM02 bit in the PM0 register selects either "WRL,WRH" or "BHE,WR" combination. P56 provides an indeterminate output when the PM15 and PM14 bits to "002" (no ALE). It cannot be used as an I/O port.

7.2 Bus Control

Signals, required to access external devices, are provided and software wait states are inserted as follows. The signals are available in memory expansion mode and microprocessor mode only.

7.2.1 Address Bus and Data Bus

Address bus is a signal accessing 16-Mbyte space and uses 24 control pins; A0 to A22 and $\overline{\text{A23}}$. $\overline{\text{A23}}$ is the inversed output signal of the highest-order address bit.

Data bus is a signal for data input and output. The DS register selects an 8-bit data bus from Do to D7 or a 16-bit data bus from D0 to D15 for each external space. When applying a high-level ("H") signal to the BYTE pin, the data bus accessing the external memory space 3 becomes an 8-bit data bus after reset. When applying a low-level ("L") signal to the BYTE pin, the data bus accessing the external memory space 3 becomes the 16-bit data bus.

When changing single-chip mode to memory expansion mode, the address bus is in an indeterminate state until the microcomputer accesses an external memory space.

7.2.2 Chip-Select Signal

Chip-select signal shares pins with A20 to A22 and $\overline{\text{A23}}$. The PM11 and PM10 bits in the PM1 register determine which $\overline{\text{CS}}$ area is accessed and how many chip-select signals are output. A maximum of four chip-select signals can be output.

In microprocessor mode, no chip-select signal, aside from $\overline{A23}$ which can perform as a chip-select signal, is output after reset.

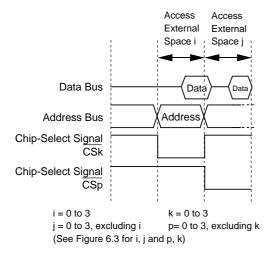
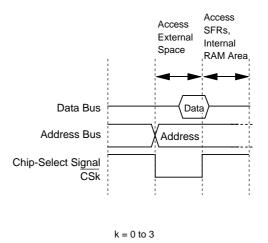
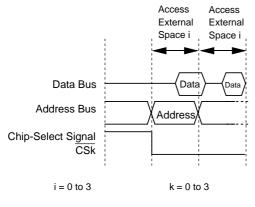

The chip-select signal becomes "L" while the microcomputer is accessing the external $\overline{\text{CSi}}$ area (i=0 to 3). It becomes "H" while the microcomputer is accessing other external memory space.

Figure 7.2 shows an example of the address bus and chip-select signal output.

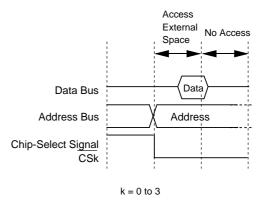

Example 1:

When the microcomputer accesses the external space j specified by another chip-select signal in the next cycle after having accessed the external space i, both address bus and chip-select signal change.


Example 2:

When the microcomputer accesses SFRs or the internal RAM area in the next cycle after having accessed an external space, the chip-select signal changes but the address bus does not.

Example 3:


When the microcomputer accesses the space i specified by the same chip-select signal in the next cycle after having accessed the external space i, the address bus changes but the chip-select signal does not.

(See Figure 6.3 for i and k)

Example 4:

When the microcomputer does not access any space in the next cycle after having accessed an external space (no pre-fetch of an instruction is generated), neither address bus nor chip-select signal changes.

NOTE:

The above applies to the address bus and chip-select signal in two consecutive cycles.
 By combining these examples, a chip-select signal added by two or more cycles may be output.

Figure 7.2 Address Bus and Chip-Select Signal Outputs (Separate Bus)

7.2.3 Read and Write Signals

When using a 16-bit data bus, the PM02 bit in the PM0 register selects a combination of the " \overline{RD} , \overline{WR} and \overline{BHE} " signals or the " \overline{RD} , \overline{WRL} and \overline{WRH} " signals to determine the read or write signal. When the DS3 to DS0 bits in the DS register are set to "0" (8-bit data bus), set the PM02 bit to "0" ($\overline{RD}/\overline{WR}/\overline{BHE}$). When any of the DS3 to DS0 bits are set to "1" (16-bit data bus) to access an 8-bit space, the combination of " \overline{RD} , \overline{WR} and \overline{BHE} " is automatically selected regardless of the PM02 bit setting. Tables 7.3 and 7.4 list each signal operation.

The RD, WR and BHE signals are combined for the read or write signal after reset.

When changing the combination of " \overline{RD} , \overline{WRL} and \overline{WRH} ", set the PM02 bit first to write data to an external memory.

Table 7.3 RD, WRL and WRH Signals

Data Bus	RD	WRL	WRH	Status of External Data Bus
	L	Н	Н	Read data
16 Bits	Н	L	Н	Write 1-byte data to even address
	Н	Н	L	Write 1-byte data to odd address
	Н	L	L	Write data to both even and odd addresses
8 Bits	Н	L(1)	Not used	Write 1-byte data
O DIIS	L	H ⁽¹⁾	Not used	Read 1-byte data

NOTE:

Table 7.4 RD, WR and BHE Signals

Data Bus	RD	WR	BHE	A0	Status of External Data Bus
	Н	L	L	Н	Write 1-byte data to odd address
	L	Н	L	Н	Read 1-byte data from odd address
16 Bits	Н	L	Н	L	Write 1-byte data to even address
TO DIG	L	Н	Н	L	Read 1-byte data from even address
	Н	L	L	L	Write data to both even and odd addresses
	L	Н	L	L	Read data from both even and odd addresses
8 Bits	Н	L	Not used	H/L	Write 1-byte data
	L	Н	Not used	H/L	Read 1-byte data

^{1.} The WR signal is used instead of the WRL signal.

7.2.4 Bus Timing

Bus cycle for the internal memory is basically one BCLK cycle. When the PM12 bit in the PM1 register is set to "1" (wait state), the bus cycles are two BCLK cycles.

Bus cycles for SFRs are basically two BCLK cycles. When the PM13 bit in the PM1 register is set to "1" (2 wait states), the bus cycles are three BCLK cycles.

Basic bus cycle for an external space is $2\emptyset$ ($1\emptyset+1\emptyset$) to read and to write. Bus cycle is selected by the EWCRi register (i=0 to 3) from 12 types of separate bus settings and 7 types of multiplexed bus settings. If the EWCRi04 to EWCRi00 bits are set to "000112" ($1\emptyset+3\emptyset$), bus cycles are four BCLK cycles.

Figure 7.3 shows the EWCRi register. Figures 7.4 to 7.8 show bus timing in an external space.

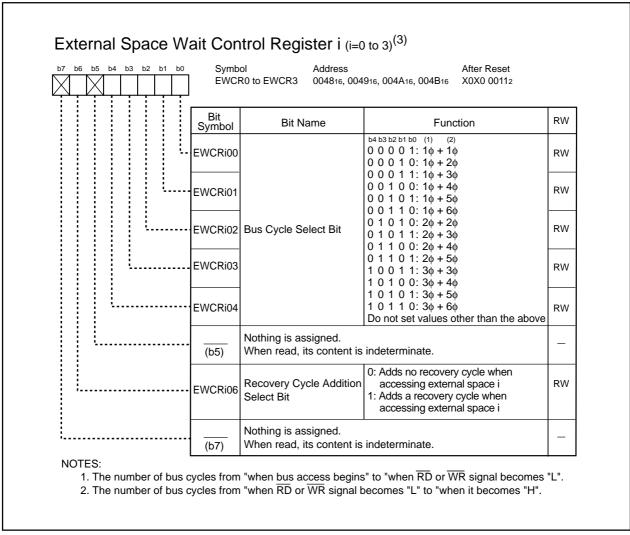


Figure 7.3 EWCR0 to EWCR3 Registers

Table 7.5 Software Wait State and Bus Cycle

Snoos	External Bus Status	PM1 Register		EWCRi Register (i=0 to 3)	Bus Cycles
Space		PM13 Bit	PM12 Bit	EWCRi04 to EWCRi00 Bits	Dus Gycles
SFRs		0			2 BCLK cycles
SFRS		1			3 BCLK cycles
Internal RAM			0	<u></u>	1 BCLK cycles
Internal NAIVI			1		2 BCLK cycles
				000012	2 BCLK cycles
				000102	3 BCLK cycles
				000112	4 BCLK cycles
				001002	5 BCLK cycles
	Separate Bus			001012	6 BCLK cycles
				001102	7 BCLK cycles
				010102	4 BCLK cycles
				010112	5 BCLK cycles
				011002	6 BCLK cycles
External Memory				100112	6 BCLK cycles
				101002	7 BCLK cycles
				101102	9 BCLK cycles
				010102	4 BCLK cycles
				010112	5 BCLK cycles
				011012	7 BCLK cycles
	Multiplexed Bus			100112	6 BCLK cycles
				101002	7 BCLK cycles
				101012	8 BCLK cycles
				101102	9 BCLK cycles

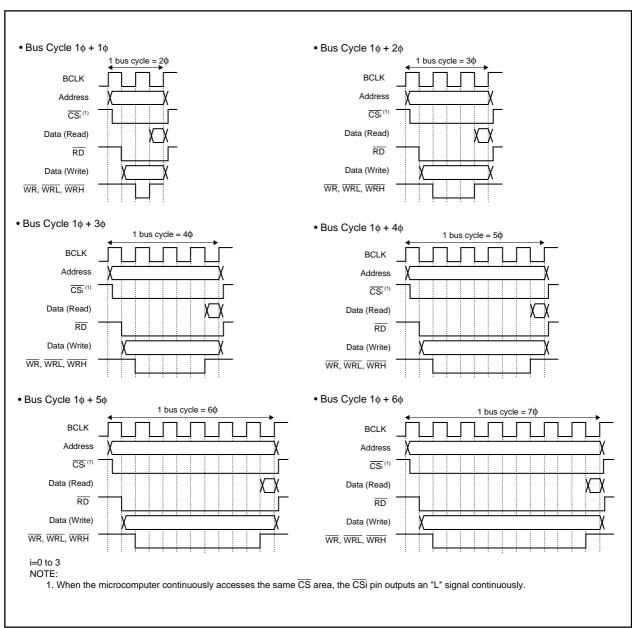


Figure 7.4 Bus Cycle with Separate Bus (1)

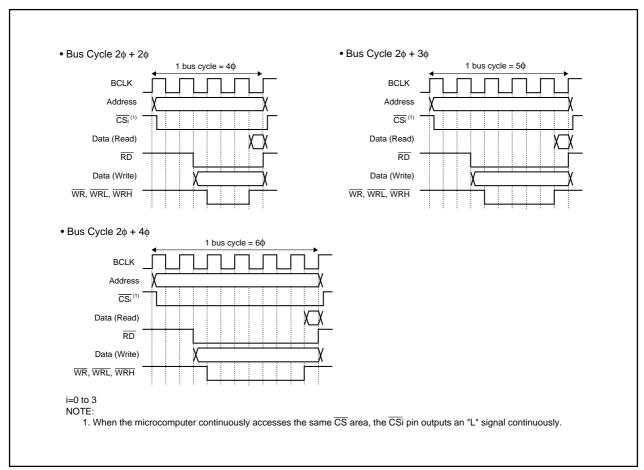


Figure 7.5 Bus Cycle with Separate Bus (2)

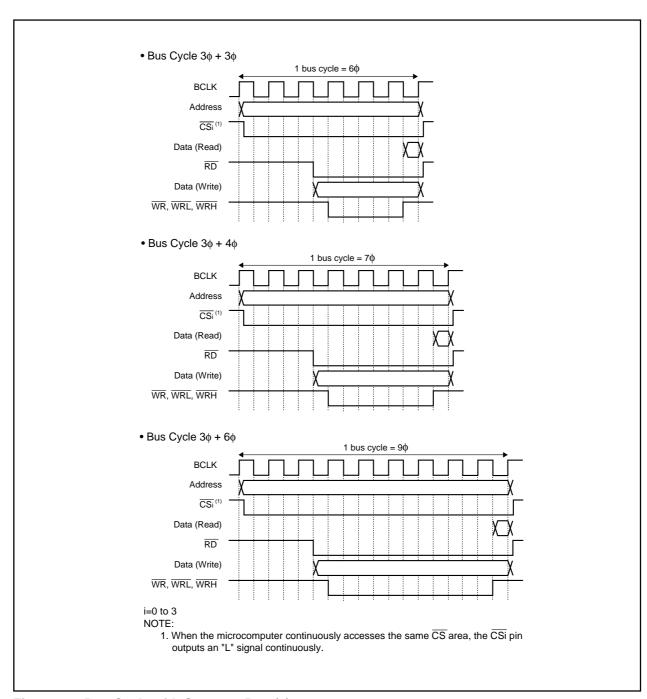


Figure 7.6 Bus Cycle with Separate Bus (3)

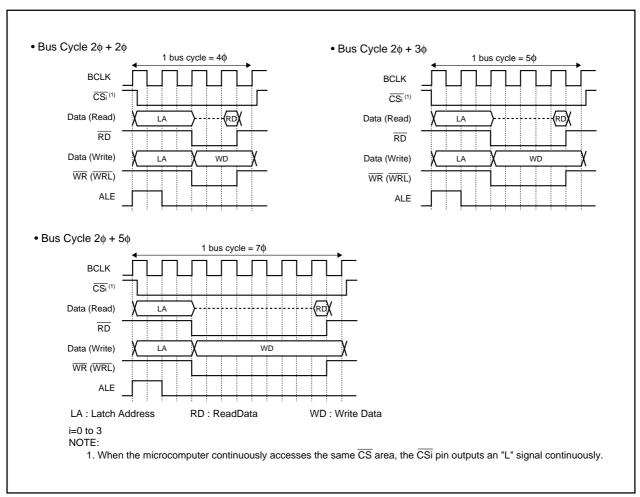


Figure 7.7 Bus Cycle with Multiplexed Bus (1)

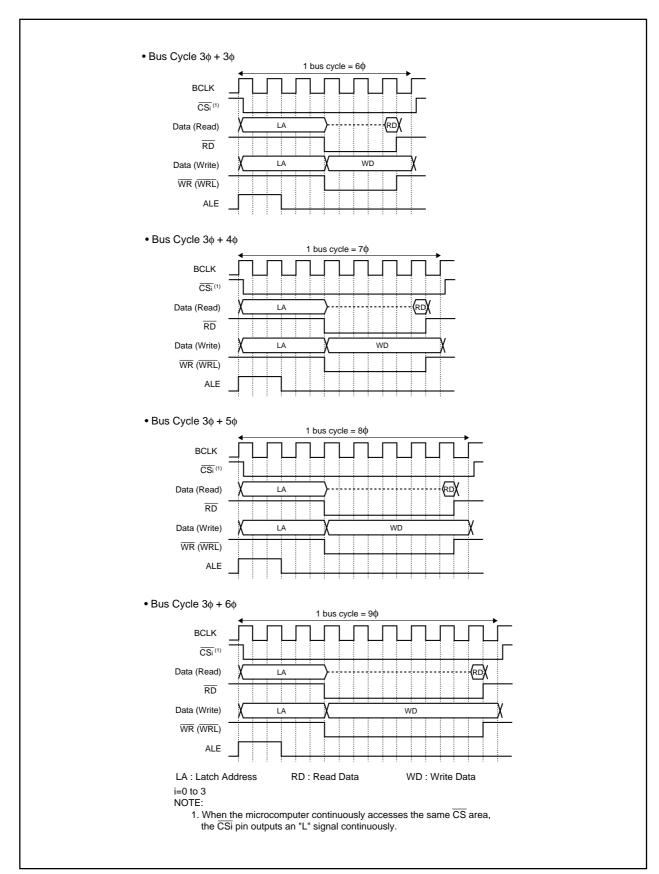


Figure 7.8 Bus Cycle with Multiplexed Bus (2)

7.2.4.1 Bus Cycle with Recovery Cycle Added

The EWCRi06 bit in the EWCRi register (i=0 to 3) determines whether the recovery cycle is added or not. In the recovery cycle, addresses and wrie data outputs are provided continuously (using the separate bus only). Devices, which take longer address hold time and data hold time to write data, are connectable.

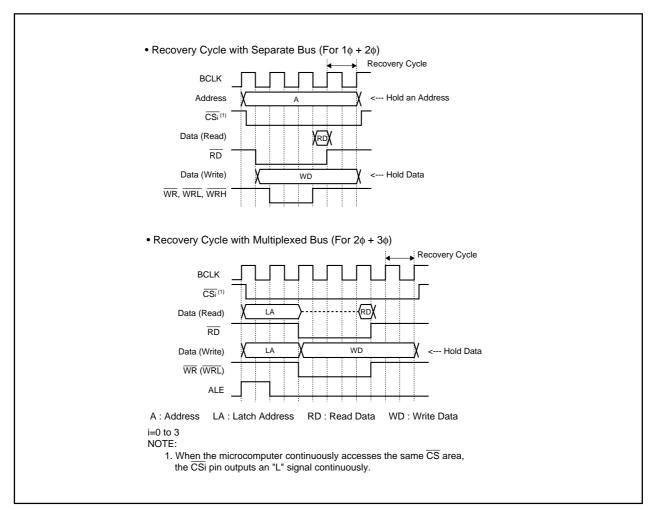


Figure 7.9 Recovery Cycle

7.2.5 ALE Signal

The ALE signal latches an address of the multiplexed bus. Latch an address on the falling edge of the ALE signal. The PM15 and PM14 bits in the PM1 register determine the output pin for the ALE signal. The ALE signal is output to internal space and external space.

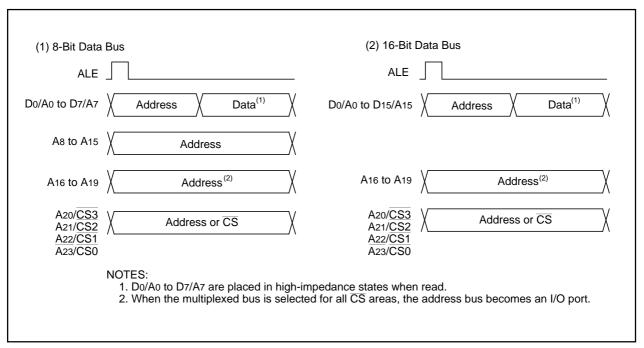


Figure 7.10 ALE Signal and Address/Data Bus

7.2.6 RDY Signal

The \overline{RDY} signal facilitates access to external devices requiring longer access time. When a low-level ("L") signal is applied to the \overline{RDY} pin on the falling edge of the last BCLK of the bus cycle, wait states are inserted into the bus cycle. When a high-level ("H") signal is applied to the \overline{RDY} pin on the falling edge of BCLK, the bus cycle starts running again.

Table 7.6 lists microcomputer states when the \overline{RDY} signal inserts wait states into the bus cycle. Figure 7.11 shows an example of the \overline{RD} signal that is extended by the \overline{RDY} signal.

Table 7.6 Microcomputer States in Wait State(1)

Item	State				
Oscillation	On				
RD Signal, WR Signal, Address Bus, Data Bus, CS, ALE Signal, HLDA, Programmable I/O Ports	Maintains the same state as when RDY signal was received				
Internal Peripheral Circuits	On				

NOTE:

1. The RDY signal cannot be accepted immediately before software wait states are inserted.

M32C/80 Group 7. Bus

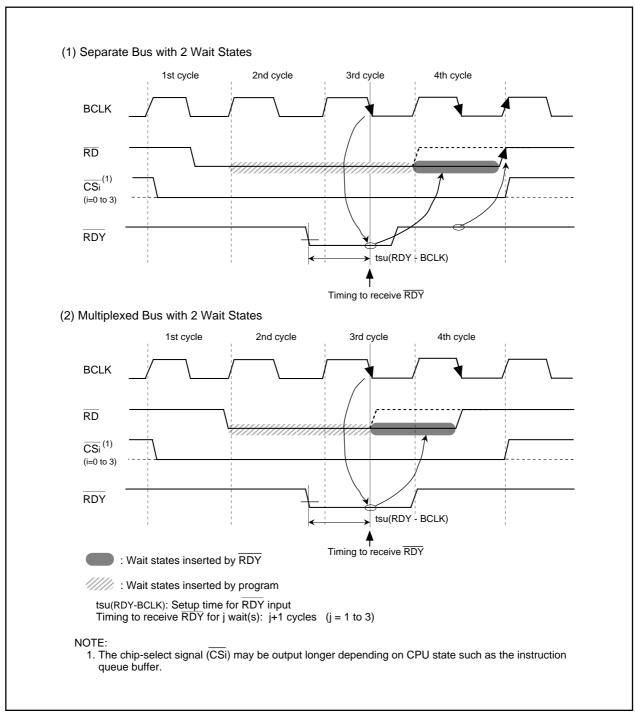


Figure 7.11 RD Signal Output Extended by RDY Signal

M32C/80 Group 7. Bus

7.2.7 HOLD Signal

The HOLD signal transfers bus privileges from the CPU to external circuits. When a low-level ("L") signal is applied to the HOLD pin, the microcomputer enters a hold state after bus access is completed. While the HOLD pin is held "L", the microcomputer is in a hold state and the HLDA pin outputs an "L" signal.

Table 7.7 shows the microcomputer status in a hold state.

Bus is used in the following priority order: HOLD, DMAC, CPU.

HOLD > DMAC > CPU

Figure 7.12 Bus Priority Order

Table 7.7 Microcomputer Status in Hold State

Item	Status
Oscillation	On
RD Signal, WR Signal, Address Bus, Data Bus, CS, BHE	High-impedance
Programmable I/O Ports	Maintains the same state as when HOLD signal was received
HLDA	Outputs "L"
Internal Peripheral Circuits	On (excluding the watchdog timer)
ALE Signal	Outputs "L"

7.2.8 External Bus Status when Accessing Internal Space

Table 7.8 shows external bus states when an internal space is accessed.

Table 7.8 External Bus States when Accessing Internal Space

Item		State when Accessing SFRs, Internal ROM, and Internal RAM	
Address B	Bus	Holds address of external space last accessed	
Data	When Reading	High-impedance	
Bus When Writing		High-impedance	
RD, WR, WRL, WRH		Outputs "H"	
BHE		Holds state of external space last accessed	
CS		Outputs "H"	
ALE		Outputs ALE	

7.2.9 BCLK Output

The CPU clock operates the CPU. P53 outputs the CPU clock signal as BCLK when the PM07 bit in the PM0 register is set to "0" (BCLK) and the CM01 and CM00 bits in the CM0 register are set to "002" (I/O port P53).

No BCLK is output in single-chip mode. Refer to 8. Clock Generation Circuit for details.

8. Clock Generation Circuit

8.1 Types of the Clock Generation Circuit

Four circuits are included to generate the system clock signal:

- · Main clock oscillation circuit
- Sub clock oscillation circuit
- On-chip oscillator
- PLL frequency synthesizer

Table 8.1 lists specifications of the clock generation circuit. Figure 8.1 shows a block diagram of the clock generation circuit. Figures 8.2 to 8.8 show registers controlling the clock.

Table 8.1 Clock Generation Circuit Specifications

Item	Main Clock Oscillation Circuit	Sub Clock Oscillation Circuit	On-chip Oscillator	PLL Frequency Synthesizer
Use	CPU clock source, Peripheral function clock source	CPU clock source, Timer A and B clock source	CPU clock source, Peripheral function clock source	CPU clock source, Peripheral function clock source
Clock Frequency	Up to 32 MHz	32.768 kHz	Approx. 1 MHz	Up to 32 MHz (See Table 8.3)
Connectable Osillator or Additional Circuit	Ceramic resonator Crystal oscillator	Crystal oscillator		
Pins for Oscillator or for Additional Circuit	XIN, XOUT	Xcin, Xcout		
Oscillation Stop / Restart Function	Available	Available	Available	Available
Oscillator State after Reset	Oscillating	Stopped	Stopped	Stopped
Other	Externally generated clock can be applied.	Externally generated clock can be applied.	When the main clock stops oscillating, the on-chip oscillator starts oscillating auto- matically and becomes clock source for the CPU and peripheral function.	

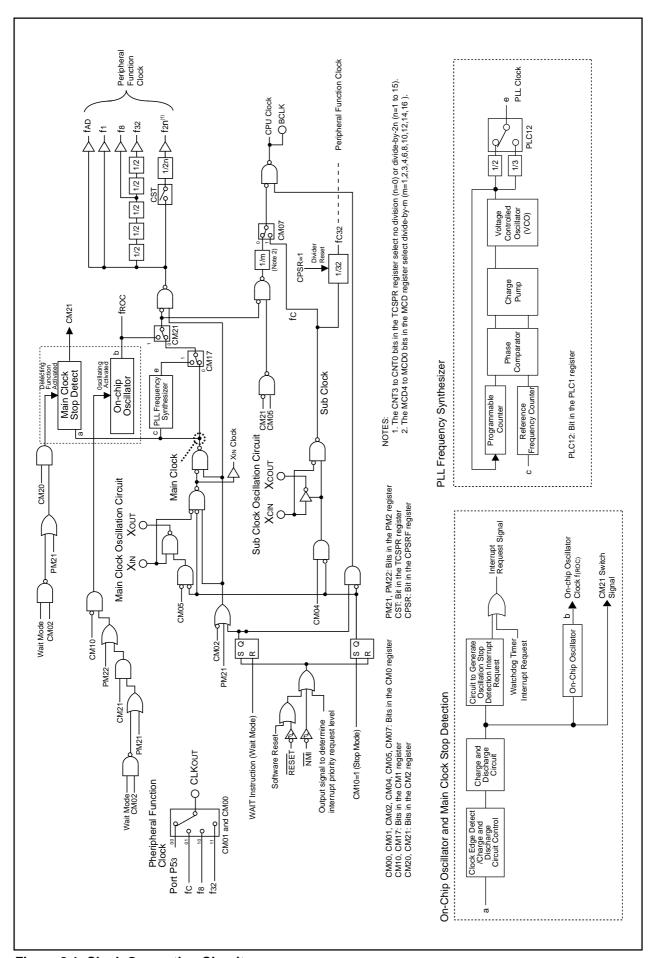
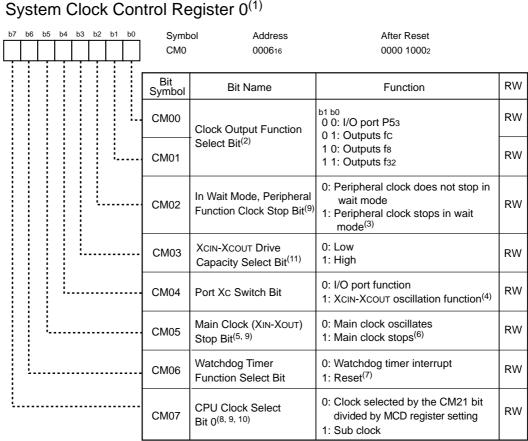
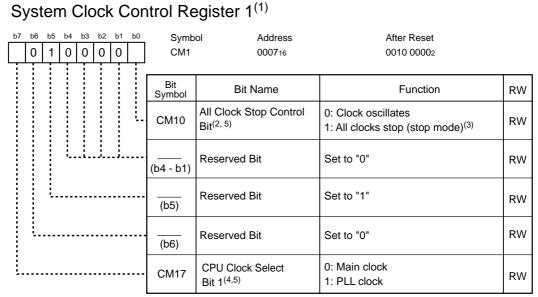




Figure 8.1 Clock Generation Circuit

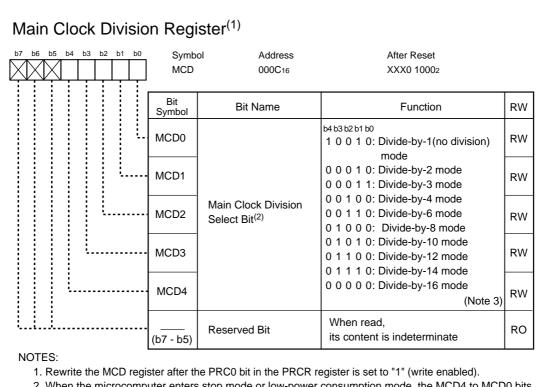

- 1. Rewrite the CM0 register after the PRC0 bit in the PRCR register is set to "1" (write enabled).
- 2. When the PM07 bit in the PM0 register is set to "0" (BCLK output), set the CM01 and CM00 bits to "002". When the PM15 and PM14 bits in the PM1 register are set to "012" (ALE output to P53), set the CM01 and CM00 bits to "002". When the PM07 bit is set to "1" (function selected in the CM01 and CM00 bits) in microprocessor or memory expansion mode, and the CM01 and CM00 bits are set to "002", an "L" signal is output from port P53 (port P53 does not function as an I/O port).
- fc32 does not stop running. When the CM02 bit is set to "1", the PLL clock cannot be used in wait mode.
- 4. When setting the CM04 bit is set to "1", set the PD8_7 and PD8_6 bits in the PD8 register to "002" (port P87 and P86 in input mode) and the PU25 bit in the PUR2 register to "0" (no pull-up).
- 5. When entering low-power consumption mode or on-chip oscillator low-power consumption mode, the CM05 bit stops running the main clock. The CM05 bit cannot detect whether the main clock stops or not. To stop running the main clock, set the CM05 bit to "1" after the CM07 bit is set to "1" with a stable sub clock oscillation or after the CM21 bit in the CM2 register is set to "1" (on-chip oscillator clock). When the CM05 bit is set to "1", the clock applied to XOUT becomes "H". The built-in feedback resistor remains ON. XIN is pulled up to XOUT ("H" level) via the feedback resistor.
- 6. When the CM05 bit is set to "1", the MCD4 to MCD0 bits in the MCD register are set to "010002" (divide-by-8 mode). In on-chip oscillation mode, the MCD4 to MCD0 bits are not set to "010002" even if the CM05 bit terminates XIN-XOUT.
- 7. Once the CM06 bit is set to "1", it cannot be set to "0" by program.
- 8. After the CM04 bit is set to "1" with a stable sub clock oscillation, set the CM07 bit to "1" from "0". After the CM05 bit is set to "0" with a stable main clock oscillation, set the CM07 bit to "0" from "1". Do not set the CM07 bit and CM04 or CM05 bit simultaneously.
- When the PM21 bit in the PM2 register is set to "1" (clock change disabled), the CM02, CM05 and CM07 bits do not change even when written.
- 10. After the CM07 bit is set to "0", set the PM21 bit to "1".
- 11. When stop mode is entered, the CM03 bit is set to "1".

Figure 8.2 CM0 Register

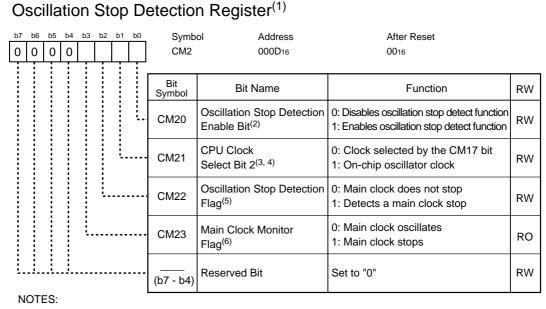

- 1. Rewrite the CM1 register after the PRC0 bit in the PRCR register is set to "1" (write enabled).
- 2. When the CM10 bit is set to "1", the clock applied to XOUT becomes "H" and the built-in feedback resistor is disabled. XIN, XCIN and XCOUT are placed in high-impedance states.
- 3. When the CM10 bit is set to "1", the MCD4 to MCD0 bits in the MCD register are set to "010002" (divide-by-8 mode). When the CM20 bit is set to "1" (oscillation stop detect function enabled) or the CM21 bit to "1" (on-chip oscillator selected), do not set the CM10 bit to "1".
- 4. The CM17 bit setting is enabled only when the CM21 bit in the CM2 register is set to "0". Use the procedure shown in Figure 8.12 to set the CM17 bit to "1".
- 5. If the PM21 bit in the PM2 register is set to "1" (clock change disabled), the CM10 and CM17 bits do not change when written.
 - If the PM22 bit in the PM2 register is set to "1" (on-chip oscillator clock as watchdog timer count source), the CM10 bit setting does not change when written.

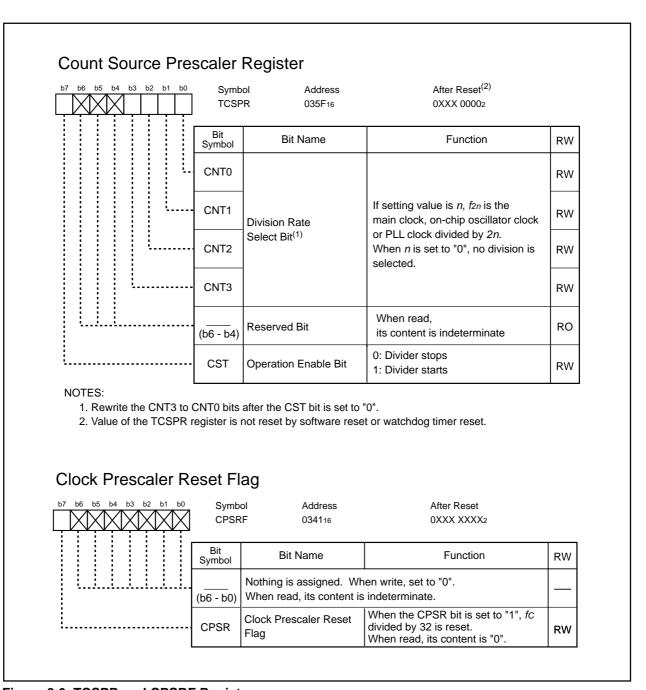
Figure 8.3 CM1 Register

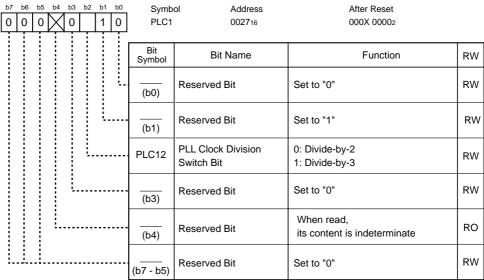
- When the microcomputer enters stop mode or low-power consumption mode, the MCD4 to MCD0 bits are set to "010002".
 - The MCD4 to MCD0 bits are not set to "010002" even if the CM05 bit in the CM0 register is set to "1" (XIN-XOUT stopped) in on-chip oscillator mode.
- 3. Bit combinations cannot be set not listed above.

Figure 8.4 MCD Register

- 1. Rewrite the CM2 register after the PRC0 bit in the PRCR register is set to "1" (write enabled).
- 2. If the PM21 bit in the PM2 register is set to "1" (clock change disabled), the CM20 bit setting does not change when written.
- 3. When a main clock oscillation stop is detected while the CM20 bit is set to "1", the CM21 bit is set to "1". Although the main clock starts oscillating, the CM21 bit is not set to "0". If the main clock is used as a CPU clock source after the main clock resumes oscillating, set the CM21 bit to "0" by program.
- 4. When the CM20 bit is set to "1" and the CM22 bit is set to "1", do not set the CM21 bit to "0".
- 5. When a main clock stop is detected, the CM22 bit is set to "1". The CM22 bit can only be set to "0", not "1", by program.
 - If the CM22 bit is set to "0" by program while the main clock stops, the CM22 bit cannot be set to "1" until the next main clock stop is detected.
- Determine the main clock state by reading the CM23 bit several times after the oscillation stop detection interrupt is generated.

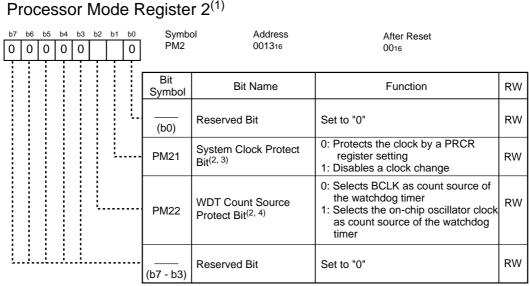
Figure 8.5 CM2 Register




Figure 8.6 TCSPR and CPSRF Registers

PLL Control Register 0^(1, 2, 5) Symbol Address After Reset 1 0 1 PLC0 002616 0001 X0102 Bit Symbol Bit Name **Function** RW PLC00 RW 0 1 1: Multiply-by-6 Programmable Counter 1 0 0: Multiply-by-8 PLC01 RW Select Bit(3) Do not set to values other than the above PLC02 RW When read, Reserved Bit RO its content is indeterminate (b3)Set to "1" RW Reserved Bit (b4) RW Reserved Bit Set to "0" (b5) Reserved Bit Set to "1" RW (b6) 0: PLL is Off PLC07 Operation Enable Bit(4) RW 1: PLL is On

NOTES:


- 1. Rewrite the PLC0 register after the PRC0 bit in the PRCR register is set to "1" (write enabled).
- 2. If the PM21 bit in the PM2 register is set to "1" (clock change disabled), the PLC0 register setting does not change when written.
- 3. Set the PLC02 to PLC00 bits when the PLC07 bit is set to "0". Once these bits are set, they cannot be changed.
- 4. Set the CM17 bit in the CM1 register to "0" (main clock as CPU clock source) and the PLC07 bit to "0" before entering wait or stop mode.
- 5. Set the PLC0 and PLC1 registers simultaneously in 16-bit units.

PLL Control Register 1^(1, 2, 3, 4)

- 1. Rewrite the PLC1 register after the PRC0 bit in the PRCR register is set to "1" (write enabled).
- 2. If the PM21 bit in the PM2 register is set to "1" (clock change disabled), the PLC1 register does not change when written.
- 3. Set the PLC1 register when the PLC07 bit is set to "0" (PLL off).
- 4. Set the PLC0 and PLC1 registers simultaneously in 16-bit units.

Figure 8.7 PLC0 and PLC1 Registers

NOTES:

- 1. Rewrite the PM2 register after the PRC1 bit in the PRCR register is set to "1" (write enabled).
- 2. Once the PM22 and PM21 bits are set to "1", they can not be set to "0" by program.
- 3. When the PM21 bit is set to "1",

the CPU clock keeps running when the WAIT instruction is executed; nothing is changed even if following bits are set to either "0" or "1".

- the CM02 bit in the CM0 register (the peripheral function clock is not stopped in wait mode.)
- the CM05 bit in the CM0 register (the main clock is not stopped.)
- the CM07 bit in the CM0 register (a CPU clock source is not changed.)
- the CM10 bit in the CM1 register (the microcomputer does not enter stop mode.)
- the CM17 bit in the CM1 register (a CPU clock source is not changed.)
- the CM20 bit in the CM2 register (oscillation stop detect function settings are not changed.)
- all bits in the PLC0 and PLC1 registers (PLL frequency synthesizer function settings are not changed.)
- 4. When the PM22 bit is set to "1",

the on-chip oscillator clock becomes a count source of the watchdog timer after the on-chip oscillator starts; write to the CM10 bit is disabled (the microcomputer does not enter stop mode.);

the watchdog timer keeps running when the microcomputer is in wait mode and hold state.

Figure 8.8 PM2 Register

8.1.1 Main Clock

Main clock oscillation circuit generates the main clock. The main clock becomes clock source of the CPU clock and peripheral function clock.

The main clock oscillation circuit is configured by connecting an oscillator or resonator between the XIN and XOUT pins. The circuit has a built-in feedback resistor. The feedback resistor is separated from the oscillation circuit in stop mode to reduce power consumption. An external clock can be applied to the XIN pin in the main clock oscillation circuit. Figure 8.9 shows an example of a main clock circuit connection. Circuit constants vary depending on each oscillator. Use the circuit constant recommended by each oscillator manufacturer.

The main clock divided-by-eight becomes a CPU clock source after reset.

To reduce power consumption, set the CM05 bit in the CM0 register to "1" (main clock stopped) after switching the CPU clock source to the sub clock or on-chip oscillator clock. In this case, the clock applied to XOUT becomes high ("H"). XIN is pulled up by XOUT via the feedback resistor which remains on. When an external clock is applied to the XIN pin, do not set the CM05 bit to "1".

All clocks, including the main clock, stop in stop mode. Refer to **8.5 Power Consumption Control** for details.

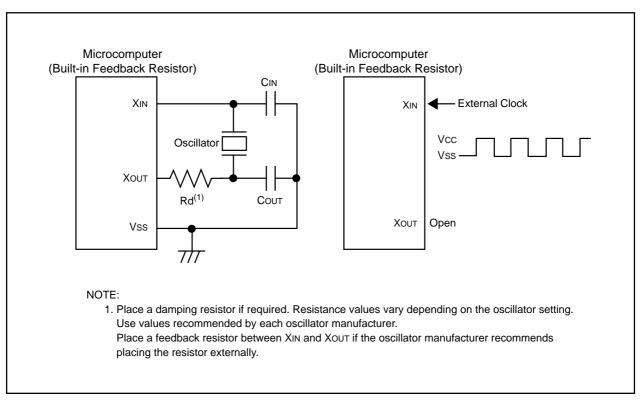


Figure 8.9 Main Clock Circuit Connection

8.1.2 Sub Clock

Sub clock oscillation circuit generates the sub clock. The sub clock becomes clock source of the CPU clock and for the timers A and B. The same frequency, fc, as the sub clock can be output from the CLKOUT pin.

The sub clock oscillation circuit is configured by connecting a crystal oscillator between the XCIN and XCOUT pins. The circuit has a built-in feedback resistor. The feedback resistor is separated from the oscillation circuit in stop mode to reduce power consumption. An external clock can be applied to the XCIN pin. Figure 8.10 shows an example of a sub clock circuit connection. Circuit constants vary depending on each oscillator. Use the circuit constant recommended by each oscillator manufacturer.

The sub clock stops after reset. The feedback resistor is separated from the oscillation circuit. When the PD8_6 and PD8_7 bits in the PD8 register are set to "0" (input mode) and the PU25 bit in the PUR2 register is set to "0" (no pull-up), set the CM04 bit in the CM0 register to "1" (XCIN-XCOUT oscillation function). The sub clock oscillation circuit starts oscillating. To apply an external clock to the XCIN pin, set the CM04 bit to "1" when the PD8_7 bit is set to "0" and the PU25 bit to "0". The clock applied to the XCIN pin becomes a clock source of the sub clock.

When the CM07 bit in the CM0 register is set to "1" (sub clock) after the sub clock oscillation has stabilized, the sub clock becomes a CPU clock source.

All clocks, including the sub clock, stop in stop mode. Refer to **8.5 Power Consumption Control** for details.

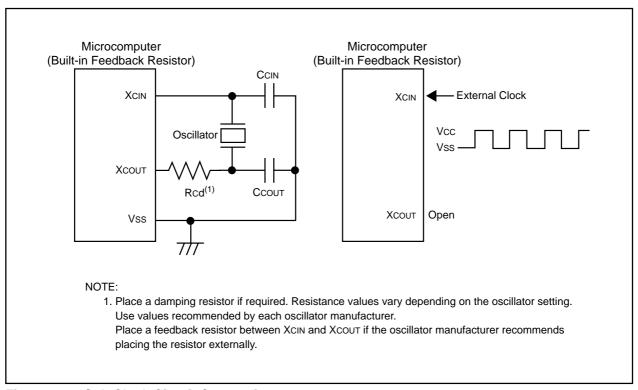


Figure 8.10 Sub Clock Circuit Connection

8.1.3 On-Chip Oscillator Clock

On-chip oscillator generates the on-chip oscillator clock. The 1-MHz on-chip oscillator clock becomes a clock source of the CPU clock and peripheral function clock.

The on-chip oscillator clock stops after reset. When the CM21 bit in the CM2 register is set to "1" (on-chip oscillator clock), the on-chip oscillator starts oscillating. Instead of the main clock, the on-chip oscillator clock becomes clock source of the CPU clock and peripheral function clock.

Table 8.2 shows bit settings for on-chip oscillator start condition.

Table 8.2 Bit Settings for On-Chip Oscillator Start Condition

CM2 Register	PM2 Register	- Used as	
CM21 Bit	PM22 Bit		
1	0	CPU clock source or peripheral function clock source	
0	1	Watchdog timer operating clock source (The clock keeps running when entering stop mode.)	

8.1.3.1 Oscillation Stop Detect Function

When the main clock is terminated by external source, the on-chip oscillator automatically starts oscillating to generate another clock.

When the CM 20 bit in the CM2 registser is set to "1" (oscillation stop detect function enabled), an oscillation stop detection interrupt request is generated as soon as the main clock stops. Simultaneously, the onchip oscillator starts oscillating. Instead of the main clock, the on-chip oscillator clock becomes clock source for the CPU clock and peripheral function clock. Associated bits are set as follows:

- The CM21 bit is set to "1" (on-chip oscillator clock becomes a clock source of the CPU clock.)
- The CM22 bit is set to "1" (main clock stop is detected.)
- The CM23 bit is set to "1" (main clock stops.) (See Figure 8.14)

8.1.3.2 How to Use Oscillation Stop Detect Function

- The oscillation stop detection interrupt shares vectors with the watchdog timer interrupt and the low voltage detection interrupt. When these interrupts are used simultaneously, read the CM22 bit with an interrupt routine to determine if an oscillation stop detection interrupt request has been generated.
- When the main clock resumes running after an oscillation stop is detected, set the main clock as clock source of the CPU clock and peripheral function clock. Figure 8.11 shows the procedure to switch the on-chip oscillator clock to the main clock.
- In low-speed mode, when the main clock is stopped by setting the CM20 bit to "1", the oscillation stop detection interrupt request is generated. Simultaneously, the on-chip oscillator starts oscillating. The sub clock remains the CPU clock source. The on-chip oscillator clock becomes a clock source for the peripheral function clock.
- When the peripheral function clock stops running, the oscillation stop detect function is also disabled. To enter wait mode while the oscillation stop detect function is in use, set the CM02 bit in the CM0 register to "0" (peripheral clock does not stop in wait mode).
- The oscillation stop detect function is provided to handle main clock stop caused by external source. Set the CM20 bit to "0" (oscillation stop detect function disabled) when the main clock is terminated by program, i.e., entering stop mode or setting the CM05 bit to "1" (main clock oscillation stop).
- When the main clock frequency is 2 MHz or less, the oscillation stop detect function is not available. Set the CM20 bit to "0".

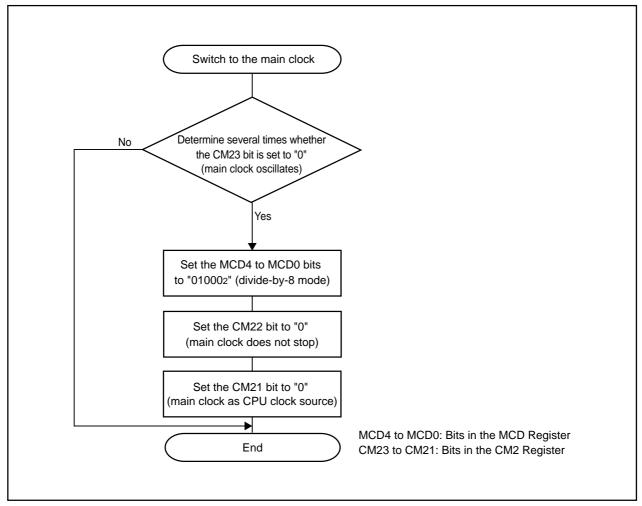


Figure 8.11 Switching Procedure from On-chip Oscillator Clock to Main Clock

8 MHz

1

8.1.4 PLL Clock

The PLL frequency synthesizer generates the PLL clock based on the main clock. The PLL clock can be used as clock source for the CPU clock and peripheral function clock.

The PLL frequency synthesizer stops after reset. When the PLC07 bit is set to "1" (PLL on), the PLL frequency synthesizer starts operating. Wait *tsu(PLL)* ms for the PLL clock to stabilize.

The PLL clock can either be the clock output from the voltage controlled oscillator (VCO) divided-by-2 or divided-by-3. When the PLL clock is used as a clock source for the CPU clock or peripheral function clock, set each bit as is shown in Table 8.3. Figure 8.12 shows the procedure to use the PLL clock as the CPU clock source.

To enter wait or stop mode, set the CM17 bit to "0" (main clock as CPU clock source), set the PLC07 bit in the PLC0 register to "0" (PLL off) and then enter wait or stop mode.

1

21.3 MHz

	f(XIN)	PLC0 Register			PLC1 Register	PLL Clock
	I(XIIV)	PLC02 Bit	PLC01 Bit	PLC00 Bit	PLC12 Bit	I LL OIOCK
	10 MHz	0	1 1		0	30 MHz
	10 1011 12	0	'	'	1	20 MHz
1					0	32 MHz

0

Table 8.3 Bit Settings to Use PLL Clock as CPU Clock Source

0

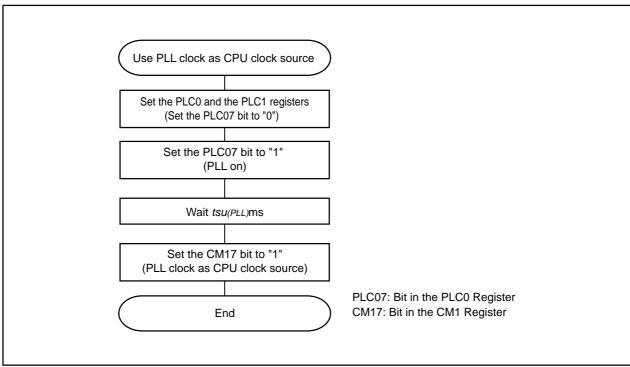


Figure 8.12 Procedure to Use PLL Clock as CPU Clock Source

8.2 CPU Clock and BCLK

The CPU operating clock is referred to as the CPU clock. The CPU clock is also a count source for the watchdog timer. After reset, the CPU clock is the main clock divided-by-8. In memory expansion or microprocessor mode, the clock having the same frequency as the CPU clock can be output from the BCLK pin as BCLK. Refer to **8.4 Clock Output Function** for details.

The main clock, sub clock, on-chip oscillator clock or PLL clock can be selected as a clock source for the CPU clock. Table 8.4 shows CPU clock source and bit settings.

When the main clock, on-chip oscillator clock or PLL clock is selected as a clock source of the CPU clock, the selected clock divided-by-1 (no division), -2, -3, -4, -6, -8, -10, -12, -14 or -16 becomes the CPU clock. The MCD4 to MCD0 bits in the MCD register select the clock division.

When the microcomputer enters stop mode or low-power consumption mode (except when the on-chip oscillator clock is the CPU clock), the MCD4 to MCD0 bits are set to "010002" (divide-by-8 mode). Therefore, when the main clock starts running, the CPU clock enters medium-speed mode (divide-by-8).

Table 8.4	CPU	Clock Source	and	Bit Settings
-----------	-----	--------------	-----	--------------

CPU Clock Source	CM0 Register	CM1 Register	CM2 Register
Ci o clock source	CM07 Bit	CM17 Bit	CM21 Bit
Main Clock	0	0	0
Sub Clock	1	0	0
On-Chip Oscillator Clock	0	0	1
PLL Clock	0	1	0

8.3 Peripheral Function Clock

The peripheral function clock becomes an operating clock or count source for peripheral functions excluding the watchdog timer.

8.3.1 f1, f8, f32 and f2n

f1, f8 and f32 are the peripheral function clock, selected by the CM21 bit, divided-by-1, -8, or -32. The PM27 and PM26 bits in the PM2 register selects a f2n count source from the peripheral clock, XIN clock, and the on-chip oscillator clock. The CNT3 to CNT0 bits in the TCSPR register selects a f2n division. (n=0 to 15. No division when n=0.)

f1, f8, f32 and f2n stop when the CM02 bit in the CM0 register to "1" (peripheral function stops in wait mode) to enter wait mode or when in low-power consumption mode.

f1, f8 and f2n are used as an operating clock of the serial I/O and count source of the timers A and B. f1 is also used as an operating clock for the intelligent I/O.

The CLKOUT pin outputs f8 and f32. Refer to **8.4 Clock Output Function** for details.

8.3.2 fAD

fAD is an operating clock for the A/D converter and has the same frequency as either the main clock⁽¹⁾ or the on-chip oscillator clock. The CM21 bit determines which clock is selected.

If the CM02 bit is set to "1" (peripheral function stop in wait mode) to enter wait mode, fAD stops. fAD also stops in low-power consumption mode.

NOTE:

1. The PLL clock, instead of the main clock, when the CM17 bit is set to "1" (PLL clock).

8.3.3 fC32

fC32 is the sub clock divided by 32. fC32 is used as a count source for the timers A and B. fC32 is available when the sub clock is running.

8.4 Clock Output Function

The CLKOUT pin outputs fc, f8 or f32.

In memory expansion mode or microprocessor mode, a clock having the same frequency as the CPU clock can be output from the BCLK pin as BCLK.

Table 8.5 lists CLKout pin function in single-chip mode. Table 8.6 lists CLKout pin function in memory expansion mode and microprocessor mode.

Table 8.5 CLKout Pin in Single-Chip Mode

PM0 Register (1)	CM0 Register (2)		OLKOUT Die Franction
PM07 Bit	CM01 Bit	CM00 Bit	CLKOUT Pin Function
	0	0	P53 I/O port
1	0	1	Outputs fc
1	1	0	Outputs f8
1	1	1	Outputs f32

^{-:} Can be set to either "0" or "1"

NOTES:

- 1. Rewrite the PM0 register after the PRC1 bit in the PRCR register is set to "1" (write enabled).
- 2. Rewrite the CM0 register after the PRC0 bit in the PRCR register is set to "1" (write enabled).

Table 8.6 CLKout Pin in Memory Expansion Mode and Microprocessor Mode

PM1 Reg	ister ⁽¹⁾	PM0 Register ⁽¹⁾	CM0 Register ⁽²⁾		CLKOUT Pin Function
PM15 Bit	PM14 Bit	PM07 Bit	CM01 Bit	CM00 Bit	CERCOTT IIIT diretion
		0	0 (3)	0 (3)	Outputs BCLK
		1	0	0	Outputs "L" (not P53)
002, 102, 112,		1	0	1	Outputs fc
		1	1	0	Outputs f8
		1	1	1	Outputs f32
0	1		0 (3)	0 (3)	Outputs ALE

^{-:} Can be set to either "0" or "1"

- 1. Rewrite the PM1 and PM0 registers after the PRC1 bit in the PRCR register is set to "1" (write enabled).
- 2. Rewrite the CM0 register after the PRC0 bit in the PRCR register is set to "1" (write enabled).
- 3. When the PM07 bit is set to "0" (selected in the CM01 and CM00 bits) or the PM15 and PM14 bits are set to "012" (P53/BCLK), set the CM01 and CM00 bits to "002" (I/O port P53).

8.5 Power Consumption Control

Normal operating mode, wait mode and stop mode are provided as the power consumption control. All mode states, except wait mode and stop mode, are called normal operating mode in this section. Figure 8.13 shows a block diagram of status transition in wait mode and stop mode. Figure 8.14 shows a block diagram of status transition in all modes.

8.5.1 Normal Operating Mode

The normal operating mode is further separated into six modes.

In normal operating mode, the CPU clock and peripheral function clock are supplied to operate the CPU and peripheral function. The power consumption control is enabled by controlling a CPU clock frequency. The higher the CPU clock frequency is, the more processing power increases. The lower the CPU clock frequency is, the more power consumption decreases. When unnecessary oscillation circuit stops, power consumption is further reduced.

8.5.1.1 High-Speed Mode

The main clock⁽¹⁾ becomes the CPU clock and a clock source of the peripheral function clock. When the sub clock runs, fC32 can be used as a count source for the timers A and B.

8.5.1.2 Medium-Speed Mode

The main clock⁽¹⁾ divided-by-2, -3, -4, -6, -8, -10, -12, -14, or -16 becomes the CPU clock. The main clock⁽¹⁾ is a clock source for the peripheral function clock. When the sub clock runs, fc32 can be used as a count source for the timers A and B.

8.5.1.3 Low-Speed Mode

The sub clock becomes the CPU clock . The main $\operatorname{clock}^{(1)}$ is a clock source for the peripheral function clock. fc32 can be used as a count source for the timers A and B.

8.5.1.4 Low-Power Consumption Mode

The microcomputer enters low-power consumption mode when the main clock stops in low-speed mode. The sub clock becomes the CPU clock. Only fc32 can be used as a count source for the timers A and B and the peripheral function clock. In low-power consumption mode, the MCD4 to MCD0 bits in the MCD register are set to "010002" (divide-by-8 mode). Therefore, when the main clock resumes running, the microcomputer is in midium-speed mode (divide-by-8 mode).

8.5.1.5 On-Chip Oscillator Mode

The on-chip oscillator clock divided-by-1 (no division), -2, -3, 4-, -6, -8, -10, -12, -14, or -16 becomes the CPU clock. The on-chip oscillator clock is a clock source for the peripheral function clock. When the sub clock runs, fc32 can be used as a count source for the timers A and B.

8.5.1.6 On-Chip Oscillator Low-Power Consumption Mode

The microcomputer enters on-chip oscillator low-power consumption mode when the main clock stops in on-chip oscillator mode. The on-chip oscillator clock divided-by-1 (no division), -2, -3, -4, -6, -8, -10, -12, -14, or -16 becomes the CPU clock. The on-chip oscillator clock is a clock source for the peripheral function clock. When the sub clock runs, fc32 can be used as a count source for the timers A and B.

NOTE:

1. The PLL clock, instead of the main clock, when the CM17 bit is set to "1" (PLL clock).

Switch the CPU clock after the clock to be switched to stabilize. Sub clock oscillation will take longer⁽²⁾ to stabilize. Wait, by program, until the clock stabilizes directly after turning the microcomputer on or exiting stop mode.

To switch the on-chip oscillator clock to the main clock, enter medium-speed mode (divide-by-8) after the main clock is divided by eight in on-chip oscillator mode (the MCD4 to MCD0 bits in the MCD register are set to "010002").

Do not enter on-chip oscillator mode or on-chip oscillator low-power consumption mode from low-speed mode or low-power consumption mode and vice versa.

NOTE:

2. Contact your oscillator manufacturer for oscillation stabilization time.

8.5.2 Wait Mode

In wait mode, the CPU clock stops running. The CPU and watchdog timer, operated by the CPU clock, also stop. When the PM22 bit in the PM2 register is set to "1" (on-chip oscillator clock as watchdog timer count source), the watchdog timer continues operating. Because the main clock, sub clock and on-chip oscillator clock continue running, peripheral functions using these clocks also continue operating.

8.5.2.1 Peripheral Function Clock Stop Function

Enter wait mode after setting the followings.

If the CM02 bit in the CM0 register is set to "1" (peripheral function clock stops in wait mode), f1, f8, f32, f2n (when peripheral clock is selected as a count source), and fAD stop in wait mode. Power consumption can be reduced. f2n, when XIN clock or on-chip oscillator clock is selected as a count source, and fC32 do not stop running.

8.5.2.2 Entering Wait Mode

If wait mode is entered after setting the CM02 bit to "1", set the MCD4 to MCD0 bits in the MCD register to be the 10-MHz or less CPU clock flequency after dividing the main clock.

Initial Setting

Set each interrupt priority level after setting the exit priority level required to exit wait mode, controlled by the RLVL2 to RLVL0 bits in the RLVL register, to "7".

- Before Entering Wait Mode
 - (1) Set the I flag to "0"
 - (2) Set the interrupt priority level of the interrupt being used to exit wait mode
 - (3) Set the interrupt priority levels of the interrupts, not being used to exit wait mode, to "0"
 - (4) Set IPL in the FLG register. Then set the exit priority level to the same level as IPL Interrupt priority level of the interrupt used to exit wait mode > IPL = the exit priority level
 - (5) Set the PRC0 bit in the PRCR register to "1"
 - (6) If the CPU clock source is the PLL clock, set the CM17 bit in the CM1 register to "0" (main clock) and PLC07 bit in the PLC0 register to "0" (PLL off)
 - (7) Set the I flag to "1"
 - (8) Execute the WAIT instruction
- After Exiting Wait Mode

Set the exit priority level to "7" as soon as exiting wait mode.

8.5.2.3 Pin Status in Wait Mode

Table 8.7 lists pin states in wait mode.

Table 8.7 Pin States in Wait Mode

Pin		Memory Expansion Mode Microprocessor Mode	Single-Chip Mode	
Address Bus, Data	a Bus, CS0 to CS3,	Maintains state immediately before entering wait mode		
RD, WR, WRL, W	RH	"H"		
HLDA, BCLK		"H"		
ALE		"L"		
Ports		Maintains state immediately before	e entering wait mode	
CLKout	When fc is selected	Outputs clock		
	When f8, f32 are selected	Outputs the clock when the CM02 bit in the CM0 register is set to "0" (peripheral function clock does not stop in wait mode). Maintains state immediately before entering wait mode when the CM0 bit is set to "1" (peripheral function clock stops in wait mode).		

8.5.2.4 Exiting Wait Mode

Wait mode is exited by the hardware reset, $\overline{\text{NMI}}$ interrupt or peripheral function interrupts.

When the hardware reset or $\overline{\text{NMI}}$ interrupt, but not the peripheral function interrupts, is used to exit wait mode, set the ILVL2 to ILVL0 bits for the peripheral function interrupts to "0002" (interrupt disabled) before executing the WAIT instruction.

CM02 bit setting affects the peripheral function interrupts. When the CM02 bit in the CM0 register is set to "0" (peripheral function clock does not stop in wait mode), all peripheral function interrupts can be used to exit wait mode. When the CM02 bit is set to "1" (peripheral function clock stops in wait mode), peripheral functions using the peripheral function clock stop. Therefore, the peripheral function interrupts cannot be used to exit wait mode. However, the peripheral function interrupts caused by an external clock, fc32, or f2n whose count source is the XIN clock or on-chip oscillator clock, can be used to exit wait mode.

The CPU clock used when exiting wait mode by the peripheral function interrupts or NMI interrupt is the same CPU clock used when the WAIT instruction is executed.

Table 8.8 shows interrupts to be used to exit wait mode and usage conditions.

8. Clock Generation Circuit

Table 8.8 Interrupts to Exit Wait Mode

Interrupt	When CM02=0	When CM02=1
NMI Interrupt	Available	Available
Serial I/O Interrupt	Available when the internal and external clocks are used	Available when the external clock or f2n (when XIN clock or on-chip oscillator is selected) is used
Key Input Interrupt	Available	Available
A/D Conversion Interrupt	Available in single or single-sweep mode	Do not use
Timer A Interrupt Timer B Interrupt	Available in all modes	Available in event counter mode or when count source is fc32 or f2n (when XIN clock or on-chip oscillator is selected)
INT Interrupt	Available	Available
Intelligent I/O Interrupt	Available	Do not use

8.5.3 Stop Mode

In stop mode, all oscillators and resonators stop. The CPU clock and peripheral function clock, as well as the CPU and peripheral functions operated by these clocks, also stop. The least power required to operate the microcomputer is in stop mode. The internal RAM holds its data when the voltage applied to the VCC1 and VCC2 pins is VRAM or more. If the voltage applied to the VCC1 and VCC2 pins is 2.7 V or less, the voltage must be 2.7 V or less,

The following interrupts can be used to exit stop mode:

- NMI interrupt
- Key Input Interrupt
- INT interrupt
- Timer A and B interrupt (Available when the timer counts external pulse, having its 100 Hz or less frequency, in event counter mode)

8.5.3.1 Entering Stop Mode

Stop mode is entered when setting the CM10 bit in the CM1 register to "1" (all clocks stops). The MCD4 to MCD0 bits in the MCD register become set to "010002" (divide-by-8 mode).

Enter stop mode after setting the followings.

Initial Setting

Set each interrupt priority level after setting the exit priority level required to exit stop mode, controlled by the RLVL2 to RLVL0 bits in the RLVL register, to "7".

- Before Entering stop mode
 - (1) Set the I flag to "0"
 - (2) Set the interrupt priority level of the interrupt being used to exit stop mode
 - (3) Set the interrupt priority levels of the interrupts, not being used to exit stop mode, to "0"
 - (4) Set IPL in the FLG register. Then set the exit priority level to the same level as IPL Interrupt priority level of the interrupt used to exit stop mode > IPL = the exit priority level
 - (5) Set the PRC0 bit in the PRCR register to "1" (write enabled)
 - (6) Select the main clock as the CPU clock
 - When the CPU clock source is the sub clock,
 - (a) set the CM05 bit in the CM0 register to "0" (main clock oscillates)
 - (b) set the CM07 bit in the CM0 register to "0" (clock selected by the CM21 bit divided by MCD register setting)
 - When the CPU clock source is the PLL clock,
 - (a) set the CM17 bit in the CM1 register to "0" (main clock)
 - (b) set the PLC07 bit in the PLC0 register to "0" (PLL off)
 - When the CPU clock source is the on-chip oscillator clock,
 - (a) set MCD4 to MCD0 bits to "010002" (divide-by-8 mode)
 - (b) set the CM05 bit to "0" (main clock oscillates)
 - (c) set the CM21 bit in the CM2 register to "0" (clock selected by the CM17 bit)
 - (7) The oscillation stop detect function is used, set the CM20 bit in the CM2 register to "0" (oscillation stop detect function disabled)
 - (8) Set the I flag to "1"
 - (9) Set the CM10 bit to "1" (all clocks stops)
- After Exiting Stop Mode

Set the exit priority level to "7" as soon as exiting stop mode.

8.5.3.2 Exiting Stop Mode

Stop mode is exited by the hardware reset, $\overline{\text{NMI}}$ interrupt or peripheral function interrupts (key input interrupt and $\overline{\text{INT}}$ interrupt).

When the hardware reset or NMI interrupt, but not the peripheral function interrupts, is used to exit wait mode, set all ILVL2 to ILVL0 bits in the interrupt control registers for the peripheral function interrupt to "0002" (interrupt disabled) before setting the CM10 bit to "1" (all clocks stops).

8.5.3.3 Pin Status in Stop Mode

Table 8.9 lists pin status in stop mode.

Table 8.9 Pin Status in Stop Mode

Pin		Memory Expansion Mode Microprocessor Mode	Single-Chip Mode	
Address Bus	, Data Bus, CS0 to CS3, BHE	Maintains state immediately before		
		entering stop mode		
RD, WR, WF	RL, WRH	"H"		
HLDA, BCLK		"H"		
ALE		"H"		
Ports		Maintains state immediately before	entering stop mode	
CLKout	When fc selected	"H"		
	When f8, f32 selected	Maintains state immediately before	entering stop mode	
XIN		Placed in a high-impedance state		
Xout		"H"		
XCIN, XCOUT		Placed in a high-impedance state		

8. Clock Generation Circuit

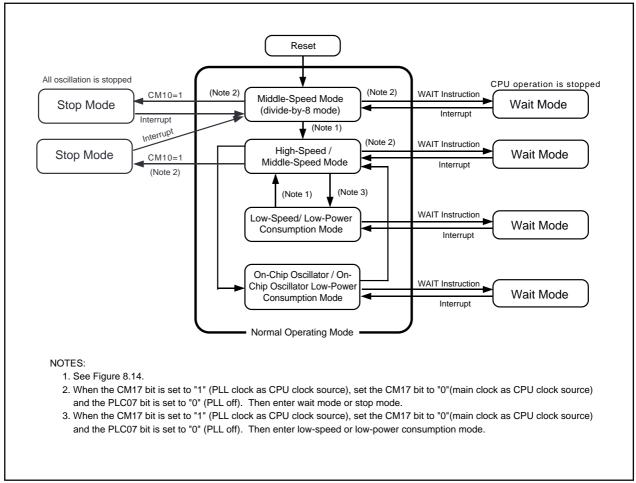


Figure 8.13 Status Transition in Wait Mode and Stop Mode

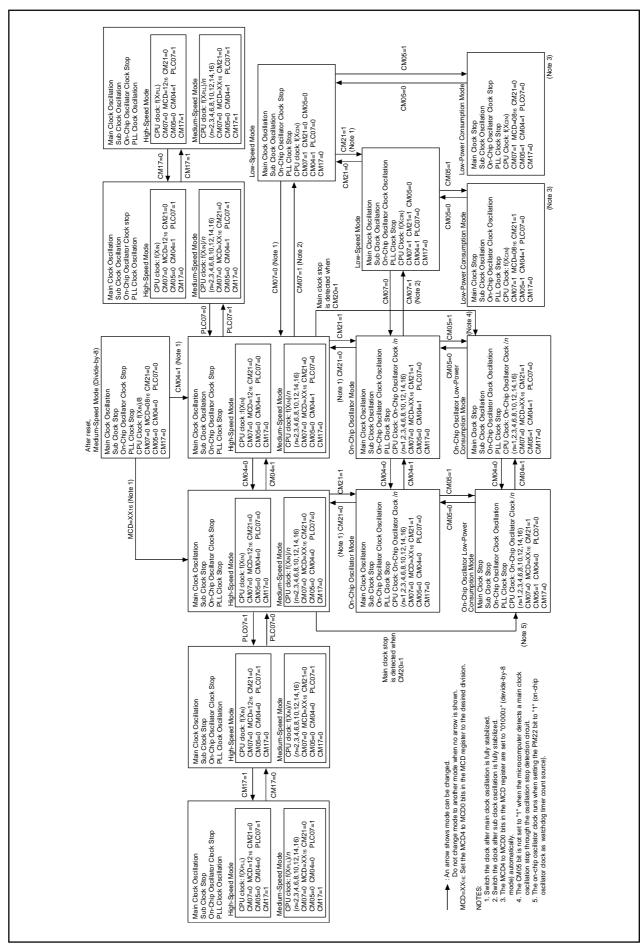


Figure 8.14 Status Transition

8.6 System Clock Protect Function

The system clock protect function prohibits the CPU clock from changing clock sources when the main clock is selected as the CPU clock source. This prevents the CPU clock from stopping the program crash. When the PM21 bit in the PM2 register is set to "1" (clock change disabled), the following bits cannot be written to:

- The CM02 bit, CM05 bit and CM07 bit in the CM0 register
- The CM10 bit and CM17 bit in the CM1 register
- The CM20 bit in the CM2 register
- All bits in the PLC0 and PLC1 registers

The CPU clock continues running when the WAIT instruction is executed.

To use the system clock protect function, set the CM05 bit in the CM0 register to "0" (main clock oscillation) and CM07 bit to "0" (main clock as BCLK clock source) and follow the procedure below.

- (1) Set the PRC1 bit in the PRCR register to "1" (write enabled).
- (2) Set the PM21 bit in the PM2 register to "1" (protects the clock).
- (3) Set the PRC1 bit in the PRCR register to "0" (write disabled).

When the PM21 bit is set to "1", do not execute the WAIT instruction.

M32C/80 Group 9. Protection

9. Protection

The protection function protects important registers from being easily overwritten when a program runs out of control.

Figure 9.1 shows the PRCR register. Each bit in the PRCR register protects the following registers:

- The PRC0 bit protects the CM0, CM1, CM2, MCD, PLC0 and PLC1 registers;
- The PRC1 bit protects the PM0, PM1, PM2, INVC0 and INVC1 registers;
- The PRC2 bit protects the PD9 and PS3 registers;

The PRC2 bit is set to "0" (write disabled) when data is written to a desired address after setting the PRC2 bit to "1" (write enabled). Set the PD9 and PS3 registers immediately after setting the PRC2 bit in the PRCR register to "1" (write enabled). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the following instruction. The PRC1 and PRC0 bits are not set to "0" even if data is written to desired addresses. Set the PRC1 and PRC0 bits to "0" by program.

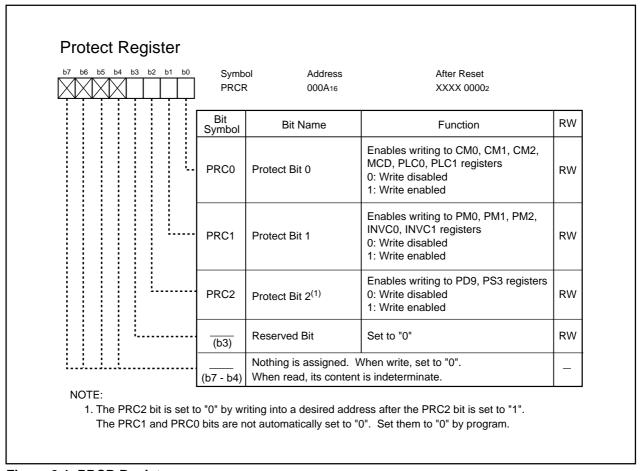
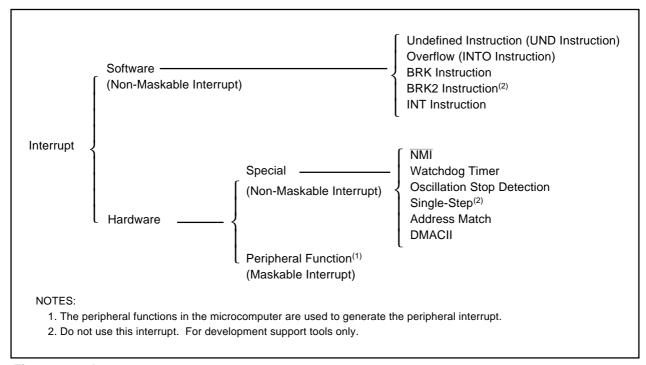



Figure 9.1 PRCR Register

10. Interrupts

10.1 Types of Interrupts

Figure 10.1 shows types of interrupts.

Figure 10.1 Interrupts

• Maskable Interrupt

The I flag enables or disables an interrupt.

The interrupt priority order based on interrupt priority level can be changed.

Non-Maskable Interrupt

The I flag does not enable nor disable an interrupt .

The interrupt priority order based on interrupt priority level cannot be changed.

10.2 Software Interrupts

Software interrupt occurs when an instruction is executed. The software interrupts are non-maskable interrupts.

10.2.1 Undefined Instruction Interrupt

The undefined instruction interrupt occurs when the UND instruction is executed.

10.2.2 Overflow Interrupt

The overflow interrupt occurs when the O flag in the FLG register is set to "1" (overflow of arithmetic operation) and the INTO instruction is executed.

Instructions to set the O flag are:

ABS, ADC, ADCF, ADD, ADDX, CMP, CMPX, DIV, DIVU, DIVX, NEG, RMPA, SBB, SCMPU, SHA, SUB, SUBX

10.2.3 BRK Interrupt

The BRK interrupt occurs when the BRK instruction is executed.

10.2.4 BRK2 Interrupt

The BRK2 interrupt occurs when the BRK2 instruction is executed.

Do not use this interrupt. For development support tools only.

10.2.5 INT Instruction Interrupt

The INT instruction interrupt occurs when the INT instruction is executed. The INT instruction can select software interrupt numbers 0 to 63. Software interrupt numbers 8 to 48 are assigned to the vector table used for the peripheral function interrupt. Therefore, the microcomputer executes the same interrupt routine when the INT instruction is executed as when a peripheral function interrupt occurs.

When the INT instruction is executed, the FLG register and PC are saved to the stack. PC also stores the relocatable vector of specified software interrupt numbers. Where the stack is saved varies depending on a software interrupt number. ISP is selected as the stack for software interrupt numbers 0 to 31 (setting the U flag to "0"). SP, which is set before the INT instruction is executed, is selected as the stack for software interrupt numbers 32 to 63 (the U flag is not changed).

With the peripheral function interrupt, the FLG register is saved and the U flag is set to "0" (ISP select) when an interrupt request is acknowledged. With software interrupt numbers 32 to 48, SP to be used varies depending on whether the interrupt is generated by the peripheral function interrupt request or by the INT instruction.

10.3 Hardware Interrupts

Special interrupts and peripheral function interrupts are available as hardware interrupts.

10.3.1 Special Interrupts

Special interrupts are non-maskable interrupts.

10.3.1.1 NMI Interrupt

The NMI interrupt occurs when a signal applied to the NMI pin changes from a high-level ("H") signal to a low-level ("L") signal. Refer to **10.8** NMI Interrupt for details.

10.3.1.2 Watchdog Timer Interrupt

The watchdog timer interrupt occurs when a count source of the watchdog timer underflows. Refer to **11. Watchdog Timer** for details.

10.3.1.3 Oscillation Stop Detection Interrupt

The oscillation stop detection interrupt occurs when the microcomputer detects a main clock oscillation stop. Refer to **8. Clock Generation Circuit** for details.

10.3.1.4 Single-Step Interrupt

Do not use the single-step interrupt. For development support tool only.

10.3.1.5 Address Match Interrupt

The address match interrupt occurs immediately before executing an instruction that is stored into an address indicated by the RMADi register (i=0 to 7) when the AIERi bit in the AIER register is set to "1" (address match interrupt enabled). Set the starting address of the instruction in the RMADi register. The address match interrupt does not occur when a table data or addresses of the instruction other than the starting address, if the instruction has multiple addresses, is set. Refer to **10.10 Address Match Interrupt** for details.

10.3.2 Peripheral Function Interrupt

The peripheral function interrupt occurs when a request from the peripheral functions in the microcomputer is acknowledged. The peripheral function interrupts and software interrupt numbers 8 to 48 for the INT instruction use the same interrupt vector table. The peripheral function interrupt is a maskable interrupt.

See **Table 10.2** about how the peripheral function interrupt occurs. Refer to the descriptions of each function for details.

10.4 High-Speed Interrupt

The high-speed interrupt executes an interrupt sequence in five cycles and returns from the interrupt in three cycles.

When the FSIT bit in the RLVL register is set to "1" (interrupt priority level 7 available for the high-speed interrupt), the ILVL2 to ILVL0 bits in the interrupt control registers can be set to "1112" (level 7) to use the high-speed interrupt.

Only one interrupt can be set as the high-speed interrupt. When using the high-speed interrupt, do not set multiple interrupts to interrupt priority level 7. Set the DMAII bit in the RLVL register to "0" (interrupt priority level 7 available for interrupts).

Set the starting address of the high-speed interrupt routine in the VCT register.

When the high-speed interrupt is acknowledged, the FLG register is saved into the SVF register and PC is saved into the SVP register. The program is executed from an address indicated by the VCT register.

Execute the FREIT instruction to return from the high-speed interrupt routine.

The values saved into the SVF and SVP registers are restored to the FLG register and PC by executing the FREIT instruction.

The high-speed interrupt and the DMA2 and DMA3 use the same register. When using the high-speed interrupt, neither DMA2 nor DMA3 is available. DMA0 and DMA1 can be used.

10.5 Interrupts and Interrupt Vectors

There are four bytes in one vector. Set the starting address of interrupt routine in each vector table. When an interrupt request is acknowledged, the interrupt routine is executed from the address set in the interrupt vectors.

Figure 10.2 shows the interrupt vector.

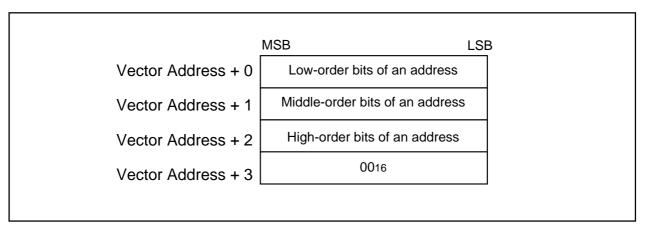


Figure 10.2 Interrupt Vector

10.5.1 Fixed Vector Tables

The fixed vector tables are allocated addresses FFFDC16 to FFFFF16. Table 10.1 lists the fixed vector tables.

Table 10.1 Fixed Vector Table

Interrupt Generated by	Vector Addresses Low address to High address	Remarks	Reference
Undefined Instruction	FFFDC16 to FFFFDF16		M32C/80 Series Software Manual
Overflow	FFFFE016 to FFFFE316		
BRK Instruction	FFFFE416 to FFFFE716	If the content of address FFFFE716 is FF16, a program is executed from the address stored into software interrupt number 0 in the relocatable vector table	
Address Match	FFFFE816 to FFFFEB16		
-	FFFFEC16 to FFFFEF16	Reserved space	
Watchdog Timer	FFFFF016 to FFFFF316	These addresses are used for the watchdog timer interrupt and oscillation stop detection interrupt	Reset, Clock Generation Circuit, Watchdog Timer
-	FFFFF416 to FFFFF716	Reserved space	
NMI	FFFFF816 to FFFFFB16		
Reset	FFFFC16 to FFFFF16		Reset

10.5.2 Relocatable Vector Tables

The relocatable vector tables occupy 256 bytes from the starting address set in the INTB register. Table 10.2 lists the relocatable vector tables.

Set an even address as the starting address of the vector table set in the INTB register to increase interrupt sequence execution rate.

Table 10.2 Relocatable Vector Tables

Interrupt Generated by	Vector Table Address Address(L) to Address(H) ⁽¹⁾	Software Interrupt Number	Reference	
BRK Instruction ⁽²⁾	+0 to +3 (000016 to 000316)	0	M32C/80 Series	
Reserved Space	+4 to +31 (000416 to 001F16)	1 to 7	Software Manual	
DMA0	+32 to +35 (002016 to 002316)	8	DMAC	
DMA1	+36 to +39 (002416 to 002716)	9		
DMA2	+40 to +43 (002816 to 002B16)	10		
DMA3	+44 to +47 (002C16 to 002F16)	11	1	
Timer A0	+48 to +51 (003016 to 003316)	12	Timer A	
Timer A1	+52 to +55 (003416 to 003716)	13		
Timer A2	+56 to +59 (003816 to 003B16)	14		
Timer A3	+60 to +63 (003C16 to 003F16)	15		
Timer A4	+64 to +67 (004016 to 004316)	16		
UART0 Transmission, NACK ⁽³⁾	+68 to +71 (004416 to 004716)	17	Serial I/O	
UART0 Reception, ACK ⁽³⁾	+72 to +75 (004816 to 004B16)	18		
UART1 Transmission, NACK(3)	+76 to +79 (004C16 to 004F16)	19		
UART1 Reception, ACK ⁽³⁾	+80 to +83 (005016 to 005316)	20		
Timer B0	+84 to +87 (005416 to 005716)	21	Timer B	
Timer B1	+88 to +91 (005816 to 005B16)	22		
Timer B2	+92 to +95 (005C16 to 005F16)	23		
Timer B3	+96 to +99 (006016 to 006316)	24		
Timer B4	+100 to +103 (006416 to 006716)	25		
ĪNT5	+104 to +107 (006816 to 006B16)	26	Interrupt	
ĪNT4	+108 to +111 (006C16 to 006F16)	27		
ĪNT3	+112 to +115 (007016 to 007316)	28		
ĪNT2	+116 to +119 (007416 to 007716)	29		
ĪNT1	+120 to +123 (007816 to 007B16)	30		
ĪNT0	+124 to +127 (007C16 to 007F16)	31		
Timer B5	+128 to +131 (008016 to 008316)	32	Timer B	
UART2 Transmission, NACK ⁽³⁾	+132 to +135 (008416 to 008716)	33	Serial I/O	
UART2 Reception, ACK ⁽³⁾	+136 to +139 (008816 to 008B16)	34		
UART3 Transmission, NACK ⁽³⁾	+140 to +143 (008C16 to 008F16)	35		
UART3 Reception, ACK ⁽³⁾	+144 to +147 (009016 to 009316)	36		
UART4 Transmission, NACK ⁽³⁾	+148 to +151 (009416 to 009716)	37		
UART4 Reception, ACK ⁽³⁾	+152 to +155 (009816 to 009B16)	38		

Table 10.2 Relocatable Vector Tables (Continued)

Interrupt Generated by	Vector Table Address	Software	Reference
	Address(L) to Address(H) ⁽¹⁾	Interrupt Number	
Bus Conflict Detect, Start Condition Detect,	+156 to +159 (009C16 to 009F16)	39	Serial I/O
Stop Condition Detect (UART2) ⁽³⁾ ,			
Bus Conflict Detect, Start Condition Detect,	+160 to +163 (00A016 to 00A316)	40	
Stop Condition Detect (UART3/UART0) ⁽⁴⁾			
Bus Conflict Detect, Start Condition Detect,	+164 to +167 (00A416 to 00A716)	41	
Stop Condition Detect (UART4/UART1) ⁽⁴⁾			
A/D0	+168 to +171 (00A816 to 00AB16)	42	A/D Converter
Key Input	+172 to +175 (00AC16 to 00AF16)	43	Interrupts
Intelligent I/O Interrupt 0	+176 to +179 (00B016 to 00B316)	44	Intelligent I/O
Intelligent I/O Interrupt 1	+180 to +183 (00B416 to 00B716)	45	
Intelligent I/O Interrupt 2	+184 to +187 (00B816 to 00BB16)	46	
Intelligent I/O Interrupt 3	+188 to +191 (00BC16 to 00BF16)	47	
Intelligent I/O Interrupt 4	+192 to +195 (00C016 to 00C316)	48	
INT Instruction ⁽²⁾	+0 to +3 (000016 to 000316) to	0 to 63	Interrupts
	+252 to +255 (00FC16 to 00FF16)		

NOTES:

- 1. These addresses are relative to those in the INTB register.
- 2. The I flag does not disable interrupts.
- 3. In I²C mode, NACK, ACK or start/stop condition detection causes interrupts to be generated.
- 4. The IFSR6 bit in the IFSR register determines whether these addresses are used for an interrupt in UART0 or in UART3.

The IFSR7 bit in the IFSR register determines whether these addresses are used for an interrupt in UART1 or in UART4.

10.6 Interrupt Request Acknowledgement

Software interrupts and special interrupts occur when conditions to generate an interrupt are met.

The peripheral function interrupts are acknowledged when all conditions below are met.

I flag = "1"
 IR bit = "1"
 ILVL2 to ILVL0 bits > IPL

The I flag, IPL, IR bit and ILVL2 to ILVL0 bits are independent of each other. The I flag and IPL are in the FLG register. The IR bit and ILVL2 to ILVL0 bits are in the interrupt control register.

10.6.1 I Flag and IPL

The I flag enables or disables maskable interrupts. When the I flag is set to "1" (enable), all maskable interrupts are enabled; when the I flag is set to "0" (disable), they are disabled. The I flag is automatically set to "0" after reset.

IPL, consisting of three bits, indicates the interrupt priority level from level 0 to level 7.

If a requested interrupt has higher priority level than indicated by IPL, the interrupt is acknowledged.

Table 10.3 lists interrupt priority levels associated with IPL.

Table 10.3 Interrupt Priority Levels

IPL2	IPL1	IPL0	Interrupt Priority Levels
0	0	0	Level 1 and above
0	0	1	Level 2 and above
0	1	0	Level 3 and above
0	1	1	Level 4 and above
1	0	0	Level 5 and above
1	0	1	Level 6 and above
1	1	0	Level 7 and above
1	1	1	All maskable interrupts are disabled

10.6.2 Interrupt Control Register and RLVL Register

The peripheral function interrupts use interrupt control registers to control each interrupt. Figures 10.3 and 10.4 show the interrupt control register. Figure 10.5 shows the RLVL register.

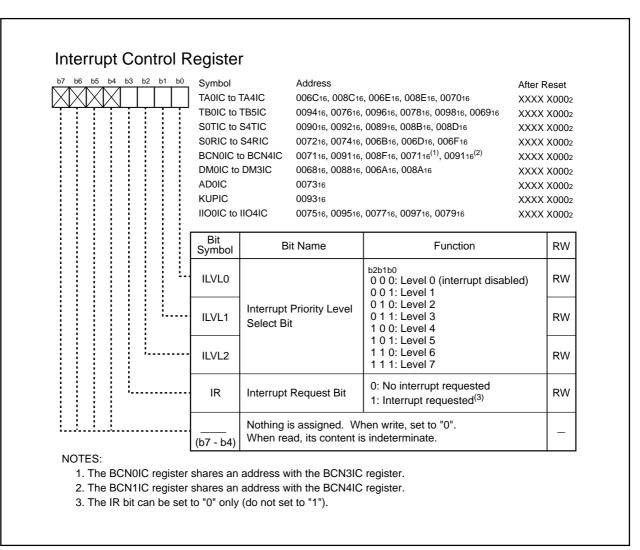
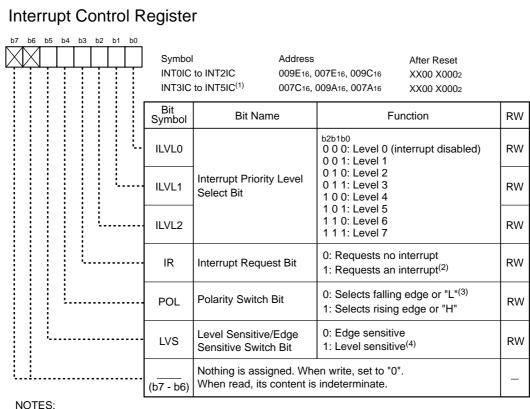



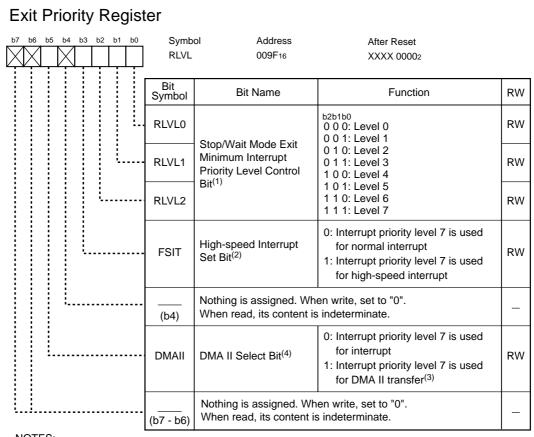
Figure 10.3 Interrupt Control Register (1)

- 1. When a 16-bit data bus is used in microprocessor or memory expansion mode, each INT3 to INT5 pin is used as the data bus. Set the ILVL2 to ILVL0 bits in the INT3IC, INT4IC and INT5IC registers
- 2. The IR bit can be set to "0" only (do not set to "1").
- 3. Set the POL bit to "0" when a corresponding bit in the IFSR register is set to "1" (both edges).
- 4. When setting the LVS bit to "1", set a corresponding bit in the IFSR register to "0" (one edge).

Figure 10.4 Interrupt Control Register (2)

10.6.2.1 ILVL2 to ILVL0 Bits

The ILVL2 to ILVL0 bits determines an interrupt priority level. The higher the interrupt priority level is, the higher interrupt priority is.


When an interrupt request is generated, its interrupt priority level is compared to IPL. This interrupt is acknowledged only when its interrupt priority level is higher than IPL. When the ILVL2 to ILVL0 bits are set to "0002" (level 0), its interrupt is ignored.

10.6.2.2 IR Bit

The IR bit is automatically set to "1" (interrupt requested) when an interrupt request is generated. The IR bit is automatically set to "0" (no interrupt requested) after an interrupt request is acknowledged and an interrupt routine in the corresponding interrupt vector is executed.

The IR bit can be set to "0" by program. Do not set to "1".

10. Interrupts M32C/80 Group

NOTES:

- 1. The microcomputer exits stop or wait mode when the requested interrupt priority level is higher than the level set in the RLVL2 to RLVL0 bits. Set the RLVL2 to RLVL0 bits to the same value as IPL in the FLG register.
- 2. When the FSIT bit is set to "1", an interrupt having the interrupt priority level 7 becomes the high-speed interrupt. In this case, set only one interrupt to the interrupt priority level 7 and the DMAII bit to "0".
- 3. Set the ILVL2 to ILVL0 bits in the interrupt control register after setting the DMAII bit to "1". Do not change the DMAII bit setting to "0" after setting the DMAII bit to "1". Set the FSIT bit to "0" when the DMAII bit to "1".
- 4. The DMAII bit becomes indeterminate after reset. To use the DMAII bit for an interrupt setting, set it to "0" before setting the interrupt control register.

Figure 10.5 RLVL Register

10.6.2.3 RLVL2 to RLVL0 Bits

When using an interrupt to exit stop or wait mode, refer to 8.5.2 Wait Mode and 8.5.3 Stop Mode for details.

10.6.3 Interrupt Sequence

The interrupt sequence is performed between an interrupt request acknowledgment and interrupt routine execution.

When an interrupt request is generated while an instruction is executed, the CPU determines its interrupt priority level after the instruction is completed. The CPU starts the interrupt sequence from the following cycle. However, in regards to the SCMPU, SIN, SMOVB, SMOVF, SMOVU, SSTR, SOUT or RMPA instruction, if an interrupt request is generated while executing the instruction, the microcomputer suspends the instruction to start the interrupt sequence.

The interrupt sequence is performed as follows:

- (1) The CPU obtains interrupt information (interrupt number and interrupt request level) by reading address 00000016 (address 00000216 for the high-speed interrupt). Then, the IR bit applicable to the interrupt information is set to "0" (interrupt requested).
- (2) The FLG register, prior to an interrupt sequence, is saved to a temporary register⁽¹⁾ within the CPU.
- (3) Each bit in the FLG register is set as follows:
 - The I flag is set to "0" (interrupt disabled)
 - The D flag is set to "0" (single-step disabled)
 - The U flag is set to "0" (ISP selected)
- (4) A temporary register within the CPU is saved to the stack; or to the SVF register for the high-speed interrupt.
- (5) PC is saved to the stack; or to the SVP register for the high-speed interrupt.
- (6) The interrupt priority level of the acknowledged interrupt is set in IPL.
- (7) A relocatable vector corresponding to the acknowledged interrupt is stored into PC.

After the interrupt sequence is completed, an instruction is executed from the starting address of the interrupt routine.

NOTE:

1. Temporary register cannot be modified by users.

10.6.4 Interrupt Response Time

Figure 10.6 shows an interrupt response time. Interrupt response time is the period between an interrupt generation and the execution of the first instruction in an interrupt routine. Interrupt response time includes the period between an interrupt request generation and the completed execution of an instruction ((a) on Figure 10.6) and the period required to perform an interrupt sequence ((b) on Figure 10.6).

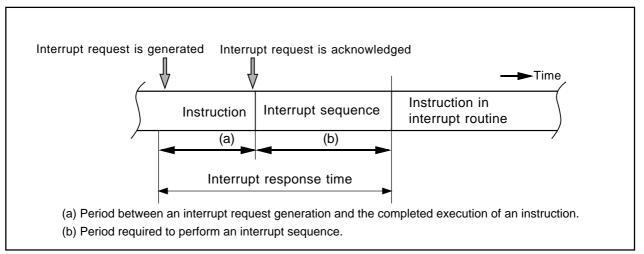


Figure 10.6 Interrupt Response Time

Time (a) varies depending on an instruction being executed. The DIV, DIVX and DIVU instructions require the longest time (a); 42 cycles when an immediate value or register is set as the divisor. When the divisor is a value in the memory, the following value is added.

Normal addressing : 2 + X
 Index addressing : 3 + X
 Indirect addressing : 5 + X + 2Y
 Indirect index addressing : 6 + X + 2Y

X is the number of wait states for a divisor space. Y is the number of wait states for the space that stores indirect addresses. If X and Y are in an odd address or in 8-bit bus space, the X and Y value must be doubled.

Table 10.4 lists time (b), shown Figure 10.6.

Table 10.4 Interrupt Sequence Execution Time

Interrupt	Interrupt Vector Address	16-Bit Bus	8-Bit Bus
Peripheral Function	Even address	14 cycles	16 cycles
	Odd address ⁽¹⁾	16 cycles	16 cycles
INT Instruction	Even address	12 cycles	14 cycles
	Odd address ⁽¹⁾	14 cycles	14 cycles
NMI	Even address ⁽²⁾	13 cycles	15 cycles
Watchdog Timer			
Undefined Instruction			
Address Match			
Overflow	Even address ⁽²⁾	14 cycles	16 cycles
BRK Instruction (relocatable vector table)	Even address	17 cycles	19 cycles
	Odd address ⁽¹⁾	19 cycles	19 cycles
BRK Instruction (fixed vector table)	Even address ⁽²⁾	19 cycles	21 cycles
High-speed Interrupt	Vector table is internal register	5 cycles	

NOTES:

- 1. Allocate interrupt vectors in even addresses.
- 2. Vectors are fixed to even addresses.

10.6.5 IPL Change when Interrupt Request is Acknowledged

When a peripheral function interrupt request is acknowledged, IPL sets the priority level for the acknowledged interrupt.

Software interrupts and special interrupts have no interrupt priority level. If an interrupt request that has no interrupt priority level is acknowledged, the value shown in Table 10.5 is set in IPL as the interrupt priority level.

Table 10.5 Interrupts without Interrupt Priority Levels and IPL

Interrupt Source	Level Set to IPL
Watchdog Timer, NMI, Oscillation Stop Detection	7
Reset	0
Software, Address Match	Not changed

10.6.6 Saving a Register

In the interrupt sequence, the FLG register and PC are saved to the stack.

After the FLG register is saved to the stack, 16 high-order bits and 16 low-order bits of PC, extended to 32 bits, are saved to the stack. Figure 10.7 shows stack states before and after an interrupt request is acknowledged.

Other important registers are saved by program at the beginning of an interrupt routine. The PUSHM instruction can save several registers⁽¹⁾ in the register bank used.

Refer to 10.4 High-Speed Interrupt for the high-speed interrupt.

NOTE:

1. Can be selected from the R0, R1, R2, R3, A0, A1, SB and FB registers.

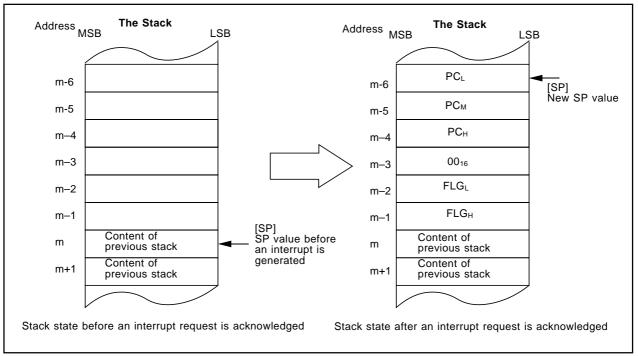


Figure 10.7 Stack States

10.6.7 Restoration from Interrupt Routine

When the REIT instruction is executed at the end of an interrupt routine, the FLG register and PC before the interrupt sequence is performed, which have been saved to the stack, are automatically restored. The program, executed before an interrupt request was acknowledged, starts running again. Refer to **10.4 High-Speed Interrupt** for the high-speed interrupt.

Restore registers saved by program in an interrupt routine by the POPM instruction or others before the REIT and FREIT instructions. Register bank is switched back to the bank used prior to the interrupt sequence by the REIT or FREIT instruction.

10.6.8 Interrupt Priority

If two or more interrupt requests are sampled at the same sampling points (a timing to detect whether an interrupt request is generated or not), the interrupt with the highest priority is acknowledged.

Set the ILVL2 to ILVL0 bits to select the desired priority level for maskable interrupts (peripheral function interrupt).

Priority levels of special interrupts such as reset (reset has the highest priority) and watchdog timer are set by hardware. Figure 10.8 shows priority levels of hardware interrupts.

The interrupt priority does not affect software interrupts. Executing instruction causes the microcomputer to execute an interrupt routine.

Reset > NMI > Oscillation Stop Detection > Peripheral Function > Address Match Watchdog

Figure 10.8 Interrupt Priority

10.6.9 Interrupt Priority Level Select Circuit

The interrupt priority level select circuit selects the highest priority interrupt when two or more interrupt requests are sampled at the same sampling point.

Figure 10.9 shows the interrupt priority level select circuit.

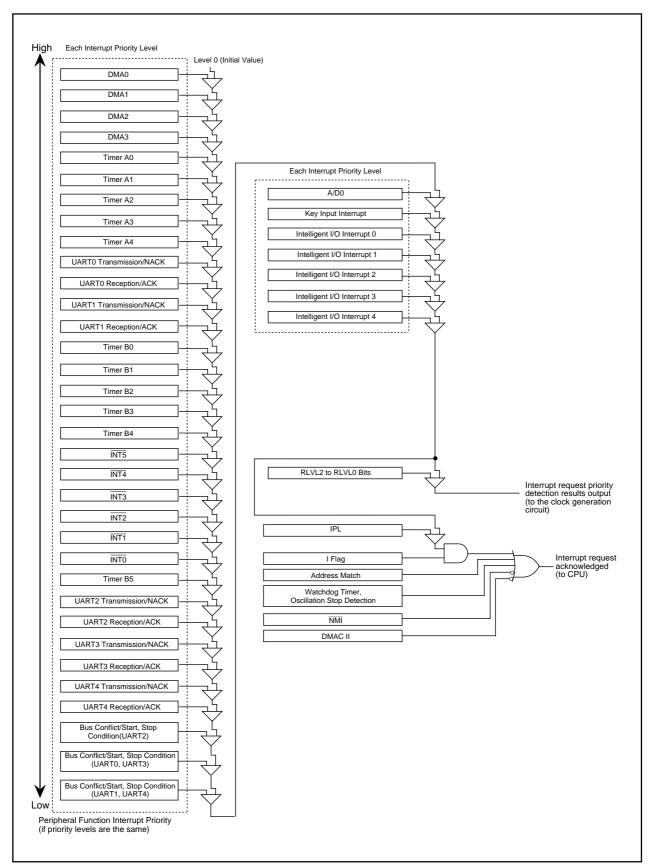


Figure 10.9 Interrupt Priority Level Select Circuit

10.7 INT Interrupt

External input generates the INTi interrupt (i = 0 to 5). The LVS bit in the INTiIC register selects either edge sensitive triggering to generate an interrupt on any edge or level sensitive triggering to generate an interrupt at an applied signal level. The POL bit in the INTiIC register determines the polarity.

For edge sensitive, when the IFSRi bit in the IFSR register is set to "1", an interrupt occurs on both rising and falling edges of the external input. If the IFSRi bit is set to "1", set the POL bit in the corresponding register to "0" (falling edge).

For level sensitive, set the IFSRi bit to "0" (single edge). When the INTi pin input level reaches the level set in the POL bit, the IR bit in the INTiIC register is set to "1". The IR bit remains unchanged even if the INTi pin level is changed. The IR bit is set to "0" when the INTi interrupt is acknowledged or when the IR bit is written to "0" by program.

Figure 10.10 shows the IFSR register.

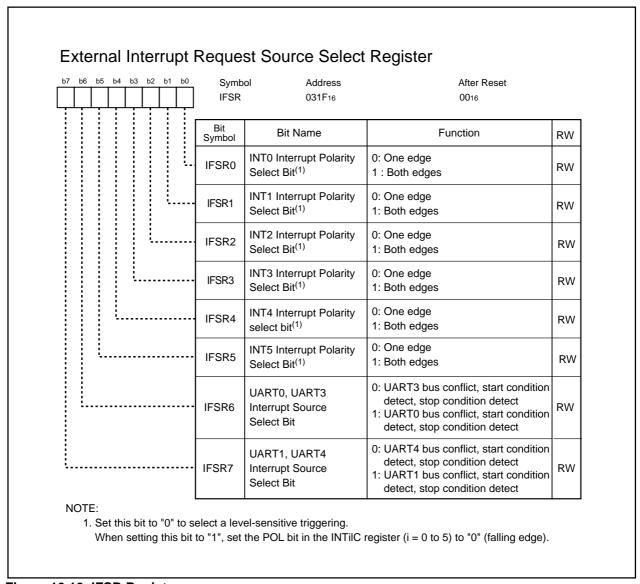


Figure 10.10 IFSR Register

10.8 NMI Interrupt

The $\overline{\text{NMI}}$ interrupt⁽¹⁾ occurs when a signal applied to the $\overline{\text{NMI}}$ pin changes from a high-level ("H") signal to a low-level ("L") signal. The $\overline{\text{NMI}}$ interrupt is a non-maskable interrupt. Although the P85/ $\overline{\text{NMI}}$ pin is used as the $\overline{\text{NMI}}$ interrupt input pin, the P8_5 bit in the P8 register indicates the input level for this pin.

NOTE:

1. When the NMI interrupt is not used, connect the NMI pin to Vcc1 via a resistor. Because the NMI interrupt cannot be ignored, the pin must be connected.

10.9 Key Input Interrupt

Key input interrupt request is generated when one of the signals applied to the P104 to P107 pins in input mode is on the falling edge. The key input interrupt can be also used as key-on wake-up function to exit wait or stop mode. To use the key input interrupt, do not use P104 to P107 as A/D input ports. Figure 10.11 shows a block diagram of the key input interrupt. When an "L" signal is applied to any pins in input mode, signals applied to other pins are not detected as an interrupt request signal.

When the PSC_7 bit in the PSC register⁽²⁾ is set to "1" (key input interrupt disabled), no key input interrupt occurs regardless of interrupt control register settings. When the PSC_7 bit is set to "1", no input from a port pin is available even when in input mode.

NOTE:

2. Refer to 22. Programmable I/O Ports about the PSC register.

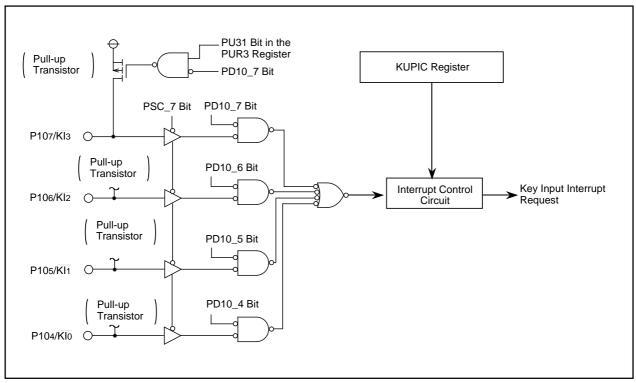


Figure 10.11 Key Input Interrupt

To use the intelligent I/O interrupt as a source to activate DMAC II, set the IRLT bit in the IIOiIE register to "0" (interrupt request is used for DMAC, DMAC II) and enable an interrupt request source for the IIOiIE register.

10.10 Address Match Interrupt

The address match interrupt occurs immediately before executing an instruction that is stored into an address indicated by the RMADi register (i=0 to 7). The address match interrupt can be set in eight addresses. The AIERi bit in the AIER register determines whether the interrupt is enabled or disabled. The I flag and IPL do not affect the address match interrupt.

Figure 10.12 shows registers associated with the address match interrupt.

The starting address of an instruction must be set in the RMADi register. The address match interrupt does not occur when a table data or addresses other than the starting address of the instruction is set.

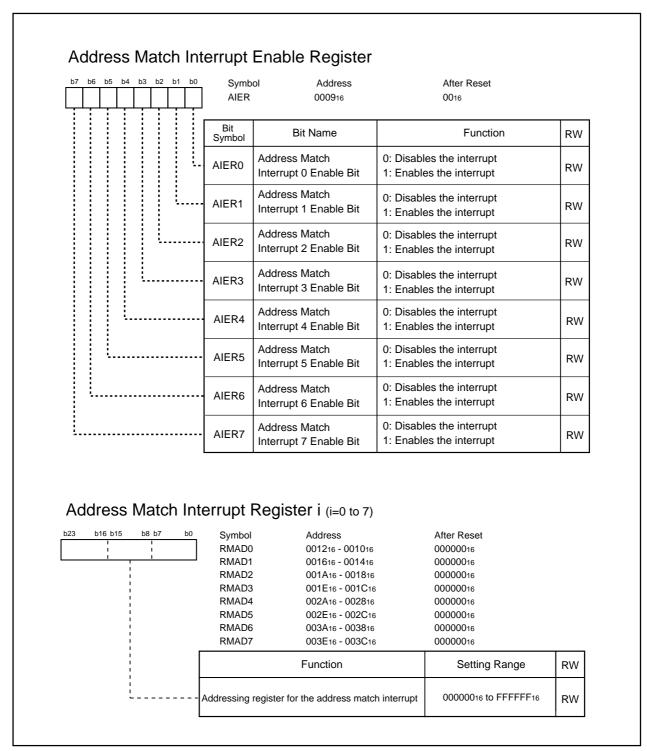


Figure 10.12 AIER Register and RMAD0 to RMAD7 Registers

10.11 Intelligent I/O Interrupt

The intelligent I/O interrupt is assigned to software interrupt numbers 44 to 48.

When using the intelligent I/O interrupt, set the IRLT bit in the IIOiIE register (i = 0 to 4) to "1" (interrupt request for interrupt used).

Various interrupt requests cause the intelligent I/O interrupt to occur. When an interrupt request is generated with each intelligent I/O or CAN functions, the corresponding bit in the IIOiIR register is set to "1" (interrupt requested). When the corresponding bit in the IIOiIE register is set to "1" (interrupt enabled), the IR bit in the corresponding IIOiIC register is set to "1" (interrupt requested).

After the IR bit setting changes "0" to "1", the IR bit remains set to "1" when a bit in the IIOiIR register is set to "1" by another interrupt request and the corresponding bit in the IIOiIE register is set to "1". Bits in the IIOiIR register are not set to "0" automatically, even if an interrupt is acknowledged. Set each bit to "0" by program. If these bit settings are left "1", all generated interrupt requests are ignored.

Figure 10.13 shows a block diagram of the intelligent I/O interrupt. Figure 10.14 shows the IIOiIR register. Figure 10.15 shows the IIOiIE register.

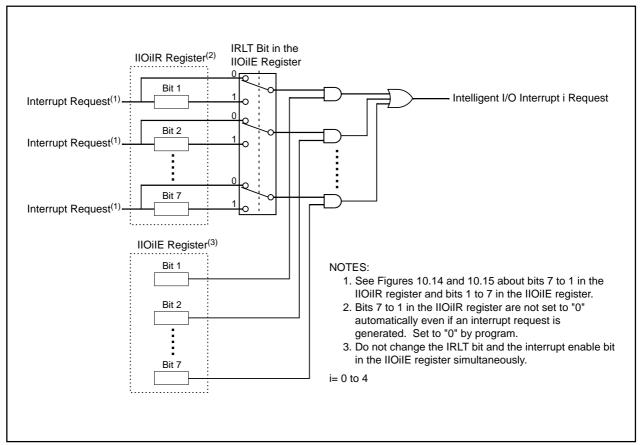
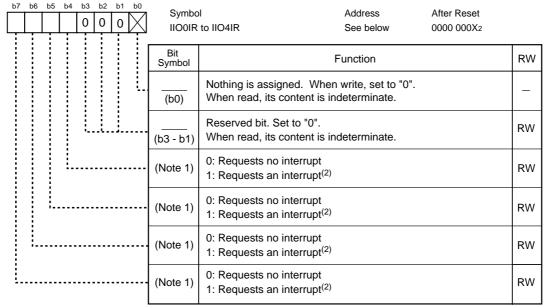



Figure 10.13 Intelligent I/O Interrupt

Interrupt Request Register

NOTES:

- 1. See table below for bit symbols.
- 2. Only "0" can be set (nothing is changed even if "1" is set).

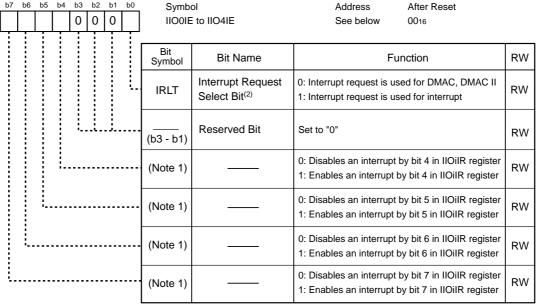
Bit Symbols for the Interrupt Request Register

Symbol	Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IIO0IR	00A016	-	-	SIO0RR	G0RIR	-	-	-	-
IIO1IR	00A116	-	-	SIO0TR	G0TOR	-	-	-	-
IIO2IR	00A216	-	-	SIO1RR	G1RIR	-	-	-	
IIO3IR	00A316	-	-	SIO1TR	G1TOR	-	-	-	-
IIO4IR	00A416	SRT0R	SRT1R	-	-	-	-		

SIOiRR: Intelligent I/O Communication Unit i Receive Interrupt Request

SIOiTR: Intelligent I/O Communication Unit i Transmit Interrupt Request

GiTOR: Intelligent I/O Communication Unit i HDLC Data Processing Function Interrupt Request (TO: Output to Transmit)


GiRIR: Intelligent I/O Communication Unit i HDLC Data Processing Function Interrupt Request (RI: Input to Receive)

SRTiR: Intelligent I/O Special Communication Function Interrupt Request

-: Reserved Bit. Set to "0" i=0, 1

Figure 10.14 IIO0IR to IIO4IR Registers

Interrupt Enable Register

NOTES:

- 1. See table below for bit symbols.
- 2. If an interrupt request is used for interrupt, set bit 1, 2, 4 to 7 to "1" after the IRLT bit is set to "1".

Bit Symbols for the Interrupt Enable Register

Symbol	Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IIO0IE	00B016	-	-	SIO0RE	G0RIE	-	-	-	IRLT
IIO1IE	00B116	-	-	SIO0TE	G0TOE	-	-	-	IRLT
IIO2IE	00B216	-	-	SIO1RE	G1RIE	-	-	-	IRLT
IIO3IE	00B316	-	-	SIO1TE	G1TOE	-	-	-	IRLT
IIO4IE	00B416	SRT0E	SRT1E	-	-	-	-	-	IRLT

SIOiRE: Intelligent I/O Communication Unit i Receive Interrupt Enabled

SIOiTE: Intelligent I/O Communication Unit i Transmit Interrupt Enabled

GiTOE: Intelligent I/O Communication Unit i HDLC Data Processing Function Interrupt Enabled (TO: Output to Transmit)

i=0.1

GiRIE: Intelligent I/O Communication Unit i HDLC Data Processing Function Interrupt Enabled (RI: Input to Receive)

SRTiE: Intelligent I/O Special Communication Function Interrupt Enabled

-: Reserved Bit. Set to "0".

Figure 10.15 IIO0IE to IIO4IE Registers

11. Watchdog Timer

The watchdog timer monitors the program executions and detects defective program. It allows the microcomputer to trigger a reset or to generate an interrupt if the program error occurs. The watchdog timer contains a 15-bit counter, which is decremented by the CPU clock that the prescaler divides. The CM06 bit in the CM0 register determines whether a watchdog timer interrupt request or reset is generated if the watchdog timer underflows. Once the CM06 bit is set to "1", it cannot be changed to "0" (watchdog timer interrupt) by program. The CM06 bit is set to "0" only after reset.

When the main clock, on-chip oscillator clock, or PLL clock runs as the CPU clock, the WDC7 bit in the WDC register determine whether the prescaler divides the clock by 16 or by 128. When the sub clock runs as the CPU clock, the prescaler divides the clock by 2 regardless of the WDC7 bit setting. Watchdog timer cycle is calculated as follows. Marginal errors, due to the prescaler, may occur in watchdog timer cycle.

When the main clock, on-chip oscillator clock, or PLL clock is selected as the CPU clock,

When the sub clock is selected as the CPU clock,

For example, if the CPU clock frequency is 30MHz and the prescaler divides it by 16, the watchdog timer cycle is approximately 17.5 ms.

The watchdog timer is reset when the WDTS register is set and when a watchdog timer interrupt request is generated. The prescaler is reset only when the microcomputer is reset. Both watchdog timer and prescaler stop after reset. They begin counting when the WDTS register is set.

The watchdog timer and prescaler stop in stop mode, wait mode and hold state. They resume counting from the value held when the mode or state is exited.

Figure 11.1 shows a block diagram of the watchdog timer. Figure 11.2 shows registers associated with the watchdog timer.

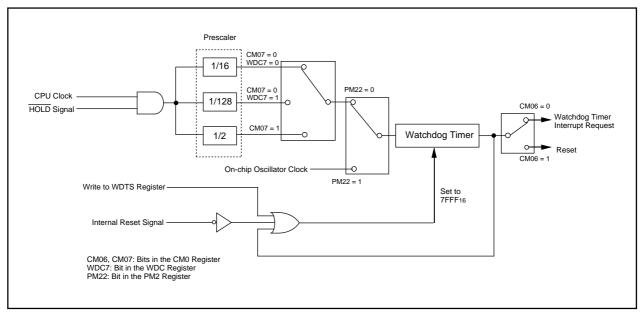


Figure 11.1 Watchdog Timer Block Diagram

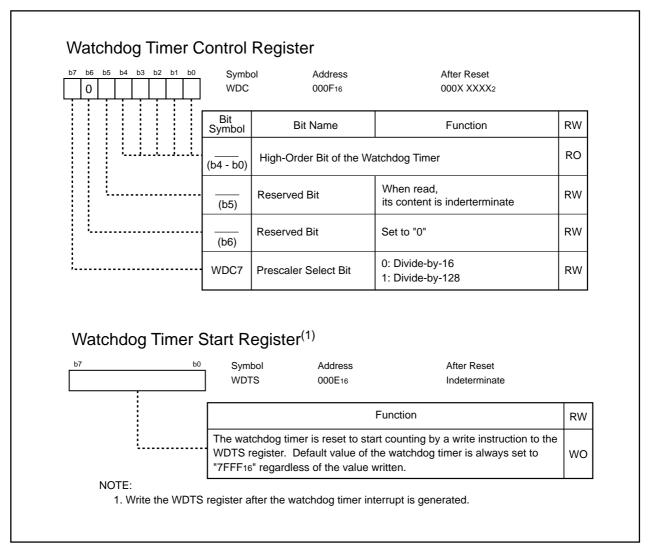


Figure 11.2 WDC Register and WDTS Register

System Clock Control Register 0⁽¹⁾ Symbol Address After Reset CM0 000616 0000 10002 Bit Symbol Bit Name RW **Function** RW CM00 0 0: I/O port P53 Clock Output Function 0 1: Outputs fc Select Bit(2) 1 0: Outputs f8 RW CM01 1 1: Outputs f32 0: Peripheral clock does not stop in In Wait Mode, Peripheral wait mode RW CM02 Function Clock Stop Bit⁽⁹⁾ 1: Peripheral clock stops in wait $mode^{(3)}$ 0: Low XCIN-XCOUT Drive CM03 RW Capacity Select Bit (11) 1: High 0: I/O port function RW CM04 Port Xc Switch Bit 1: XCIN-XCOUT oscillation function(4) Main Clock (XIN-XOUT) 0: Main clock oscillates RW CM05 Stop Bit^(5, 9) 1: Main clock stops(6) Watchdog Timer 0: Watchdog timer interrupt RW CM06 Function Select Bit 1: Reset⁽⁷⁾ 0: Clock selected by the CM21 bit **CPU Clock Select** RW CM07 divided by MCD register setting Bit 0^(8, 9, 10)

NOTES:

- 1. Rewrite the CM0 register after the PRC0 bit in the PRCR register is set to "1" (write enabled).
- 2. When the PM07 bit in the PM0 register is set to "0" (BCLK output), set the CM01 and CM00 bits to "002". When the PM15 and PM14 bits in the PM1 register are set to "012" (ALE output to P53), set the CM01 and CM00 bits to "002". When the PM07 bit is set to "1" (function selected in the CM01 and CM00 bits) in microprocessor or memory expansion mode, and the CM01 and CM00 bits are set to "002", an "L" signal is output from port P53 (port P53 does not function as an I/O port).
- fc32 does not stop running. When the CM02 bit is set to "1", the PLL clock cannot be used in wait mode.
- 4. When setting the CM04 bit is set to "1", set the PD8_7 and PD8_6 bits in the PD8 register to "002" (port P87 and P86 in input mode) and the PU25 bit in the PUR2 register to "0" (no pull-up).
- 5. When entering low-power consumption mode or on-chip oscillator low-power consumption mode, the CM05 bit stops running the main clock. The CM05 bit cannot detect whether the main clock stops or not. To stop running the main clock, set the CM05 bit to "1" after the CM07 bit is set to "1" with a stable sub clock oscillation or after the CM21 bit in the CM2 register is set to "1" (on-chip oscillator clock). When the CM05 bit is set to "1", the clock applied to XOUT becomes "H". The built-in feedback resistor remains ON. XIN is pulled up to XOUT ("H" level) via the feedback resistor.
- 6. When the CM05 bit is set to "1", the MCD4 to MCD0 bits in the MCD register are set to "010002" (divide-by-8 mode). In on-chip oscillation mode, the MCD4 to MCD0 bits are not set to "010002" even if the CM05 bit terminates XIN-XOUT.
- 7. Once the CM06 bit is set to "1", it cannot be set to "0" by program.
- 8. After the CM04 bit is set to "1" with a stable sub clock oscillation, set the CM07 bit to "1" from "0". After the CM05 bit is set to "0" with a stable main clock oscillation, set the CM07 bit to "0" from "1". Do not set the CM07 bit and CM04 or CM05 bit simultaneously.
- When the PM21 bit in the PM2 register is set to "1" (clock change disabled), the CM02, CM05 and CM07 bits do not change even when written.
- 10. After the CM07 bit is set to "0", set the PM21 bit to "1".
- 11. When stop mode is entered, the CM03 bit is set to "1".

Figure 11.3 CM0 Register

11.1 Count Source Protection Mode

In count source protection mode, the on-chip oscillator clock is used as a count source for the watchdog timer. The count source protection mode allows the on-chip oscillator clock to run continuously, maintaining watchdog timer operation even if the program error occurs and the CPU clock stops running. Follow the procedures below when using this mode.

- (1) Set the PRC0 bit in the PRCR register to "1" (write to CM0 register enabled)
- (2) Set the PRC1 bit in the PRCR register to "1" (write to PM2 register enabled)
- (3) Set the CM06 bit in the CM0 register to "1" (reset when the watchdog timer overflows)
- (4) Set the PM22 bit in the PM2 register to "1" (the on-chip oscillator clock as a count source of the watchdog timer)
- (5) Set the PRC0 bit to "0" (write to CM0 register disabled)
- (6) Set the PRC1 bit to "0" (write to PM2 register disabled)
- (7) Write to the WDTS register (the watchdog timer starts counting)

The followings will occur when the PM22 bit is set to "1".

• The on-chip oscillator starts oscillating and the on-chip oscillator clock becomes a count source for the watchdog timer.

- Write to the CM10 bit in the CM1 register is disabled. (The bit setting remains unchanged even if set it to "1". The microcomputer does not enter stop mode.)
- In wait mode or hold state, the watchdog timer continues running. However, the watchdog timer interrupt cannot be used to exit wait mode.

12. DMAC

This microcomputer contains four DMAC (direct memory access controller) channels that allow data to be sent to memory without using the CPU. DMAC transmits a 8- or 16-bit data from a source address to a destination address whenever a transmit request occurs. DMA0 and DMA1 must be prioritized if using DMAC. DMA2 and DMA3 share registers required for high-speed interrupts. High-speed interrupts cannot be used when using three or more DMAC channels.

The CPU and DMAC use the same data bus, but DMAC has a higher bus access privilege than the CPU. The cycle-steal method employed on DMAC enables high-speed operation between a transfer request and the complete transmission of 16-bit (word) or 8-bit (byte) data. Figure 12.1 shows a mapping of registers to be used for DMAC. Table 12.1 lists specifications of DMAC. Figures 12.2 to 12.5 show registers associated with DMAC.

Because the registers shown in Figure 12.1 are allocated in the CPU, use the LDC instruction to write to the registers. To set the DCT2, DCT3, DRC2, DRC3, DMA2 and DMA3 registers, set the B flag to "1" (register bank 1) and set the R0 to R3, A0, A1 registers with the MOV instruction.

To set the DSA2 and DSA3 registers, set the B flag to "1" and set the SB and FB registers with the LDC instruction. To set the DRA2 and DRA3 registers, set the SVP and VCT registers with the LDC instruction.

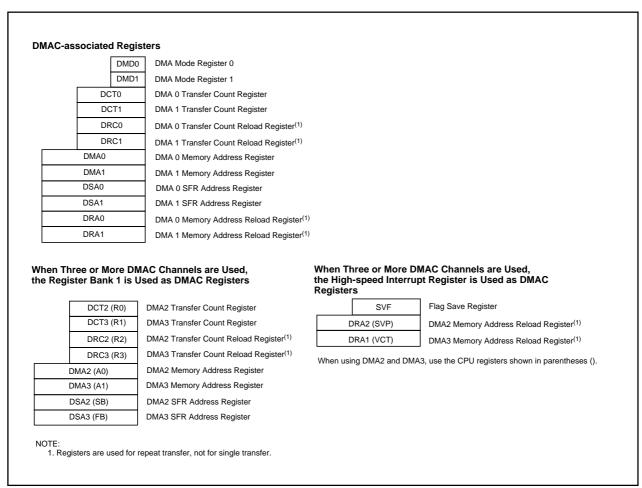


Figure 12.1 Register Mapping for DMAC

DMAC starts a data transfer by setting the DSR bit in the DMiSL register (i=0 to 3) or by using an interrupt request, generated by the functions determined by the DSEL 4 to DSEL0 bits in the DMiSL register, as a DMA request. Unlike interrupt requests, the I flag and interrupt control register do not affect DMA. Therefore, a DMA request can be acknowledged even if an interrupt is disabled and cannot be acknowledged. In addition, the IR bit in the interrupt control register does not change when a DMA request is acknowledged.

Table 12.1 DMAC Specifications

Item		Specification				
Channels		4 channels (cycle-steal method)				
Transfer Memo	ry Space	From a desired address in a 16-Mbyte space to a fixed address in a				
		16-Mbyte space				
		From a fixed address in a 16-Mbyte space to a desired address in a				
		16-Mbyte space				
Maximum Bytes	Transferred	128 Kbytes (when a 16-bit data is transferred) or 64 Kbytes (with an 8-				
		bit data is transferred)				
DMA Request S	Source ⁽¹⁾	Falling edge or both edges of signals applied to the INTO to INTO pins				
		Timers A0 to A4 interrupt requests				
		Timers B0 to B5 interrupt requests				
		UART0 to UART4 transmit and receive interrupt requests				
		A/D0 conversion interrupt request				
		Intelligent I/O interrupt request				
		Software trigger				
Channel Priority		DMA0 > DMA1 > DMA2 > DMA3 (DMA0 has highest priority)				
Transfer Unit		8 bits, 16 bits				
Destination Add	dress	Forward/fixed (forward and fixed directions cannot be specified when				
		specifying source and destination addresses simultaneously)				
Transfer Mode	Single Transfer	Transfer is completed when the DCTi register (i = 0 to 3) is set to "000016"				
	Repeat Transfer	When the DCTi register is set to "000016", the value of the DRCi register				
		is reloaded into the DCTi register and the DMA transfer is continued				
DMA Interrupt Requ	est Generation Timing	When the DCTi register changes "000116" to "000016"				
DMA Startup	Single Transfer	DMA starts when a DMA request is generated after the DCTi register is				
		set to "000116" or more and the MDi1 and MD0 bits in the DMDj register				
		(j = 0,1) are set to "012" (single transfer)				
	Repeat Transfer	DMA starts when a DMA request is generated after the DCTi register is				
		set to "000116" or more and the MDi1 and MDi0 bits are set to "112"				
		(repeat transfer)				
DMA Stop	Single Transfer	DMA stops when the MDi1 and MDi0 bits are set to "002" (DMA dis-				
		abled) and the DCTi register is set to "000016" (0 DMA transfer) by DMA				
		transfer or write				
	Repeat Transfer	DMA stops when the MDi1 and MDi0 bits are set to "002" and the DCTi				
		register is set to "000016" and the DRCi register set to "000016"				
Reload Timing t	to the DCTi	When the DCTi register is set to "000016" from "000116" in repeat trans-				
or DMAi Registo	er	fer mode				
DMA Transfer 0	Cycles	Minimum 3 cycles between SFRs and internal RAM				

NOTE:

1. The IR bit in the interrupt control register does not change when a DMA request is acknowledged.

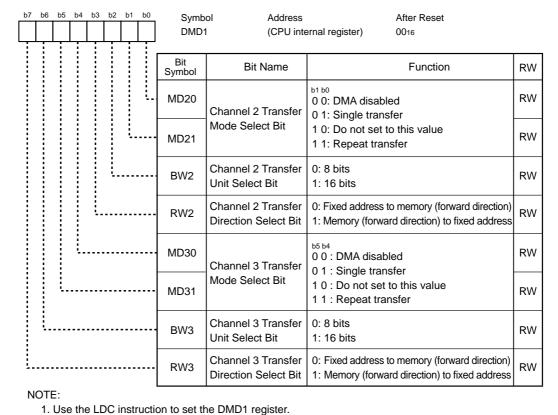
DMAi Request Source Select Register (i=0 to 3) Symbol Address After Reset DM0SL to DM3SL 037816, 037916, 037A16, 037B16 0X00 00002 Bit Symbol Bit Name Function RW RW DSEL0 DSEL1 RW See Table 12.2 for the DMiSL **DMA Request Source** DSEL2 RW Select Bit⁽¹⁾ register (i=0 to 3) function RW DSEL3 DSEL4 RW When a software trigger is selected, Software DMA a DMA request is generated by DSR RW Request Bit(2) setting this bit to "1" (When read, its content is always "0") When read, RO Reserved Bit its content is indeterminate (b6)0: Not requested DRQ DMA Request Bit(2, 3) RW 1: Requested 1. Change the DSEL4 to DSEL0 bit settings while the MDi1 and MDi0 bits in the DMD0 and DMD1 registers are set to "002" (DMA disabled). Also, set the DRQ bit to "1" simultaneously when the DSEL4 to DSEL0 bit settings are changed. e.g., MOV.B #083h, DMiSL; Set timer A0 2. When the DSR bit is set to "1", set the DRQ bit to "1" simultaneously. e.g., OR.B #0A0h, DMiSL 3. Do not set the DRQ bit to "0".

Figure 12.2 DM0SL to DM3SL Registers

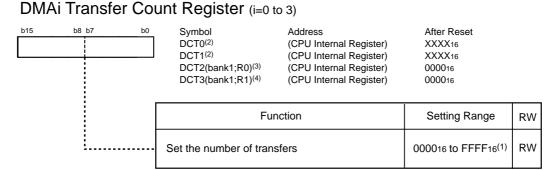
Table 12.2 DMiSL Register (i=0 to 3) Function

Setting Value	DMA Request Source								
b4 b3 b2 b1 b0	DMA0	DMA1	DMA2	DMA3					
0 0 0 0 0		Softwar	e trigger						
0 0 0 0 1	Falling Edge of INTO	Falling Edge of INT1	Falling Edge of INT2	Falling Edge of INT3 ⁽¹⁾	(Note 2				
0 0 0 1 0	Both Edges of INTO	Both Edges of INT1	Both Edges of INT2 Both Edges of INT3 ⁽¹⁾						
0 0 0 1 1		Timer A0 Inte	rrupt Request						
0 0 1 0 0		Timer A1 Inte	rrupt Request						
0 0 1 0 1		Timer A2 Inte	rrupt Request						
0 0 1 1 0		Timer A3 Inte	rrupt Request						
0 0 1 1 1		Timer A4 Inte	rrupt Request						
0 1 0 0 0		Timer B0 Inte	rrupt Request						
0 1 0 0 1		Timer B1 Inte	rrupt Request						
0 1 0 1 0		Timer B2 Inte	rrupt Request						
0 1 0 1 1		Timer B3 Inte	rrupt Request						
0 1 1 0 0		Timer B4 Inte	rrupt Request						
0 1 1 0 1		Timer B5 Inte	rrupt Request						
0 1 1 1 0	UART0 Transmit Interrupt Request								
0 1 1 1 1		UART0 Receive or ACK Interrupt Request ⁽³⁾							
1 0 0 0 0	UART1 Transmit Interrupt Request								
1 0 0 0 1		UART1 Receive or ACK Interrupt Request ⁽³⁾							
1 0 0 1 0		UART2 Transmit Interrupt Request							
1 0 0 1 1		UART2 Receive or AC	CK Interrupt Request ⁽³⁾						
1 0 1 0 0		UART3 Transmit	Interrupt Request						
1 0 1 0 1		UART3 Receive or AC	CK Interrupt Request ⁽³⁾						
1 0 1 1 0		UART4 Transmit Interrupt Request							
1 0 1 1 1		UART4 Receive or AC	CK Interrupt Request ⁽³⁾						
1 1 0 0 0		A/D0 Interrupt	Request						
1 1 0 0 1	Intelligent I/O Interrupt 0 Request		Intelligent I/O Interrupt 2 Request						
1 1 0 1 0	Intelligent I/O		Intelligent I/O		1				
	Interrupt 1 Request		Interrupt 3 Request						
1 1 0 1 1	Intelligent I/O		Intelligent I/O						
	Interrupt 2 Request		Interrupt 4 Request		-				
1 1 1 0 0	Intelligent I/O Interrupt 3 Request			Intelligent I/O Interrupt 0 Request					
1 1 1 0 1	Intelligent I/O			Intelligent I/O	1				
	Interrupt 4 Request			Interrupt 1 Request					
1 1 1 1 0		Intelligent I/O		Intelligent I/O	1				
		Interrupt 0 Request		Interrupt 2 Request					
1 1 1 1 1		Intelligent I/O		Intelligent I/O					
		Interrupt 1 Request		Interrupt 3 Request					

NOTES:

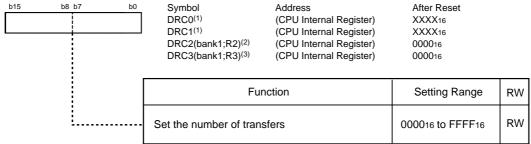

- 1. If the INT3 pin is used for data bus in memory expansion mode or microprocessor mode, a DMA3 interrupt request cannot be generated by a signal applied to the INT3 pin.
- 2. The falling edge and both edges of signals applied to the INTj pin (j=0 to 3) cause a DMA request generation. The INT interrupt (the POL bit in the INTjIC register, the LVS bit, the IFSR register) is not affected and vice versa.
- 3. Use the UkSMR register and UkSMR2 register (k=0 to 4) to switch between the UARTk receive and ACK interrupt as a DMA request source.

To use the ACK interrupt for a DMA reqest, set the IICM bit in the UkSMR register to "1" and the IICM2 bit in the UkSMR2 register to "0".


DMA Mode Register 0⁽¹⁾ Symbol Address After Reset DMD0 (CPU Internal Register) 0016 Bit Name **Function** RW Symbol RW MD00 0 0: DMA disabled Channel 0 Transfer 0 1: Single transfer Mode Select Bit 1 0: Do not set to this value RW MD01 1 1: Repeat transfer Channel 0 Transfer 0: 8 bits BW0 RW Unit Select Bit 1: 16 bits Channel 0 Transfer 0: Fixed address to memory (forward direction) RW RW0 **Direction Select Bit** 1: Memory (forward direction) to fixed address MD10 RW 0 0: DMA disabled Channel 1 Transfer 0 1: Single transfer Mode Select Bit 1 0: Do not set to this value MD11 RW 1 1: Repeat transfer Channel 1 Transfer 0: 8 bits BW1 RW Unit Select Bit 1: 16 bits Channel 1 Transfer 0: Fixed address to memory (forward direction) RW RW1 **Direction Select Bit** 1: Memory (forward direction) to fixed address NOTE:

1. Use the LDC instruction to set the DMD0 register.

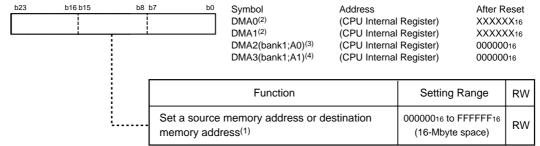
DMA Mode Register 1⁽¹⁾


......

NOTES:

- 1. When the DCTi register is set to "000016", no data transfer occurs regardless of a DMA request.
- 2. Use the LDC instruction to set the DCT0 and DCT1 registers.
- 3. To set the DCT2 register, set the B flag in the FLG register to "1" (register bank 1) and set the R0 register. Use the MOV instruction to set the R0 register.
- 4. To set the DCT3 register, set the B flag to "1" and set R1 register. Use the MOV instruction to set the R1 register.

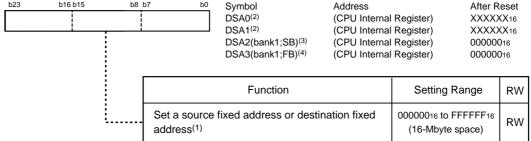
DMAi Transfer Count Reload Register (i=0 to 3)



NOTES:

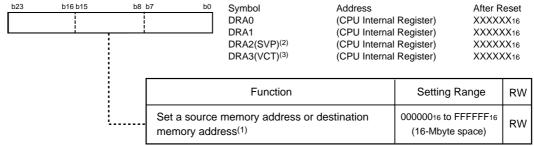
- 1. Use the LDC instruction to set the DRC0 and DRC1 registers.
- To set the DRC2 register, set the B flag in the FLG register to "1" (register bank 1) and set the R2 register. Use the MOV instruction to set the R2 register.
- 3. To set the DRC3 register, set the B flag to "1" and set R3 register. Use the MOV instruction to set the R3 register.

Figure 12.4 DCT0 to DCT3 Registers and DRC0 to DRC3 Registers


DMAi Memory Address Register (i=0 to 3)

NOTES:

- When the RWk bit (k=0 to 3) in the DMDj register (j=0, 1) is set to "0" (fixed address to memory), a
 destination address is selected. When the RWk bit is set to "1" (memory to fixed address), a source
 address is selected.
- 2. Use the LDC instruction to set the DMA0 and DMA1 registers.
- 3. To set the DMA2 register, set the B flag in the FLG register to "1" (register bank 1) and set the A0 register. Use the MOV instruction to set the A0 register.
- 4. To set the DMA3 register, set the B flag to "1" and set the A1 register. Use the MOV instruction to set the A1 register.


DMAi SFR Address Register (i=0 to 3)

NOTES:

- 1. When the RWk bit (k=0 to 3) in the DMDj register (j=0, 1)is set to "0" (fixed address to memory), a source address is selected. When the RWk bit is set to "1" (memory to fixed address), a destination address is selected.
- 2. Use the LDC instruction to set the DSA0 and DSA1 registers.
- 3. To set the DSA2 register, set the B flag in the FLG register to "1" (register bank 1) and the set the SB register. Use the LDC instruction to set the SB register.
- 4. To set the DSA3 register, set the B flag to "1" and set the FB register. Use the LDC instruction to set the PB register.

DMAi Memory Address Reload Register⁽¹⁾ (i=0 to 3)

NOTES:

- 1. Use the LDC instruction to set the DRA0 and DRA1 registers.
- 2. To set the DRA2 register, set the SVP register.
- 3. To set the DRA3 register, set the VCT register.

Figure 12.5 DMA0 to DMA3 Registers, DSA0 to DSA3 Registers and DRA0 to DRA3 Registers

12.1 Transfer Cycle

Transfer cycle contains a bus cycle to read data from a memory or the SFR area (source read) and a bus cycle to write data to a memory space or the SFR area (destination write). The number of read and write bus cycles depends on source and destination addresses. In memory expansion mode and microprocessor mode, the number of read and write bus cycles also depends on DS register setting. Software wait state insertion and the $\overline{\text{RDY}}$ signal make a bus cycle longer.

12.1.1 Effect of Source and Destination Addresses

When a 16-bit data is transferred with a 16-bit data bus and a source address starting with an odd address, source read cycle is incremented by one bus cycle, compared to a source address starting with an even address.

When a 16-bit data is transferred with a 16-bit data bus and a destination address starting with an odd address, a destination write cycle is incremented by one bus cycle, compared to a destination address starting with an even address.

12.1.2 Effect of the DS Register

In an external space in memory expansion or microprocessor mode, transfer cycle varies depending on the data bus used at the source and destination addresses. See **Figure 8.1** for details about the DS register.

- When an 8-bit data bus (the DSi bit in the DS register is set to "0" (i=0 to 3)), accessing both source
 address and destination address, is used to transfer a 16-bit data, 8-bit data is transferred twice.
 Therefore, two bus cycles are required to read the data and another two bus cycles to write the data.
- When an 8-bit data bus (the DSi bit in the DS register is set to "0" (i=0 to 3)), accessing source address, and a 16-bit data bus, accessing destination address, are used to transfer a 16-bit data, 8-bit data is read twice but is written once as 16-bit data. Therefore, two bus cycles are required for reading and one bus cycle is for writing.
- When a 16-bit data bus, accessing source address, and an 8-bit data bus, accessing destination address, are used to transfer a 16-bit data, 16-bit data is read once and 8-bit data is written twice. Therefore, one bus cycle is required for reading and two bus cycles is for writing.

12.1.3 Effect of Software Wait State

When the SFR area or memory space with software wait states is accessed, the number of CPU clock cycles is incremented by software wait states.

Figure 12.6 shows an example of a transfer cycle for the source-read bus cycle. In Figure 12.6, the number of source-read bus cycles is illustrated under different conditions, provided that the destination address is an address of an external space with the destination-write cycle as two CPU clock cycles (=one bus cycle). In effect, the destination-write bus cycle is also affected by each condition and the transfer cycles change accordingly. To calculate a transfer cycle, apply respective conditions to both destination-write bus cycle and source-read bus cycle. As shown in example (2) of Figure 12.6, when an 8-bit data bus, accessing both source and destination addresses, is used to transfer a 16-bit data, two bus cycles each are required for the source-read bus cycle and destination-write bus cycle.

12.1.4 Effect of RDY Signal

In memory expansion or microprocessor mode, the \overline{RDY} signal affects a bus cycle if a source address or destination address is allocated address in an external space. Refer to **7.2.6** \overline{RDY} **Signal** for details.

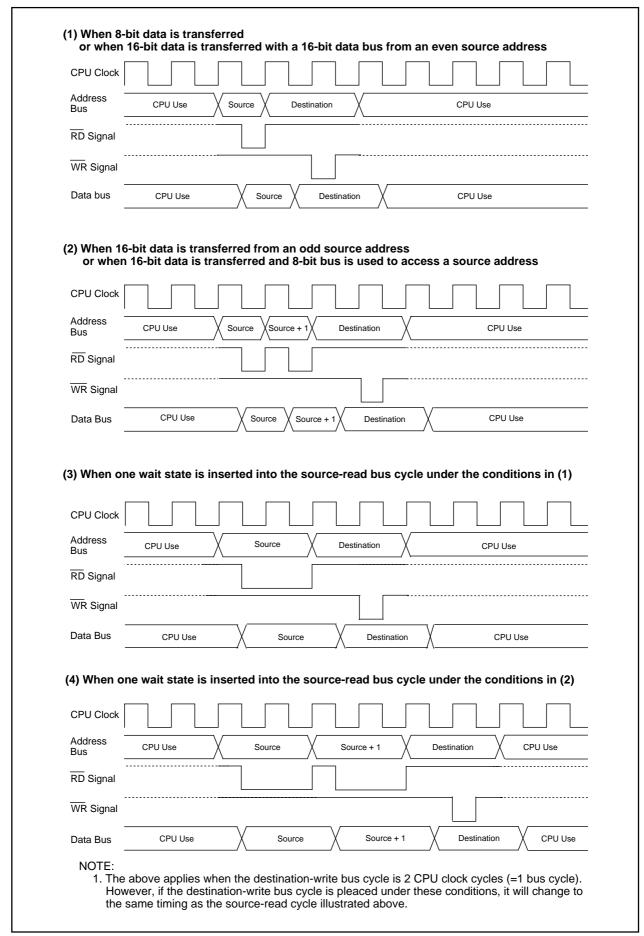


Figure 12.6 Transfer Cycle Examples with the Source-Read Bus Cycle

12.2 DMAC Transfer Cycle

The number of DMAC transfer cycle can be calculated as follows.

Any combination of even or odd transfer read and write addresses are possible. Table 12.3 lists the number of DMAC transfer cycles. Table 12.4 lists coefficient j, k.

Transfer cycles per transfer = Number of read cycle x j + Number of write cycle x k

Table 12.3 DMAC Transfer Cycles

Transfer Unit	Bus Width	Access Address	Single-C	hip Mode	Memory Expansion Mode Microprocessor Mode									
Transier offic	Bus Width	710003371001033	Read	Write	Read	Write								
			Cycle	Cycle	Cycle	Cycle								
	16-bit	Even	1	1	1	1								
8-bit transfers		Odd	1	1	1	1								
(BWi bit in the DMDp	8-bit	8-bit	8-bit	8-bit	8-bit	8-bit	8-bit	8-bit	8-bit	Even	_	_	1	1
register = 0)		Odd	_	_	1	1								
	16-bit	Even	1	1	1	1								
16-bit transfers		Odd	2	2	2	2								
(BWi bit = 1)	8-bit	Even	_	_	2	2								
		Odd	_	_	2	2								

i = 0 to 3, p = 0, 1

Table 12.4 Coefficient j, k

Internal Space			External Space
Internal RAM	Internal RAM	SFR	
with no wait state	with a wait state	area	j and k BCLK cycles shown in Table 7.5.
j=1	j=2	j=2	Add one cycle to j or k cycles when inserting a recovery cycle.
k=1	k=2	k=2	

j, k=2 to 9

12.3 Channel Priority and DMA Transfer Timing

When multiple DMA requests are generated in the same sampling period, between the falling edge of the CPU clock and the next falling edge, the DRQ bit in the DMiSL register (i=0 to 3) is set to "1" (requested) simultaneously. Channel priority in this case is: DMA0 > DMA1 > DMA2 > DMA3.

Figure 12.7 shows an example of the DMA transfer by external source.

In Figure 12.7, the DMA0 request having highest priority is received first to start a transfer when a DMA0 request and DMA1 request are generated simultaneously. After one DMA0 transfer is completed, the bus privilege is returned to the CPU. When the CPU has completed one bus access, the DMA1 transfer starts. After one DMA1 transfer is completed, the privilege is again returned to the CPU.

In addition, DMA requests cannot be counted up since each channel has one DRQ bit. Therefore, when DMA requests, as DMA1 in Figure 12.7, occur more than once before receiving bus privilege, the DRQ bit is set to "0" as soon as privilege is acquired. The bus privilege is returned to the CPU when one transfer is completed.

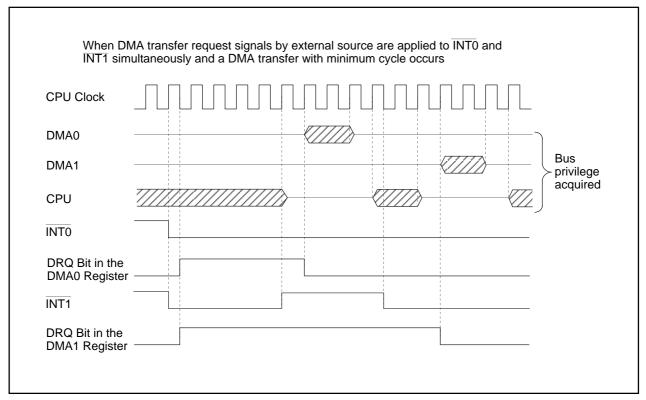


Figure 12.7 DMA Transfer by External Source

13. DMAC II

DMAC II performs memory-to-memory transfer, immediate data transfer and calculation transfer, which transfers the sum of two data added by an interrupt request from any peripheral functions.

Table 13.1 lists specifications of DMAC II.

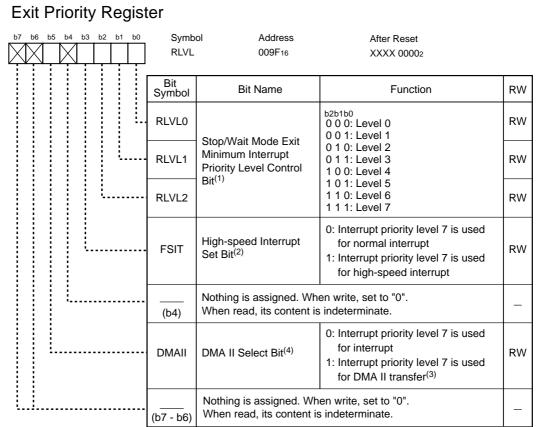
Table 13.1 DMAC II Specifications

Item	Specification
DMAC II Request Source	Interrupt requests generated by all peripheral functions when the ILVL2 to
	ILVL0 bits are set to "1112"
Transfer Data	Data in memory is transferred to memory (memory-to-memory transfer)
	• Immediate data is transferred to memory (immediate data transfer)
	• Data in memory (or immediate data) + data in memory are transferred to
	memory (calculation transfer)
Transfer Block	8 bits or 16 bits
Transfer Space	64-Kbyte space in addresses 0000016 to 0FFFF16 ^(1, 2)
Transfer Direction	Fixed or forward address
	Selected separately for each source address and destination address
Transfer Mode	Single transfer, burst transfer
Chained Transfer Function	Parameters (transfer count, transfer address and other information) are
	switched when transfer counter reaches zero
End-of-Transfer Interrupt	Interrupt occurs when a transfer counter reaches zero
Multiple Transfer Function	Multiple data can be transferred by a generated request for one DMAC II transfer

NOTES:

- 1. When transferring a 16-bit data to destination address 0FFFF16, it is transferred to 0FFFF16 and 1000016. The same transfer occurs when the source address is 0FFFF16.
- 2. The actual space where transfer can occurs is limited due to internal RAM capacity.

13.1 DMAC II Settings


DMAC II can be made available by setting up the following registers and tables.

- RLVL register
- DMAC II Index
- Interrupt control register of the peripheral function causing a DMAC II request
- The relocatable vector table of the peripheral function causing a DMAC II request
- IRLT bit in the IIOiIE register (i=0 to 4) to use the intelligent I/O Refer to **10. Interrupts** for details on the IIOiIE register.

13.1.1 RLVL Register

When the DMAII bit is set to "1" (DMAC II transfer) and the FSIT bit to "0" (normal interrupt), DMAC II is activated by an interrupt request from any peripheral function with the ILVL2 to ILVL0 bits in the interrupt control register set to "1112" (level 7).

Figure 13.1 shows the RLVL register.

NOTES:

- The microcomputer exits stop or wait mode when the requested interrupt priority level is higher than
 the level set in the RLVL2 to RLVL0 bits. Set the RLVL2 to RLVL0 bits to the same value as IPL in
 the FLG register.
- 2. When the FSIT bit is set to "1", an interrupt having the interrupt priority level 7 becomes the high-speed interrupt. In this case, set only one interrupt to the interrupt priority level 7 and the DMAII bit to "0".
- 3. Set the ILVL2 to ILVL0 bits in the interrupt control register after setting the DMAII bit to "1". Do not change the DMAII bit setting to "0" after setting the DMAII bit to "1". Set the FSIT bit to "0" when the DMAII bit to "1".
- 4. The DMAII bit becomes indeterminate after reset. To use the DMAII bit for an interrupt setting, set it to "0" before setting the interrupt control register.

Figure 13.1 RLVL Register

13.1.2 DMAC II Index

The DMAC II index is a data table which comprises 8 to 18 bytes (maximum 32 bytes when the multiple transfer function is selected). The DMAC II index stores parameters for transfer mode, transfer counter, source address (or immediate data), operation address as an address to be calculated, destination address, chained transfer address, and end-of-transfer interrupt address.

This DMAC II index must be located on the RAM area.

Figure 13.2 shows a configuration of the DMAC II index. Table 13.2 lists a configuration of the DMAC II index in transfer mode.

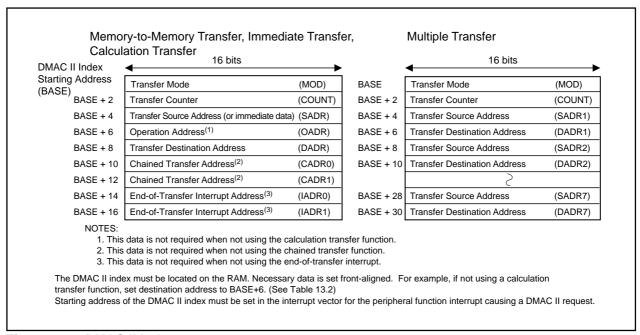


Figure 13.2 DMAC II Index

The followings are details of the DMAC II index. Set these parameters in the specified order listed in Table 13.2, according to DMAC II transfer mode.

Transfer mode (MOD)

Two-byte data is required to set transfer mode. Figure 13.3 shows a configuration for transfer mode.

Transfer counter (COUNT)

Two-byte data is required to set the number of transfer.

Transfer source address (SADR)

Two-byte data is required to set the source memory address or immediate data.

Operation address (OADR)

Two-byte data is required to set a memory address to be calculated. Set this data only when using the calculation transfer function.

Transfer destination address (DADR)

Two-byte data is required to set the destination memory address.

Chained transfer address (CADR)

Four-byte data is required to set the starting address of the DMAC II index for the next transfer. Set this data only when using the chained transfer function.

End-of-transfer interrupt address (IADR)

Four-byte data is required to set a jump address for end-of-transfer interrupt processing. Set this data only when using the end-of-transfer interrupt.

Table 13.2 DMAC II Index Configuration in Transfer Mode

Transfer Data		emory-to-Me nmediate Da	emory Trans ata Transfer	fer	Calculation Transfer				Multiple Transfer
Chained Transfer	Not Used	Used Not Used Used			Not Used	Used	Not Used	Used	Not Available
End-of-Transfer Interrupt	Not Used	Not Used	Used	Used	Not Used	Not Used	Used	Used	Not Available
DMAC II Index	MOD COUNT SADR DADR 8 bytes	MOD COUNT SADR DADR CADR0 CADR1 12 bytes	MOD COUNT SADR DADR IADR0 IADR1 12 bytes	MOD COUNT SADR DADR CADR0 CADR1 IADR0 IADR1 16 bytes	MOD COUNT SADR OADR DADR 10 bytes	MOD COUNT SADR OADR DADR CADR0 CADR1 14 bytes	MOD COUNT SADR OADR DADR IADR0 IADR1 14 bytes	MOD COUNT SADR OADR DADR CADRO CADR1 IADRO IADR1 18 bytes	MOD COUNT SADR1 DADR1 SADRi DADRi i=1 to 7 max. 32 bytes (when i=7)

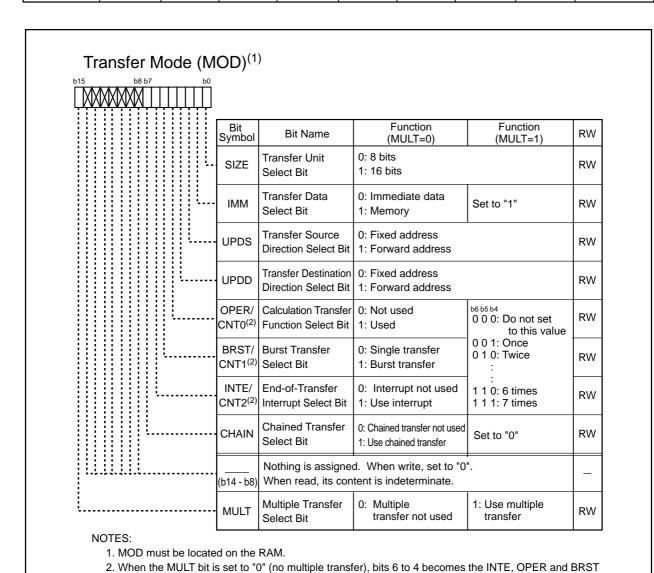


Figure 13.3 MOD

bits. When the MULT bit is set to "1" (multiple transfer), bits 6 to 4 becomes the CNT2 to CNT0 bits.

13.1.3 Interrupt Control Register for the Peripheral Function

For the peripheral function interrupt activating DMAC II, set the ILVL2 to ILVL0 bits to "1112" (level 7).

13.1.4 Relocatable Vector Table for the Peripheral Function

Set the starting address of the DMAC II index in the interrupt vector for the peripheral function interrupt activating DMAC II.

When using the chained transfer, the relocatable vector table must be located in the RAM.

13.1.5 IRLT Bit in the IIOiIE Register (i=0 to 4)

When the intelligent I/O interrupt or CAN interrupt is used to activate DMAC II, set the IRLT bit in the IIOiIE register of the interrupt to "0".

13.2 DMAC II Performance

Function to activate DMAC II is selected by setting the DMA II bit to "1" (DMAC II transfer). DMAC II is activated by all peripheral function interrupts with the ILVL2 to ILVL0 bits set to "1112" (level 7). These peripheral function interrupt request signals become DMAC II transfer request signals and the peripheral function interrupt cannot be used.

When an interrupt request is generated by setting the ILVL2 to ILVL0 bits to "1112" (level 7), DMAC II is activated regardless of what state the I flag and IPL are in.

13.3 Transfer Data

DMAC II transfers 8-bit or 16-bit data.

- Memory-to-memory transfer: Data is transferred from a desired memory location in a 64-Kbyte space (Addresses 0000016 to 0FFFF16) to another desired memory location in the same space.
- Immediate data transfer: Immediate data is transferred to a desired memory location in a 64-Kbyte space.
- Calculation transfer: Two 8-bit or16-bit data are added together and the result is transferred to a desired memory location in a 64-Kbyte space.

When a 16-bit data is transferred to the destination address 0FFFF16, it is transferred to 0FFFF16 and 1000016. The same transfer occurs when the source address is 0FFFF16. Actual transferable space varies depending on the internal RAM capacity.

13.3.1 Memory-to-memory Transfer

Data transfer between any two memory locations can be:

- a transfer from a fixed address to another fixed address
- a transfer from a fixed address to a relocatable address
- a transfer from a relocatable address to a fixed address
- a transfer from a relocatable address to another relocatable address

When a relocatable address is selected, the address is incremented, after a transfer, for the next transfer. In a 8-bit transfer, the transfer address is incremented by one. In a 16-bit transfer, the transfer address is incremented by two.

When a source or destination address exceeds address 0FFFF16 as a result of address incrementation, the source or destination address returns to address 0000016 and continues incrementation. Maintain source and destination address at address 0FFFF16 or below.

13.3.2 Immediate Data Transfer

DMAC II transfers immediate data to any memory location. A fixed or relocatable address can be selected as the destination address. Store the immediate data into SADR. To transfer an 8-bit immediate data, write the data in the low-order byte of SADR (high-order byte is ignored).

13.3.3 Calculation Transfer

After two memory data or an immediate data and memory data are added together, DMAC II transfers calculated result to any memory location. SADR must have one memory location address to be calculated or immediate data and OADR must have the other memory location address to be calculated. Fixed or relocatable address can be selected as source and destination addresses when using a memory + memory calculation transfer. If the transfer source address is relocatable, the operation address also becomes relocatable. Fixed or relocatable address can be selected as the transfer destination address when using an immediate data + memory calculation transfer.

13.4 Transfer Modes

Single and burst transfers are available. The BRST bit in MOD selects transfer method, either single transfer or burst transfer. COUNT determines how many transfers occur. No transfer occurs when COUNT is set to "000016".

13.4.1 Single Transfer

For every transfer request source, DMAC II transfers one transfer unit of 8-bit or 16-bit data once. When the source or destination address is relocatable, the address is incremented, after a transfer, for the next transfer.

COUNT is decremented every time a transfer occurs. When using the end-of-transfer interrupt, the interrupt is acknowledged when COUNT reaches "0".

13.4.2 Burst Transfer

For every transfer request source, DMAC II continuously transfers data the number of times determined by COUNT. COUNT is decremented every time a transfer occurs. The burst transfer ends when COUNT reaches "0". The end-of-transfer interrupt is acknowledged when the burst transfer ends if using the end-of-transfer interrupt. All interrupts are ignored while the burst transfer is in progress.

13.5 Multiple Transfer

The MULT bit in MOD selects the multiple transfer. When using the multiple transfer, select the memory-to-memory transfer. One transfer request source initiates multiple transfers. The CNT2 to CNT0 bits in MOD selects the number of transfers from "0012" (once) to "1112" (7 times). Do not set the CNT2 to CNT0 bits to "0002".

The transfer source and destination addresses for each transfer must be allocated alternately in addresses following MOD and COUNT. When the multiple transfer is selected, the calculation transfer, burst transfer, end-of-transfer interrupt and chained transfer cannot be used.

M32C/80 Group 13. DMACII

13.6 Chained Transfer

The CHAIN bit in MOD selects the chained transfer.

The following process initiates the chained transfer.

(1) Transfer, caused by a transfer request source, occurs according to the content of the DMAC II index. The vectors of the request source indicates where the DMAC II index is allocated. For each request, the BRST bit selects either single or burst transfer.

- (2) When COUNT reaches "0", the contents of CADR1 and CADR0 are written to the vector of the request source. When the INTE bit in MOD is set to "1", the end-of-transfer interrupt is generated simultaneously.
- (3) When the next DMAC II transfer request is generated, transfer occurs according to the contents of the DMAC II index indicated by the peripheral function interrupt vector rewritten in (2).

Figure 13.4 shows the relocatable vector and DMACII index when the chained transfer is in progress. For the chained transfer, the relocatable vector table must be located in the RAM.

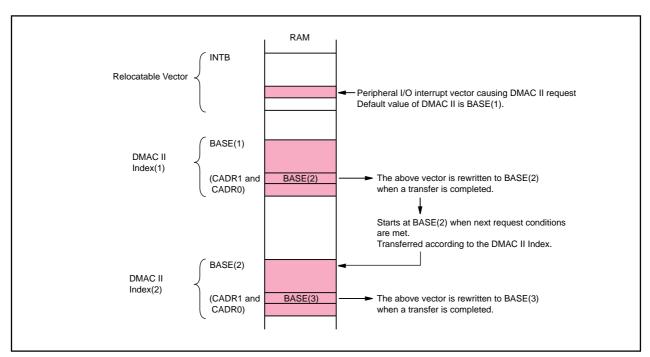


Figure 13.4 Relocatable Vector and DMAC II Index

13.7 End-of-Transfer Interrupt

The INTE bit in MOD selects the end-of-transfer interrupt. Set the starting address of the end-of-transfer interrupt routine in IADR1 and IADR0. The end-of-transfer interrupt is generated when COUNT reaches "0."

M32C/80 Group 13. DMACII

13.8 Execution Time

DMAC II execution cycle is calculated by the following equations:

Multiple transfers: $t = 21 + (11 + b + c) \times k$ cycles

Other than multiple transfers: $t = 6 + (26 + a + b + c + d) \times m + (4 + e) \times n$ cycles

a: If IMM = 0 (source of transfer is immediate data), a = 0;

if IMM = 1 (source of transfer is memory), a = -1

b: If UPDS = 1 (source transfer address is a relocatable address), b = 0;

if UPDS = 0 (source transfer address is a fixed address), b = 1

c: If UPDD = 1 (destination transfer address is a relocatable address), c = 0;

if UPDD = 0 (destination transfer address is a fixed address), c = 1

d: If OPER = 0 (calculation function is not selected), d = 0;

if OPER = 1 (calculation function is selected) and UPDS = 0 (source of transfer is immediate data or fixed address memory), d = 7;

if OPER = 1 (calculation function is selected) and UPDS = 1 (source of transfer is relocatable address memory), d = 8

e: If CHAIN = 0 (chained transfer is not selected), e = 0; if CHAIN = 1 (chained transfer is selected), e = 4

m: BRST = 0 (single transfer), m = 1; BRST = 1 (burst transfer), m = the value set in transfer counter

n: If COUNT = 1, n = 0; if COUNT = 2 or more, n = 1

k: Number of transfers set in the CNT2 to CNT0 bits

The equations above are approximations. The number of cycles may vary depending on CPU state, bus wait state, and DMAC II index allocation.

The first instruction from the end-of-transfer interrupt routine is executed in the eighth cycle after the DMAC II transfer is completed.

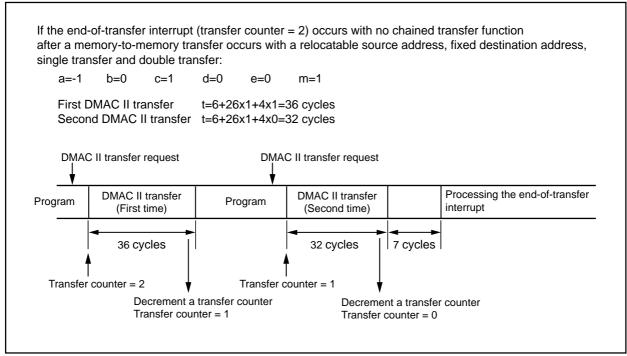


Figure 13.5 Transfer Cycle

When an interrupt request as a DMAC II transfer request source and another interrupt request with higher priority (e.g., $\overline{\text{NMI}}$ or watchdog timer) are generated simultaneously, the interrupt with higher priority takes precedence over the DMAC II transfer. The pending DMAC II transfer starts after the interrupt sequence has been completed.

M32C/80 Group 14. Timer

14. Timer

The microcomputer has eleven 16-bit timers. Five timers A and six timers B have different functions. Each timer functions independently. The count source for each timer becomes the clock for timer operations including counting and reloading, etc. Figures 14.1 and 14.2 show block diagrams of timer A and timer B configuration.

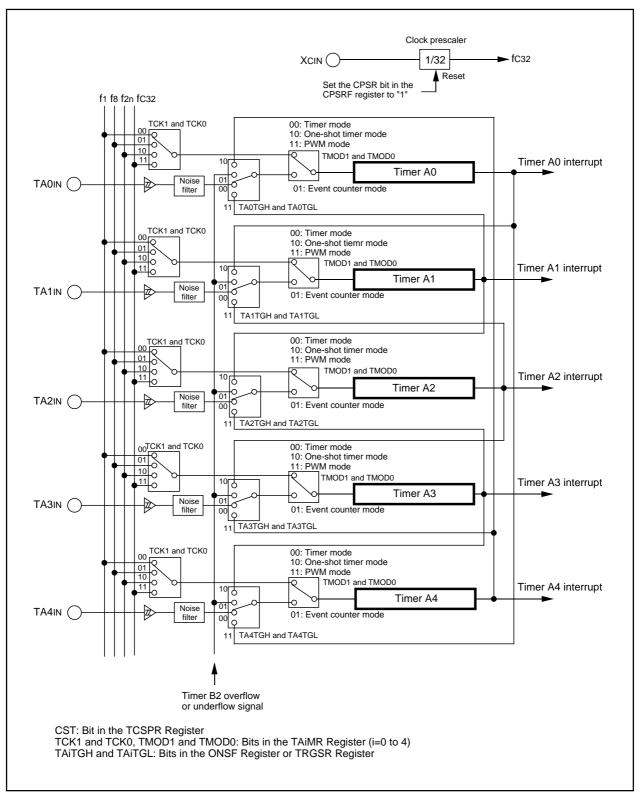


Figure 14.1 Timer A Configuration

M32C/80 Group 14. Timer

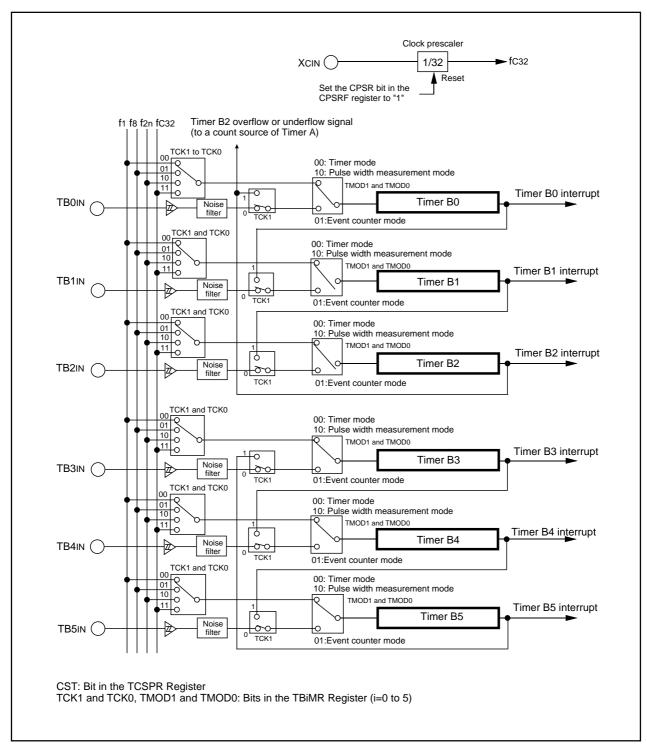


Figure 14.2 Timer B Configuration

14.1 Timer A

Figure 14.3 shows a block diagram of the timer A. Figures 14.4 to 14.7 show registers associated with the timer A.

The timer A supports the following four modes. Except in event counter mode, all timers A0 to A4 have the same function. The TMOD1 and TMOD0 bits in the TAiMR register (i=0 to 4) determine which mode is used.

- Timer mode: The timer counts an internal count source.
- Event counter mode: The timer counts an external pulse or an overflow and underflow of other timers.
- One-shot timer mode: The timer outputs one valid pulse until a counter value reaches "000016".
- Pulse width modulation mode: The timer continuously outputs desired pulse widths.

Table 14.1 lists TAiout pin settings when used as an output. Table 14.2 lists TAin and TAiout pin settings when used as an input.

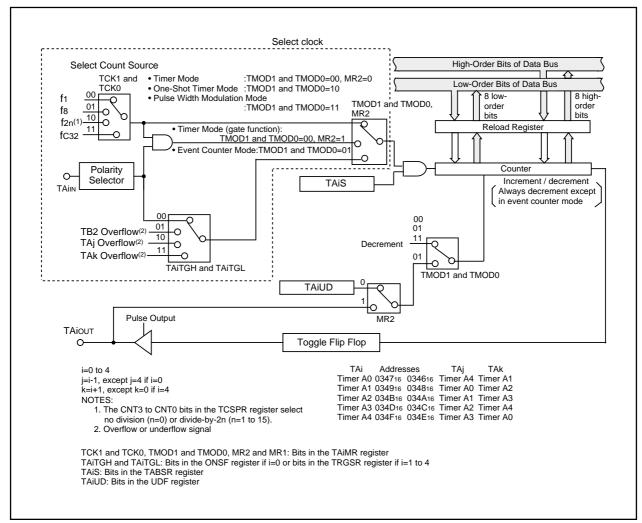
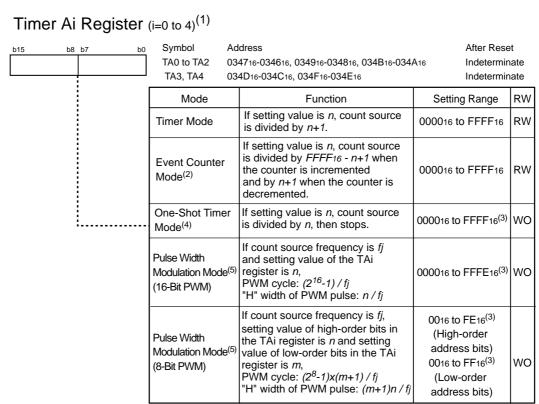



Figure 14.3 Timer A Block Diagram

fj : f1, f8, f2n, fC32 NOTES:

- 1. Use 16-bit data for reading and writing.
- The TAi register counts how many pulse inputs are provided externally or how many times another timer counter overflows and underflows.
- 3. Use the MOV instruction to set the TAi register.
- 4. When the TAi register is set to "000016", the timer counter does not start and the timer Ai interrupt request is not generated.
- 5. When the TAi register is set to "000016", the pulse width modulator does not operate and the TAiout pin is held "L". The TAi interrupt request is also not generated. The same situation occurs in 8-bit pulse width modulator mode if the 8 high-order bits in the TAi register are set to "0016".

Figure 14.4 TA0 to TA4 Registers

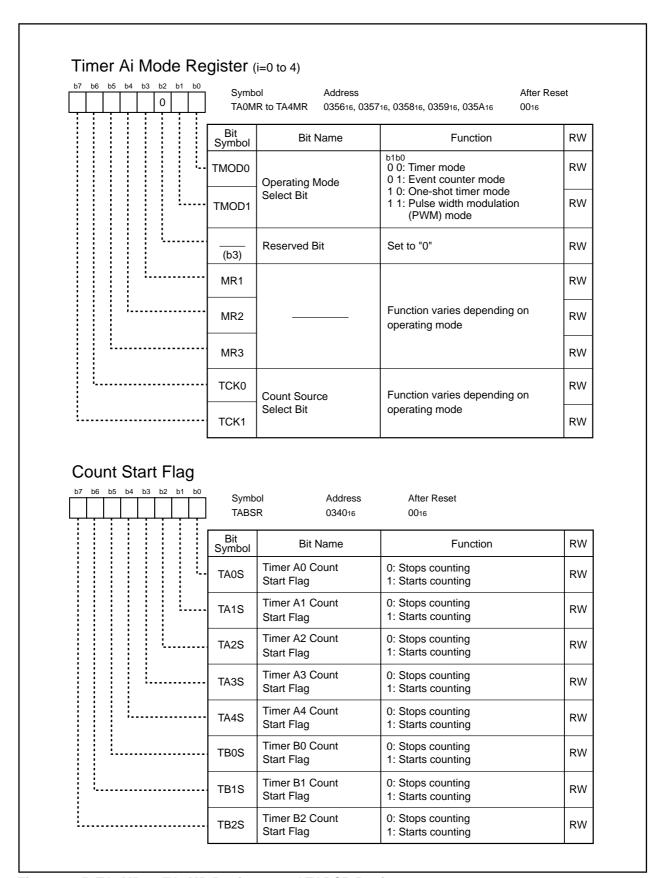
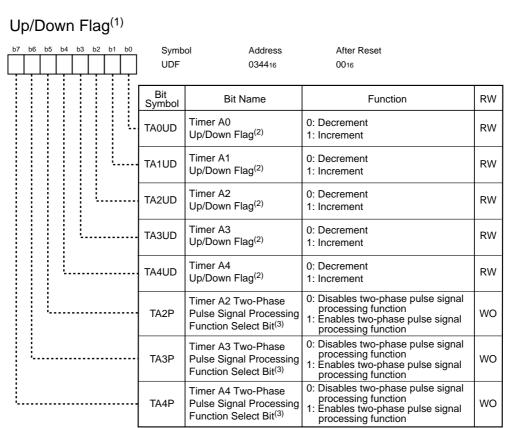
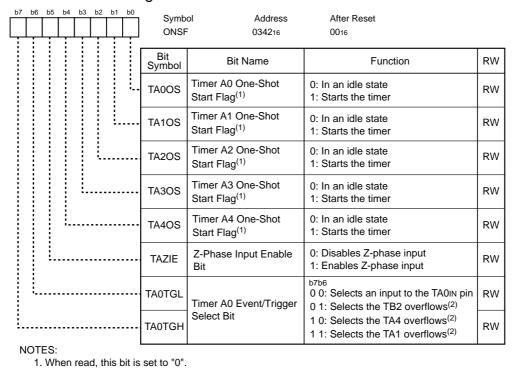
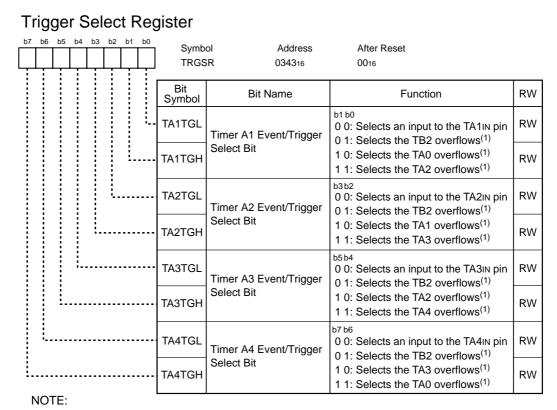



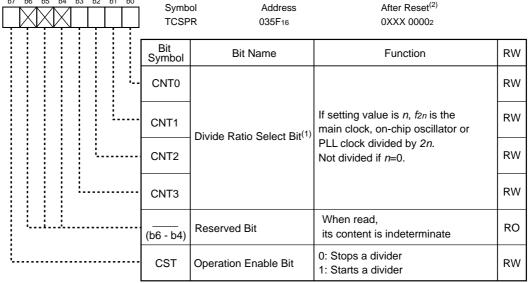
Figure 14.5 TA0MR to TA4MR Registers and TABSR Register

NOTES:

- 1. Use the MOV instruction to set the UDF register.
- 2. This bit is enabled when the MR2 bit in the TAiMR register (i=0 to 4) is set to "0" (the UDF register causes increment/decrement switching) in event counter mode.
- 3. Set this bit to "0" when not using the two-phase pulse signal processing function.

One-Shot Start Flag


Figure 14.6 UDF Register and ONSF Register

2. Overflow or underflow.

1. Overflow or underflow

Count Source Prescaler Register

NOTES:

- 1. Set the CST bit to "0" before the CNT3 to CNT0 bits are rewritten.
- The TCSPR register maintains values set before reset, even after software reset or watchdog timer reset has performed.

Figure 14.7 TRGSR Register and TCSPR Register

Table 14.1 Pin Settings for Output from TAiouT Pin (i=0 to 4)

Pin	Setting		
	PS1, PS2 Registers	PSL1, PSL2 Registers	PSC Register
P70/TA0ouT ⁽¹⁾	PS1_0= 1	PSL1_0=1	PSC_0= 0
P72/TA1out	PS1_2= 1	PSL1_2=1	PSC_2= 0
P74/TA2OUT	PS1_4= 1	PSL1_4=0	PSC_4= 0
P76/TA30UT	PS1_6= 1	PSL1_6=1	PSC_6= 0
P80/TA4OUT	PS2_0= 1	PSL2_0=0	_

NOTE:

Table 14.2 Pin Settings for Input to TAilN and TAiouT Pins (i=0 to 4)

Pin	Setting	
	PS1, PS2 Registers	PD7, PD8 Registers
P70/TA0out	PS1_0=0	PD7_0=0
P71/TA0IN	PS1_1=0	PD7_1=0
P72/TA1out	PS1_2=0	PD7_2=0
P73/TA1IN	PS1_3=0	PD7_3=0
P74TA2out	PS1_4=0	PD7_4=0
P75/TA2IN	PS1_5=0	PD7_5=0
Р76ТАЗООТ	PS1_6=0	PD7_6=0
P77/TA3IN	PS1_7=0	PD7_7=0
Р80/ТА400Т	PS2_0=0	PD8_0=0
P81/TA4IN	PS2_1=0	PD8_1=0

^{1.} P70/TA0out is a port for the N-channel open drain output.

14.1.1 Timer Mode

In timer mode, the timer counts an internally generated count source (see **Table 14.3**). Figure 14.8 shows the TAiMR register (i=0 to 4) in timer mode.

Table 14.3 Timer Mode Specifications

Item	Specification		
Count Source	f1, f8, f2n ⁽¹⁾ , fC32		
Counting Operation	The timer decrements a counter value		
	When the timer counter underflows, content of the reload register is reloaded into the		
	count register and counting resumes.		
Divide Ratio	1/(n+1) n: setting value of the TAi register (i=0 to 4) 000016 to FFFF16		
Counter Start Condition	The TAiS bit in the TABSR register is set to "1" (starts counting)		
Counter Stop Condition	The TAiS bit is set to "0" (stops counting)		
Interrupt Request Generation Timing	The timer counter underflows		
TAilN Pin Function	Programmable I/O port or gate input		
TAiout Pin Function	Programmable I/O port or pulse output		
Read from Timer	The TAi register indicates counter value		
Write to Timer	While the timer counter stops, the value written to the TAi register is also written to		
	both reload register and counter		
	While counting, the value written to the TAi register is written to the reload register		
	(It is transferred to the counter at the next reload timing)		
Selectable Function	Gate function		
	Input signal to the TAiIN pin determines whether the timer counter starts or stops counting		
	Pulse output function		
	The polarity of the TAiout pin is inversed whenever the timer counter underflows		

NOTE:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

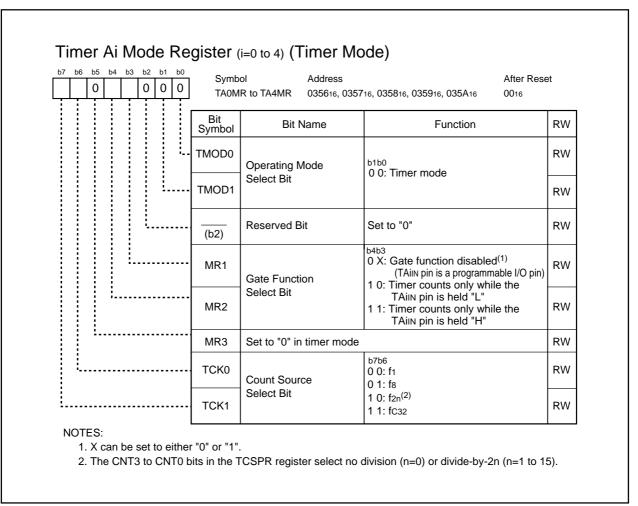


Figure 14.8 TA0MR to TA4MR Registers

14.1.2 Event Counter Mode

In event counter mode, the timer counts how many external signals are applied or how many times another timer counter overflows and underflows. The timers A2, A3 and A4 can count externally generated two-phase signals. Table 14.4 lists specifications in event counter mode (when not handling a two-phase pulse signal). Table 14.5 lists specifications in event counter mode (when handling a two-phase pulse signal with the timers A2, A3 and A4). Figure 14.9 shows the TAiMR register (i=0 to 4) in event counter mode.

Table 14.4 Event Counter Mode Specifications (When Not Processing Two-phase Pulse Signal)

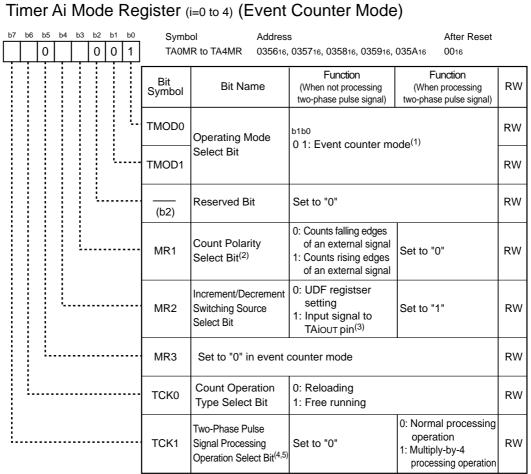

Item	Specification	
Count Source	• External signal applied to the TAilN pin (i = 0 to 4) (valid edge can be selected by program)	
	• Timer B2 overflow or underflow signal, timer Aj overflow or underflow signal (j=i-1,	
	except j=4 if i=0) and timer Ak overflow or underflow signal (k=i+1, except k=0 if i=4)	
Counting Operation	External signal and program can determine whether the timer increments or decre-	
	ments a counter value	
	• When the timer counter underflows or overflows, content of the reload register is	
	reloaded into the count register and counting resumes. When the free-running count	
	function is selected, the timer counter continues running without reloading.	
Divide Ratio	• 1/(FFFF16 - n + 1) for counter increment	
	• 1/(n + 1) for counter decrement n: setting value of the TAi register 000016 to FFFF16	
Counter Start Condition	The TAiS bit in the TABSR register is set to "1" (starts counting)	
Counter Stop Condition	The TAiS bit is set to "0" (stops counting)	
Interrupt Request Generation Timing	The timer counter overflows or underflows	
TAilN Pin Function	Programmable I/O port or count source input	
TAIOUT Pin Function	Programmable I/O port, pulse output or input selecting a counter increment or decrement	
Read from Timer	The TAi register indicates counter value	
Write to Timer	• When the timer counter stops, the value written to the TAi register is also written to	
	both reload register and counter	
	• While counting, the value written to the TAi register is written to the reload register	
	(It is transferred to the counter at the next reload timing)	
Selectable Function	Free-running count function	
	Content of the reload register is not reloaded even if the timer counter overflows or	
	underflows	
	Pulse output function	
	The polarity of the TAiout pin is inversed whenever the timer counter overflows or	
	underflows	

Table 14.5 Event Counter Mode Specifications (When Processing Two-phase Pulse Signal on Timer A2, A3 and A4)

Timer A2, A3		
Item	Specification	
Count Source	Two-phase pulse signal applied to the TAiIN and TAiOUT pins (i = 2 to 4)	
Counting Operation	Two-phase pulse signal determines whether the timer increments or decrements a	
	counter value	
	When the timer counter overflows or underflows, content of the reload register is	
	reloaded into the count register and counting resumes. With the free-running count	
	function, the timer counter continues running without reloading.	
Divide Ratio	• 1/(FFFF16 - n + 1) for counter increment	
	• 1/(n + 1) for counter decrement n: setting value of the TAi register 000016 to FFFF16	
Counter Start Condition	The TAiS bit in the TABSR register is set to "1" (starts counting)	
Counter Stop Condition	The TAiS bit is set to "0" (stops counting)	
Interrupt Request Generation Timing	The timer counter overflows or underflows	
TAilN Pin Function	Two-phase pulse signal is applied	
TAIOUT Pin Function	Two-phase pulse signal is applied	
Read from Timer	The TAi register indicates the counter value	
Write to Timer	When the timer counter stops, the value written to the TAi register is also written to	
	both reload register and counter	
	While counting, the value written to the TAi register is written to the reload register	
	(It is transferred to the counter at the next reload timing)	
Selectable Function ⁽¹⁾	Normal processing operation (the timer A2 and timer A3)	
	While a high-level ("H") signal is applied to the TAjou⊤ pin (j = 2 or 3), the timer	
	increments a counter value on the rising edge of the TAjıN pin or decrements a	
	counter on the falling edge.	
	ТАјоит	
	TAjIN Increment Increment Decrement Decrement Decrement	
	Multiply-by-4 processing operation (the timer A3 and timer A4)	
	While an "H" signal is applied to the TAkout pin ($k = 3$ or 4) on the rising edge of the	
	TAkin pin, the timer increments a counter value on the rising and falling edges of the	
	TAKOUT and TAKIN pins.	
	While an "H" signal is applied to the TAko∪⊤ pin on the falling edge of the TAkιν pin, the	
	timer decrements a counter value on the rising and falling edges of the TAkout and	
	TAKIN pins.	
	TAKOUT TAKOUT	
	TAKIN	
	Increment on all edges Decrement on all edges	

NOTE:

1. Only timer A3 operation can be selected. The timer A2 is for the normal processing operation. The timer A4 is for the multiply-by-4 operation.

NOTES:

- 1. The TAiTGH and TAiTGL bits in the ONSF or TRGSR register determine the count source in the event counter mode.
- 2. MR1 bit setting is enabled only when counting how many times external signals are applied.
- 3. The timer decrements a counter value when an "L" signal is applied to the TAIOUT pin and the timer increments a counter value when an "H" signal is applied to the TAIOUT pin.
- 4. The TCK1 bit is enabled only in the TA3MR register.
- 5. For two-phase pulse signal processing, set the TAjP bit in the UDF register (j=2 to 4) to "1" (two-phase pulse signal processing function enabled). Also, set the TAjTGH and TAjTGL bits to "002" (input to the TAjIN pin).

Figure 14.9 TA0MR to TA4MR Registers

14.1.2.1 Counter Reset by Two-Phase Pulse Signal Processing

Z-phase input resets the timer counter when processing a two-phase pulse signal.

This function can be used in timer A3 event counter mode, two-phase pulse signal processing, free-running count operation type or multiply-by-4 processing. The Z-phase signal is applied to the $\overline{\text{INT2}}$ pin. When the TAZIE bit in the ONSF register is set to "1" (Z-phase input enabled), Z-phase input can reset the timer counter. To reset the counter by a Z-phase input, set the TA3 register to "000016" beforehand.

Z-phase input is enabled when the edge of the signal applied to the $\overline{\text{INT2}}$ pin is detected. The POL bit in the INT2IC register can determine edge polarity. The Z-phase must have a pulse width of one timer A3 count source cycle or more . Figure 14.10 shows two-phase pulses (A-phase and B-phase) and the Z-phase.

Z-phase input resets the timer counter in the next count source following Z-phase input. Figure 14.11 shows the counter reset timing.

Timer A3 interrupt request is generated twice continuously when a timer A3 overflow or underflow, and a counter reset by $\overline{\text{INT2}}$ input occur at the same time. Do not use the timer A3 interrupt request when this function is used.

Figure 14.10 Two-Phase Pulse (A-phase and B-phase) and Z-phase

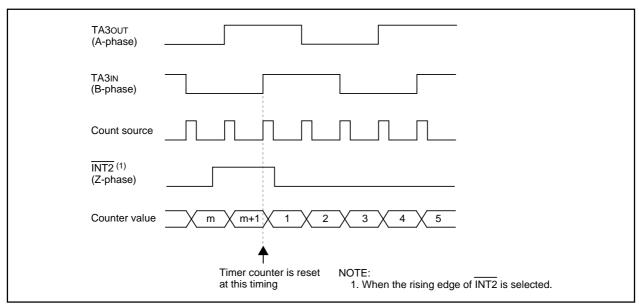


Figure 14.11 Counter Reset Timing

14.1.3 One-Shot Timer Mode

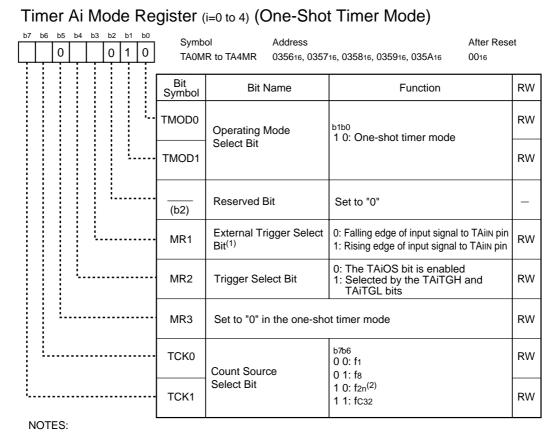

In one-shot timer mode, the timer operates only once for each trigger (see **Table 14.6**). Once a trigger occurs, the timer starts and continues operating for a desired period. Figure 14.12 shows the TAiMR register (i=0 to 4) in one-shot timer mode.

Table 14.6 One-Shot Timer Mode Specifications

Item	Specification	
Count Source	f1, f8, f2n ⁽¹⁾ , fC32	
Counting Operation	The timer decrements a counter value	
	When the timer counter reaches "000016", it stops counting after reloading.	
	If a trigger occurs while counting, content of the reload register is reloaded into the	
	count register and counting resumes.	
Divide Ratio	1/n n: setting value of the TAi register (i=0 to 4) 000016 to FFFF16,	
	but the timer counter does not run if n=000016	
Counter Start Condition	The TAiS bit in the TABSR register is set to "1" (starts counting) and following triggers	
	occur:	
	External trigger input is provided	
	Timer counter overflows or underflows	
	 The TAiOS bit in the ONSF register is set to "1" (timer started) 	
Counter Stop Condition	After the timer counter has reached "000016" and is reloaded	
	• When the TAiS bit is set to "0" (stops counting)	
Interrupt Request Generation Timing	The timer counter reaches "000016"	
TAilN Pin Function	Programmable I/O port or trigger input	
TAIOUT Pin Function	Programmable I/O port or pulse output	
Read from Timer	The value in the TAi register is indeterminate when read	
Write to Timer	When the timer counter stops, the value written to the TAi register is also written to	
	both reload register and counter	
	• While counting, the value written to the TAi register is written to the reload register	
	(It is transferred to the counter at the next reload timing)	

NOTE:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

1. The MR1 bit setting is enabled only when the TAiTGH and TAiTGL bits in the TRGSR register are set to "002" (input to the TAim pin). The MR1 bit can be set to either "0" or "1" when the TAiTGH and TAiTGL bits are set to "012" (TB2 overflow and underflow), "102" (TAi overflow and underflow), or "112" (TAi overflow and underflow).

Figure 14.12 TA0MR to TA4MR Registers

^{2.} The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

14.1.4 Pulse Width Modulation Mode

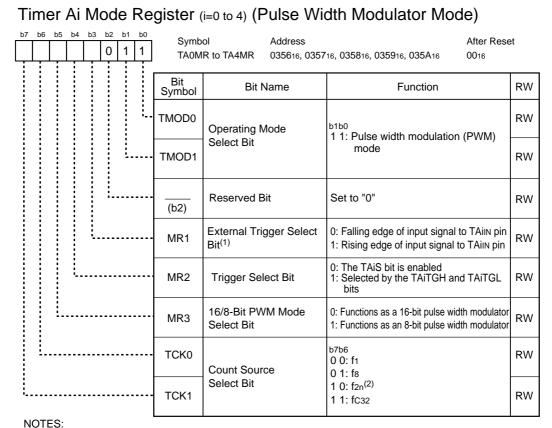

In pulse width modulation mode, the timer outputs pulse of desired width continuously (see **Table 14.7**). The timer counter functions as either 16-bit pulse width modulator or 8-bit pulse width modulator. Figure 14.13 shows the TAiMR register (i=0 to 4) in pulse width modulation mode. Figures 14.14 and 14.15 show examples of how a 16-bit pulse width modulator operates and of how an 8-bit pulse width modulator operates.

Table 14.7 Pulse Width Modulation Mode Specifications

Item	Specification	
Count Source	f1, f8, f2n ⁽¹⁾ , fC32	
Counting Operation	The timer decrements a counter value	
	(The counter functions as an 8-bit or a 16-bit pulse width modulator)	
	Content of the reload register is reloaded on the rising edge of PWM pulse and count-	
	ing continues.	
	The timer is not affected by a trigger that is generated during counting.	
16-Bit PWM	• "H" width = n/f_j n : setting value of the TAi register 000016 to FFFE16	
	fj: count source frequency	
	• Cycle = $(2^{16}-1)/f_j$ fixed	
8-Bit PWM	• "H" width = n x (m+1) / fj	
	• Cycles = $(2^8-1) \times (m+1) / f_j$	
	m: setting value of low-order bit address of the TAi register 0016 to FF16	
	n: setting value of high-order bit address of the TAi register 0016 to FE16	
Counter Start Condition	External trigger input is provided	
	Timer counter overflows or underflows	
	The TAiS bit in the TABSR register is set to "1" (starts counting)	
Counter Stop Condition	The TAiS bit is set to "0" (stops counting)	
Interrupt Request Generation Timing	On the falling edge of the PWM pulse	
TAilN Pin Function	Programmable I/O port or trigger input	
TAiout Pin Function	Pulse output	
Read from Timer	The value in the TAi register is indeterminate when read	
Write to Timer	When the timer counter stops, the value written to the TAi register is also written to	
	both reload register and counter	
	While counting, the value written to the TAi register is written to the reload register	
	(It is transferred to the counter at the next reload timing)	

NOTE:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

101E2:

- 1. MR1 bit setting is enabled only when the TAiTGH and TAiTGL bits in the TRGSR register are set to "002" (input to the TAiIN pin). The MR1 bit can be set to either "0" or "1" when the TAiTGH and TAiTGL bits are set to "012" (TB2 overflow and underflow), "102" (TAi overflow and underflow) or "112" (TAi overflow and underflow).
- 2. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

Figure 14.13 TA0MR to TA4MR Registers

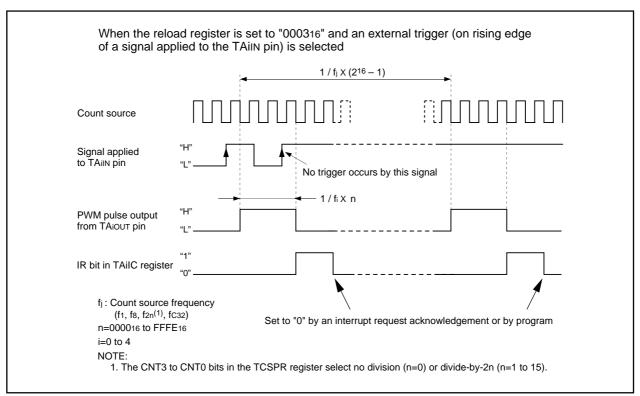


Figure 14.14 16-bit Pulse Width Modulator Operation

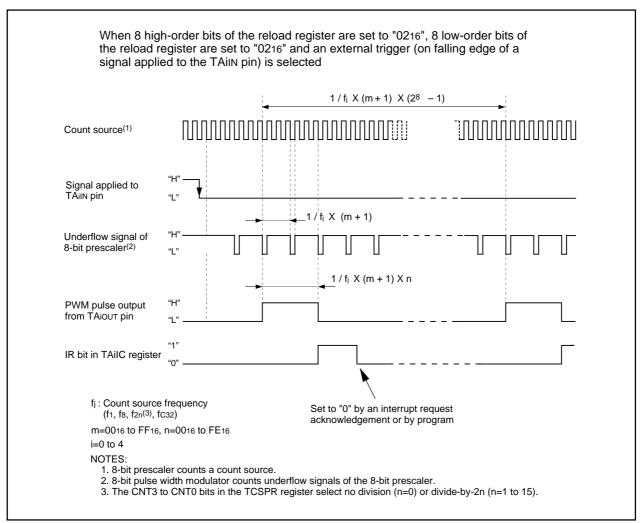


Figure 14.15 8-bit Pulse Width Modulator Operation

14.2 Timer B

Figure 14.16 shows a block diagram of the timer B. Figures 14.17 to 14.19 show registers associated with the timer B. The timer B supports the following three modes. The TMOD1 and TMOD0 bits in the TBiMR register (i=0 to 5) determine which mode is used.

- Timer mode: The timer counts an internal count source.
- Event counter mode: The timer counts pulses from an external source or overflow and underflow of another timer.
- Pulse period/pulse width measurement mode : The timer measures pulse period or pulse width of an external signal.

Table 14.8 lists TBiIN pin settings.

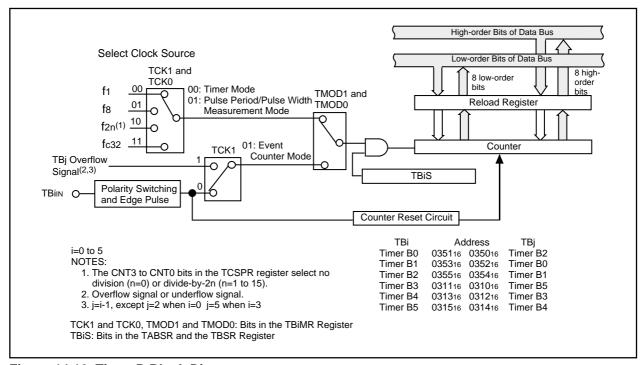


Figure 14.16 Timer B Block Diagram

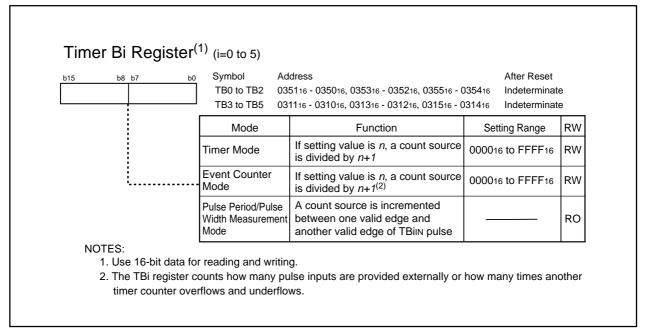
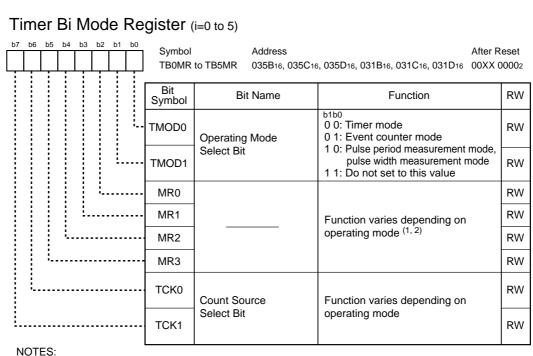



Figure 14.17 TB0 to TB5 Registers

14. Timer (Timer B) M32C/80 Group

- 1. Only MR2 bits in the TB0MR and TB3MR registers are enabled.
- 2. Nothing is assigned in the MR2 bit in the TB1MR, TB2MR, TB4MR and TB5MR registers. When write, set to "0". When read, its content is indeterminate.

Count Start Flag

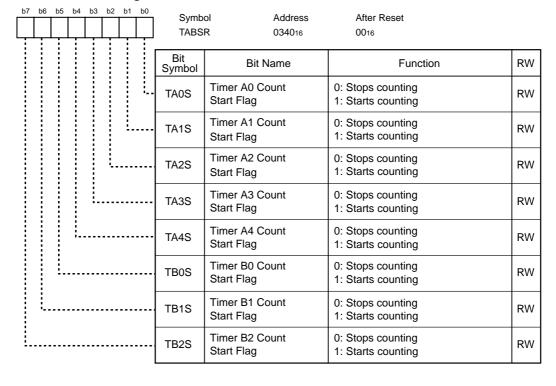


Figure 14.18 TB0MR to TB5MR Registers, TABSR Register

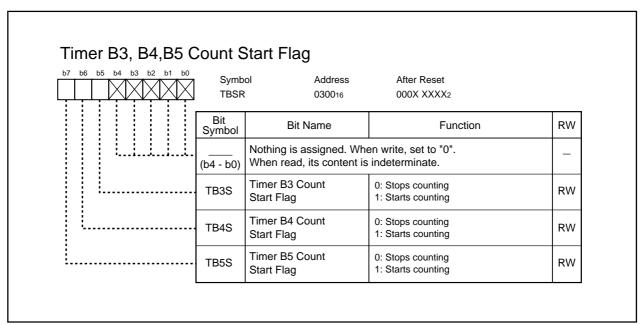


Figure 14.19 TBSR Register

Table 14.8 Settings for the TBin Pins (i=0 to 5)

Port Name	Function	Setting	
		PS1, PS3 ⁽¹⁾ Registers	PD7, PD9 ⁽¹⁾ Registers
P90	TB0in	PS3_0=0	PD9_0=0
P91	TB1IN	PS3_1=0	PD9_1=0
P92	TB2IN	PS3_2=0	PD9_2=0
P93	TB3IN	PS3_3=0	PD9_3=0
P94	TB4IN	PS3_4=0	PD9_4=0
P71	TB5IN	PS1_1=0	PD7_1=0

NOTE:

^{1.} Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enabled). Do not generate an interrupt or a DMA transfer between the instruction to set the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

14.2.1 Timer Mode

In timer mode, the timer counts an internally generated count source (see **Table 14.9**). Figure 14.20 shows the TBiMR register (i=0 to 5) in timer mode.

Table 14.9 Timer Mode Specifications

Item	Specification	
Count Source	f1, f8, f2n ⁽¹⁾ , fC32	
Counting Operation	The timer decrements a counter value	
	When the timer counter underflows, content of the reload register is reloaded into the	
	count register and counting resumes	
Divide Ratio	1/(n+1) n. setting value of the TBi register (i=0 to 5) 000016 to FFFF16	
Counter Start Condition	The TBiS bits in the TABSR and TBSR registers are set to "1" (starts counting)	
Counter Stop Condition	The TBiS bit is set to "0" (stops counting)	
Interrupt Request Generation Timing	Timer counter underflows	
TBilN Pin Function	Programmable I/O port	
Read from Timer	The TBi register indicates counter value	
Write to Timer	When the timer counter stops, the value written to the TBi register is also written to	
	both reload register and counter	
	While counting, the value written to the TBi register is written to the reload register	
	(It is transferred to the counter at the next reload timing)	

NOTE:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

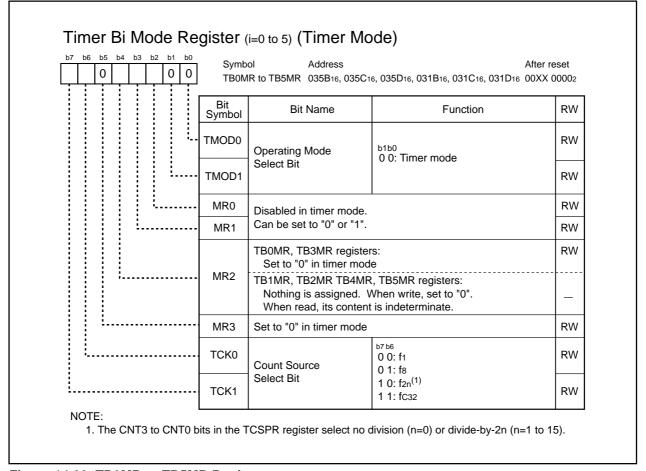


Figure 14.20 TB0MR to TB5MR Registers

14.2.2 Event Counter Mode

In event counter mode, the timer counts how many external signals are applied or how many times another timer overflows and underflows. (See **Table 14.10**) Figure 14.21 shows the TBiMR register (i=0 to 5) in event counter mode.

Table 14.10 Event Counter Mode Specifications

Item	Specification	
Count Source	• External signal applied to the TBiIN pin (i = 0 to 5) (valid edge can be selected by	
	program)	
	• TBj overflow or underflow signal (j=i-1, except j=2 when i=0, j=5 when i=3)	
Counting Operation	The timer decrements a counter value	
	When the timer counter underflows, content of the reload register is reloaded into the	
	count register to continue counting	
Divide Ratio	1/(n+1) n: setting value of the TBi register 000016 to FFFF16	
Counter Start Condition	The TBiS bits in the TABSR and TBSR register are set to "1" (starts counting)	
Counter Stop Condition	The TBiS bit is set to "0" (stops counting)	
Interrupt Request Generation Timing	The timer counter underflows	
TBiIN Pin Function	Programmable I/O port or count source input	
Read from Timer	The TBi register indicates counter value	
Write to Timer	When the timer counter stops, the value written to the TBi register is also written to	
	both reload register and counter	
	While counting, the value written to the TBi register is written to the reload register	
	(It is transferred to the counter at the next reload timing)	

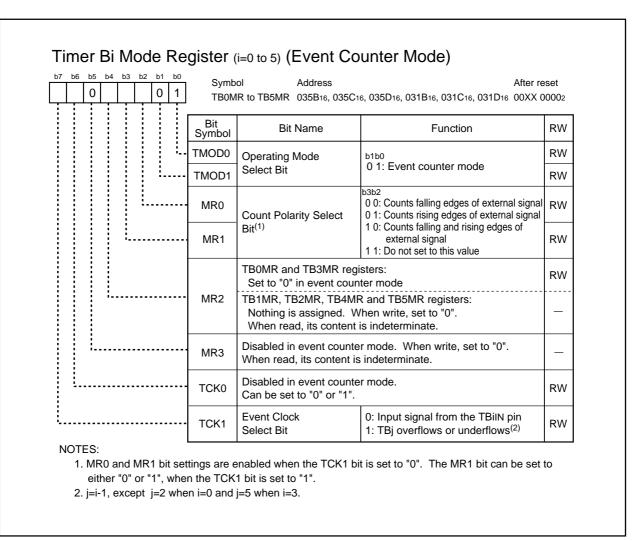
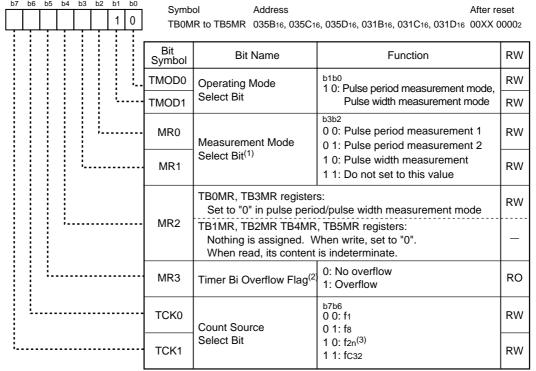


Figure 14.21 TB0MR to TB5MR Registers

14.2.3 Pulse Period/Pulse Width Measurement Mode

In pulse period/pulse width measurement mode, the timer measures pulse period or pulse width of an external signal. (See **Table 14.11**) Figure 14.22 shows the TBiMR register (i=0 to 5) in pulse period/pulse width measurement mode. Figure 14.23 shows an operation example in pulse period measurement mode. Figure 14.24 shows an operation example in the pulse width measurement mode.


Table 14.11 Pulse Period/Pulse Width Measurement Mode Specifications

Item	Specification	
Count Source	f1, f8, f2n ⁽³⁾ , fC32	
Counting Operation	The timer increments a counter value	
	Counter value is transferred to the reload register on the valid edge of a pulse to be	
	measured. It is set to "000016" and the timer continues counting	
Counter Start Condition	The TBiS bits (i=0 to 5) in the TABSR and TBSR register are set to "1" (starts counting)	
Counter Stop Condition	The TBiS bit is set to "0" (stops counting)	
Interrupt Request Generation Timing	On the valid edge of a pulse to be measured ⁽¹⁾	
	The timer counter overflows	
	The MR3 bit in the TBiMR register is set to "1" (overflow) simultaneously. When the	
	TBiS bit is set to "1" (start counting) and the next count source is counted after setting	
	the MR3 bit to "1" (overflow), the MR3 bit can be set to "0" (no overflow) by writing to	
	the TBiMR register.	
TBilN Pin Function	Input for a pulse to be measured	
Read from Timer	The TBi register indicates reload register values (measurement results) ⁽²⁾	
Write to Timer	Value written to the TBi register can be written to neither reload register nor counter	

NOTES:

- 1. No interrupt request is generated when the pulse to be measured is on the first valid edge after the timer has started counting.
- 2. The TBi register is in an indeterminate state until the pulse to be measured is on the second valid edge after the timer has started counting.
- 3. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

Timer Bi Mode Register (i=0 to 5) (Pulse Period / Pulse Width Measurement Mode)

NOTES:

- 1. The MR1 and MR0 bits selects the following measurements.
 - Pulse period measurement 1 (the MR1 and MR0 bits are set to "002"):
 - Measures between the falling edge and the next falling edge of a pulse to be measured Pulse period measurement 2 (the MR1 and MR0 bits are set to "012"):
 - Measures between the rising edge and the next rising edge of a pulse to be measured Pulse width measurement (the MR1 and MR0 bits are set to "102"):
 - Measures between a falling edge and the next rising edge of a pulse to be measured and between the rising edge and the next falling edge of a pulse to be measured
- 2. The MR3 bit is indeterminate when reset.
 - To set the MR3 bit to "0", se the TBiMR register after the MR3 bit is set to "1" and one or more cycles of the count source are counted, while the TBiS bits in the TABSR and TBSR registers are set to "1" (starts counting).
 - The MR3 bit cannot be set to "1" by program.
- 3. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

Figure 14.22 TB0MR to TB5MR Registers

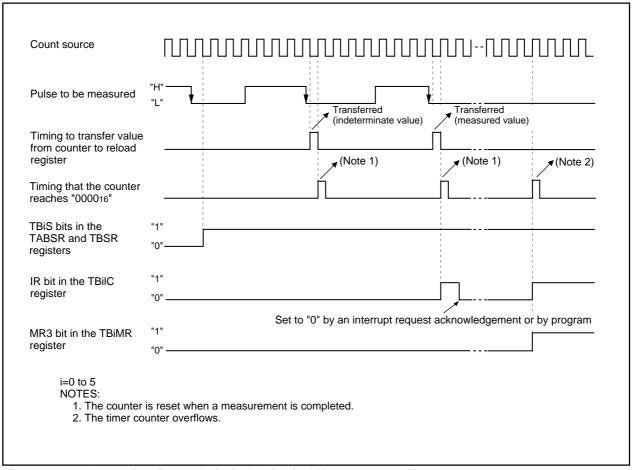


Figure 14.23 Operation Example in Pulse Period Measurement Mode

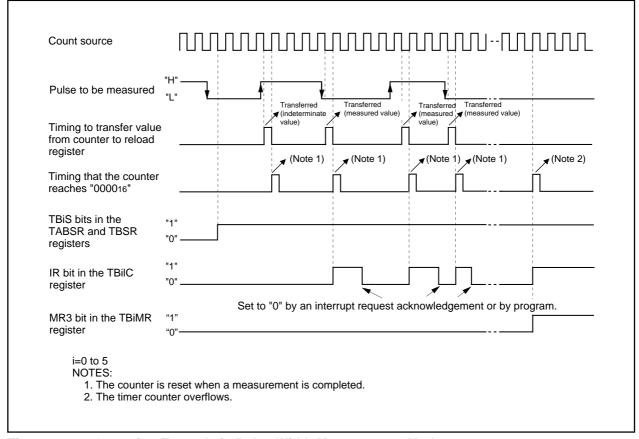


Figure 14.24 Operation Example in Pulse Width Measurement Mode

15. Three-Phase Motor Control Timer Functions

Three-phase motor driving waveform can be output by using the timers A1, A2, A4 and B2. Table 15.1 lists specifications of the three-phase motor control timer functions. Table 15.2 lists pin settings. Figure 15.1 shows a block diagram. Figures 15.2 to 15.7 show registers associated with the three-phase motor control timer functions.

Table 15.1 Three-Phase Motor Control Timer Functions Specification

Item	Specification
Three-Phase Waveform Output Pin	Six pins $(U, \overline{U}, V, \overline{V}, W, \overline{W})$
Forced Cutoff ⁽¹⁾	Apply a low-level ("L") signal to the NMI pin
Timers to be Used	Timer A4, A1, A2 (used in one-shot timer mode):
	Timer A4: U- and U-phase waveform control
	Timer A1: V- and $\overline{ extsf{V}}$ -phase waveform control
	Timer A2: W- and $\overline{\mathrm{W}}$ -phase waveform control
	Timer B2 (used in timer mode):
	Carrier wave cycle control
	Dead time timer (three 8-bit timers share reload register):
	Dead time control
Output Waveform	Triangular wave modulation, Sawtooth wave modulation
	Can output a high-level waveform or a low-level waveform for one cycle;
	Can set positive-phase level and negative-phase level separately
Carrier Wave Cycle	Triangular wave modulation: count source x (m+1) x 2
	Sawtooth wave modulation: count source x (m+1)
	m. setting value of the TB2 register, 000016 to FFFF16
	Count source: f1, f8, f2n ⁽²⁾ , fc32
Three-Phase PWM Output Width	Triangular wave modulation: count source x n x 2
	Sawtooth wave modulation: <i>count source</i> x <i>n</i>
	n: setting value of the TA4, TA1 and TA2 register (of the TA4, TA41, TA11,
	TA2 and TA21 registers when setting the INV11 bit to "1"), 000116 to FFFF16
	Count source: f1, f8, f2n ⁽²⁾ , fc32
Dead Time	Count source x p, or no dead time
	ho: setting value of the DTT register, 0116 to FF16
	Count source: f1, or f1 divided by 2
Active Level	Selected from a high level ("H") or low level ("L")
Positive- and Negative-Phase Con-	Positive and negative-phases concurrent active disable function
current Active Disable Function	Positive and negative-phases concurrent active detect function
Interrupt Frequency	For the timer B2 interrupt, one carrier wave cycle-to-cycle basis through 15
	time- carrier wave cycle-to-cycle basis can be selected

NOTES:

- 1. Forced cutoff by the signal applied to the $\overline{\text{NMI}}$ pin is available when the INV02 bit is set to "1" (three-phase motor control timer functions) and the INV03 bit is set to "1" (three-phase motor control timer output enabled).
- 2. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

Table 15.2 Pin Settings

Pin	Setting				
	PS1, PS2 Registers ⁽¹⁾	PSL1, PSL2 Registers	PSC Register		
P72/V	PS1_2 =1	PSL1_2 =0	PSC_2 =1		
P73/V	PS1_3 =1	PSL1_3 =1	PSC_3 =0		
P74/W	PS1_4 =1	PSL1_4 =1	PSC_4 =0		
P75/W	PS1_5 =1	PSL1_5 =0	<u>—</u>		
P80/U	PS2_0 =1	PSL2_0 =1			
P81/Ū	PS2_1 =1	PSL2_1 =0			

NOTE:

^{1.} Set the PS1_5 to PS1_2 bits and PS2_1 and PS2_0 bits in the PS1 and PS2 registers to "1" after the INV02 bit is set to "1".

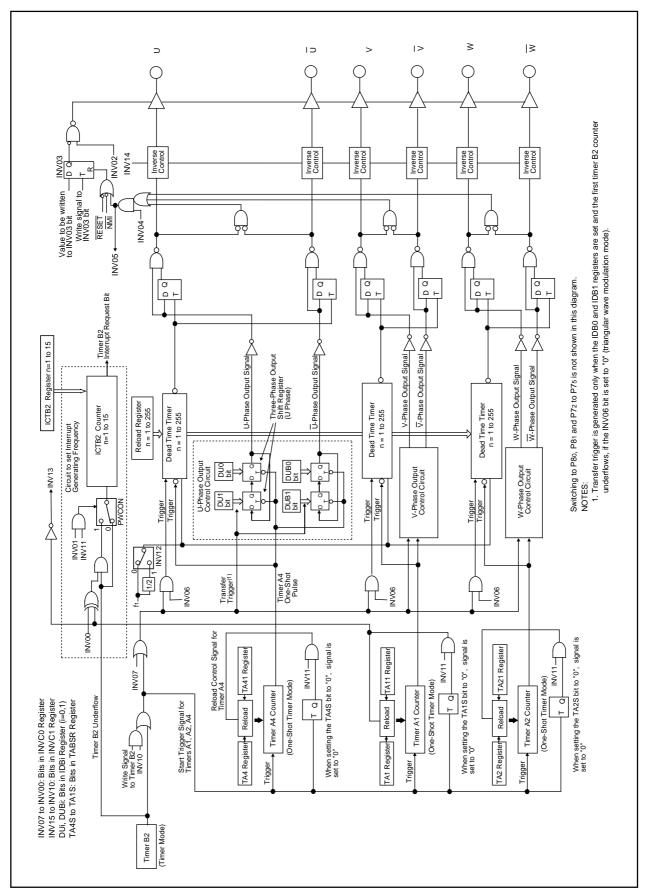
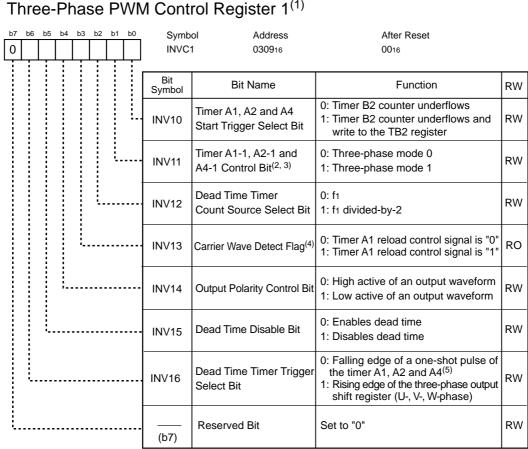


Figure 15.1 Three-Phase Motor Control Timer Functions Block Diagram

Three-Phase PWM Control Register 0 ⁽¹⁾						
b7 b6 b5 b4	b3 b2 b1 b0	Sym INV		After Reset 0016		
		Bit Symbol	Bit Name	Function	RW	
	<u></u>	INV00	Interrupt Enable Output Polarity Select Bit ⁽³⁾	O: The ICTB2 counter is incremented by one on the rising edge of the timer A1 reload control signal The ICTB2 counter is incremented by one on the falling edge of the timer A1 reload control signal	RW	
	<u> </u>	INV01	Interrupt Enable Output Specification Bit ^(2, 3)	ICTB2 counter is incremented by one when timer B2 counter underflows Selected by the INV00 bit	RW	
		INV02	Mode Select Bit ^(4, 5, 6)	Three-phase control timer function not used Three-phase control timer function used	RW	
		INV03	Output Control Bit ^(6, 7)	Disables three-phase control timer output Enables three-phase control timer output	RW	
].		INV04	Positive and Negative- Phases Concurrent Active Disable Function Enable Bit	Disables concurrent active output Disables concurrent active output	RW	
<u> </u>		INV05	Positive and Negative- Phases Concurrent Active Output Detect Flag ⁽⁸⁾	0: Not detected 1: Detected	RW	
1		INV06	Modulation Mode Select Bit ^(9, 10)	Triangular wave modulation mode Sawtooth wave modulation mode	RW	
		INV07	Software Trigger Select Bit	Transfer trigger is generated when the INV07 bit is set to "1". Trigger to the dead time timer is also generated when setting the INV06 bit to "1". Its value is "0" when read.	RW	


NOTES:

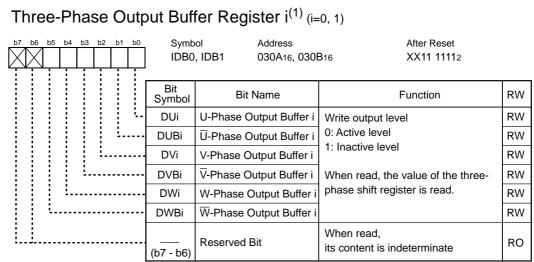
- 1. Set the INVC0 register after the PRC1 bit in the PRCR register is set to "1" (write enable). Rewrite the INV02 to INV00 and INV06 bits when the timers A1,A2, A4 and B2 stop.
- 2. Set the INV01 bit to "1" after setting the ICTB2 register.
- 3. The INV01 and INV00 bit settings are enabled only when the INV11 bit in the INVC1 register is set to "1" (three-phase mode 1). The ICTB2 counter is incremented by one every time the timer B2 counter underflows, regardless of INV01 and INV00bit settings, when the INV11 bit is set to "0" (three-phase mode). When setting the INV01 bit to "1", set the timer A1 count start flag before the first timer B2 counter underflows. When the INV00 bit is set to "1", the first interrupt is generated when the timer B2 counter underflows n-1 times, if n is the value set in the ICTB2 counter. Subsequent interrupts are generated every n times the timer B2 counter underflows.
- 4. Set the INV02 bit to "1" to operate the dead time timer, U-, V-and W-phase output control circuits and ICTB2
- 5. Set pins after the INV02 bit is set to "1". See Table 16.2 for pin settings.
- 6. When the INV02 bit is set to "1" and the INV03 bit to "0", the U, \overline{U} , V, \overline{V} , W and \overline{W} pins, including pins shared with other output functions, are all placed in high-impedance states.
- 7. The INV03 bit is set to "0" when the followings occurs :
 - Reset
 - A concurrent active state occurs while the INV04 bit is set to "1"

 - The INV03 bit is set to "0" by program An "H" signal applied to the $\overline{\text{NMI}}$ pin changes to an "L" signal
- 8. The INV05 bit can not be set to "1" by program. Set the INV04 bit to "0", as well, when setting the INV05 bit to "0".
- 9. The following table describes how the INV06 bit setting works.

ltem	INV06 = 0	INV06 = 1
Mode	Triangular wave modulation mode	Sawtooth wave modulation mode
Timing to Transfer from the IDB0 and IDB1 Registers to Three-Phase Output Shift Register	Transferred once by generating a transfer trigger after setting the IDB0 and IDB1 registers	Transferred every time a transfer trigger is generated
Timing to Trigger the Dead Time Timer when the INV16 Bit=0	On the falling edge of a one-shot pulse of the timer A1, A2 or A4	By a transfer trigger, or the falling edge of a one-shot pulse of the timer A1, A2 or A4
INV13 Bit	Enabled when the INV11 bit=1 and the INV06 bit=0	Disabled

Transfer trigger: Timer B2 counter underflows and write to the INV07 bit, or write to the TB2 register when INV10 = 1 10. When the INV06 bit is set to "1", set the INV11 bit to "0" (three-phase mode 0) and the PWCON bit in the TB2SC register to "0" (timer B2 counter underflows).

NOTES:

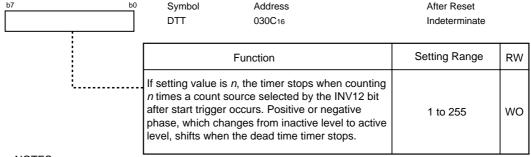

- Rewrite the INVC1 register after the PRC1 bit in the PRCR register is set to "1" (write enable).
 The timers A1, A2, A4, and B2 must be stopped during rewrite.
- 2. The following table lists how the INV11 bit setting works.

Item	INV11 = 0	JNV11 = 1	
Mode	Three-phase mode 0	Three-phase mode 1	
TA11, TA21 and TA41 Registers	Not used	Used	
INV01 and INV00 Bit in the INVC0 Register	Disabled. The ICTB2 counter is incremented whenever the timer B2 counter underflows	Enabled	
INV13 Bit	Disabled	Enabled when INV11=1 and INV06=0	

- 3. When the INV06 bit in the INVC0 registser is set to "1" (sawtooth wave modulation mode), set the INV11 bit to "0". Also, when the INV11 bit is set to "0", set the PWCON bit in the TB2SC register to "0" (Timer B2 counter underflows).
- 4. The INV13 bit setting is enabled only when the INV06 bit is set to "0" (Triangular wave modulation mode) and the INV11 bit to "1".
- 5. If the following conditions are all met, set the INV16 bit to "1":
 - The INV15 bit is set to "0"
 - The Dij bit (i=U, V or W, j=0, 1) and DiBj bit always have different values when the INV03 bit in the INVC0 register is set to "1". (The positive-phase and negative-phase outputs always provide opposite level signals.)

If the above conditions are not met, set the INV16 bit to "0".

Figure 15.3 INVC1 Register

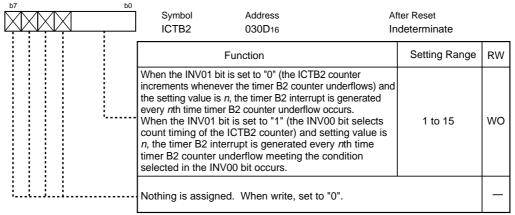


NOTE:

1. Values of the IDB0 and IDB1 registers are transferred to the three-phase output shift register by a transfer trigger.

After the transfer trigger occurs, the values written in the IDB0 register determine each phase output signal level first. Then the value written in the IDB1 register on the falling edge of the timers A1, A2 and A4 one-shot pulse determines each phase output signal level.

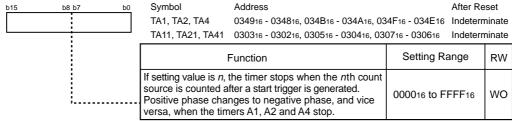
Dead Time Timer^(1, 2)



NOTES:

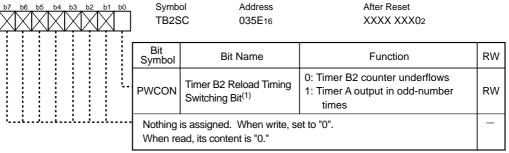
- 1. Use the MOV instruction to set the DTT register.
- 2. The DTT register setting is enabled when the INV15 bit in the INVC1 register is set to "0" (dead time enabled). No dead time can be set when the INV15 bit is set to "1" (dead time disabled). The INV06 bit in the INVC0 register determines start trigger of the DTT register.

Figure 15.4 IDB0 and IDB1 registers, DTT Register


Timer B2 Interrupt Generation Frequency Set Counter^(1, 2, 3)

NOTES:

- 1. Use the MOV instruction to set the ICTB2 register.
- 2. If the INV01 bit in the INVC0 register is set to "1", set the ICTB2 register in the TABSR register when the TB2S bit is set to "0" (timer B2 counter stopped).
 If the INV01 bit is set to "0" and the TB2S bit to "1" (timer B2 counter start), do not set the ICTB2
 - If the INV01 bit is set to "0" and the TB2S bit to "1" (timer B2 counter start), do not set the ICTB2 register when the timer B2 counter underflows.
- 3. If the INV00 bit in the INVC0 register is set to "1", the first interrupt is generated when the timer B2 counter underflows *n-1* times, *n* being the value set in the ICTB2 counter. Subsequent interrupts are generated every *n* times the timer B2 counter underflows.


Timer Ai, Ai-1 Register (i=1, 2, 4)^(1, 2, 3, 4, 5, 6)

NOTES:

- 1. Use a 16-bit data for read and write.
- 2. If the TAi or TAi1 register is set to "000016", no counter starts and no timer Ai interrupt is generated.
- 3. Use the MOV instruction to set the TAi and TAi1 registers.
- 4. When the INV15 bit in the INVC1 register is set to "0" (dead timer enabled), phase switches from an inactive level to an active level when the dead time timer stops.
- 5. When the INV11 bit in the INVC1 register is set to "0" (three-phase mode 0), the value of the TAi register is transferred to the reload register by a timer Ai start trigger. When the INV11 bit is set to "1" (three-phase mode 1), the value of the TAi1 register is first transferred to the reload register by a timer Ai start trigger. Then, the value of the TAi register is transferred by the next trigger. The values of the TAi1 and TAi registers are transferred alternately to the reload register with every timer Ai start trigger.
- 6. Do not write to these registers when the timer B2 counter underflows.

Timer B2 Special Mode Register

NOTE:

1. Set the PWCON bit to "0" when setting the INV11 bit to "0" (three-phase mode 0) or the INV06 bit to "1" (sawtooth wave modulation mode).

Figure 15.5 ICTB2 Register, TA1, TA2, TA4, TA11, TA21 and TA41 Registers, TB2SC Register

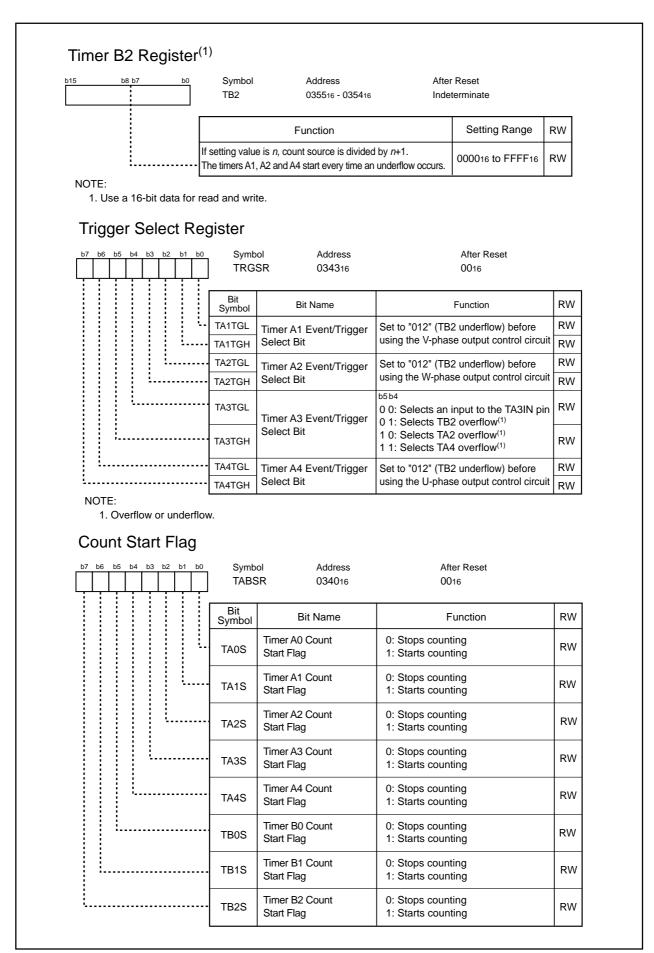
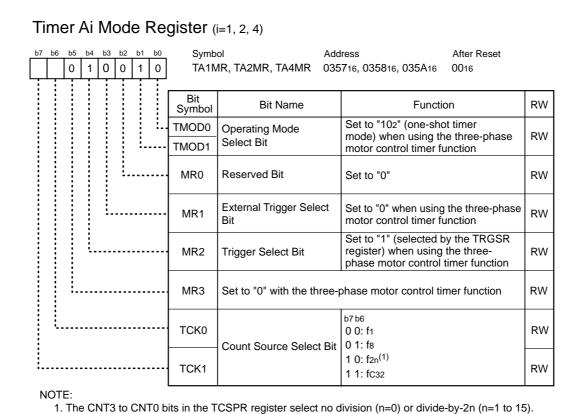



Figure 15.6 TB2, TRGSR and TABSR Registers

Timer B2 Mode Register

b7 b6 b5 b4 b3	0 0	_{b0}	Symbo		After Reset 00XX 00002	
		-	Bit			
		:	Symbol	Bit Name	Function	RW
		i	TMOD0	Operating Mode	Set to "002" (timer mode) when using	RW
	ļ i		TMOD1	Select Bit	the three-phase motor control timer function	1744
	i		MR0	Disabled when using the the When write, set to "0".	hree-phase motor control timer function.	
			MR1	When read, its content is indeterminate.		
			MR2	Set to "0" when using thr	ee-phase motor control timer function	RW
			MR3	Nothing is assigned. When read, its content is	•	RW
			TCK0	Count Source Select Bit	b7 b6 0 0: f1 0 1: f8	RW
Ĺ			TCK1	Count Course Golder Dit	1 0: fc _{2n} ⁽¹⁾ 1 1: fc ₃₂	RW
NOTE:						

Figure 15.7 TA1MR, TA2MR and TA4MR Registers, TB2MR Register

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

The three-phase motor control timer function is available by setting the INV02 bit in the INVC0 register to "1". The timer B2 is used for carrier wave control and the timers A1, A2, A4 for three-phase PWM output $(U, \overline{U}, V, \overline{V}, W, \overline{W})$ control. An exclusive dead time timer controls dead time. Figure 15.8 shows an example of the triangular modulation waveform. Figure 15.9 shows an example of the sawtooth modulation waveform.

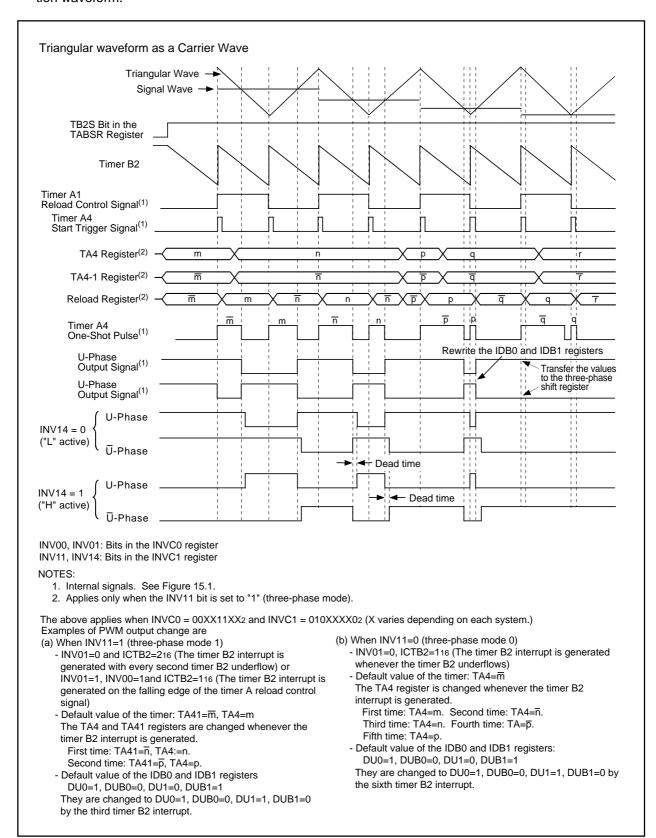


Figure 15.8 Triangular Wave Modulation Operation

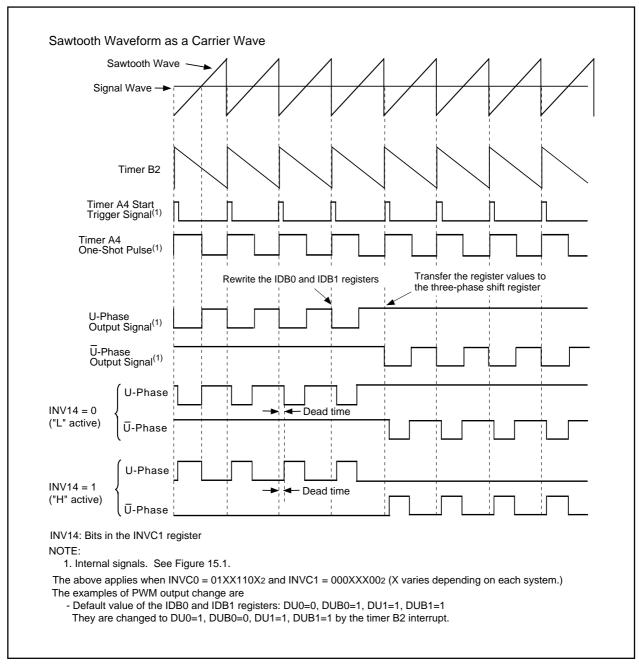


Figure 15.9 Sawtooth Wave Modulation Operation

16. Serial I/O

Serial I/O consists of five channels (UART0 to UART4).

Each UARTi (i=0 to 4) has an exclusive timer to generate the transfer clock and operates independently.

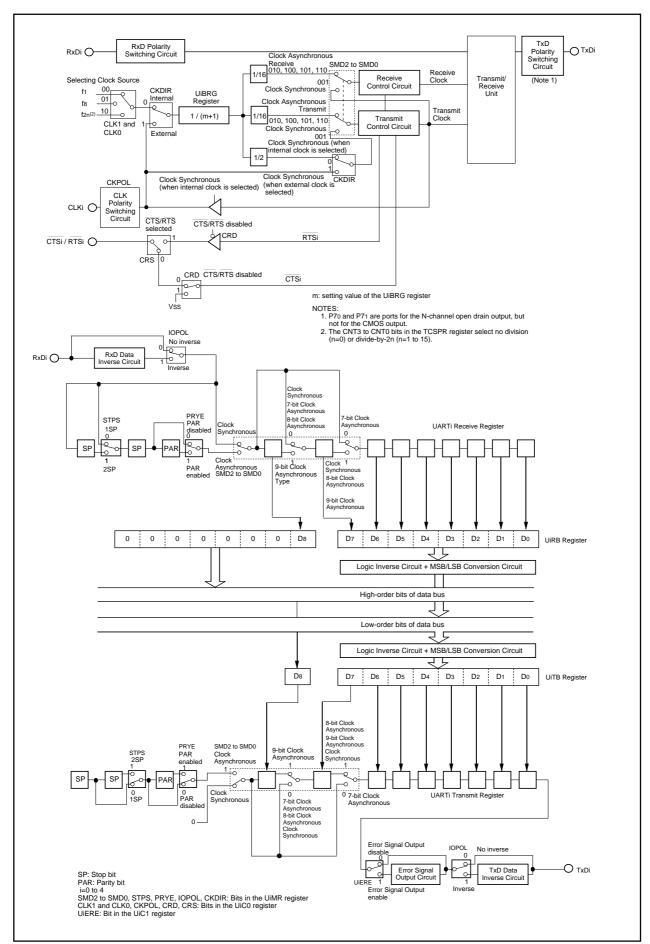
Figure 16.1 shows a UARTi block diagram.

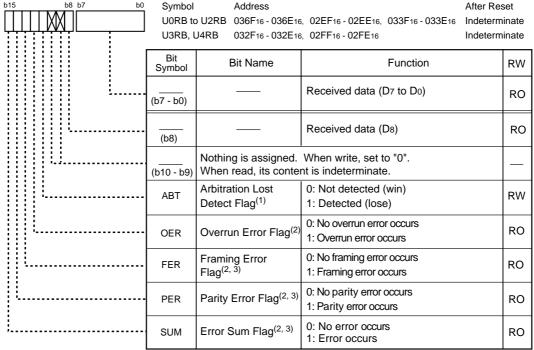
UARTi supports the following modes:

- Clock synchronous serial I/O mode
- Clock asynchronous serial I/O mode (UART mode)
- Special mode 1 (I²C mode)
- Special mode 2
- Special mode 3 (Clock-divided synchronous function, GCI mode)
- Special mode 4 (Bus conflict detect function, IE mode)
- Special mode 5 (SIM mode)

Figures 16.2 to 16.9 show registers associated with UARTi.

Refer to the tables listing each mode for register and pin settings.



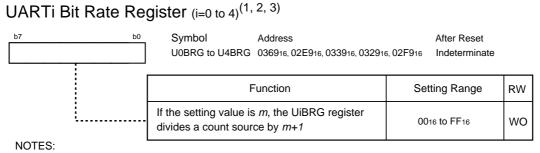

Figure 16.1 UARTi Block Diagram

16. Serial I/O M32C/80 Group

UARTi Transmit Buffer Register (i=0 to 4)⁽¹⁾ Symbol After Reset U0TB to U2TB 036B16-036A16, 02EB16-02EA16, 033B16-033A16 Indeterminate U3TB, U4TB 032B16-032A16, 02FB16-02FA16 Indeterminate **Function** RW Symbol Transmit data (D7 to D0) WO (b7 - b0)Transmit data (D8) WO (b8) Nothing is assigned. When write, set to "0". When read, its content is indeterminate.

(b15 - b9)

UARTi Receive Buffer Register (i=0 to 4)


NOTES:

NOTE:

- 1. The ABT bit can be set to "0" only.
- 2. When the SMD2 to SMD0 bits in the UiMR register are set to "0002" (serial I/O disable) or the RE bit in the UiC1 register is set to "0" (receive disable), the OER, FER, PER and SUM bits are set to "0". When all OER, FER and PER bits are set to "0", the SUM bit is set to "0".
- Also, the FER and PER bits are set to "0" by reading low-order bits in the UiRB register.
- 3. These error flags are disabled when the SMD2 to SMD0 bits are set to "0012" (clock synchronous serial I/O mode) or to "0102" (I²C mode). When read, the contents are indeterminate.

Figure 16.2 U0TB to U4TB Registers and U0RB to U4RB Registers

^{1.} Use the MOV instruction to set the UiTB register.

- 1. Use the MOV instruction to set the UiBRG register.
- 2. Set the UiBRG register while no data transfer occurs.
- 3. Set the CLK1 and CLK0 bits in the UiC0 register, and then the UiBRG register.

UARTi Transmit/Receive Mode Register (i=0 to 4)

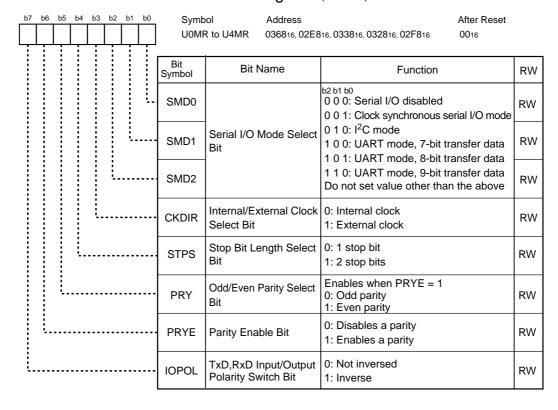
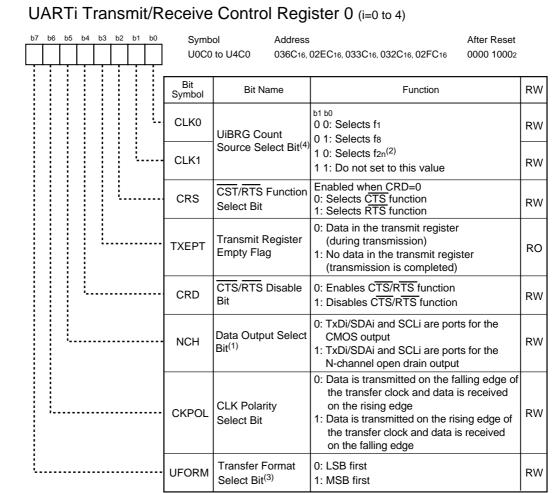
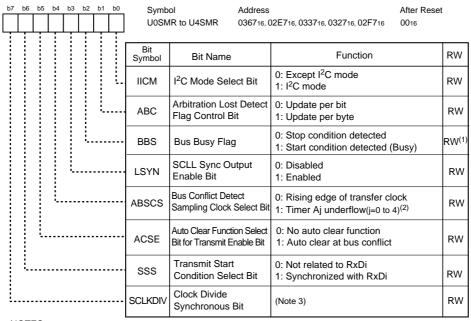



Figure 16.3 U0BRG to U4BRG Registers and U0MR to U4MR Registers

NOTES:

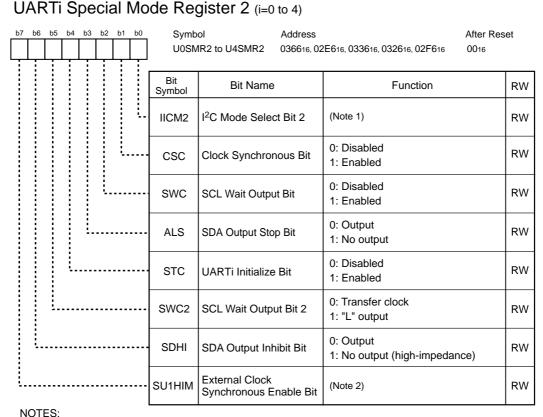
- 1. P70/TxD2 and P71/SCL2 are ports for the N-channel open drain output, but not for the CMOS output.
- 2. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).
- 3. The UFORM bit setting is enabled when the SMD2 to SMD0 bits in the UiMR register are set to "0012" (clock syncronous serial I/O mode) or "1012" (UART mode, 8-bit transfer data). Set the UFORM bit to "1" when setting the SMD2 to SMD0 bits to "0102" (I²C mode), or to "0" when setting them to "1002" (UART mode, 7-bit transfer data) or "1102" (UART mode, 9-bit transfer data).
- 4. Set the UiBRG register after the CLK1 and CLK0 bit settings are changed.


Figure 16.4 U0C0 to U4C0 Registers

UARTi Transmit/Receive Control Register 1 (i=0 to 4) Symbol After Reset U0C1 to U4C1 036D16, 02ED16, 033D16, 032D16, 02FD16 0000 00102 Function RW Symbo Transmit 0: Transmit disabled RW TE Enable Bit Transmit enabled Transmit Buffer 0: Data in the UiTB register ΤI RO **Empty Flag** No data in the UiTB register Receive 0: Receive disabled RE RW Enable Bit 1: Receive enabled 0: No data in the UiRB register Receive RO RI 1: Data in the UiRB register Complete Flag UARTi Transmit 0: No data in the UiTB register (TI = 1) **UiIRS** RW Interrupt Cause 1: Transmission is completed (TXEPT = 1) Select Bit UARTi Continuous 0: Disables continuous receive mode to be entered **UiRRM** RW Receive Mode 1: Enables continuous receive mode to be entered Enable Bit 0: Not inversed Data Logic **UiLCH** RW Select Bit(2) 1: Inverse Clock-Divided Clock-divided synchronous stop bit (special mode 3) Synchronous Stop 0: Stops synchronizing SCLKSTPB Bit / 1: Starts synchronizing RW /UiERE Error Signal Error signal output enable bit (special mode 5) 0: Not output Output Enable Bit(1)

NOTES:

- 1. Set the SCLKSTPB/UiERE bit after setting the SMD2 to SMD0 bits in the UiMR register.
- 2. The UiLCH bit setting is enabled when setting the SMD2 to SMD0 bits to "0012" (clock syncronous serial I/O mode), "1002" (UART mode, 7-bit transfer data) or "1012" (UART mode, 8-bit transfer data). Set the UiLCH bit to "0" when setting the SMD2 to SMD0 bits to "0102" (I²C mode) or "1102" (UART mode, 9-bit transfer data).


UARTi Special Mode Register (i=0 to 4)

NOTES:

- 1. The BBS bit is set to "0" by program. It is unchanged if set to "1".
- UART0: timer A3 underflow signal, UART1: timer A4 underflow signal, UART2: timer A0 underflow signal, UART3: timer A3 underflow signal, UART4: timer A4 underflow signal.
- 3. Refer to notes for the SU1HIM bit in the UiSMR2 register.

Figure 16.5 U0C1 to U4C1 Registers and U0SMR to U4SMR Registers

1. Refer to **Table 16.14**.

2. The external clock synchronous function can be selected by combining the SU1HIM bit and the SCLKDIV bit in the UiSMR register.

SCLKDIV bit in the UiSMR Register	SU1HIM bit in the UiSMR2 Register	External Clock Synchronous Function Selection
0	0	No synchronization
0	1	Same division as the external clock
1	0 or 1	External clock divided by 2

Figure 16.6 U0SMR2 to U4SMR2 Registers

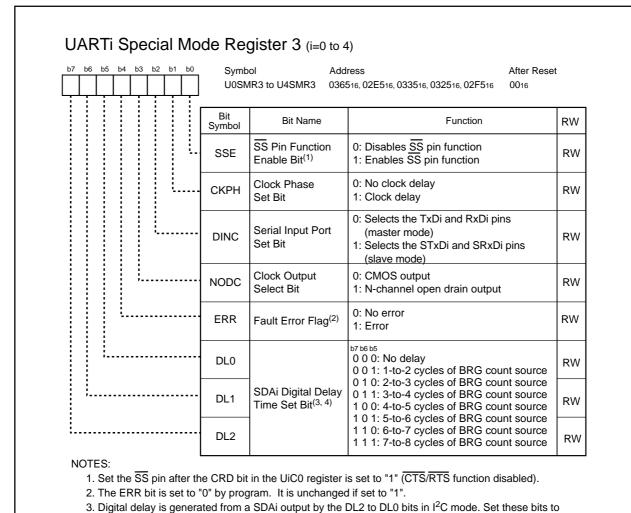


Figure 46.7 HOCMP2 to HACMP2 Posictors

"0002" (no delay) except in the I2C mode.

4. When the external clock is selected, approximately 100ns delay is added.

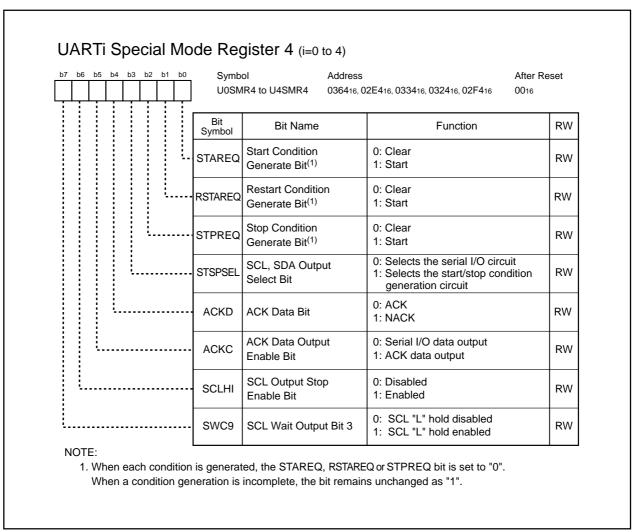


Figure 16.8 U0SMR4 to U4SMR4 Registers

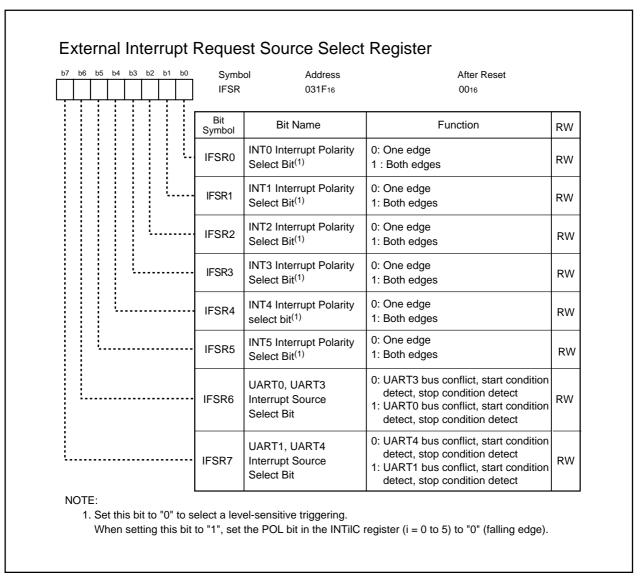


Figure 16.9 IFSR Register

16.1 Clock Synchronous Serial I/O Mode

In clock synchronous serial I/O mode, data is transmitted and received with the transfer clock. Table 16.1 lists specifications of clock synchronous serial I/O mode. Table 16.2 lists register settings. Tables 16.3 to 16.5 list pin settings. When UARTi (i=0 to 4) operating mode is selected, the TxDi pin outputs a high-level ("H") signal before transfer starts (the TxDi pin is in a high-impedance state when the N-channel open drain output is selected). Figure 16.10 shows transmit and receive timings in clock synchronous serial I/O mode.

Table 16.1 Clock Synchronous Serial I/O Mode Specifications

Item	Specification
Transfer Data Format	Transfer data: 8 bits long
Transfer Clock	• The CKDIR bit in the UiMR register (i=0 to 4) is set to "0" (internal clock selected):
	$\frac{fj}{2(m+1)}$ f_j =f1, f8, f2n ⁽¹⁾ m :setting value of the UiBRG register, 0016 to FF16
	• The CKDIR bit is set to "1" (external clock selected) : an input from the CLKi pin
Transmit/Receive Control	Selected from the CTS function, RTS function or CTS/RTS function disabled
Transmit Start Condition	To start transmitting, the following requirements must be met ⁽²⁾ :
	- Set the TE bit in the UiC1 register to "1" (transmit enabled)
	- Set the TI bit in the UiC1 register to "0" (data in the UiTB register)
	- Apply a low-level ("L") signal to the CTSi pin when the CTS function is selected
Receive Start Condition	To start receiving, the following requirements must be met ⁽²⁾ :
	- Set the RE bit in the UiC1 register to "1" (receive enabled)
	- Set the TE bit to "1" (transmit enabled)
	- Set the TI bit to "0" (data in the UiTB register)
Interrupt Request Generation Timing	While transmitting, the following conditions can be selected:
	- The UiIRS bit in the UiC1 register is set to "0" (no data in the transmit buffer):
	when data is transferred from the UiTB register to the UARTi transmit register (transfer started)
	- The UiIRS bit is set to "1" (transmission completed):
	when a data transfer from the UARTi transmit register is completed
	While receiving
	When data is transferred from the UARTi receive register to the UiRB register (reception completed)
Error Detect	Overrun error ⁽³⁾
	This error occurs when the seventh bit of the next received data is read before reading
	the UiRB register
Selectable Function	CLK polarity
	Selectable from the rising edge or falling edge of the transfer clock at transferred data
	output or input timing
	• LSB first or MSB first
	Selectable from data transmission or reception in either bit 0 or in bit 7
	Continuous receive mode
	Data can be received simultaneously by reading the UiRB register
	Serial data logic inverse
	This function inverses transmitted/received data logically
	rnis function inverses transmitted/received data logically

NOTES:

- 1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).
- 2. To start transmission/reception when selecting the external clock, these conditions must be met after the CKPOL bit in the UiC0 register is set to "0" (data is transmitted on the falling edge of the transfer clock and data is received on the rising edge) and the CLKi pin is held "H", or when the CKPOL bit is set to "1" (data is transmitted on the rising edge of the transfer clock and data is received on the falling edge) and the CLKi pin is held "L".
- 3. If an overrun error occurs, the UiRB register is indeterminate. The IR bit setting in the SiRIC register does not change to "1" (interrupt requested).

Table 16.2 Register Settings in Clock Synchronous Serial I/O Mode

Register	Bit	Function		
UiTB	7 to 0	Set transmit data		
UiRB	7 to 0	Received data can be read		
	OER	Overrun error flag		
UiBRG	7 to 0	Set bit rate		
UiMR	SMD2 to SMD0	Set to "0012"		
	CKDIR	Select the internal clock or external clock		
	IOPOL	Set to "0"		
UiC0	CLK1, CLK0	Select count source for the UiBRG register		
	CRS	Select CTS or RTS when using either		
	TXEPT	Transmit register empty flag		
	CRD	Enables or disables the CTS or RTS function		
	NCH	Select output format of the TxDi pin		
	CKPOL	Select transmit clock polarity		
	UFORM	Select either LSB first or MSB first		
UiC1	TE	Set to "1" to enable data transmission and reception		
	TI	Transmit buffer empty flag		
	RE	Set to "1" to enable data reception		
	RI	Reception complete flag		
	UilRS	Select what causes the UARTi transmit interrupt to be generated		
	UiRRM	Set to "1" when using continuous receive mode		
	UiLCH	Set to "1" when using data logic inverse		
	SCLKSTPB	Set to "0"		
UiSMR	7 to 0	Set to "0016"		
UiSMR2	7 to 0	Set to "0016"		
UiSMR3	2 to 0	Set to "0002"		
	NODC	Select clock output format		
	7 to 4	Set to "00002"		
UiSMR4	7 to 0	Set to "0016"		

i=0 to 4

Table 16.3 Pin Settings in Clock Synchronous Serial I/O Mode (1)

Port	Function		Setting	
		PS0 Register	PSL0 Register	PD6 Register
P60	CTS0 input	PS0_0=0	-	PD6_0=0
	RTS0 output	PS0_0=1	-	-
P61	CLK0 input	PS0_1=0	-	PD6_1=0
	CLK0 output	PS0_1=1	-	-
P62	RxD0 input	PS0_2=0	-	PD6_2=0
P63	TxD0 output	PS0_3=1	-	-
P64	CTS1 input	PS0_4=0	-	PD6_4=0
	RTS1 output	PS0_4=1	PSL0_4=0	-
P65	CLK1 input	PS0_5=0	-	PD6_5=0
	CLK1 output	PS0_5=1	-	-
P66	RxD1 input	PS0_6=0	-	PD6_6=0
P67	TxD1 output	PS0_7=1	-	-

Table 16.4 Pin Settings (2)

Port	Function		Setting				
		PS1 Register	PSL1 Register	PSC Register	PD7 Register		
P70 ⁽¹⁾	TxD2 output	PS1_0=1	PSL1_0=0	PSC_0=0	-		
P71 ⁽¹⁾	RxD2 input	PS1_1=0	-	-	PD7_1=0		
P72	CLK2 input	PS1_2=0	-	-	PD7_2=0		
	CLK2 output	PS1_2=1	PSL1_2=0	PSC_2=0	-		
P73	CTS2 input	PS1_3=0	-	-	PD7_3=0		
	RTS2 output	PS1_3=1	PSL1_3=0	PSC_3=0	-		

NOTE:

Table 16.5 Pin Settings (3)

Port	Function		Setting				
		PS3 Register ⁽¹⁾	PSL3 Register	PSC3 Register	PD9 Register ⁽¹⁾		
P90	CLK3 input	PS3_0=0	-	-	PD9_0=0		
	CLK3 output	PS3_0=1	-	-	-		
P91	RxD3 input	PS3_1=0	-	-	PD9_1=0		
P92	TxD3 output	PS3_2=1	PSL3_2=0	-	-		
P93	CTS3 input	PS3_3=0	PSL3_3=0	-	PD9_3=0		
	RTS3 output	PS3_3=1	-	-	-		
P94	CTS4 input	PS3_4=0	PSL3_4=0	-	PD9_4=0		
	RTS4 output	PS3_4=1	-	-	-		
P95	CLK4 input	PS3_5=0	PSL3_5=0	-	PD9_5=0		
	CLK4 output	PS3_5=1	-	-	-		
P96	TxD4 output	PS3_6=1	-	PSC3_6=0	-		
P97	RxD4 input	PS3_7=0	-	-	PD9_7=0		

NOTE:

^{1.} P70 and P71 are ports for the N-channel open drain output.

^{1.} Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enabled). Do not generate an interrupt or a DMA transfer between the instruction to set the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

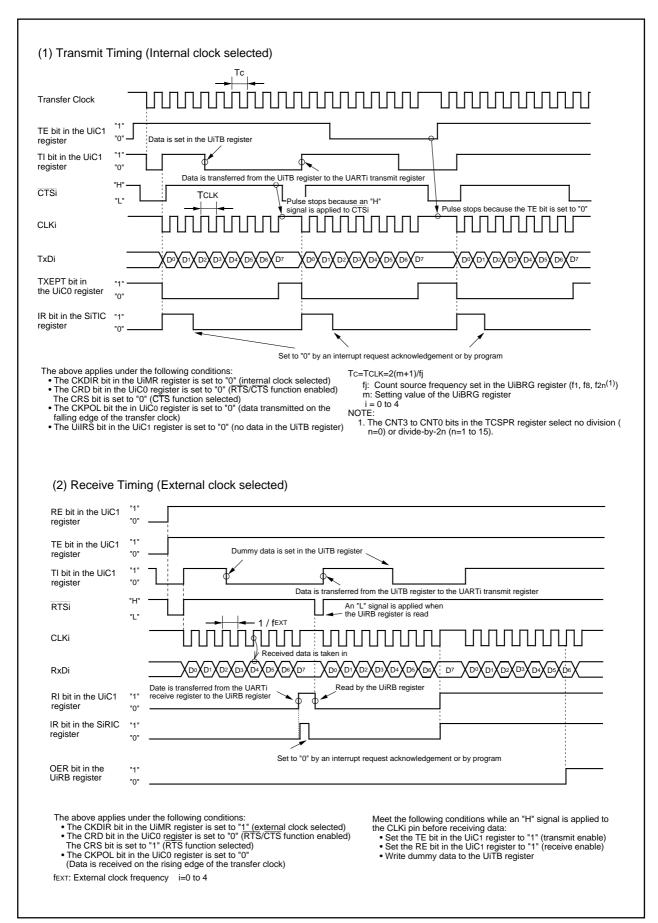


Figure 16.10 Transmit and Receive Operation

16.1.1 Selecting CLK Polarity Selecting

As shown in Figure 16.11, the CKPOL bit in the UiC0 register (i=0 to 4) determines the polarity of the transfer clock.

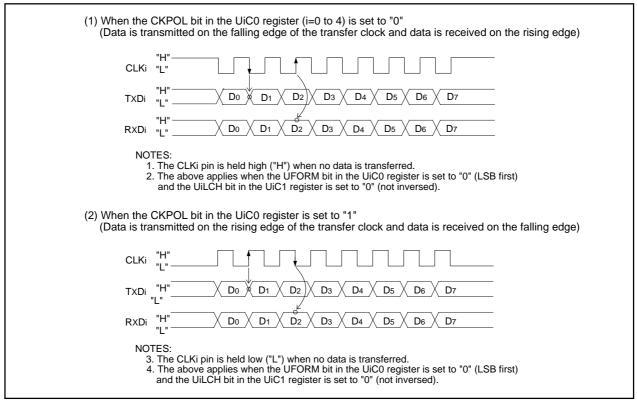


Figure 16.11 Transfer Clock Polarity

16.1.2 Selecting LSB First or MSB First

As shown in Figure 16.12, the UFORM bit in the UiC0 register (i=0 to 4) determines a data transfer format.

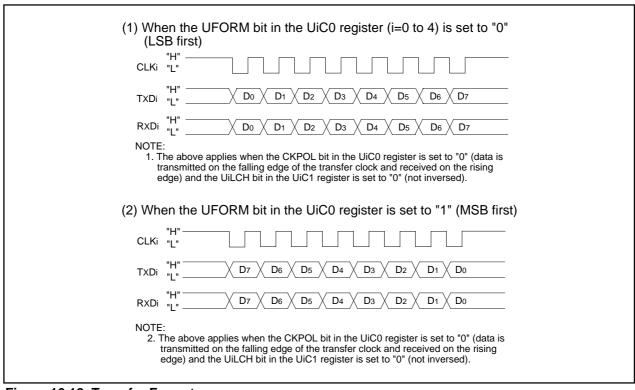


Figure 16.12 Transfer Format

16.1.3 Continuous Receive Mode

When the UiRRM bit in the UiC1 register (i=0 to 4) is set to "1" (continuous receive mode), the TI bit is set to "0" (data in the UiTB register) by reading the UiRB register. When the UiRRM bit is set to "1", do not set dummy data in the UiTB register by program.

16.1.4 Serial Data Logic Inverse

When the UiLCH bit (i=0 to 4) in the UiC1 register is set to "1" (inverse), data logic written in the UiTB register is inversed when transmitted. The inversed receive data logic can be read by reading the UiRB register. Figure 16.13 shows a switching example of the serial data logic.

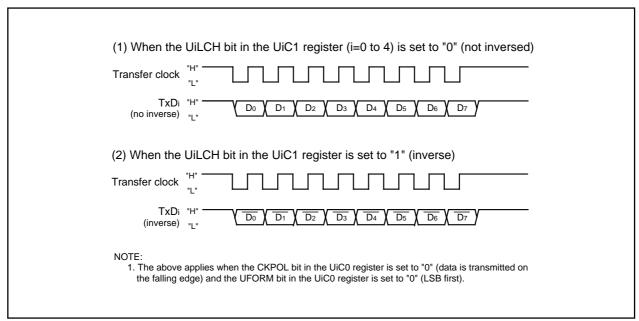


Figure 16.13 Serial Data Logic Inverse

16.2 Clock Asynchronous Serial I/O (UART) Mode

In UART mode, data is transmitted and received after setting a desired bit rate and data transfer format. Table 16.6 lists specifications of UART mode.

Table 16.6 UART Mode Specifications

Item	Specification
Transfer Data Format	Character bit (transfer data): selected from 7 bits, 8 bits, or 9 bits long
	Start bit: 1 bit long
	Parity bit: selected from odd, even, or none
	Stop bit: selected from 1 bit or 2 bits long
Transfer Clock	• The CKDIR bit in the UiMR register is set to "0" (internal clock selected):
	$f_i/16(m+1)$ $f_j = f_1$, f ₈ , $f_{2n}(1)$ m setting value of the UiBRG register, 0016 to FF ₁₆
	• The CKDIR bit is set to "1" (external clock selected):
	fEXT/16(m+1) fEXT: clock applied to the CLKi pin
Transmit/Receive Control	Select from CTS function, RTS function or CTS/RTS function disabled
Transmit Start Condition	To start transmitting, the following requirements must be met:
	- Set the TE bit in the UiC1 register to "1" (transmit enabled)
	- Set the TI bit in the UiC1 register to "0" (data in the UiTB register)
	- Apply a low-velel ("L") signal to the CTSi pin when the CTS function is selected
Receive Start Condition	To start receiving, the following requirements must be met:
	- Set the RE bit in the UiC1 register to "1" (receive enabled)
	- The start bit is detected
Interrupt Request	While transmitting, the following condition can be selected:
Generation Timing	- The UiIRS bit in the UiC1 register is set to "0" (no data in the UiTB register):
	when data is transferred from the UiTB register to the UARTi transmit register (transfer started)
	- The UiIRS bit is set to "1" (transmission completed):
	when data transmission from the UARTi transfer register is completed
	While receiving
	when data is transferred from the UARTi receive register to the UiRB register (reception completed)
Error Detect	Overrun error ⁽²⁾
	This error occurs when the bit before the last stop bit of the next received data is read
	prior to reading the UiRB register (the first stop bit when selecting 2 stop bits)
	Framing error
	This error occurs when the number of stop bits set is not detected
	Parity error
	When parity is enabled, this error occurs when the number of "1" in parity and charac-
	ter bits does not match the number of "1" set
	Error sum flag
	This flag is set to "1" when any of an overrun, framing or parity errors occur
Selectable Function	LSB first or MSB first
	Selectable from data transmission or reception in either bit 0 or in bit 7
	•Serial data logic inverse
	Logic values of data to be transmitted and received data are inversed. The start bit
	and stop bit are not inversed
	•TxD and RxD I/O polarity Inverse
	TxD pin output and RxD pin input are inversed. All I/O data levels are also inversed

NOTES:

- 1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).
- 2. If an overrun error occurs, the UiRB register is indeterminate. The IR bit setting in the SiRIC register does not change to "1" (interrupt requested).

Table 16.7 lists register settings. Tables 16.8 to 16.10 list pin settings. When UARTi (i=0 to 4) operating mode is selected, the TxDi pin outputs a high-level ("H") signal before transfer is started (the TxDi pin is in a high-impedance state when the N-channel open drain output is selected). Figure 16.14 shows an example of a transmit operation in UART mode. Figure 16.15 shows an example of a receive operation in UART mode.

Table 16.7 Register Settings in UART Mode

Register	Bit	Function			
UiTB	8 to 0	Set transmit data ⁽¹⁾			
UiRB	8 to 0	Received data can be read ⁽¹⁾			
	OER, FER,	Error flags			
	PER, SUM				
UiBRG	7 to 0	Set bit rate			
UiMR	SMD2 to SMD0	Set to "1002" when transfer data is 7 bits long			
		Set to "1012" when transfer data is 8 bits long			
		Set to "1102" when transfer data is 9 bits long			
	CKDIR	Select the internal clock or external clock			
	STPS	Select stop bit length			
	PRY, PRYE	Select parity enabled or disabled, odd or even			
	IOPOL	Select TxD and RxD I/O polarity			
UiC0	CLK1, CLK0	Select count source for the UiBRG register			
	CRS	Select either CTS or RTS when using either			
	TXEPT	Transfer register empty flag			
	CRD	Select the CTS or RTS function enabled or disabled			
	NCH	Select output format of the TxDi pin			
	CKPOL	Set to "0"			
	UFORM	Select the LSB first or MSB first when a transfer data is 8 bits long			
		Set to "0" when transfer data is 7 bits or 9 bits long			
UiC1	TE	Set to "1" to enable data transmission			
	TI	Transfer buffer empty flag			
	RE	Set to "1" to enable data reception			
	RI	Reception complete flag			
	UilRS	Select what causes the UARTi transmit interrupt to be generated			
	UiRRM	Set to "0"			
	UiLCH	Select whether data logic is inversed or not inversed when a transfer data is			
		7 bits or 8 bits long. Set to "0" when transfer data is 9 bits long			
	UiERE	Set to either "0" or "1"			
UiSMR	7 to 0	Set to "0016"			
UiSMR2	7 to 0	Set to "0016"			
UiSMR3	7 to 0	Set to "0016"			
UiSMR4	7 to 0	Set to "0016"			

NOTE:

1. Use bits 0 to 6 when transfer data is 7 bits long, bits 0 to 7 when 8 bits long, bits 0 to 8 when 9 bits long.

Table 16.8 Pin Settings in UART Mode (1)

Port	Function			
	,	PS0 Register	PSL0 Register	PD6 Register
P60	CTS0 input	PS0_0=0	_	PD6_0=0
	RTS0 output	PS0_0=1	_	_
P61	CLK0 input	PS0_1=0	_	PD6_1=0
P62	RxD0 input	PS0_2=0	_	PD6_2=0
P63	TxD0 output	PS0_3=1	_	_
P64	CTS1 input	PS0_4=0	_	PD6_4=0
	RTS1 output	PS0_4=1	PSL0_4=0	_
P65	CLK1 input	PS0_5=0	_	PD6_5=0
P66	RxD1 input	PS0_6=0	_	PD6_6=0
P67	TxD1 output	PS0_7=1	_	_

Table 16.9 Pin Settings (2)

Port	Function	Setting				
		PS1 Register	PSL1 Register	PSC Register	PD7 Register	
P70 ⁽¹⁾	TxD2 output	PS1_0=1	PSL1_0=0	PSC_0=0	_	
P71 ⁽¹⁾	RxD2 input	PS1_1=0	_	_	PD7_1=0	
P72	CLK2 input	PS1_2=0	_	_	PD7_2=0	
P73	CTS2 input	PS1_3=0	_	_	PD7_3=0	
	RTS2 output	PS1_3=1	PSL1_3=0	PSC_3=0	_	

NOTE:

Table 16.10 Pin Settings (3)

Port	Function		Setting				
		PS3 Register ⁽¹⁾	PSL3 Register	PSC3 Register	PD9 Register ⁽¹⁾		
P90	CLK3 input	PS3_0=0	_	_	PD9_0=0		
P91	RxD3 input	PS3_1=0	_	_	PD9_1=0		
P92	TxD3 output	PS3_2=1	PSL3_2=0	_	_		
P93	CTS3 input	PS3_3=0	PSL3_3=0	_	PD9_3=0		
	RTS3 output	PS3_3=1	_	_	_		
P94	CTS4 input	PS3_4=0	PSL3_4=0	_	PD9_4=0		
	RTS4 output	PS3_4=1	_	_	_		
P95	CLK4 input	PS3_5=0	PSL3_5=0	_	PD9_5=0		
P96	TxD4 output	PS3_6=1	_	PSC3_6=0	_		
P97	RxD4 input	PS3_7=0	_	_	PD9_7=0		

NOTE:

^{1.} P70 and P71 are ports for the N-channel open drain output.

^{1.} Set the PD9 and PS3 registers set immediately after the PRC2 bit in the PRCR register is set to "1" (write enabled). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

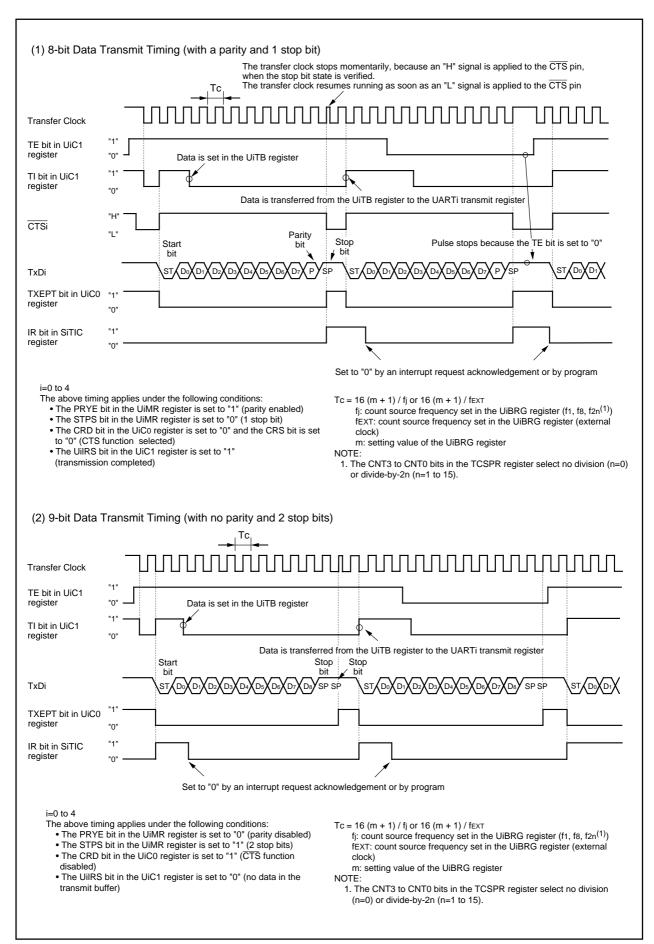


Figure 16.14 Transmit Operation

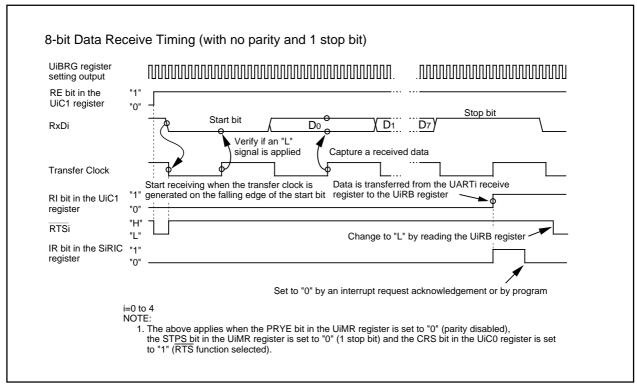


Figure 16.15 Receive Operation

16.2.1 Bit Rate

In UART mode, bit rate is clock frequency which is divided by a setting value of the UiBRG (i=0 to 4) register and again divided by 16. Table 16.11 lists an example of bit rate setting.

Table 16.11 Bit Rate

Count Bit Rate Source		Peripheral Function Clock: 16MHz		Peripheral Function Clock: 24MHz		Peripheral Function Clock: 32MHz	
(bps)	of UiBRG	Setting Value of UiBRG: n	Actual Bit Rate (bps)	Setting Value of UiBRG: n	Actual Bit Rate (bps)	Setting Value of UiBRG: n	Actual Bit Rate (bps)
1200	f8	103 (67h)	1202	155 (96h)	1202	207 (CFh)	1202
2400	f8	51 (33h)	2404	77 (46h)	2404	103 (67h)	2404
4800	f8	25 (19h)	4808	38 (26h)	4808	51 (33h)	4808
9600	f1	103 (67h)	9615	155 (96h)	9615	207 (CFh)	9615
14400	f1	68 (44h)	14493	103 (67h)	14423	138 (8Ah)	14388
19200	f1	51 (33h)	19231	77 (46h)	19231	103 (67h)	19231
28800	f1	34 (22h)	28571	51 (33h)	28846	68 (44h)	28986
31250	f1	31 (1Fh)	31250	47 (2Fh)	31250	63 (3Fh)	31250
38400	f1	25 (19h)	38462	38 (26h)	38462	51 (33h)	38462
51200	f1	19 (13h)	50000	28 (1Ch)	51724	38 (26h)	51282

16.2.2 Selecting LSB First or MSB First

As shown in Figure 16.16, the UFORM bit in the UiC0 register (i=0 to 4) determines data transfer format. This function is available for 8-bit transfer data.

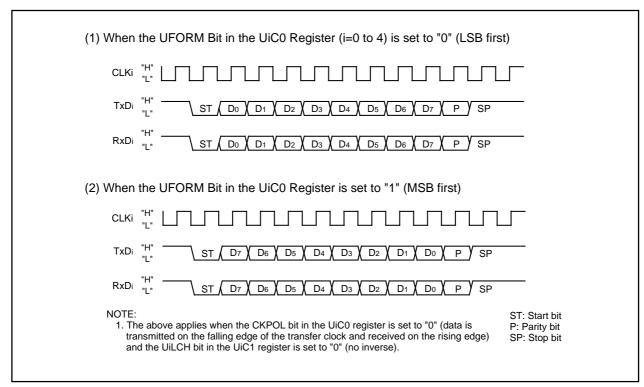


Figure 16.16 Transfer Format

16.2.3 Serial Data Logic Inverse

When the UiLCH bit (i=0 to 4) in the UiC1 register is set to "1" (inverse), data logic written in the UiTB register is inversed when transmitted. The inversed receive data logic can be read by reading the UiRB register. Figure 16.17 shows a switching example of the serial data logic.

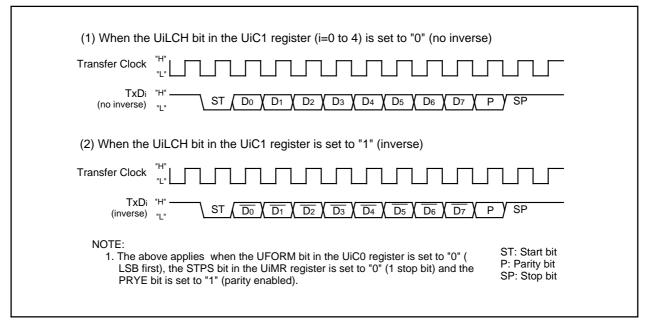


Figure 16.17 Serial Data Logic Inverse

16.2.4 TxD and RxD I/O Polarity Inverse

TxD pin output and RxD pin input are inversed. All I/O data level, including the start bit, stop bit and parity bit, are inversed. Figure 16.18 shows TxD and RxD I/O polarity inverse.

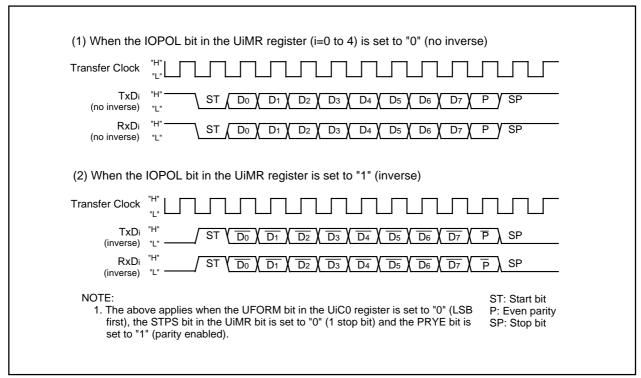


Figure 16.18 TxD and RxD I/O Polarity Inverse

16.3 Special Mode 1 (I²C Mode)

I²C mode is a mode to communicate with external devices with a simplified I²C. Table 16.12 lists specifications of I²C mode. Table 16.13 lists register settings, Table 16.14 lists each function. Figure 16.19 shows a block diagram of I²C mode. Figure 16.20 shows timings for transfer to the UiRB register (i=0 to 4) and interrupts. Tables 16.15 to 16.17 list pin settings.

As shown in Table 16.12, I²C mode is entered when the SMD2 to SMD0 bits in the UiMR register is set to "0102" and the IICM bit in the UiSMR register is set to "1". Output signal from the SDAi pin changes after the SCLi pin level becomes low ("L") and stabilizes due to a SDAi transmit output via the delay circuit.

Table 16.12 I²C Mode Specifications

Item	Specifications
Interrupt	Start condition detect, stop condition detect, no acknowledgment detect, acknowledgment
	detect
Selectable Function	Arbitration lost
	Selectable from update timing of the ABT bit in the UiRB register.
	Refer to 16.3.3 Arbitration
	SDAi digital delay
	Selectable from no digital delay or 2 to 8 cycle delay of the count source of of the
	UiBRG register. Refer to 16.3.5 SDA Output
	Clock phase setting
	Selectable from clock delay or no clock delay. Refer to 16.3.4 Transfer Clock

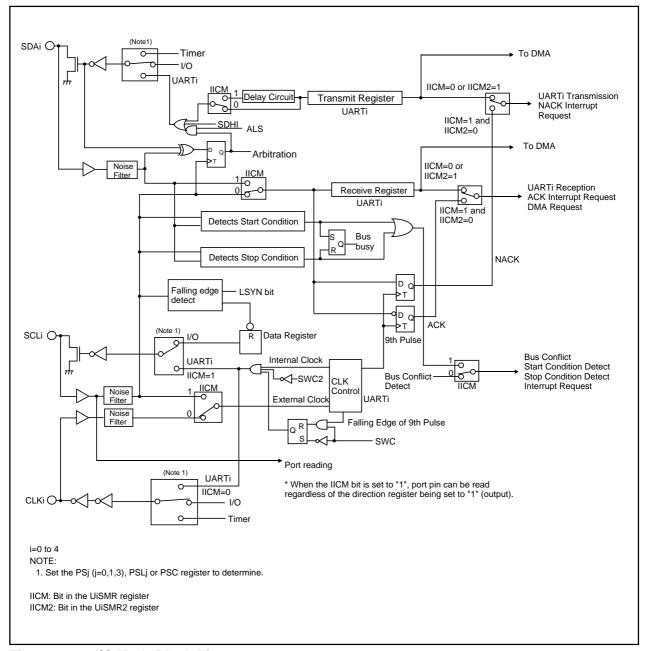


Figure 16.19 I²C Mode Block Diagram

Table 16.13 Register Settings in I²C Mode

Register	Bit	Function				
		Master	Slave			
UiTB	7 to 0	Set transmit data				
UiRB	7 to 0	Received data can be read				
	8	ACK or NACK bit can be read				
	ABT	Arbitration lost detect flag	Disabled			
	OER	Overrun error flag				
UiBRG	7 to 0	Set bit rate	Disabled			
UiMR	SMD2 to SMD0	Set to "0102"				
	CKDIR	Set to "0"	Set to "1"			
	IOPOL	Set to "0"				
UiC0	CLK1, CLK0	Select count source of the UiBRG register	Disabled			
	CRS	Disabled because the CRD bit is set to "1"				
	TXEPT	Transfer register empty flag				
	CRD, NCH	Set to "1"				
	CKPOL	Set to "0"				
	UFORM	Set to "1"				
UiC1	TE	Set to "1" to enable data transmission				
	TI	Transfer buffer empty flag				
	RE	Set to "1" to enable data reception				
	RI	Reception complete flag				
	UiRRM, UiLCH,	Set to "0"				
	UiERE					
UiSMR	IICM	Set to "1"				
	ABC	Select an arbitration lost detect timing Disabled				
	BBS	Bus busy flag				
	7 to 3	Set to "000002"				
UiSMR2	IICM2	See Table 16.14				
	CSC	Set to "1" to enable clock synchronization	Set to "0"			
	SWC	Set to "1" to fix an "L" signal output from SCLi on the falling edge of the ninth				
		of the transfer clock				
	ALS	Set to "1" to terminate SDAi output when	Not used. Set to "0"			
		detecting the arbitration lost				
	STC	Not used. Set to "0"	Set to "1" to reset UARTi			
	011/00	by detecting the start cond				
	SWC2	Set to "1" for an "L" signal output from SCL forcibly				
	SDHI	Set to "1" to disable SDA output				
LECMBO	SU1HIM	Set to "0" Set to "0"				
UiSMR3	SSE CKPH					
	DINC, NODC, ERR	See Table 16.14 Set to "0"				
UiSMR4	DL2 to DL0 STAREQ	Set digital delay value for SDAi	Not used. Set to "0"			
UISIVIK4	RSTAREQ	Set to "1" when generating a start condition Set to "1" when generating a restart condition	INOLUSEU. SELLO U			
	·		-			
	STPREQ	Set to "1" when generating a stop condition	4			
	STSPSEL	Set to "1" when using a condition generating function				
	ACKD	Select ACK or NACK				
	ACKC	Set to "1" for ACK data output				
	SCLHI	Set to "1" to enable SCL output stop when	Not used. Set to "0"			
		detecting stop condition				
	SWC9	Not used. Set to "0"	Set to "1" to fix an "L" signal output			
			from SCLi on the falling edge of the			
			ninth bit of the transfer clock			
IFSR	IFSR6, IFSR7	Set to "1"				

i=0 to 4

Table 16.14 I²C Mode Functions

	I ² C Mode (SMD2 to SMD0=0102, IICM=1)				
Serial I/O Mode	IICM2=0 (NACK/ACK interrupt)		IICM2=1 (UART transmit / UART receive interrupt)		
IICM=0)	CKPH=0 (No clock delay)	CKPH=1 (Clock delay)	CKPH=0 (No clock delay)	CKPH=1 (Clock delay)	
-	Start condition or stop condition de		detect (See Table 16.18)		
UARTi Transmission - Transmission started or completed (selected by the UilRS register)	No Acknowledgement		UARTi Transmission - Rising edge of 9th bit of SCLi	UARTi Transmission - Next falling edge after the 9th bit of SCLi	
UARTi Reception - Receiving at 8th bit CKPOL=0(rising edge) CKPOL=1(falling edge)			UARTi Reception - Falling edge of 9th bit of SCLi		
CKPOL=0(rising edge) CKPOL=1(falling edge)	Rising edge of 9th bit of SCLi		Falling edge of 9th bit of SCLi	Falling edge and rising edge of 9th bit of SCLi	
No delay	Delay		1		
TxDi output	SDAi input and output				
RxDi input	SCLi input and output				
Select CLKi input or output	 (Not used in I²C mode) 				
15 ns	200 ns				
Can be read if port direction bit is set to "0"	Can be read regardless of the port direction bit				
CKPOL=0 (H) CKPOL=1 (L)	Values set in the port register before		efore entering I ² C mode ⁽²⁾		
-	н	L	н	L	
UARTi reception	Acknowledgement detection (ACK)		UARTi Reception - Falling edge of 9th bit of SCLi		
1st to 8th bits of the received data are stored	1st to 8th bits of the received data are stored into bits 7 to 0 in the UiRB register		1st to 7th bits of the received data are stored into bits 6 to 0 in the UiRB register. 8th bit is stored into bit 8 in the UiRB register.		
into bits 7 to 0 in the UiRB register				1st to 8th bits are stored into bits 7 to 0 in the UiRB register ⁽³⁾	
Reading Received Data		is read		Bits 6 to 0 in the UiRB registerts ⁽⁴⁾ are read as bit 7 to 1. Bit 8 in the UiRB register is read as bit 0	
	(SMD2 to SMD0=0012, IICM=0) - UARTi Transmission - Transmission started or completed (selected by the UilRS register) UARTi Reception - Receiving at 8th bit CKPOL=0(rising edge) CKPOL=1(falling edge) CKPOL=1(falling edge) No delay TxDi output RxDi input Select CLKi input or output 15 ns Can be read if port direction bit is set to "0" CKPOL=0 (H) CKPOL=1 (L) - UARTi reception 1st to 8th bits of the received data are stored into bits 7 to 0 in the UiRB register	Clock Synchronous Serial I/O Mode (SMD2 to SMD0=0012, IICM=0) - Start condition or UARTi Transmission - Transmission started or completed (selected by the UilRS register) UARTi Reception - Receiving at 8th bit CKPOL=0(rising edge) CKPOL=1(falling edge) CKPOL=1(falling edge) Rising edge of 9th No delay TxDi output SDAi input and out RxDi input Select CLKi input or output Select CLKi input or output 15 ns Can be read if port direction bit is set to "0" CKPOL=0 (H) CKPOL=1 (L) - H UARTi reception Acknowledgement (ACK) - Rising edge of 9th Rising edge of 9th CKPOL output SDAi input and output CRPOL=0 (H) CKPOL=1 (H) CKPOL=1 (L) - Select CLKi input or output 15 ns Can be read if port direction bit is set to "0" CARD be read regal CKPOL=0 (H) CKPOL=1 (L) - H UARTi reception Acknowledgement (ACK) Tst to 8th bits of the received data are stored into bits 7 to 0 in the Ist to 8th bits of the received data are stored into bits 7 to 0 in the	Clock Synchronous Serial I/O Mode (SMD2 to SMD0=0012, IICM=0)	Clock Synchronous Serial I/O Mode (SMD2 to SMD0=0012, IICM=0) IICM=0	

i=0 to 4

NOTES:

- 1. Use the following procedure to change what causes an interrupt to be generated.
- (a) Disable interrupt of corresponding interrupt number.
- (b) Change what causes an interrupt to be generated.
- (c) Set the IR bit of a corresponding interrupt number to "0" (no interrupt requested).
- (d) Set the ILVL2 to ILVL0 bits of a corresponding interrupt number.
- 2. Set default value of the SDAi output when the SMD2 to SMD0 bits in the UiMR register are set to "0002" (serial I/O disabled).
- 3. Second data transfer to the UiRB register (on the rising edge of the ninth bit of SCLi).
- 4. First data transfer to the UiRB register (on the falling edge of the ninth bit of SCLi).

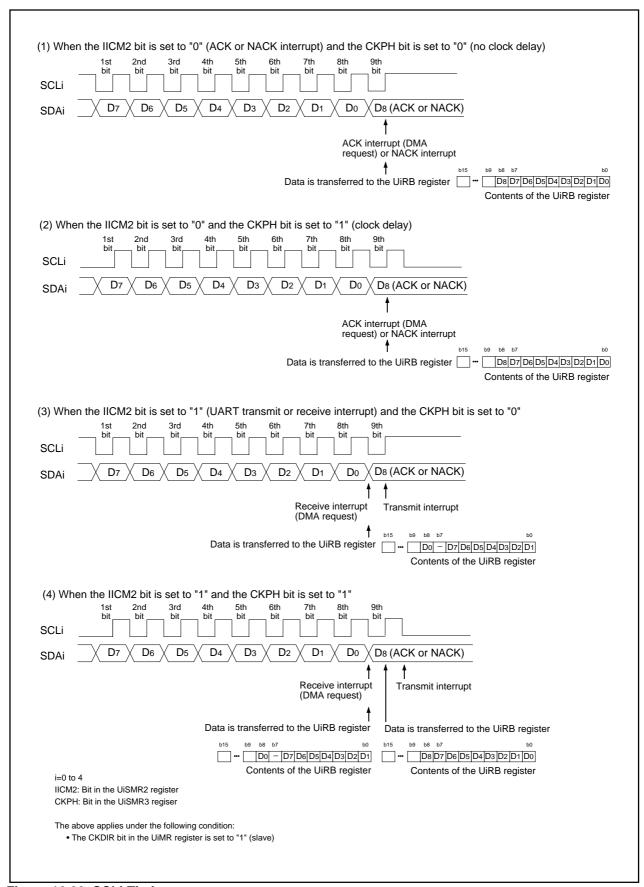


Figure 16.20 SCLi Timing

Table 16.15 Pin Settings in I²C Mode (1)

Port	Function	Setting			
		PS0 Register	PSL0 Register	PD6 Register	
P62	SCL0 output	PS0_2=1	PSL0_2=0	-	
	SCL0 input	PS0_2=0	-	PD6_2=0	
P63	SDA0 output	PS0_3=1	-	-	
	SDA0 input	PS0_3=0	-	PD6_3=0	
P66	SCL1 output	PS0_6=1	PSL0_6=0	-	
	SCL1 input	PS0_6=0	-	PD6_6=0	
P67	SDA1 output	PS0_7=1	-	-	
	SDA1 input	PS0_7=0	-	PD6_7=0	

Table 16.16 Pin Settings (2)

<u> </u>						
Port	Function	Setting				
Foit	1 diletion	PS1 Register	PSL1 Register	PSC Register	PD7 Register	
P70 ⁽¹⁾	SDA2 output	PS1_0=1	PSL1_0=0	PSC_0=0	_	
	SDA2 input	PS1_0=0	_	_	PD7_0=0	
P71 ⁽¹⁾	SCL2 output	PS1_1=1	PSL1_1=1	PSC_1=0	_	
	SCL2 input	PS1_1=0	_	_	PD7_1=0	

NOTE:

1. P70 and P71 are ports for the N-channel open drain output.

Table 16.17 Pin Settings (3)

Port	Function		Setting				
		PS3 Register ⁽¹⁾	PSL3 Register	PSC3 Register	PD9 Register ⁽¹⁾		
P91	SCL3 output	PS3_1=1	PSL3_1=0	-	-		
	SCL3 input	PS3_1=0	-	-	PD9_1=0		
P92	SDA3 output	PS3_2=1	PSL3_2=0	-	-		
	SDA3 input	PS3_2=0	-	-	PD9_2=0		
P96	SDA4 output	PS3_6=1	-	PSC3_6=0	-		
	SDA4 input	PS3_6=0	-	-	PD9_6=0		
P97	SCL4 output	PS3_7=1	PSL3_7=0	-	-		
	SCL4 input	PS3_7=0	-	-	PD9_7=0		

NOTE:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enabled). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

16.3.1 Detecting Start Condition and Stop Condition

The microcomputer detects either a start condition or stop condition. The start condition detect interrupt is generated when the SCLi (i=0 to 4) pin level is held high ("H") and the SDAi pin level changes "H" to low ("L"). The stop condition detect interrupt is generated when the SCLi pin level is held "H" and the SDAi pin level changes "L" to "H". The start condition detect interrupt shares interrupt control registers and vectors with the stop condition detect interrupt. The BBS bit in the UiSMR register determines which interrupt is requested.

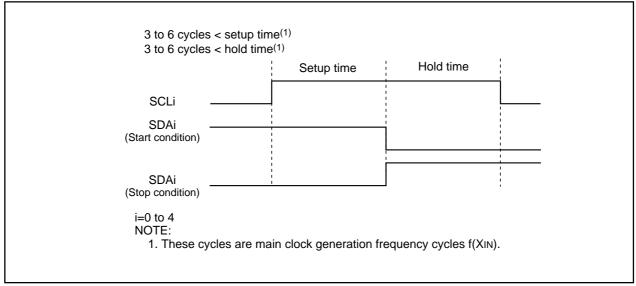


Figure 16.21 Start Condition or Stop Condition Detecting

16.3.2 Start Condition or Stop Condition Output

The start condition is generated when the STAREQ bit in the UiSMR4 register (i=0 to 4) is set to "1" (start). The restart condition is generated when the RSTAREQ bit in the UiSMR4 register is set to "1" (start). The stop condition is generated the STPREQ bit in the UiSMR4 is set to "1" (start).

The start condition is output when the STAREQ bit is set to "1" and the STSPSEL bit in the UiSMR4 register is set to "1" (start or stop condition generating circuit selected). The restart condition output is provided when the RSTAREQ bit and STSPSEL bit are set to "1". The stop condition output is provided when the STPREQ bit and the STSPSEL bit are set to "1".

When the start condition, stop condition or restart condition is output, do not generate an interrupt between the instruction to set the STAREQ bit, STPREQ bit or RSTAREQ bit to "1" and the instruction to set the STSPSEL bit to "1". When the start condition is output, set the STAREQ bit to "1" before the STSPSEL bit is set to "1".

Table 16.18 lists function of the STSPSEL bit. Figure 16.22 shows functions of the STSPSEL bit.

Table 16.18 STSPSEL Bit Function

Function	STSPSEL = 0	STSPSEL = 1
Start condition and stop condition output	Program with ports determines how the start condition or stop condition output is provided	The STAREQ bit, RSTAREQ bit and STPREQ bit determine how the start condition or stop condition output is provided
Timing to generate start condition and stop condition interrupt requests	The start condition and stop condition are detected	Start condition and stop condition generation are completed

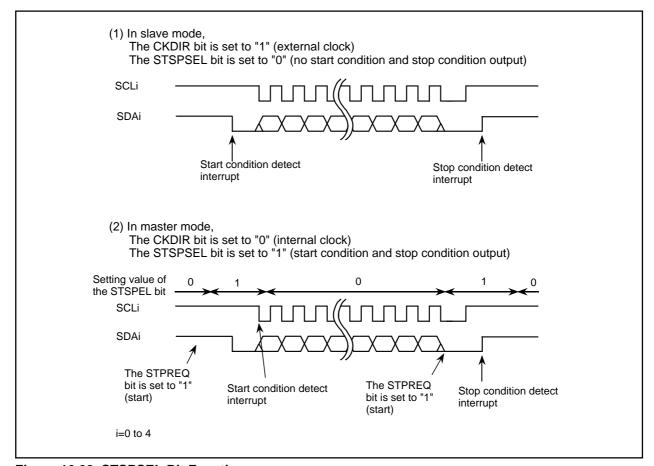


Figure 16.22 STSPSEL Bit Function

16.3.3 Arbitration

The ABC bit in the UiSMR register (i=0 to 4) determines an update timing for the ABT bit in the UiRB register. On the rising edge of the SCLi pin, the microcomputer determines whether a transmit data matches data input to the SDAi pin.

When the ABC bit is set to "0" (update per bit), the ABT bit is set to "1" (detected-arbitration is lost) as soon as a data discrepancy is detected. The ABT bit is set to "0" (not detected-arbitration is won) if not detected. When the ABC bit is set to "1" (update per byte), the ABT bit is set to "1" on the falling edge of the ninth bit of the transfer clock if any discrepancy is detected. When the ABT bit is updated per byte, set the ABT bit to "0" between an ACK detection in the first byte data and the next byte data to be transferred. When the ALS bit in the UiSMR2 register is set to "1" (SDA output stop enabled), the arbitration lost occurs. As soon as the ABT bit is set to "1", the SDAi pin is placed in a high-impedance state.

16.3.4 Transfer Clock

The transfer clock transmits and receives data as is shown in Figure 16.20.

The CSC bit in the UiSMR2 register (i=0 to 4) synchronizes an internally generated clock (internal SCLi) with the external clock applied to the SCLi pin. When the CSC bit is set to "1" (clock synchronous enabled) and the internal SCLi is held high ("H"), the internal SCLi become low ("L") if signal applied to the SCLi pin is on the falling edge. Value of the UiBRG register is reloaded to start counting for low level. A counter stops when the SCLi pin is held "L" and then the internal SCLi changes "L" to "H". Counting is resumed when the SCLi pin become "H". The transfer clock of UARTi is equivalent to the AND for signals from the internal SCLi and the SCLi pin.

The transfer clock is synchronized between a half cycle before the falling edge of first bit of the internal SCLi and the rising edge of the ninth bit. Select the internal clock as the transfer clock while the CSC bit is set to "1".

The SWC bit in the UiSMR2 register determines whether the SCLi pin is fixed to be an "L" signal output on the falling edge of the ninth cycle of the transfer clock or not.

When the SCLHI bit in the UiSMR4 register is set to "1" (enabled), a SCLi output stops when a stop condition is detected (high-impedance).

When the SWC2 bit in the UiSMR2 register is set to "1" (0 output), the SCLi pin focibly outputs an "L" signal while transmitting and receiving. The fixed "L" signal applied to the SCLi pin is cancelled by setting the SWC2 bit to "0" (transfer clock) and the transfer clock input to and output from the SCLi pin are provided. When the CKPH bit in the UiSMR3 register is set to "1" and the SWC9 bit in the UiSMR4 register is set to "1" (SCL "L" hold enabled), the SCLi pin is fixed to be an "L" signal output on the next falling edge after the ninth bit of the clock. The fixed "L" signal applied to the SCLi pin is cancelled by setting the SWC9 bit to "0" (SCL "L" hold disabled).

16.3.5 SDA Output

Values output set in bits 7 to 0 (D7 to D0) in the UiTB register (i=0 to 4) are provided in descending order from D7. The ninth bit (D8) is ACK or NACK.

Set the default value of SDAi transmit output when the IICM bit is set to "1" (I²C mode) and the SMD2 to SMD0 bits in the UiMR register are set to "0002" (serial I/O disabled).

The DL2 to DL0 bits in the UiSMR3 register determine no delay in the SDAi output or a delay of 2 to 8 UiBRG register count source cycles.

When the SDHI bit in the UiSMR2 register is set to "1" (SDA output disabled), the SDAi pin is forcibly placed in a high-impedance state. Do not set the SDHI bit on the rising edge of the UARTi transfer clock. The ABT bit in the UiRB register may be set to "1" (detected).

16.3.6 SDA Input

When the IICM2 bit in the UiSMR2 register (i=0 to 4) is set to "0", the first eight bits of received data are stored into bits 7 to 0 (D7 to D0) in the UiRB register. The ninth bit (D8) is ACK or NACK.

When the IICM2 bit is set to "1", the first seven bits (D7 to D1) of received data are stored into bits 6 to 0 in the UiRB register. Store the eighth bit (D0) into bit 8 in the UiRB register.

If the IICM2 bit is set to "1" and the CKPH bit in the UiSMR3 register is set to "1", the same data as that of when setting the IICM2 bit to "0" can be read. To read the data, read the UiRB register after the rising edge of the ninth bit of the transfer clock.

16.3.7 ACK, NACK

When the STSPSEL bit in the UiSMR4 register (i=0 to 4) is set to "0" (serial I/O circuit selected) and the ACKC bit in the UiSMR4 register is set to "1" (ACK data output), the SDAi pin provides the value output set in the ACKD bit in the UiSMR4 register.

If the IICM2 bit is set to "0", the NACK interrupt request is generated when the SDAi pin is held high ("H") on the rising edge of the ninth bit of the transfer clock. The ACK interrupt request is generated when the SDAi pin is held low ("L") on the rising edge of the ninth bit of the transfer clock.

When ACK is selected to generate a DMA request, the DMA transfer is activated by an ACK detection.

16.3.8 Transmit and Receive Reset

When the STC bit in the UiSMR2 register (i=0 to 4) is set to "1" (UARTi initialization enabled) and a start condition is detected,

- the transmit shift register is reset and the content of the UiTB register is transferred to the transmit shift register. The first bit starts transmitting when the next clock is input. UARTi output value remains unchanged between when the clock is applied and when the first bit data output is provided. The value remains the same as when start condition was detected.
- the receive shift register is reset and the first bit start receiving when the next clock is applied.
- the SWC bit is set to "1" (SCL wait output enabled). The SCLi pin becomes "L" on the falling edge of the ninth bit of the transfer clock.

If UARTi transmission and reception are started with this function, the TI bit in the UiC1 register remains unchanged. Select the external clock as the transfer clock when using this function.

16.4 Special Mode 2

In special mode 2, serial communication between one or multiple masters and multiple slaves is available. The \overline{SSi} input pin (i=0 to 4) controls the serial bus communication. Table 16.19 lists specifications of special mode 2. Table 16.20 lists register settings. Tables 16.21 to 16.23 list pin settings.

Table 16.19 Special Mode 2 Specifications

Item	Specification		
Transfer Data Format	Transfer data: 8 bits long		
Transfer Clock	• The CKDIR bit in the UiMR register (i=0 to 4) is set to "0" (internal clock selected): $f_i/2(m+1)$ $f_j = f_1$, f8, $f_{2n}^{(1)}$ m : setting value of the UiBRG register, 0016 to FF16		
	The CKDIR bit to "1" (external clock selected) : input from the CLKi pin		
Transmit/Receive Control	SSi input pin function		
Transmit Start Condition	To start transmitting, the following requirements must be met ⁽²⁾ :		
	- Set the TE bit in the UiC1 register to "1" (transmit enabled)		
	- Set the TI bit in the UiC1 register to "0" (data in the UiTB register)		
Receive Start Condition	To start receiving, the following requirement must be met ⁽²⁾ :		
	- Set the RE bit in the UiC1 register to "1" (receive enabled)		
	- Set the TE bit in the UiC1 register to "1" (transmit enabled)		
	- Set the TI bit in the UiC1 register to "0" (data in the UiTB register)		
Interrupt Request	While transmitting, the following conditions can be selected:		
Generation Timing	- The UiIRS bit in the UiC1 register is set to "0" (no data in a transmit buffer) :		
	when data is transferred from the UiTB register to the UARTi transmit register (transmission started)		
	 The UiIRS register is set to "1" (transmission completed): when data transmission from UARTi transfer register is completed 		
	While receiving		
	When data is transferred from the UARTi receive register to the UiRB register (reception completed)		
Error Detection	• Overrun error ⁽³⁾		
	This error occurs when the seventh bit of the next received data is read before reading the UiRB register		
	• Fault error		
	In master mode, the fault error occurs an "L" signal is applied to the SSi pin		
Selectable Function	CLK polarity		
	Selectable from the rising edge or falling edge of the transfer clock at transferred data output or input timing		
	LSB first or MSB first		
	Selectable from data transmission or reception in either bit 0 or in bit 7		
	Continuous receive mode		
	Data reception is enabled simultaneously by reading the UiRB register		
	Serial data logic inverse		
	This function inverses transmitted or received data logically		
	TxD and RxD I/O polarity inverse		
	TxD pin output and RxD pin input are inversed. All I/O data levels are also inversed		
	Clock phase		
	Selectable from one of 4 combinations of transfer data polarity and phases		
	• SSi input pin function		
	Output pin is placed in a high-impedance state to avoid data conflict between master and other masters or slaves		

NOTES:

- 1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).
- 2. To start transmission/reception when selecting the external clock, these conditions must be met after the CKPOL bit in the UiC0 register is set to "0" (data is transmitted on the falling edge of the transfer clock and data is received on the rising edge) and the CLKi pin is held high ("H"), or when the CKPOL bit is set to "1" (Data is transmitted on the rising edge of the transfer clock and data is received on the falling edge) and the CLKi pin is held low ("L").
- 3. If an overrun error occurs, the UiRB register is in an indeterminate state. The IR bit setting in the SiRIC register does not change to "1" (interrupt requested).

Table 16.20 Register Settings in Special Mode 2

Register	Bit	Function		
UiTB	7 to 0	Set transmit data		
UiRB	7 to 0	Received data can be read		
	OER	Overrun error flag		
UiBRG	7 to 0	Set bit rate		
UiMR	SMD2 to SMD0	Set to "0012"		
	CKDIR	Set to "0" in master mode or "1" in slave mode		
	IOPOL	Set to "0"		
UiC0	CLK1, CLK0	Select count source for the UiBRG register		
	CRS	Disabled because the CRD bit is set to "1"		
	TXEPT	Transfer register empty flag		
	CRD	Set to "1"		
	NCH	Select the output format of the TxDi pin		
	CKPOL	Clock phase can be set by the combination of the CKPOL bit and the CKPH bit in		
		the UiSMR3 register		
	UFORM	Select either LSB first or MSB first		
UiC1	TE	Set to "1" to enable data transmission and reception		
	TI	Transfer buffer empty flag		
	RE	Set to "1" to enable data reception		
	RI	Reception complete flag		
	UilRS	Select what causes the UARTi transmit interrupt to be generated		
	UiRRM	Set to "1" to enable continuous receive mode		
	UiLCH, SCLKSTPB	Set to "0"		
UiSMR	7 to 0	Set to "0016"		
UiSMR2	7 to 0	Set to "0016"		
UiSMR3	SSE	Set to "1"		
	CKPH	Clock phase can be set by the combination of the CKPH bit and the CKPOL bit		
		in the UiC0 register		
	DINC	Set to "0" in master mode or "1" in slave mode		
	NODC	Set to "0"		
	ERR	Fault error flag		
	7 to 5	Set to "0002"		
UiSMR4	7 to 0	Set to "0016"		

i=0 to 4

Table 16.21 Pin Settings in Special Mode 2 (1)

Port	Function	Setting		
		PS0 Register	PSL0 Register	PD6 Register
P60	SS0 input	PS0_0=0	_	PD6_0=0
P61	CLK0 input (slave)	PS0_1=0	_	PD6_1=0
	CLK0 output (master)	PS0_1=1	_	_
P62	RxD0 input (master)	PS0_2=0	_	PD6_2=0
	STxD0 output (slave)	PS0_2=1	PSL0_2=1	_
P63	TxD0 output (master)	PS0_3=1	_	_
	SRxD0 input (slave)	PS0_3=0	_	PD6_3=0
P64	SS1 input	PS0_4=0	_	PD6_4=0
P65	CLK1 input (slave)	PS0_5=0	_	PD6_5=0
	CLK1 output (master)	PS0_5=1	_	_
P66	RxD1 input (master)	PS0_6=0	_	PD6_6=0
	STxD1 output (slave)	PS0_6=1	PSL0_6=1	_
P67	TxD1 output (master)	PS0_7=1	_	_
	SRxD1 input (slave)	PS0_7=0	-	PD6_7=0

Table 16.22 Pin Settings (2)

Port	Function	Setting			
		PS1 Register	PSL1 Register	PSC Register	PD7 Register
P70 ⁽¹⁾	TxD2 output (master)	PS1_0=1	PSL1_0=0	PSC_0=0	_
	SRxD2 input (slave)	PS1_0=0	_	_	PD7_0=0
P71 ⁽¹⁾	RxD2 input (master)	PS1_1=0	_	_	PD7_1=0
	STxD2 output (slave)	PS1_1=1	PSL1_1=1	PSC_1=0	_
P72	CLK2 input (slave)	PS1_2=0	_	_	PD7_2=0
	CLK2 output (master)	PS1_2=1	PSL1_2=0	PSC_2=0	_
P73	SS2 input	PS1_3=0	_	_	PD7_3=0

NOTE:

Table 16.23 Pin Settings (3)

Port	Function		Setting		
		PS3 Register ⁽¹⁾	PSL3 Register	PSC3 Register	PD9 Register ⁽¹⁾
P90	CLK3 input (slave)	PS3_0=0	_	_	PD9_0=0
	CLK3 output (master)	PS3_0=1	_	_	_
P91	RxD3 input (master)	PS3_1=0	_	_	PD9_1=0
	STxD3 output (slave)	PS3_1=1	PSL3_1=1	_	_
P92	TxD3 output (master)	PS3_2=1	PSL3_2=0	_	_
	SRxD3 input (slave)	PS3_2=0	_	_	PD9_2=0
P93	SS3 input	PS3_3=0	PSL3_3=0	_	PD9_3=0
P94	SS4 input	PS3_4=0	PSL3_4=0	_	PD9_4=0
P95	CLK4 input (slave)	PS3_5=0	PSL3_5=0	_	PD9_5=0
	CLK4 output (master)	PS3_5=1	_	_	_
P96	TxD4 output (master)	PS3_6=1	_	PSC3_6=0	_
	SRxD4 input (slave)	PS3_6=0	PSL3_6=0	_	PD9_6=0
P97	RxD4 input (master)	PS3_7=0	_	-	PD9_7=0
	STxD4 output (slave)	PS3_7=1	PSL3_7=1	-	_

NOTE:

^{1.} Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enabled). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

^{1.} P70 and P71 are ports for the N-channel open drain output.

16.4.1 SSi Input Pin Function (i=0 to 4)

When the SSE bit in the UiSMR3 register is set to "1" (\$\overline{SS}\$ function enabled), the special mode 2 is selected, activating the pin function.

The DINC bit in the UiSMR3 register determines which microcomputer performs as master or slave. When multiple microcomputers perform as the masters (multi-master system), the \overline{SSi} pin setting determines which master microcomputer is active and when.

16.4.1.1 When Setting the DINC Bit to "1" (Slave Mode)

When a high-level ("H") signal is applied to the \overline{SSi} pin, the STxDi and SRxDi pins are placed in a high-impedance state and the transfer clock applied to the CLKi pin is ignored. When a low-level ("L") signal is applied to the \overline{SSi} input pin, the transfer clock input is valid and serial communication is enabled.

16.4.1.2 When Setting the DINC Bit to "0" (Master Mode)

When using the SSi pin functin in master mode, set the UilRS bit in the UiC1 register to "1" (transmission completed).

When an "H" signal is applied to the \$\overline{\SSi}\$ pin, serial communication is available due to transmission privilege. The master provides the transfer clock output. When an "L" signal is applied to the \$\overline{\SSi}\$ pin, it indicates that another master is active. The TxDi and CLKi pins are placed in high-impedance states and the ERR bit in the UiSMR3 register is set to "1" (fault error) Use the transmit complete interrupt routine to verify the ERR bit state.

To resume the serial communication after the fault error occurs, set the ERR bit to "0" while applying the "H" signal to the SSi pin. The TxDi and CLKi pins become ready for signal outputs.

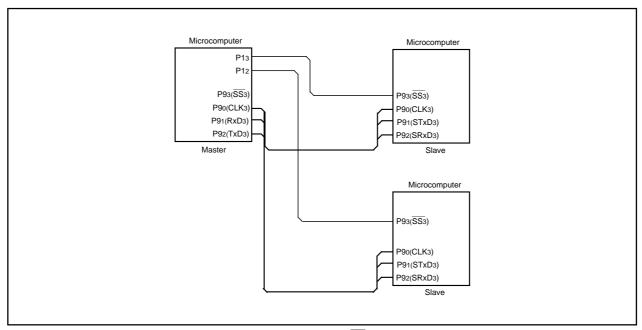


Figure 16.23 Serial Bus Communication Control with SS Pin

16.4.2 Clock Phase Setting Function

The CKPH bit in the UiSMR3 register (i=0 to 4) and the CKPOL bit in the UiC0 register select one of four combinations of transfer clock polarity and phases.

The transfer clock phase and polarity must be the same between the master and the slave involved in the transfer.

16.4.2.1 When setting the DINC Bit to "0" (Master (Internal Clock))

Figure 16.24 shows transmit and receive timing.

16.4.2.2 When Setting the DINC Bit to "1" (Slave (External Clock))

When the CKPH bit is set to "0" (no clock delay) and the \$\overline{SSi}\$ input pin is held high ("H"), the STxDi pin is placed in a high-impedance state. When the \$\overline{SSi}\$ input pin becomes low ("L"), conditions to start a serial transfer are met, but output is indeterminate. The serial transmission is synchronized with the transfer clock. Figure 16.25 shows the transmit and receive timing.

When the CKPH bit is set to "1" (clock delay) and the \overline{SSi} input pin is held high, the STxDi pin is placed in a high-impedance state. When the \overline{SSi} pin becomes low, the first data is output. The serial transmission is synchronized with the transfer clock. Figure 16.26 shows the transmit and receive timing.

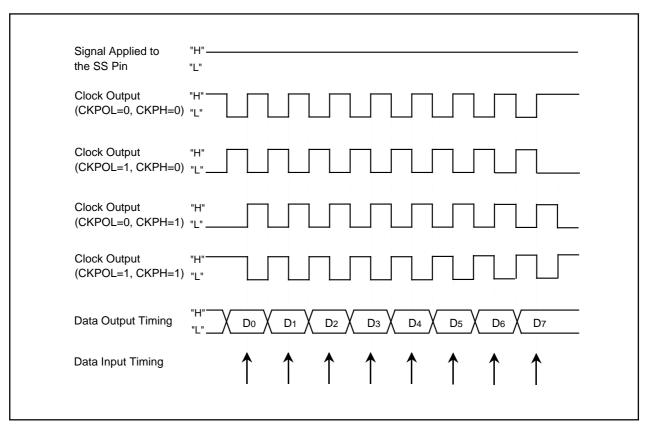


Figure 16.24 Transmit and Receive Timing in Master Mode (Internal Clock)

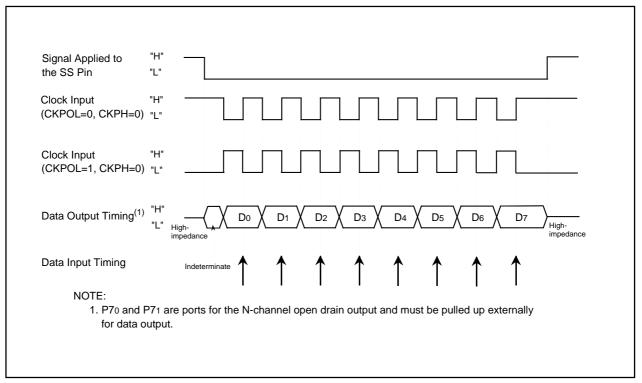


Figure 16.25 Transmit and Receive Timing in Slave Mode (External Clock) (CKPH=0)

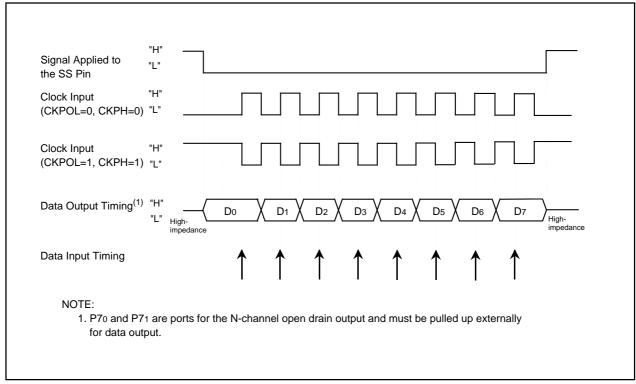


Figure 16.26 Transmit and Receive Timing in Slave Mode (External Clock) (CKPH=1)

16.5 Special Mode 3 (GCI Mode)

In GCI mode, the external clock is synchronized with the transfer clock used in the clock synchronous serial I/O mode.

Table 16.24 lists specifications of GCI mode. Table 16.25 lists registers settings. Tables 16.26 to 16.28 list pin settings.

Table16.24 GCI Mode Specifications

Item	Specification		
Transfer Data Format	Transfer data: 8 bits long		
Transfer Clock	The CKDIR bit in the UiMR register (i=0 to 4) is set to "1" (external clock selected): input from the CLKi pin		
Clock Synchronization Function	Trigger signal input from the CTSi pin		
Transmit/Receive Start	To start data transmission and reception, meet the following conditions and then apply a		
Condition	trigger signal to the CTSi pin:		
	- Set the TE bit in the UiC1 register to "1" (transmit enabled)		
	- Set the RE bit in the UiC1 register to "1" (receive enabled)		
	- Set the TI bit in the UiC1 register to "0" (Data in the UiTB register)		
Interrupt Request	While transmitting, the following condition can be selected:		
Generation Timing	- The UiIRS bit in the UiC1 register is set to "0" (UiTB register empty):		
	when data is transferred from the UiTB register to the UARTi transmit register (transmission started)		
	- The UiIRS bit is set to "1" (Transmit completed):		
	when a data transmission from the UARTi transfer register is completed		
	While receiving,		
	when data is transferred from the UARTi receive register to the UiRB register (reception completed)		
Error Detection	Overrun error ⁽¹⁾		
	This error occurs when the seventh bit of the next received data is read before reading the UiRB register.		

NOTE:

1. If an overrun error occurs, the UiRB register is indeterminate. The IR bit setting in the SiRIC register does not change to "1" (interrupt requested).

Table 16.25 Register Settings in GCI Mode

UiTB	7 to 0			
	7 10 0	Set transmit data		
UiRB	7 to 0	Received data		
	OER	Overrun error flag		
UiBRG	7 to 0	Set to "0016"		
UiMR	SMD2 to SMD0	Set to "0012"		
	CKDIR	Set to "1"		
	IOPOL	Set to "0"		
UiC0	CLK1, CLK0	Set to "002"		
	CRS	Disabled because the CRD bit is set to "1"		
	TXEPT	Transfer register empty flag		
	CRD	Set to "1"		
	NCH	Select the output format of the TxDi pin		
	CKPOL	Set to "0"		
	UFORM	Set to "0"		
UiC1	TE	Set to "1" to enable data transmission and reception		
	TI	Transfer buffer empty flag		
	RE	Set to "1" to enable data reception		
	RI	Reception complete flag		
	UiIRS	Select what causes the UARTi transmit interrupt to be generated		
	UiRRM, UiLCH	Set to "0"		
	SCLKSTPB	Set to "0"		
UiSMR	6 to 0	Set to "00000002"		
	SCLKDIV	See Table 16.29		
UiSMR2	6 to 0	Set to "00000002"		
	SU1HIM	See Table 16.29		
UiSMR3	2 to 0	Set to "0002"		
	NODC	Set to "0"		
	7 to 4	Set to "00002"		
UiSMR4	7 to 0	Set to "0016"		

i=0 to 4

Table 16.26 Pin Settings in GCI Mode (1)

Port	Function	Setting		
		PS0 Register	PD6 Register	
P60	CTS0 input ⁽¹⁾	PS0_0=0	PD6_0=0	
P61	CLK0 input	PS0_1=0	PD6_1=0	
P62	RxD0 input	PS0_2=0	PD6_2=0	
P63	TxD0 output	PS0_3=1	_	
P64	CTS1 input ⁽¹⁾	PS0_4=0	PD6_4=0	
P65	CLK1 input	PS0_5=0	PD6_5=0	
P66	RxD1 input	PS0_6=0	PD6_6=0	
P67	TxD1 output	PS0_7=1	_	

NOTE:

1. CTS input is used as a trigger siganl input.

Table 16.27 Pin Settings (2)

Port	Function	Setting			
		PS1 Register	PSL1 Register	PSC Register	PD7 Register
P70 ⁽¹⁾	TxD2 output	PS1_0=1	PSL1_0=0	PSC_0=0	_
P71 ⁽¹⁾	RxD2 input	PS1_1=0	_	_	PD7_1=0
P72	CLK2 input	PS1_2=0	_	_	PD7_2=0
P73	CTS2 input ⁽²⁾	PS1_3=0	_	_	PD7_3=0

NOTES:

- 1. P70 and P71 are ports for the N-channel open drain output.
- 2. CTS input is used as a trigger siganl input.

Table 16.28 Pin Settings (3)

Port	Function		Setting			
		PS3 Register ⁽¹⁾	PSL3 Register	PSL3 Register	PD9 Register ⁽¹⁾	
P90	CLK3 input	PS3_0=0	_	_	PD9_0=0	
P91	RxD3 input	PS3_1=0	_	_	PD9_1=0	
P92	TxD3 output	PS3_2=1	PSL3_2=0	_	_	
P93	CTS3 input ⁽²⁾	PS3_3=0	PSL3_3=0	_	PD9_3=0	
P94	CTS4 input ⁽²⁾	PS3_4=0	PSL3_4=0	_	PD9_4=0	
P95	CLK4 input	PS3_5=0	PSL3_5=0	_	PD9_5=0	
P96	TxD4 output	PS3_6=1	PSL3_6=0	PSL3_6=0	_	
P97	RxD4 input	PS3_7=0	_	_	PD9_7=0	

NOTES:

- 1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enabled). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.
- 2. CTS input is used for a trigger siganl input.

To generate the internal clock synchronized with the external clock, set the SU1HIM bit in the UiSMR2 register (i=0 to 4) and the SCLKDIV bit in the UiSMR register to values shown in Table 16.29. Then apply a trigger signal to the $\overline{\text{CTSi}}$ pin. Either the same clock cycle as the external clock or external clock divided by two can be selected as the transfer clock. The SCLKSTPB bit in the UiC1 register controls the transfer clock. Set the SCLKSTPB bit accordingly, to start or stop the transfer clock during an external clock operation. Figure 16.27 shows an example of the clock-divided synchronous function.

Table 16.29 Clock-Divided Synchronous Function Select

SCLKDIV Bit in	SU1HIM Bit in	Clock-Divided Synchronous Function	Example of Waveform
UiSMR Register	UiSMR2 Register		
0	0	Not synchronized	-
0	1	Same division as the external clock	A in Figure 16.27
1	0 or 1	Same division as the external clock	B in Figure 16.27
		divided by 2	

i=0 to 4

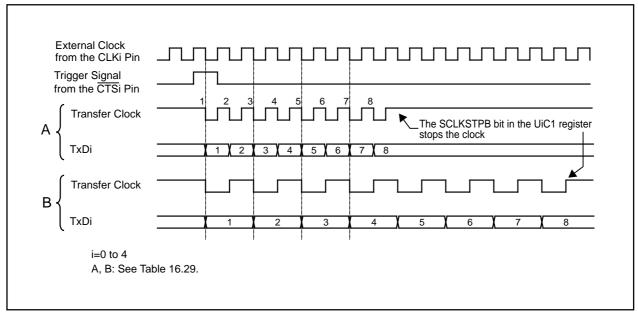


Figure 16.27 Clock-Divided Synchronous Function

16.6 Special Mode 4 (IE Mode)

In IE mode, devices connected with the IEBus can communicate in UART mode.

Table 16.30 lists register settings. Tables 16.31 to 16.33 list pin settings.

Table 16.30 Register Settings in IE Mode

Register	Bit	Function		
UiTB	8 to 0	Set transmit data		
UiRB	8 to 0	Received data can be read		
	OER, FER,	Error flags		
	PER, SUM			
UiBRG	7 to 0	Set bit rate		
UiMR	SMD2 to SMD0	Set to "1102"		
	CKDIR	Select the internal clock or external clock		
	STPS	Set to "0"		
	PRY	Disabled because the PRYE bit is set to "0"		
	PRYE	Set to "0"		
	IOPOL	Select TxD and RxD I/O polarity		
UiC0	CLK1, CLK0	Select count source for the UiBRG register		
	CRS	Disabled because the CRD bit is set to "1"		
	TXEPT	Transfer register empty flag		
	CRD	Set to "1"		
	NCH	Select output format of the TxDi pin		
	CKPOL	Set to "0"		
	UFORM	Set to "0"		
UiC1	TE	Set to "1" to enable data transmission		
	TI	Transfer buffer empty flag		
	RE	Set to "1" te enable data reception		
	RI	Reception complete flag		
	UilRS	Select what causes the UARTi transmit interrupt to be generated		
	UiRRM, UiLCH,	Set to "0"		
	SCLKSTPB			
UiSMR	3 to 0	Set to "00002"		
	ABSCS	Select bus conflict detect sampling timing		
	ACSE	Set to "1" to automatically clear the transmit enable bit		
	SSS	Select transmit start condition		
	SCLKDIV	Set to "0"		
UiSMR2	7 to 0	Set to "0016"		
UiSMR3	7 to 0	Set to "0016"		
UiSMR4	7 to 0	Set to "0016"		
IFSR	IFSR6, IFSR7	Select how the bus conflict interrupt occurs		

i=0 to 4

Table 16.31 Pin Settings in IE Mode (1)

Port	Function	Setting		
		PS0 Register	PD6 Register	
P61	CLK0 input	PS0_1=0	PD6_1=0	
	CLK0 output	PS0_1=1	_	
P62	RxD0 input	PS0_2=0	PD6_2=0	
P63	TxD0 output	PS0_3=1	_	
P65	CLK1 input	PS0_5=0	PD6_5=0	
	CLK1 output	PS0_5=1	_	
P66	RxD1 input	PS0_6=0	PD6_6=0	
P67	TxD1 output	PS0_7=1	_	

Table 16.32 Pin Settings (2)

Port	Function	Setting			
		PS1 Register	PSL1 Register	PSC Register	PD7 Register
P70 ⁽¹⁾	TxD2 output	PS1_0=1	PSL1_0=0	PSC_0=0	_
P71 ⁽¹⁾	RxD2 input	PS1_1=0	_	_	PD7_1=0
P72	CLK2 input	PS1_2=0	_	_	PD7_2=0
	CLK2 output	PS1_2=1	PSL1_2=0	PSC_2=0	_

NOTE:

1. P70 and P71 are ports for the N-channel open drain output.

Table 16.33 Pin Settings (3)

Port	Function	Setting			
		PS3 Register ⁽¹⁾	PSL3 Register	PSC3 Register	PD9 Register ⁽¹⁾
P90	CLK3 input	PS3_0=0	_	_	PD9_0=0
	CLK3 output	PS3_0=1	_	_	_
P91	RxD3 input	PS3_1=0	_	_	PD9_1=0
P92	TxD3 output	PS3_2=1	PSL3_2=0	_	_
P95	CLK4 input	PS3_5=0	PSL3_5=0	_	PD9_5=0
	CLK4 output	PS3_5=1	_	_	_
P96	TxD4 output	PS3_6=1	_	PSC3_6=0	_
P97	RxD4 input	PS3_7=0	_	_	PD9_7=0

NOTE:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enabled). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

If the output signal level of the TxDi pin (i=0 to 4) differs from the input signal level of the RxDi pin, an interrupt request is generated.

UART0 and UART3 are assigned software interrupt number 40. UART1 and UART4 are assigned number 41. When using the bus conflict detect function of UART0 or UART3, of UART1 or UART4, set the IFSR6 bit and the IFSR7 bit in the IFSR register accordingly.

When the ABSCS bit in the UiSMR register is set to "0" (rising edge of the transfer clock), it is determined, on the rising edge of the transfer clock, if the output level of the TxD pin and the input level of the RxD pin match. When the ABSCS bit is set to "1" (timer Aj underflow), it is determined when the timer Aj (timer A3 in UART0, timer A4 in UART1, timer A0 in UART2, timer A3 in UART3, the timer A4 in UART4) counter overflows. Use the timer Aj in one-shot timer mode.

When the ACSE bit in the UiSMR register is set to "1" (automatic clear at bus conflict) and the IR bit in the BCNiIC register to "1" (discrepancy detected), the TE bit in the UiC1 register is set to "0" (transmit disabled).

When the SSS bit in the UiSMR register is set to "1" (synchronized with RxDi), data is transmitted from the TxDi pin on the falling edge of the RxDi pin. Figure 16.28 shows bits associated with the bus conflict detect function.

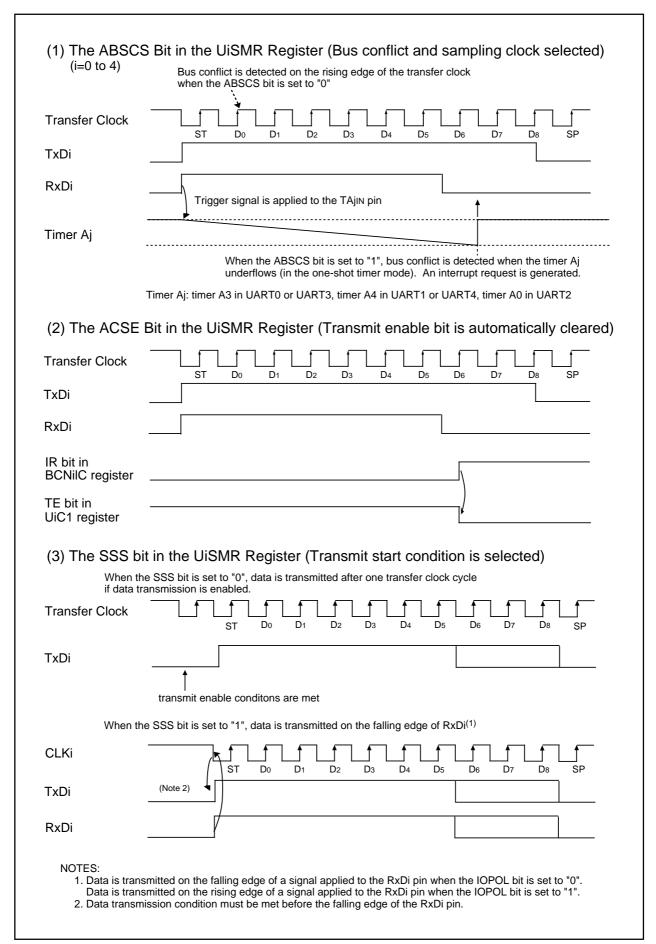


Figure 16.28 Bit Function Related Bus Conflict Detection

16.7 Special Mode 5 (SIM Mode)

In SIM mode, SIM interface devices can communicate in UART mode. Both direct and inverse formats are available and a low-level ("L") signal output can be provided from the TxDi pin (i=0 to 4) when a parity error is detected.

Table 16.34 lists specifications of SIM mode. Table 16.35 lists register settings. Tables 16.36 to 16.38 list pin settings.

Table 16.34 SIM Mode Specifications

Item			Specification	
Transfer Data Format	• Transfer data: 8-	bit UART mode	One stop bit	
	• In direct format		• In inverse format	
	Parity:	Even	Parity:	Odd
	Data logic:	Direct	Data logic:	Inverse
	Transfer format:	LSB first	Transfer format:	MSB first
Transfer Clock		• '	0 to 4) is "0" (internal setting value of the U	clock selected): iBRG register, 0016 to FF16
	Do not set the CKI	DIR bit to "1" (externa	I clock selected)	
Transmit/Receive Control	The CRD bit in the	UiC0 register is set t	o "1" (CTS, RTS fund	ction disabled)
Other Setting Items	The UiIRS bit in the	e UiC1 register is set	to "1" (transmission o	completed)
Transmit Start Condition	To start transmittin	g, the following requi	rements must be met	:
	- Set the TE bit in t	he UiC1 register to "	1" (transmit enabled)	
	- Set the TI bit in th	ne UiC1 register to "0	" (data in the UiTB re	gister)
Receive Start Condition	To start receiving,	the following requirer	ments must be met:	
	- Set the RE bit in t	the UiC1 register to "	1" (receive enabled)	
	- Detect the start b	it		
Interrupt Request	While transmitting,			
Generation Timing		et to "1" (transmissio mission from the UAF	n completed): RTi transfer register is	completed
	• While receiving,			
	when data is transfe	erred from the UARTi re	eceive register to the Uif	RB register (reception completed)
Error Detection	• Overrun error ⁽¹⁾			
	This error occur UiRB register	rs when the eighth bi	t of the next data is re	eceived before reading the
	• Framing error			
	This error occur	rs when the number of	of the stop bit set is no	ot detected
	 Parity error 			
	This error occur	rs when the number of	of "1" in parity bit and	character bits differs from
	the number set			
	Error sum flag			
	The SUM bit is	set to "1" when an ov	errun error, framing e	error or parity error occurs

NOTES:

- 1. If an overrun error occurs, the UiRB register is indeterminate. The IR bit setting in the SiRIC register does not change to "1" (interrupt requested).
- 2. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

Table 16.35 Register Settings in SIM Mode

Register	Bit	Function	
UiTB	7 to 0	Set transmit data	
UiRB	7 to 0	Received data can be read	
	OER, FER,	Error flags	
	PER, SUM		
UiBRG	7 to 0	Set bit rate	
UiMR	SMD2 to SMD0	Set to "1012"	
	CKDIR	Set to "0"	
	STPS	Set to "0"	
	PRY	Set to "1" for direct format or "0" for inverse format	
	PRYE	Set to "1"	
	IOPOL	Set to "0"	
UiC0	CLK1, CLK0	Select count source for the UiBRG register	
	CRS	Disabled because the CRD bit is set to "1"	
	TXEPT	Transfer register empty flag	
	CRD	Set to "1"	
	NCH	Set to "1"	
	CKPOL	Set to "0"	
	UFORM	Set to "0" for direct format or "1" for inverse format	
UiC1	TE	Set to "1" to enable data transmission	
	TI	Transfer buffer empty flag	
	RE	Set to "1" to enable data reception	
	RI	Reception complete flag	
	UilRS	Set to "1"	
	UiRRM	Set to "0"	
	UiLCH	Set to "0" for direct format or "1" for inverse format	
	UiERE	Set to "1"	
UiSMR	7 to 0	Set to "0016"	
UiSMR2	7 to 0	Set to "0016"	
UiSMR3	7 to 0	Set to "0016"	
UiSMR4	7 to 0	Set to "0016"	

i=0 to 4

Table 16.36 Pin Settings in SIM Mode (1)

Port	Function	Setting	
		PS0 Register	PD6 Register
P62	RxD0 input	PS0_2=0	PD6_2=0
P63	TxD0 output	PS0_3=1	_
P66	RxD1 input	PS0_6=0	PD6_6=0
P67	TxD1 output	PS0_7=1	_

Table 16.37 Pin Settings (2)

Port	Function	Setting			
		PS1 Register	PSL1 Register	PSC Register	PD7 Register
P70 ⁽¹⁾	TxD2 output	PS1_0=1	PSL1_0=0	PSC_0=0	_
P71 ⁽¹⁾	RxD2 input	PS1_1=0	_	_	PD7_1=0

NOTE:

Table 16.38 Pin Settings (3)

Port	Function	Setting			
		PS3 Register ⁽¹⁾	PSL3 Register	PSC3 Register	PD9 Register ⁽¹⁾
P91	RxD3 input	PS3_1=0	_		PD9_1=0
P92	TxD3 output	PS3_2=1	PSL3_2=0		_
P96	TxD4 output	PS3_6=1	_	PSC3_6=0	_
P97	RxD4 input	PS3_7=0	_		PD9_7=0

NOTE:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enabled). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

Figure 16.29 shows an example of a SIM interface operation. Figure 16.30 shows an example of a SIM interface connection. Connect the TxDi pin to the RxDi pin for a pull-up.

^{1.} P70 and P71 are ports for the N-channel open drain output.

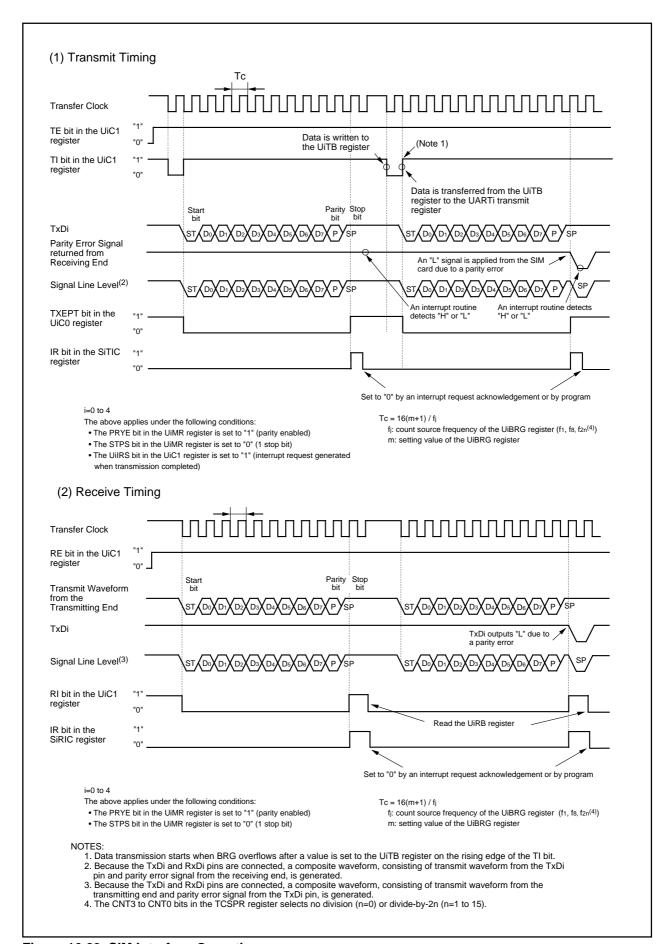


Figure 16.29 SIM Interface Operation

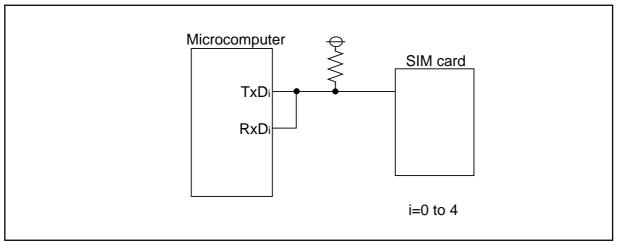


Figure 16.30 SIM Interface Connection

16.7.1 Parity Error Signal

16.7.1.1 Parity Error Signal Output Function

When the UiERE bit in the UiC1 register (i=0 to 4) is set to "1" (output), the parity error signal output can be provided. The parity error signal output is provided when a parity error is detected upon receiving data. A low-level ("L") signal output is provided from the TxDi pin in the timing shown in Figure 16.31. When reading the UiRB register during a parity error output, the PER bit in the UiRB register is set to "0" (no error occurs) and a high-level ("H") signal output is again provided simultaneously.

16.7.1.2 Parity Error Signal

To determine whether the parity error signal is output, the port that shares a pin with the RxDi pin is read by using an end-of-transmit interrupt routine.

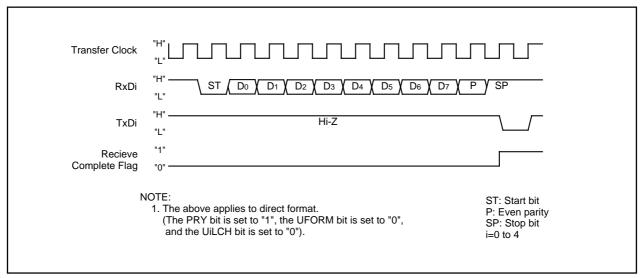


Figure 16.31 Parity Error Signal Output Timing (LSB First)

16.7.2 Format

16.7.2.1 Direct Format

Set the PRYE bit in the UiMR register (i=0 to 4) to "1" (parity enabled), the PRY bit to "1" (even parity), the UFORM bit in the UiC0 register to "0" (LSB first) and the UiLCH bit in the UiC1 register to "0" (not inversed). When data are transmitted, data set in the UiTB register are transmitted with the even-numbered parity, starting from Do. When data are received, received data are stored in the UiRB register, starting from Do. The even-numbered parity determines whether a parity error occurs.

16.7.2.2 Inverse Format

Set the PRYE bit to "1", the PRY bit to "0" (odd parity), the UFORM bit to "1" (MSB first) and the UiLCH bit to "1" (inversed). When data are transmitted, values set in the UiTB register are logically inversed and are transmitted with the odd-numbered parity, starting from D7. When data are received, received data are logically inversed to be stored in the UiRB register, starting from D7. The odd-numbered parity determines whether a parity error occurs.

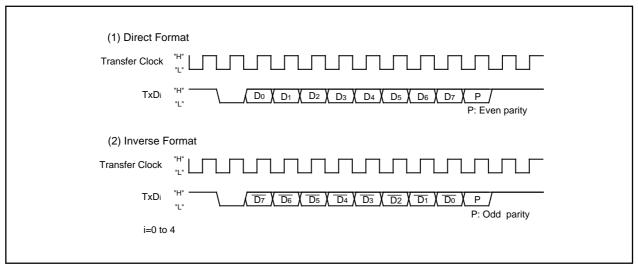


Figure 16.32 SIM Interface Format

17. A/D Converter

The A/D converter consists of one 10-bit successive approximation A/D converter with a capacitive coupling amplifier.

The result of an A/D conversion is stored into the A/D registers corresponding to selected pins. It is stored into the AD00 register only when DMAC operating mode is entered.

Table 17.1 lists specifications of the A/D converter. Figure 17.1 shows a block diagram of the A/D converter. Figures 17.2 to 17.6 show registers associated with the A/D converter.

Table 17.1 A/D Converter Specifications

Item	Specification		
A/D Conversion Method	Successive approximation (with a capacitive coupling amplifier)		
Analog Input Voltage ⁽¹⁾	0V to AVcc (Vcc1)		
Operating Clock, ØAD(2)	fAD, fAD/2, fAD/3, fAD/4, fAD/6, fAD/8		
Resolution	8 bits or 10 bits		
Operating Mode	One-shot mode, repeat mode, single sweep mode, repeat sweep mode 0,		
	repeat sweep mode 1		
Analog Input Pins ⁽³⁾	10 pins		
	8 pins for ANo to AN7		
	2 extended input pins (ANEX0 and ANEX1)		
A/D Conversion Start Condition	Software trigger		
	The ADST bit in the AD0CON0 register is set to "1" (A/D conversion started) by		
	program		
	External trigger (re-trigger is enabled)		
	When a falling edge is applied to the ADTRG pin after the ADST bit is set to "1" by		
	program		
	Hardware trigger (re-trigger is enabled)		
	The timer B2 interrupt request of the three-phase motor control timer functions		
	(after the ICTB2 counter completes counting) is generated after the ADST bit is		
	set to "1" by program		
Conversion Rate Per Pin	Without the sample and hold function		
	8-bit resolution : 49 ØAD cycles		
	10-bit resolution : 59 ØAD cycles		
	With the sample and hold function		
	8-bit resolution : 28 ØAD cycles		
	10-bit resolution : 33 ØAD cycles		

NOTES:

- 1. Analog input voltage is not affected by the sample and hold function status.
- 2. ØAD frequency must be under 16 MHz when VCC1=5V.
 - ØAD frequency must be under 10 MHz when VCC1=3.3V.
 - Without the sample and hold function, the ØAD frequency is 250 kHz or more.
 - With the sample and hold function, the ØAD frequency is 1 MHz or more.
- 3. AVCC=VREF=VCC1, A/D input voltage (for AN₀ to AN7, ANEX0, and ANEX1) ≤ VCC1.

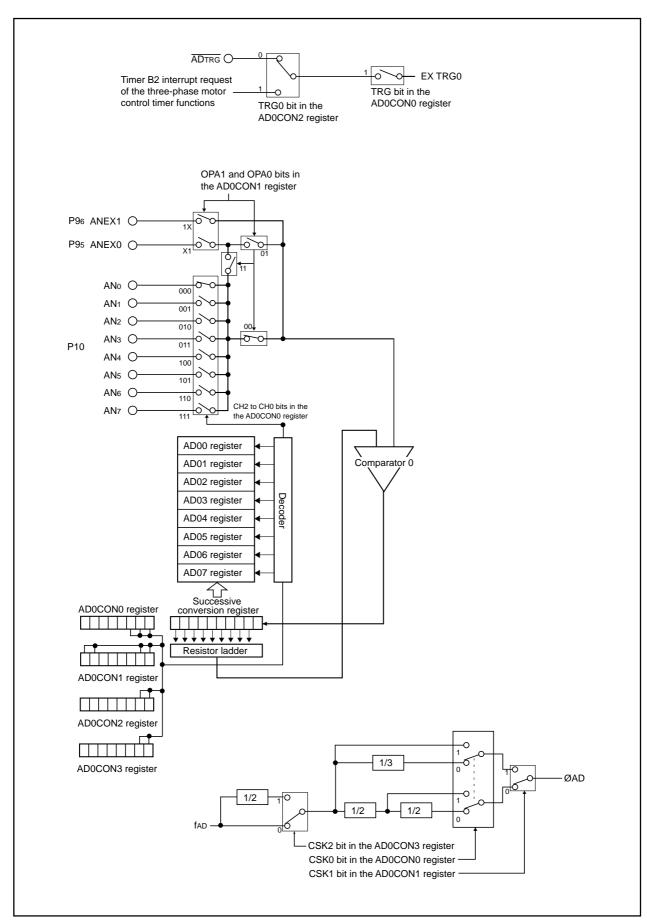
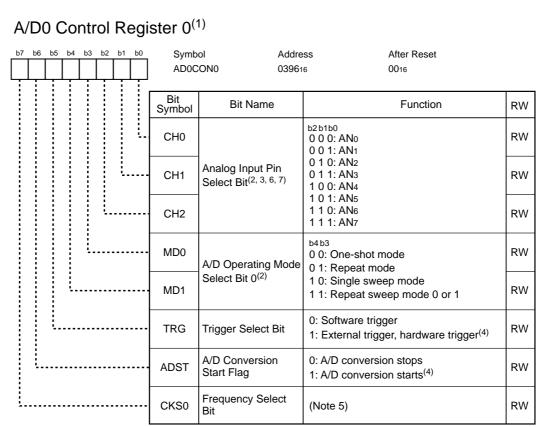
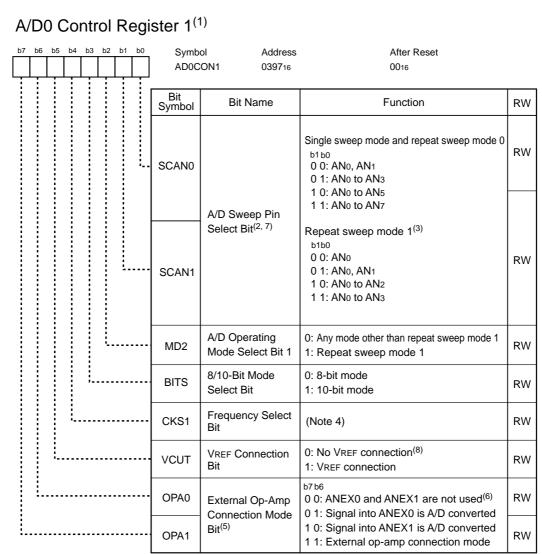



Figure 17.1 A/D Converter Block Diagram


NOTES:

- 1. When the AD0CON0 register is rewritten during the A/D conversion, the conversion result is indeterminate.
- 2. Analog input pins must be set again after changing an A/D operating mode.
- 3. The CH2 to CH0 bit settings are enabled in one-shot mode and repeat mode.
- 4. To set the TRG bit to "1", select the cause of trigger by setting the TRG0 bit in the AD0CON2 register. Then set the ADST bit to "1" after the TRG bit is set to "1".
- \$\times_{AD}\$ frequency must be under 16 MHz when Vcc1=5V.
 \$\times_{AD}\$ frequency must be under 10 MHz when Vcc1=3.3V.
 Combination of the CKS0, CKS1 and CKS2 bits selects \$\times_{AD}\$.

The CKS2 Bit in the AD0CON3 Register	The CKS0 Bit in the AD0CON0 Register	The CKS1 Bit in the AD0CON1 Register	Ø AD
	0	0	fad divided by 4
0	U	1	fad divided by 3
ľ	1	0	fad divided by 2
	'	1	fad
	0	0	fad divided by 8
1	l "	1	fad divided by 6

- 6. AVCC=VREF=VCC1, AD input voltage (for ANo to AN7, ANEX0, ANEX1) ≤ VCC1.
- 7. Set the PSC_7 bit in the PSC register to "1" to use the P10 pin as an analog input pin.

Figure 17.2 AD0CON0 Register

NOTES:

- When the ADOCON1 register is rewritten during the A/D conversion, the conversion result is indeterminate.
- 2. The SCAN1 and SCAN0 bit settings are disabled in repeat sweep mode 1.
- 3. This pin is commonly used in the A/D conversion when the MD2 bit is set to "1".
- 4. Refer to the note for the CKS0 bit in the AD0CON0 register.
- 5. In one-shot mode and repeat mode, the OPA1 and OPA0 bits can be set to "012" or "102" only. Do not set the OPA0 and OPA1 bits to "012" or "102" in other modes.
- 6. To set the OPA1 and OPA0 bits to "002", set the PSL3_5 bit in PSL3 register to "0" (other than ANEX0) and the PSL3_6 bit to "0" (other than ANEX1).
- 7. AVCC=VREF=VCC1, AD input voltage (for ANo to AN7, ANEX0, ANEX1) \leq VCC1.
- 8. Do not set the VCUT bit to "0" during the A/D conversion.
 VREF is a reference voltage for AD0 only. The VCUT bit setting does not affect the VREF performance of the D/A converter.

Figure 17.3 AD0CON1 Register

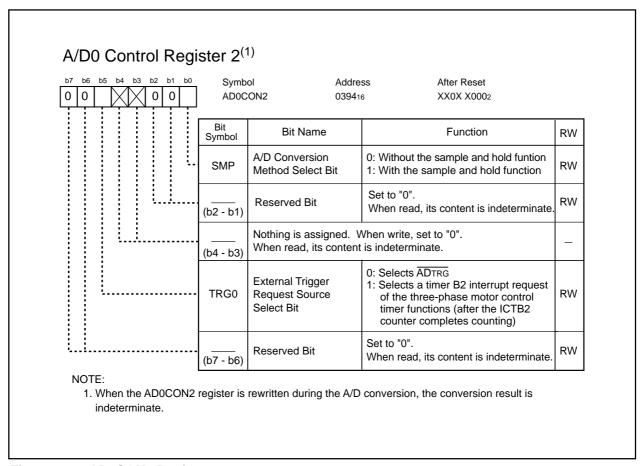
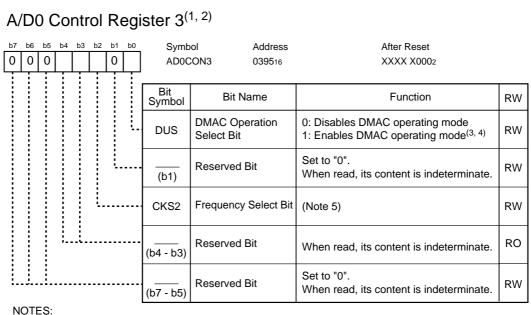



Figure 17.4 AD0CON2 Register

17. A/D Converter M32C/80 Group

- 1. When the AD0CON3 register is rewritten during the A/D conversion, the conversion result is
- 2. The AD0CON3 register may be read uncorrectly during the A/D conversion. It must be read or written after the A/D converter stops operating.
- 3. When the DUS bit is set to "1", the AD00 register stores all A/D conversion results.
- 4. When the DUS bit is set to "1", set the DMAC.
- 5. Refer to the note for the CKS0 bit in the AD0CON0 register.

Figure 17.5 AD0CON3 Register

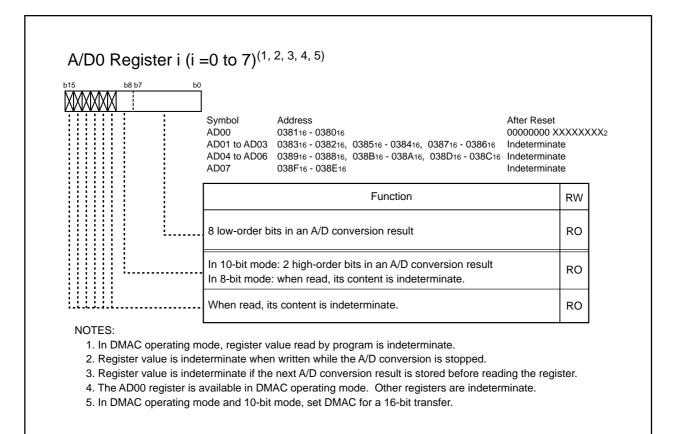


Figure 17.6 AD00 to AD07 Registers

17.1 Mode Description

17.1.1 One-shot Mode

In one-shot mode, analog voltage applied to a selected pin is converted to a digital code once. Table 17.2 lists specifications of one-shot mode.

Table 17.2 One-shot Mode Specifications

Item	Specification
Function	The CH2 to CH0 bits in the AD0CON0 register and the OPA1 and OPA0 bits in the
	AD0CON1 register select a pin. Analog voltage applied to the pin is converted to a
	digital code once
Start Condition	• When the TRG bit in the AD0CON0 register is set to "0" (software trigger),
	the ADST bit in the AD0CON0 register is set to "1" (A/D conversion starts) by
	program
	When the TRG bit is set to "1" (external trigger, hardware trigger):
	- a falling edge is applied to the ADTRG pin after the ADST bit is set to "1" by
	program
	- The timer B2 interrupt request of three-phase motor control timer functions
	(after the ICTB2 register counter completes counting) is generated after the
	ADST bit is set to "1" by program
Stop Condition	• A/D conversion is completed (the ADST bit is set to "0" when the software trigger is
	selected)
	• The ADST bit is set to "0" (A/D conversion stopped) by program
Interrupt Request Generation Timing	A/D conversion is completed
Analog Voltage Input Pins	Select one pin from ANo to AN7, ANEX0, or ANEX1
Reading of A/D Conversion Result	When the DUS bit in the AD0CON3 register is set to "0" (DMAC operating
	mode disabled), the microcomputer reads the AD0j register (j=0 to 7) corre-
	sponding to selected pin
	• When the DUS bit is set to "1" (DMAC operating mode enabled), do not read the
	AD00 register. A/D conversion result is stored in the AD00 register after the A/D
	conversion is completed. DMAC transfers the conversion result to any memory
	space. Refer to 12. DMAC for DMAC settings

17.1.2 Repeat Mode

In repeat mode, analog voltage applied to a selected pin is repeatedly converted to a digital code. Table 17.3 lists specifications of repeat mode.

Table 17.3 Repeat Mode Specifications

Item	Specification
Function	The CH2 to CH0 bits in the AD0CON0 register and the OPA1 and OPA0 bits in the
	AD0CON1 register select a pin. Analog voltage applied to the pin is repeatedly
	converted to a digital code
Start Condition	Same as one-shot mode
Stop Condition	The ADST bit in the AD0CON0 register is set to "0" (A/D conversion stopped) by
	program
Interrupt Request Generation Timing	• When the DUS bit in the AD0CON3 register is set to "0" (DMAC operating
	mode disabled), no interrupt request is generated.
	• When DUS bit is set to "1" (DMAC operating mode enabled), an interrupt request
	is generated every time an A/D conversion is completed.
Analog Voltage Input Pins	Select one pin from ANo to AN7, ANEXO, or ANEX1
Reading of A/D Conversion Result	• When the DUS bit is set to "0", the microcomputer reads the AD0j register (j=0 to
	7) corresponding to the selected pin.
	• When DUS bit is set to "1", do not read the AD00 register. A/D conversion result
	is stored in the AD00 register after the A/D conversion is completed. DMAC
	transfers the conversion result to any memory space.
	Refer to 12. DMAC for DMAC settings

17.1.3 Single Sweep Mode

In single sweep mode, analog voltage that is applied to selected pins is converted one-by-one to a digital code. Table 17.4 lists specifications of single sweep mode.

Table 17.4 Single Sweep Mode Specifications

Item	Specification		
Function	The SCAN1 and SCAN0 bits in the AD0CON1 register select pins. Analog voltage		
	applied to the pin is converted one-by-one to a digital code		
Start Condition	Same as one-shot mode		
Stop Condition	Same as one-shot mode		
Interrupt Request Generation Timing	• When the DUS bit in the AD0CON3 register is set to "0" (DMAC operating		
	mode disabled), an interrupt request is generated after a sweep is completed.		
	• When DUS bit is set to "1" (DMAC operating mode enabled), an interrupt		
	request is generated every time an A/D conversion is completed		
Analog Voltage Input Pins	Select from ANo and AN1 (2 pins), ANo to AN3 (4 pins), ANo to AN5 (6 pins) or ANo		
	to AN7 (8 pins)		
Reading of A/D Conversion Result	• When the DUS bit is set to "0", the microcomputer reads the AD0j register (j=0 to		
	7) corresponding to selected pins		
	• When DUS bit is set to "1", do not read the AD00 register. A/D conversion result		
	is stored in the AD00 register after the A/D conversion is completed. DMAC		
	transfers the conversion result to any memory space. Refer to 12. DMAC for		
	DMAC settings		

17.1.4 Repeat Sweep Mode 0

In repeat sweep mode 0, analog voltage applied to selected pins is repeatedly converted to a digital code. Table 17.5 lists specifications of repeat sweep mode 0.

Table 17.5 Repeat Sweep Mode 0 Specifications

Item	Specification		
Function	The SCAN1 and SCAN0 bits in the AD0CON1 register select pins. Analog		
	applied to the pins is repeatedly converted to a digital code		
Start Condition	Same as one-shot mode		
Stop Condition	The ADST bit in the AD0CON0 register is set to "0" (A/D conversion stopped) by		
	program		
Interrupt Request Generation Timing	• When the DUS bit in the AD0CON3 register is set to "0" (DMAC operating mode		
	disabled), no interrupt request is generated		
	• When DUS bit is set to "1" (DMAC operating mode enabled), an interrupt request		
	is generated every time an A/D conversion is completed		
Analog Voltage Input Pins	Select from ANo and AN1 (2 pins), ANo to AN3 (4 pins), ANo to AN5 (6 pins) or ANo		
	to AN7 (8 pins)		
Reading of A/D Conversion Result	• When the DUS bit is set to "0", the microcomputer reads the AD0j register (j=0 to		
	7) corresponding to selected pins		
	• When the DUS bit is set to "1", do not read the AD00 register. A/D conversion		
	result is stored in the AD00 register after the A/D conversion is completed.		
	DMAC transfers the conversion result to any memory space. Refer to 12. DMAC		
	for DMAC settings		

17.1.5 Repeat Sweep Mode 1

In repeat sweep mode 1, analog voltage selectively applied to eight pins is repeatedly converted to a digital code. Table 17.6 lists specifications of repeat sweep mode 1.

Table 17.6 Repeat Sweep Mode 1 Specifications

Item	Specification		
Function	The SCAN1 and SCAN0 bits in the AD0CON1 register select 8 pins. Analog volt-		
	age selectively applied to 8 pins is repeatedly converted to a digital code		
	e.g., When ANio is selected (i =none, 0, 2, 15), analog voltage is converted to a		
	digital code in the following order:		
	$AN0 \rightarrow AN1 \rightarrow AN0 \rightarrow AN2 \rightarrow AN0 \rightarrow AN3 \dots$ etc.		
Start Condition	Same as one-shot mode (Any trigger generated during an A/D conversion is invalid)		
Stop Condition	The ADST bit is set to "0" (A/D conversion stopped) by program		
Interrupt Request Generation Timing	When the DUS bit in the AD0CON3 register is set to "0" (DMAC operating		
	mode disabled), no interrupt request is generated		
	• When DUS bit is set to "1" (DMAC operating mode enabled), an interrupt request		
	is generated every time an A/D conversion is completed		
Analog Voltage Input Pins	ANo to AN7 (8 pins)		
Prioritized Pins	ANo (1 pin), ANo and AN1 (2 pins), ANo to AN2 (3 pins) or ANo to AN3 (4 pins)		
Reading of A/D Conversion Result	• When the DUS bit is set to "0", the microcomputer reads the AD0j register (j=0 to		
	7) corresponding to selected pins		
	• When the DUS bit is set to "1", do not read the AD00 register. A/D conversion		
	result is stored in the AD00 register after the A/D conversion is completed.		
	DMAC transfers the conversion result to any memory space. Refer to 12. DMAC		
	for DMAC settings		

17.2 Functions

17.2.1 Resolution Select Function

The BITS bit in the AD0CON1 register determines the resolution. When the BITS bit is set to "1" (10-bit precision), the A/D conversion result is stored into bits 9 to 0 in the AD0j register (j = 0 to 7). When the BITS bit is set to "0" (8-bit precision), the A/D conversion result is stored into bits 7 to 0 in the AD0j register.

17.2.2 Sample and Hold Function

When the SMP bit in the AD0CON2 register is set to "1" (with the sample and hold function), A/D conversion rate per pin increases to 28 ØAD cycles for 8-bit resolution and 33 ØAD cycles for 10-bit resolution. The sample and hold function is available in all operating modes. Start the A/D conversion after selecting whether the sample and hold function is to be used or not.

17.2.3 Trigger Select Function

The TRG bit in the AD0CON0 register and the TRG0 bit in the AD0CON2 register select the trigger to start the A/D conversion. Table 17.9 lists settings of the trigger select function.

Table 17.9 Trigger Select Function Settings

Bit and Setting		Trigger
AD0CON0 Register	AD0CON2 Register	
TRG = 0	-	Software trigger
		The A/D0 starts the A/D conversion when the ADST bit in the
		AD0CON0 register is set to "1"
TRG = 1 ⁽¹⁾	TRG0 = 0	External trigger ⁽²⁾
		Falling edge of a signal applied to ADTRG
	TRG0 = 1	Hardware trigger ⁽²⁾
		The timer B2 interrupt request of three-phase motor control timer functions (after the ICTB2 counter completes counting)

NOTES:

- 1. A/D0 starts the A/D conversion when the ADST bit is set to "1" (A/D conversion started) and a trigger is generated.
- 2. The A/D conversion is restarted if an external trigger or a hardware trigger is inserted during the A/D conversion. (The A/D conversion in process is aborted.)

17.2.4 DMAC Operating Mode

DMAC operating mode is available with all operating modes. When the A/D converter is in multi-port single sweep mode or multi-port repeat sweep mode 0, the DMAC operating mode must be used. When the DUS bit in the AD0CON3 register is set to "1" (DMAC operating mode enabled), all A/D conversion results are stored into the AD00 register. DMAC transfers data from the AD00 register to any memory space every time an A/D conversion is completed in each pin. 8-bit DMA transfer must be selected for 8-bit resolution and 16-bit DMA transfer for 10-bit resolution. Refer to **12. DMAC** for instructions.

17.2.5 Extended Analog Input Pins

In one-shot mode and repeat mode, the ANEX0 and ANEX1 pins can be used as analog input pins. The OPA1 and OPA0 bits in the AD0CON1 register select which pins to use as analog input pins. An A/D conversion result for the ANEX0 pin is stored into the AD00 register. The result for the ANEX1 pin is stored into the AD01 register, but is stored into the AD00 register when the DUS bit in the AD0CON3 register is set to "1" (DMAC operating mode enabled).

17.2.6 External Operating Amplifier (Op-Amp) Connection Mode

In external op-amp connection mode, multiple analog voltage can be amplified by one external op-amp using extended analog input pins ANEX0 and ANEX1.

When the OPA1 and OPA0 bits in the AD0CON1 register are set to "112" (external op-amp connection), voltage applied to the AN0 to AN7 pins are output from ANEX0. Amplify this output signal by an external op-amp and apply it to ANEX1.

Analog voltage applied to ANEX1 is converted to a digital code and the A/D conversion result is stored into the corresponding AD0j register (j=0 to 7). A/D conversion rate varies depending on the response of the external op-amp. The ANEX0 pin cannot be connected to the ANEX1 pin directly.

Figure 17.7 shows an example of an external op-amp connection.

Table 17.10	Extended	Analog	Input	Pin	Settings
--------------------	----------	---------------	-------	-----	-----------------

AD0CON1	Register	ANEX0 Function	ANEX1 Function
OPA1 Bit	OPA0 Bit		
0	0	Not used	Not used
0	1	P95 as an analog input	Not used
1	0	Not used	P96 as an analog input
1	1	Output to an external op-amp	Input from an external op-amp



Figure 17.7 External Op-Amp Connection

M32C/80 Group 17. A/D Converter

17.2.7 Power Consumption Reducing Function

When the A/D converter is not used, the VCUT bit in the AD0CON1 register isolates the resistor ladder of the A/D converter from the reference voltage input pin (VREF). Power consumption is reduced by shutting off any current flow into the resistor ladder from the VREF pin.

When using the A/D converter, set the VCUT bit to "1" (VREF connection) before setting the ADST bit in the AD0CON0 register to "1" (A/D conversion started). Do not set the ADST bit and VCUT bit to "1" simultaneously, nor set the VCUT bit to "0" (no VREF connection) during the A/D conversion. The VCUT bit does not affect the VREF performance of the D/A converter.

17.2.8 Output Impedance of Sensor Equivalent Circuit under A/D Conversion

For perfect A/D converter performance, complete internal capacitor (C) charging, shown in Figure 17.8, for the specified period (T) as sampling time. Output Impedance of the sensor equivalent circuit (Ro) is determined by the following equations:

$$VC = VIN \left\{1 - e^{-\frac{1}{C(R0 + R)}t}\right\}$$

$$When t = T, \quad VC = VIN - \frac{X}{Y}VIN = VIN \left(1 - \frac{X}{Y}\right)$$

$$e^{-\frac{1}{C(R0 + R)}T} = \frac{X}{Y}$$

$$-\frac{1}{C(R0 + R)}T = In \frac{X}{Y}$$

$$R0 = -\frac{T}{C \cdot In \frac{X}{Y}} - R$$

where:

Vc = Voltage between pins

R = Internal resistance of the microcomputer

X = Precision (error) of the A/D converter

Y = Resolution of the A/D converter (1024 in 10-bit mode, and 256 in 8-bit mode)

Figure 17.8 shows analog input pin and external sensor equivalent circuit. The impedance (R₀) can be obtained if the voltage between pins (Vc) changes from 0 to VIN-(0.1/1024) VIN in the time (T), when the difference between VIN and Vc becomes 0.1LSB.

(0.1/1024) means that A/D precision drop, due to insufficient capacitor charge, is held to 0.1LSB at time of A/D conversion in the 10-bit mode. Actual error, however, is the value of absolute precision added to 0.1LSB. When \emptyset AD = 10 MHz, T = 0.3 μ s in the A/D conversion mode with the sample and hold function. Output impedance (R₀) for sufficiently charging capacitor (C) in the time (T) is determined by the following equation:

Using T =
$$0.3 \,\mu s$$
, R = $7.8 \,k\Omega$, C = $1.5 \,pF$, X = 0.1 , Y = 1024 ,

R0 =
$$-\frac{0.3 \times 10^{-6}}{1.5 \times 10^{-12} \cdot \ln \frac{0.1}{1024}}$$
 -7.8 ×10³ = 13.9 × 10³

Thus, the allowable output impedance of the sensor equivalent circuit, making the precision (error) 0.1LSB or less, is approximately 13.9 k Ω maximum.

M32C/80 Group 17. A/D Converter

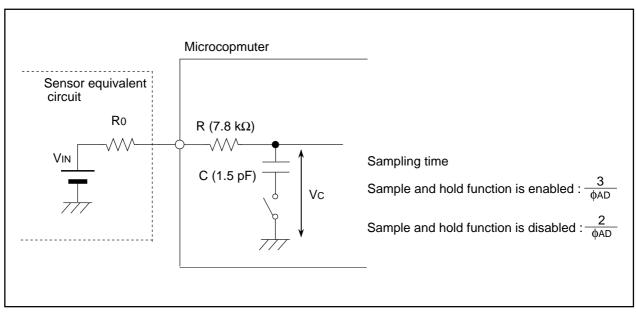


Figure 17.8 Analog Input Pin and External Sensor Equivalent Circuit

M32C/80 Group 18. D/A Converter

18. D/A Converter

The D/A converter consists of two separate 8-bit R-2R ladder D/A converters.

Digital code is converted to an analog voltage when a value is written to the corresponding DAi registers (i=0,1). The DAiE bit in the DACON register determines whether the D/A conversion result output is provided or not. Set the DAiE bit to "1" (output enabled) to disable a pull-up of a corresponding port.

Output analog voltage (V) is calculated from value n (n=decimal) set in the DAi register.

$$V = \frac{\text{VREF x } n}{256}$$
 (n = 0 to 255)

VREF: reference voltage (not related to VCUT bit setting in the AD0CON1 register)

Table 18.1 lists specifications of the D/A converter. Table 18.2 lists the DA0 and DA1 pin settings. Figure 18.1 shows a block diagram of the D/A converter. Figure 18.2 shows the D/A control register. Figure 18.3 shows a D/A converter equivalent circuit.

When the D/A converter is not used, set the DAi register to "0016" and the DAiE bit to "0" (output disabled).

Table 18.1 D/A Converter Specifications

Item	Specification
D/A Conversion Method	R-2R
Resolution	8 bits
Analog Output Pin	2 channels

Table 18.2 Pin Settings

Port	Function	Setting		
		PD9 Register ⁽¹⁾	PS3 Register ⁽¹⁾	PSL3 Register
P93	DA ₀ output	PD9_3=0	PS3_3=0	PSL3_3=1
P94	DA1 output	PD9_4=0	PS3_4=0	PSL3_4=1

NOTE:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

M32C/80 Group 18. D/A Converter

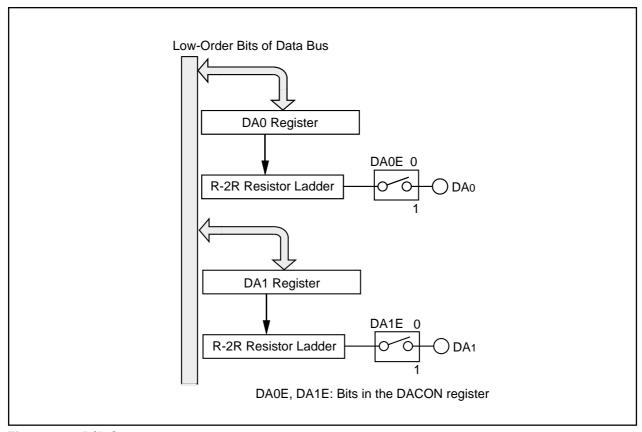


Figure 18.1 D/A Converter

M32C/80 Group 18. D/A Converter

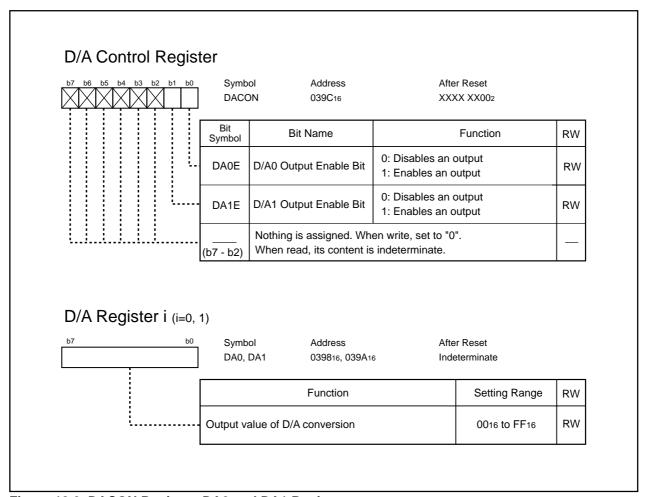


Figure 18.2 DACON Register, DA0 and DA1 Registers

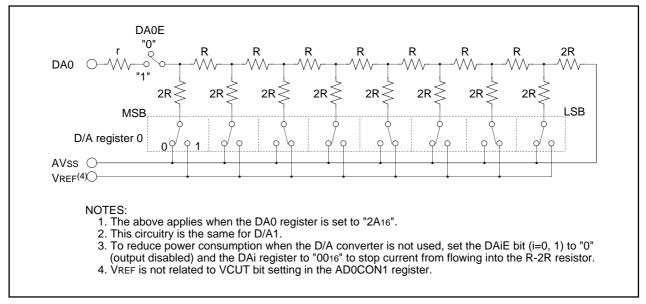


Figure 18.3 D/A Converter Equivalent Circuit

M32C/80 Group 19. CRC Calculation

19. CRC Calculation

The CRC (Cyclic Redundancy Check) calculation detects an error in data blocks. A generator polynomial of CRC_CCITT ($X^{16} + X^{12} + X^5 + 1$) generates CRC code.

The CRC code is a 16-bit code generated for a block of data of desired length. This block of data is in 8-bit units. The CRC code is set in the CRCD register every time one-byte data is transferred to the CRCIN register after a default value is written to the CRCD register. CRC code generation for one-byte data is completed in two cycles.

Figure 19.1 shows a block diagram of a CRC circuit. Figure 19.2 shows CRC-associated registers. Figure 19.3 shows an example of the CRC calculation.

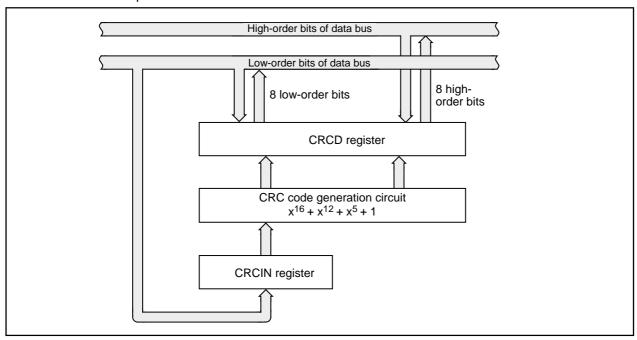


Figure 19.1 CRC Calculation Block Diagram

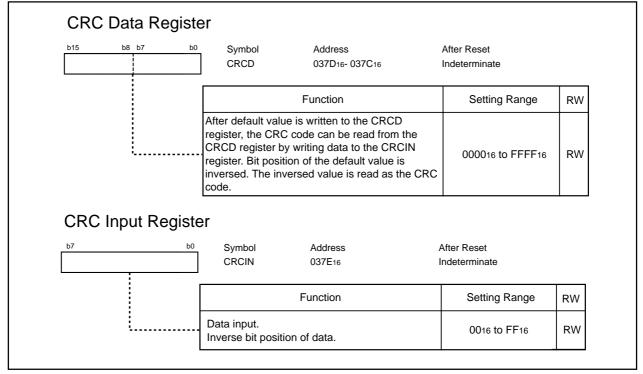
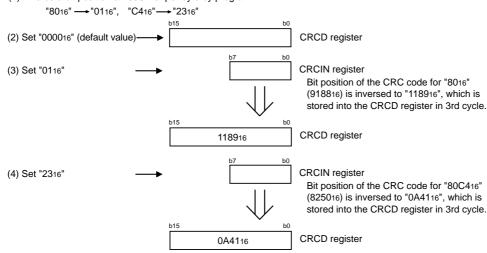


Figure 19.2 CRCD Register and CRCIN Register

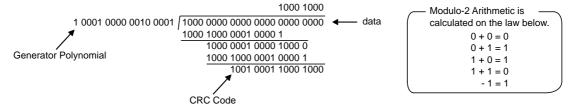
M32C/80 Group 19. CRC Calculation


CRC Calculation and Setup Procedure to Generate CRC Code for "80C416"

O CRC Calculation for M32C

CRC Code : a remainder of a division, value of the CRCIN register with inversed bit position generator polynomial : X¹⁶ + X¹² + X⁵ + 1 (1 0001 0000 0010 00012)

O Setting Steps


(1) Inverse a bit position of "80C416" per byte by program

O Details of CRC Calculation

As shown in (3) above, bit position of "0116" (000000012) written to the CRCIN register is inversed and becomes "100000002".

Add "1000 0000 0000 0000 0000 00000 00002", as "100000002" plus 16 digits, to "000016" as the default value of the CRCD register to perform the modulo-2 division.

"0001 0001 1000 10012 (118916)", the remainder "1001 0001 1000 10002 (918816)" with inversed bit position, can be read from the CRCD register.

When going on to (4) above, "2316 (001000112)" written in the CRCIN register is inversed and becomes "110001002".

Add "1100 0100 0000 0000 0000 00002", as "110001002" plus 16 digits, to "1001 0001 1000 10002" as a remainder of (3) left in the CRCD register to perform the modulo-2 division.

"0000 1010 0100 00012 (0A4116)", the remainder with inversed bit position, can be read from CRCD register.

Figure 19.3 CRC Calculation

M32C/80 Group 20. X/Y Conversion

20. X/Y Conversion

The X/Y conversion rotates a 16 x 16 matrix data by 90 degrees and inverses high-order bits and low-order bits of a 16-bit data. Figure 20.1 shows the XYC register.

The 16-bit XiR register (i=0 to 15) and 16-bit YjR register (j=0 to 15) are allocated to the same address. The XiR register is a write-only register, while the YjR register is a read-only register. Access the XiR and YjR registers from an even address in 16-bit units. Performance cannot be guaranteed if the XiR and YiR registers are accessed in 8-bit units.

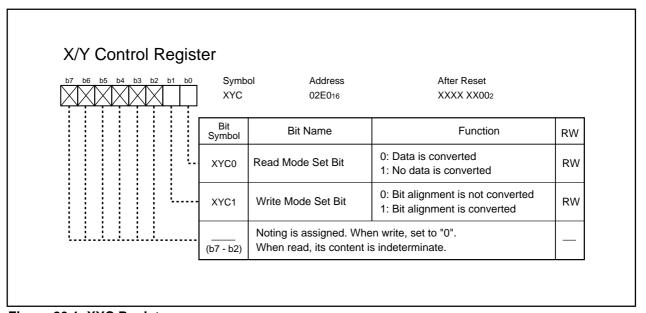


Figure 20.1 XYC Register

M32C/80 Group 20. X/Y Conversion

The XYC0 bit in the XYC register determines how to read the YjR register.

By reading the YjR register when the XYC0 bit is set to "0" (data conversion), bit j in the X0R to X15R registers can be read simultaneously.

For example, bit 0 in the X0R register can be read if reading bit 0 in the Y0R register, bit 0 in the X1R register if reading bit 1 in the Y0R register..., bit 0 in the X14R register if reading bit 14 in the Y0R register and bit 0 in the X15R register if reading bit 15 in the Y0R register.

Figure 20.2 shows the conversion table when the XYC0 bit is set to "0". Figure 20.3 shows an example of the X/Y conversion.

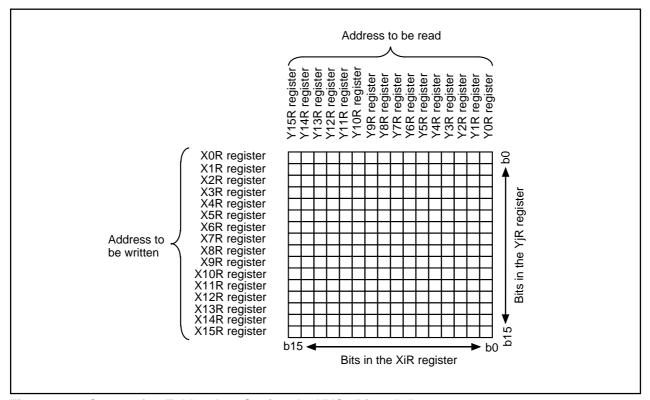


Figure 20.2 Conversion Table when Setting the XYC0 Bit to "0"

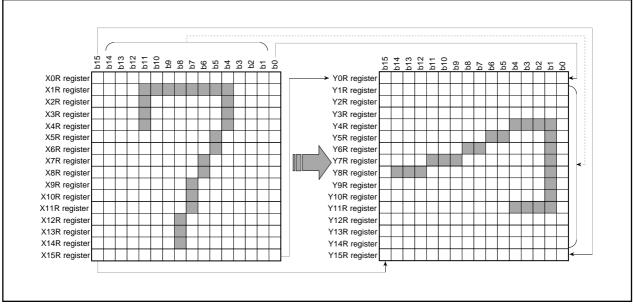


Figure 20.3 X/Y Conversion

M32C/80 Group 20. X/Y Conversion

By reading the YjR register when the XYC0 bit in the XYC register is set to "1" (no data conversion), the value written to the XiR register can be read directly. Figure 20.4 shows the conversion table when the XYC0 bit is set to "1."

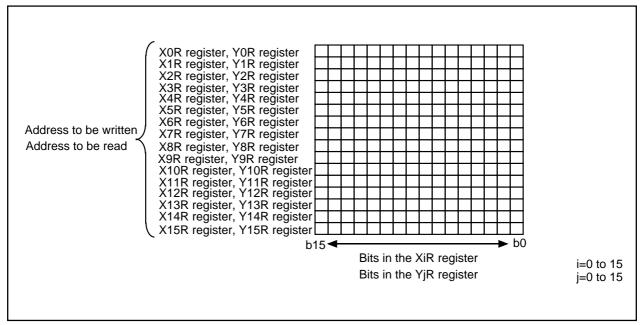


Figure 20.4 Conversion Table when Setting the XYC0 Bit to "1"

The XYC1 bit in the XYC register selects bit alignment of the value in the XiR register.

By writing to the XiR register while the XYC1 bit is set to "0" (no bit alignment conversion), bit alignment is written as is. By writing to the XiR register while the XYC1 bit is set to "1" (bit sequence replaced), bit alignment is written inversed.

Figure 20.5 shows the conversion table when the XYC1 bit is set to "1".

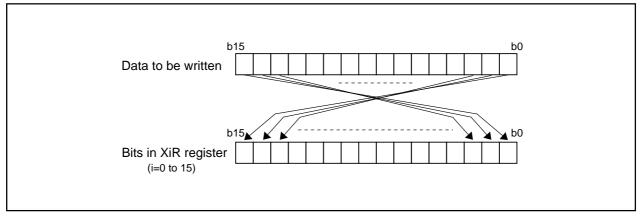


Figure 20.5 Conversion Table when Setting the XYC1 Bit to "1"

M32C/80 Group 21. Intelligent I/O

21. Intelligent I/O

The intelligent I/O is a multifunctional I/O port for clock synchronous serial I/O and HDLC data processing. The intelligent I/O has two sets of two 8-bit shift registers for communications.

Table 21.1 lists functions and channels of the intelligent I/O.

Table 21.1 Intelligent I/O Functions and Channels

Function	Description	
Communication	Communication unit 0	Communication unit 1
Clock Synchronous Serial I/O Mode	Available	
HDLC Data Processing Mode	Available	Available

M32C/80 Group 21. Intelligent I/O

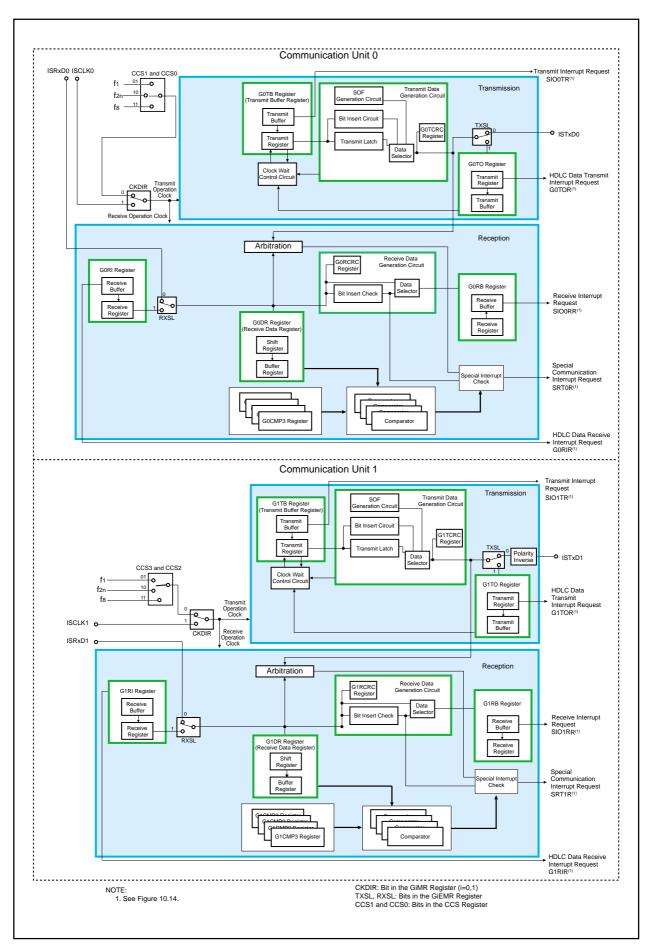


Figure 21.1 Intelligent I/O Communication Unit Block Diagram

21.1 Communication Unit 0 and 1 Communication Function

In the intelligent I/O communication units, 8-bit clock synchronous serial I/O or HDLC data processing is available.

Figures 21.2 to 21.11 show registers associated with the communication function.

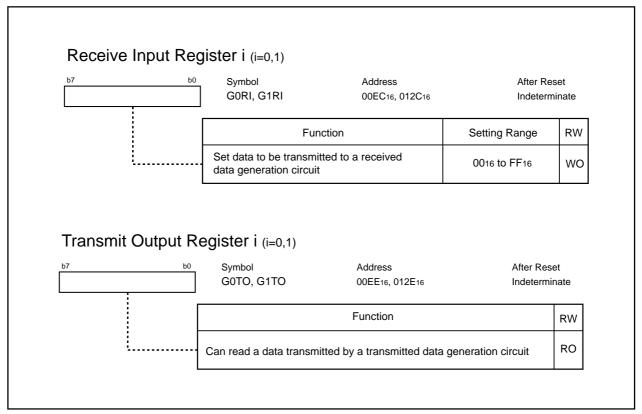


Figure 21.2 G0RI and G1RI Registers, G0TO and G1TO Registers

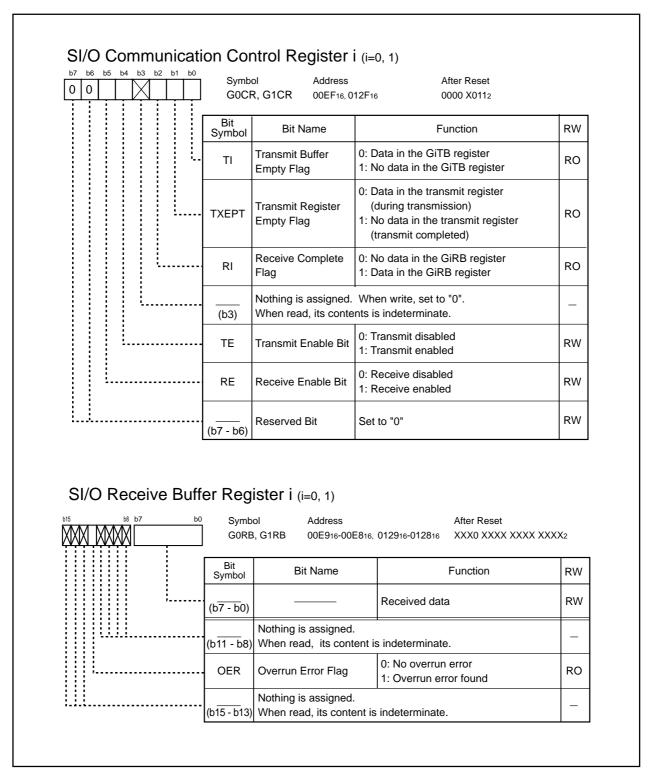
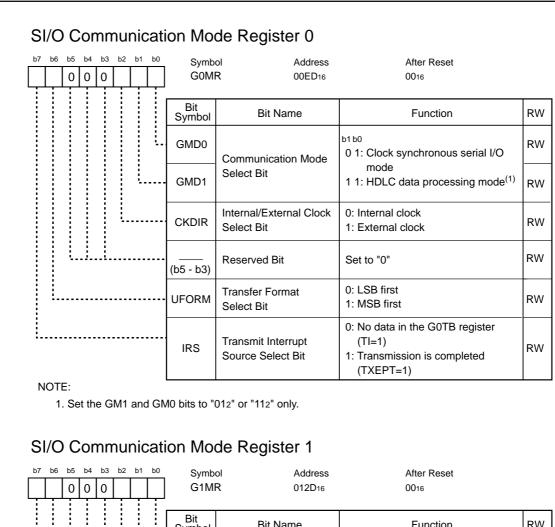



Figure 21.3 G0CR and G1CR Registers, G0RB and G1RB Registers

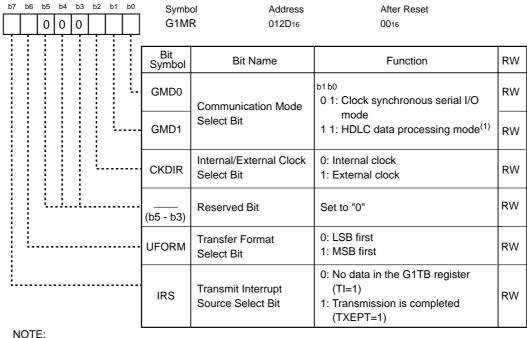
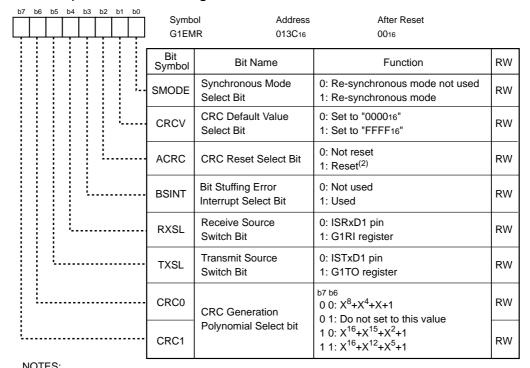
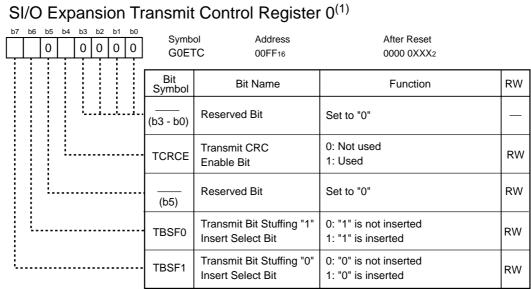


Figure 21.4 G0MR and G1MR Registers


1. Set the GM1 and GM0 bits to "012" or "112" only.

SI/O Expansion Mode Register 0⁽¹⁾ b4 b3 b2 b1 b0 Symbol After Reset Address 0 G0EMR 00FC₁₆ 0016 Bit Bit Name **Function** RW Symbol Reserved Bit Set to "0" RW (b0)**CRC** Default Value 0: Set to "000016" CRCV RW Select Bit 1: Set to "FFFF16" 0: Not reset **ACRC CRC Reset Select Bit** RW 1: Reset⁽²⁾ Bit Stuffing Error 0: Not used **BSINT** RW Interrupt Select Bit 1: Used Receive Source 0: ISRxD0 pin **RXSL** RW Switch Bit 1: G0RI register Transmit Source 0: ISTxD0 pin **TXSL** RW Switch Bit 1: G0TO register CRC0 RW $0.0: X^8 + X^4 + X + 1$ **CRC** Generation 0 1: Do not set to this value Polynomial Select Bit 1 0: $X^{16}+X^{15}+X^2+1$ CRC1 RW 1 1: X¹⁶+X¹²+X⁵+1

NOTES:


- 1. The G0EMR register is used in HDLC data processing mode. Maintain the value after reset or set it to "0016" in clock synchronous serial I/O mode.
- 2. CRC is reset when data in the G0CMP3 register matches received data.

SI/O Expansion Mode Register 1(1)

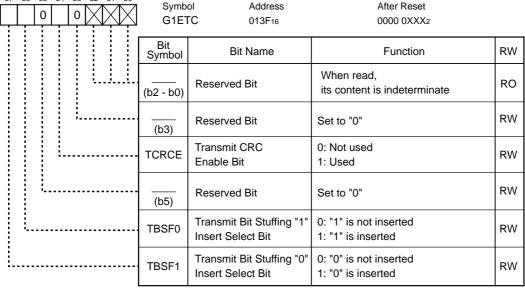

- 1. The G1EMR register is used in HDLC data processing mode. Maintain the value after reset or set it to "0016" in clock synchronous serial I/O mode.
- 2. CRC is reset when data in the G1CMP3 register matches received data.

Figure 21.5 G0EMR and G1EMR Registers

NOTE:

SI/O Expansion Transmit Control Register 1⁽¹⁾

NOTE:

Figure 21.6 G0ETC and G1ETC Registers

^{1.} The G0ETC register is used in HDLC data processing mode. Maintain the value after reset or set it to "0016" in clock synchronous serial I/O mode.

^{1.} The G1ETC register is used in HDLC data processing mode. Maintain the value after reset or set it to "0016" in clock synchronous serial I/O mode.

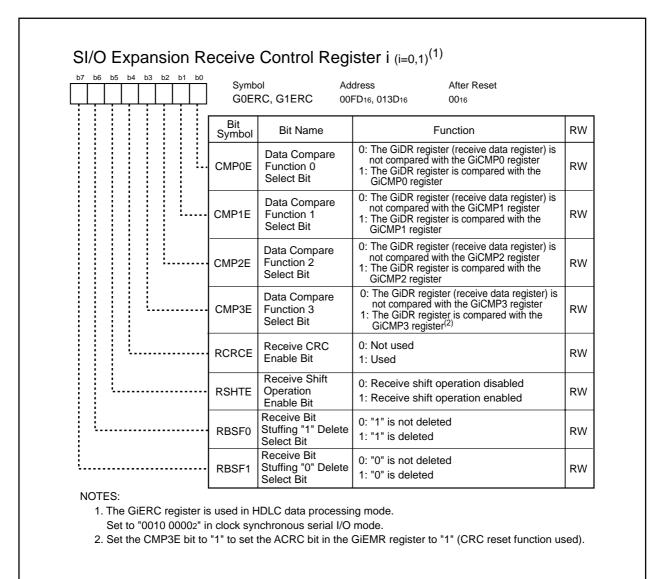
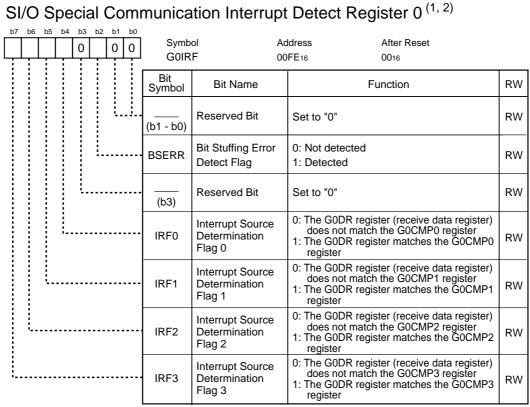



Figure 21.7 G0ERC and G1ERC Registers

NOTES:

- 1. The G0IRF register is used in HDLC data processing mode. Do not use it in clock synchronous serial I/O mode
- 2. The SRT0R bit in the IIO4IR register is set to "1" if the IRF3 to IRF0 or BSERR bit is set to "1".

Figure 21.8 G0IRF Register

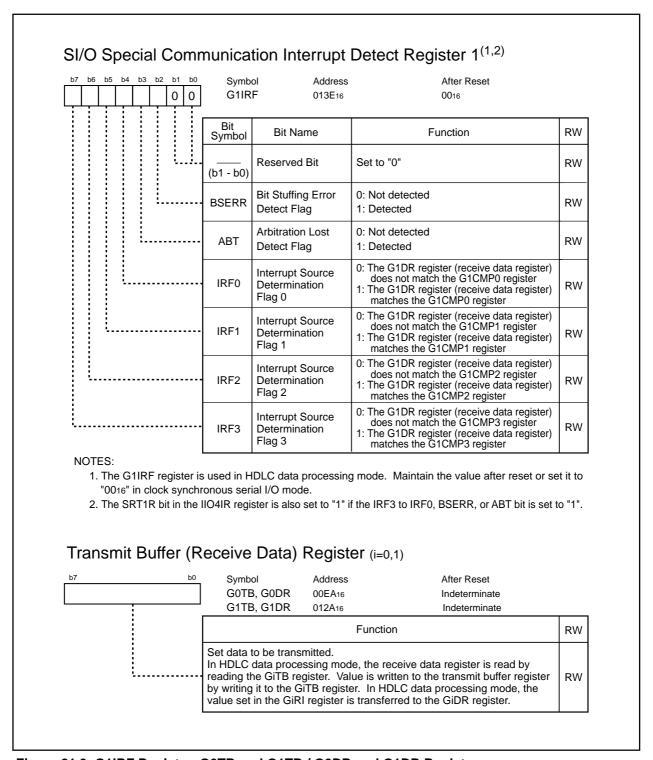
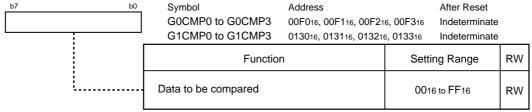
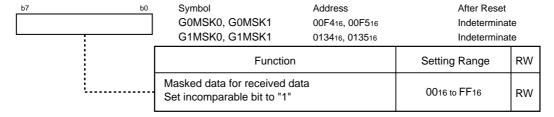
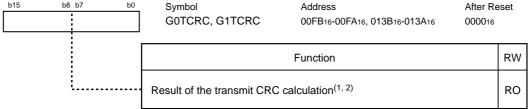



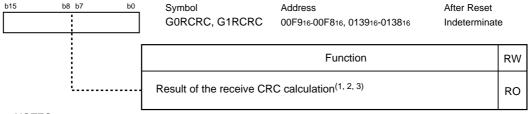
Figure 21.9 G1IRF Register, G0TB and G1TB / G0DR and G1DR Registers


Data Compare Register ij (i=0,1, j=0 to 3)


NOTE:

Set the GiMSK0 register to use the GiCMP0 register.
 Set the GiMSK1 register to use the GiCMP1 register.

Data Mask Register ij (i=0,1, j=0,1)


Transmit CRC Code Register i (i=0,1)

NOTES:

- The calculated result is reset by setting the TE bit in the GiCR register to "0" (transmit disabled).
 The CRCV bit in the GiEMR register selects a default value.
- 2. Transmit CRC calculation is performed with each bit of data transmitted while the TCRCE bit in the GiETC register is set to "1" (used).

Receive CRC Code Register i (i=0,1)

NOTES:

- 1. The calculated result is reset by setting the RCRCE bit in the GiERC register to "0" (not used). If the ACRC bit in the GiEMR register is set to "1" (reset), the result is reset by matching data in the GiCMPj register (j=0 to 3) with the received data.
- The result is reset to the default value selected by the CRCV bit in the GiEMR register before reception starts.
- Receive CRC calculation is performed with every bit of data received while the RCRCE bit in the GiERC register is set to "1" (used).

Figure 21.10 G0CMP0 to G0CMP3 Registers and G1CMP0 to G1CMP3 Registers G0MSK0 and G0MSK1 Registers, G1MSK0 and G1MSK1 Registers G0TCRC and G1TCRC Registers, G0RCRC and G1RCRC Registers

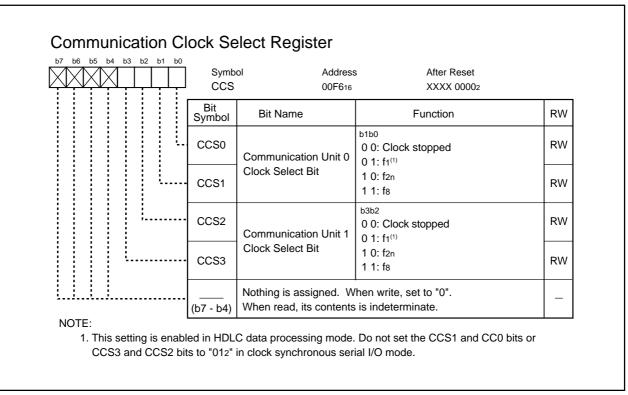


Figure 21.11 CCS Register

21.1.1 Clock Synchronous Serial I/O Mode (Communication Units 0 and 1)

In clock synchronous serial I/O mode, data is transmitted and received with the transfer clock. f8 or f2n can be selected as the transfer clock.

Table 21.2 lists specifications of clock synchronous serial I/O mode for the communication units 0 and 1. Tables 21.3 and 21.4 list clock settings. Table 21.5 lists register settings. Tables 21.6 and 21.7 list pin settings. Figure 21.12 shows an example of transmit and receive operation.

Table 21.2 Clock Synchronous Serial I/O Mode Specifications (Communication Units 0 and 1)

Item	Specification		
Transfer Data Format	Transfer data: 8 bits long		
Transfer Clock ⁽¹⁾	See Tables 21.3 and 21.4		
Transmit Start Condition	Set registers associated with the waveform generating function, the GiMR and GiE		
	registers (i=0,1). Then, set as is written below after at least one transfer clock cycle.		
	Set the TE bit in the GiCR register to "1" (transmit enabled)		
	• Set the TI bit in the GiCR register to "0" (data in the GiTB register)		
Receive Start Condition	Set registers associated with the waveform generating function, the GiMR and GiERC		
	registers. Then, set as is written below after at least one transfer clock cycle.		
	Set the RE bit in the GiCR register to "1" (receive enabled)		
	Set the TE bit to "1" (transmit enabled)		
	Set the TI bit to "0" (data in the GiTB register)		
Interrupt Request	• While transmitting, one of the following conditions can be selected to set the SIOiTR		
	bit to "1" (interrupt requested) (See Figure 10.14):		
	 The IRS bit in the GiMR register is set to "0" (no data in the GiTB register) and 		
	data is transferred to the transmit register from the GiTB register		
	- The IRS bit is set to "1" (transmission completed) and data transfer from the		
	transmit register is completed		
	• While receiving, the following condition can be selected to set SIOiRR bit is set to "1"		
	(data reception is completed):		
	Data is transferred from the receive register to the GiRB register (See Figure 10.14)		
Error Detection	Overrun error ⁽²⁾		
	This error occurs, when the next data reception is started and the 8th bit of the next		
	data is received before reading the GiRB register		
Selectable Function	LSB first or MSB first		
	Select either bit 0 or bit 7 to transmit or receive data		

NOTES:

- 1. In clock synchronous serial I/O mode, set the RSHTE bit in the GiERC register (i=0, 1) to "1" (receive shift operation enabled).
- 2. When an overrun error occurs, the GiRB register is indeterminate.

The ISTxDi pin outputs a high-level ("H") signal between selecting operating mode and starting transfer.

Table 21.3 Clock Settings (Communication Unit 0)

Transfer Clock	G0MR Register	CCS Register	
Transier Clock	CKDIR Bit	CCS0 Bit	CCS1 Bit
f8	0	1	1
f _{2n} (1) 0		0	1
Input from ISCLK0	1	-	-

NOTE:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (*n*=0) or divide-by-2*n* (*n*=1 to 15).

Table 21.4 Clock Settings (Communication Unit 1)

Transfer Clock	G1MR Register	CCS Register	
	CKDIR Bit	CCS2 Bit	CCS3 Bit
f8	0	1	1
f _{2n} (2)	0	0	1
Input from ISCLK1	1	-	-

NOTE:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

Table 21.5 Register Settings in Clock Synchronous Serial I/O Mode

Register	Bit	Function		
		Communication Unit 1	Communication Unit 0	
CCS	CCS1, CCS0	Setting not required when using the	Select transfer clock	
		communication unit 1 only		
	CCS3, CSS2	Select transfer clock	Setting not required when using the	
GiERC	7 to 0	Set to "0010 00002"	communication unit 0 only	
GiMR	GMD1, GMD0	Set to "012"		
	CKDIR	Select internal clock or external clock	l clock	
	UFORM	Select either LSB first or MSB first		
	IRS	Select what cause the transmit interrupt to be generated		
GiCR	TI	Transmit buffer empty flag		
	TXEPT	Transmit register empty flag		
	RI	Receive complete flag		
	TE	Set to "1" to enable transmission and reception		
	RE	Set to "1" to enable reception		
GiTB	_	Write data to be transmitted		
GiRB	_	Received data and error flag are stored		

i=0, 1

Table 21.6 Pin Settings in Clock Synchronous Serial I/O Mode (1)

Port Function			Setting			
FUIL	Function	PS1 Register	PSL1 Register	PSC Register	PSD1 Register	PD7 Register
P73	ISTxD1 Output	PS1_3=1	PSL1_3=0	PSC_3=1	-	-
P74	ISCLK1 Input	PS1_4=0	-	-	-	PD7_4=0
	ISCLK1 Output	PS1_4=1	PSL1_4=0	PSC_4=1	-	-
P75	ISRxD1 Input	PS1_5=0	-	-	-	PD7_5=0
P76	ISTxD0 Output	PS1_6=1	PSL1_6=0	PSC_6=0	PSD1_6=0	-
P77	ISCLK0 Input	PS1_7=0	-	-	-	PD7_7=0
	ISCLK0 Output	PS1_7=1	PSL1_7=0	-	-	-

Table 21.7 Pin Settings (2)

Port	Function	Setting		
		PS2 Register	PD8 Register	
P80	ISRxD0 Input	PS2_0=0	PD8_0=0	

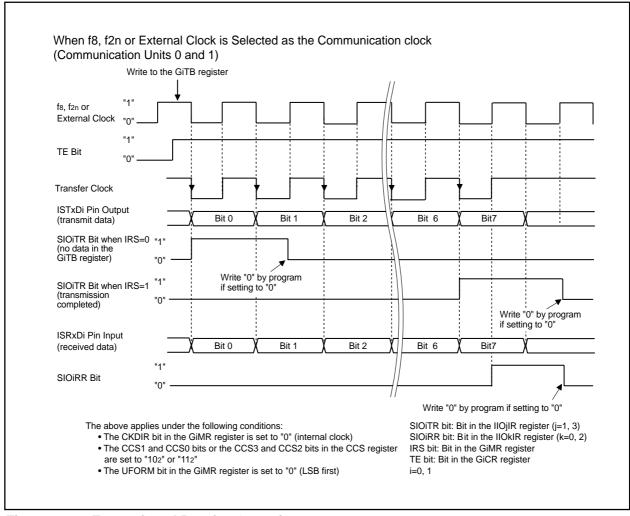


Figure 21.12 Transmit and Receive Operation

21.1.2 HDLC Data Processing Mode (Communication Units 0 and 1)

In HDLC data processing mode, bit stuffing, flag detection, abort detection and CRC calculation are available for HDLC control. f1, f8 or f2n can be selected as the transfer clock. No pin is used.

To convert data, data to be transmitted is written to the GiTB register (i=0,1) and the data conversion result is restored after data conversion. If any data are in the GiTO register after data conversion, the conversion is terminated. If no data is in the GiTO register, bit stuffing processing is executed regardless of no data available in the transmit output buffer. A CRC value is calculated every time one bit is converted. If no data is in the GiRI register, received data conversion is terminated.

Table 21.8 list specifications of the HDLC data processing mode. Tables 21.9 and 21.10 list clock settings. Table 21.11 lists register settings.

Table 21.8 HDLC Processing Mode Specifications (Communication Units 0 and 1)

Item	Specification		
Input Data Format	8-bit data fixed, bit alignment is optional		
Output Data Format	8-bit data fixed		
Transfer Clock	See Tables 21.9 and 21.10		
I/O Method	During transmit data processing,		
	value set in the GiTB register is converted in HDLC data processing mode and		
	transferred to the GiTO register.		
	During received data processing,		
	value set in the GiRI register is converted in HDLC data processing mode and		
	transferred to the GiRB register. The value in the GiRI register is also transferred to		
	the GiTB register (received data register).		
Bit Stuffing	During transmit data processing, "0" following five continuous "1" is inserted.		
	During received data processing, "0" following five continuous "1" is deleted.		
Flag Detection	Write the flag data "7E16" to the GiCMPj register (j=0 to 3) to use the special commu-		
	nication interrupt (the SRTiR bit in the IIO4IR register)		
Abort Detection	Write the masked data "0116" to the GiMSKj register		
CRC	The CRC1 and CRC0 bits are set to "112" (X ¹⁶ +X ¹² +X ⁵ +1).		
	The CRCV bit is set to "1" (set to "FFFF16").		
	During transmit data processing,		
	CRC calculation result is stored into the GiTCRC register. The TCRCE bit in the		
	GiETC register is set to "1" (transmit CRC used).		
	The CRC calculation result is reset when the TE bit in the GiCR register is set to "0"		
	(transmit disabled).		
	During received data processing,		
	CRC calculation result is stored into the GiRCRC register. The RCRCE bit in the		
	GiERC register is set to "1" (receive CRC used).		
	The CRC calculation result is reset by comparing the flag data "7E16" and matching		
	the result with the value in the GiCMP3 register. The ACRC bit in the GiEMR regis-		
	ter is set to "1" (CRC reset).		
Data Processing Start	The following conditions are required to start transmit data processing:		
Condition	The TE bit in the GiCR register is set to "1" (transmit enabled)		
	Data is written to the GiTB register		
	The following conditions are required to start receive data processing:		
	• The RE bit in the GiCR register is set to "1" (receive enabled)		
	Data is written to the GiRI register		

Table 21.8 HDLC Processing Mode Specifications (Continued)

Item	Specification
Interrupt Request ⁽¹⁾	During transmit data processing,
	One of the following conditions can be selected to set the GiTOR bit in the
	interrupt request register to "1" (interrupt request) (see Figure 10.14).
	 When the IRS bit in the GiMR register is set to "0" (no data in the GiTB
	register) and data is transferred from the GiTB register to the transmit register (transmit start).
	 When the IRS bit is set to "1" (transmission completed) and data transfer from the transmit register to the GiTO register is completed.
	When data, which is already converted to HDLC data, is transferred from the
	receive register of the GiTO register to the transmit buffer, the GiTOR bit is set to "1"
	During received data processing,
	 When data is transferred from the GiRI register to the GiRB register (reception completed), the GiRIR bit is set to "1" (See Figure 10.14).
	 When received data is transferred from the receive buffer of the GiRI register to the receive register, the GiRIR bit is set to "1".
	 When the GiTB register is compared to the GiCMPj register (j=0 to 3), the SRTiR bit is set to "1".

NOTE:

1. See Figure 10.14 for details on the GiTOR bit, GiRIR bit and SRTiR bit.

Table 21.9 Clock Settings (Communication Unit 0)

Transfer Clock ⁽¹⁾	CCS Register			
	CCS0 Bit CCS1 Bit			
f1	1	0		
f8	1	1		
f _{2n} (2)	0	1		

NOTES:

- 1. The transfer clock for reception is generated when the RSHTE bit in the G0ERC register is set to "1" (receive shift operation enabled).
- 2. The CNT3 to CNT0 bits in the TCSPR register select no division (*n*=0) or divide-by-2*n* (*n*=1 to 15).

Table 21.10 Clock Settings (Communication Unit 1)

	<u> </u>	
Transfer Clock ⁽¹⁾	CCS Register	
	CCS2 Bit	CCS3 Bit
f1	1	0
f8	1	1
f2n ⁽²⁾	0	1

NOTES:

- 1. The transfer clock for reception is generated when the RSHTE bit in the G1ERC register is set to "1" (receive shift operation enabled).
- 2. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

Table 21.11 Register Settings in HDLC Processing Mode

Register	Bit	Function	
GiMR	GMD1, GMD0	Set to "112"	
CKDIR		Set to "0"	
	UFORM	Set to "0"	
	IRS	Select what causes the transmit interrupt to be generated	
GiEMR	7 to 0	Set to "1111 01102"	
GICR TI TXEPT RI		Transmit buffer empty flag	
		Transmit register empty flag	
		Receive complete flag	
	TE	Transmit enable bit	
	RE	Receive enable bit	
GiETC	TCRCE	Select whether transmit CRC is used or not	
	TBSF1, TBSF0	Transmit bit stuffing	
GiERC CMP2E to CMP0E		Select whether received data is compared or not	
	CMP3E	Set to "1"	
	RCRCE	Select whether receive CRC is used or not	
	RSHTE	Set to "1" to use it in the receiver	
	RBSF1, RBSF0	Receive bit stuffing	
GilRF	F BSERR Set to "0"		
	IRF3 to IRF0	Select what causes an interrupt to be generated	
GiCMP0,	7 to 0	Write "FE16" to abort processing	
GiCMP1			
GiCMP2	7 to 0	Data to be compared	
GiCMP3	7 to 0	Write "7E16"	
GiMSK0,	7 to 0	Write "0116" to abort processing	
GiMSK1			
GiTCRC	15 to 0	Transmit CRC calculation result can be read	
GiRCRC	15 to 0	Receive CRC calculation result can be read	
GiTO	7 to 0	Data, which is output from a transmit data generation circuit, can be read	
GiRI	7 to 0	Set data input to a receive data generation circuit	
GiRB	7 to 0	Received data is stored	
GiTB	7 to 0	For transmission: write data to be transmitted	
		For reception: received data for comparison is stored	
CCS	CCS1, CCS0	Select the HDLC processing clock	
	CCS3, CCS2	Select the HDLC processing clock	

i=0, 1

22. Programmable I/O Ports

87 programmable I/O ports from ports P0 to P10 (excluding P85) are available. The direction registers determine each port status, input or output. The pull-up control registers determine whether the ports, divided into groups of four ports, are pulled up or not. P85 is an input port and no pull-up for this port is allowed. The P8_5 bit in the P8 register indicates an $\overline{\text{NMI}}$ input level since P85 shares pins with $\overline{\text{NMI}}$.

Figures 22.1 to 22.4 show programmable I/O port configurations.

Each pin functions as the programmable I/O port, an I/O pin for internal peripheral functions or the bus control pin.

To use the pins as input or output pins for internal peripheral functions, refer to the explanations for each fuction. Refer to **7. Bus** when used as the bus control pin.

The registers associated with the programmable I/O ports are as follows.

22.1 Port Pi Direction Register (PDi Register, i=0 to 10)

Figure 22.5 shows the PDi register.

The PDi register selects input or output status of a programmable I/O port. Each bit in the PDi register corresponds to a port.

In memory expansion and microprocessor mode, the PDi register cannot control pins being used as bus control pins (Ao to A22, $\overline{\text{A23}}$, Do to D15, $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$, $\overline{\text{WRL/WR}}$, $\overline{\text{WRH/BHE}}$, $\overline{\text{RD}}$, BCLK/ALE/CLKOUT, $\overline{\text{HLDA/ALE}}$, $\overline{\text{HOLD}}$, ALE and $\overline{\text{RDY}}$). No bit controlling P85 is provided in the direction registers.

22.2 Port Pi Register (Pi Register, i=0 to 10)

Figure 22.6 shows the Pi register.

The Pi register writes and reads data to communicate with external devices. The Pi register consists of a port latch to hold output data and a circuit to read pin states. Each bit in the Pi register corresponds to a port. In memory expansion and microprocessor mode, the Pi register cannot control pins being used as bus control pins (Ao to A22, A23, Do to D15, CSO to CS3, WRL/WR, WRH/BHE, RD, BCLK/ALE/CLKOUT, HLDA/ALE, HOLD, ALE and RDY).

22.3 Function Select Register Aj (PSj Register) (j=0 to 3)

Figures 22.7 and 22.8 show the PSj registers.

The PSj register selects either I/O port or peripheral function output if an I/O port shares pins with a peripheral function output (excluding DA0 and DA1.)

When multiple peripheral function outputs are assigned to a pin, set the PSL0 to PSL3, PSC, PSC3, and PSD1 registers to select which function is used.

Tables 22.3 to 22.10 list peripheral function output control settings for each pin.

22.4 Function Select Register B0 to B3 (PSL0 to PSL3 Registers)

Figures 22.9 and 22.10 show the PSL0 to PSL3 registers.

When multiple peripheral function outputs are assigned to a pin, the PSL0 to PSL3 registers select which peripheral function output is used.

Refer to **22.10** Analog Input and Other Peripheral Function Input for the PSL3_6 to PSL3_3 bits in the PSL3 register.

22.5 Function Select Register C (PSC and PSC3 Registers)

Figures 22.11 and 22.12 show the PSC and PSC3 registers.

When multiple peripheral function outputs are assigned to a pin, the PSC and PSC3 registers select which peripheral function output is used.

Refer to 22.10 Analog Input and Other Peripheral Function Input for the PSC_7 bit in the PSC register.

22.6 Function Select Register D (PSD1 Register)

Figure 22.12 shows the PSD1 register.

When multiple peripheral function outputs are assigned to a pin, the PSD1 register selects which peripheral function output is used.

22.7 Pull-up Control Register 0 to 3 (PUR0 to PUR3 Registers)

Figures 22.13 and 22.14 show the PUR0 to PUR3 registers.

The PUR0 to PUR3 registers select whether the ports, divided into groups of four ports, are pulled up or not. Ports with bits in the PUR0 to PUR3 registers set to "1" (pull-up) and the direction registers set to "0" (input mode) are pulled up.

Set bits in the PUR0 and PUR1 registers in ports P0 to P5, running as bus, to "0" (no pull-up) in memory expansion mode and microprocessor mode. Ports P0, P1 and P40 to P43 can be pulled up when they are used as input ports in memory expansion mode and microprocessor mode.

22.8 Port Control Register (PCR Register)

Figure 22.14 shows the PCR register.

The PCR register selects either CMOS output or N-channel open drain output as port P1 output format. If the PCR0 bit is set to "1", N-channel open drain output is selected because the P-channel in the CMOS port is turned off. This is, however, not a perfect open drain. Therefore, the absolute maximum rating of the input voltage is between -0.3V and Vcc2 + 0.3V.

If P1 is used as a port for data bus in memory expansion mode and microprocessor mode, set the PCR0 bit to "0". If P1 is used as a port in memory expansion mode and microprocessor mode, the PCR0 bit determines the output format.

22.9 Analog Input and Other Peripheral Function Input

The PSL3_6 to PSL3_3 bits in the PSL3 register and the PSC_7 bit in the PSC register each separate analog I/O ports from other peripheral functions. Setting the corresponding bit to "1" (analog I/O) to use the analog I/O port (DA0, DA1, ANEX0, ANEX1, AN4 to AN7) prevents an intermediate potential from being impressed to other peripheral functions. The impressed intermediate potential may cause increase in power consumption.

Set the corresponding bit to "0" (except analog I/O) when analog I/O is not used. All peripheral function inputs except the analog I/O port are available when the corresponding bit is set to "0". These inputs are indeterminate when the bit is set to "1". When the PSC_7 bit is set to "1", key input interrupt request remains unchanged regardless of $\overline{\text{Klo}}$ to $\overline{\text{Klo}}$ pin input level change.

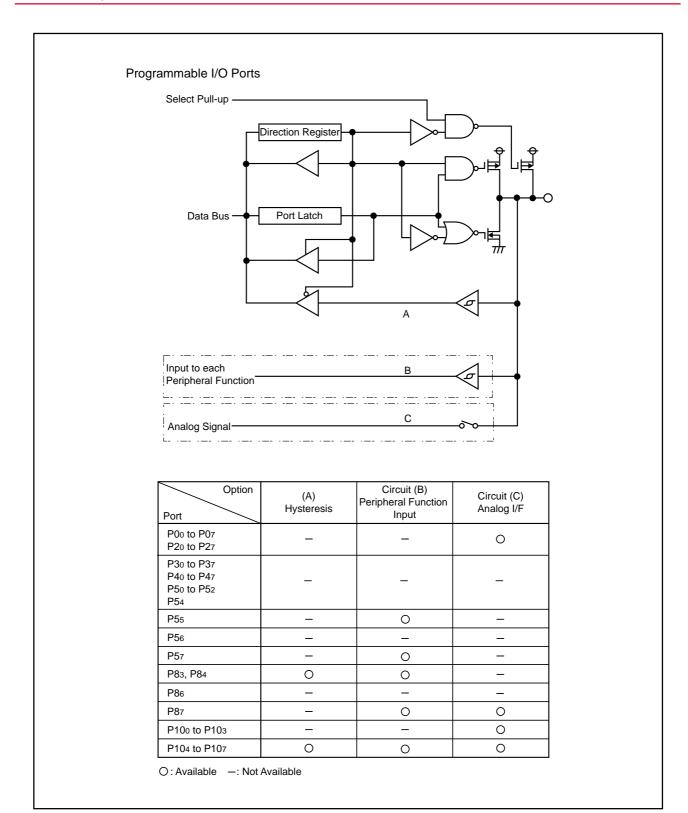


Figure 22.1 Programmable I/O Ports (1)

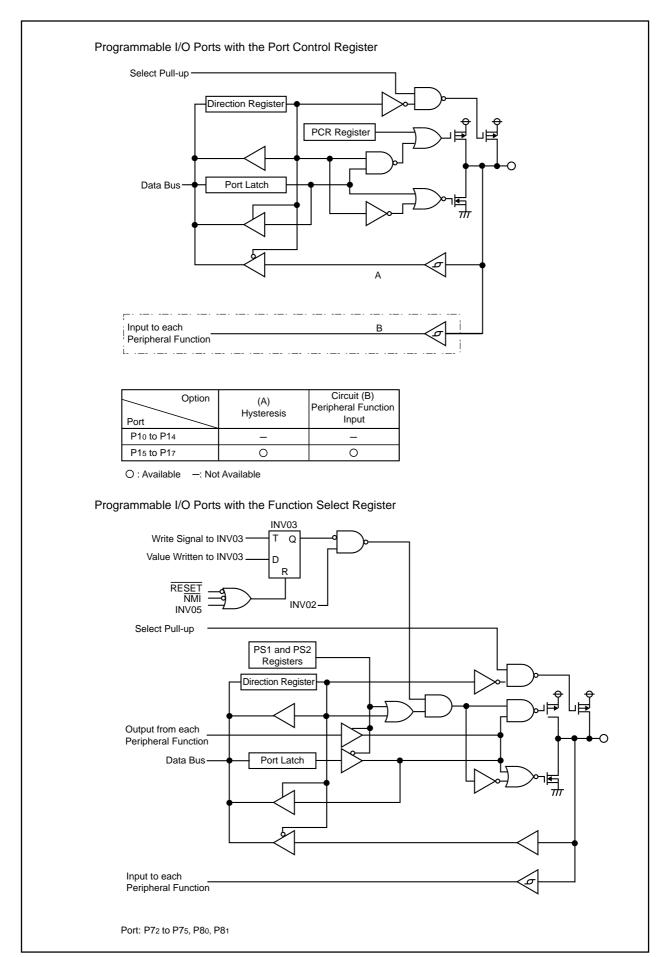


Figure 22.2 Programmable I/O Ports (2)

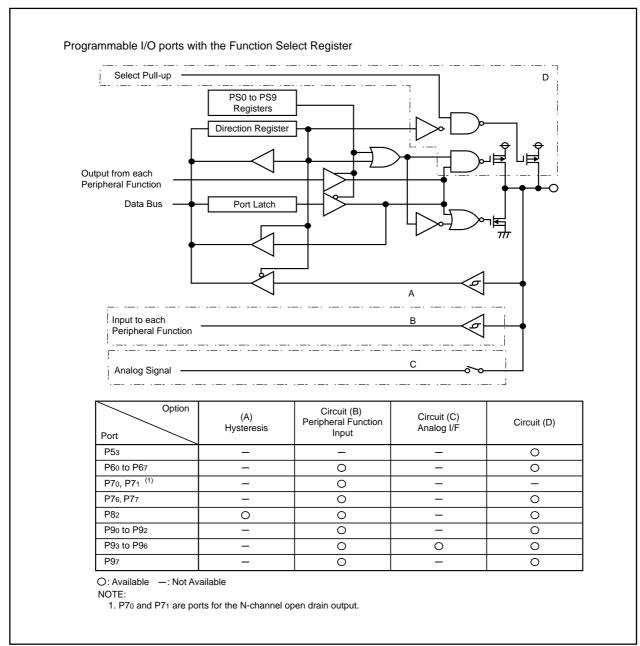


Figure 22.3 Programmable I/O Ports (3)

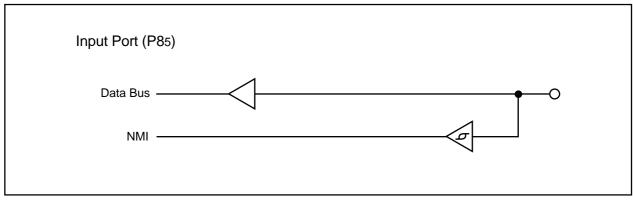


Figure 22.4 Programmable I/O Ports (4)

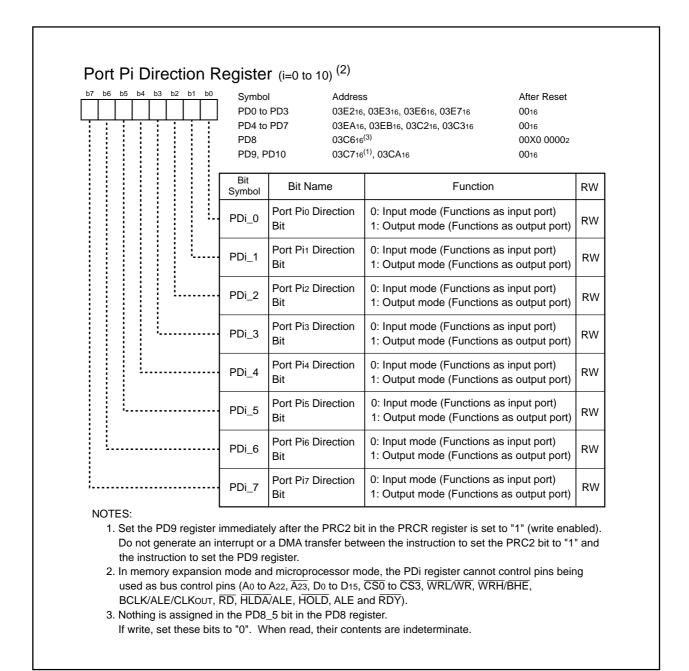
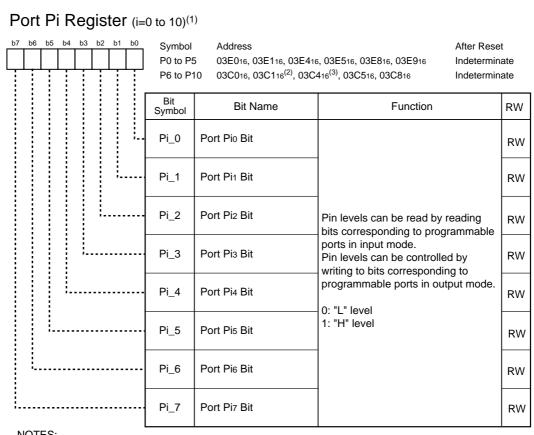
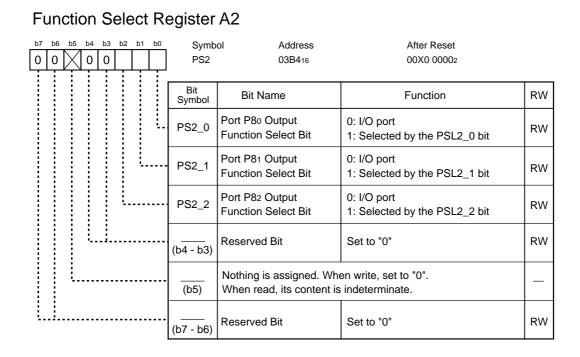



Figure 22.5 PD0 to PD10 Registers


NOTES:

- 1. In memory expansion mode and microprocessor mode, the Pi register cannot control pins being used as bus control pins (Ao to A22, A23, Do to D15, CSO to CS3, WRL/WR, WRH/BHE, RD, BCLK/ALE/CLKOUT, HLDA/ALE, HOLD, ALE and RDY).
- 2. P70 and P71 are ports for the N-channel open drain output. The pins go into high-impedance states when P70 and P71 output "H" signal.
- 3. The P8_5 bit is for read only.

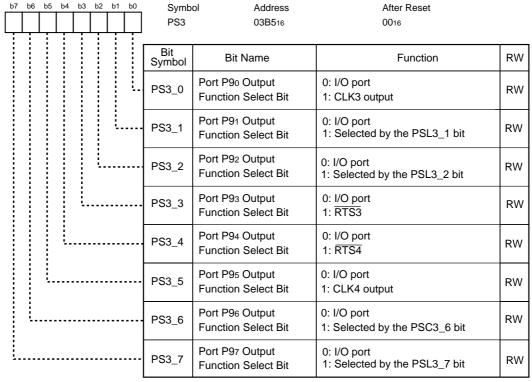

Figure 22.6 P0 to P10 Registers

Figure 22.7 PS0 Register and PS1 Register

Function Select Register A3⁽¹⁾

NOTE:

Figure 22.8 PS2 Register and PS3 Register

^{1.} Set the PS3 register immediately after the PRC2 bit in the PRCR register is set to "1" (write enabled). Do not generate an interrupt or a DMA transfer between the instruction to set the PRC2 bit to "1" and the instruction to set the PS3 register.

Function Select Register B0 Symbol Address After Reset PSL0 03B216 0 0 0 0016 Bit Symbol Bit Name **Function** RW Set to "0" RW Reserved Bit (b1 - b0)Port P62 Output Peripheral 0: SCL0 output PSL0_2 RW Function Select Bit 1: STxD0 Reserved Bit Set to "0" RW (b3)Port P64 Output Peripheral 0: RTS1 PSL0_4 RW Function Select Bit 1: Do not set to this value Set to "0" RW Reserved Bit (b5) Port P66 Output Peripheral 0: SCL1 output PSL0_6 RW Function Select Bit 1: STxD1 Reserved Bit Set to "0" RW (b7)Function Select Register B1 Symbol Address After Reset PSL1 03B316 0016 Bit Symbol Bit Name Function RW Port P70 Output Peripheral 0: Selected by the PSC_0 bit PSL1_0 RW 1: TA0ouT output⁽¹⁾ Function Select Bit Port P71 Output Peripheral 0: Selected by the PSC_1 bit 1: $STxD2^{(1)}$ PSL1_1 RW Function Select Bit Port P72 Output Peripheral 0: Selected by the PSC_2 bit 1: TA1out output⁽¹⁾ PSL1_2 RW Function Select Bit Port P73 Output Peripheral 0: Selected by the PSC_3 bit 1: $\overline{V}^{(1)}$ PSL1_3 RW Function Select Bit Port P74 Output Peripheral 0: Selected by the PSC_4 bit PSL1_4 RW Function Select Bit 1: W⁽¹⁾ Port P75 Output Peripheral 0: W PSL1_5 RW Function Select Bit 1: Do not set to this value Port P76 Output Peripheral 0: Selected by the PSC_6 bit PSL1_6 RW 1: TA3out output(1) Function Select Bit Port P77 Output Peripheral 0: ISCLK0 output PSL1_7 RW 1: Do not set to this value Function Select Bit NOTE: 1. When setting the PSL1_i (i=0 to 4, 6) bit to "1", set the corresponding PSC_i bit in the PSC register to "0".

Figure 22.9 PSL0 Register and PSL1 Register

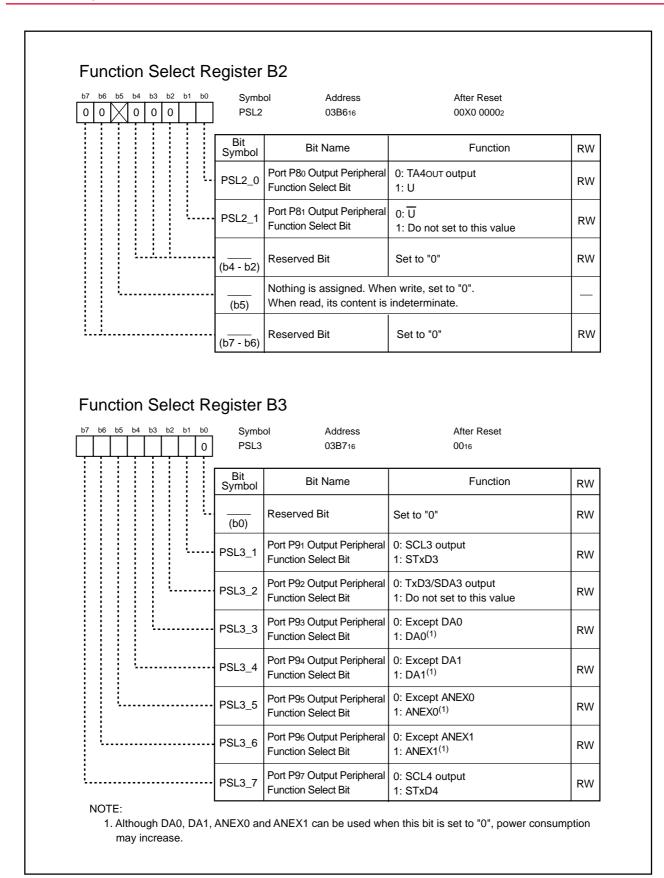


Figure 22.10 PSL2 Register and PSL3 Register

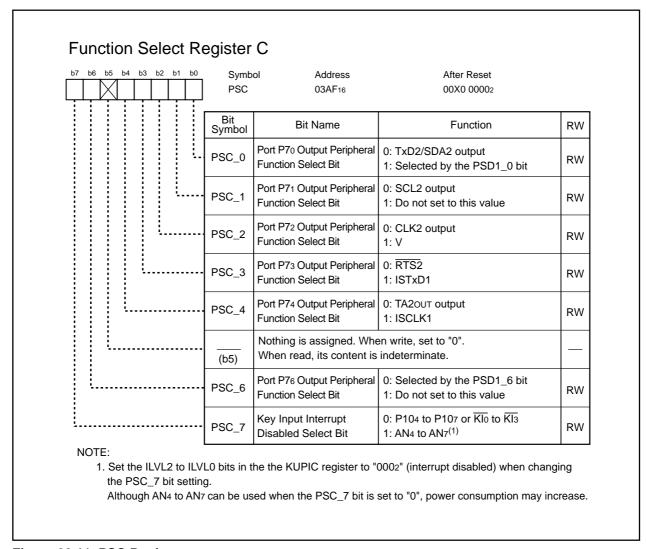


Figure 22.11 PSC Register

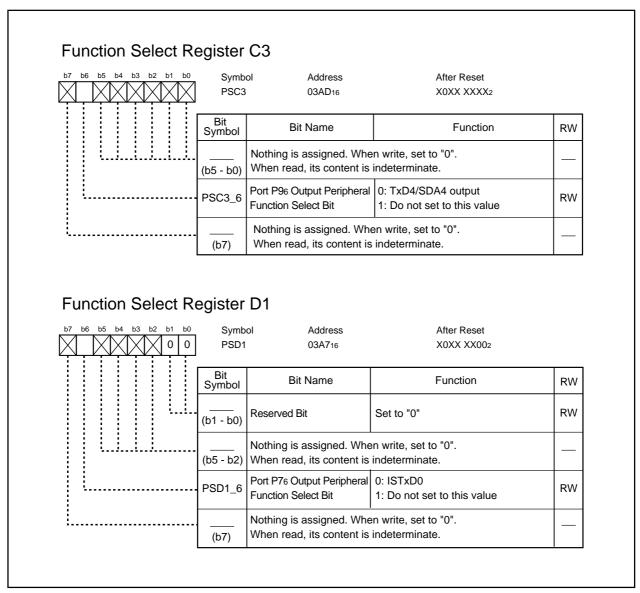
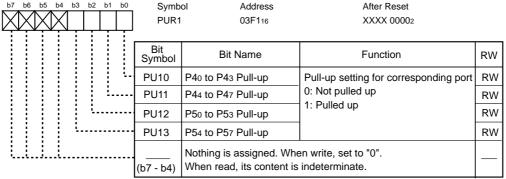
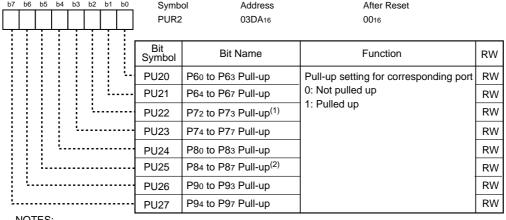



Figure 22.12 PSC3 Register and PSD1 Register

Pull-Up Control Register 0⁽¹⁾ After Reset Symbol Address PUR0 03F0₁₆ 0016 Bit Name **Function** RW Symbol PU00 P0₀ to P0₃ Pull-up RW Pull-up setting for corresponding port 0: Not pulled up PU01 P04 to P07 Pull-up RW 1: Pulled up PU02 RW P10 to P13 Pull-up PU03 P14 to P17 Pull-up RW PU04 P20 to P23 Pull-up RW PU05 P24 to P27 Pull-up RW RW PU06 P30 to P33 Pull-up P34 to P37 Pull-up RW PU07

Pull-Up Control Register 1⁽¹⁾



NOTES:

NOTE:

1. Set each bit in the PUR1 register to "0" when ports P0 to P5 become bus control pins in memory expansion mode and microprocessor mode. When using the ports as I/O ports, pull-up or no pull-up setting can be selected.

Pull-Up Control Register 2

NOTES:

- 1. P70 and P71 cannot be pulled up.
- 2. P85 cannot be pulled up.

Figure 22.13 PUR0 Register, PUR1 Register and PUR2 Register

^{1.} Set each bit in the PUR0 register to "0" when ports P0 to P5 become bus control pins in memory expansion mode and microprocessor mode. When using the ports as I/O ports, pull-up or no pull-up setting can be selected.

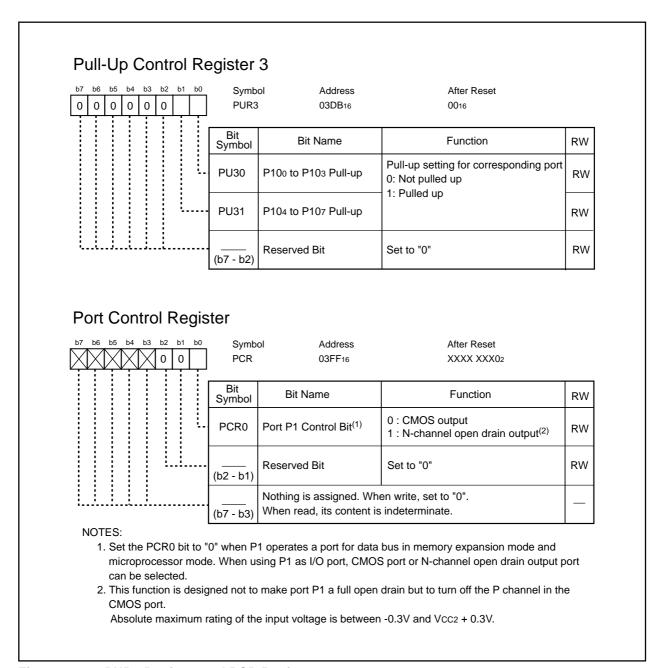


Figure 22.14 PUR3 Register and PCR Register

Table 22.1 Unassigned Pin Settings in Single-Chip Mode

Pin Name	Setting
P0 to P10	Enter input mode and connect each pin to Vss via a resistor (pull-down);
(excluding P85) ^(1,2,3)	or enter output mode and leave pins open
Xout ⁽⁴⁾	Leave pin open
NMI(P85)	Connect pin to Vcc1 via a resistor (pull-up)
AVcc	Connect pin to Vcc1
AVSS, VREF, BYTE	Connect pins to Vss

NOTES:

- 1. If the port enters output mode and is left open, it is in input mode before output mode is entered by program after reset. While the port is in input mode, voltage level on the pins is indeterminate and power consumption may increase.
 - Direction register settings may be changed by noise or failure caused by noise. Configure direction register settings regulary to increase the reliability of the program.
- 2. Use the shortest possible wiring to connect the microcomputer pins to unassigned pins (within 2 cm).
- 3. P70 and P71 must output low-level ("L") signals if they are in output mode. They are ports N-channel open drain outputs.
- 4. When the external clock is applied to the XIN pin, set the pin as written above.

Table 22.2 Unassigned Pin Setting in Memory Expansion Mode and Microprocessor Mode

Pin Name	Setting
P6 to P10	Enter input mode and connect each pin to Vss via a resistor (pull-down);
(excluding P85) ^(1,2,3)	or enter output mode and leave pins open
BHE, ALE, HLDA,	Leave pin open
Χουτ ⁽⁵⁾ , BCLK	
NMI(P85)	Connect pin to Vcc1 via a resistor (pull-up)
RDY, HOLD	Connect pins to VCC2 via a resistor (pull-up)
AVcc	Connect pin to VCC1
AVSS, VREF	Connect pins to Vss

NOTES:

- 1. If the port enters output mode and is left open, it is in input mode before output mode is entered by program after reset. While the port is in input mode, voltage level on the pins is indeterminate and power consumption may increase.
 - Direction register settings may be changed by noise or failure caused by noise. Configure direction register settings regulary to increase the reliability of the program.
- 2. Use the shortest possible wiring to connect the microcomputer pins to unassigned pins (within 2 cm).
- 3. P70 and P71 must outputs low-level ("L") signals if they are in output mode. They are N-channel open-drain outputs.
- 4. When the external clock is applied to the XIN pin, set the pin as written above.

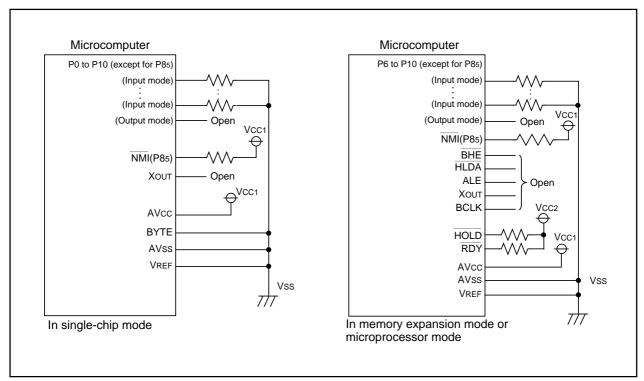


Figure 22.15 Unassigned Pin Handling

Table 22.3 Port P6 Peripheral Function Output Control

	PS0 Register	PSL0 Register
Bit 0	0: P60/CTS0/SS0 1: RTS0	Set to "0"
Bit 1	0: P61/CLK0(input) 1: CLK0(output)	Set to "0"
Bit 2	0: P62/RxD0/SCL0(input) 1: Selected by the PSL0 register	0: SCL0(output) 1: STxD0
Bit 3	0: P63/SRxD0/SDA0(input) 1: TxD0/SDA0 (output)	Set to "0"
Bit 4	0: P64/CTS1/SS1 1: Selected by the PSL0 register	0: RTS1 1: Do not set this value
Bit 5	0: P65/CLK1(input) 1: CLK1(output)	Set to "0"
Bit 6	0: P66/RxD1/SCL1(input) 1: Selected by the PSL0 register	0: SCL1(output) 1: STxD1
Bit 7	0: P67/SRxD1/SDA1(input) 1: TxD1/SDA1(output)	Set to "0"

Table 22.4 Port P7 Peripheral Function Output Control

	PS1 Register	PSL1 Register	PSC Register ⁽¹⁾	PSD1 Register
Bit 0	0: P70/TA0ouT(input)/SRxD2/ SDA2 (input)	0: Selected by the PSC register	0: TxD2/SDA2(output)	Set to "0"
	1: Selected by the PSL1 register	1: TA0out(output)	1: Do not set to this value	
Bit 1	0: P71/TB5IN/TA0IN/RxD2/ SCL2 (input)	0: Selected by the PSC register	0: SCL2(output)	Set to "0"
	1: Selected by the PSL1 register	1: STxD2	1: Do not set to this value	
Bit 2	0: P72/TA10UT(input)/ CLK2(input)	0: Selected by the PSC register	0: CLK2(output)	Set to "0"
	1: Selected by the PSL1 register	1: TA1o∪⊤(output)	1: V	
Bit 3	0: P73/TA1IN/CTS2/SS2/	0: Selected by the PSC register	0: RTS2	Set to "0"
	1: Selected by the PSL1 register	1: ∇	1: ISTxD1	
Bit 4	0: P74/ISCLK1(input)/	0: Selected by the PSC register	0: TA2out(output)	Set to "0"
	TA2o∪⊤(input)			
	1: Selected by the PSL1 register	1: W	1: ISCLK1(output)	
Bit 5	0: P75/TA2IN/ISRxD1	0: W	Set to "0"	Set to "0"
	1: Selected by the PSL1 register	1: Do not se to this value		
Bit 6	0: P76/TA3out(input)	0: Selected by the PSC register	0: Selected by the PSD1 register	0: ISTxD0
	1: Selected by the PSL1 register	1: TA3o∪⊤(output)	1: Do not set to this value	1: Do not set to this value
Bit 7	0: P77/TA3IN/ISCLK0(input)	0: ISCLK0(output)	0: P104 to P107 or $\overline{\text{KI0}}$ to $\overline{\text{KI3}}$	Set to "0"
	1: Selected by the PSL1 register	1: Do not set to this value	1: AN4 to AN7	
			(No relation to P77)	

NOTE:

1. When setting the PSL1_i bit (i=0 to 4, 6) to "1", set the corresponding PSC_i bit to "0".

Table 22.5 Port P8 Peripheral Function Output Control

	PS2 Register	PSL2 Register	
Bit 0	0: P80/ISRxD0/TA4out(input)	0: TA4o∪⊤(output)	
	1: Selected by the PSL2 register	1: U	
Bit 1	0: P81/TA4IN	0: U	
	1: Selected by the PSL2 register	1: Do not set to this value	
Bit 2	0: P82/INT0	Set to "0"	
	1: Selected by the PSL2 register		
Bit 3 to 7	Set to "000002"		

Table 22.6 Port P9 Peripheral Function Output Control

	PS3 Register	PSL3 Register	PSC3 Register
Bit 0	0: P90/TB0IN/CLK3(input)	Set to "0"	Set to "0"
	1: CLK3(output)		
Bit 1	0: P91/TB1IN/RxD3/SCL3(input)	0: SCL3(output)	Set to "0"
	1: Selected by the PSL3 register	1: STxD3	
Bit 2	0: P92/TB2IN/SRxD3/SDA3(input)	0: TxD3/SDA3(output)	Set to "0"
	1: Selected by the PSL3 register	1: Do not set to this value	
Bit 3	0: P93/TB3IN/CTS3/SS3/DA0(output)	0: Except DA0	Set to "0"
	1: RTS3	1: DA0	
Bit 4	0: P94/TB4IN/CTS4/SS4/DA1(output)	0: Except DA1	Set to "0"
	1: RTS4	1: DA1	
Bit 5	0: P95/ANEX0/CLK4(input)/	0: Except ANEX0	Set to "0"
	1: CLK4(output)	1: ANEX0	
Bit 6	0: P96/SRxD4/ANEX1/SDA4(input)	0: Except ANEX1	0: TxD4/SDA4 output
	1: Selected by the PSC3 register	1: ANEX1	1: Do not set to this value
Bit 7	0: P97/RxD4/ADTRG/SCL4(input)	0: SCL4(output)	Set to "0"
	1: Selected by the PSL3 register	1: STxD4	

Table 22.7 Port P10 Peripheral Function Output Control

		PSC Register
E	3it 7	0: P104 to P107 or KI0 to KI3
L		1: AN4 to AN7

23. Electrical Characteristics

Table 23.1 Absolute Maximum Ratings

Symbol		Parameter	Condition	Value	Unit
VCC1, VCC2	Supply Voltage		Vcc1=AVcc	-0.3 to 6.0	V
Vcc2	Supply Voltage		-	-0.3 to Vcc1	V
AVcc	Analog Supply V	oltage // oltage	Vcc1=AVcc	-0.3 to 6.0	V
Vı	Input Voltage	RESET, CNVss, BYTE, P60-P67, P72-P77, P80-P87, P90-P97, P100-P107, VREF, XIN		-0.3 to Vcc1+0.3	V
		P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57		-0.3 to Vcc2+0.3	
		P70, P71		-0.3 to 6.0	
Vo	Output Voltage	P60-P67, P72-P77, P80-P84, P86, P87, P90-P97, P100-P107, Xout		-0.3 to Vcc1+0.3	V
		P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57		-0.3 to Vcc2+0.3	
		P70, P71		-0.3 to 6.0	
Pd	Power Dissipation	on .	Topr=25° C	500	mW
Topr	Operating Ambie	ent Temperature	Topr=25° C 500 m\		° C
Tstg	Storage Temper	ature		-65 to 150	° C

NOTE:

^{1.} Contact our sales office if temperature range of -40 to 85° C is required.

Table 23.2 Recommended Operating Conditions
(Vcc1= Vcc2=3.0V to 5.5V at Topr=- 20 to 85°C unless otherwise specified)

Symbol	Parameter			Unit		
Symbol			Min.	Тур.	Max.	Offic
Vcc1, Vcc2	Supply Voltage (Vcc1	≥ Vcc2)	3.0	5.0	5.5	V
AVcc	Analog Supply Voltag	je		Vcc1		V
Vss	Supply Voltage			0		V
AVss	Analog Supply Voltag	je		0		V
Vih	Input High ("H")	P20-P27, P30-P37, P40-P47, P50-P57	0.8Vcc2		VCC2	V
	Voltage	P60-P67, P72-P77, P80-P87 ⁽³⁾ , P90-P97, P100-P107, XIN,	0.8Vcc1		Vcc1	
		RESET, CNVss, BYTE	0.8Vcc1		6.0	
		P70, P71				
		P0o-P07, P1o-P17 (in single-chip mode)	0.8Vcc2		Vcc2	
		P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ (in memory expansion mode and microprocesor mode)	0.5Vcc2		Vcc2	
VIL	Input Low ("L") Voltage	P20-P27, P30-P37, P40-P47, P50-P57	0		0.2Vcc2	V
		P60-P67, P70-P77, P80-P87 ⁽³⁾ , P90-P97, P100-P107, XIN,	0		0.2Vcc1	
		RESET, CNVss, BYTE				
		P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ (in single-chip mode)	0		0.2Vcc2	
		P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ (in memory expansion mode and microprocesor mode)	0		0.16Vcc2	
IOH(peak)	Peak Output High	P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57,			-10.0	mA
	("H") Current ⁽²⁾	P60-P67, P72-P77, P80-P84, P86, P87, P90-P97,				
		P10 ₀ -P10 ₇				
IOH(avg)	Average Output	P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57,			-5.0	mA
	High ("H") Current(1)	P60-P67, P72-P77, P80-P84, P86, P87, P90-P97,				
		P10 ₀ -P10 ₇				
IOL(peak)	Peak Output Low	P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57,			10.0	mA
	("L") Current ⁽²⁾	P60-P67, P70-P77, P80-P84, P86, P87, P90-P97,				
		P10 ₀ -P10 ₇				
IOL(avg)	Average Output Low	P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57,			5.0	mA
	("L") Current ⁽¹⁾	P60-P67, P70-P77, P80-P84, P86, P87, P90-P97,				
		P10 ₀ -P10 ₇				

NOTES:

- 1. Typical values when average output current is 100 ms.
- 2. Total IoL(peak) for P0, P1, P2, P86, P87, P9, and P10 must be 80 mA or less.

Total IoL(peak) for P3, P4, P5, P6, P7, and P80 to P84 must be 80 mA or less.

Total IoH(peak) for P0, P1, and P2 must be -40 mA or less.

Total IoH(peak) for P86, P87, P9, and P10 must be -40 mA or less.

Total IOH(peak) for P3, P4, and P5 must be -40 mA or less.

Total IOH(peak) for P6, P7, and P80 to P84 must be -40 mA or less.

3. V_{IH} and V_{IL} reference for P8₇ applies when P8₇ is used as a programmable input port. It does not apply when P8₇ is used as Xc_{IN}.

Table 23.2 Recommended Operating Conditions (Continued)
(VCC1=VCC2=3.0V to 5.5V at Topr=-20 to 85°C unless otherwise specified)

Cumbal	Parameter			Standard			
Symbol	Parameter		Min.	Тур.	Max.	Unit	
f(BCLK)	CPU Operation Frequency	Vcc1=4.2 to 5.5 V	0		32	MHz	
		Vcc1=3.0 to 5.5 V	0		24	MHz	
f(XIN)	Main Clock Input Frequency	Vcc1=4.2 to 5.5 V	0		32	MHz	
		Vcc1=3.0 to 5.5 V	0		24	MHz	
f(Xcin)	Sub Clock Frequency	1		32.768	50	kHz	
f(Ring)	On-chip Oscillator Frequency (Topr=25° C)		0.5	1	2	MHz	
f(PLL)	PLL Clock Frequency	Vcc1=4.2 to 5.5 V	10		32	MHz	
		Vcc1=3.0 to 5.5 V	10		24	MHz	
tsu(PLL)	Wait Time to Stabilize PLL Frequency Synthesizer	Vcc1=5.0 V			5	ms	
		Vcc1=3.3 V			10	ms	

Table 23.3 Electrical Characteristics (Vcc1=Vcc2=4.2 to 5.5V, Vss=0V at Topr= -20 to 85°C, f(BCLK)=32MHz unless otherwise specified)

Symbol		Parameter		Condition		andard		Unit
					Min.	Тур.	Max.	0
Vон	Output High ("H") Voltage	P00-P07, P10-P17, P20-I P50-P57	P27, P30-P37, P40-P47,	Іон=-5mA	Vcc2-2.0		Vcc2	V
		P60-P67, P72-P77, P80-I	P84, P86, P87, P90-	Іон=-5mA	Vcc1-2.0		Vcc1	
		P00-P07, P10-P17, P20-I	P27, P30-P37, P40-P47,	Іон=-200μА	Vcc2-0.3		Vcc2	V
		P60-P67, P72-P77, P80-I	P84, P86, P87, P90-	Іон=-200μА	Vcc1-0.3		Vcc1	
		Хоит		Iон=-1mA	3.0		Vcc1	V
		Хсоит	High Power	No load applied		2.5		V
			Low Power	No load applied		1.6		1
Vol	Output Low ("L") Voltage	P00-P07, P10-P17, P20-I P50-P57, P60-P67, P70-I		IoL=5mA			2.0	V
		P87, P90-P97, P100-P10)7					
		P00-P07, P10-P17, P20-P27, P30-P37, P40-P47,		IoL=200μA			0.45	V
		P50-P57, P60-P67, P70-I	P50-P57, P60-P67, P70-P77, P80-P84, P86,					
			P87, P90-P97, P100-P107					
		Хоит		IoL=1mA			2.0	V
		Хсоит	High Power	No load applied		0		V
			Low Power	No load applied		0		
VT+-VT-	Hysteresis	HOLD, RDY, TA0IN-TA4	4in, TB0in-TB5in,		0.2		1.0	V
		INTO-INT5, ADTRG, CTSO-CTS4, CLKO-CLK4,						
		TA0out-TA4out, NMI, KI0-KI3, RxD0-RxD4,						
		SCL0-SCL4, SDA0-SDA4						
		RESET			0.2		1.8	V
Іін	Input High ("H")	P00-P07, P10-P17, P20-I	P27, P30-P37, P40-P47,	V=5V			5.0	μΑ
	Current		P50-P57, P60-P67, P70-P77, P80-P87, P90-P97,					
		P10 ₀ -P10 ₇ , X _{IN} , RESET, CNVss, BYTE						
lı∟	Input Low ("L")	P00-P07, P10-P17, P20-I	P27, P30-P37, P40-P47,	VI=0V			-5.0	μΑ
	Current	P50-P57, P60-P67, P70-I						
		P100-P107, XIN, RESET						
RPULLUP	Pull-up Resistance	P00-P07, P10-P17, P20-I	P27, P30-P37, P40-P47,	Vi=0V	20	40	167	kΩ
		P50-P57, P60-P67, P72-I	P77, P80-P84, P86,					
		P87, P90-P97, P100-P10	P87, P90-P97, P100-P107					
Rfxin	Feedback Resistance	XIN	IN			1.5		МΩ
Rfxcin	Feedback Resistance	Xcin				15		ΜΩ
VRAM	RAM Standby Voltage	·			2.0			V
Icc	Power Supply Curren	In single-chip mode, output pins are left	f(BCLK)=32 MHz, Squ No division			22	60	mA
		open and other pins are connected to Vss.		ait mode,		10		μΑ
			While clock stops, Top			0.8	5	μΑ
			While clock stops, Top	r=85° C			20	μΑ

Table 23.4 A/D Conversion Characteristics (VCC1=VCC2=AVCC=VREF=4.2 to 5.5V, Vss= AVss = 0V at Topr=-20 to 85°C, f(BCLK) = 32MHz unless otherwise specified)

Symbol	Parameter	Measurement Condition		Standard			Unit
Symbol	Farameter	Ivicasuren	ient Condition	Min.	Min. Typ. Max. 10 ±3 ±7 ±1 ±3 ±3 40		
-	Resolution	VREF=VCC1				10	Bits
			ANo to AN7, ANEXO,			73	LSB
INL	Integral Nonlinearity Error VREF=Vcc1=Vcc2=5V	ANEX1				LSB	
"	The grain wormine arity Error	External op-amp ±7	LSB				
			connection mode				LSB
DNL	Differential Nonlinearity Error					±1	LSB
-	Offset Error					±3	LSB
-	Gain Error					±3	LSB
RLADDER	Resistor Ladder	VREF=VCC1		8		40	kΩ
tconv	10-bit Conversion Time ^(1, 2)			2.06			μs
tconv	8-bit Conversion Time ^(1, 2)			1.75			μs
t SAMP	Sampling Time ⁽¹⁾			0.188			μs
VREF	Reference Voltage			2		Vcc1	V
VIA	Analog Input Voltage			0		VREF	V

NOTES:

- 1. Divide f(X_{IN}), if exceeding 16 MHz, to keep ϕ AD frequency at 16 MHz or less.
- 2. With using the sample and hold function.

Table 23.5 D/A Conversion Characteristics (VCC1=VCC2=VREF=4.2 to 5.5V, Vss=AVss=0V at Topr=-20 to 85°C, f(BCLK) = 32MHz unless otherwise specified)

Symbol	Parameter	Measurement Condition Standa Min. Typ.	Standard			Unit
	radificiel		Тур.	Max.		
-	Resolution				8	Bits
-	Absolute Accuracy				1.0	%
tsu	Setup Time				3	μs
Ro	Output Resistance		4	10	20	kΩ
IVREF	Reference Power Supply Input Current	(Note 1)			1.5	mA

NOTE:

1. Measurement when using one D/A converter. The DAi register (i=0, 1) of the D/A converter, not being used, is set to "0016". The resistor ladder in the A/D converter is excluded.

IVREF flows even if the VCUT bit in the ADOCON1 register is set to "0" (no VREF connection).

Timing Requirements

(VCC1=VCC2=4.2 to 5.5V, Vss=0V at Topr=-20 to 85°C unless otherwise specified)

Table 23.6 External Clock Input

Symbol	Parameter	Stan	ndard	Unit
	Falametei	Min.	Max.	
tc	External Clock Input Cycle Time	31.25		ns
tw(H)	External Clock Input High ("H") Width	13.75		ns
tw(L)	External Clock Input Low ("L") Width	13.75		ns
tr	External Clock Rise Time		5	ns
tf	External Clock Fall Time		5	ns

Table 23.7 Memory Expansion Mode and Microprocessor Mode

Cumbal	Parameter	Star	ndard	Unit
Symbol	Parameter	Min.	Max.	Unit
tac1(RD-DB)	Data Input Access Time (RD standard)		(Note 1)	ns
tac1(AD-DB)	Data Input Access Time (AD standard, CS standard)		(Note 1)	ns
tac2(RD-DB)	Data Input Access Time (RD standard, when accessing a space with the multiplexrd bus)		(Note 1)	ns
tac2(AD-DB)	Data Input Access Time (AD standard, when accessing a space with the multiplexed bus)		(Note 1)	ns
tsu(DB-BCLK)	Data Input Setup Time	26		ns
tsu(RDY-BCLK)	RDY Input Setup Time	26		ns
tsu(HOLD-BCLK)	HOLD Input Setup Time	30		ns
th(RD-DB)	Data Input Hold Time	0		ns
th(BCLK-RDY)	RDY Input Hold Time	0		ns
th(BCLK-HOLD)	HOLD Input Hold Time	0		ns
td(BCLK-HLDA)	HLDA Output Delay Time		25	ns

NOTE

$$tac1(RD-DB) = \frac{10^9 \text{ X m}}{f(BCLK) \text{ X 2}} - 35 \qquad \text{[ns] (if external bus cycle is a} + b \phi, m=(bx2)+1)$$

$$tac1(AD-DB) = \frac{10^9 \text{ X n}}{f(BCLK)} - 35 \qquad \text{[ns] (if external bus cycle is a} + b \phi, n=a+b)$$

$$tac2(RD-DB) = \frac{10^9 \text{ X m}}{f(BCLK) \text{ X 2}} - 35 \qquad \text{[ns] (if external bus cycle is a} + b \phi, m=(bx2)-1)$$

$$tac2(AD-DB) = \frac{10^9 \text{ X p}}{f(BCLK) \text{ X 2}} - 35 \qquad \text{[ns] (if external bus cycle is a} + b \phi, p=\{(a+b-1)x2\}+1)$$

^{1.} Values can be obtained from the following equations, according to BCLK frequenccy and external bus cycles. Insert a wait state or lower the operation frequency, f(BCLK), if the calculated value is negative.

Timing Requirements

(VCC1=VCC2=4.2 to 5.5V, Vss=0V at Topr=-20 to 85°C unless otherwise specified)

Table 23.8 Timer A Input (Count Source Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit
	i didifictor	Min.	Max.]
tc(TA)	TAin Input Cycle Time	100		ns
tw(TAH)	TAin Input High ("H") Width	40		ns
tw(TAL)	TAin Input Low ("L") Width	40		ns

Table 23.9 Timer A Input (Gate Input in Timer Mode)

Symbol	Davamatan	Stan	dard	l lait
	Symbol	Parameter	Min.	Max.
tc(TA)	TAin Input Cycle Time	400		ns
tw(TAH)	TAin Input High ("H") Width	200		ns
tw(TAL)	TAin Input Low ("L") Width	200		ns

Table 23.10 Timer A Input (External Trigger Input in One-Shot Timer Mode)

Symbol	Parameter	Stan	dard	Unit
	Falanielei	Min.	Max.	
tc(TA)	TAin Input Cycle Time	200		ns
tw(TAH)	TAin Input High ("H") Width	100		ns
tw(TAL)	TAin Input Low ("L") Width	100		ns

Table 23.11 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter	Standard		Unit
	Falametei	Min. Max.	Onic	
tw(TAH)	TAin Input High ("H") Width	100		ns
tw(TAL)	TAin Input Low ("L") Width	100		ns

Table 23.12 Timer A Input (Counter Increment/Decrement Input in Event Counter Mode)

Symbol	Parameter	Standard	- Unit	
	Falametei	Min.	Max.	
tc(UP)	TAiout Input Cycle Time	2000		ns
tw(UPH)	TAio∪⊤ Input High ("H") Width	1000		ns
tw(UPL)	TAiout Input Low ("L") Width	1000		ns
tsu(UP-TIN)	TAiout Input Setup Time	400		ns
th(TIN-UP)	TAiout Input Hold Time	400		ns

Timing Requirements

(VCC1 = VCC2 = 4.2 to 5.5V, VSS = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 23.13 Timer B Input (Count Source Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit
Syllibol	raidilletei	Min.	Max.	
tc(TB)	TBiin Input Cycle Time (counted on one edge)	100		ns
tw(TBH)	TBiin Input High ("H") Width (counted on one edge)	40		ns
tw(TBL)	TBin Input Low ("L") Width (counted on one edge)	40		ns
tc(TB)	TBiin Input Cycle Time (counted on both edges)	200		ns
tw(TBH)	TBiin Input High ("H") Width (counted on both edges)	80		ns
tw(TBL)	TBin Input Low ("L") Width (counted on both edges)	80		ns

Table 23.14 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Standard		Unit
	r aranneter	Min.	Max.	Office
tc(TB)	TBiin Input Cycle Time	400		ns
tw(TBH)	TBiin Input High ("H") Width	200		ns
tw(TBL)	TBiin Input Low ("L") Width	200		ns

Table 23.15 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Stan	ıdard	Unit
	Falameter	Min.	Max.	Ornic
tc(TB)	TBiin Input Cycle Time	400		ns
tw(TBH)	TBiin Input High ("H") Width	200		ns
tw(TBL)	TBiin Input Low ("L") Width	200		ns

Table 23.16 A/D Trigger Input

Symbol	Parameter	Standard		Unit
	Falametei	Min.	Min. Max	Offic
tC(AD)	ADTRG Input Cycle Time (required for trigger)	1000		ns
tw(ADL)	ADTRG Input Low ("L") Width	125		ns

Table 23.17 Serial I/O

Symbol	Parameter	Star	Unit	
Symbol		Min.	Max.	- Offile
tc(ck)	CLKi Input Cycle Time	200		ns
tw(CKH)	CLKi Input High ("H") Width	100		ns
tw(CKL)	CLKi Input Low ("L") Width	100		ns
td(C-Q)	TxDi Output Delay Time		80	ns
th(c-Q)	TxDi Hold Time	0		ns
tsu(D-C)	RxDi Input Setup Time	30		ns
th(C-Q)	RxDi Input Hold Time	90		ns

Table 23.18 External Interrupt INTi Input

Symbol	Parameter	Standard		Unit
	raidilletei	Min.	Max.	Unit
tw(INH)	INTi Input High ("H") Width	250		ns
tw(INL)	INTi Input Low ("L") Width	250		ns

Switching Characteristics

(VCC1 = VCC2 = 4.2 to 5.5V, VSS = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 23.19 Memory Expansion Mode and Microprocessor Mode (when accessing external memory space)

Symbol	Parameter	Measurement	Standard		Unit
		Condition	Min. Max. 18 -3 0 (Note 1) 18 -3 0 (Note 1) 18 -3 1 (Note 1) 18 -5 18 -5 (Note 2)]	
td(BCLK-AD)	Address Output Delay Time			18	ns
th(BCLK-AD)	Address Output Hold Time (BCLK standard)		-3		ns
th(RD-AD)	Address Output Hold Time (RD standard)		0		ns
th(WR-AD)	Address Output Hold Time (WR standard)		(Note 1)		ns
td(BCLK-CS)	Chip-Select Signal Output Delay Time			18	ns
th(BCLK-CS)	Chip-Select Signal Output Hold Time (BCLK standard)		-3		ns
th(RD-CS)	Chip-Select Signal Output Hold Time (RD standard)	See Figure 23.1	0		ns
th(wr-cs)	Chip-Select Signal Output Hold Time (WR standard)	Occ riguic 25.1	(Note 1)		ns
td(BCLK-RD)	RD Signal Output Delay Time			18	ns
th(BCLK-RD)	RD Signal Output Hold Time		-5		ns
td(BCLK-WR)	WR Signal Output Delay Time			18	ns
th(BCLK-WR)	WR Signal Output Hold Time		-5		ns
td(DB-WR)	Data Output Delay Time (WR standard)		(Note 2)		ns
th(WR-DB)	Data Output Hold Time (WR standard)		(Note 1)		ns
tw(WR)	WR Output Width		(Note 2)		ns

NOTES:

1. Values can be obtained from the following equations, according to BCLK frequency.

$$th(WR - DB) = \frac{10^9}{f(BCLK) \times 2} - 10 \quad [ns]$$

$$th(WR - AD) = \frac{10^9}{f(BCLK) \times 2} - 10 \quad [ns]$$

$$th(WR - CS) = \frac{10^9}{f(BCLK) \times 2} - 10 \quad [ns]$$

2. Values can be obtained from the following equations, according to BCLK frequency and external bus cycles.

$$\begin{split} t_{W(WR)} = & \frac{10^9 \, \text{X n}}{f_{(BCLK)} \, \text{X 2}} - 15 \quad \text{[ns]} \quad \text{(if external bus cycle is a} \phi + b \phi, \, n = (bx2) - 1) \\ t_{d(DB-WR)} = & \frac{10^9 \, \text{X m}}{f_{(BCLK)}} - 20 \quad \text{[ns]} \quad \text{(if external bus cycle is a} \phi + b \phi, \, m = b) \end{split}$$

Switching Characteristics

(Vcc = 4.2 to 5.5V, Vss = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 23.20 Memory Expansion Mode and Microprocessor Mode (when accessing an external memory space with the multiplexed bus)

Symbol	Parameter	Measurement	Stan	dard	Unit
		Condition	Min.	Max.	1
td(BCLK-AD)	Address Output Delay Time			18	ns
th(BCLK-AD)	Address Output Hold Time (BCLK standard)		-3		ns
th(RD-AD)	Address Output Hold Time (RD standard)		(Note 1)		ns
th(WR-AD)	Address Output Hold Time (WR standard)		(Note 1)		ns
td(BCLK-CS)	Chip-Select Signal Output Delay Time			18	ns
th(BCLK-CS)	Chip-Select Signal Output Hold Time (BCLK standard)		-3		ns
th(RD-CS)	Chip-Select Signal Output Hold Time (RD standard)		(Note 1)		ns
th(WR-CS)	Chip-Select Signal Output Hold Time (WR standard)		(Note 1)		ns
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 23.1		18	ns
th(BCLK-RD)	RD Signal Output Hold Time		-5		ns
td(BCLK-WR)	WR Signal Output Delay Time			18	ns
th(BCLK-WR)	WR Signal Output Hold Time		-5		ns
td(DB-WR)	Data Output Delay Time (WR standard)		(Note 2)		ns
th(WR-DB)	Data Output Hold Time (WR standard)		(Note 1)		ns
td(BCLK-ALE)	ALE Signal Output Delay Time (BCLK standard)			18	ns
th(BCLK-ALE)	ALE Signal Output Hold Time (BCLK standard)		-5		ns
td(AD-ALE)	ALE Signal Output Delay Time (address standard)		(Note 3)		ns
th(ALE-AD)	ALE Signal Output Hold Time (address standard)	1	(Note 4)		ns
tdz(RD-AD)	Address Output Float Start Time	1		8	ns

NOTES:

1. Values can be obtained from the following equations, according to BCLK frequency.

$$th(RD - AD) = \frac{10^{9}}{f(BCLK) \times 2} - 10 \quad [ns]$$

$$th(WR - AD) = \frac{10^{9}}{f(BCLK) \times 2} - 10 \quad [ns]$$

$$th(RD - CS) = \frac{10^{9}}{f(BCLK) \times 2} - 10 \quad [ns]$$

$$th(WR - CS) = \frac{10^{9}}{f(BCLK) \times 2} - 10 \quad [ns]$$

$$th(WR - DB) = \frac{10^{9}}{f(BCLK) \times 2} - 10 \quad [ns]$$

2. Values can be obtained from the following equations, according to BCLK frequency and external bus cycle.

$$td(DB - WR) = \frac{10^9 \text{X m}}{f(BCLK) \text{ X 2}} - 25 \quad \text{[ns] (if external bus cycle is a} \phi + b\phi, m = (bx2)-1)$$

3. Values can be obtained from the following equations, according to BCLK frequency and external bus cycle.

$$td(AD - ALE) = \frac{10^9 X \text{ n}}{f(BCLK) X 2} - 20$$
 [ns] (if external bus cycle is $a\phi + b\phi$, n= a)

4. Values can be obtained from the following equations, according to BCLK frequency and external bus cycle.

$$th(ALE-AD) = \frac{10^9 X n}{f(BCLK) X 2} - 10$$
 [ns] (if external bus cycle is a\phi + b\phi, n= a)

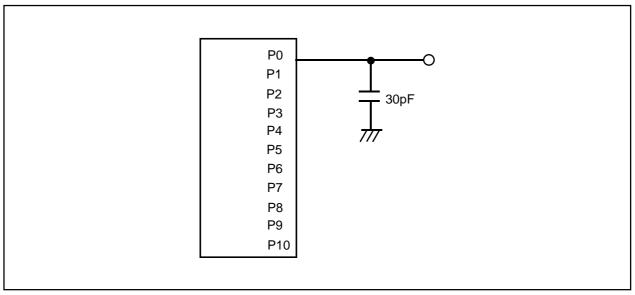


Figure 23.1 P0 to P10 Measurement Circuit

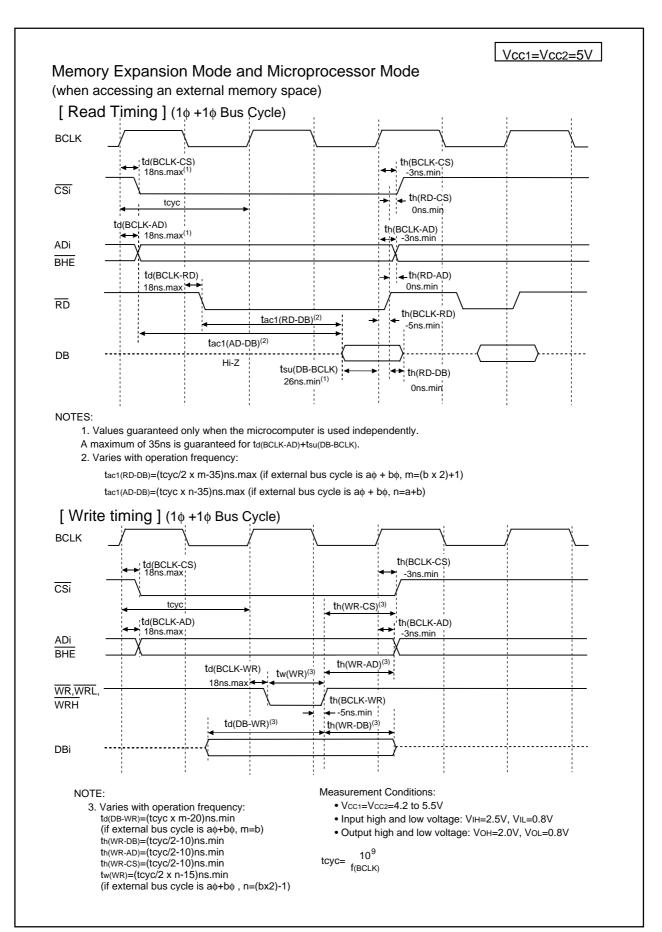


Figure 23.2 VCC1=VCC2=5V Timing Diagram (1)

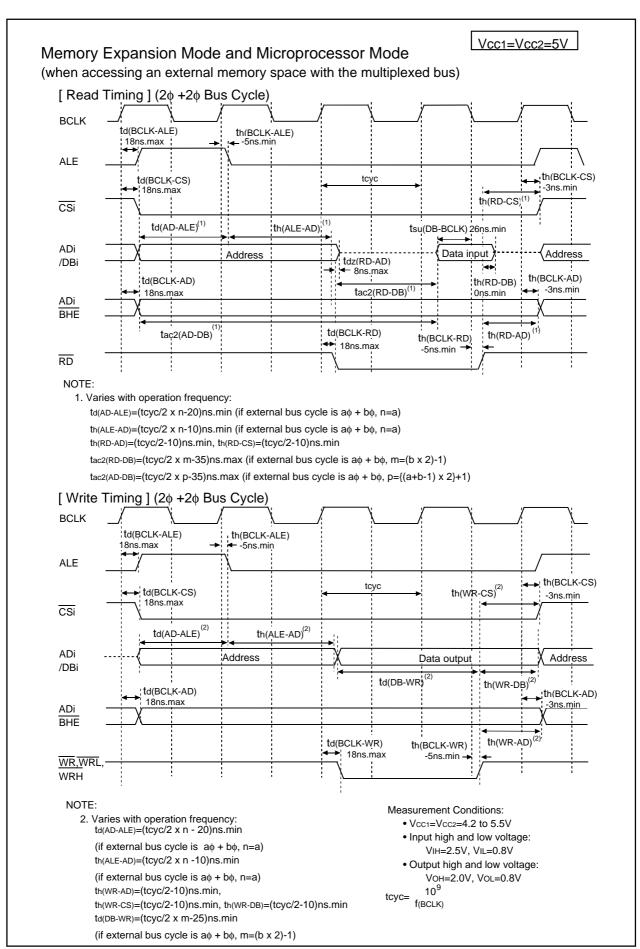


Figure 23.3 Vcc1=Vcc2=5V Timing Diagram (2)

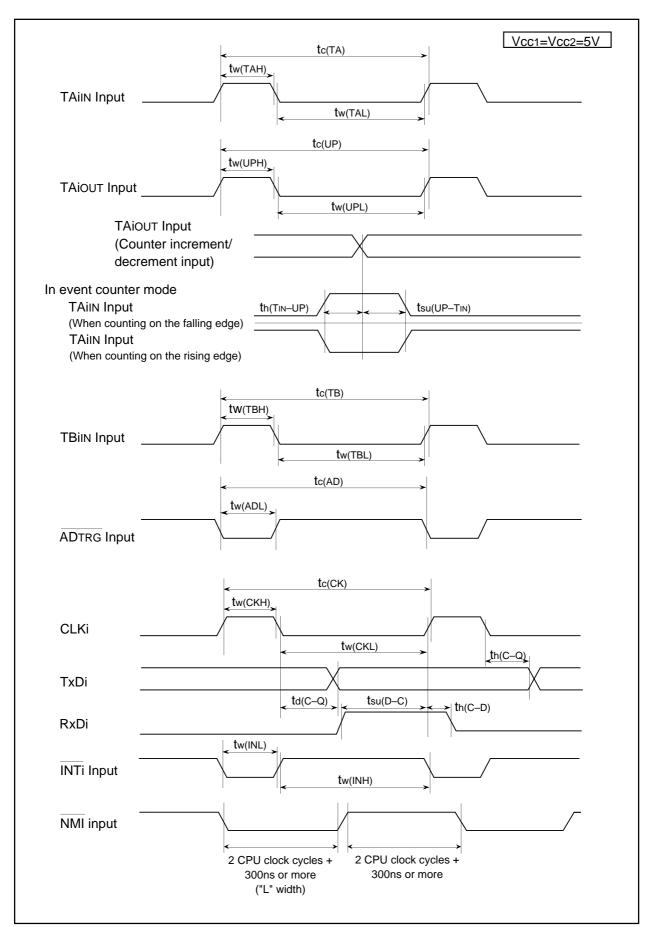


Figure 23.4 VCC1=VCC2=5V Timing Diagram (3)

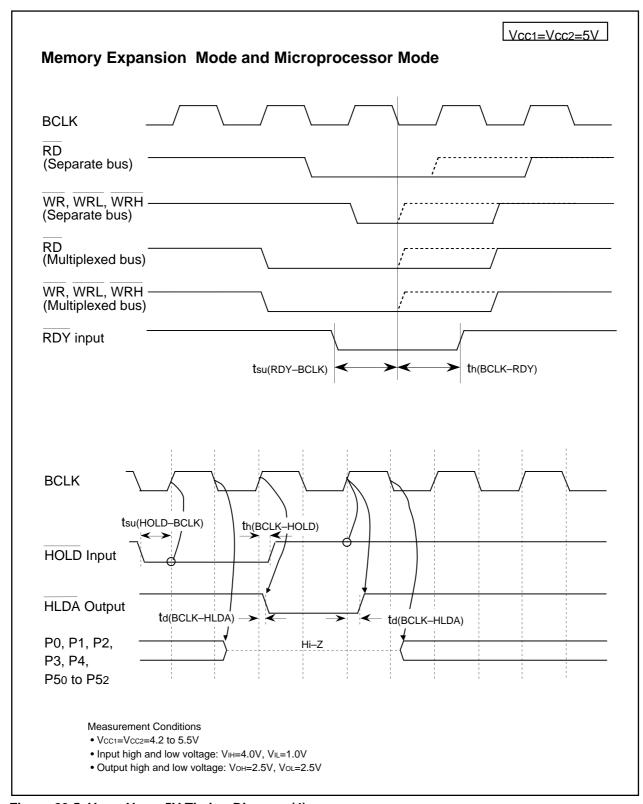


Figure 23.5 Vcc1=Vcc2=5V Timing Diagram (4)

Table 23.21 Electrical Characteristics (VCC1=VCC2=3.0 to 3.6V, VSS=0V at Topr = -20 to 85°C, f(BCLK)=24MHz unless otherwise specified)

Symbol		Parameter Condition		andard		Unit		
Symbol					Min.	Тур.	Max.	Onn
Vон	Output High ("H") Voltage P0o-P07, P1o-P17, P2o-P27, P3o-P37, P4o-P47, P5o-P57		Іон=-1mA	Vcc2-0.6		VCC2	V	
		P60-P67, P72-P77, P80-P	84, P86, P87, P90-		Vcc1-0.6		Vcc1	V
		Xout		Іон=-0.1mA	2.7		Vcc1	V
		Хсоит	High Power	No load applied		2.5		V
		7,0001	Low Power	No load applied		1.6		V
Vol	Output Low ("L")	P00-P07, P10-P17, P20-P		loL=1mA		1.0	0.5	V
VOL	Voltage	P47, P50-P57, P60-P67, P		IOL= IIIIA			0.5	\ \
		P86, P87, P90-P97, P100-						
		Xout		IoL=0.1mA			0.5	V
		Хсоит	High Power	No load applied		0		V
			Low Power	No load applied		0		V
VT+-VT-	Hysteresis	TIOLD DDV TAO TAA.		ito ioaa appiioa	0.2		1.0	V
V I+- V I-	Trysteresis	HOLD, RDY, TA0IN-TA4I INTO-INT5, ADTRG, CTSC CLK4, TA0out-TA4out, I RxD4, SCL0-SCL4, SDA	D-CTS4, CLK0- NMI, KI0-KI3, RxD0-		0.2		1.0	V
		RESET	000/14		0.2		1.8	V
Іін	Input High ("H")		27 D20-D27 D40-	Vi=3V	0.2		4.0	μΑ
III	Current	P47, P50-P57, P60-P67, P	, P50-P57, P60-P67, P70-P77, P80-P87, -P97, P100-P107, XIN, RESET, CNVss,				4.0	μπ
lil.	Input Low ("L") Current	P47, P50-P57, P60-P67, P	v. P50-P57, P60-P67, P70-P77, P80-P87, P0-P97, P100-P107, XIN, RESET, CNVss,				-4.0	μА
RPULLUP	Pull-up Resistance	P00-P07, P10-P17, P20-P2 P50-P57, P60-P67, P72-P7 P87, P90-P97, P100-P107		VI=0V	40	70	500	kΩ
Rfxin	Feedback Resistance	XIN				3.0		МΩ
Rfxcin	Feedback Resistance					30.0		МΩ
VRAM	RAM Standby Voltage	-			2.0			V
Icc	Power Supply Current	Measurement condition: In single-chip mode,	f(BCLK)=24 MHz, S No division	Square wave,		17	35	mA
		output pins are left open and other pins are connected to Vss.	f(BCLK)=32 kHz, In Topr=25° C	wait mode,		10		μА
		Commodica to VSS.	While clock stops, To	opr=25° C		0.8	5	μΑ
			While clock stops, To	opr=85° C			50	μА

Table 23.22 A/D Conversion Characteristics (VCC1=VCC2=AVCC=VREF= 3.0 to 3.6V, VSS=AVSS=0V at Topr = -20 to 85°C, f(BCLK) = 24MHz unless otherwise specified)

Symbol	Parameter		Measurement Condition		Standard		
Cymbol	T didinot	01	Wodou official Condition	Min.	Тур.	Max.	Unit
-	Resolution		VREF=VCC1			10	Bits
INL	Integral Nonlinearity Error	No S&H (8-bit)	Vcc1=Vcc2=VREF=3.3V			±2	LSB
DNL	Differential Nonlinearity Error	No S&H (8-bit)				±1	LSB
-	Offset Error	No S&H (8-bit)				±2	LSB
-	Gain Error	No S&H (8-bit)				±2	LSB
RLADDER	Resistor Ladder	•	VREF=VCC1	8.0		40	kΩ
tconv	8-bit Conversion Time ^(1, 2)			6.1			μs
VREF	Reference Voltage			3.3		Vcc1	V
VIA	Analog Input Voltage			0		VREF	V

S&H: Sample and Hold

NOTES:

- 1. Divide f(XIN), if exceeding 10 MHz, to keep ϕ AD frequency at 10 MHz or less.
- 2. S&H not available.

Table 23.23 D/A Conversion Characteristics (VCC1=VCC2=VREF=3.0 to 3.6V, VSS=AVSS=0V at Topr = -20 to 85°C, f(BCLK) = 24MHz unless otherwise specified)

Symbol	Parameter	Measurement Condition	5	Unit		
			Min.	Тур.	Max.	OTIL
-	Resolution				8	Bits
-	Absolute Accuracy				1.0	%
tsu	Setup Time				3	μs
Ro	Output Resistance		4	10	20	kΩ
IVREF	Reference Power Supply Input Current	(Note 1)			1.0	mA

NOTE:

1. Measurement results when using one D/A converter. The DAi register (i=0, 1) of the D/A converter, not being used, is set to "0016". The resistor ladder in the A/D converter is excluded.

IVREF flows even if the VCUT bit in the ADOCON1 register is set to "0" (no VREF connection).

Timing Requirements

(VCC1=VCC2= 3.0 to 3.6V, VSS = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 23.24 External Clock Input

Symbol	Parameter –	Stan	Unit	
		Min.	Max.	Offic
tc	External Clock Input Cycle Time	41		ns
tW(H)	External Clock Input High ("H") Width	18		ns
tw(L)	External Clock Input Low ("L") Width	18		ns
tr	External Clock Rise Time		5	ns
tf	External Clock Fall Time		5	ns

Table 23.25 Memory Expansion Mode and Microprocessor Mode

Symbol	Parameter	Star	ndard	Unit
Symbol	raidilletei		Max.	Offic
tac1(RD-DB)	Data Input Access Time (RD standard)		(Note 1)	ns
tac1(AD-DB)	Data Input Access Time (AD standard, CS standard)		(Note 1)	ns
tac2(RD-DB)	Data Input Access Time (RD standard, when accessing a space with the multiplexed bus)		(Note 1)	ns
tac2(AD-DB)	Data Input Access Time (AD standard, when accessing a space with the multiplexed bus)		(Note 1)	ns
tsu(DB-BCLK)	Data Input Setup Time	30		ns
tsu(RDY-BCLK)	RDY Input Setup Time	40		ns
tsu(HOLD-BCLK)	HOLD Input Setup Time	60		ns
th(RD-DB)	Data Input Hold Time	0		ns
th(BCLK-RDY)	RDY Input Hold Time	0		ns
th(BCLK-HOLD)	HOLD Input Hold Time	0		ns
td(BCLK-HLDA)	HLDA Output Delay Time		25	ns

NOTE:

1. Values can be obtained from the following equations, according to BCLK frequency and external bus cycles. Insert a wait state or lower the operation frequency, f(BCLK), if the calculated value is negative.

$$tac1(RD - DB) = \frac{10^9 \text{ X m}}{f(BCLK) \text{ X 2}} - 35 \qquad \text{[ns] (if external bus cycle is a} + b\phi, m=(bx2)+1)$$

$$tac1(AD - DB) = \frac{10^9 \text{ X n}}{f(BCLK)} - 35 \qquad \text{[ns] (if external bus cycle is a} + b\phi, n=a+b)$$

$$tac2(RD - DB) = \frac{10^9 \text{ X m}}{f(BCLK) \text{ X 2}} - 35 \qquad \text{[ns] (if external bus cycle is a} + b\phi, m=(bx2)-1)$$

$$tac2(AD - DB) = \frac{10^9 \text{ X p}}{f(BCLK) \text{ X 2}} - 35 \qquad \text{[ns] (if external bus cycle is a} + b\phi, p=\{(a+b-1)x2\}+1)$$

Timing Requirements

(VCC1=VCC2= 3.0 to 3.6V, VSS= 0V at Topr = -20 to 85°C unless otherwise specified)

Table 23.26 Timer A Input (Count Source Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit
	i alametei	Min.	Max.	
tc(TA)	TAin Input Cycle Time	100		ns
tw(TAH)	TAin Input High ("H") Width	40		ns
tw(TAL)	TAilN Input Low ("L") Width	40		ns

Table 23.27 Timer A Input (Gate Input in Timer Mode)

Symbol	Development	Stan	l lait	
	Parameter	Min.	Max.	Unit
tc(TA)	TAin Input Cycle Time	400		ns
tw(TAH)	TAin Input High ("H") Width	200		ns
tw(TAL)	TAin Input Low ("L") Width	200		ns

Table 23.28 Timer A Input (External Trigger Input in One-Shot Timer Mode)

Symbol	Parameter		Standard		
	Falanielei	Min.	Max.	Unit	
tc(TA)	TAin Input Cycle Time	200		ns	
tw(TAH)	TAin Input High ("H") Width	100		ns	
tw(TAL)	TAin Input Low ("L") Width	100		ns	

Table 23.29 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter	Stan	ndard	Unit
	raiametei	Min.	Max.	
tw(TAH)	TAin Input High ("H") Width	100		ns
tw(TAL)	TAin Input Low ("L") Width	100		ns

Table 23.30 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

Symbol Parameter	Dorometer	Standard		Unit
	Parameter	Min.	Max.	Onit
tc(UP)	TAiout Input Cycle Time	2000		ns
tw(UPH)	TAio∪⊤ Input High ("H") Width	1000		ns
tw(UPL)	TAiout Input Low ("L") Width	1000		ns
tsu(UP-TIN)	TAio∪⊤ Input Setup Time	400		ns
th(TIN-UP)	TAiout Input Hold Time	400		ns

Timing Requirements

(VCC1=VCC2= 3.0 to 3.6V, VSS = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 23.31 Timer B Input (Count Source Input in Event Counter Mode)

Symbol	Parameter	Standard	Unit	
	raidilletei	Min.	Max.	
tc(TB)	TBiin Input Cycle Time (counted on one edge)	100		ns
tw(TBH)	TBiin Input High ("H") Width (counted on one edge)	40		ns
tw(TBL)	TBiin Input Low ("L") Width (counted on one edge)	40		ns
tc(TB)	TBiin Input Cycle Time (counted on both edges)	200		ns
tw(TBH)	TBiin Input High ("H") Width (counted on both edges)	80		ns
tw(TBL)	TBin Input Low ("L") Width (counted on both edges)	80		ns

Table 23.32 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Star	Standard	Unit
	r arameter	Min.	Max.	Offic
tc(TB)	TBiin Input Cycle Time	400		ns
tw(TBH)	TBiin Input High ("H") Wdth	200		ns
tw(TBL)	TBin Input Low ("L") Width	200		ns

Table 23.33 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Stan	dard	Unit
	Falametei	Min.	Max.	Offic
tc(TB)	TBiin Input Cycle Time	400		ns
tw(TBH)	ТВім Input High ("H") Width	200		ns
tw(TBL)	TBiเท Input Low ("L") Width	200		ns

Table 23.34 A/D Trigger Input

Symbol	Parameter	Standard		Unit
Symbol	raidilletei	Min.	Max.	Offic
tc(AD)	ADTRG Input Cycle Time (required for trigger)	1000		ns
tw(ADL)	ADTRG Input Low ("L") Width	125		ns

Table 23.35 Serial I/O

Symbol	Parameter	Standard Min. Max.	Unit	
	raidilletei		Offic	
tc(CK)	CLKi Input Cycle Time	200		ns
tw(CKH)	CLKi Input High ("H") Width	100		ns
tw(CKL)	CLKi Input Low ("L") Width	100		ns
td(C-Q)	TxDi Output Delay Time		80	ns
th(C-Q)	TxDi Hold Time	0		ns
tsu(D-C)	RxDi Input Setup Time	30		ns
th(C-Q)	RxDi Input Hold Time	90		ns

Table 23.36 External Interrupt INTi Input

Symbol	Parameter	Stan	Max.	Unit
	Falanielei	Min.		OTILL
tw(INH)	INTi Input High ("H") Width	250		ns
tw(INL)	INTi Input Low ("L") Width	250		ns

Switching Characteristics

(VCC1=VCC2=3.0 to 3.6V, VSS = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 23.37 Memory Expansion Mode and Microprocessor Mode (when accessing external memory space)

Symbol	Parameter	Measurement Condition	Stan	ndard Max.	Unit
		Condition	Min.		
td(BCLK-AD)	Address Output Delay Time			18	ns
th(BCLK-AD)	Address Output Hold Time (BCLK standard)		0		ns
th(RD-AD)	Address Output Hold Time (RD standard)		0		ns
th(WR-AD)	Address Output Hold Time (WR standard)		(Note 1)		ns
td(BCLK-CS)	Chip-Select Signal Output Delay Time			18	ns
th(BCLK-CS)	Chip-Select Signal Output Hold Time (BCLK standard)		0		ns
th(RD-CS)	Chip-Select Signal Output Hold Time (RD standard)	See Figure 23.1	0		ns
th(WR-CS)	Chip-Select Signal Output Hold Time (WR standard)		(Note 1)		ns
td(BCLK-RD)	RD Signal Output Delay Time			18	ns
th(BCLK-RD)	RD Signal Output Hold Time		-3		ns
td(BCLK-WR)	WR Signal Output Delay Time			18	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(DB-WR)	Data Output Delay Time (WR standard)		(Note 2)		ns
th(WR-DB)	Data Output Hold Time (WR standard)		(Note 1)		ns
tw(WR)	WR Output Width		(Note 2)		ns

NOTES:

1. Values can be obtained from the following equations, according to BCLK frequency.

$$th(WR - DB) = \frac{10^{9}}{f(BCLK) X 2} - 20 \quad [ns]$$

$$th(WR - AD) = \frac{10^{9}}{f(BCLK) X 2} - 10 \quad [ns]$$

$$th(WR - CS) = \frac{10^{9}}{f(BCLK) X 2} - 10 \quad [ns]$$

2. Values can be obtained from the following equations, according to BCLK frequency and external bus cycles.

$$t_{W(WR)} = \frac{10^9 x \text{ n}}{f_{(BCLK)} \text{ X 2}} - 15 \quad \text{[ns]} \quad \text{(if external bus cycle is a} \phi + b \phi, \ n=(b \text{ x 2)-1)}$$

$$t_{d(DB-WR)} = \frac{10^9 x \text{ m}}{f_{(BCLK)}} - 20 \quad \text{[ns]} \quad \text{(if external bus cycle is a} \phi + b \phi, \ m=b)$$

Switching Characteristics

(VCC1 = VCC2 = 3.0 to 3.6V, VSS = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 23.38 Memory Expansion Mode and Microprocessor Mode (when accessing an external memory space with the multiplexed bus)

Symbol	Parameter	Measurement	Standard	Unit	
•		Condition	Min.	Max.	
td(BCLK-AD)	Address Output Delay Time			18	ns
th(BCLK-AD)	Address Output Hold Time (BCLK standard)		0		ns
th(RD-AD)	Address Output Hold Time (RD standard)		(Note 1)		ns
th(WR-AD)	Address Output Hold Time (WR standard)		(Note 1)		ns
td(BCLK-CS)	Chip-Select Signal Output Delay Time			18	ns
th(BCLK-CS)	Chip-Select Signal Output Hold Time (BCLK standard)		0		ns
th(RD-CS)	Chip-Select Signal Output Hold Time (RD standard)		(Note 1)		ns
th(WR-CS)	Chip-Select Signal Output Hold Time (WR standard)		(Note 1)		ns
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 23.1		18	ns
th(BCLK-RD)	RD Signal Output Hold Time		-3		ns
td(BCLK-WR)	WR Signal Output Delay Time			18	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(DB-WR)	Data Output delay Time (WR standard)		(Note 2)		ns
th(WR-DB)	Data Output Hold Time (WR standard)		(Note 1)		ns
td(BCLK-ALE)	ALE Signal Output Delay Time (BCLK standard)			18	ns
th(BCLK-ALE)	ALE Signal Output Hold Time (BCLK standard)		-2		ns
td(AD-ALE)	ALE Signal Output Delay Time (address standard)		(Note 3)		ns
th(ALE-AD)	ALE Signal Output Hold Time (address standard)		(Note 4)		ns
tdz(RD-AD)	Address Output Float Start Time			8	ns

NOTES:

1. Values can be obtained by the following equations, according to BLCK frequency.

$$th(RD - AD) = \frac{10^{9}}{f(BCLK) \times 2} - 10 \quad [ns]$$

$$th(WR - AD) = \frac{10^{9}}{f(BCLK) \times 2} - 10 \quad [ns]$$

$$th(RD - CS) = \frac{10^{9}}{f(BCLK) \times 2} - 10 \quad [ns]$$

$$th(WR - CS) = \frac{10^{9}}{f(BCLK) \times 2} - 10 \quad [ns]$$

$$th(WR - DB) = \frac{10^{9}}{f(BCLK) \times 2} - 20 \quad [ns]$$

2. Values can be obtained by the following equations, according to BLCK frequency and external bus cycles.

$$td(DB-WR) = \frac{-10^9 \text{X m}}{f(BCLK) \text{ X 2}} - 25 \quad \text{[ns] (if external bus cycle is a} \\ \phi + b \\ \phi, \text{ m=(b+2)-1)}$$

3. Values can be obtained by the following equations, according to BLCK frequency and external bus cycles.

$$td(AD - ALE) = \frac{10^9 x n}{f(BCLK) X 2} - 20$$
 [ns] (if external bus cycle is $a\phi + b\phi$, n=a)

4. Values can be obtained by the following equations, according to BLCK frequency and external bus cycles.

th(ALE – AD) =
$$\frac{10^9 \text{x n}}{f(BCLK) \text{ X 2}}$$
 – 10 [ns] (if external bus cycle is a\phi + b\phi, n=a)

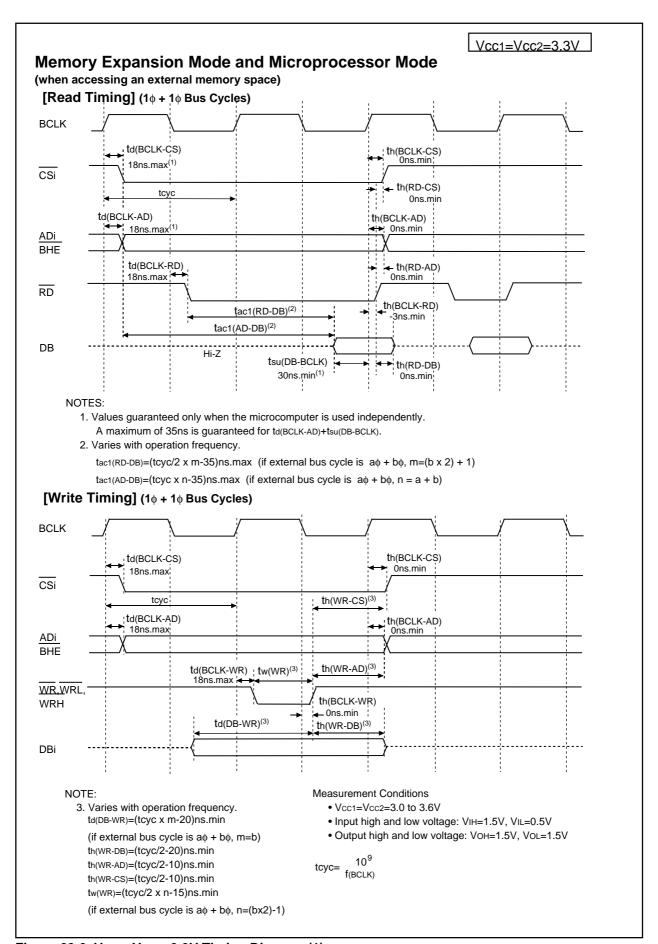


Figure 23.6 Vcc1=Vcc2=3.3V Timing Diagram (1)

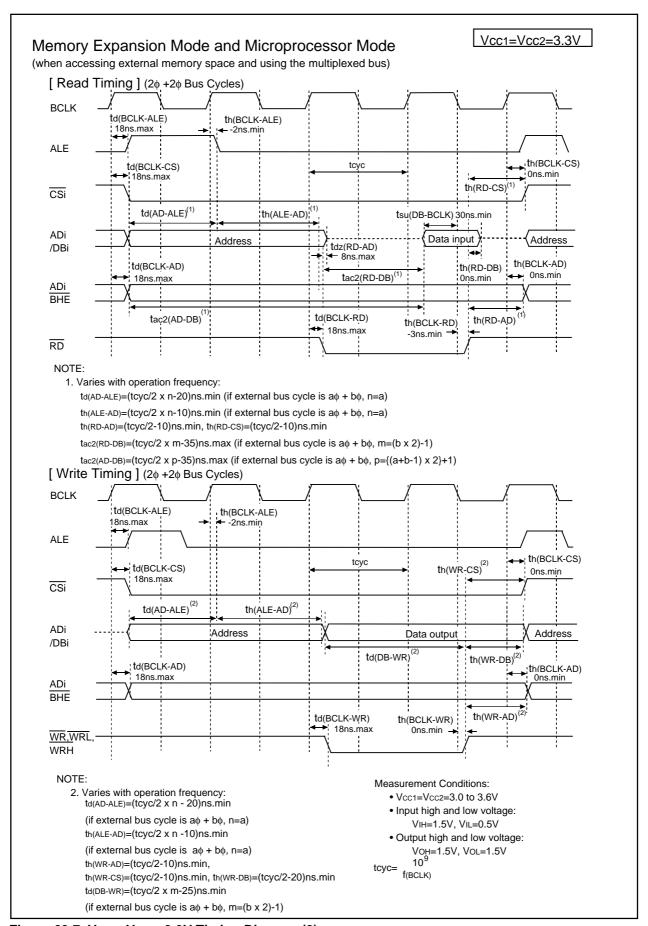


Figure 23.7 Vcc1=Vcc2=3.3V Timing Diagram (2)

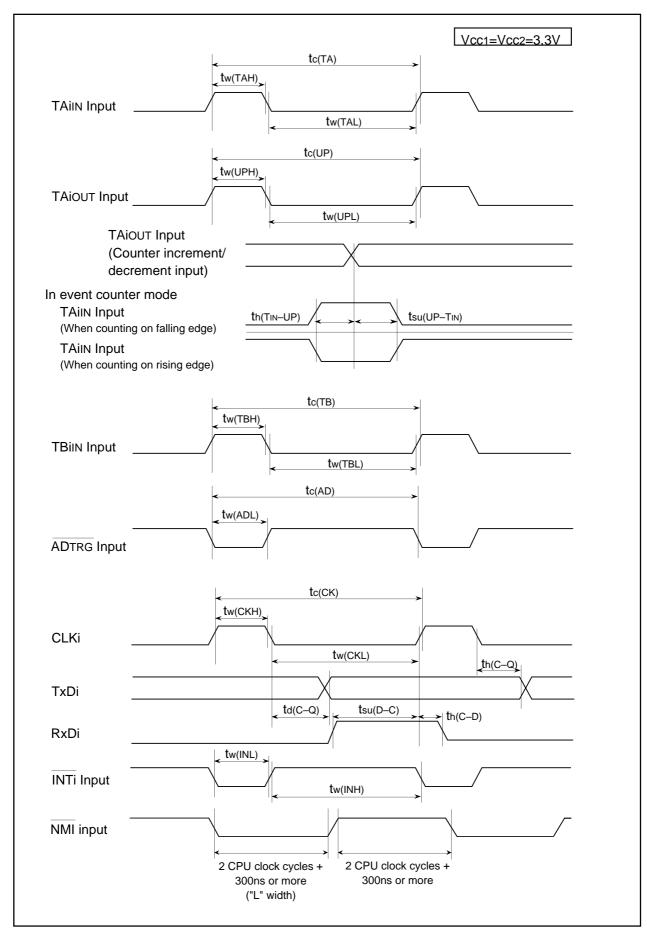


Figure 23.8 Vcc1=Vcc2=3.3V Timing Diagram (3)

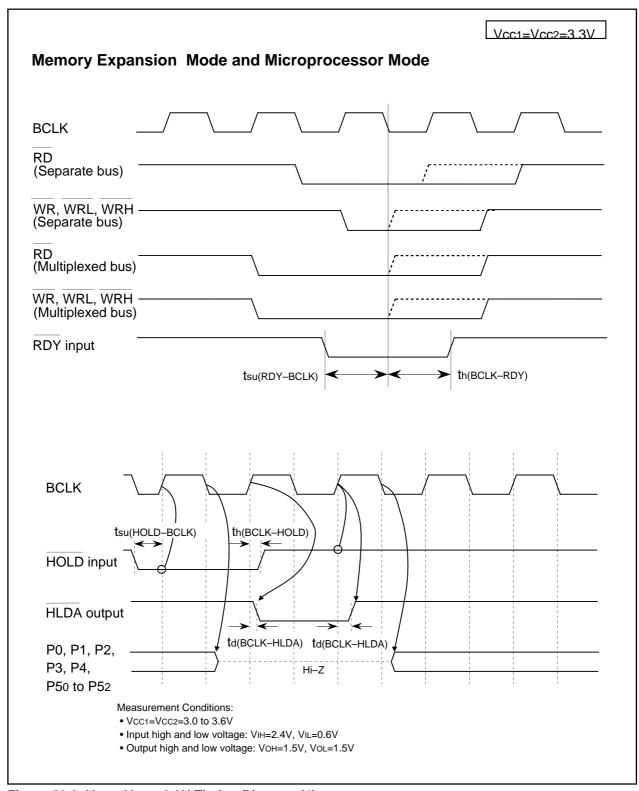


Figure 23.9 Vcc1=Vcc2=3.3V Timing Diagram (4)

M32C/80 Group 24. Precautions (Reset)

24. Precautions

24.1 Reset

Voltage applied to the VCC1 pin must meet the SVCC standard.

Table 24.1 Power Supply Increasing Slope

Symbol	Parameter	,	Standard		Unit
	T dramoto.	Min.		01111	
SVcc	Power Supply Increasing Slope (Vcc1)				V/ms

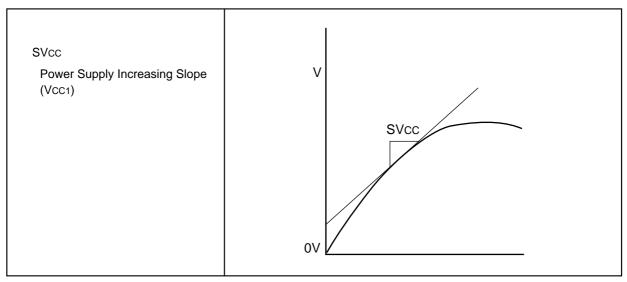


Figure 24.1 SVcc Timing

M32C/80 Group 24. Precautions (Bus)

24.2 Bus

24.2.1 HOLD Signal

When entering microprocessor mode or memory expansion mode from single-chip mode and using HOLD input, set the PM01 and PM00 bits to "112" (microprocessor mode) or to "012" (memory expansion mode) after setting the PD4_7 to PD4_0 bits in the PD4 register and the PD5_2 to PD5_0 bits in the PD5 register to "0" (input mode).

P40 to P47 (A16 to A22, \$\overline{A23}\$, \$\overline{CS0}\$ to \$\overline{CS3}\$, MA8 to MA12) and P50 to P52 (\$\overline{RD/WR/BHE}\$, \$\overline{RD/WRL/WRH}\$) are not placed in high-impedance states even when a low-level ("L") signal is applied to the \$\overline{HOLD}\$ pin, if the PM01 and PM00 bits are set to "112" (microprocessor mode) or to "012" (memory expansion mode) after setting the PD4_7 to PD4_0 bits in the PD4 register and the PD5_2 to PD5_0 bits in the PD5 register to "1" (output mode) in single-chip mode.

24.3 Special Function Registers (SFRs)

24.3.1 Register Settings

Table 24.2 lists registers containing bits which can only be written to. Set these registers with immediate values. When establishing the next value by altering the present value, write the present value to the RAM as well as to the register. Transfer the next value to the register after making changes in the RAM.

Table 24.2 Registers with Write-only Bits

Register	Address	Register	Address
WDTS Register	000E16	U3BRG Register	032916
G0RI Register	00EC16	U3TB Register	032B16, 032A16
G1RI Register	012C ₁₆	U2BRG Register	033916
U1BRG Register	02E916	U2TB Register	033B16, 033A16
U1TB Register	02EB16, 02EA16	UDF Register	034416
U4BRG Register	02F916	TA0 Register ⁽¹⁾	034716, 034616
U4TB Register	02FB16, 02FA16	TA1 Register ⁽¹⁾	034916, 034816
TA11 Register	030316, 030216	TA2 Register ⁽¹⁾	034B16, 034A16
TA21 Register	030516, 030416	TA3 Register ⁽¹⁾	034D16, 034C16
TA41 Register	030716, 030616	TA4 Register ⁽¹⁾	034F16, 034E16
DTT Register	030C16	U0BRG Register	036916
ICTB2 Register	030D16	U0TB Register	036B16, 36A16

NOTE:

^{1.} In one-shot timer mode and pulse width modulation mode only.

24.4 Clock Generation Circuit

24.4.1 CPU Clock

- When the CPU operating frequency is 24 MHz or more, use the following procedure for better EMC (Electromagnetic Compatibility) performance.
 - 1) Oscillator connected between the XIN and XOUT pins, or external clock applied to the XIN pin, has less than 24 MHz frequency.
 - 2) Use the PLL frequency synthesizer to multiply the main clock.

24.4.2 Sub Clock

Set the CM03 bit to "0" (XCIN-XCOUT drive capacity "LOW") when selecting the sub clock (XCIN-XCOUT) as the CPU clock, or Timer A or Timer B count source (fc32).

24.4.2.1 Sub Clock Oscillation

When oscillating the sub clock, set the CM04 bit in the CM0 register to "1" (XCIN-XCOUT oscillation function) after setting the CM07 bit in the CM0 register to "0" (clock other than sub clock) and the CM03 bit to "1" (XCIN-XCOUT drive capacity "HIGH"). Set the CM03 bit to "0" after sub clock oscillation stabilizes.

Set the sub clock as the CPU clock, or Timer A or Timer B count source (fC32) after the above settings are completed.

24.4.2.2 Using Stop Mode

When the microcomputer enters stop mode, the CM03 bit is automatically set to "1" (XCIN-XCOUT drive capacity "HIGH"). Use the following procedure to select the main clock as the CPU clock when entering stop mode.

- 1) Set the CM17 bit in the CM1 register to "0" (main clock).
- 2) Set the CM21 bit in the CM2 register to "0" (clock selected by the CM17 bit).
- 3) Set the CM07 bit in the CM0 register to "0" (clock selected by the CM21 bit divided by the MCD register setting).

After exiting stop mode, wait for the sub clock oscillation to stabilize. Then set the CM03 bit to "0" and the CM07 bit to "1" (sub clock).

24.4.2.3 Oscillation Parameter Matching

If the sub slock oscillation parameters have only been evaluated with the drive capacity "HIGH", the parameters should be reevaluated for drive capacity "LOW".

Contact your oscillator manufacturer for details on matching parameters.

24.4.3 PLL Frequency Synthesizer

Stabilize supply voltage to meet the power supply standard when using the PLL frequency synthesizer.

Table 24.3 Power Supply Ripple

Symbol	Parameter		Standard			Unit
Cymbol	T didifficient			Тур.	Max.	
f(ripple)	Power Supply Ripple Tolerable Frequency (Vcc1)				10	kHz
V	Device Comply Disple Voltage Electrotics Desce	Vcc1=5V			0.5	V
VP-P(ripple)	Power Supply Ripple Voltage Fluctuation Range	Vcc1=3.3V			0.3	V
Vcc(V/ T)	Power Supply Bipple Voltage Fluctuation Bote	Vcc1=5V			1	V/ms
	Power Supply Ripple Voltage Fluctuation Rate	Vcc1=3.3V			0.3	V/ms

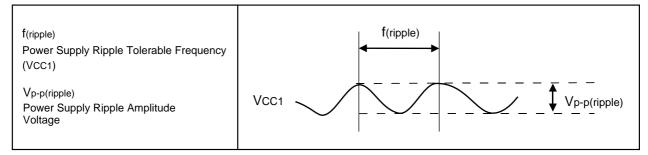


Figure 24.2 Power Supply Fluctuation Timing

24.4.4 External Clock

Do not stop an external clock running if the main clock is selected as the CPU clock while the external clock is applied to the XIN pin.

Do not set the CM05 bit in the CM0 register to "1" (main clock stopped) while the external clock input is used for the CPU clock.

24.4.5 Clock Divide Ratio

Set the PM12 bit in the PM1 register to "0" (no wait state) when changing the MCD4 to MCD0 bit settings in the MCD register.

24.4.6 Power Consumption Control

Stabilize the main clock, sub clock or PLL clock to switch the CPU clock source to each clock.

24.4.6.1 Wait Mode

When entering wait mode while the CM02 bit in the CM0 register is set to "1" (peripheral function stop in wait mode), set the MCD4 to MCD0 bits in the MCD register to maintain the 10-MHz CPU clock frequency or less.

When entering wait mode, the instruction queue reads ahead to instructions following the WAIT instruction, and the program stops. Write at least 4 NOP instructions after the WAIT instruction.

24.4.6.2 Stop Mode

- Use the following procedure to select the main clock as the CPU clock when entering stop mode.
 - 1) Set the CM17 bit in the CM1 register to "0" (main clock).
 - 2) Set the CM21 bit in the CM2 register to "0" (clock selected by the CM17 bit).
- 3) Set the CM07 bit in the CM0 register to "0" (clock selected by the CM21 bit divided by the MCD register setting).

If the PLL clock is selected as the CPU clock source, set the CM17 bit to "0" (main clock) and the PLC07 bit in the PLC0 register to "0" (PLL off) before entering stop mode.

- The microcomputer cannot enter stop mode if a low-level signal ("L") is applied to the NMI pin. Apply a high-level ("H") signal instead.
- If stop mode is exited by any reset, apply an "L" signal to the RESET pin until a main clock oscillation is stabilized enough.
- If using the NMI interrupt to exit stop mode, use the following procedure to set the CM10 bit in the CM1 register (all clocks stopped).
- 1) Exit stop mode with using the NMI interrupt.
- 2) Generate a dummy interrupt.
- 3) Set the CM10 bit to "1".

```
e.g., int #63 ; dummy interrupt bset cm1 ; all clocks stopped

/* dummy interrupt handling */
dummy
reit
```

• When entering stop mode, the instruction queue reads ahead to instructions following the instruction setting the CM10 bit in the CM1 register to "1" (all clocks stopped), and the program stops. When the microcomputer exits stop mode, the instruction lined in the instruction queue is executed before the interrupt routine for recovery is done.

Write the JMP.B instruction, as follows, after the instruction setting the CM10 bit in the CM1 register to "1" (all clocks stopped).

```
e.g., bset 0, prcr ; protection removed bset 0, cm1 ; all clocks stopped
```

jmp.b LABEL_001 ; JMP.B instruction executed (no instuction between JMP.B

; and LABEL.)

LABEL_001:

nop ; NOP (1)
nop ; NOP (2)
nop ; NOP (3)
nop ; NOP (4)
mov.b #0, prcr ; Protection set

•

•

•

24.4.6.3 Suggestions for Reducing Power Consumption

The followings are suggestions for reducing power consumption when programming or designing systems.

Ports: I/O ports maintains the same state despite the microcomputer entering wait mode or stop mode. Current flows through active output ports. Feedthrough current flows through input ports in a high-impedance state. Set unassigned ports as input ports and stabilize electrical potential before entering wait mode or stop mode.

A/D Converter: If the A/D conversion is not performed, set the VCUT bit in the AD0CON1 register to "0" (no VREF connection). Set the VCUT bit to "1" (VREF connection) and wait at least 1μ s before starting the A/D conversion.

D/A Converter: Set the DAi bit (i=0, 1) in the DACON register to "0" (output disabled) and set the DAi register to "0016" when the D/A conversion is not performed.

Peripheral Function Stop: Set the CM02 bit in the CM0 register while in wait mode to stop unnecessary peripheral functions. However, this does not reduce power consumption because the peripheral function clock (fc32) generating from the sub clock does not stop. When in low-speed mode and low-power consumption mode, do not enter wait mode when the CM02 bit is set to "1" (peripheral clock stops in wait mode).

24.5 Protection

The PRC2 bit setting in the PRCR register is changed to "0" (write disabled) when an instruction is written to any address after the PRC2 bit is set to "1" (write enabled). Write instruction immediately after setting the PRC2 bit to "1" to change registers protected by the PRC2 bit. Do not generate an interrupt or a DMA transfer between the instruction to set the PRC2 bit to "1" and the following instruction.

24.6 Interrupts

24.6.1 ISP Setting

After reset, the ISP is set to "00000016". The program runs out of control if an interrupt is acknowledged before the ISP is set. Therefore, the ISP must be set before an interrupt request is generated. Set the ISP to an even address, which allows interrupt sequences to be executed at a higher speed.

To use $\overline{\text{NMI}}$ interrupt, set the ISP at the beginning of the program. The $\overline{\text{NMI}}$ interrupt can be acknowledged after the first instruction has been executed after reset.

24.6.2 NMI Interrupt

- NMI interrupt cannot be denied. Connect the NMI pin to Vcc via a resistor (pull-up) when not in use.
- The P8_5 bit in the P8 register indicates the NMI pin value. Read the P8_5 bit only to determine the pin level after a NMI interrupt occurs.
- "H" and "L" signals applied to the $\overline{\text{NMI}}$ pin must be over 2 CPU clock cycles + 300 ns wide.
- NMI interrupt request may not be acknowledged if this and other interrupt requests are generated simultaneously.

24.6.3 INT Interrupt

Edge Sensitive

"H" and "L" signals applied to the $\overline{\text{INT}0}$ to $\overline{\text{INT}5}$ pins must be at least 250 ns wide, regardless of the CPU clock.

• Level Sensitive

"H" and "L" signals applied to the $\overline{\text{INT}}0$ to $\overline{\text{INT}}5$ pins must be at least 1 CPU clock cycle + 200 ns wide. For example, "H" and "L" must be at least 234ns wide if XIN=30MHz with no division.

• The IR bit setting may change to "1" (interrupt requested) when switching the polarity of the INT0 to INT5 pins. Set the IR bit to "0" (no interrupt requested) after selecting the polarity. Figure 24.3 shows an example of the switching procedure for the INT interrupt.

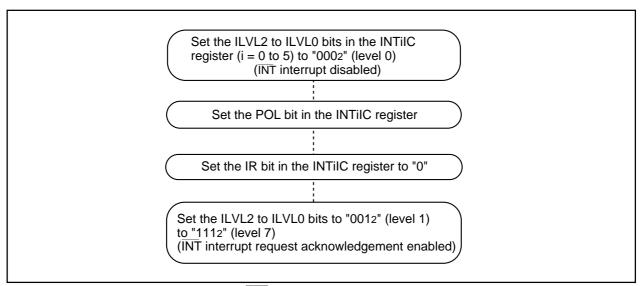


Figure 24.3 Switching Procedure for INT Interrupt

24.6.4 Watchdog Timer Interrupt

Reset the watchdog timer after a watchdog timer interrupt occurs.

24.6.5 Changing Interrupt Control Register

To change the interrupt control register while the interrupt request is denied, follow the instructions below.

Changing IR bit

The IR bit setting may not change to "0" (no interrupt requested) depending on the instructions written. If this is a problem, use the following instruction to change the register: MOV

Changing Bits Except IR Bit

When an interrupt request is generated while executing an instruction, the IR bit may not be set to "1" (interrupt requested) and the interrupt may be ignored. If this is a problem, use the following instructions to change the register: AND, OR, BCLR, BSET

24.6.6 Changing IIOiIR Register (i = 0 to 4)

Use the following instructions to set bits 1 to 7 in the IIOiIR register to "0" (no interrupt requested): AND, BCLR

24.6.7 Changing RLVL Register

The DMAII bit is indeterminate after reset. When using the DMAII bit to generate an interrupt, set the interrupt control register after setting the DMAII bit to "0" (interrupt priority level 7 available for interrupts).

24.7 DMAC

- Set DMAC-associated registers while the MDi1 and MDi0 bits (i=0 to 3) in the channel to be used are set to "002" (DMA disabled). Set the MDi1 and MDi0 bits to "012" (single transfer) or "112" (repeat transfer) at the end of setup procedure to start DMA requests.
- Do not set the DRQ bit in the DMiSL register to "0" (no request).
 If a DMA request is generated but the receiving channel is not ready to receive⁽¹⁾, the DMA transfer does not occur and the DRQ bit is set to "0".

NOTE:

- 1. The MDi1 and MDi0 bits are set to "002" or the DCTi register is set to "000016" (transferred 0 times).
- To start a DMA transfer by a software trigger, set the DSR bit and DRQ bit in the DMiSL register to "1" simultaneously.

e.g.,

OR.B #0A0h, DMiSL

; Set the DSR and DRQ bits to "1" simultaneously

- Do not generate a channel i DMA request when setting the MDi1 and MDi0 bits in the DMDj register (j=0,1) corresponding to channel i to "012" (single transfer) or "112" (repeat transfer), if the DCTi register of channel i is set to "1".
- Select the peripheral function which causes the DMA request after setting the DMA-associated registers. If none of the conditions above (setting INT interrupt as DMA request source) apply, do not write "1" to the DCTi register.
- Enable DMA⁽²⁾ after setting the DMiSL register (i=0 to 3) and waiting six BCLK cycles or more by program.

NOTE:

2. DMA is enabled when the values set in the MDi1 and MDi0 bits in the DMDj register are changed from "002" (DMA disabled) to "012" (single transfer) or "112" (repeat transfer).

M32C/80 Group 24. Precautions (Timer)

24.8 Timer

24.8.1 Timers A and B

Timers stop after reset. Set the TAiS(i=0 to 4) bit or TBjS(j=0 to 5) bit in the TABSR register or TBSR register to "1" (starts counting) after setting operating mode, count source and counter.

The following registers and bits must be set while the TAiS bit or TBjS bit is set to "0" (stops counting).

- TAiMR, TBjMR register
- TAi, TBj register
- UDF register
- TAZIE, TA0TGL, TA0TGH bits in the ONSF register
- TRGSR register

24.8.2 Timer A

The TA10ut, TA20ut and TA40ut pins are placed in high-impedance states when a low-level ("L") signal is applied to the $\overline{\text{NMI}}$ pin while the INV03 and INV02 bits in the INVC0 register are set to "112" (forced cutoff of the three-phase output by an "L" signal applied to the $\overline{\text{NMI}}$ pin).

24.8.2.1 Timer A (Timer Mode)

- The TAiS bit (i=0 to 4) in the TABSR register is set to "0" (stops counting) after reset. Set the TAiS bit to "1" (starts counting) after selecting an operating mode and setting the TAi register.
- The TAi register indicates the counter value during counting at any given time. However, the counter is "FFFF16" when reloading. The setting value can be read after setting the TAi register while the counter stops and before the counter starts counting.

24.8.2.2 Timer A (Event Counter Mode)

- The TAiS (i=0 to 4) bit in the TABSR register is set to "0" (stops counting) after reset. Set the TAiS bit to "1" (starts counting) after selecting an operating mode and setting the TAi register.
- The TAi register indicates the counter values during counting at any given time. However, the counter will be "FFFF16" during underflow and "000016" during overflow, when reloading. The setting value can be read after setting the TAi register while the counter stops and before the counter starts counting.

M32C/80 Group 24. Precautions (Timer)

24.8.2.3 Timer A (One-shot Timer Mode)

- The TAiS (i=0 to 4) bit in the TABSR register is set to "0" (stops counting) after reset. Set the TAiS bit to "1" (starts counting) after selecting an operating mode and setting the TAi register.
- The followings occur when the TABSR register is set to "0" (stops counting) while counting:
- The counter stops counting and the microcomputer reloads contents of the reload register.
- The TAIOUT pin becomes low ("L").
- The IR bit in the TAilC register is set to "1" (interrupt requested) after one CPU clock cycle.
- The output of the one-shot timer is synchronized with an internal count source. When set to an external trigger, there is a delay of one count source cycle maximum, from trigger input to the TAIN pin to the one-shot timer output.
- The IR bit is set to "1" when the following procedures are performed to set timer mode:
 - selecting one-shot timer mode after reset.
 - switching from timer mode to one-shot timer mode.
 - switching from event counter mode to one-shot timer mode.

Therefore, set the IR bit to "0" to generate a timer Ai interrupt (IR bit) after performing these procedures.

- When a trigger is generated while counting, the reload register reloads and continues counting
 after the counter has decremented once following a re-trigger. To generate a trigger while counting,
 wait at least 1 count source cycle after the previous trigger has been generated and generate a retrigger.
- If an external trigger input is selected to start counting in timer A one-shot timer mode, do not provide another external trigger input again for 300 ns before the timer A counter value reaches "000016". One-shot timer may stop counting.

24.8.2.4 Timer A (Pulse Width Modulation Mode)

- The TAiS(i=0 to 4) bit in the TABSR register is set to "0" (stops counting) after reset. Set the TAiS bit to "1" (starts counting) after selecting an operating mode and setting the TAi register.
- The IR bit is set to "1" when the following procedures are performed to set timer mode:
- Selecting PWM mode after reset
- Switching from timer mode to PWM mode
- Switching from event counter mode to PWM mode

Therefore, set the IR bit to "0" by program to generate a timer Ai interrupt (IR bit) after performing these procedures.

- The followings occur when the TAiS bit is set to "0" (stops counting) while PWM pulse is output:
- The counter stops counting
- Output level changes to low ("L") and the IR bit changes to "1" when the TAiout pin is held high ("H")
- The IR bit and the output level remain unchanged when TAiouT pin is held "L"

M32C/80 Group 24. Precautions (Timer)

24.8.3 Timer B

24.8.3.1 Timer B (Timer Mode, Event Counter Mode)

- The TBiS (i=0 to 5) bit is set to "0" (stops counting) after reset. Set the TBiS bit to "1" (starts counting) after selecting an operating mode and setting TBi register.

 The TB2S to TB0S bits are bits 7 to 5 in the TABSR register. The TB5S to TB3S bits are bits 7 to 5
 - in the TBSR register.
- The TBi register indicates the counter value during counting at any given time. However, the counter is "FFFF16" when reloading. The setting value can be read after setting the TBi register while the counter stops and before the counter starts counting.

24.8.3.2 Timer B (Pulse Period/Pulse Width Measurement Mode)

- The IR bit in the TBiIC (i=0 to 5) register is set to "1" (interrupt requested) when the valid edge of a pulse to be measured is input and when the timer Bi counter overflows. The MR3 bit in the TBiMR register determines the interrupt source within an interrupt routine.
- Use another timer to count how often the timer counter overflows when an interrupt source cannot be determined by the MR3 bit, such as when a pulse to be measured is input at the same time the timer counter overflows.
- To set the MR3 bit in the TBiMR register to "0" (no overflow), set the TBiMR register after the MR3 bit is set to "1" (overflow) and one or more cycles of the count source are counted, while the TBiS bits in the TABSR and TBSR registers are set to "1" (starts counting).
- The IR bit in the TBilC register is used to detect overflow only. Use the MR3 bit only to determine interrupt source within an interrupt routine.
- Indeterminate values are transferred to the reload register during the first valid edge input after counting is started. Timer Bi interrupt request is not generated at this time.
- The counter value is indeterminate when counting is started. Therefore, the MR3 bit setting may change to "1" (overflow) and causes timer Bi interrupt requests to be generated until a valid edge is input after counting is started.
- The IR bit may be set to "1" (interrupt requested) if the MR1 and MR0 bits in the TBiMR register are set to a different value after a count begins. If the MR1 and MR0 bits are rewritten, but to the same value as before, the IR bit remains unchanged.
- Pulse width measurement measures pulse width continuously. Use program to determine whether measurement results are high ("H") or low ("L").

24.9 Serial I/O

24.9.1 Clock Synchronous Serial I/O Mode

The $\overline{\text{RTS}}2$ and CLK2 pins are placed in high-impedance states when a low-level ("L") signal is applied to the $\overline{\text{NMI}}$ pin while the INV03 and INV02 bits in the INVC0 register are set to "112" (forced cutoff of the three-phase output by an "L" signal applied to the $\overline{\text{NMI}}$ pin).

24.9.1.1 Transmission / Reception

When the \overline{RTS} function is used while an external clock is selected, the output level of the \overline{RTSi} pin is held "L" indicating that the microcomputer is ready for reception. The transmitting microcomputer is notified that reception is possible. The output level of the \overline{RTSi} pin becomes high ("H") when reception begins. Therefore, connecting the \overline{RTSi} pin to the \overline{CTSi} pin of the transmitting microcomputer synchronizes transmission and reception. The \overline{RTS} function is disabled if an internal clock is selected.

24.9.1.2 Transmission

When an external clock is selected while the CKPOL bit in the UiC0 (i=0 to 4) register is set to "0" (data is transmitted on the falling edge of the transfer clock and received on the rising edge) and the external clock is held "H", or when the CKPOL bit is set to "1" (data is transmitted on the rising edge of the transfer clock and received on the falling edge) and the external clock is held "L", meet the following conditions:

- Set the TE bit in the UiC1 register to "1" (receive enabled)
- Set the TI bit in the UiC1 register to "0" (data in the UiTB register)
- Apply "L" signal to the CTSi pin if the CTS function is selected

24.9.1.3 Reception

Activating the transmitter in clock synchronous serial I/O mode generates the shift clock. Therefore, set for transmission even if the microcomputer is used for reception only. Dummy data is output from the TxDi pin while receiving.

If an internal clock is selected, the shift clock is generated when the TE bit in the UiC1 registers is set to "1" (receive enabled) and dummy data is set in the UiTB register. If an external clock is selected, the shift clock is generated when the external clock is input into CLKi pin while the TE bit is set to "1" (receive enabled) and dummy data is set in the UiTB register.

When receiving data consecutively while the RE bit in the UiC1 register is set to "1" (data in the UiRB register) and the next data is received by the UARTi reception register, an overrun error occurs and the OER bit in the UiRB register is set to "1" (overrun error). In this case, the UiRB register is indeterminate. When overrun error occurs, program both reception and transmission registers to retransmit earlier data. The IR bit in the SiRIC does not change when an overrun error occurs.

When receiving data consecutively, feed dummy data to the low-order byte in the UiTB register every time a reception is made.

When an external clock is selected while the CKPOL bit in the UiC0 register is set to "0" (data is transmitted on the falling edge of the transfer clock and received on the rising edge) and the external clock is held "H" or when the CKPOL bit is set to "1" (data is transmitted on the rising edge of the transfer clock and received on the falling edge) and the external clock is held "L", meet the following conditions:

- Set the RE bit in the UiC1 register to "1" (receive enabled)
- Set the TE bit in the UiC1 register to "1" (transmit enabled)
- Set the TI bit in the UiC1 register to "0" (data in the UiTB register)

24.9.2 UART Mode

Set the UiERE bit (i=0 to 4) in the UiC1 register after setting the UiMR register.

24.9.3 Special Mode 1 (I²C Mode)

To generate the start condition, stop condition or restart condition, set the STSPSEL bit in the UiSMR4 register to "0" first. Then, change each condition generating bit (the STAREQ bit, STPREQ bit or RSTAREQ bit) setting from "0" to "1" after going through a half cycle of the transfer clock.

24.10 A/D Converter

- Set the AD0CON0 (bit 6 excluded), AD0CON1, AD0CON2, AD0CON3, and AD0CON4 registers while the A/D conversion is stopped (before a trigger is generated).
- Wait a minimum of 1µs before starting the A/D conversion when changing the VCUT bit setting in the AD0CON1 register from "0" (VREF no connection) to "1" (VREF connection). Change the VCUT bit setting from "1" to "0" after the A/D conversion is completed.
- Insert capacitors between the AVCC pin, VREF pin, analog input pin ANi (i=0 to 7) and AVSS pin to prevent latch-ups and malfunctions due to noise, and to minimize conversion errors. The same applies to the VCC and VSS pins. Figure 24.4 shows the use of capacitors to reduce noise.

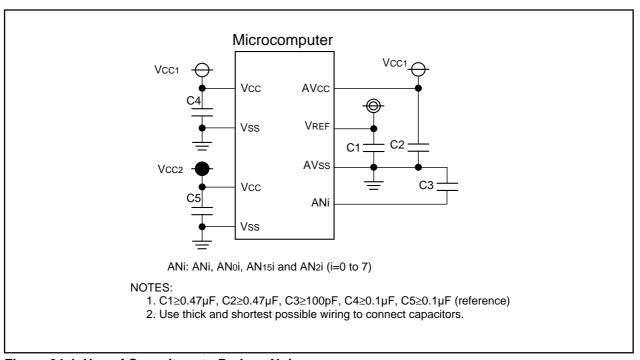


Figure 24.4 Use of Capacitors to Reduce Noise

- Set the bit in the port direction register, which corresponds to the pin being used as the analog input, to "0" (input mode). Set the bit in the port direction register, which corresponds to the ADTRG pin, to "0" (input mode) if the TRG bit in the AD0CON0 register is set to "1" (external trigger).
- When generating a key input interrupt, do not use the AN4 to AN7 pins as analog input pins (key input interrupt request is generated when the A/D input voltage becomes "L").
- The φAD frequency must be 16MHz or less. When the sample and hold function is not activated, the φAD frequency must be 250 kHz or more. If the sample and hold function is activated, the φAD frequency must be 1MHz or more.
- Set the CH2 to CH0 bits in the AD0CON0 register or the SCAN1 and SCAN0 bits in the AD0CON1 register to re-select analog input pins when changing A/D conversion mode.

- AVCC = VREF = VCC1, A/D input voltage (for ANo to AN7, ANEX0, and ANEX1) ≤ VCC1.
- Wrong values are stored in the AD0i register (i=0 to 7) if the CPU reads the AD0i register while the AD0i register stores results from a completed A/D conversion. This occurs when the CPU clock is set to a divided main clock or a sub clock.

In one-shot mode or single sweep mode, read the corresponding AD0i register after verifying that the A/D conversion has been completed. The IR bit in the AD0IC register determines the completion of the A/D conversion.

In repeat mode, repeat sweep mode 0 and repeat sweep mode 1 use an undivided main clock as the CPU clock.

- Conversion results of the A/D converter are indeterminate if the ADST bit in the AD0CON0 register is set
 to "0" (A/D conversion stopped) and the conversion is forcibly terminated by program during the A/D
 conversion. The AD0i register not performing the A/D conversion may also be indeterminate.
 If the ADST bit is changed to "0" by program, during the A/D conversion, do not use any values obtained
 from the AD0i registers.
- External triggers cannot be used in DMAC operating mode. Do not read the AD00 register by program.
- Do not perform the A/D conversion in wait mode.
- Set the MCD4 to MCD0 bits in the MCD register to "100102" (no division) if using the sample and hold function.
- Do not acknowledge any interrupt requests, even if generated, before setting the ADST bit, if the A/D conversion is terminated by setting the ADST bit in the AD0CON0 register to "0" (A/D conversion stopped) while the microcomputer is A/D converting in single sweep mode.

24.11 Intelligent I/O

24.11.1 Register Setting

Operations, controlled by the values written to the G0RI and G1RI, G0TO and G1TO, G0CR and G1CR, G0RB and G1RB, G0MR and G1MR, G0EMR and G1EMR, G0ETC and G1ETC, G0ERC and G1ERC, G0IRF, G1IRF, G0TB and G1TB, G0CMP0 to G0CMP3, G1CMP0 to G1CMP3, G0MSK0 and G0MSK1, G1MSK0 and G1MSK1, G0TCRC and G1TCRC, G0RCRC and G1RCRC registers are affected by the transfer clock.

Set trasfer clock before setting the G0RI and G1RI, G0TO and G1TO, G0CR and G1CR, G0RB and G1RB, G0MR and G1MR, G0EMR and G1EMR, G0ETC and G1ECT, G0ERC and G1ERC, G0IRF and G1IRF, G0TB and G1TB, G0CMP0 to G0CMP3, G1CMP0 to G1CMP3, G0MSK0 and G0MSK1, G1MSK0 and G1MSK1, G0TCRC and G1TCRC, G0RCRC and G1RCRC registers.

24.12 Programmable I/O Ports

 Because ports P72 to P75, P80, and P81 have three-phase PWM output forced cutoff function, they are affected by the three-phase motor control timer function and the NMI pin when these ports are set for output functions (port output, timer output, three-phase PWM output, serial I/O output, intelligent I/O output).

Table 24.4 shows the INVC0 register setting, the NMI pin input level and the state of output ports.

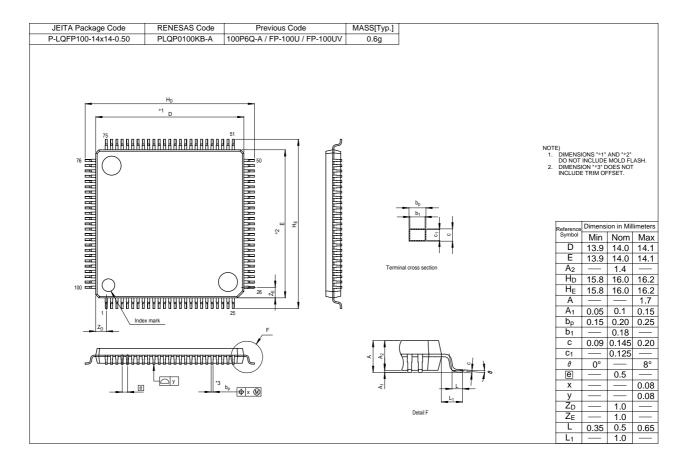
Table 24.4 INVC0 Register and the NMI Pin

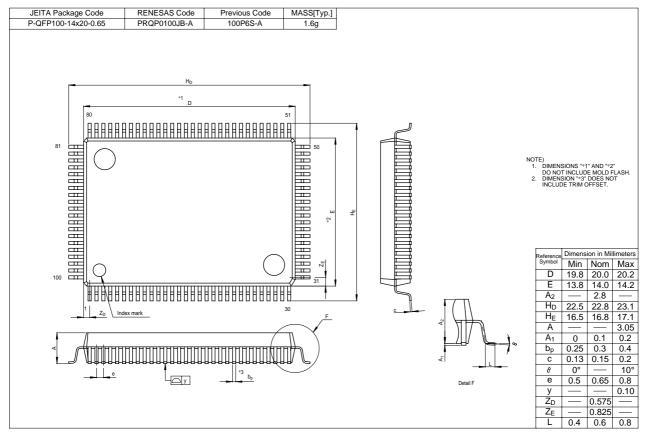
Setting Value of the INVC0 Register		Signal level Applied	P72 to P75, P80, P81 Pin States		
INV02 Bit	INV03 Bit	to the NMI Pin	(When Setting Them as Output Pins)		
0 (Not Using the Three-Phase Motor Control Timer Functions)	-	-	Provides functions selected by the PS1, PSL1, PSC, PS2, PSL2 registers		
1 (Using the Three-Phase Motor Control Timer	0 (Three-Phase Motor Control Timer Output Disabled)	-	High-impedance state		
Functions)	1 (Three-Phase Motor Control Timer Output Enabled) ⁽¹⁾	Н	Provides functions selected by the PS1, PSL1, PSC, PS2, PSL2 registers		
		L (Forcibly Terminated)	High-impedance state		

NOTE:

- 1. The INV03 bit is set to "0" after a low-level ("L") signal is applied to the NMI pin.
- The availability of pull-up resistors is indeterminate until internal power voltage stabilizes, if the RESET pin is held "L".
- The input threshold voltage varies between programmable I/O ports and peripheral functions. Therefore, if the level of the voltage applied to a pin shared by both programmable I/O ports and peripheral functions is not within the recommended operating condition, VIH and VIL (neither "H" nor "L"), the level may vary depending on the programmable ports and peripheral functions.

M32C/80 Group 24. Precautions (Noise)


24.13 Noise


Connect a bypass capacitor ($0.1\mu F$ or more) between Vcc and Vss by shortest path, using thick wires.

M32C/80 Group Package Dimensions

Package Dimensions

M32C/80 Group Register Index

Register Index

A	G0RB, G1RB 247
AD00 to AD07 226	GORCRC, G1RCRC 254
AD0CON0 222	G0RI, G1RI 246
AD0CON1 223	G0TB, G1TB 253 G0TCRC, G1TCRC 254
AD0CON2 224	G0TO, G1TO 246
AD0CON3 225	G1CMP0 to G1CMP3 25
AIER 101	G1EMR 249
C	G1ETC 250
	G1IRF 253
CCS 255	G1MR 248
CM0 58 , 107	G1MSK0, G1MSK1 254
CM1 59	
CM2 61	I
CPSRF 62	ICTB2 162
CRCD 239	IDB0, IDB1 161
CRCIN 239	IFSR 99, 176
D	IIO0IE to IIO4IE 104
DA0, DA1 238	IIO0IR to IIO4IR 103
DACON 238	Interrupt Control 90, 91
DCT0 to DCT3 114	INVC0 159
DMOSL to DM3SL 111	INVC1 160
DMA0 to DMA3 115	M
DMD0, DMD1 113	1405 00
DRA0 to DRA3 115	MCD 60
DRC0 to DRC3 114	0
DS 39	ONSF 133
DSA0 to DSA3 115	
DTT 161	Р
E	P0 to P15 268
EMCDO to EMCDO 45	PCR 276
EWCR0 to EWCR3 45	PD0 to PD15 267
G	PLC0 63
G0CMP0 to G0CMP3 254	PLC1 63
G0CR, G1CR 247	PM0 36
G0DR, G1DR 253	PM1 37
G0EMR 249	PM2 64
G0ERC, G1ERC 251	PRCR 81
G0ETC 250	PS0 269
G0IRF 252	PS1 269 PS2 270
G0MR 248	PS3 270
G0MSK0, G0MSK1 254	1 00 210

Register Index M32C/80 Group

PSC 273 W PSC3 274 WDC 106 PSD1 274 **WDTS 106** PSL0 271 PSL1 271 X PSL2 272 X0R to X15R 241 PSL3 272 XYC 241 PUR0 275 PUR1 275 Υ PUR2 275 Y0R to Y15R 241 PUR3 276 R

RLVL 92, 121 RMAD0 to RMAD7 101

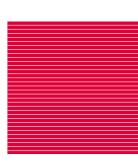
Т

TA0 to TA4 131 TAOMR to TA4MR 132, 137, 140, 143, 145 TA1, TA2, TA4, TA11, TA21, TA41 **162** TA1MR, TA2MR, TA4MR 164 TABSR 132, 148, 163 TB0 to TB5 147 TB0MR to TB5MR 148, 150, 152, 154 TB2 163 TB2MR 164 TB2SC 162 TBSR 149 TCSPR 62, 134 TRGSR 134, 163

U0BRG to U4BRG 170 U0C0 to U4C0 171 U0C1 to U4C1 172 U0MR to U4MR 170 U0RB to U4RB 169 U0SMR to U4SMR 172 U0SMR2 to U4SMR2 173 U0SMR3 to U4SMR3 174 U0SMR4 to U4SMR4 175 U0TB to U4TB 169 **UDF 133**

REVISION HISTORY	M32C/80 Group Hardware Manual
------------------	-------------------------------

Rev.			Description		
		Page	Summary		
1.00	Nov., 05		New Document		


RENESAS 16/32-BIT SINGLE-CHIP MICROCOMPUTER HARDWARE MANUAL M32C/80 Group

Publication Data: Rev.1.00 Nov. 01, 2005

Published by: Sales Strategic Planning Div. Renesas Technology Corp.

© 2005. Renesas Technology Corp., All rights reserved. Printed in Japan.

M32C/80 Group Hardware Manual

