Manue

M16C/30P Group

Hardware Manual

RENESAS 16-BIT SINGLE-CHIP MICROCOMPUTER M16C FAMILY / M16C/30 SERIES

Before using this material, please visit our website to verify that this is the most updated document available.

Rev.1.22 Revision Date:Mar 29, 2007

Notes regarding these materials

- This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
- Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
 You should not use the products or the technology described in this document for the purpose of military
- 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
- 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
- 5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
- 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
- 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
- 8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 - (1) artificial life support devices or systems
 - (2) surgical implantations
 - (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 - (4) any other purposes that pose a direct threat to human life
 - Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.
- 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
- 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
- 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
- 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

— The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 - In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

— The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to one with a different type number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different type numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different type numbers, implement a system-evaluation test for each of the products.

How to Use This Manual

1. Purpose and Target Readers

This manual is designed to provide the user with an understanding of the hardware functions and electrical characteristics of the MCU. It is intended for users designing application systems incorporating the MCU. A basic knowledge of electric circuits, logical circuits, and MCUs is necessary in order to use this manual.

The manual comprises an overview of the product; descriptions of the CPU, system control functions, peripheral functions, and electrical characteristics; and usage notes.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of the manual for details.

The following documents apply to the M16C/30P Group. Make sure to refer to the latest versions of these documents. The newest versions of the documents listed may be obtained from the Renesas Technology Web site.

Document Type	Description	Document Title	Document No.
Datasheet	Hardware overview and electrical characteristics	M16C/30P Group	REJ03B0088
		Datasheet	
Hardware manual	Hardware specifications (pin assignments,	M16C/30P Group	This hardware
	memory maps, peripheral function	Hardware Manual	manual
	specifications, electrical characteristics, timing		
	charts) and operation description		
	Note: Refer to the application notes for details on		
	using peripheral functions.		
Application note	Information on using peripheral functions and	Available from Renesas	
	application examples	Technology Web site.	
	Sample programs		
	Information on writing programs in assembly		
	language and C		
Renesas	Product specifications, updates on documents,		
technical update	etc.		

2. Notation of Numbers and Symbols

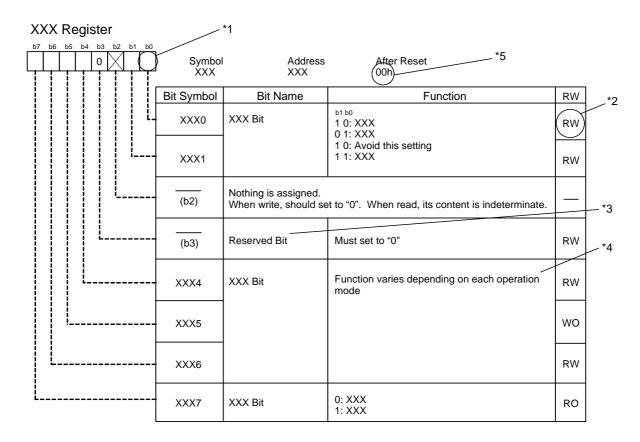
The notation conventions for register names, bit names, numbers, and symbols used in this manual are described below.

(1) Register Names, Bit Names, and Pin Names

Registers, bits, and pins are referred to in the text by symbols. The symbol is accompanied by the word "register," "bit," or "pin" to distinguish the three categories.

Examples the PM03 bit in the PM0 register P3_5 pin, VCC pin

(2) Notation of Numbers


The indication "b" is appended to numeric values given in binary format. However, nothing is appended to the values of single bits. The indication "h" is appended to numeric values given in hexadecimal format. Nothing is appended to numeric values given in decimal format.

Examples Binary: 11b

Hexadecimal: EFA0h Decimal: 1234

3. Register Notation

The symbols and terms used in register diagrams are described below.

*1

Blank: Set to 0 or 1 according to the application.

0: Set to 0.

1: Set to 1.

X: Nothing is assigned.

*2

RW: Read and write.

RO: Read only.

WO: Write only.

-: Nothing is assigned.

*3

• Reserved bit

Reserved bit. Set to specified value.

*4

• Nothing is assigned

Nothing is assigned to the bit. As the bit may be used for future functions, if necessary, set to 0.

• Do not set to a value

Operation is not guaranteed when a value is set.

• Function varies according to the operating mode.

The function of the bit varies with the peripheral function mode. Refer to the register diagram for information on the individual modes.

4. List of Abbreviations and Acronyms

Abbreviation	Full Form
ACIA	Asynchronous Communication Interface Adapter
bps	bits per second
CRC	Cyclic Redundancy Check
DMA	Direct Memory Access
DMAC	Direct Memory Access Controller
GSM	Global System for Mobile Communications
Hi-Z	High Impedance
IEBus	Inter Equipment bus
I/O	Input/Output
IrDA	Infrared Data Association
LSB	Least Significant Bit
MSB	Most Significant Bit
NC	Non-Connection
PLL	Phase Locked Loop
PWM	Pulse Width Modulation
SFR	Special Function Registers
SIM	Subscriber Identity Module
UART	Universal Asynchronous Receiver/Transmitter
VCO	Voltage Controlled Oscillator

All trademarks and registered trademarks are the property of their respective owners.

IEBus is a registered trademark of NEC Electronics Corporation.

Table of Contents

SFR	Page Reference	B - 1
1.	Overview	1
1.1	Applications	1
1.2	Performance Outline	2
1.3	Block Diagram	3
1.4	Product List	4
1.5	Pin Configuration	8
1.6	Pin Description	12
2.	Central Processing Unit (CPU)	14
2.1	Data Registers (R0, R1, R2 and R3)	14
2.2		
2.3		
2.4		
2.5		
2.6		
2.7	Static Base Register (SB)	15
2.8	Flag Register (FLG)	15
2	.8.1 Carry Flag (C Flag)	
2	.8.2 Debug Flag (D Flag)	15
2	.8.3 Zero Flag (Z Flag)	15
2	.8.4 Sign Flag (S Flag)	15
2	.8.5 Register Bank Select Flag (B Flag)	15
2	.8.6 Overflow Flag (O Flag)	15
2	.8.7 Interrupt Enable Flag (I Flag)	15
2	.8.8 Stack Pointer Select Flag (U Flag)	16
2	.8.9 Processor Interrupt Priority Level (IPL)	16
2	.8.10 Reserved Area	16
3.	Memory	17
4.	Special Function Register (SFR)	18
5.	Reset	23
5.1	Hardware Reset	23
5	.1.1 Reset on a Stable Supply Voltage	23
5	.1.2 Power-on Reset	23
5.2	Software Reset	25
5.3	Internal Space	26
5.4		
6.	Processor Mode	29
6.1	Types of Processor Mode	29
6.2	• •	

7. B	JS	34
7.1	Bus Mode	34
7.2	Bus Control	34
7.2.1	Address Bus	34
7.2.2	Data Bus	34
7.2.3	Chip Select Signal	35
7.2.4	Read and Write Signals	37
7.2.5	ALE Signal	37
7.2.6	RDY Signal	38
7.2.7	HOLD Signal	39
7.2.8	BCLK Output	39
7.2.9	External Bus Status When Internal Area Accessed	41
7.2.1	0 Software Wait	41
8. M	emory Space Expansion Function	43
8.1	1-Mbyte Mode	43
9. C	ock Generating Circuit	45
9.1	Types of the Clock Generating Circuit	45
9.1.1	Main Clock	
9.1.2		
9.2	CPU Clock and Peripheral Function Clock	51
9.2.1	CPU Clock and BCLK	
9.2.2		
9.3	Clock Output Function	
9.4	Power Control	52
9.4.1	Normal Operation Mode	52
9.4.2	•	
9.4.3	Stop Mode	55
10. Pi	otection	60
11. In	terrupt	61
11.1	Type of Interrupts	61
11.2	Software Interrupts	62
11.2.	1 Undefined Instruction Interrupt	62
11.2.	2 Overflow Interrupt	62
11.2.	3 BRK Interrupt	62
11.2.	4 INT Instruction Interrupt	62
11.3	Hardware Interrupts	63
11.3.	1 Special Interrupts	63
11.3.	2 Peripheral Function Interrupts	63
11.4	Interrupts and Interrupt Vector	64
11.4.	1 Fixed Vector Tables	64
11 4	2 Relocatable Vector Tables	65

11.5	Interrupt Control	66
11.5.1	I Flag	68
11.5.2	P. IR Bit	68
11.5.3	ILVL2 to ILVL0 Bits and IPL	68
11.5.4	Interrupt Sequence	69
11.5.5	Interrupt Response Time	70
11.5.6	Variation of IPL when Interrupt Request is Accepted	70
11.5.7	Saving Registers	71
11.5.8	Returning from an Interrupt Routine	
11.5.9	Interrupt Priority	
11.5.1	0 Interrupt Priority Resolution Circuit	
11.6	INT Interrupt	
11.7	NMI Interrupt	76
11.8	Key Input Interrupt	76
11.9	Address Match Interrupt	77
12. Wa	atchdog Timer	79
13. DM	MAC	81
13.1	Transfer Cycles	87
13.1.1	Effect of Source and Destination Addresses	87
13.1.2	Effect of BYTE Pin Level	87
13.1.3	B Effect of Software Wait	87
13.1.4	Effect of RDY Signal	87
13.2	DMA Transfer Cycles	89
13.3	DMA Enable	90
13.4	DMA Request	90
13.5	Channel Priority and DMA Transfer Timing	91
14. Tin	ners	92
14.1	Timer A	
14.1.1		
14.1.1		
14.1.2		
14.1.4		
14.1.4	Timer B	
14.2.1		
14.2.2		
14.2.3		
14.2.3	Tuise I cited and I uise Width Measurement Mode	110
15. Se	rial Interface	119
15.1	UARTi (i=0 to 2)	119
15.1.1		
15.1.2	·	
15.1.3	Special Mode 1 (I ² C mode)	146
15.1.4	Special Mode 2	156
15.1.5	•	
15.1.6	•	

16. A/D	Converter	168
16.1	Mode Description	172
16.1.1	One-Shot Mode	172
16.1.2	Repeat Mode	175
16.2	Function	178
16.2.1	Resolution Select Function	178
16.2.2	Sample and Hold	178
16.2.3	Extended Analog Input Pins	178
16.2.4	Current Consumption Reducing Function	178
16.2.5	Output Impedance of Sensor under A/D Conversion	179
17. CRC	Calculation	180
18. Prog	grammable I/O Ports	182
18.1	Port Pi Direction Register (PDi Register, i = 0 to 10)	182
18.2	Port Pi Register (Pi Register, i = 0 to 10)	182
18.3	Pull-up Control Register 0 to Pull-up Control Register 2 (PUR0 to PUR2 Registers)	182
18.4	Port Control Register (PCR Register)	182
9. Flas	h Memory Version	195
19.1	Memory Map	196
19.1.1	Boot Mode	197
19.2	Functions To Prevent Flash Memory from Rewriting	197
19.2.1	ROM Code Protect Function	197
19.2.2	ID Code Check Function	198
19.2.3	Forced Erase Function	199
19.3	CPU Rewrite Mode	201
19.3.1	EW0 Mode	202
19.3.2	EW1 Mode	202
19.3.3	Flash Memory Control Register (FMR0 and FMR1 registers)	202
19.3.4	Precautions on CPU Rewrite Mode	210
19.3.5	Software Commands	212
19.3.6	Data Protect Function	217
19.3.7	Status Register	217
19.3.8	Full Status Check	
19.4	Standard Serial I/O Mode	221
19.4.1	ID Code Check Function	
19.4.2	Example of Circuit Application in the Standard Serial I/O Mode	
19.5	Parallel I/O Mode	
19.5.1	User ROM and Boot ROM Areas	
19.5.2	ROM Code Protect Function	227
20. One	Time Flash Version	228
20.1	Low Consumption Mode	229
20.2	Functions to Prevent One Time Flash Version from Being Read	231
20.2.1	ROM Code Protect Function	231
20.2.2	ID Code Check Function	231

20.3	Standard Serial I/O Mode	. 232
20.3.1	ID Code Check Function	. 232
20.3.2	Example of Circuit Application in the Standard Serial I/O Mode	. 235
21. Ele	ctrical Characteristics	237
22. Usa	age Precaution	267
22.1	SFR	. 267
22.1.1	Register Settings	. 267
22.2	Reset	. 268
22.3	Bus	. 269
22.4	Precautions for Power Control	. 270
22.5	Precautions for Protect	. 271
22.6	Precautions for Interrupt	. 272
22.6.1	Reading address 00000h	. 272
22.6.2	Setting the SP	. 272
22.6.3	The NMI Interrupt	. 272
22.6.4	Changing the Interrupt Generate Factor	. 273
22.6.5	INT Interrupt	. 273
22.6.6	Rewrite the Interrupt Control Register	. 274
22.6.7	Watchdog Timer Interrupt	. 274
22.7	Precautions for DMAC	. 275
22.7.1	Write to DMAE Bit in DMiCON Register	. 275
22.8	Precautions for Timers	. 276
22.8.1	Timer A	. 276
22.8.2	Timer B	. 278
22.9	Precautions for Serial interface	. 279
22.9.1	Clock Synchronous Serial I/O	. 279
22.9.2	UART	. 280
22.10	A/D Converter	. 281
22.11	Precautions for Programmable I/O Ports	. 283
22.12	Electric Characteristic Differences Between Mask ROM and Flash Memory Version Microcomputers	283
22.13	Mask ROM	. 283
22.14	Flash Memory Version	. 284
22.14.1	1 Functions to Inhibit Rewriting Flash Memory Rewrite	. 284
22.14.2	2 Stop mode	. 284
22.14.3	Wait mode	. 284
22.14.4	4 Low power dissipation mode	. 284
22.14.5	5 Writing command and data	. 284
22.14.6	6 Program Command	. 284
22.14.7	7 Lock Bit Program Command	. 284
22.14.8	8 Operation speed	. 285
22.14.9	9 Prohibited instructions	. 285
22.14.	10 Interrupts	. 285
22.14.	11 How to access	. 285
22.14.1	12 Writing in the user ROM area	. 285
22.14.	13 DMA transfer	. 285

22.15 C	ne Time Flash Version	286
22.15.1	Stop mode	286
22.15.2	Wait mode	286
22.15.3	Operation speed	286
22.15.4	Prohibited Instructions	286
22.15.5	Interrupts	286
	How to access	
22.16 P	recautions for Noise	287
Appendix 1	Package Dimensions	288
Appendix 2	Difference between M16C/62P and M16C/30P	289
Register Inc	lex	291

SFR Page Reference

Address	Register	Symbol	Page
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	30
0005h	Processor Mode Register 1	PM1	31
0006h	System Clock Control Register 0	CM0	47
0007h	System Clock Control Register 1	CM1	48
0008h	Chip Select Control Register	CSR	35
0009h	Address Match Interrupt Enable Register	AIER	78
000Ah	Protect Register	PRCR	60
000Bh			
000Ch			
000Dh			
000Eh	Watchdog Timer Start Register	WDTS	80
000Fh	Watchdog Timer Control Register	WDC	28, 80
0010h	Address Match Interrupt Register 0	RMAD0	78
0011h			
0012h			
0013h		5	
0014h	Address Match Interrupt Register 1	RMAD1	78
0015h			
0016h			
0017h			
0018h			
0019h			
001Ah			
001Bh		_	
001Ch			
001Dh			
001Eh			
001Fh	DMA0 Source Beinter	CARO	00
0020h	DMA0 Source Pointer	SAR0	86
0021h 0022h			
0022h 0023h			
0023h	DMA0 Destination Pointer	DAR0	86
0024n 0025h	DIVIAO DESIIII I I I I I I I I I I I I I I I I I	DVIKO	00
0025H 0026h			
0026H			
002711 0028h	DMA0 Transfer Counter	TCR0	86
0028H	Divisor Hansier Counter	1010	30
0029H			
002An			
002Bh	DMA0 Control Register	DM0CON	85
002Ch	2 to control regions	DIVIDUOIN	33
002Eh			
002EH			
0030h	DMA1 Source Pointer	SAR1	86
0031h			
0031h			
0033h			
0034h	DMA1 Destination Pointer	DAR1	86
0035h			
0036h			
0037h			
0038h	DMA1 Transfer Counter	TCR1	86
0039h	_		
003Ah			
003Bh			
003Ch	DMA1 Control Register	DM1CON	85
003Dh		2.2	
003Eh			
003Fh			

OIES:				
- 1	Blank	coli	ım	n

- Blank columns are all reserved space. No access is allowed.
 This register is included in the flash memory version.
 This register is included in the One time flash version.

Address	Register	Symbol	Page
0040h			
0041h			
0042h			-
0043h 0044h	INT3 Interrupt Control Register	INT3IC	67
0044h 0045h	IN13 Interrupt Control Register	INTSIC	67
0045H	UART1 BUS Collision Detection Interrupt Control Register	U1BCNIC	66
0040H	UARTO BUS Collision Detection Interrupt Control Register	U0BCNIC	66
0048h	Critical December. Detection memaps control regions.	00201110	
0049h	INT4 Interrupt Control Register	INT4IC	67
004Ah	UART2 Bus Collision Detection Interrupt Control Register	BCNIC	66
004Bh	DMA0 Interrupt Control Register	DM0IC	66
004Ch	DMA1 Interrupt Control Register	DM1IC	66
004Dh	Key Input Interrupt Control Register	KUPIC	66
004Eh	A/D Conversion Interrupt Control Register	ADIC	66
004Fh	UART2 Transmit Interrupt Control Register	S2TIC	66
0050h	UART2 Receive Interrupt Control Register	S2RIC	66
0051h	UART0 Transmit Interrupt Control Register	S0TIC	66
0052h	UARTO Receive Interrupt Control Register	SORIC	66
0053h	UART1 Transmit Interrupt Control Register	S1TIC	66
0054h	UART1 Receive Interrupt Control Register	S1RIC TA0IC	66
0055h	Timer A0 Interrupt Control Register		66
0056h 0057h	Timer A1 Interrupt Control Register Timer A2 Interrupt Control Register	TA1IC TA2IC	66 66
0057h	Timer A2 Interrupt Control Register	TAZIC	00
0059h			
0059H	Timer B0 Interrupt Control Register	TB0IC	66
005An	Timer B1 Interrupt Control Register	TB1IC	66
005Ch	Timer B2 Interrupt Control Register	TB2IC	66
005Dh	INTO Interrupt Control Register	INTOIC	67
005Eh	INT1 Interrupt Control Register	INT1IC	67
005Fh	INT2 Interrupt Control Register	INT2IC	67
0060h			
to			
01B3h			
01B4h			
01B5h	Flash Memory Control Register 1(2)	FMR1	204
01B6h	5	EMDO	202
01B7h	Flash Memory Control Register 0 ⁽²⁾	FMR0	203
01B8h to			
0253h			
0253h			
0254H			
0256h			
0257h			
0258h			
0259h			
025Ah			
025Bh		_	
025Ch			
025Dh			
025Eh	Peripheral Clock Select Register	PCLKR	48
025Fh			
0260h			
to			
0335h			1
0336h			<u> </u>
0337h			1
0338h 0339h			-
0339h 033Ah			
033An			-
033Ch			-
033Dh			
033Eh			
033Eh			
	I	1	L

Address	Register	Symbol	Page
0340h			
0341h			
0342h			
0343h			
0344h			
0345h			
0346h			
0347h			
0348h			
0349h			
034Ah			
034Bh			
034Ch			
034Dh			
034Eh			
034Fh			
0350h			
0351h			
0352h		+	
0353h			
0354h			
0355h			
0356h			
0357h			
0358h			
0359h			
035Ah			
035An			
035Ch			
035Dh			
035Eh	Interrupt Factor Select Register 2	IFSR2A	75
035Fh		IFSR	75
0360h	Interrupt Factor Select Register	IFSK	75
0361h 0362h			
0363h			
0364h			
0365h			
0366h			
0367h			
0368h			
0369h			
036Ah			
036Bh	HADTO Or seislande De sistem 4	LICOMPA	400
036Ch	UARTO Special Mode Register 4	U0SMR4	129
036Dh	UARTO Special Mode Register 3	U0SMR3	128
036Eh	UARTO Special Mode Register 2	U0SMR2	128
036Fh	UARTO Special Mode Register	U0SMR	127
0370h	UART1 Special Mode Register 4	U1SMR4	129
0371h	UART1 Special Mode Register 3	U1SMR3	128
0372h	UART1 Special Mode Register 2	U1SMR2	128
0373h	UART1 Special Mode Register	U1SMR	127
0374h	UART2 Special Mode Register 4	U2SMR4	129
0375h	UART2 Special Mode Register 3	U2SMR3	128
0376h	UART2 Special Mode Register 2	U2SMR2	128
0377h	UART2 Special Mode Register	U2SMR	127
0378h	UART2 Transmit/Receive Mode Register	U2MR	124
0379h	UART2 Bit Rate Generator	U2BRG	124
037Ah	UART2 Transmit Buffer Register	U2TB	123
037Bh			
037Ch	UART2 Transmit/Receive Control Register 0	U2C0	125
02706	· ·		
037Dh	UART2 Transmit/Receive Control Register 1	U2C1	126
037Eh 037Fh	· ·		126 123

Address	Register	Symbol	Page
0380h	Count Start Flag	TABSR	96, 112
0381h	Clock Prescaler Reset Fag	CPSRF	98, 112
0382h	One-Shot Start Flag	ONSF	97
0383h	Trigger Select Register	TRGSR	97
0384h	Up-Down Flag	UDF	96
0385h			
0386h	Timer A0 Register	TA0	95
0387h			
0388h	Timer A1 Register	TA1	95
0389h			
038Ah	Timer A2 Register	TA2	95
038Bh			
038Ch			
038Dh			
038Eh 038Fh			
0390h	Timer PO Beginter	TB0	111
0390H 0391h	Timer B0 Register	100	1111
0391h	Timer B1 Register	TB1	111
0392h	Timer by Negister	101	111
0393h	Timer B2 Register	TB2	111
0395h	Timer bz register	102	
0396h	Timer A0 Mode Register	TAOMR	95
0397h	Timer A1 Mode Register	TA1MR	95
0398h	Timer A2 Mode Register	TA2MR	95
0399h	Times 7 E mode (togiste)	.,	- 00
039Ah			
039Bh	Timer B0 Mode Register	TB0MR	111
039Ch	Timer B1 Mode Register	TB1MR	111
039Dh	Timer B2 Mode Register	TB2MR	111
039Eh			
039Fh			
03A0h	UART0 Transmit/Receive Mode Register	U0MR	124
03A1h	UART0 Bit Rate Generator	U0BRG	124
03A2h	UART0 Transmit Buffer Register	U0TB	123
03A3h			
03A4h	UART0 Transmit/Receive Control Register 0	U0C0	125
03A5h	UART0 Transmit/Receive Control Register 1	U0C1	126
03A6h	UART0 Receive Buffer Register	U0RB	123
03A7h			
03A8h	UART1 Transmit/Receive Mode Register	U1MR	124
03A9h	UART1 Bit Rate Generator	U1BRG	124
03AAh	UART1 Transmit Buffer Register	U1TB	123
03ABh	LIABTIT WE I O I I D I I	11400	405
03ACh	UART1 Transmit/Receive Control Register 0	U1C0 U1C1	125
03ADh 03AEh	UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register	U1C1 U1RB	126 123
03AEn 03AFh	OANT I Receive builet Register	OIKB	123
03B0h	UART Transmit/Receive Control Register 2	UCON	127
03B0H	57 TT Transmitteeene Control Negister 2	JOON	121
03B1II		1	
03B2H		 	
03B3h		 	
03B5h		 	
03B6h		†	
03B7h		†	
03B8h	DMA0 Request Factor Select Register	DM0SL	83
03B9h			
03BAh	DMA1 Request Factor Select Register	DM1SL	84
03BBh	-	İ	
03BCh	CRC Data Register	CRCD	180
03BDh			
03BEh	CRC Input Register	CRCIN	180
03BFh			

NOTES:

1. Blank columns are all reserved space. No access is allowed.

Address	Register	Symbol	Page
03C0h	A/D Register 0	AD0	171
03C1h	The stage of the s		
03C2h	A/D Register 1	AD1	171
03C3h	7 Togisto. 1	/	
03C4h	A/D Register 2	AD2	171
03C5h	7 VB Trogistor 2	7.52	.,,
03C6h	A/D Register 3	AD3	171
03C7h	AD Register 5	ADS	171
03C8h	A/D Register 4	AD4	171
	A/D Register 4	AD4	171
03C9h	A/D Degister F	AD5	171
03CAh	A/D Register 5	ADS	171
03CBh	A/D Devictor C	100	474
03CCh	A/D Register 6	AD6	171
03CDh	A/D.D. : 4 7	407	474
03CEh	A/D Register 7	AD7	171
03CFh			
03D0h			
03D1h			
03D2h			
03D3h			
03D4h	A/D Control Register 2	ADCON2	171
03D5h			
03D6h	A/D Control Register 0	ADCON0	170
03D7h	A/D Control Register 1	ADCON1	170
03D8h			
03D9h			
03DAh			
03DBh			
03DCh			
03DDh			
03DEh			
03DFh			
03E0h	Port P0 Register	P0	189
03E1h	Port P1 Register	P1	189
03E2h	Port P0 Direction Register	PD0	188
03E3h	Port P1 Direction Register	PD1	188
03E4h	Port P2 Register	P2	189
03E5h	Port P3 Register	P3	189
03E6h	Port P2 Direction Register	PD2	188
03E7h	Port P3 Direction Register	PD3	188
03E8h	Port P4 Register	P4	189
03E9h	Port P5 Register	P5	189
03EAh	-	PD4	188
	Port P5 Direction Register		
03EBh	Port PS Direction Register	PD5	188
03ECh	Port P7 Register	P6	189
03EDh	Port PC Register	P7	189
03EEh	Port P6 Direction Register	PD6	188
03EFh	Port P7 Direction Register	PD7	188
03F0h	Port P8 Register	P8	189
03F1h	Port P9 Register	P9	189
03F2h	Port P8 Direction Register	PD8	188
03F3h	Port P9 Direction Register	PD9	188
03F4h			
	Port P10 Register	P10	189
03F5h	Port P10 Register	P10	189
03F5h 03F6h	Port P10 Register Port P10 Direction Register	P10 PD10	189
03F6h			
03F6h 03F7h			
03F6h 03F7h 03F8h			
03F6h 03F7h 03F8h 03F9h 03FAh			
03F6h 03F7h 03F8h 03F9h 03FAh 03FBh	Port P10 Direction Register	PD10	
03F6h 03F7h 03F8h 03F9h 03FAh 03FBh 03FCh	Port P10 Direction Register Pull-Up Control Register 0	PD10 PUR0	188
03F6h 03F7h 03F8h 03F9h 03FAh 03FBh	Port P10 Direction Register	PD10	188

NOTES:

1. Blank columns are all reserved space. No access is allowed.

M16C/30P Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

1. Overview

The M16C/30P Group of single-chip microcomputers is built using the high-performance silicon gate CMOS process using a M16C/60 Series CPU core and is packaged in a 100-pin plastic molded QFP.

These single-chip microcomputers operate using sophisticated instructions featuring a high level of instruction efficiency. With 1 Mbyte of address space, they are capable of executing instructions at high speed. In addition, these microcomputers contain a multiplier and DMAC which combined with fast instruction processing capability, make it suitable for control of various OA, communication, and industrial equipment which requires high-speed arithmetic/logic operations.

1.1 Applications

Audio, cameras, TV, home appliance, office/communications/portable/industrial equipment, etc.

1.2 **Performance Outline**

Table 1.1 lists Performance Outline of M16C/30P Group.

Table 1.1 Performance Outline of M16C/30P Group

	Item	Performance		
CPU	Number of Basic Instructions	91 instructions		
	Minimum Instruction	62.5ns(f(XIN)=16MHz, VCC1=VCC2=3.0 to 5.5V, no		
	Execution Time	wait)		
		100ns(f(XIN)=10MHz, VCC1=VCC2=2.7 to 5.5V, no wait)		
	Operation Mode	Single-chip, memory expansion and microprocessor		
		mode		
	Memory Space	1 Mbyte		
	Memory Capacity	See Table 1.2 Product List		
Peripheral	Port	Input/Output: 87 pins, Input: 1 pin		
Function	Multifunction Timer	Timer A: 16 bits x 3 channels,		
		Timer B: 16 bits x 3 channels		
	Serial Interface	1 channels		
		Clock synchronous, UART, I ² CBus ⁽¹⁾ , IEBus ⁽²⁾		
		2 channels		
		Clock synchronous, UART, I ² CBus ⁽¹⁾		
	A/D Converter	10-bit A/D converter: 1 circuit, 18 channels		
	DMAC	2 channels		
	CRC Calculation Circuit	CCITT-CRC		
	Watchdog Timer	15 bits x 1 channel (with prescaler)		
	Interrupt	Internal: 20 sources, External: 7 sources, Software: 4		
		sources, Priority level: 7 levels		
	Clock Generating Circuit	2 circuits		
		Main clock generation circuit (*),		
		Subclock generation circuit (*),		
		(*)Equipped with a built-in feedback resistor.		
Electric	Supply Voltage	VCC1=VCC2=3.0 to 5.5 V (f(XIN)=16MHz)		
Characteristics		VCC1=VCC2=2.7 to 5.5 V (f(XIN)=10MHz, no wait)		
	Power Consumption	10 mA (VCC1=VCC2=5V, f(XIN)=16MHz)		
		8 mA (VCC1=VCC2=3V, f(XIN)=10MHz)		
		1.8 μA (VCC1=VCC2=3V, f(XCIN)=32kHz, wait mode)		
		0.7 μA(VCC1=VCC2=3V, stop mode)		
One time flash version	Program Supply Voltage	3.3±0.3 V or 5.0±0.5 V		
Flash memory version	Program/Erase Supply Voltage	3.3±0.3 V or 5.0±0.5 V		
	Program and Erase Endurance	100 times (all area)		
Operating Ambi	ent Temperature	-20 to 85°C, -40 to 85°C		
Package		100-pin plastic mold QFP, LQFP		

NOTES:

- 1. I²C bus is a registered trademark of Koninklijke Philips Electronics N. V.
- 2. IEBus is a registered trademark of NEC Electronics Corporation.
- 3. Use the M16C/30P on VCC1 = VCC2.

1.3 Block Diagram

Figure 1.1 is a M16C/30P Group Block Diagram.

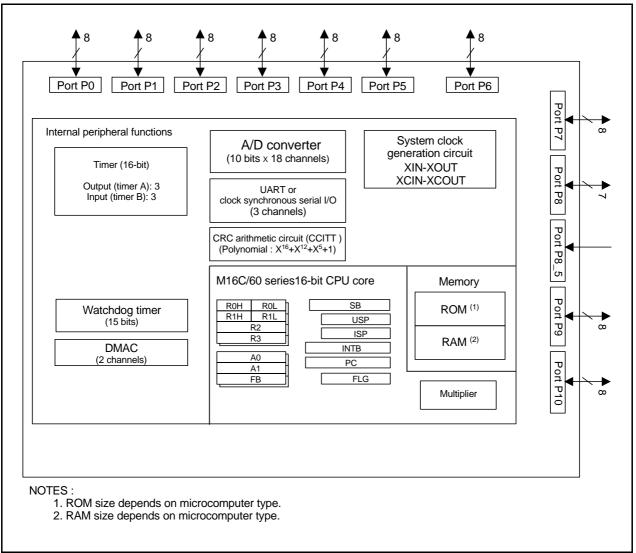


Figure 1.1 M16C/30P Group Block Diagram

1.4 Product List

Table 1.2 lists the M16C/30P group products and Figure 1.2 shows the Part No., Memory Size, and Package. Table 1.4 lists Product Code of MASK ROM version for M16C/30P. Figure 1.3 shows the Marking Diagram of Mask ROM Version for M16C/30P (Top View). Table 1.5 lists Product Code of One Time Flash version, Flash Memory version, and ROM-less version for M16C/30P. Figure 1.4 shows the Marking Diagram of One Time Flash version, Flash Memory version, and ROM-less Version for M16C/30P (Top View). Please specify the marking for M16C30P (MASK ROM version) when placing an order for ROM.

Table 1.2 Product List (1)

As of March 2007

Part No.		ROM Capacity	RAM Capacity	package code (1)	Remarks
M30302MAP-XXXFP		96 Kbytes	5 Kbytes	PRQP0100JB-A	Mask ROM version
M30302MAP-XXXGP				PLQP0100KB-A	
M30302MCP-XXXFP		128 Kbytes		PRQP0100JB-A	
M30302MCP-XXXGP				PLQP0100KB-A	
M30302MDP-XXXFP		160 Kbytes	6 Kbytes	PRQP0100JB-A	
M30302MDP-XXXGP				PLQP0100KB-A	
M30302MEP-XXXFP		192 Kbytes		PRQP0100JB-A	
M30302MEP-XXXGP				PLQP0100KB-A	
M30302GAPFP		96 Kbytes	5 Kbytes	PRQP0100JB-A	One Time Flash
M30302GAPGP	(D)			PLQP0100KB-A	version (blank product)
M30302GCPFP		128 Kbytes		PRQP0100JB-A	(blarik product)
M30302GCPGP	(D)			PLQP0100KB-A	
M30302GDPFP		160 Kbytes	6 Kbytes	PRQP0100JB-A	
M30302GDPGP	(D)			PLQP0100KB-A	
M30304GDPFP	(D)		12 Kbytes	PRQP0100JB-A	
M30304GDPGP	(D)			PLQP0100KB-A	
M30302GEPFP		192 Kbytes	6 Kbytes	PRQP0100JB-A	
M30302GEPGP	(D)			PLQP0100KB-A	
M30304GEPFP	(D)		12 Kbytes	PRQP0100JB-A	
M30304GEPGP	(D)			PLQP0100KB-A	
M30302GGPFP	(D)	256 Kbytes	12 Kbytes	PRQP0100JB-A	
M30302GGPGP	(D)			PLQP0100KB-A	
M30302GAP-XXXFP		96 Kbytes	5 Kbytes	PRQP0100JB-A	One Time Flash
M30302GAPvGP	(D)			PLQP0100KB-A	version (factory programmed
M30302GCP-XXXFP		128 Kbytes		PRQP0100JB-A	product)
M30302GCP-XXXGP	(D)			PLQP0100KB-A	
M30302GDP-XXXFP		160 Kbytes	6 Kbytes	PRQP0100JB-A	
M30302GDP-XXXGP	(D)			PLQP0100KB-A	
M30304GDP-XXXFP	(D)		12 Kbytes	PRQP0100JB-A	
M30304GDP-XXXGP	(D)			PLQP0100KB-A	
M30302GEP-XXXFP		192 Kbytes	6 Kbytes	PRQP0100JB-A	
M30302GEP-XXXGP	(D)			PLQP0100KB-A	
M30304GEP-XXXFP	(D)		12 Kbytes	PRQP0100JB-A	
M30304GEP-XXXGP	(D)			PLQP0100KB-A]
M30302GGP-XXXFP	(D)	256 Kbytes	12 Kbytes	PRQP0100JB-A	
M30302GGP-XXXGP	(D)			PLQP0100KB-A	

(D): Under development

(P): Under planning

NOTES:

1. Previous package codes are as follows.

PRQP0100JB-A: 100P6S-A, PLQP0100KB-A: 100P6Q-A

2. Block A (4-Kbytes space) is available in flash memory version.

Page 4 of 291

Table 1.3 Product List (2)

As of March 2007

Part No.	ROM Capacity	RAM Capacity	package code (1)	Remarks
M30302FAPFP	96 K + 4 Kbytes	5 Kbytes	PRQP0100JB-A	Flash memory
M30302FAPGP			PLQP0100KB-A	version ⁽²⁾
M30302FCPFP	128 K + 4 Kbytes		PRQP0100JB-A	
M30302FCPGP			PLQP0100KB-A	
M30302FEPFP	192 K + 4 Kbytes	6 Kbytes	PRQP0100JB-A	
M30302FEPGP	-		PLQP0100KB-A	
M30302SPFP	-	6 Kbytes	PRQP0100JB-A	ROM-less version
M30302SPGP			PLQP0100KB-A	

(D): Under development(P): Under planning

NOTES:

1. Previous package codes are as follows.

PRQP0100JB-A: 100P6S-A, PLQP0100KB-A: 100P6Q-A

2. Block A (4-Kbytes space) is available in flash memory version.

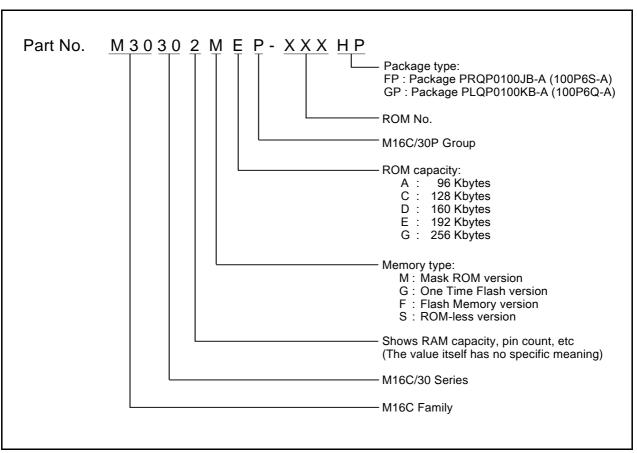


Figure 1.2 Part No., Memory Size, and Package

Page 5 of 291

1. Overview M16C/30P Group

Table 1.4 Product Code of MASK ROM version for M16C/30P

Product Code	Package	Operating Ambient Temperature
U1	Lead-free	-20°C to 85°C
U4		-40°C to 85°C

PRQP0100JB-A (100P6S-A) 1. Standard Renesas Mark M 1 6 C M30302MDP - XXXFP Part No. (See Figure 1.2 Part No., Memory Size, and Package) A U1 XXXXXX Chip version, product code and date code : Shows chip version. Henceforth, whenever it changes a version, O it continues with A, B, and C. : Shows Product code. (See table 1.3 Product Code) XXXXXXX : Seven digits 2. Customer's Parts Number + Renesas catalog name M30302MDP - XXXFP Part No. (See Figure 1.2 Part No., Memory Size, and Package) Α U 1 Chip version and product code : Shows chip version. M16C XXXXXX Henceforth, whenever it changes a version, it continues with A, B, and C. : Shows Product code. (See table 1.3 Product Code) U1 Date code seven digits PLQP0100KB-A (100P6Q-A) 1. Standard Renesas Mark M16C M30302MDP Part No. (See Figure 1.2 Part No., Memory Size, and Package) - XXXGP A U1 XXXXXXX Chip version, product code and date code : Shows chip version. Henceforth, whenever it changes a version, O it continues with A, B, and C. Shows Product code. (See table 1.3 Product Code) XXXXXXX: Seven digits 2. Customer's Parts Number + Renesas catalog name - Part No. (See Figure 1.2 Part No., Memory Size, and Package) M30302MDP A U 1 - XXXGP Chip version and product code : Shows chip version. M16C XXXXXXX Henceforth, whenever it changes a version, it continues with A, B, and C. U1 : Shows Product code. (See table 1.3 Product Code) Date code seven digits NOTES: 1. Refer to the mark specification form for details of the Mask ROM version marking.

Figure 1.3 Marking Diagram of Mask ROM Version for M16C/30P (Top View)

Table 1.5 Product Code of One Time Flash version, Flash Memory version, and ROM-less version for M16C/30P

		Internal ROM			Operating
	Product Code	Package	Program and Erase Endurance	Temperature Range	Operating Ambient Temperature
One Time Flash	U3	Lead-	0	0°C to 60°C	-40°C to 85°C
version	U5	free			-20°C to 85°C
Flash Memory	U3	Lead-	100	0°C to 60°C	-40°C to 85°C
version	U5	free			-20°C to 85°C
ROM-less version	U3	Lead-	-	-	-40°C to 85°C
	U5	free			-20°C to 85°C

NOTES: The one time flash version can be written once only.

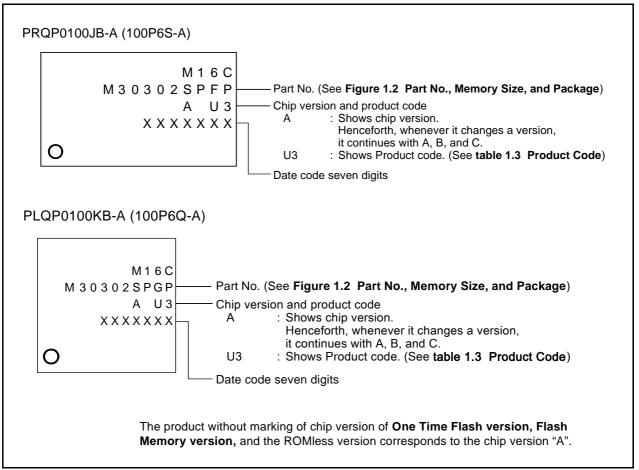


Figure 1.4 Marking Diagram of One Time Flash version, Flash Memory version, and ROM-less Version for M16C/30P (Top View)

Page 7 of 291

1.5 Pin Configuration

Figures 1.5 to 1.6 show the pin configurations (top view).

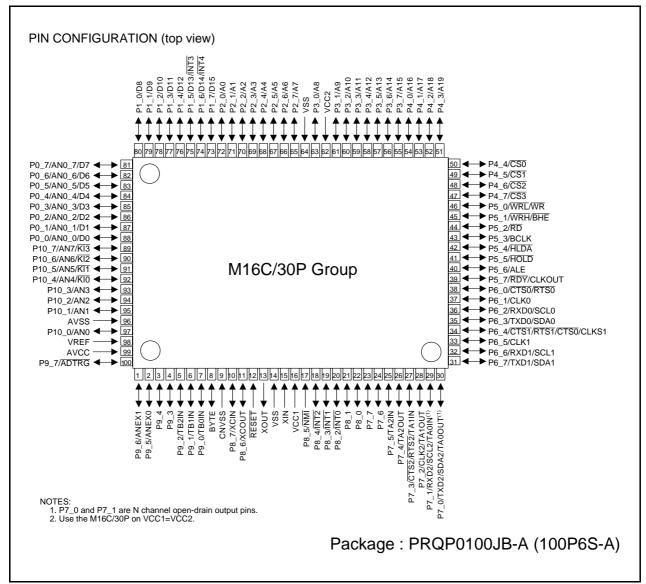


Figure 1.5 Pin Configuration (Top View)

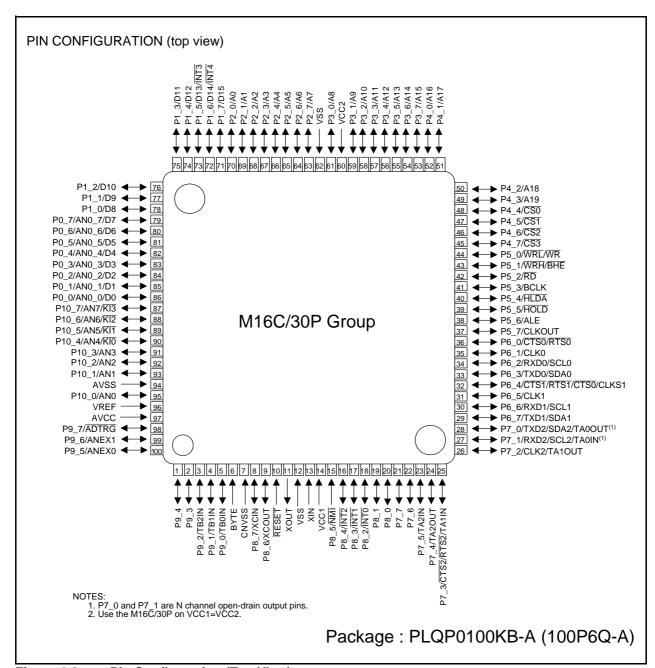


Figure 1.6 Pin Configuration (Top View)

Table 1.6 Pin Characteristics (1)

Tabl	e 1.6	Pin	Charact	teristics (1)				
Pin FP	No. GP	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Analog Pin	Bus Control Pin
1	99		P9_6				ANEX1	
2	100		P9_5				ANEX0	
3	1		P9_4				-	
4	2		P9_3					
5	3		P9_2		TB2IN			
6	4		P9_1		TB1IN			
7	5		P9_0		TB0IN			
8	6	BYTE						
9	7	CNVSS						
10	8	XCIN	P8_7					
11	9	XCOUT	P8_6					
12	10	RESET						
13	11	XOUT						
14	12	VSS						
15	13	XIN						
16	14	VCC1						
17	15		P8_5	NMI				
18	16		P8_4	INT2				
19	17		P8_3	ĪNT1				
20	18		P8_2	ĪNT0				
21	19		P8_1					
22	20		P8_0					
23	21		P7_7					
24	22		P7_6					
25	23		P7_5		TA2IN			
26	24		P7_4		TA2OUT			
27	25		P7_3		TA1IN	CTS2/RTS2		
28	26		P7_2		TA1OUT	CLK2		
29	27		P7_1		TAOIN	RXD2/SCL2		
30	28		P7_0		TA0OUT	TXD2/SDA2		
31	29		P6_7			TXD1/SDA1		
32	30		P6_6			RXD1/SCL1		
33	31		P6_5			CLK1		
34	32		P6_4			CTS1/RTS1/CTS0/CLKS1		
35	33		P6_3			TXD0/SDA0		
36	34		P6_2			RXD0/SCL0		
37	35		P6_1			CLK0		
38	36		P6_0			CTS0/RTS0		
39	37		P5_7	1				RDY/CLKOUT
40	38		P5_6	1				ALE
41	39		P5_5					HOLD
42	40		P5_4					HLDA
43	41		P5_3	†				BCLK
44	42		P5_2	 			 	RD
45	43		P5_1					WRH/BHE
46	43		P5_1	+				WRL/WR
46	45		+	+				CS3
			P4_7	 				
48	46		P4_6	 				CS2
49	47		P4_5					CS1
50	48		P4_4		j			CS0

Pin Characteristics (2) Table 1.7

	5 1.7		,,,a,,	eristics (2)				
Pin		Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Analog Pin	Bus Control Pin
FP	GP		D4 0					A19
51 52	49 50		P4_3 P4_2					A19
								A17
53	51		P4_1					
54	52		P4_0					A16
55	53		P3_7					A15
56	54		P3_6					A14
57	55		P3_5					A13 A12
58 59	56 57		P3_4 P3_3					A12
60	58		P3_3 P3_2					A10
61	59		P3_2 P3_1					A9
62	60	VCC2	F3_1					A9
63	61	V002	P3_0					A8
64	62	VSS	. 0_0					7.0
65	63		P2_7					A7
66	64		P2_6					A6
67	65		P2_5					A5
68	66		P2_4					A4
69	67		P2_3					A3
70	68		P2_2					A2
71	69		P2_1					A1
72	70		P2_0					A0
73	71		P1_7					D15
74	72		P1_6	ĪNT4				D14
75	73		P1_5	ĪNT3				D13
76	74		P1_4					D12
77	75		P1_3					D11
78	76		P1_2					D10
79	77		P1_1					D9
80	78		P1_0					D8
81	79		P0_7				AN0_7	D7
82	80		P0_6				AN0_6	D6
83	81		P0_5				AN0_5	D5
84	82		P0_4				AN0_4	D4
85	83		P0_3				AN0_3	D3
86	84		P0_2				AN0_2	D2
87	85		P0_1				AN0_1	D1
88	86		P0_0				AN0_0	D0
89	87		P10_7	KI3			AN7	
90	88		P10_6	KI2			AN6	
91	89		P10_5	KI2 KI1				
							AN5	
92	90		P10_4	KI0			AN4	
93	91		P10_3				AN3	
94	92 93		P10_2				AN2 AN1	
95 96	93	AVSS	P10_1				AINI	
96	95	AVOO	P10_0	+			AN0	
98	96	VREF	1 10_0				AINO	
99	97	AVCC						
100	98		P9_7				ADTRG	

Pin Description 1.6

Table 1.8 Pin Description (1)

Pin Name	I/O Type	Description
VCC1, VCC2 VSS	I	Apply 2.7 to 5.5 V to the VCC1 and VCC2 pins and 0 V to the Vss pin. The VCC apply condition is that VCC1 = VCC2.
AVCC AVSS	I	Applies the power supply for the A/D converter. Connect the AVCC pin to VCC1. Connect the AVSS pin to VSS.
RESET	I	The microcomputer is in a reset state when applying "L" to the this pin.
CNVSS	I	Switches processor mode. Connect this pin to VSS to when after a reset to start up in single-chip mode. Connect this pin to VCC1 to start up in microprocessor mode.
BYTE	I	Switches the data bus in external memory space. The data bus is 16 bits long when the this pin is held "L" and 8 bits long when the this pin is held "H". Set it to either one. Connect this pin to VSS when an single-chip mode.
D0 to D7	I/O	Inputs and outputs data (D0 to D7) when these pins are set as the separate bus.
D8 to D15	I/O	Inputs and outputs data (D8 to D15) when external 16-bit data bus is set as the separate bus.
A0 to A19	0	Output address bits (A0 to A19).
CS0 to CS3	0	Output CS0 to CS3 signals. CS0 to CS3 are chip-select signals to specify an external space.
WRL/WR WRH/BHE RD	0	Output WRL, WRH, (WR, BHE), RD signals. WRL and WRH or BHE and WR can be switched by program. • WRL, WRH and RD are selected The WRL signal becomes "L" by writing data to an even address in an external memory space. The WRH signal becomes "L" by writing data to an odd address in an external memory space. The RD pin signal becomes "L" by reading data in an external memory space. • WR, BHE and RD are selected The WR signal becomes "L" by writing data in an external memory space. The RD signal becomes "L" by reading data in an external memory space. The RD signal becomes "L" by reading data in an external memory space. The RD signal becomes "L" by accessing an odd address. Select WR, BHE and RD for an external 8-bit data bus.
ALE	0	ALE is a signal to latch the address.
HOLD	I	While the $\overline{\text{HOLD}}$ pin is held "L", the microcomputer is placed in a hold state.
HLDA	0	In a hold state, HLDA outputs a "L" signal.
RDY	I	While applying a "L" signal to the \overline{RDY} pin, the microcomputer is placed in a wait state.
	VCC1, VCC2 VSS AVCC AVSS RESET CNVSS BYTE D0 to D7 D8 to D15 A0 to A19 CS0 to CS3 WRL/WR WRH/BHE RD ALE HOLD HLDA	VCC1, VCC2 I VSS I AVCC I AVSS I RESET I CNVSS I BYTE I D0 to D7 I/O A0 to A19 O CS0 to CS3 O WRL/WR WRH/BHE RD O ALE O HOLD I HLDA O

I : Input O : Output I/O : Input and output

Pin Description (2) Table 1.9

14510 110	2000p	(-)	
Signal Name	Pin Name	I/O Type	Description
Main clock	XIN	I	I/O pins for the main clock generation circuit. Connect a ceramic
input			resonator or crystal oscillator between XIN and XOUT. To use the
Main clock	XOUT	0	external clock, input the clock from XIN and leave XOUT open.
output			
Sub clock	XCIN	I	I/O pins for a sub clock oscillation circuit. Connect a crystal oscillator
input			between XCIN and XCOUT. To use the external clock, input the clock
Sub clock	XCOUT	0	from XCIN and leave XCOUT open.
output			
Clock output	CLKOUT	0	The clock of the same cycle as fC, f8, or f32 is outputted.
INT interrupt	INT0 to INT4	I	Input pins for the INT interrupt.
input			
NMI interrupt	NMI	I	Input pin for the NMI interrupt.
input			input pin for the rum interrupt.
Key input	KI0 to KI3	ı	Input pins for the key input interrupt.
interrupt input	NIU IU NIS	'	impat pino for the key input interrupt.
Timer A	TA0OUT to	I/O	These are timer A0 to timer A2 I/O pins. (however, the output of
11110171	TA2OUT	., 0	TAOOUT for the N-channel open drain output.)
	TA0IN to TA2IN	ı	These are timer A0 to timer A2 input pins.
Timer B	TB0IN to TB2IN	i	These are timer No to timer B2 input pins.
Serial		<u>'</u> I	These are send control input pins.
interface	CTS0 to CTS2	-	·
interface	RTS0 to RTS2	0	These are receive control output pins.
	CLK0 to CLK2	I/O	These are transfer clock I/O pins.
	RXD0 to RXD2	ı	These are serial data input pins.
	TXD0 to TXD2	0	These are serial data output pins. (however, TXD2 for the N-channel
			open drain output.)
	CLKS1	0	This is output pin for transfer clock output from multiple pins function.
I ² C mode	SDA0 to SDA2	I/O	These are serial data I/O pins. (however, SDA2 for the N-channel
			open drain output.)
	SCL0 to SCL2	I/O	These are transfer clock I/O pins. (however, SCL2 for the N-channel
			open drain output.)
Reference	VREF	ı	Applies the reference voltage for the A/D converter.
voltage input			
A/D converter	AN0 to AN7,	ı	Analog input pins for the A/D converter.
	AN0_0 to AN0_7		
	ADTRG	I	This is an A/D trigger input pin.
	ANEX0	I/O	This is the extended analog input pin for the A/D converter, and is the
	71112710	., 0	output in external op-amp connection mode.
	ANEX1	ı	This is the extended analog input pin for the A/D converter.
I/O port	P0_0 to P0_7,	I/O	8-bit I/O ports in CMOS, having a direction register to select an input
,, o poit	P1_0 to P1_7,	., 0	or output.
	P2_0 to P2_7,		Each pin is set as an input port or output port. An input port can be set
	P3_0 to P3_7,		for a pull-up or for no pull-up in 4-bit unit by program. (however, P7_0
	P4_0 to P4_7,		and P7_1 for the N-channel open drain output.)
	P5_0 to P5_7,		
	P6_0 to P6_7,		
	P7_0 to P7_7,		
	P9_0 to P9_7,		
	P10_0 to P10_7		
	P8_0 to P8_4,	I/O	I/O ports having equivalent functions to P0.
	P8_6, P8_7		<u></u>
Input port	P8_5	I	Input pin for the NMI interrupt. Pin states can be read by the P8_5 bit
	1		in the P8 register.

I : Input O : Output I/O : Input and output

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU registers. The CPU has 13 registers. Of these, R0, R1, R2, R3, A0, A1 and FB comprise a register bank. There are two register banks.

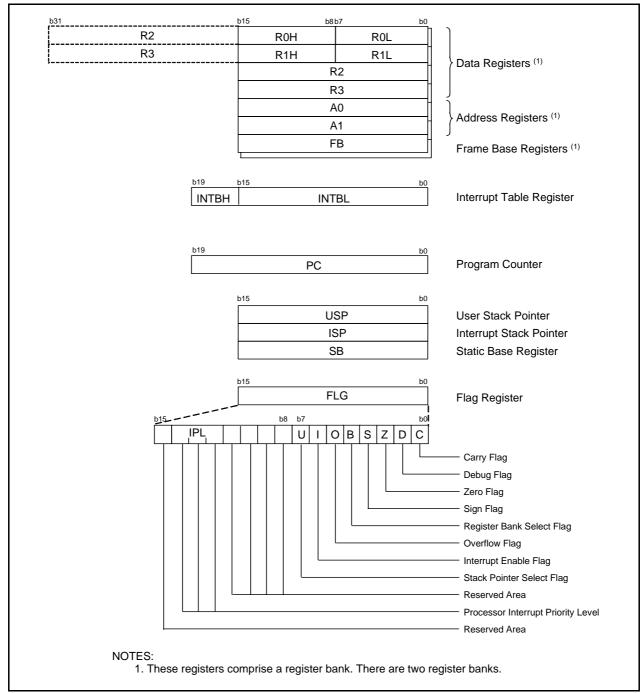


Figure 2.1 Central Processing Unit Register

2.1 Data Registers (R0, R1, R2 and R3)

The R0 register consists of 16 bits, and is used mainly for transfers and arithmetic/logic operations. R1 to R3 are the same as R0.

The R0 register can be separated between high (R0H) and low (R0L) for use as two 8-bit data registers.

R1H and R1L are the same as R0H and R0L. Conversely, R2 and R0 can be combined for use as a 32-bit data register (R2R0). R3R1 is the same as R2R0.

2.2 Address Registers (A0 and A1)

The register A0 consists of 16 bits, and is used for address register indirect addressing and address register relative addressing. They also are used for transfers and logic/logic operations. A1 is the same as A0. In some instructions, registers A1 and A0 can be combined for use as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is configured with 16 bits, and is used for FB relative addressing.

2.4 **Interrupt Table Register (INTB)**

INTB is configured with 20 bits, indicating the start address of an interrupt vector table.

2.5 **Program Counter (PC)**

PC is configured with 20 bits, indicating the address of an instruction to be executed.

2.6 **User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)**

Stack pointer (SP) comes in two types: USP and ISP, each configured with 16 bits. Your desired type of stack pointer (USP or ISP) can be selected by the U flag of FLG.

2.7 Static Base Register (SB)

SB is configured with 16 bits, and is used for SB relative addressing.

2.8 Flag Register (FLG)

FLG consists of 11 bits, indicating the CPU status.

2.8.1 Carry Flag (C Flag)

This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.

2.8.2 Debug Flag (D Flag)

The D flag is used exclusively for debugging purpose. During normal use, it must be set to "0".

2.8.3 Zero Flag (Z Flag)

This flag is set to "1" when an arithmetic operation resulted in 0; otherwise, it is "0".

2.8.4 Sign Flag (S Flag)

This flag is set to "1" when an arithmetic operation resulted in a negative value; otherwise, it is "0".

2.8.5 Register Bank Select Flag (B Flag)

Register bank 0 is selected when this flag is "0"; register bank 1 is selected when this flag is "1".

2.8.6 Overflow Flag (O Flag)

This flag is set to "1" when the operation resulted in an overflow; otherwise, it is "0".

2.8.7 Interrupt Enable Flag (I Flag)

This flag enables a maskable interrupt.

Maskable interrupts are disabled when the I flag is "0", and are enabled when the I flag is "1". The I flag is cleared to "0" when the interrupt request is accepted.

2.8.8 Stack Pointer Select Flag (U Flag)

ISP is selected when the U flag is "0"; USP is selected when the U flag is "1".

The U flag is cleared to "0" when a hardware interrupt request is accepted or an INT instruction for software interrupt Nos. 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is configured with three bits, for specification of up to eight processor interrupt priority levels from level 0 to level 7.

If a requested interrupt has priority greater than IPL, the interrupt is enabled.

2.8.10 Reserved Area

When write to this bit, write "0". When read, its content is indeterminate.

M16C/30P Group 3. Memory

3. Memory

Figure 3.1 is a Memory Map of the M16C/30P group. The address space extends the 1 Mbyte from address 00000h to FFFFFh

The internal ROM is allocated in a lower address direction beginning with address FFFFh. For example, a 64-Kbyte internal ROM is allocated to the addresses from F0000h to FFFFFh.

The fixed interrupt vector table is allocated to the addresses from FFFDCh to FFFFFh. Therefore, store the start address of each interrupt routine here.

The internal RAM is allocated in an upper address direction beginning with address 00400h. For example, a 5-Kbyte internal RAM is allocated to the addresses from 00400h to 017FFh. In addition to storing data, the internal RAM also stores the stack used when calling subroutines and when interrupts are generated. The SFR is allocated to the addresses from 00000h to 003FFh. Peripheral function control registers are located here. Of the SFR, any area which has no functions allocated is reserved for future use and cannot be used by users.

The special page vector table is allocated to the addresses from FFE00h to FFFDBh. This vector is used by the JMPS or JSRS instruction. For details, refer to the M16C/60 and M16C/20 Series Software Manual.

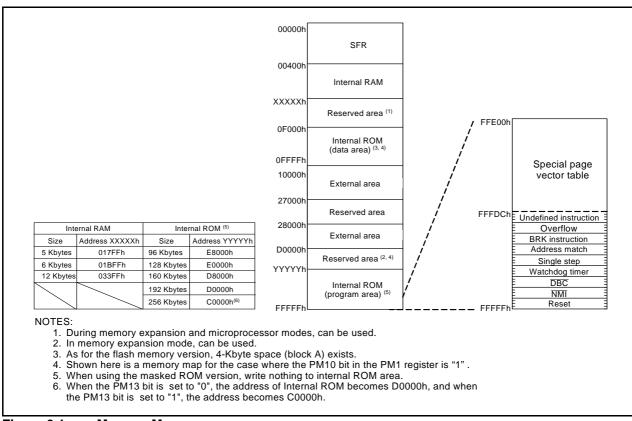


Figure 3.1 Memory Map

Special Function Register (SFR) 4.

SFR(Special Function Register) is the control register of peripheral functions. Tables 4.1 to 4.5 list the SFR information.

SFR Information (1) (1) Table 4.1

A -I -I	Donistan	O. mala al	A#== D===
Address	Register	Symbol	After Reset
0000h 0001h			
0002h			
0003h	N 1 D 1 1 0 (2)	DMG	
0004h	Processor Mode Register 0 (2)	PM0	00000000b(CNVSS pin is "L") 00000011b(CNVSS pin is "H")
0005h	Processor Mode Register 1	PM1	00XXX0X0b
0006h	System Clock Control Register 0	CM0	01001000b
0007h	System Clock Control Register 1	CM1	00100000b
0008h	Chip Select Control Register	CSR	00000001b
0009h	Address Match Interrupt Enable Register	AIER	XXXXXX00b
000Ah	Protect Register	PRCR	XX000000b
000Bh			
000Ch			
000Dh			
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDC	00XXXXXXb
0010h	Address Match Interrupt Register 0	RMAD0	00h
0011h		1400	00h
0011h			X0h
0012h			7.011
0013h	Address Match Interrupt Register 1	RMAD1	00h
0014H	Address Mater Interrupt (Vegisle)	KWADI	00h
0015h			X0h
0016h			AUII
0018h			
0019h 001Ah			
001Bh			
001Ch			
001Dh			
001Eh			
001Fh			
0020h	DMA0 Source Pointer	SAR0	XXh
0021h			XXh
0022h			XXh
0023h			
0024h	DMA0 Destination Pointer	DAR0	XXh
0025h			XXh
0026h			XXh
0027h			
0028h	DMA0 Transfer Counter	TCR0	XXh
0029h			XXh
002Ah			
002Bh			
002Ch	DMA0 Control Register	DM0CON	00000X00b
002Dh			
002Eh			
002Fh			
0030h	DMA1 Source Pointer	SAR1	XXh
0031h			XXh
0032h			XXh
0033h			
0034h	DMA1 Destination Pointer	DAR1	XXh
0035h			XXh
0036h			XXh
0037h			
0038h	DMA1 Transfer Counter	TCR1	XXh
0039h	S Handioi Countoi	10101	XXh
0039H			77711
003An			
003Ch	DMA1 Control Register	DM1CON	00000X00b
003Ch	DIVIA I CONTION REGISTER	DIVITOR	00000000
003Eh 003Fh			
บบงาก			1

NOTES:

- The blank areas are reserved and cannot be accessed by users.
 The PM00 and PM01 bits do not change at software reset.
- X : Nothing is mapped to this bit

SFR Information (2) (1) Table 4.2

Address	Register	Symbol	After Reset
0040h	register	Symbol	Alter Neset
0041h			
0042h			
0043h			
0044h	INT3 Interrupt Control Register	INT3IC	XX00X000b
0045h	, ,		
0046h	UART1 BUS Collision Detection Interrupt Control Register	U1BCNIC	XXXXX000b
0047h	UARTO BUS Collision Detection Interrupt Control Register	U0BCNIC	XXXXX000b
0048h	·		
0049h	INT4 Interrupt Control Register	INT4IC	XX00X000b
004Ah	UART2 Bus Collision Detection Interrupt Control Register	BCNIC	XXXXX000b
004Bh	DMA0 Interrupt Control Register	DM0IC	XXXXX000b
004Ch	DMA1 Interrupt Control Register	DM1IC	XXXXX000b
004Dh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXXX000b
004Fh	UART2 Transmit Interrupt Control Register	S2TIC	XXXXX000b
0050h	UART2 Receive Interrupt Control Register	S2RIC	XXXXX000b
0051h	UART0 Transmit Interrupt Control Register	SOTIC	XXXXX000b
0052h	UART0 Receive Interrupt Control Register	SORIC	XXXXX000b
0053h	UART1 Transmit Interrupt Control Register	S1TIC	XXXXX000b
0054h	UART1 Receive Interrupt Control Register	S1RIC	XXXXX000b
0055h	Timer A0 Interrupt Control Register	TAOIC	XXXXX000b
0056h	Timer A1 Interrupt Control Register	TA1IC	XXXXX000b
0057h	Timer A2 Interrupt Control Register	TA2IC	XXXXX000b
0058h			
0059h			
005Ah	Timer B0 Interrupt Control Register	TB0IC	XXXXX000b
005Bh	Timer B1 Interrupt Control Register	TB1IC	XXXXX000b
005Ch	Timer B2 Interrupt Control Register	TB2IC	XXXXX000b
005Dh	INTO Interrupt Control Register	INTOIC	XX00X000b
005Eh	INT1 Interrupt Control Register	INT1IC	XX00X000b
005Fh	INT2 Interrupt Control Register	INT2IC	XX00X000b
0060h			
to			
01AFh			
01B0h			
01B1h			
01B2h			
01B3h 01B4h			
01B4H	Flash Memory Control Register 1 (2)	FMR1	0X00XX0Xb
01B6h	Flash Memory Control Register 1 (=)	FIVIK	00000000
01B0H	Flash Memory Control Register 0 (3)	FMR0	00000001b
01B711	I lash Memory Control Register 6 (-)	TWICO	0000001b
01B0h			
01BAh			
01BBh			
01BCh			
01BDh	+		+
01BEh	+		+
01BFh	+		
01C0h	+		
to			
024Fh			
0250h			<u> </u>
0251h			<u> </u>
0252h			
0253h			
0254h			<u> </u>
0255h			<u> </u>
0256h	+		
0257h	+		
0258h			
0259h			
025Ah			
025Bh			
025Ch	+	+	
025Dh			
	Peripheral Clock Select Register	PCLKR	00000011b
025Eh		•	i e
025Eh 025Fh			
025Fh			

- NOTES:
 1. The blank areas are reserved and cannot be accessed by users.
 2. This register is included in the flash memory version.
 3. This register is included in the flash memory version and one time flash version.

X : Nothing is mapped to this bit

SFR Information (3) (1) Table 4.3

Address	Register	Symbol	After Reset
0340h	-5	-,	11 111
0341h			
0342h			
0343h			
0344h			
0345h			
0346h			
0347h			
0348h			
0349h			
0349h			
034Bh			
034Ch 034Dh			
034Eh			
034Fh			
0350h			
0351h			
0352h			
0353h			
0354h			
0355h			
0356h			
0357h			
0358h			
0359h			
035Ah			
035Bh			
035Ch			
035Dh			
035Eh	Interrupt Factor Select Register 2	IFSR2A	00XXXXXXb
035Fh	Interrupt Factor Select Register	IFSR	00h
0360h	· · · · · · · · · · · · · · · · · · ·		
0361h			
0362h			
0363h			
0364h			
0365h			
0366h			
0367h			
0368h			
0369h			
036Ah			
036Bh			
036Ch	UART0 Special Mode Register 4	LINGMBA	00h
036Dh		U0SMR4 U0SMR3	
	UARTO Special Mode Register 3		000X0X0Xb X0000000b
036Eh	UARTO Special Mode Register 2 UARTO Special Mode Register	U0SMR2	
036Fh		U0SMR	X0000000b
0370h	UART1 Special Mode Register 4	U1SMR4	00h
0371h	UART1 Special Mode Register 3	U1SMR3	000X0X0Xb
0372h	UART1 Special Mode Register 2	U1SMR2	X0000000b
0373h	UART1 Special Mode Register	U1SMR	X0000000b
0374h	UART2 Special Mode Register 4	U2SMR4	00h
0375h	UART2 Special Mode Register 3	U2SMR3	000X0X0Xb
0376h	UART2 Special Mode Register 2	U2SMR2	X0000000b
0377h	UART2 Special Mode Register	U2SMR	X0000000b
0378h	UART2 Transmit/Receive Mode Register	U2MR	00h
0379h	UART2 Bit Rate Generator	U2BRG	XXh
037Ah	UART2 Transmit Buffer Register	U2TB	XXh
037Bh			XXh
037Ch	UART2 Transmit/Receive Control Register 0	U2C0	00001000b
037Dh	UART2 Transmit/Receive Control Register 1	U2C1	00000010b
037Eh	UART2 Receive Buffer Register	U2RB	XXh
037Fh			XXh
			<u> </u>

NOTES:

1. The blank areas are reserved and cannot be accessed by users.

X : Nothing is mapped to this bit

SFR Information (4) (1) Table 4.4

Address	Register	Symbol	After Reset
0380h	Count Start Flag	TABSR	000XX000b
0381h	Clock Prescaler Reset Fag	CPSRF	0XXXXXXXb
			00XXX000b
0382h	One-Shot Start Flag	ONSF	
0383h	Trigger Select Register	TRGSR	XXXX0000b
0384h	Up-Down Flag	UDF	XX0XX000b (2)
0385h			
0386h	Timer A0 Register	TA0	XXh
0387h			XXh
0388h	Timer A1 Register	TA1	XXh
0389h		1	XXh
038Ah	Timer A2 Register	TA2	XXh
038Bh	Time Az Negistei	172	XXh
			AAII
038Ch			
038Dh			
038Eh			
038Fh			
0390h	Timer B0 Register	TB0	XXh
0391h			XXh
0392h	Timer B1 Register	TB1	XXh
0393h		1.5.	XXh
0394h	Timer B2 Register	TB2	XXh
	Timer be negleter	1 DZ	
0395h	IT' AOM I D '	TAGME	XXh
0396h	Timer A0 Mode Register	TA0MR	00h
0397h	Timer A1 Mode Register	TA1MR	00h
0398h	Timer A2 Mode Register	TA2MR	00h
0399h			
039Ah			
039Bh	Timer B0 Mode Register	TB0MR	00XX0000b
039Ch	Timer B1 Mode Register	TB1MR	00XX0000b
039Dh	Timer B2 Mode Register	TB2MR	00XX0000b
	Timer bz wode Negister	TBZIVIK	00//00000
039Eh			
039Fh			
03A0h	UART0 Transmit/Receive Mode Register	U0MR	00h
03A1h	UART0 Bit Rate Generator	U0BRG	XXh
03A2h	UART0 Transmit Buffer Register	U0TB	XXh
03A3h			XXh
03A4h	UARTO Transmit/Receive Control Register 0	U0C0	00001000b
03A5h	UART0 Transmit/Receive Control Register 1	U0C1	00000010b
03A6h	UARTO Receive Buffer Register	UORB	XXh
03A011	OAK 10 Receive Bullet Register	OOKB	XXh
03A8h	UART1 Transmit/Receive Mode Register	U1MR	00h
03A9h	UART1 Bit Rate Generator	U1BRG	XXh
03AAh	UART1 Transmit Buffer Register	U1TB	XXh
03ABh			XXh
03ACh	UART1 Transmit/Receive Control Register 0	U1C0	00001000b
03ADh	UART1 Transmit/Receive Control Register 1	U1C1	00000010b
03AEh	UART1 Receive Buffer Register	U1RB	XXh
03AEn	STATE RESIDENCE DUITOF REGISTER	JIND	XXh
03B0h	I I I A P.T. Transmit/Paccina Control Pagistor 2	LICON	X0000000b
	UART Transmit/Receive Control Register 2	UCON	V0000000
03B1h			
03B2h			
03B3h			
03B4h			
03B5h			
03B6h			+
03B7h			+
03B8h	I DMA0 Poquest Easter Select Pogister	DMOSI	100h
	DMA0 Request Factor Select Register	DM0SL	00h
03B9h			1
03BAh	DMA1 Request Factor Select Register	DM1SL	00h
03BBh			
03BCh	CRC Data Register	CRCD	XXh
03BDh	_		XXh
03BEh	CRC Input Register	CRCIN	XXh
03BFh		3	
000111			

NOTES:

- The blank areas are reserved and cannot be accessed by users.
 Bit 5 in the Up-down flag is "0" by reset. However, The values in these bits when read are indeterminate.

X : Nothing is mapped to this bit

SFR Information (5) (1) Table 4.5

Address	Register	Symbol	I After Reset
03C0h	A/D Register 0	ADO	XXh
03C0h	A D Register 0	ADO	XXh
03C2h	A/D Register 1	AD1	XXh
03C2h	A D Register 1	ADT	XXh
03C4h	A/D Register 2	AD2	XXh
03C5h	A D Negister 2	ADZ	XXh
03C6h	A/D Register 3	AD3	XXh
03C0h	A/D (register 3	ADS	XXh
03C8h	A/D Register 4	AD4	XXh
03C9h	AD Register 4	AD4	XXh
03CAh	A/D Register 5	AD5	XXh
03CAn	AD Register 3	ADS	XXh
03CCh	A/D Register 6	AD6	XXh
03CDh	A/D Register 6	ADO	XXh
03CEh	LA/D Degister 7	ADZ	XXh
03CEn	A/D Register 7	AD7	
			XXh
03D0h			
03D1h			
03D2h			
03D3h	A/D Control Bogistor 2	ABCONG	L VVV000V0F
03D4h	A/D Control Register 2	ADCON2	XXX000X0b
03D5h	A/D Control Deviator O	ABOONS	Loooyoyyy
03D6h	A/D Control Register 0	ADCON0	000X0XXXb
03D7h	A/D Control Register 1	ADCON1	00000XXXb
03D8h			
03D9h			
03DAh			
03DBh			
03DCh			
03DDh			
03DEh			
03DFh			
03E0h	Port P0 Register	P0	XXh
03E1h	Port P1 Register	P1	XXh
03E2h	Port P0 Direction Register	PD0	00h
03E3h	Port P1 Direction Register	PD1	00h
03E4h	Port P2 Register	P2	XXh
03E5h	Port P3 Register	P3	XXh
03E6h	Port P2 Direction Register	PD2	00h
03E7h	Port P3 Direction Register	PD3	00h
03E8h	Port P4 Register	P4	XXh
03E9h	Port P5 Register	P5	XXh
03EAh	Port P4 Direction Register	PD4	00h
03EBh	Port P5 Direction Register	PD5	00h
03ECh	Port P6 Register	P6	XXh
03EDh	Port P7 Register	P7	XXh
03EEh	Port P6 Direction Register	PD6	00h
03EFh	Port P7 Direction Register	PD7	00h
03F0h	Port P8 Register	P8	XXh
03F1h	Port P9 Register	P9	XXh
03F2h	Port P8 Direction Register	PD8	00X00000b
03F3h	Port P9 Direction Register	PD9	00h
03F4h	Port P10 Register	P10	XXh
03F5h			
03F6h	Port P10 Direction Register	PD10	00h
03F7h	- · · · - · · - · · · · · · · · · · · ·		1
03F8h			
03F9h			
03FAh			
03FBh			
03FCh	Pull-Up Control Register 0	PUR0	00h
03FCh 03FDh	Pull-Up Control Register 1	PUR1	00000000b (2)
บงคบท	Full-Op Control Register 1	PUKT	00000000b (2) 00000010b (2)
03FEh	Pull-Up Control Register 2	PUR2	00000010b (2)
03FEh	Port Control Register 2 Port Control Register		
IIIKEED	i Poli Control Register	PCR	00h

NOTES:

- 1. The blank areas are reserved and cannot be accessed by users.
- 2. At hardware reset, the register is as follows:

 - "00000000b" where "L" is inputted to the CNVSS pin
 "00000010b" where "H" is inputted to the CNVSS pin

At software reset, the register is as follows:

- "00000000b" where the PM01 to PM00 bits in the PM0 register are "00b" (single-chip mode).
 "00000010b" where the PM01 to PM00 bits in the PM0 register are "01b" (memory expansion mode) or "11b" (microprocessor mode).

X: Nothing is mapped to this bit

5. Reset

Hardware reset and software reset are available to reset the microcomputer.

5.1 **Hardware Reset**

The microcomputer resets pins, the CPU and SFR by setting the RESET pin. If the supply voltage meets the recommended operating conditions, the microcomputer resets all pins when an "L" signal is applied to the RESET pin (see Table 5.1 Pin Status When RESET Pin Level is "L"). The oscillation circuit is also reset and the main clock starts oscillation. The microcomputer resets the CPU and SFR when the signal applied to the RESET pin changes low ("L") to high ("H"). The microcomputer executes the program in an address indicated by the reset vector. The internal RAM is not reset. When an "L" signal is applied to the $\overline{\text{RESET}}$ pin while writing data to the internal RAM, the internal RAM is in an indeterminate state.

Figure 5.1 shows an Example Reset Circuit. Figure 5.2 shows a Reset Sequence. Table 5.1 lists pin states while the RESET pin is held low ("L").

5.1.1 Reset on a Stable Supply Voltage

- (1) Apply "L" to the \overline{RESET} pin
- (2) Apply 20 or more clock cycles to the XIN pin
- (3) Apply an "H" signal to the \overline{RESET} pin

5.1.2 **Power-on Reset**

- (1) Apply "L" to the \overline{RESET} pin
- (2) Raise the supply voltage to the recommended operating level
- (3) Insert td(P-R) ms as wait time for the internal voltage to stabilize
- (4) Apply 20 or more clock cycles to the XIN pin
- (5) Apply "H" to the \overline{RESET} pin

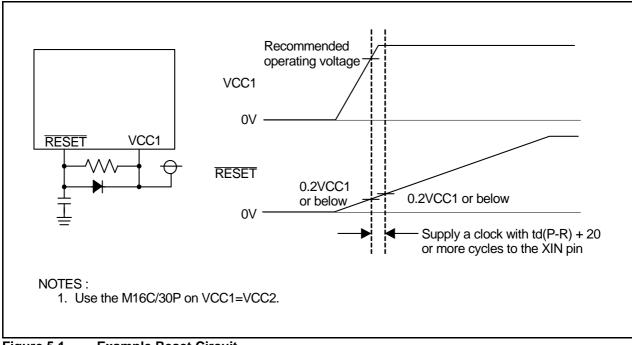


Figure 5.1 **Example Reset Circuit**

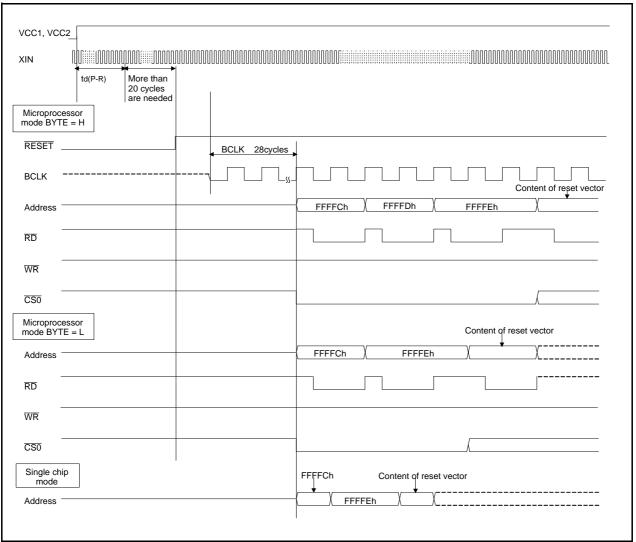


Figure 5.2 Reset Sequence

Table 5.1 Pin Status When RESET Pin Level is "L"

Pin Name	Status					
	CNIVES - VES	CNVSS = VCC1				
	CNVSS = VSS	BYTE = VSS	BYTE = VCC1			
P0	Input port	Data input	Data input			
P1	Input port	Data input	Input port			
P2, P3, P4_0 to P4_3	Input port	Address output (undefined)	Address output (undefined)			
P4_4	Input port	CS0 output ("H" is output)	CS0 output ("H" is output)			
P4_5 to P4_7	Input port	Input port (Pulled high)	Input port (Pulled high)			
P5_0	Input port	WR output ("H" is output)	WR output ("H" is output)			
P5_1	Input port	BHE output (undefined)	BHE output (undefined)			
P5_2	Input port	RD output ("H" is output)	RD output ("H" is output)			
P5_3	Input port	BCLK output	BCLK output			
		HLDA output (The output	HLDA output (The output			
P5_4	Input port	value depends on the input to the HOLD pin)	value depends on the input to the HOLD pin)			
P5_5	Input port	HOLD input	HOLD input			
P5_6	Input port	ALE output ("L" is output)	ALE output ("L" is output)			
P5_7	Input port	RDY input	RDY input			
P6, P7, P8_0 to P8_4, P8_6, P8_7, P9, P10	Input port	Input port	Input port			

NOTES:

1. Shown here is the valid pin state when the internal power supply voltage has stabilized after power on.

When CNVSS = VCC1, the pin state is indeterminate until the internal power supply voltage stabilizes.

5.2 Software Reset

The microcomputer resets pins, the CPU and SFR when the PM03 bit in the PM0 register is set to "1" (microcomputer reset). Then the microcomputer executes the program in an address determined by the reset vector. Set the PM03 bit to "1" while the main clock is selected as the CPU clock and the main clock oscillation is stable. In the software reset, the microcomputer does not reset a part of the SFR. Refer to **4. Special Function Register** (SFR) for details.

Processor mode remains unchanged since the PM01 to PM00 bits in the PM0 register are not reset.

5.3 Internal Space

Figure 5.3 shows CPU Register Status After Reset. Refer to **4. Special Function Register (SFR)** for SFR states after reset.

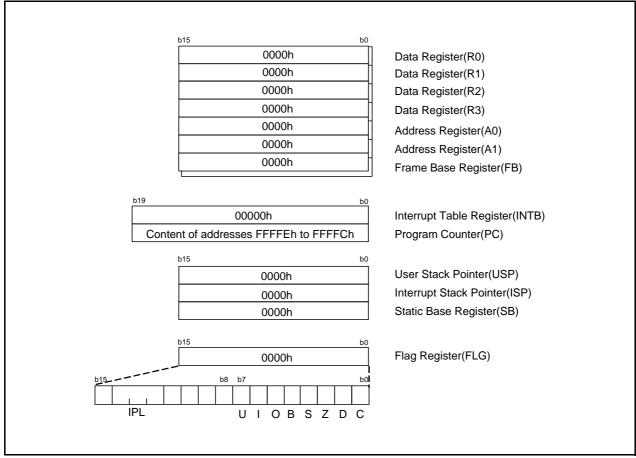


Figure 5.3 CPU Register Status After Reset

5.4 Cold Start-up / Warm Start-up Determine Function

As for the cold start-up/warm start-up determine function, the WDC5 flag in the WDC register determines either cold start-up (reset process) when power-on or warm start-up (reset process) when reset signal is applied during the microcomputer running.

Default value of the WDC5 bit is "0" (cold start-up) when power-on. It is set to "1" (warm start-up) by writing desired values to the WDC register. The WDC bit is not reset, regardless of a software reset or a reset operation. Figure 5.4 shows Cold Start-up/Warm Start-up Determine Function Block Diagram. Figure 5.5 shows the Cold Start-up/Warm Start-up Determine Function Operation Example. Figure 5.6 shows WDC Register.

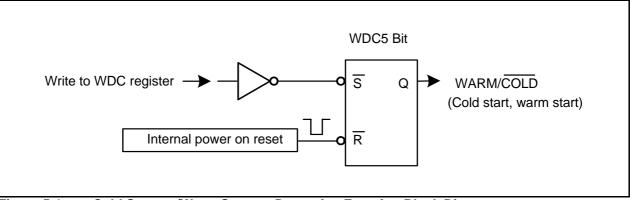


Figure 5.4 Cold Start-up/Warm Start-up Determine Function Block Diagram

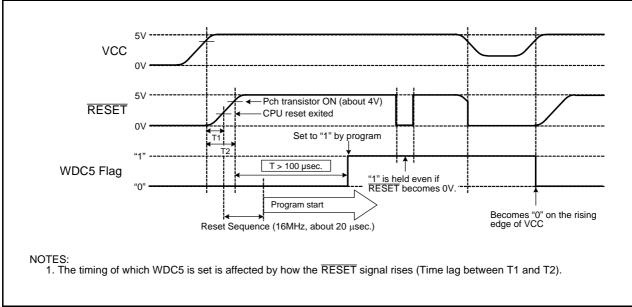
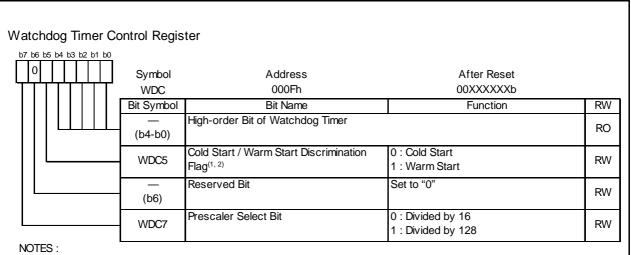



Figure 5.5 Cold Start-up/Warm Start-up Determine Function Operation Example

1. Writing to the WDC register causes the WDC5 bit to be set to "1" (warm start). If the voltage applied to VCC1 is less than 4.0 V, either write to this register when the CPU clock frequency is 2 MHz or write twice.

2. The WDC5 bit is set to "0" (cold start) when power is turned on and can be set to "1" by program only.

Figure 5.6 **WDC Register**

6. Processor Mode

6.1 Types of Processor Mode

Three processor modes are available to choose from: single-chip mode, memory expansion mode, and microprocessor mode. Table 6.1 shows the Features of Processor Modes.

Table 6.1 Features of Processor Modes

Processor Modes	Access Space	Pins which are Assigned I/O Ports
Single-Chip Mode	SFR, Internal RAM, Internal ROM	All pins are I/O ports or peripheral function I/O pins
Memory Expansion Mode	SFR, Internal RAM, Internal ROM, External Area ⁽¹⁾	Some pins serve as bus control pins (1)
Microprocessor Mode	SFR, Internal RAM, External Area (1)	Some pins serve as bus control pins (1)

NOTES:

1. Refer to 7. Bus.

6.2 Setting Processor Modes

Processor mode is set by using the CNVSS pin and the PM01 to PM00 bits in the PM0 register. Table 6.2 shows the Processor Mode After Hardware Reset. Table 6.3 shows the PM01 to PM00 Bits Set Values and Processor Modes.

Table 6.2 Processor Mode After Hardware Reset

CNVSS Pin Input Level	Processor Modes
VSS	Single-Chip Mode
VCC1 (1)	Microprocessor Mode

NOTES:

1. If the microcomputer is reset in hardware by applying VCC1 to the CNVSS pin (hardware reset), the internal ROM cannot be accessed regardless of PM01 to PM00 bits.

Table 6.3 PM01 to PM00 Bits Set Values and Processor Modes

PM01 to PM00 Bits	Processor Modes
00b	Single-Chip Mode
01b	Memory Expansion Mode
10b	Do not set
11b	Microprocessor Mode

Rewriting the PM01 to PM00 bits places the microcomputer in the corresponding processor mode regardless of whether the input level on the CNVSS pin is "H" or "L". Note, however, that the PM01 to PM00 bits cannot be rewritten to "01b" (memory expansion mode) or "11b" (microprocessor mode) at the same time the PM07 to PM02 bits are rewritten. Note also that these bits cannot be rewritten to enter microprocessor mode in the internal ROM, nor can they be rewritten to exit microprocessor mode in areas overlapping the internal ROM.

If the microcomputer is reset in hardware by applying VCC1 to the CNVSS pin (hardware reset 1 or brown-out detection reset (hardware reset 2)), the internal ROM cannot be accessed regardless of PM01 to PM00 bits.

Figures 6.1 and 6.2 show the PM0 Register and PM1 Register (1). Figure 6.4 show the Memory Map in Single Chip Mode.

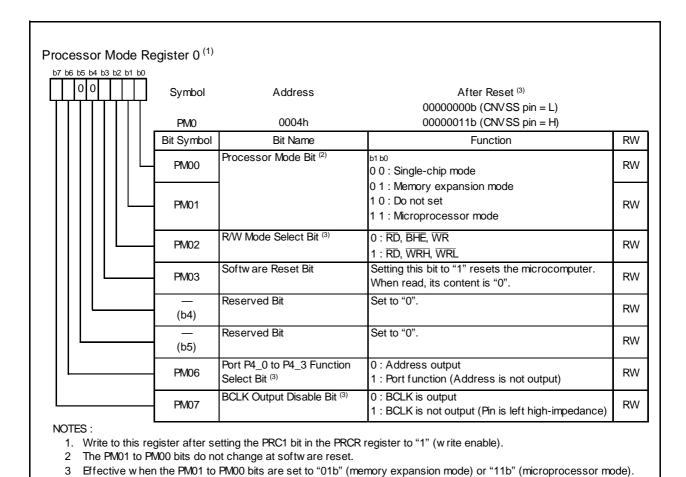
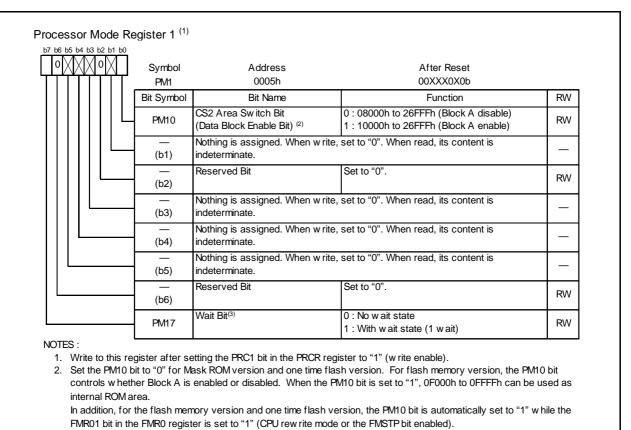
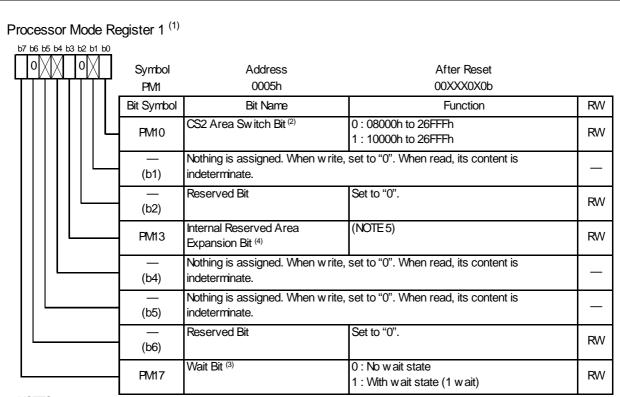



Figure 6.1 **PM0** Register

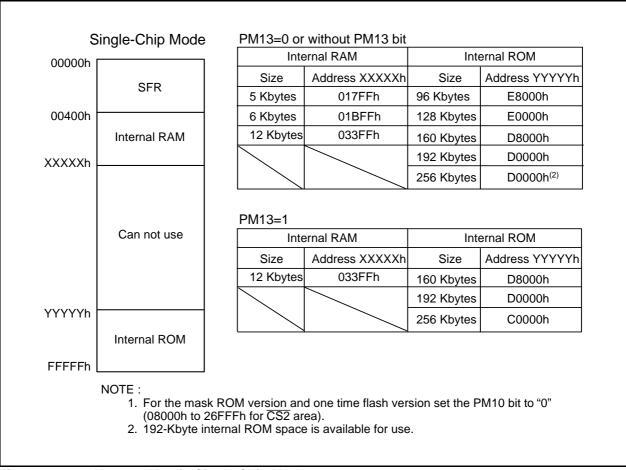

3. When PM17 bit is set to "1" (with w ait state), one wait state is inserted when accessing the internal RAM, or internal

When PM17 bit is set to "1" and accesses an external area, set the CSiW bit in the CSR register (i=0 to 3) to "0" (with

PM1 Register (1) Figure 6.2

w ait state).

ROM.



NOTES:

- 1. Write to this register after setting the PRC1 bit in the PRCR register to "1" (write enable).
- 2. Set the PM10 bit to "0" for one time flash version.
- 3. When PM17 bit is set to "1" (with wait state), one wait state is inserted when accessing the internal RAM, or internal
 - When PM17 bit is set to "1" and accesses an external area, set the CSiW bit in the CSR register (i=0 to 3) to "0" (with
- 4. The PM13 bit is automatically set to "1" when the FMR01 bit in the FMR0 register is "1" (CPU rew rite mode).
- 5. The access area is changed by the PM13 bit as listed in the table below.

Access Area		PM13=0	PM13=1	
Internal RAM		Up to Addresses 00400h to 03FFFh (15 Kbytes	The entire area is usable	
Internal	ROM	Up to Addresses D0000h to FFFFFh (192 Kbyte	The entire area is usable	
Extern	nal	Address 04000h to 07FFFh are usable Address 80000h to CFFFFh are usable	Address 04000h to 07FFFh are reserved Address 80000h to CFFFFh are reserved (Memory expansion mode)	

Figure 6.3 PM1 Register (2) (M30304GDPFP, M30304GDPGP, M30304GEPFP, M30304GEPGP, M30302GGPFP, M30302GGPGP)

Memory Map in Single Chip Mode Figure 6.4

7. Bus

During memory expansion or microprocessor mode, some pins serve as the bus control pins to perform data input/output to and from external devices. These bus control pins include A0 to A19, D0 to D15, \overline{CSO} to \overline{CSO} , \overline{RD} , $\overline{WRL}/\overline{WR}$, $\overline{WRH/BHE}$, ALE, \overline{RDY} , \overline{HOLD} , \overline{HLDA} and BCLK.

7.1 Bus Mode

The bus mode is the "separate bus mode" that separates data and address.

7.2 Bus Control

The following describes the signals needed for accessing external devices and the functionality of software wait.

7.2.1 Address Bus

The address bus consists of 20 lines, A0 to A19. The address bus width can be chosen to be 16 or 20 bits by using the PM06 bit in the PM0 register. Table 7.1 shows the PM06 Bit Set Value and Address Bus Width.

Table 7.1 PM06 Bit Set Value and Address Bus Width

Set Value (1)	Pin Function	Address Bus Width
PM06=1	P4_0 to P4_3	16 bits
PM06=0	A16 to A19	20 bits

NOTES:

1. No values other than those shown above can be set.

When processor mode is changed from single-chip mode to memory extension mode, the address bus is indeterminate until any external area is accessed.

7.2.2 Data Bus

When input on the BYTE pin is high (data bus is 8 bits wide), 8 lines D0 to D7 comprise the data bus; when input on the BYTE pin is low(data bus is 16 bits wide), 16 lines D0 to D15 comprise the data bus. Do not change the input level on the BYTE pin while in operation.

7.2.3 Chip Select Signal

The chip select (hereafter referred to as the \overline{CS}) signals are output from the \overline{CSi} (i = 0 to 3) pins. These pins can be chosen to function as I/O ports or as \overline{CS} by using the \overline{CS} bit in the CSR register.

Figure 7.1 shows the CSR Register.

During 1-Mbyte mode, the external area can be separated into up to 4 by the \overline{CSi} signal which is output from the \overline{CSi} pin.

Figure 7.2 shows the Example of Address Bus and CSi Signal Output in 1-Mbyte mode.

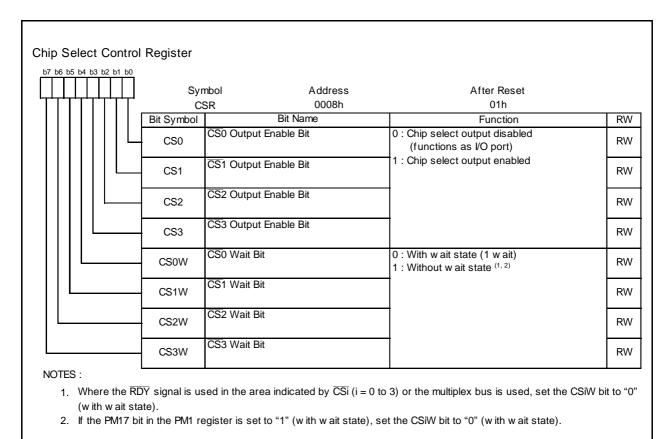


Figure 7.1 CSR Register

Example 1 Example 2 To access the external area indicated by $\overline{\text{CSj}}$ in the next cycle after accessing the external area indicated by $\overline{\text{CSi}}$ To access the internal ROM or internal RAM in the next cycle after accessing the external area indicated by CSi The address bus and the chip select signal both change state between The chip select signal changes state but the address bus does not change state these two cycles. Access to the internal ROM or internal RAM Access to the external area indicated by $\overline{\text{CSj}}$ Access to the external area indicated by $\overline{\text{CSi}}$ Access to the external area indicated by CSi BCLK BCLK Read signal Read signal Data bus Data Data bus Data Address Address Address bus Address bus CSi CSi CSj Not to access any area (nor instruction prefetch generated) in the next cycle after accessing the external area indicated by $\overline{\text{CSi}}$ To access the external area indicated by $\overline{\text{CSi}}$ in the next cycle after accessing the external area indicated by the same $\overline{\text{CSi}}$ Neither the address bus nor the chip select signal changes state between these two cycles The address bus changes state but the chip select signal does not change state Access to the external area indicated by CSi Access to the same Access to the external No access external area area indicated by CSi BCLK BCLK Read signal Read signal Data bus (Data Data bus Address Address Address Address bus Address bus CSi CSi NOTES 1. These examples show the address bus and chip select signal when accessing areas in two successive cycles. The chip select bus cycle may be extended more than two cycles depending on a combination of these examples. Shown above is the case where separate bus is selected and the area is accessed for read without wait states. i = 0 to 3, j = 0 to 3 (not including i, however)

Example of Address Bus and CSi Signal Output in 1-Mbyte mode Figure 7.2

7.2.4 Read and Write Signals

When the data bus is 16 bits wide, the read and write signals can be chosen to be a combination of \overline{RD} , \overline{BHE} and \overline{WR} or a combination of \overline{RD} , \overline{WRL} and \overline{WRH} by using the PM02 bit in the PM0 register. When the data bus is 8 bits wide, use a combination of \overline{RD} , \overline{WR} and \overline{BHE} .

Table 7.2 shows the Operation of \overline{RD} , \overline{WRL} , and \overline{WRH} Signals. Table 7.3 shows the Operation of \overline{RD} , \overline{WRL} , and \overline{BHE} Signals.

Table 7.2 Operation of RD, WRL and WRH Signals

Data Bus Width	RD	WRL	WRH	Status of External Data Bus
16-bit L H H Rea		Read data		
(BYTE pin input = L)	Н	L	Н	Write 1 byte of data to an even address
	Н	Н	L	Write 1 byte of data to an odd address
	Н	L	L	Write data to both even and odd addresses

Table 7.3 Operation of \overline{RD} , \overline{WRL} and \overline{BHE} Signals

Data Bus Width	RD	WRL	BHE	A0	Status of External Data Bus
16-bit	Н	L	L	Н	Write 1 byte of data to an odd address
(BYTE pin input = L)	L	Н	L	Н	Read 1 byte of data from an odd address
	Н	L	Н	L	Write 1 byte of data to an even address
	L	Н	Н	L	Read 1 byte of data from an even address
	Н	L	L	L	Write data to both even and odd addresses
	L	Н	L	L	Read data from both even and odd addresses
8-bit	Н	L	Not used	H or L	Write 1 byte of data
(BYTE pin input = H)	L	Н	Not used	H or L	Read 1 byte of data

7.2.5 ALE Signal

The ALE signal latches the address.

7.2.6 RDY Signal

This signal is provided for accessing external devices which need to be accessed at low speed. If input on the \overline{RDY} pin is asserted low at the last falling edge of BCLK of the bus cycle, one wait state is inserted in the bus cycle. While in a wait state, the following signals retain the state in which they were when the \overline{RDY} signal was acknowledged.

A0 to A19, D0 to D15, $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$, $\overline{\text{RD}}$, $\overline{\text{WRL}}$, $\overline{\text{WRH}}$, $\overline{\text{WR}}$, $\overline{\text{BHE}}$, ALE, $\overline{\text{HLDA}}$

Then, when the input on the \overline{RDY} pin is detected high at the falling edge of BCLK, the remaining bus cycle is executed. Figure 7.3 shows Example in which the Wait State was Inserted into Read Cycle by \overline{RDY} Signal. To use the \overline{RDY} signal, set the corresponding bit (CS3W to CS0W bits) in the CSR register to "0" (with wait state). When not using the \overline{RDY} signal, the \overline{RDY} pin must be pulled-up.

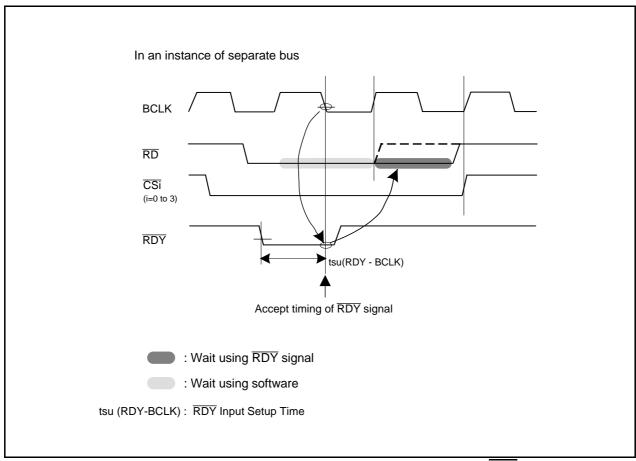


Figure 7.3 Example in which Wait State was Inserted into Read Cycle by RDY Signal

7.2.7 HOLD Signal

This signal is used to transfer control of the bus from the CPU or DMAC to an external circuit. When the input on \overline{HOLD} pin is pulled low, the microcomputer is placed in a hold state after the bus access then in process finishes. The microcomputer remains in the hold state while the \overline{HOLD} pin is held low, during which time the \overline{HLDA} pin outputs a low-level signal.

Table 7.4 shows the Microcomputer Status in Hold State.

Bus-using priorities are given to HOLD, DMAC, and CPU in order of decreasing precedence. However, if the CPU is accessing an odd address in word units, the DMAC cannot gain control of the bus during two separate accesses.

HOLD > DMAC > CPU

Figure 7.4 Bus-Using Priorities

Table 7.4 Microcomputer Status in Hold State

Item		Status
BCLK		Output
A0 to A19, D0 to D15, $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ WR, $\overline{\text{BHE}}$, RD, WRL, WRH,	High-impedance
I/O ports	P0, P1, P3, P4 ⁽¹⁾	High-impedance
	P6 to P10	Maintains status when HOLD signal is received
HLDA		Output "L"
Internal Peripheral Circuits		ON (but watchdog timer stops)
ALE Signal		Undefined

NOTES:

7.2.8 BCLK Output

If the PM07 bit in the PM0 register is set to "0" (output enable), a clock with the same frequency as that of the CPU clock is output as BCLK from the BCLK pin. Refer to **9.2 CPU Clock and Peripheral Function Clock**.

Page 39 of 291

^{1.} When I/O port function is selected.

Table 7.5 Pin Functions for Each Processor Mode

Processor Mode		Memory Expansion	Memory Expansion Mode or Microprocessor Mode		
Data Bus Width BYTE Pin		8 bits "H"	16 bits "L"		
P0_0 to P0_7		D0 to D7	D0 to D7		
P1_0 to P1_7		I/O ports	D8 to D15		
P2_0		A0	A0		
P2_1 to P2_7		A1 to A7	A1 to A7		
P3_0		A8	A8		
P3_1 to P3_7		A9 to A15			
P4_0 to P4_3	PM06=0	A16 to A19			
	PM06=1	I/O ports			
P4_4	CS0=0	I/O ports			
	CS0=1	CS0			
P4_5	CS1=0	I/O ports			
	CS1=1	CS1			
P4_6	CS2=0	I/O ports	I/O ports		
	CS2=1	CS2	CS2		
P4_7	CS3=0	I/O ports			
	CS3=1	CS3			
P5_0	PM02=0	WR			
	PM02=1	_ (1)	WRL		
P5_1	PM02=0	BHE			
	PM02=1	_ (1)	WRH		
P5_2		RD	RD		
P5_3		BCLK	BCLK		
P5_4		HLDA	HLDA		
P5_5		HOLD	HOLD		
P5_6		ALE			
P5_7		RDY			

I/O ports : Function as I/O ports or peripheral function I/O pins. NOTES:

^{1.} If the data bus is 8 bits wide, make sure the PM02 bit is set to "0" $(\overline{RD}, \overline{BHE}, \overline{WR})$.

7.2.9 **External Bus Status When Internal Area Accessed**

Table 7.6 shows the External Bus Status When Internal Area Accessed.

Table 7.6 **External Bus Status When Internal Area Accessed**

Item		SFR Accessed	Internal ROM, RAM Accessed	
A0 to A19		Address output	Maintain status before accessed address of external area or SFR	
D0 to D15	When Read	High-impedance	High-impedance	
	When Write	Output data	Undefined	
$\overline{RD}, \overline{WR}, \overline{WRL},$	WRH	RD, WR, WRL, WRH output	Output "H"	
BHE		BHE output	Maintain status before accessed status of external area or SFR	
CS0 to CS3		Output "H"	Output "H"	
ALE		Output "L"	Output "L"	

7.2.10 **Software Wait**

Software wait states can be inserted by using the PM17 bit in the PM1 register, the CS0W to CS3W bits in the CSR register, and the CSE register. The SFR area is unaffected by these control bits. This area is always accessed in 2 BCLK or 3 BCLK cycles as determined by the PM20 bit in the PM2 register. See Table 7.7 Bit and Bus Cycle Related to Software Wait for details.

To use the RDY signal, set the corresponding CS3W to CS0W bit to "0" (with wait state). Table 7.7 shows the Bit and Bus Cycle Related to Software Wait. Figure 7.5 shows the Typical Bus Timings Using Software Wait.

Table 7.7 Bit and Bus Cycle Related to Software Wait

Area	PM1 Register PM17 Bit ⁽³⁾	CSR Register CS3W Bit (1) CS2W Bit (1) CS1W Bit (1) CS0W Bit (1)	Software Wait	Bus Cycle
Internal RAM, ROM	0	-	No wait	1 BCLK cycle (2)
	1	-	1 wait	2 BCLK cycles
External Area	0	1	No wait	1 BCLK cycle (read)
				2 BCLK cycles (write)
	-	0	1 wait	2 BCLK cycle (2)
	1	0	1 wait	2 BCLK cycle

NOTES:

- 1. To use the RDY signal, set this bit to "0" (with wait state).
- 2. After reset, the PM17 bit is set to "0" (without wait state), all of the CS0W to CS3W bits are set to "0" (with wait state). Therefore, the internal RAM and internal ROM are accessed with no wait states, and all external areas are accessed with one wait state.
- 3. When PM17 bit is set to "1" and accesses an external area, set the CSiW (i=0 to 3) bits to "0" (with wait state).

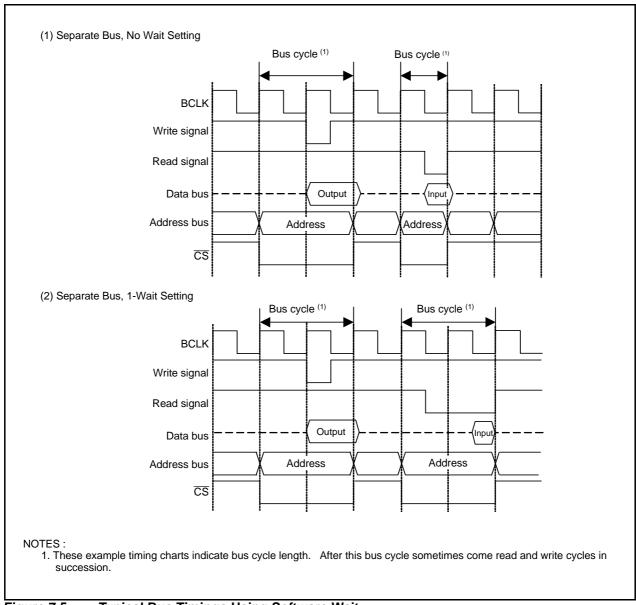


Figure 7.5 Typical Bus Timings Using Software Wait

Memory Space Expansion Function 8.

The following describes a memory space extension function.

During memory expansion or microprocessor mode, the memory space expansion function allows the access space to be expanded using the appropriate register bits.

8.1 1-Mbyte Mode

In this mode, the memory space is 1 Mbyte. In 1-Mbyte mode, the external area to be accessed is specified using the \overline{CSi} (i = 0 to 3) signals (hereafter referred to as the \overline{CSi} area). Figure 8.1 and 8.2 show Memory Map and \overline{CS} area. Refer to Figure 8.1 for models without the PM13 bit. See Figure 6.2 PM1 Register (1) and Figure 6.3 PM1 Register (2) to check presence or absence of the PM13 bit.

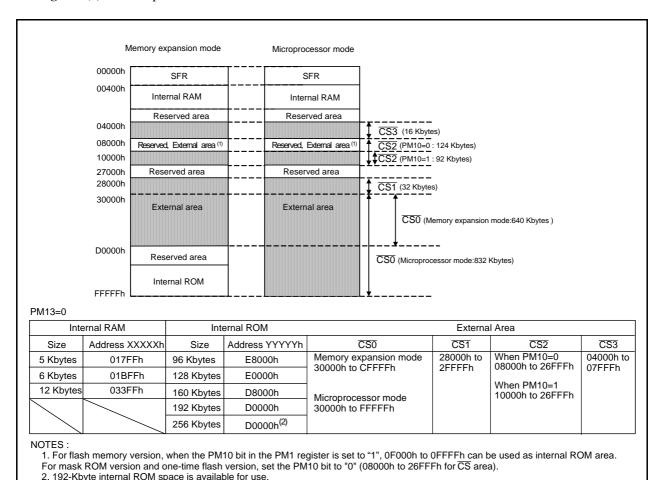
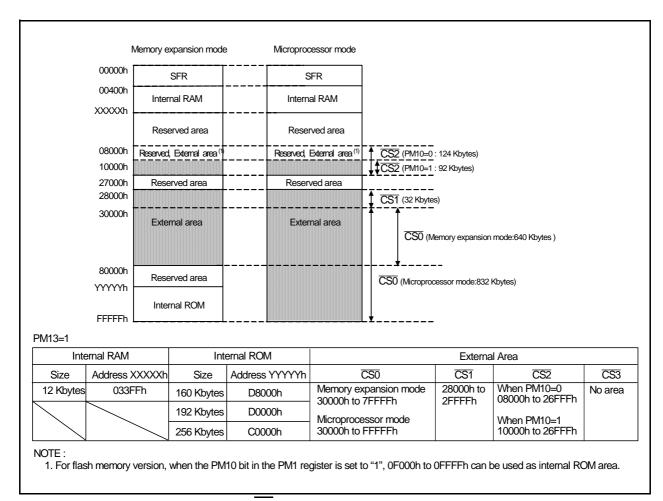



Figure 8.1 Memory Mapping and CS Area in 1-Mbyte mode (PM13=0)

Memory Mapping and CS Area in 1-Mbyte mode (PM13=1) Figure 8.2

9. Clock Generating Circuit

9.1 Types of the Clock Generating Circuit

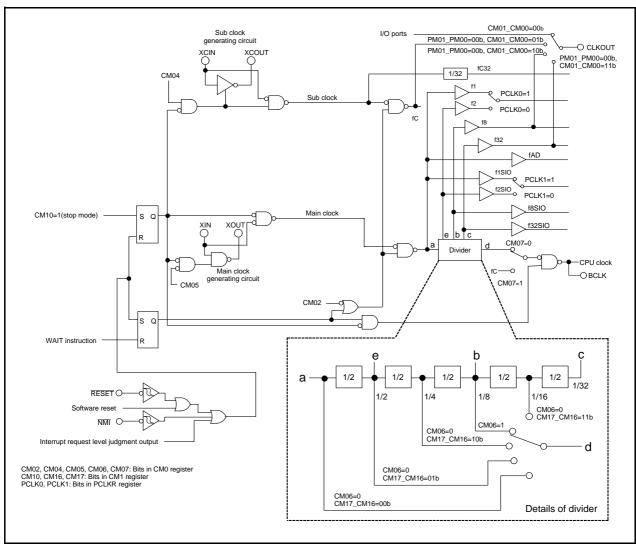
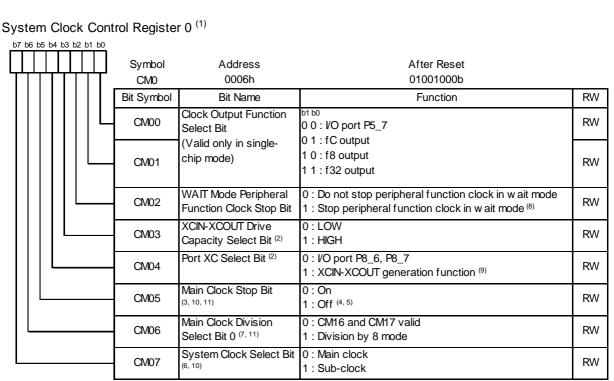
Two circuits are incorporated to generate the system clock signal:

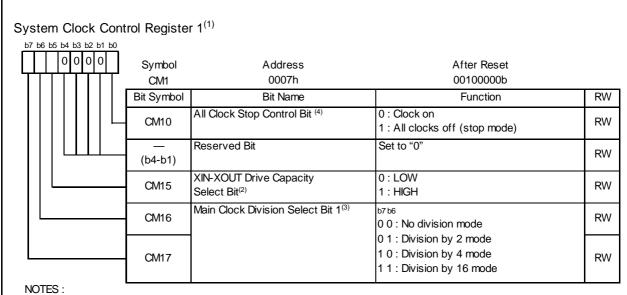
- Main clock oscillation circuit
- Sub clock oscillation circuit

Table 9.1 lists the Clock Generation Circuit Specifications. Figure 9.1 shows the clock generation circuit. Figures 9.2 to 9.4 show the clock-related registers.

Table 9.1 Clock Generation Circuit Specifications

Item	Main Clock Oscillation Circuit	Sub Clock Oscillation Circuit
Use of Clock	CPU clock source	CPU clock source
	Peripheral function clock source	Timer A, B's clock source
Clock Frequency	0 to 16 MHz	32.768 kHz
Usable Oscillator	Ceramic oscillator	Crystal oscillator
	Crystal oscillator	
Pins to Connect Oscillator	XIN, XOUT	XCIN, XCOUT
Oscillation Stop,	Presence	Presence
Restart Function		
Oscillator Status	Oscillating	Stopped
After Reset		
Other	Externally derived clock can be input	t


Figure 9.1 Clock Generation Circuit

NOTES:

- 1. Write to this register after setting the PRC0 bit in the PRCR register to "1" (write enable).
- 2. The CM03 bit is set to "1" (high) while the CM04 bit is set to "0," or when entered to stop mode.
- 3. This bit is provided to stop the main clock when the low power dissipation mode is selected. This bit cannot be used for detection as to whether the main clock stopped or not. To stop the main clock, set bits in the following order.
 - (a) Set the CM07 bit to "1" (Sub-clock select) with the sub-clock stably oscillating.
 - (b) Set the CM05 bit to "1" (Stop).
- 4. During external clock input, Set the CM05 bit to "0" (oscillate).
- 5. When CM05 bit is set to "1", the XOUT pin goes "H". Furthermore, because the internal feedback resistor remains connected, the XIN pin is pulled "H" to the same level as XOUT via the feedback resistor.
- 6. After setting the CM04 bit to "1" (XCIN-XCOUT oscillator function), wait until the sub-clock oscillates stably before sw itching the CM07 bit from "0" to "1" (sub-clock).
- 7. When entering stop mode from high or middle speed mode, the CM06 bit is set to "1" (divide-by-8 mode).
- 8. The fC32 clock does not stop. During low speed or low power dissipation mode, do not set this bit to "1" (peripheral clock turned off when in wait mode).
- 9. To use a sub-clock, set this bit to "1". Also make sure ports P8_6 and P8_7 are directed for input, with no pull-ups.
- 10. To use the main clock as the clock source for the CPU clock, set bits in the following order.
 - (a) Set the CM05 bit to "0" (oscillate).
 - (b) Wait the main clock oscillation stabilizes.
 - (c) Set the CM07 bit to "0".
- 11. When the CM05 bit = 1 (main clock turned off), the CM06 bit is fixed to "1" (divide-by-8 mode) and the CM15 bit is fixed to "1" drive capability High).

Figure 9.2 **CM0** Register

- 1. Write to this register after setting the PRC0 bit in the PRCR register to "1" (write enable).
- 2. When entering stop mode from high or middle speed mode, or when the CM05 bit is set to "1" (main clock turned off) in low speed mode, the CM15 bit is set to "1" (drive capability high).
- 3. Effective when the CM06 bit is "0" (CM16 and CM17 bits enable).
- 4. If the CM10 bit is "1" (stop mode), XOUT goes "H" and the internal feedback resistor is disconnected. The XCIN and XCOUT pins are placed in the high-impedance state.

Figure 9.3 **CM1** Register

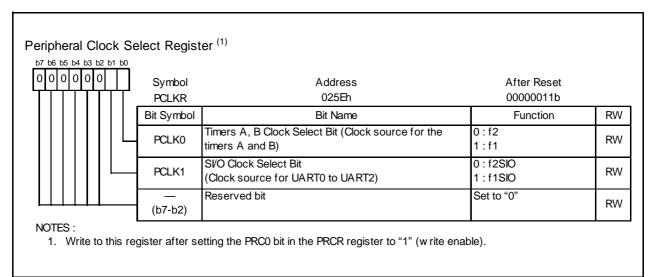


Figure 9.4 **PCLKR Register**

The following describes the clocks generated by the clock generation circuit.

9.1.1 Main Clock

This clock is used as the clock source for the CPU and peripheral function clocks. This clock is used as the clock source for the CPU and peripheral function clocks. The main clock oscillator circuit is configured by connecting a resonator between the XIN and XOUT pins. The main clock oscillator circuit contains a feedback resistor, which is disconnected from the oscillator circuit during stop mode in order to reduce the amount of power consumed in the chip. The main clock oscillator circuit may also be configured by feeding an externally generated clock to the XIN pin. Figure 9.5 shows the examples of main clock connection circuit.

After reset, the main clock divided by 8 is selected for the CPU clock.

The power consumption in the chip can be reduced by setting the CM05 bit in the CM0 register to "1" (main clock oscillator circuit turned off) after switching the clock source for the CPU clock to a sub clock or on-chip oscillator clock. In this case, XOUT goes "H". Furthermore, because the internal feedback resistor remains on, XIN is pulled "H" to XOUT via the feedback resistor. Note that if an externally generated clock is fed into the XIN pin, the main clock cannot be turned off by setting the CM05 bit to "1" unless the sub clock is chosen as a CPU clock. If necessary, use an external circuit to turn off the clock.

During stop mode, all clocks including the main clock are turned off. Refer to 9.4 Power Control.

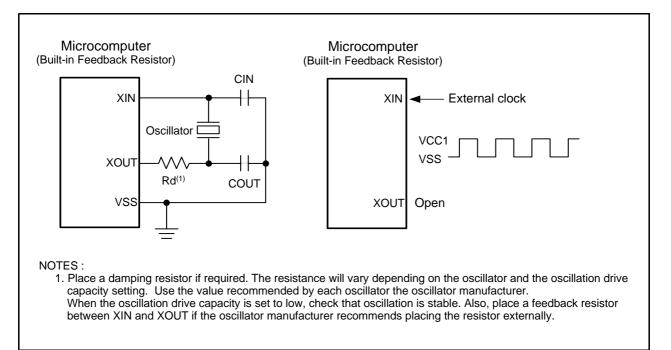


Figure 9.5 Examples of Main Clock Connection Circuit

9.1.2 Sub Clock

The sub clock is generated by the sub clock oscillation circuit. This clock is used as the clock source for the CPU clock, as well as the timer A and timer B count sources. In addition, an fc clock with the same frequency as that of the sub clock can be output from the CLKOUT pin.

The sub clock oscillator circuit is configured by connecting a crystal resonator between the XCIN and XCOUT pins. The sub clock oscillator circuit contains a feedback resistor, which is disconnected from the oscillator circuit during stop mode in order to reduce the amount of power consumed in the chip. The sub clock oscillator circuit may also be configured by feeding an externally generated clock to the XCIN pin.

Figure 9.6 shows the examples of sub clock connection circuit.

After reset, the sub clock is turned off. At this time, the feedback resistor is disconnected from the oscillator circuit.

To use the sub clock for the CPU clock, set the CM07 bit in the CM0 register to "1" (sub clock) after the sub clock becomes oscillating stably.

During stop mode, all clocks including the sub clock are turned off. Refer to 9.4 Power Control.

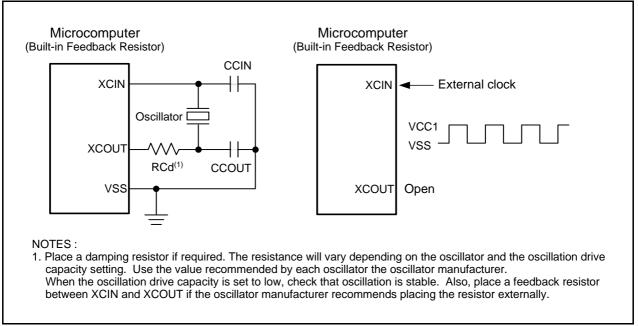


Figure 9.6 Examples of Sub Clock Connection Circuit

9.2 **CPU Clock and Peripheral Function Clock**

Two type clocks: CPU clock to operate the CPU and peripheral function clocks to operate the peripheral functions.

9.2.1 CPU Clock and BCLK

These are operating clocks for the CPU and watchdog timer.

The clock source for the CPU clock can be chosen to be the main clock or sub clock.

If the main clock is selected as the clock source for the CPU clock, the selected clock source can be divided by 1 (undivided), 2, 4, 8 or 16 to produce the CPU clock. Use the CM06 bit in CM0 register and the CM17 to CM16 bits in the CM1 register to select the divide-by-n value.

After reset, the main clock divided by 8 provides the CPU clock.

Note that when entering stop mode from high or middle speed mode, or when the CM05 bit in the CM0 register is set to "1" (main clock turned off) in low-speed mode, the CM06 bit in the CM0 register is set to "1" (divideby-8 mode).

9.2.2 Peripheral Function Clock (f1, f2, f8, f32, f1SIO, f2SIO, f8SIO, f32SIO, fAD,

These are operating clocks for the peripheral functions.

Of these, fi (i = 1, 2, 8, 32) and fiSIO are derived from the main clock by dividing them by i. The clock fi is used for timers A and B, and fiSIO is used for serial interface. The f8 and f32 clocks can be output from the CLKOUT pin.

The fAD clock is produced from the main clock, and is used for the A/D converter.

When the WAIT instruction is executed after setting the CM02 bit in the CM0 register to "1" (peripheral function clock turned off during wait mode), or when the microcomputer is in low power dissipation mode, the fi, fiSIO and fAD clocks are turned off.

The fC32 clock is produced from the sub clock, and is used for timers A and B. This clock can be used when the sub clock is on.

9.3 **Clock Output Function**

During single-chip mode, the f8, f32 or fC clock can be output from the CLKOUT pin. Use the CM01 to CM00 bits in the CM0 register to select.

9.4 Power Control

Normal operation mode, wait mode and stop mode are provided as the power consumption control. All mode states, except wait mode and stop mode, are called normal operation mode in this document.

9.4.1 Normal Operation Mode

Normal operation mode is further classified into 4 modes.

In normal operation mode, because the CPU clock and the peripheral function clocks both are on, the CPU and the peripheral functions are operating. Power control is exercised by controlling the CPU clock frequency. The higher the CPU clock frequency, the greater the processing capability. The lower the CPU clock frequency, the smaller the power consumption in the chip. If the unnecessary oscillator circuits are turned off, the power consumption is further reduced.

Before the clock sources for the CPU clock can be switched over, the new clock source to which switched must be oscillating stably. If the new clock source is the main clock or sub clock, allow a sufficient wait time in a program until it becomes oscillating stably.

9.4.1.1 High-speed Mode

The main clock divided by 1 provides the CPU clock. If the sub clock is on, fC32 can be used as the count source for timers A and B.

9.4.1.2 Medium-speed Mode

The main clock divided by 2, 4, 8 or 16 provides the CPU clock. If the sub clock is on, fC32 can be used as the count source for timers A and B.

9.4.1.3 Low-speed Mode

The sub clock provides the CPU clock.

The fC32 clock can be used as the count source for timers A and B.

9.4.1.4 Low Power Dissipation Mode

In this mode, the main clock is turned off after being placed in low speed mode. The sub clock provides the CPU clock. The fC32 clock can be used as the count source for timers A and B.

Simultaneously when this mode is selected, the CM06 bit becomes "1" (divided by 8 mode). In the low power dissipation mode, do not change the CM06 bit. Consequently, the medium speed (divided by 8) mode is to be selected when the main clock is operated next.

Table 9.2 Setting Clock Related Bit and Modes

Modes		CM1 Register	CM0 Register			
		CM17, CM16	CM07	CM06	CM05	CM04
High-Speed Mode		00b	0	0	0	_
Medium-	divided by 2	01b	0	0	0	_
Speed Mode	divided by 4	10b	0	0	0	_
	divided by 8	_	0	1	0	_
	divided by 16	11b	0	0	0	_
Low-Speed Mode		-	1	-	0	1
Low Power Dissipation Mode		_	1	1 ⁽¹⁾	1 ⁽¹⁾	1

-: "0" or "1"

NOTES:

1. When the CM05 bit is set to "1" (main clock turned off) in low-speed mode, the mode goes to low power dissipation mode and CM06 bit is set to "1" (divided by 8 mode) simultaneously.

9.4.2 Wait Mode

In wait mode, the CPU clock is turned off, so are the CPU (because operated by the CPU clock) and the watchdog timer. Because the main clock and sub clock all are on, the peripheral functions using these clocks keep operating.

9.4.2.1 Peripheral Function Clock Stop Function

If the CM02 bit in the CM0 register is "1" (peripheral function clocks turned off during wait mode), the f1, f2, f8, f32, f1SIO, f8SIO, f32SIO and fAD clocks are turned off when in wait mode, with the power consumption reduced that much. However, fC32 remains on.

9.4.2.2 Entering Wait Mode

The microcomputer is placed into wait mode by executing the WAIT instruction.

9.4.2.3 Pin Status During Wait Mode

Table 9.3 lists Pin Status During Wait Mode.

Table 9.3 Pin Status During Wait Mode

Pin		Memory Expansion Mode Microprocessor Mode	Single-Chip Mode
A0 to A19, D0 to D15, $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$, BHE		Retains status before wait mode	Does not become a bus control pin
RD, WR, W	RL, WRH	"H"	
HLDA, BCL	K	"H"	
ALE		"L"	
I/O ports		Retains status before wait mode	Retains status before wait mode
CLKOUT	When fC selected	Does not become a CLKOUT pin	Does not stop
	When f8, f32 selected		Does not stop when the CM02 bit is "0". When the CM02 bit is "1", the status immediately prior to entering wait mode is maintained.

9.4.2.4 **Exiting Wait Mode**

The microcomputer is moved out of wait mode by a hardware reset, NMI interrupt or peripheral function interrupt.

If the microcomputer is to be moved out of exit wait mode by a hardware reset or NMI interrupt, set the peripheral function interrupt priority ILVL2 to ILVL0 bits to "000b" (interrupts disabled) before executing the WAIT instruction.

The peripheral function interrupts are affected by the CM02 bit. If CM02 bit is "0" (peripheral function clocks not turned off during wait mode), peripheral function interrupts can be used to exit wait mode. If CM02 bit is "1" (peripheral function clocks turned off during wait mode), the peripheral functions using the peripheral function clocks stop operating, so that only the peripheral functions clocked by external signals can be used to exit wait mode.

Table 9.4 **Interrupts to Exit Wait Mode and Use Conditions**

Interrupt	CM02=0	CM02=1
NMI Interrupt	Can be used	Can be used
Serial Interface Interrupt	Can be used when operating with internal or external clock	Can be used when operating with external clock
Key Input Interrupt	Can be used	Can be used
A/D Conversion Interrupt	Can be used in one-shot mode	-(Do not use)
Timer A Interrupt Timer B Interrupt	Can be used in all modes	Can be used in event counter mode or when the count source is fC32
INT Interrupt	Can be used	Can be used

Table 9.4 lists the Interrupts to Exit Wait Mode and Use Conditions.

If the microcomputer is to be moved out of wait mode by a peripheral function interrupt, set up the following before executing the WAIT instruction.

- (1) Set the ILVL2 to ILVL0 bits in the interrupt control register, for peripheral function interrupts used to exit wait mode.
 - The ILVL2 to ILVL0 bits in all other interrupt control registers, for peripheral function interrupts not used to exit wait mode, are set to "000b" (interrupt disable).
- (2) Set the I flag to "1".
- (3) Start operating the peripheral functions used to exit wait mode. When the peripheral function interrupt is used, an interrupt routine is performed as soon as an interrupt request is acknowledged and the CPU clock is supplied again.

When the microcomputer exits wait mode by the peripheral function interrupt, the CPU clock is the same clock as the CPU clock executing the WAIT instruction.

9.4.3 Stop Mode

In stop mode, all oscillator circuits are turned off, so are the CPU clock and the peripheral function clocks. Therefore, the CPU and the peripheral functions clocked by these clocks stop operating. The least amount of power is consumed in this mode. If the voltage applied to VCC1 and VCC2 pins is VRAM or more, the internal RAM is retained. When applying 2.7 or less voltage to VCC1 and VCC2 pins, make sure VCC1 = VCC2 \geq VRAM.

However, the peripheral functions clocked by external signals keep operating. The following interrupts can be used to exit stop mode.

Table 9.5 Interrupts to Exit Stop Mode and Use Conditions

Interrupt	CM02=1
NMI Interrupt	Can be used
Key Input Interrupt	Can be used
INT Interrupt	Can be used
Timer A Interrupt Timer B Interrupt	Can be used when counting external pulses in event counter mode
Serial Interface Interrupt	Can be used when operating with external clock

9.4.3.1 Entering Stop Mode

The microcomputer is placed into stop mode by setting the CM10 bit in the CM1 register to "1" (all clocks turned off). At the same time, the CM06 bit in the CM0 register is set to "1" (divide-by-8 mode) and the CM15 bit in the CM1 register is set to "1" (main clock oscillator circuit drive capability high).

9.4.3.2 Pin Status in Stop Mode

Table 9.6 lists Pin Status in Stop Mode.

Table 9.6 Pin Status in Stop Mode

Pin		Memory Expansion Mode Microprocessor Mode	Single-Chip Mode
A0 to A19, D0 to D15, $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$, BHE		Retains status before stop mode	Does not become a bus control pin
RD, WR, WRL, WRH		"H"	
HLDA, BCLK		"H"	
ALE		Indeterminate	
I/O ports		Retains status before stop mode	Retains status before stop mode
CLKOUT	When fC selected	Does not become a CLKOUT pin	"H"
	When f8, f32 selected		Retains status before stop mode

9.4.3.3 Exiting Stop Mode

Stop mode is exited by a hardware reset, $\overline{\text{NMI}}$ interrupt or peripheral function interrupt.

When the hardware reset or $\overline{\text{NMI}}$ interrupt is used to exit wait mode, set all ILVL2 to ILVL0 bits in the interrupt control registers for the peripheral function interrupt to "000b" (interrupt disabled) before setting the CM10 bit to "1".

When the peripheral function interrupt is used to exit stop mode, set the CM10 bit to "1" after the following settings are completed.

- (1) Set the ILVL2 to ILVL0 bits in the interrupt control registers to decide the peripheral priority level of the peripheral function interrupt.
 - Set the interrupt priority levels of the interrupts, not being used to exit stop mode, to "0" by setting the all ILVL2 to ILVL0 bits to "000b"
- (2) Set the I flag to "1".
- (3) Start operation of peripheral function being used to exit wait mode.

 When exiting stop mode by the peripheral function interrupt, the interrupt routine is performed when an interrupt request is generated and the CPU clock is supplied again.

When stop mode is exited by the peripheral function interrupt or $\overline{\text{NMI}}$ interrupt, the CPU clock source is as follows, in accordance with the CPU clock source setting before the microcomputer had entered stop mode.

- When the sub clock is the CPU clock before entering stop mode : Sub clock
- When the main clock is the CPU clock source before entering stop mode: Main clock divided by 8

Page 56 of 291

Figure 9.7 shows the state transition from normal operation mode to stop mode and wait mode. Figure 9.8 shows the State Transition in Normal Operation Mode.

Table 9.7 shows a state transition matrix describing Allowed Transition and Setting. The vertical line shows current state and horizontal line shows state after transition.

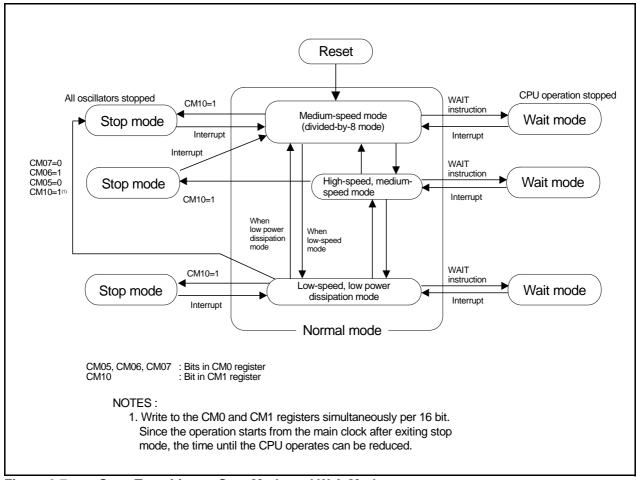


Figure 9.7 State Transition to Stop Mode and Wait Mode

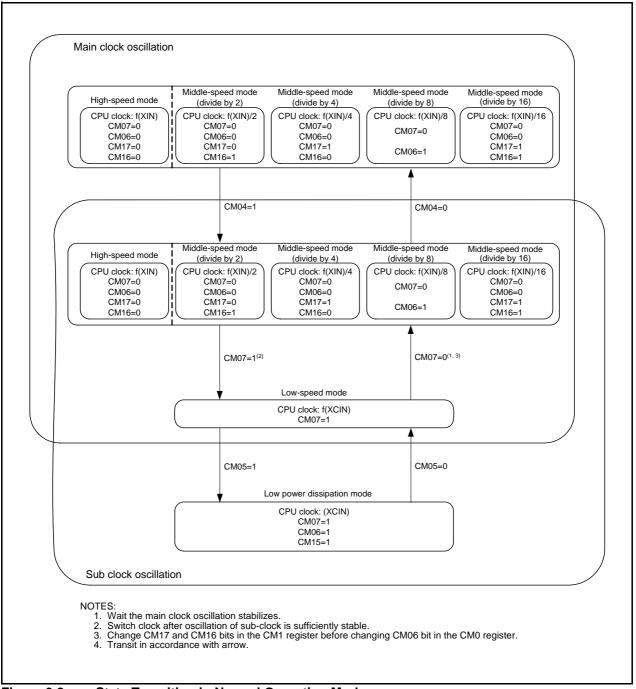


Figure 9.8 State Transition in Normal Operation Mode

Table 9.7 **Allowed Transition and Setting**

			State After Transition					
	_	High-Speed Mode, Middle-Speed Mode	Low-Speed Mode	Low Power Dissipation Mode	Stop Mode	Wait Mode		
Current State	High-Speed Mode, Middle-Speed Mode	(NOTE 4)	(9) ^(NOTE 3)	_	(12)	(13)		
	Low-Speed Mode	(8)		(11) ^(NOTE 2)	(12)	(13)		
	Low Power Dissipation Mode	-	(10)		(12)	(13)		
	Stop Mode	(14) ^(NOTE 1)	(14)	(14)		-		
	Wait Mode	(14)	(14)	(14)	-			

-: Cannot transit

NOTES:

- 1. When exiting stop mode, the CM06 bit is set to "1" (division by 8 mode).
- 2. If the CM05 bit set to "1" (main clock stop), then the CM06 bit is set to "1" (division by 8 mode).
- 3. A transition can be made only when sub clock is oscillating.
- 4. State transitions within the same mode (divide-by-n values changed or subclock oscillation turned on or off) are shown in the table below.

Sub Clock Oscillating				Sub Clock Turned Off							
		No	Divided	Divided	Divided	Divided	No	Divided	Divided	Divided	Divided
		Division	by 2	by 4	by 8	by 16	Division	by 2	by 4	by 8	by 16
	No Division		(4)	(5)	(7)	(6)	(1)	=	=	=	=
clock	Divided by 2	(3)		(5)	(7)	(6)	-	(1)	-	-	-
Sub clock Oscillating	Divided by 4	(3)	(4)		(7)	(6)	-	-	(1)	-	-
Sub Osci	Divided by 8	(3)	(4)	(5)		(6)	-	-	-	(1)	-
	Divided by 16	(3)	(4)	(5)	(7)		-	-	-	-	(1)
	No Division	(2)	-	-	-	-		(4)	(5)	(7)	(6)
clock ed Off	Divided by 2	-	(2)	-	-	-	(3)		(5)	(7)	(6)
	Divided by 4	-	-	(2)	-	-	(3)	(4)		(7)	(6)
Sub	Divided by 8	-			(2)		(3)	(4)	(5)		(6)
	Divided by 16	-	-	_	-	(2)	(3)	(4)	(5)	(7)	

-: Cannot transit

5. (): setting method. See the following table.

	Setting	Operation
(1)	CM04 = 0	Sub clock turned off
(2)	CM04 = 1	Sub clock oscillating
(3)	CM06 = 0, $CM17 = 0$, $CM16 = 0$	CPU clock no division mode
(4)	CM06 = 0, CM17 = 0, CM16 = 1	CPU clock division by 2 mode
(5)	CM06 = 0, CM17 = 1, CM16 = 0	CPU clock division by 4 mode
(6)	CM06 = 0, CM17 = 1, CM16 = 1	CPU clock division by 16 mode
(7)	CM06 = 1	CPU clock division by 8 mode
(8)	CM07 = 0	Main clock selected
(9)	CM07 = 1	Sub clock selected
(10)	CM05 = 0	Main clock oscillating
(11)	CM05 = 1	Main clock turned off
(12)	CM10 = 1	Transition to stop mode
(13)	Wait Instruction	Transition to wait mode
(14)	Hardware Interrupt	Exit stop mode or wait mode

CM04, CM05, CM06, CM07 : Bits in CM0 register CM10, CM16, CM17 : Bits in CM1 register M16C/30P Group 10. Protection

10. Protection

In the event that a program runs out of control, this function protects the important registers so that they will not be rewritten easily. Figure 10.1 shows the PRCR Register. The following lists the registers protected by the PRCR register.

- The PRC0 bit protects the CM0, CM1 and PCLKR registers;
- The PRC1 bit protects the PM0 and PM1 registers;
- The PRC2 bit protects the PD9 register;

Set the PRC2 bit to "1" (write enabled) and then write to any address, and the PRC2 bit will be cleared to "0" (write protected). The registers protected by the PRC2 bit should be changed in the next instruction after setting the PRC2 bit to "1". Make sure no interrupts or DMA transfers will occur between the instruction in which the PRC2 bit is set to "1" and the next instruction. The PRC0 and PRC1 bits are not automatically cleared to "0" by writing to any address. They can only be cleared in a program.

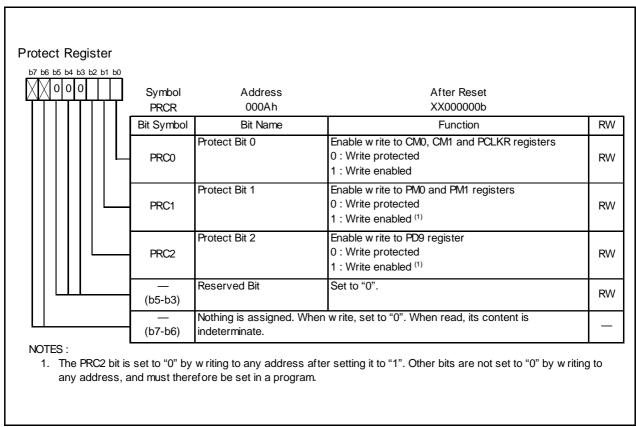


Figure 10.1 **PRCR Register**

11. Interrupt

11.1 Type of Interrupts

Figure 11.1 shows Type of Interrupts.

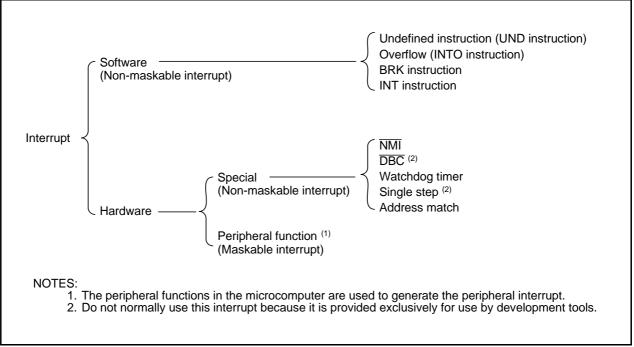


Figure 11.1 Type of Interrupts

 Maskable Interrupt : An interrupt which can be enabled (disabled) by the interrupt enable flag (I flag) or

whose interrupt priority can be changed by priority level.

• Non-Maskable Interrupt: An interrupt which cannot be enabled (disabled) by the interrupt enable flag (I flag)

or whose interrupt priority cannot be changed by priority level.

11.2 Software Interrupts

A software interrupt occurs when executing certain instructions. Software interrupts are non-maskable interrupts.

11.2.1 Undefined Instruction Interrupt

An undefined instruction interrupt occurs when executing the UND instruction.

11.2.2 Overflow Interrupt

An overflow interrupt occurs when executing the INTO instruction with the O flag set to "1" (the operation resulted in an overflow). The following are instructions whose O flag changes by arithmetic: ABS, ADC, ADCF, ADD, CMP, DIV, DIVU, DIVX, NEG, RMPA, SBB, SHA, SUB

11.2.3 BRK Interrupt

A BRK interrupt occurs when executing the BRK instruction.

11.2.4 INT Instruction Interrupt

An INT instruction interrupt occurs when executing the INT instruction. Software interrupt Nos. 0 to 63 can be specified for the INT instruction. Because software interrupt Nos. 4 to 31 are assigned to peripheral function interrupts, the same interrupt routine as for peripheral function interrupts can be executed by executing the INT instruction.

In software interrupt Nos. 0 to 31, the U flag is saved to the stack during instruction execution and is cleared to "0" (ISP selected) before executing an interrupt sequence. The U flag is restored from the stack when returning from the interrupt routine. In software interrupt Nos. 32 to 63, the U flag does not change state during instruction execution, and the SP then selected is used.

11.3 Hardware Interrupts

Hardware interrupts are classified into two types – special interrupts and peripheral function interrupts.

11.3.1 Special Interrupts

Special interrupts are non-maskable interrupts.

11.3.1.1 NMI Interrupt

An $\overline{\text{NMI}}$ interrupt is generated when input on the $\overline{\text{NMI}}$ pin changes state from high to low. For details about the $\overline{\text{NMI}}$ interrupt, refer to the 11.7 $\overline{\text{NMI}}$ Interrupt.

11.3.1.2 DBC Interrupt

Do not normally use this interrupt because it is provided exclusively for use by development tools.

11.3.1.3 Watchdog Timer Interrupt

Generated by the watchdog timer. Once a watchdog timer interrupt is generated, be sure to initialize the watchdog timer. For details about the watchdog timer, refer to the **12. Watchdog Timer**.

11.3.1.4 Single-Step Interrupt

Do not normally use this interrupt because it is provided exclusively for use by development tools.

11.3.1.5 Address Match Interrupt

An address match interrupt is generated immediately before executing the instruction at the address indicated by the RMAD0 to RMAD1 register that corresponds to one of the AIER0 or AIER1 bit in the AIER register which is "1" (address match interrupt enabled). For details about the address match interrupt, refer to the **11.9 Address Match Interrupt**.

11.3.2 Peripheral Function Interrupts

The peripheral function interrupt occurs when a request from the peripheral functions in the microcomputer is acknowledged. The peripheral function interrupt is a maskable interrupt. See **Table 11.2 Relocatable Vector Tables** about how the peripheral function interrupt occurs. Refer to the descriptions of each function for details.

11.4 **Interrupts and Interrupt Vector**

One interrupt vector consists of 4 bytes. Set the start address of each interrupt routine in the respective interrupt vectors. When an interrupt request is accepted, the CPU branches to the address set in the corresponding interrupt vector. Figure 11.2 shows the Interrupt Vector.

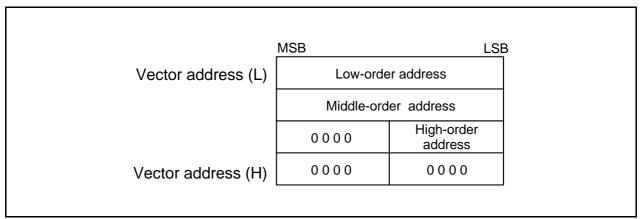


Figure 11.2 **Interrupt Vector**

11.4.1 **Fixed Vector Tables**

The fixed vector tables are allocated to the addresses from FFFDCh to FFFFFh. Table 11.1 lists the Fixed Vector Tables. In the one time flash memory and the flash memory version of microcomputer, the vector addresses (H) of fixed vectors are used by the ID code check function. For details, refer to the 19.2 Functions To Prevent Flash Memory from Rewriting.

Interrupt Source	Vector Table Addresses Address (L) to Address (H)	Reference	
Undefined Instruction (UND instruction)	FFFDCh to FFFDFh	M16C/60, M16C/20 Series	
Overflow (INTO instruction)	FFFE0h to FFFE3h	software manual	
BRK Instruction (2)	FFFE4h to FFFE7h		
Address Match	FFFE8h to FFFEBh	11.9 Address Match Interrupt	
Single Step (1)	FFFECh to FFFEFh		
Watchdog Timer	FFFF0h to FFFF3h	12. Watchdog Timer	
DBC (1)	FFFF4h to FFFF7h		
NMI	FFFF8h to FFFFBh	11.7 NMI interrupt	
Reset	FFFFCh to FFFFFh	5. Reset	

NOTES:

- 1. Do not normally use this interrupt because it is provided exclusively for use by development tools.
- 2. If the contents of address FFFE7h is FFh, program execution starts from the address shown by the vector in the relocatable vector table.

Relocatable Vector Tables 11.4.2

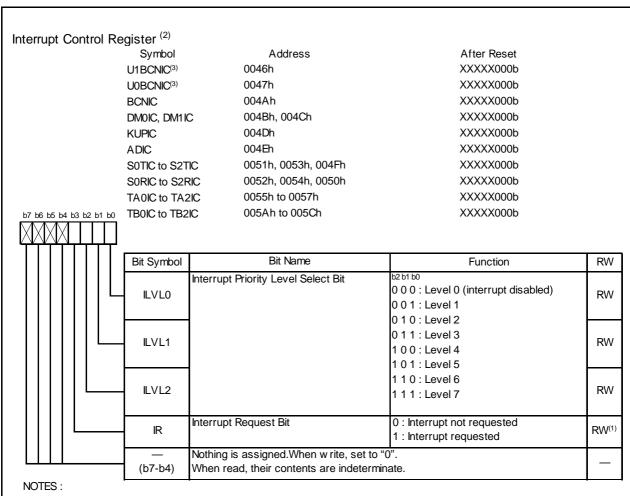
The 256 bytes beginning with the start address set in the INTB register comprise a reloacatable vector table area. Table 11.2 lists the Relocatable Vector Tables. Setting an even address in the INTB register results in the interrupt sequence being executed faster than in the case of odd addresses.

Table 11.2 Relocatable Vector Tables

Interrupt Source	Vector Address (1) Address (L) to Address (H)	Software Interrupt Number	Reference
BRK Instruction (5)	+0 to +3 (0000h to 0003h)	0	M16C/60, M16C/20
-(Reserved)	_	1 to 3	Series software manual
ĪNT3	+16 to +19 (0010h to 0013h)	4	11.6 INT interrupt
-	_	5	_
UART1 Bus Collision Detect (4, 6)	+24 to +27 (0018h to 001Bh)	6	15. Serial Interface
UART0 Bus Collision Detect (4, 6)	+28 to +31 (001Ch to 001Fh)	7	
-	-	8	-
INT4 (2)	+36 to +39 (0024h to 0027h)	9	11.6 INT interrupt
UART 2 Bus Collision Detection (6)	+40 to +43 (0028h to 002Bh)	10	15. Serial Interface
DMA0	+44 to +47 (002Ch to 002Fh)	11	13. DMAC
DMA1	+48 to +51 (0030h to 0033h)	12	
Key Input Interrupt	+52 to +55 (0034h to 0037h)	13	11.8 Key Input Interrupt
A/D	+56 to +59 (0038h to 003Bh)	14	16. A/D Converter
UART2 Transmit, NACK2 (3)	+60 to +63 (003Ch to 003Fh)	15	15. Serial Interface
UART2 Receive, ACK2 (3)	+64 to +67 (0040h to 0043h)	16	
UART0 Transmit, NACK0 (3)	+68 to +71 (0044h to 0047h)	17	
UART0 Receive, ACK0 (3)	+72 to +75 (0048h to 004Bh)	18	
UART1 Transmit, NACK1 (3)	+76 to +79 (004Ch to 004Fh)	19	
UART1 Receive, ACK1 (3)	+80 to +83 (0050h to 0053h)	20	
Timer A0	+84 to +87 (0054h to 0057h)	21	14. Timers
Timer A1	+88 to +91 (0058h to 005Bh)	22	
Timer A2	+92 to +95 (005Ch to 005Fh)	23	
-	-	24	_
-	-	25	_
Timer B0	+104 to +107 (0068h to 006Bh)	26	14. Timers
Timer B1	+108 to +111 (006Ch to 006Fh)	27	
Timer B2	+112 to +115 (0070h to 0073h)	28	
ĪNTO	+116 to +119 (0074h to 0077h)	29	11.6 INT interrupt
ĪNT1	+120 to +123 (0078h to 007Bh)	30	
ĪNT2	+124 to +127 (007Ch to 007Fh)	31	
Software Interrupt (5)	+128 to +131 (0080h to 0083h)	32	M16C/60, M16C/20
	to	to	Series software manual
	+252 to +255 (00FCh to 00FFh)	63	

NOTES:

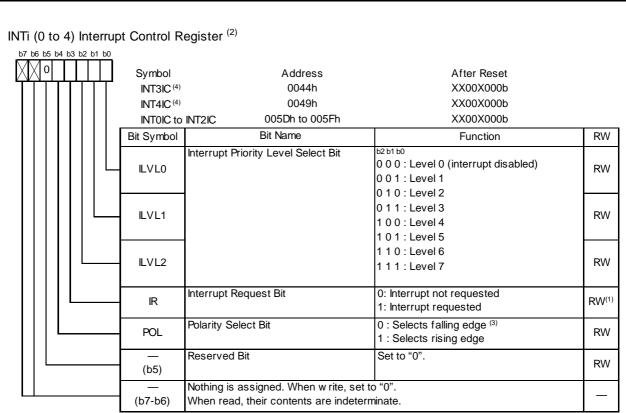
- 1. Address relative to address in INTB.
- 2. Use the IFSR6 bit in the IFSR register to select.
- 3. During I²C mode, NACK and ACK interrupts comprise the interrupt source.
- 4. Use the IFSR26 and IFSR27 bits in the IFSR2A register to select.
- 5. These interrupts cannot be disabled using the I flag.
- 6. Bus collision detection: During IE mode, this bus collision detection constitutes the factor of an interrupt.


During I²C mode, however, a start condition or a stop condition detection constitutes the factor of an interrupt.

11.5 Interrupt Control

The following describes how to enable/disable the maskable interrupts, and how to set the priority in which order they are accepted. What is explained here does not apply to nonmaskable interrupts.

Use the I flag in the FLG register, IPL, and ILVL2 to ILVL0 bits in the each interrupt control register to enable/disable the maskable interrupts. Whether an interrupt is requested is indicated by the IR bit in the each interrupt control register.


Figure 11.3 and 11.4 shows the Interrupt Control Registers.

1. This bit can only be reset by writing "0" (Do not write "1").

- 2. To rew rite the interrupt control registers, do so at a point that does not generate the interrupt request for that register. For details, refer to 21.5 Precautions for Interrupt.
- 3. Use the IFSR2A register to select.

Figure 11.3 Interrupt Control Registers (1)

NOTES:

- 1. This bit can only be reset by writing "0" (Do not write "1").
- 2. To rew rite the interrupt control register, do so at a point that does not generate the interrupt request for that register. For details, refer to 21.5 Precautions for Interrupt.
- 3. If the IFSRi bit (i = 0 to 4) in the IFSR register are "1" (both edges), set the POL bit in the INTilC register to "0" (falling edge).
- 4. When the BYTE pin is low and the processor mode is memory expansion or microprocessor mode, set the ILVL2 to ILVL0 bits in the INT4IC to INT3IC registers to "000b" (interrupts disabled).

Figure 11.4 **Interrupt Control Registers (2)**

11.5.1 I Flag

The I flag enables or disables the maskable interrupt. Setting the I flag to "1" (= enabled) enables the maskable interrupt. Setting the I flag to "0" (= disabled) disables all maskable interrupts.

11.5.2 IR Bit

The IR bit is set to "1" (= interrupt requested) when an interrupt request is generated. Then, when the interrupt request is accepted and the CPU branches to the corresponding interrupt vector, the IR bit is cleared to "0" (= interrupt not requested).

The IR bit can be cleared to "0" in a program. Note that do not write "1" to this bit.

11.5.3 ILVL2 to ILVL0 Bits and IPL

Interrupt priority levels can be set using the ILVL2 to ILVL0 bits.

Table 11.3 shows the Settings of Interrupt Priority Levels and Table 11.4 shows the Interrupt Priority Levels Enabled by IPL.

The following are conditions under which an interrupt is accepted:

- I flag = 1
- IR bit = 1
- interrupt priority level > IPL

The I flag, IR bit, ILVL2 to ILVL0 bits and IPL are independent of each other. In no case do they affect one another.

Table 11.3 Settings of Interrupt Priority Levels

ILVL2 to ILVL0 Bits	Interrupt Priority Level	Priority Order
000b	Level 0 (interrupt disabled)	-
001b	Level 1	Low
010b	Level 2	
011b	Level 3	
100b	Level 4	
101b	Level 5	
110b	Level 6	▼
111b	Level 7	High

Table 11.4Interrupt Priority Levels Enabled by IPL

IPL	Enabled Interrupt Priority Levels
000b	Interrupt levels 1 and above are enabled
001b	Interrupt levels 2 and above are enabled
010b	Interrupt levels 3 and above are enabled
011b	Interrupt levels 4 and above are enabled
100b	Interrupt levels 5 and above are enabled
101b	Interrupt levels 6 and above are enabled
110b	Interrupt levels 7 and above are enabled
111b	All maskable interrupts are disabled

Page 68 of 291

11.5.4 Interrupt Sequence

An interrupt sequence – what are performed over a period from the instant an interrupt is accepted to the instant the interrupt routine is executed – is described here.

If an interrupt occurs during execution of an instruction, the processor determines its priority when the execution of the instruction is completed, and transfers control to the interrupt sequence from the next cycle. If an interrupt occurs during execution of either the SMOVB, SMOVF, SSTR or RMPA instruction, the processor temporarily suspends the instruction being executed, and transfers control to the interrupt sequence.

The CPU behavior during the interrupt sequence is described below. Figure 11.5 shows Time Required for Executing Interrupt Sequence.

- (1) The CPU obtains interrupt information (interrupt number and interrupt request level) by reading address 000000h. Then, the IR bit applicable to the interrupt information is set to "0" (interrupt requested).
- (2) The FLG register, prior to an interrupt sequence, is saved to a temporary register (1) within the CPU.
- (3) The I, D and U flags in the FLG register become as follows:
 - The I flag is set to "0" (interrupt disabled)
 - The D flag is set to "0" (single-step interrupt disabled)
 - The U flag is set to "0" (ISP selected)

 However, the U flag does not change state if an INT instruction for software interrupt Nos. 32 to 63 is executed.
- (4) The temporary register (1) within the CPU is saved to the stack.
- (5) The PC is saved to the stack.
- (6) The interrupt priority level of the acknowledged interrupt in IPL is set.
- (7) The start address of the relevant interrupt routine set in the interrupt vector is stored in the PC.

After the interrupt sequence is completed, an instruction is executed from the starting address of the interrupt routine.

NOTES:

1. Temporary register cannot be modified by users.

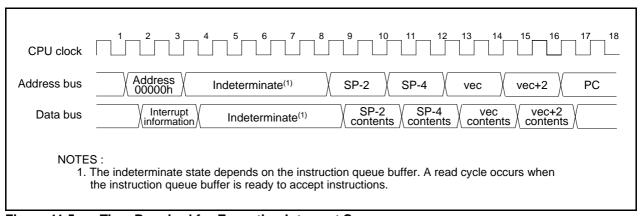
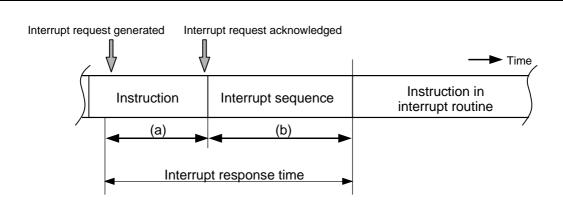



Figure 11.5 Time Required for Executing Interrupt Sequence

11.5.5 Interrupt Response Time

Figure 11.6 shows the Interrupt Response Time. The interrupt response or interrupt acknowledge time denotes a time from when an interrupt request is generated till when the first instruction in the interrupt routine is executed. Specifically, it consists of a time from when an interrupt request is generated till when the instruction then executing is completed ((a) on Figure 11.6) and a time during which the interrupt sequence is executed ((b) on Figure 11.6).

- (a) A time from when an interrupt request is generated till when the instruction then executing is completed. The length of this time varies with the instruction being executed. The DIVX instruction requires the longest time, which is equal to 30 cycles (without wait state, the divisor being a register).
- (b) A time during which the interrupt sequence is executed. For details, see the table below. Note, however, that the values in this table must be increased 2 cycles for the DBC interrupt and 1 cycle for the address match and single-step interrupts.

Interrupt Vector Address	SP Value	16-Bit Bus, Without Wait	8-Bit Bus, Without Wait
Even	Even	18 cycles	20 cycles
Even	Odd	19 cycles	20 cycles
Odd	Even	19 cycles	20 cycles
Odd	Odd	20 cycles	20 cycles

Figure 11.6 Interrupt Response Time

11.5.6 Variation of IPL when Interrupt Request is Accepted

When a maskable interrupt request is accepted, the interrupt priority level of the accepted interrupt is set in the IPL.

When a software interrupt or special interrupt request is accepted, one of the interrupt priority levels listed in Table 11.5 is set in the IPL. Table 11.5 lists the IPL Level That is Set to IPL When a Software or Special Interrupt is Accepted.

Table 11.5 IPL Level That is Set to IPL When a Software or Special Interrupt is Accepted

Interrupt Sources	Level that is Set to IPL		
Watchdog Timer, NMI	7		
Software, Address Match, DBC, Single-Step	Not changed		

11.5.7 Saving Registers

In the interrupt sequence, the FLG register and PC are saved to the stack.

At this time, the 4 high-order bits of the PC and the 4 high-order (IPL) and 8 low-order bits in the FLG register, 16 bits in total, are saved to the stack first. Next, the 16 low-order bits of the PC are saved.

Figure 11.7 shows the Stack Status Before and After Acceptance of Interrupt Request.

The other necessary registers must be saved in a program at the beginning of the interrupt routine. Use the PUSHM instruction, and all registers except SP can be saved with a single instruction.

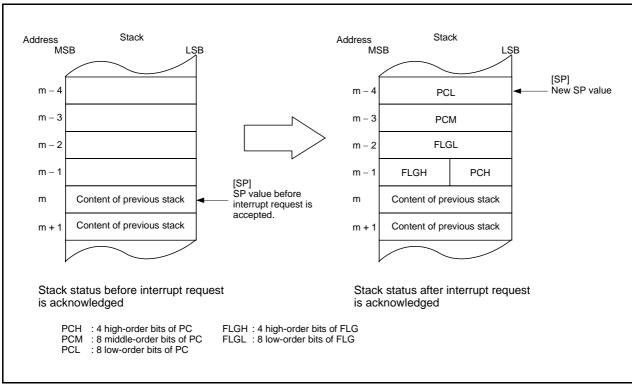


Figure 11.7 Stack Status Before and After Acceptance of Interrupt Request

The operation of saving registers carried out in the interrupt sequence is dependent on whether the SP (1), at the time of acceptance of an interrupt request, is even or odd. If the stack pointer (1) is even, the FLG register and the PC are saved,16 bits at a time. If odd, they are saved in two steps, 8 bits at a time. Figure 11.8 shows the Operation of Saving Register.

NOTES:

1. When any INT instruction in software numbers 32 to 63 has been executed, this is the SP indicated by the U flag. Otherwise, it is the ISP.

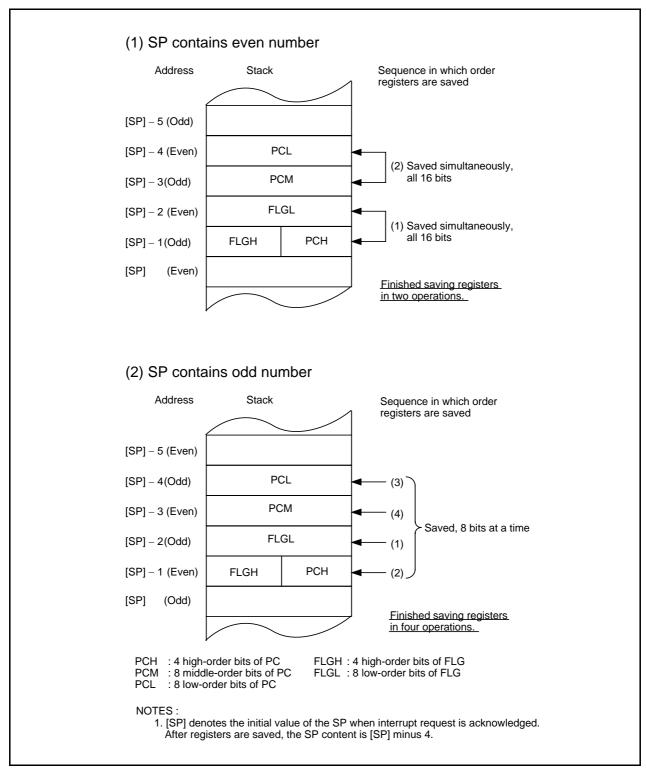


Figure 11.8 **Operation of Saving Register**

11.5.8 **Returning from an Interrupt Routine**

The FLG register and PC in the state in which they were immediately before entering the interrupt sequence are restored from the stack by executing the REIT instruction at the end of the interrupt routine.

Thereafter the CPU returns to the program which was being executed before accepting the interrupt request. Return the other registers saved by a program within the interrupt routine using the POPM or similar instruction before executing the REIT instruction.

11.5.9 **Interrupt Priority**

If two or more interrupt requests are generated while executing one instruction, the interrupt request that has the highest priority is accepted.

For maskable interrupts (peripheral functions), any desired priority level can be selected using the ILVL2 to ILVL0 bits. However, if two or more maskable interrupts have the same priority level, their interrupt priority is resolved by hardware, with the highest priority interrupt accepted.

The watchdog timer and other special interrupts have their priority levels set in hardware. Figure 11.9 shows the Hardware Interrupt Priority.

Software interrupts are not affected by the interrupt priority. If an instruction is executed, control branches invariably to the interrupt routine.

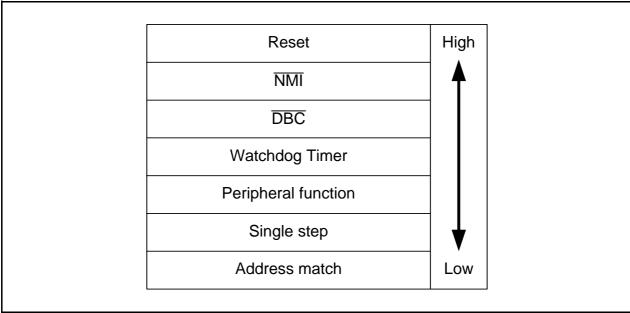


Figure 11.9 **Hardware Interrupt Priority**

11.5.10 Interrupt Priority Resolution Circuit

The interrupt priority resolution circuit is used to select the interrupt with the highest priority among those requested.

Figure 11.10 shows the Interrupts Priority Select Circuit.

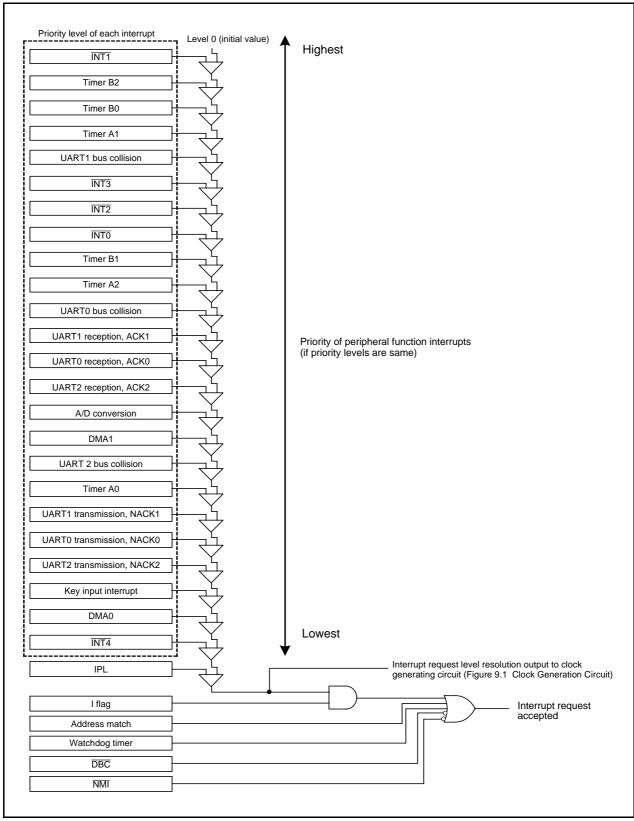
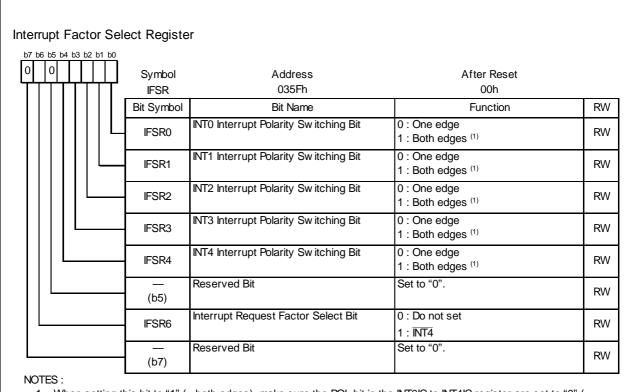


Figure 11.10 Interrupts Priority Select Circuit

Page 74 of 291


11.6 INT Interrupt

INTi interrupt (i=0 to 4) is triggered by the edges of external inputs. The edge polarity is selected using the IFSRi bit in the IFSR register.

To use the $\overline{INT4}$ interrupt, set the IFSR6 bit in the IFSR register to "1" (= $\overline{INT4}$).

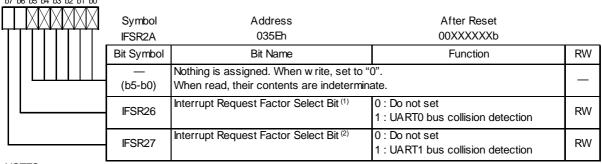

After modifying the IFSR6 bit, clear the corresponding IR bit to "0" (= interrupt not requested) before enabling the interrupt.

Figure 11.11 shows the IFSR and IFSR2A Registers.

1. When setting this bit to "1" (= both edges), make sure the POL bit in the INTOIC to INT4IC register are set to "0" (= falling edge).

Interrupt Factor Select Register 2

NOTES:

- 1. When using UART0 bus collision detection, set the IFSR26 bit to "1".
- 2. When using UART1 bus collision detection, set the IFSR27 bit to "1".

Figure 11.11 IFSR and IFSR2A Registers

11.7 NMI Interrupt

An $\overline{\text{NMI}}$ interrupt request is generated when input on the $\overline{\text{NMI}}$ pin changes state from high to low. The $\overline{\text{NMI}}$ interrupt is a non-maskable interrupt.

The input level of this $\overline{\text{NMI}}$ interrupt input pin can be read by accessing the P8_5 bit in the P8 register. This pin cannot be used as an input port.

11.8 Key Input Interrupt

Of P10_4 to P10_7, a key input interrupt is generated when input on any of the P10_4 to P10_7 pins which has had the PD10_4 to PD10_7 bits in the PD10 register set to "0" (= input) goes low. Key input interrupts can be used as a key-on wake up function, the function which gets the microcomputer out of wait or stop mode. However, if you intend to use the key input interrupt, do not use P10_4 to P10_7 as analog input ports. Figure 11.12 shows the block diagram of the Key Input Interrupt. Note, however, that while input on any pin which has had the PD10_4 to PD10_7 bits set to "0" (= input mode) is pulled low, inputs on all other pins of the port are not detected as interrupts.

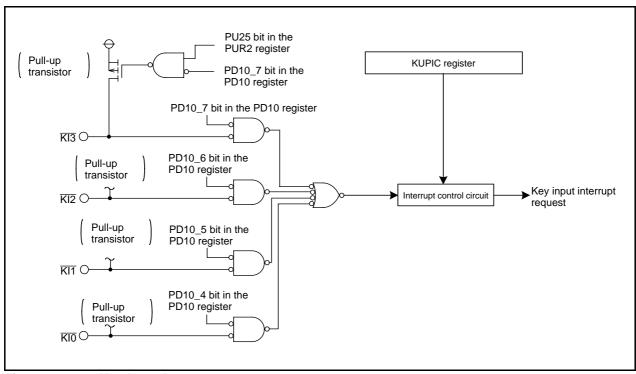


Figure 11.12 Key Input Interrupt

11.9 **Address Match Interrupt**

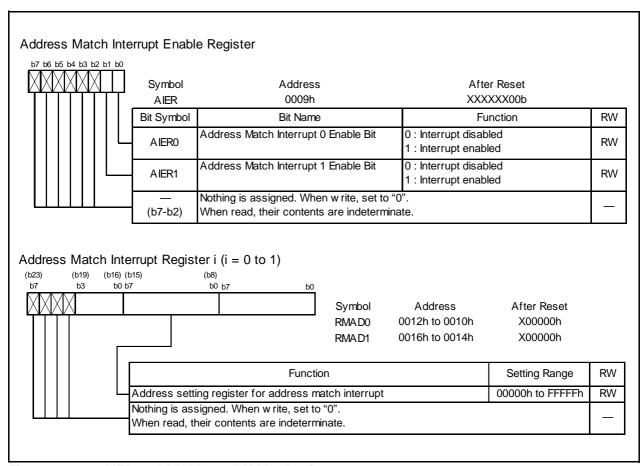
An address match interrupt request is generated immediately before executing the instruction at the address indicated by the RMADi register (i=0 to 1). Set the start address of any instruction in the RMADi register. Use the AIER0 and AIER1 bits in the AIER register to enable or disable the interrupt. Note that the address match interrupt is unaffected by the I flag and IPL. For address match interrupts, the value of the PC that is saved to the stack area varies depending on the instruction being executed (refer to 11.5.7 Saving Registers).

(The value of the PC that is saved to the stack area is not the correct return address.) Therefore, follow one of the methods described below to return from the address match interrupt.

- Rewrite the content of the stack and then use the REIT instruction to return.
- Restore the stack to its previous state before the interrupt request was accepted by using the POP or similar other instruction and then use a jump instruction to return.

Table 11.6 shows the Value of the PC that is Saved to the Stack Area when an Address Match Interrupt Request is Accepted

The address match interrupt is not available for an external space when an 8-bit wide external data bus is used. Figure 11.13 shows the AIER and RMAD0 to RMAD1 Registers.


Table 11.6 Value of the PC that is Saved to the Stack Area when an Address Match Interrupt **Request is Accepted**

	Value of the PC that is saved to the stack area					
• 16-bit op-cod	e instruction					The address
 Instruction sh 	own below amo	ong 8-bit oper	ation code instruction	ons		indicated by the
ADD.B:S	#IMM8,dest	SUB.B:S	#IMM8,dest	AND.B:S	#IMM8,dest	RMADi register +2
OR.B:S	#IMM8,dest	MOV.B:S	#IMM8,dest	STZ.B:S	#IMM8,dest	
STNZ.B:S	#IMM8,dest	STZX.B:S	#IMM81,#IMM82,0	dest		
CMP.B:S	#IMM8,dest	PUSHM	src	POPM dest		
JMPS	#IMM8	JSRS	#IMM8			
MOV.B:S						
Instructions oth	The address					
						indicated by the
						RMADi register +1

Value of the PC that is saved to the stack area: Refer to 11.5.7 Saving Registers.

Table 11.7 Relationship Between Address Match Interrupt Sources and Associated Registers

Address Match Interrupt sources	Address Match Interrupt Enable Bit	Address Match Interrupt Register
Address Match Interrupt 0	AIER0	RMAD0
Address Match Interrupt 1	AIER1	RMAD1

AIER and RMAD0 to RMAD1 Registers **Figure 11.13**

M16C/30P Group 12. Watchdog Timer

12. Watchdog Timer

The watchdog timer is the function of detecting when the program is out of control. Therefore, we recommend using the watchdog timer to improve reliability of a system. The watchdog timer contains a 15-bit counter which counts down the clock derived by dividing the CPU clock using the prescaler. A watchdog timer interrupt is generated when an underflow occurs in the watchdog timer.

When the main clock source is selected for CPU clock, the divide-by-N value for the prescaler can be chosen to be 16 or 128. If a sub-clock is selected for CPU clock, the divide-by-N value for the prescaler is always 2 no matter how the WDC7 bit is set. The period of watchdog timer can be calculated as given below. The period of watchdog timer is, however, subject to an error due to the prescaler.

With main clock chosen for CPU clock

With sub-clock chosen for CPU clock

For example, when CPU clock = 16 MHz and the divide-by-N value for the prescaler= 16, the watchdog timer period is approx. 32.8 ms.

The watchdog timer is initialized by writing to the WDTS register. The prescaler is initialized after reset. Note that the watchdog timer and the prescaler both are inactive after reset, so that the watchdog timer is activated to start counting by writing to the WDTS register.

In stop mode, wait mode, and hold state, the watchdog timer and prescaler are stopped. Counting is resumed from the held value when the modes or state are released.

Figure 12.1 shows the Watchdog Timer Block Diagram. Figure 12.2 shows the WDC and WDTS Register.

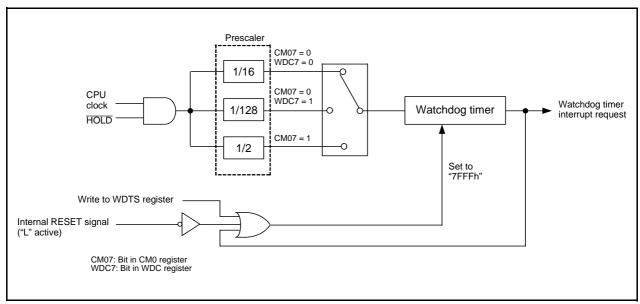


Figure 12.1 Watchdog Timer Block Diagram

Page 79 of 291

M16C/30P Group 12. Watchdog Timer

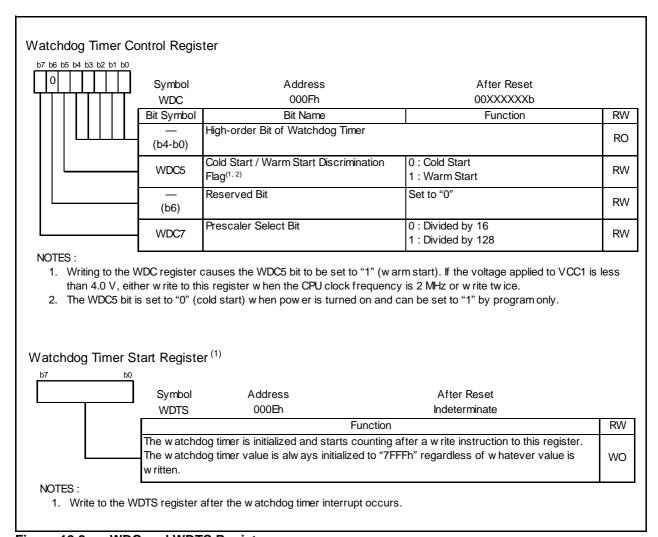


Figure 12.2 **WDC and WDTS Register**

13. DMAC

The DMAC (Direct Memory Access Controller) allows data to be transferred without the CPU intervention.

Two DMAC channels are included. Each time a DMA request occurs, the DMAC transfers one (8 or 16-bit) data from the source address to the destination address. The DMAC uses the same data bus as used by the CPU. Because the DMAC has higher priority of bus control than the CPU and because it makes use of a cycle steal method, it can transfer one word (16 bits) or one byte (8 bits) of data within a very short time after a DMA request is generated. Figure 13.1 shows the DMAC Block Diagram. Table 13.1 lists the DMAC Specifications. Figures 13.2 to 13.4 shows the DMAC related registers.

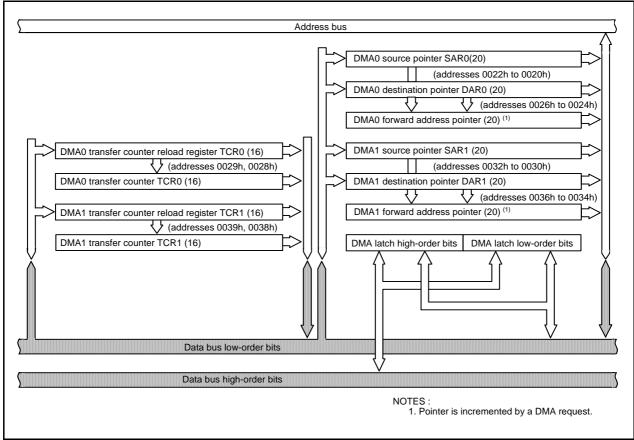
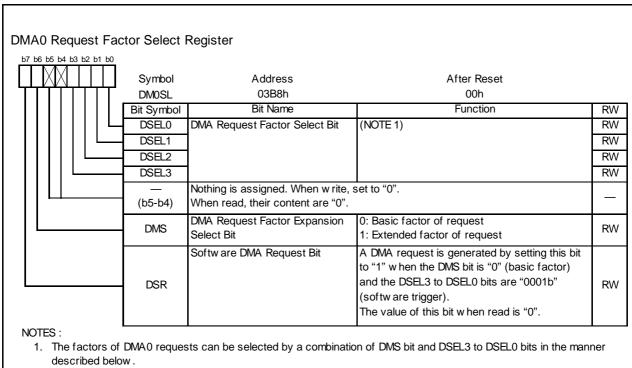


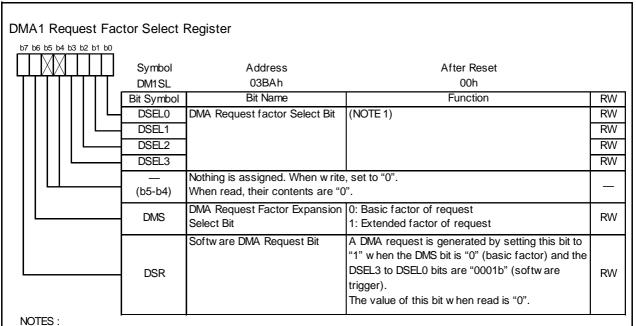
Figure 13.1 DMAC Block Diagram

A DMA request is generated by a write to the DSR bit in the DMiSL register (i = 0 to 1), as well as by an interrupt request which is generated by any function specified by the DMS and DSEL3 to DSEL0 bits in the DMiSL register. However, unlike in the case of interrupt requests, DMA requests are not affected by the I flag and the interrupt control register, so that even when interrupt requests are disabled and no interrupt request can be accepted, DMA requests are always accepted. Furthermore, because the DMAC does not affect interrupts, the IR bit in the interrupt control register does not change state due to a DMA transfer.


A data transfer is initiated each time a DMA request is generated when the DMAE bit in the DMiCON register = 1 (DMA enabled). However, if the cycle in which a DMA request is generated is faster than the DMA transfer cycle, the number of transfer requests generated and the number of times data is transferred may not match. Refer to **13.4 DMA Request** for details.

DMAC Specifications Table 13.1

Item		Specification		
No. of Channels		2 (cycle steal method)		
Transfer Memory Space		 From any address in the 1-Mbyte space to a fixed address From a fixed address to any address in the 1-Mbyte space From a fixed address to a fixed address 		
Maximum No. of B	=	128 Kbytes (with 16-bit transfers) or 64 Kbytes (with 8-bit transfers)		
DMA Request Factors ^(1, 2)		Falling edge of INT0 or INT1 Both edge of INT0 or INT1 Timer A0 to timer A2 interrupt requests Timer B0 to timer B2 interrupt requests UART0 transfer, UART0 reception interrupt requests UART1 transfer, UART1 reception interrupt requests UART2 transfer, UART2 reception interrupt requests A/D conversion interrupt requests Software triggers		
Channel Priority		DMA0 > DMA1 (DMA0 takes precedence)		
Transfer Unit		8 bits or 16 bits		
Transfer Address Direction		Forward or fixed (The source and destination addresses cannot both be in the forward direction.)		
		Transfer is completed when the DMAi transfer counter (i = 0 to 1) underflows after reaching the terminal count.		
	Repeat Transfer	When the DMAi transfer counter underflows, it is reloaded with the value of the DMAi transfer counter reload register and a DMA transfer is continued with it.		
DMA Interrupt Rec	uest Generation Timing	When the DMAi transfer counter underflowed		
DMA Start up		Data transfer is initiated each time a DMA request is generated when the DMAE bit in the DMAiCON register = 1 (enabled).		
DMA Shutdown Single Transfer • When the DMAE bit is set to "0" (disabled) • After the DMAi transfer counter underflows		After the DMAi transfer counter underflows		
	Repeat Transfer	When the DMAE bit is set to "0" (disabled)		
Reload Timing for Forward Address Pointer and Transfer Counter		When a data transfer is started after setting the DMAE bit to "1" (enabled), the forward address pointer is reloaded with the value of the SARi or the DARi pointer whichever is specified to be in the forward direction and the DMAi transfer counter is reloaded with the value of the DMAi transfer counter reload register.		
DMA Transfer Cyc	cles	Minimum 3 cycles between SFR and internal RAM		


NOTES:

- 1. DMA transfer is not effective to any interrupt. DMA transfer is affected neither by the I flag nor by the interrupt control register.
- 2. The selectable factors of DMA requests differ with each channel.
- 3. Make sure that no DMAC-related registers (addresses 0020h to 003Fh) are accessed by the DMAC.

DSEL3 to DSEL0	DMS=0(Basic Factor of Request)	DMS=1(Extended Factor of Request)
0000b	Falling Edge of INTO Pin	_
0001b	Softw are Trigger	_
0010b	Timer A0	—
0011b	Timer A1	—
0100b	Timer A2	_
0101b	_	_
0110b	_	Two Edges of INTO Pin
0111b	Timer B0	_
1000b	Timer B1	_
1001b	Timer B2	—
1010b	UART0 Transmit	_
1011b	UART0 Receive	_
1100b	UART2 Transmit	_
1101b	UART2 Receive	_
1110b	A/D Conversion	
1111b	UART1 Transmit	_

Figure 13.2 **DM0SL Register**

1. The factors of DMA1 requests can be selected by a combination of DMS bit and DSEL3 to DSEL0 bits in the manner described below.

DSEL3 to DSEL0	DMS=0(Basic Factor of Request)	DMS=1(Extended Factor of Request)
0000b	Falling Edge of INT1 Pin	_
0001b	Softw are Trigger	_
0010b	Timer A0	_
0011b	Timer A1	_
0100b	Timer A2	_
0101b	—	<u> </u>
0110b	—	_
0111b	Timer B0	Two Edges of INT1 Pin
1000b	Timer B1	_
1001b	Timer B2	_
1010b	UART0 Transmit	_
1011b	UART0 Receive/ACK0	_
1100b	UART2 Transmit	_
1101b	UART2 Receive/ACK2	_
1110b	A/D Conversion	_
1111b	UART1 Receive/ACK1	_

Figure 13.3 DM1SL Register

Figure 13.4 **DM0CON and DM1CON Register**

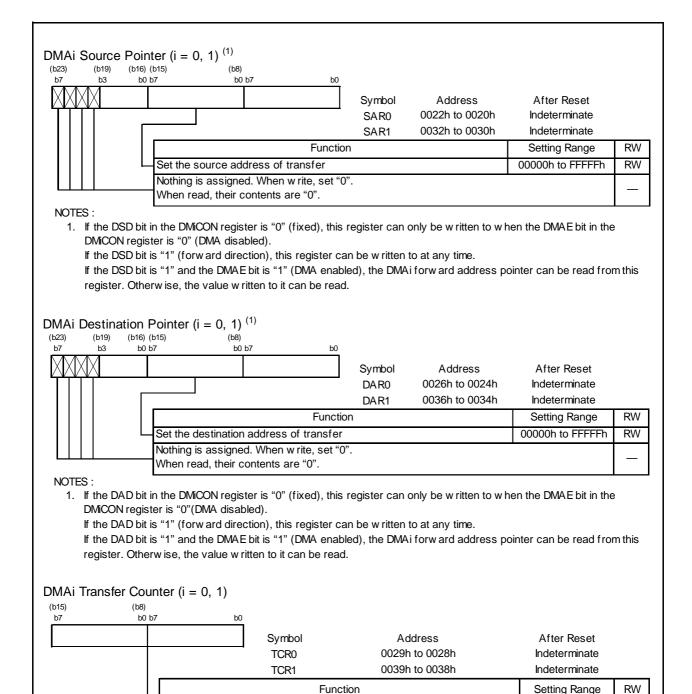


Figure 13.5 SAR0, SAR1, DAR0, DAR1, TCR0 and TCR1 Registers

transferred to the DMAi transfer counter. When read, the DMAi transfer counter is read.

Set the transfer count minus 1. The written value is stored in the DMAi

transfer counter reload register, and when the DMAE bit in the DMICON register is set to "1" (DMA enabled) or the DMAi transfer counter underflows when the DMASL bit in the DMiCON register is "1" (repeat

transfer), the value of the DMAi transfer counter reload register is

0000h to FFFFh

RW

13.1 Transfer Cycles

The transfer cycle consists of a memory or SFR read (source read) bus cycle and a write (destination write) bus cycle. The number of read and write bus cycles is affected by the source and destination addresses of transfer. During memory extension and microprocessor modes, it is also affected by the BYTE pin level. Furthermore, the bus cycle itself is extended by a software wait or \overline{RDY} signal.

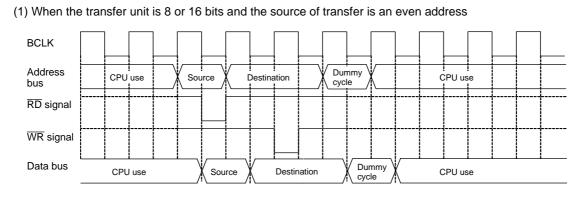
13.1.1 Effect of Source and Destination Addresses

If the transfer unit and data bus both are 16 bits and the source address of transfer begins with an odd address, the source read cycle consists of one more bus cycle than when the source address of transfer begins with an even address.

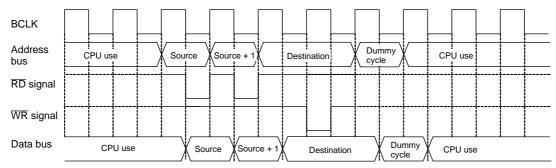
Similarly, if the transfer unit and data bus both are 16 bits and the destination address of transfer begins with an odd address, the destination write cycle consists of one more bus cycle than when the destination address of transfer begins with an even address.

13.1.2 Effect of BYTE Pin Level

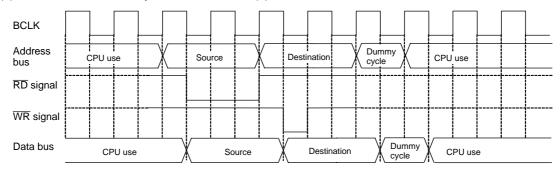
During memory extension and microprocessor modes, if 16 bits of data are to be transferred on an 8-bit data bus (input on the BYTE pin = high), the operation is accomplished by transferring 8 bits of data twice. Therefore, this operation requires two bus cycles to read data and two bus cycles to write data. Furthermore, if the DMAC is to access the internal area (internal ROM, internal RAM, or SFR), unlike in the case of the CPU, the DMAC does it through the data bus width selected by the BYTE pin.

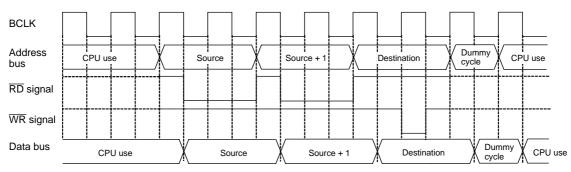

13.1.3 Effect of Software Wait

For memory or SFR accesses in which one or more software wait states are inserted, the number of bus cycles required for that access increases by an amount equal to software wait states.


13.1.4 Effect of RDY Signal

During memory extension and microprocessor modes, DMA transfers to and from an external area are affected by the RDY signal. Refer to **7.2.6 RDY Signal**.


Figure 13.6 shows the example of the Transfer Cycles for Source Read. For convenience, the destination write cycle is shown as one cycle and the source read cycles for the different conditions are shown. In reality, the destination write cycle is subject to the same conditions as the source read cycle, with the transfer cycle changing accordingly. When calculating transfer cycles, take into consideration each condition for the source read and the destination write cycle, respectively. For example, when data is transferred in 16 bit units using an 8-bit bus ((2) on Figure 13.6), two source read bus cycles and two destination write bus cycles are required.


(2) When the transfer unit is 16 bits and the source address of transfer is an odd address, or when the transfer unit is 16 bits and an 8-bit bus is used

(3) When the source read cycle under condition (1) has one wait state inserted

(4) When the source read cycle under condition (2) has one wait state inserted

NOTES:

1. The same timing changes occur with the respective conditions at the destination as at the source.

Figure 13.6 Transfer Cycles for Source Read

13.2 DMA Transfer Cycles

Any combination of even or odd transfer read and write addresses is possible. Table 13.2 lists the DMA Transfer Cycles. Table 13.3 lists the Coefficient j, k.

The number of DMAC transfer cycles can be calculated as follows:

No. of transfer cycles per transfer unit = No. of read cycles \times j + No. of write cycles \times k

Table 13.2 DMA Transfer Cycles

Transfer Unit	Bus Width	Access Address	Single-Chip Mode		Memory Expansion Mode Microprocessor Mode	
			No. of Read Cycles	No. of Write Cycles	No. of Read Cycles	No. of Write Cycles
8-bit Transfers (DMBIT= 1)	16-bit (BYTE= L)	Even	1	1	1	1
		Odd	1	1	1	1
	8-bit (BYTE = H)	Even	_	_	1	1
		Odd	_	_	1	1
16-bit Transfers (DMBIT= 0)	16-bit (BYTE = L)	Even	1	1	1	1
		Odd	2	2	2	2
	8-bit (BYTE = H)	Even	_	_	2	2
		Odd	_	_	2	2

^{—:} This condition does not exist.

Table 13.3 Coefficient j, k

	Internal Area			Externa	al Area
	Internal R	OM, RAM	SFR	Separate Bus	
	No Wait	With Wait	1-Wait	No Wait	1-Wait
j	1	2	2	1	2
k	1	2	2	2	2

13.3 **DMA Enable**

When a data transfer starts after setting the DMAE bit in the DMiCON register (i = 0, 1) to "1" (enabled), the DMAC operates as follows:

- (1) Reload the forward address pointer with the SARi register value when the DSD bit in the DMiCON register is "1" (forward) or the DARi register value when the DAD bit in the DMiCON register is "1" (forward).
- (2) Reload the DMAi transfer counter with the DMAi transfer counter reload register value.

If the DMAE bit is set to "1" again while it remains set, the DMAC performs the above operation. However, if a DMA request may occur simultaneously when the DMAE bit is being written, follow the steps below.

Step 1: Write "1" to the DMAE bit and DMAS bit in the DMiCON register simultaneously.

Step 2: Make sure that the DMAi is in an initial state as described above (1) and (2) in a program.

If the DMAi is not in an initial state, the above steps should be repeated.

13.4 **DMA Request**

The DMAC can generate a DMA request as triggered by the factor of request that is selected with the DMS and DSEL3 to DSEL0 bits in the DMiSL register (i = 0, 1) on either channel. Table 13.4 lists the Timing at Which the DMAS Bit Changes State.

Whenever a DMA request is generated, the DMAS bit is set to "1" (DMA requested) regardless of whether or not the DMAE bit is set. If the DMAE bit was set to "1" (enabled) when this occurred, the DMAS bit is set to "0" (DMA not requested) immediately before a data transfer starts. This bit cannot be set to "1" in a program (it can only be set to "0").

The DMAS bit may be set to "1" when the DMS or the DSEL3 to DSEL0 bits change state. Therefore, always be sure to set the DMAS bit to "0" after changing the DMS or the DSEL3 to DSEL0 bits.

Because if the DMAE bit is "1", a data transfer starts immediately after a DMA request is generated, the DMAS bit in almost all cases is "0" when read in a program. Read the DMAE bit to determine whether the DMAC is enabled.

Table 13.4 Timing at Which the DMAS Bit Changes State

DMA Factor	DMAS Bit of the DMiCON Register		
	Timing at which the bit is set to "1"	Timing at which the bit is set to "0"	
Software Trigger	When the DSR bit in the DMiSL register is set to "1"	Immediately before a data transfer startsWhen set by writing "0" in a program	
Peripheral Function	When the interrupt control register for the peripheral function that is selected by the DSEL3 to DSEL0 and DMS bits in the DMiSL register has its IR bit set to "1"		

13.5 **Channel Priority and DMA Transfer Timing**

If both DMA0 and DMA1 are enabled and DMA transfer request signals from DMA0 and DMA1 are detected active in the same sampling period (one period from a falling edge to the next falling edge of BCLK), the DMAS bit on each channel is set to "1" (DMA requested) at the same time. In this case, the DMA requests are arbitrated according to the channel priority, DMA0 > DMA1. The following describes DMAC operation when DMA0 and DMA1 requests are detected active in the same sampling period. Figure 13.7 shows an example of DMA Transfer by External Factors.

DMA0 request having priority is received first to start a transfer when a DMA0 request and DMA1 request are generated simultaneously. After one DMA0 transfer is completed, a bus arbitration is returned to the CPU. When the CPU has completed one bus access, a DMA1 transfer starts. After one DMA1 transfer is completed, the bus arbitration is again returned to the CPU.

In addition, DMA requests cannot be counted up since each channel has one DMAS bit. Therefore, when DMA requests, as DMA1 in Figure 13.7, occurs more than one time, the DMAS bit is set to "0" as soon as getting the bus arbitration. The bus arbitration is returned to the CPU when one transfer is completed.

Refer to 7.2.7 HOLD Signal for details about bus arbitration between the CPU and DMA.

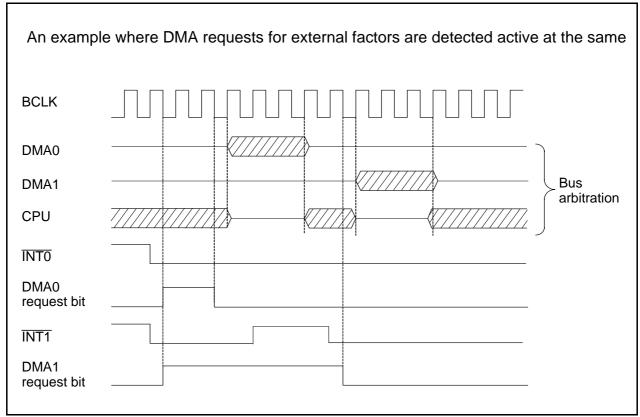


Figure 13.7 **DMA Transfer by External Factors**

M16C/30P Group 14. Timers

14. Timers

Six 16-bit timers, each capable of operating independently of the others, can be classified by function as either Timer A (three) and Timer B (three). The count source for each timer acts as a clock, to control such timer operations as counting, reloading, etc. Figures 14.1 and 14.2 show block diagrams of Timer A and Timer B configuration, respectively.

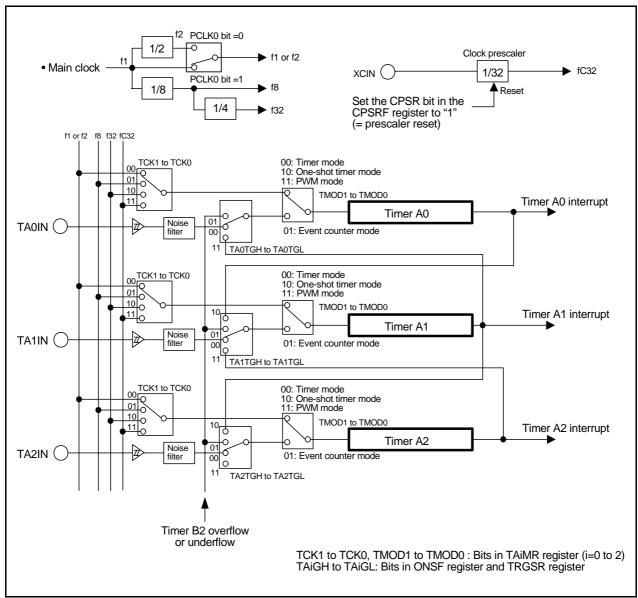


Figure 14.1 Timer A Configuration

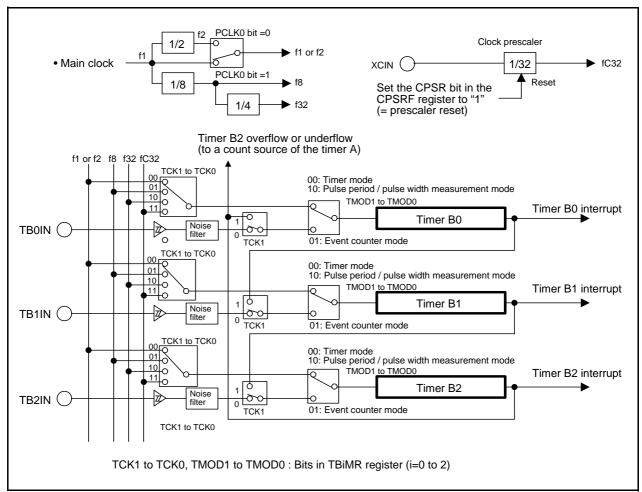


Figure 14.2 Timer B Configuration

14.1 Timer A

Figure 14.3 shows a Timer A Block Diagram. Figures 14.4 to 14.6 show registers related to the Timer A. The Timer A supports the following four modes. Except in event counter mode, Timers A0 to A2 all have the same function. Use the TMOD1 to TMOD0 bits in the TAiMR register (i = 0 to 2) to select the desired mode.

• Timer Mode: The timer counts an internal count source.

• Event Counter Mode: The timer counts pulses from an external device or overflows and

underflows of other timers.

• One-shot Timer Mode: The timer outputs a pulse only once before it reaches the minimum

count "0000h".

• Pulse Width Modulation (PWM) Mode: The timer outputs pulses in a given width successively.

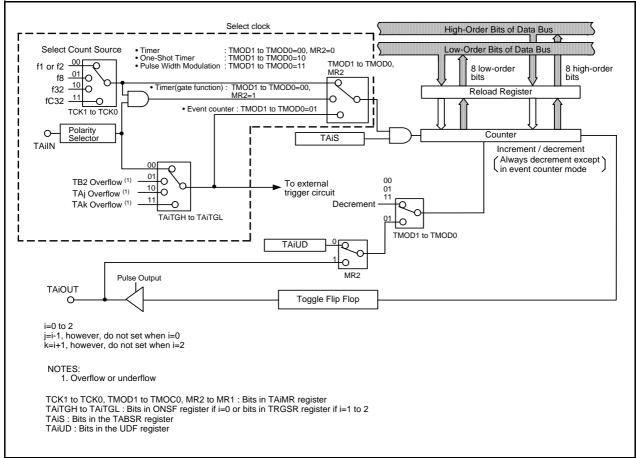
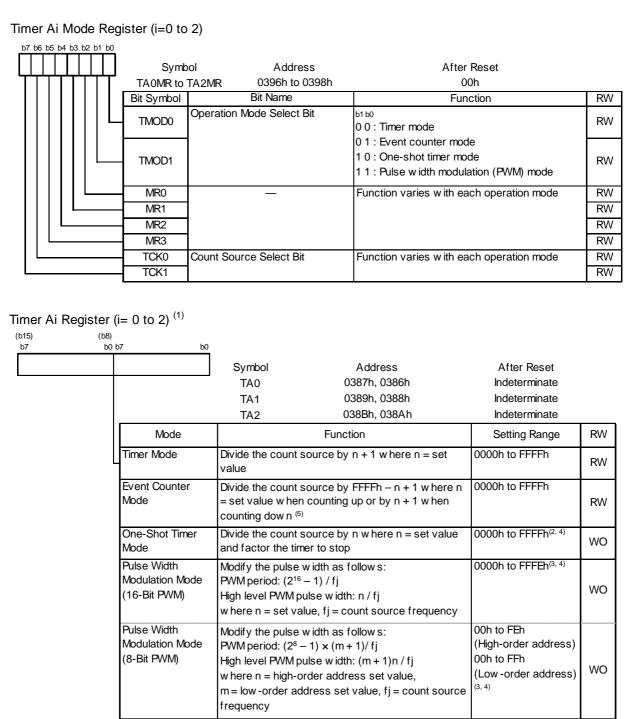



Figure 14.3 Timer A Block Diagram

NOTES:

- 1. The register must be accessed in 16-bit units.
- 2. If the TAi register is set to "0000h," the counter does not work and timer Ai interrupt requests are not generated either. Furthermore, if "pulse output" is selected, no pulses are output from the TAiOUT pin.
- 3. If the TAi register is set to "0000h," the pulse width modulator does not work, the output level on the TAiOUT pin remains low, and timer Ai interrupt requests are not generated either. The same applies when the 8 high-order bits of the timer TAi register are set to "00h" while operating as an 8-bit pulse width modulator.
- 4. Use the MOV instruction to write to the TAi register.
- 5. The timer counts pulses from an external device or overflows or underflows in other timers.

Figure 14.4 TAIMR and TAI Registers

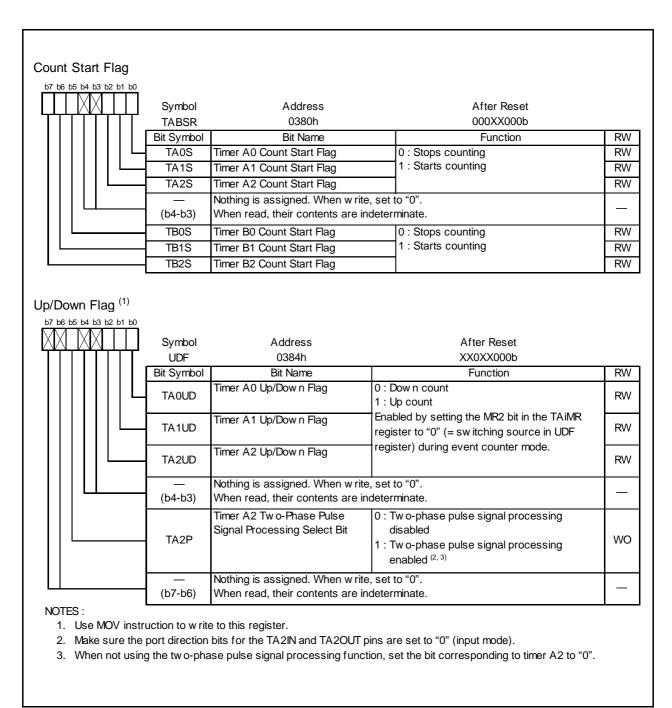
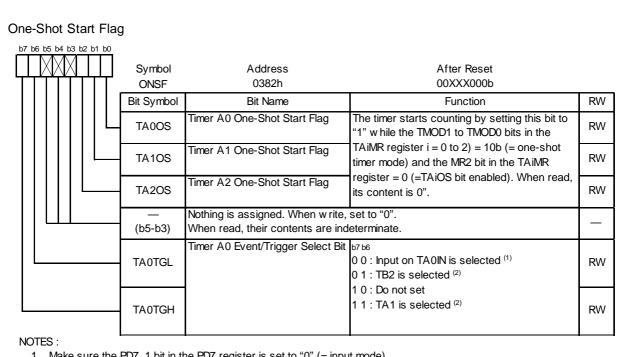
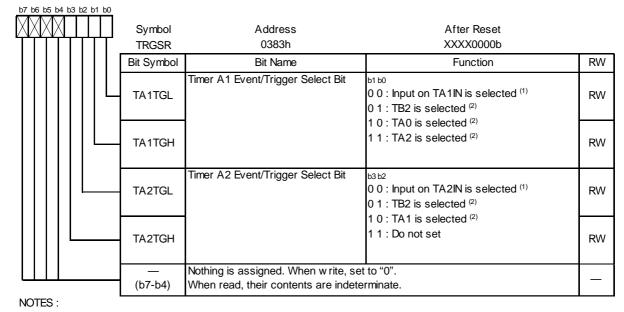
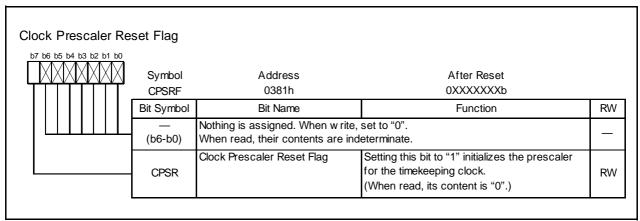




Figure 14.5 **TABSR and UDF Registers**


- 1. Make sure the PD7_1 bit in the PD7 register is set to "0" (= input mode).
- 2. Overflow or underflow.

Trigger Select Register

- 1. Make sure the port direction bits for the TA1IN to TA2IN pins are set to "0" (= input mode).
- 2. Overflow or underflow.

Figure 14.6 **ONSF and TRGSR Registers**

CPSRF Register Figure 14.7

14.1.1 **Timer Mode**

In timer mode, the timer counts a count source generated internally (see Table 14.1). Figure 14.8 shows TAiMR Register in Timer Mode.

Table 14.1 Specifications in Timer Mode

Item	Specification
Count source	f1, f2, f8, f32, fC32
Count Operation	 Down-count When the timer underflows, it reloads the reload register contents and continues counting
Divide Ratio	1/(n+1) n: set value of TAi register (i= 0 to 2) 0000h to FFFFh
Count Start Condition	Set TAiS bit in TABSR register to "1" (= start counting)
Count Stop Condition	Set TAiS bit to "0" (= stop counting)
Interrupt Request Generation Timing	Timer underflow
TAilN Pin Function	I/O port or gate input
TAiOUT Pin Function	I/O port or pulse output
Read from Timer	Count value can be read by reading TAi register
Write to Timer	 When not counting and until the 1st count source is input after counting start Value written to TAi register is written to both reload register and counter When counting (after 1st count source input) Value written to TAi register is written to only reload register (Transferred to counter when reloaded next)
Select Function	 Gate function Counting can be started and stopped by an input signal to TAiIN pin Pulse output function Whenever the timer underflows, the output polarity of TAiOUT pin is inverted. When TAiS bit is set to "0" (stop counting), the pin outputs a low.

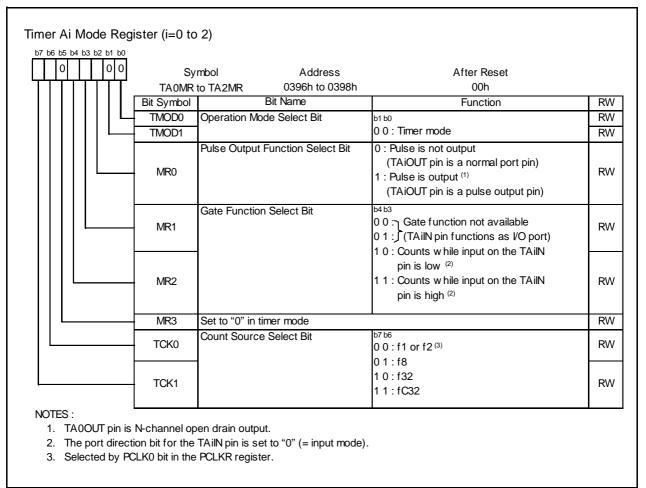



Figure 14.8 **TAIMR Register in Timer Mode**

14.1.2 Event Counter Mode

In event counter mode, the timer counts pulses from an external device or overflows and underflows of other timers. Timer A2 can count two-phase external signals. Table 14.2 lists Specifications in Event Counter Mode (when not processing two-phase pulse signal). Figure 14.9 shows TAiMR Register in Event Counter Mode (when not using two-phase pulse signal processing).

Table 14.2 Specifications in Event Counter Mode (when not processing two-phase pulse signal)

Item	Specification
Count Source	 External signals input to TAilN pin (i=0 to 2) (effective edge can be selected in program) Timer B2 overflows or underflows, Timer Aj (j=i-1, however, do not set when i=0) overflows or underflows, Timer Ak (k=i+1, however, do not set when i=2) overflows or underflows
Count Operation	 Up-count or down-count can be selected by external signal or program When the timer overflows or underflows, it reloads the reload register contents and continues counting. When operating in free-running mode, the timer continues counting without reloading.
Divided Ratio	1/ (FFFFh - n + 1) for up-count 1/ (n + 1) for down-count n : set value of TAi register 0000h to FFFFh
Count Start Condition	Set TAiS bit in the TABSR register to "1" (= start counting)
Count Stop Condition	Set TAiS bit to "0" (= stop counting)
Interrupt Request Generation Timing	Timer overflow or underflow
TAilN Pin Function	I/O port or count source input
TAiOUT Pin Function	I/O port, pulse output, or up/down-count select input
Read from Timer	Count value can be read by reading TAi register
Write to Timer	 When not counting and until the 1st count source is input after counting start Value written to TAi register is written to both reload register and counter When counting (after 1st count source input) Value written to TAi register is written to only reload register (Transferred to counter when reloaded next)
Select Function	 Free-run count function Even when the timer overflows or underflows, the reload register content is not reloaded to it Pulse output function Whenever the timer underflows or underflows, the output polarity of TAiOUT pin is inverted. When TAiS bit is set to "0" (stop counting), the pin outputs a low.

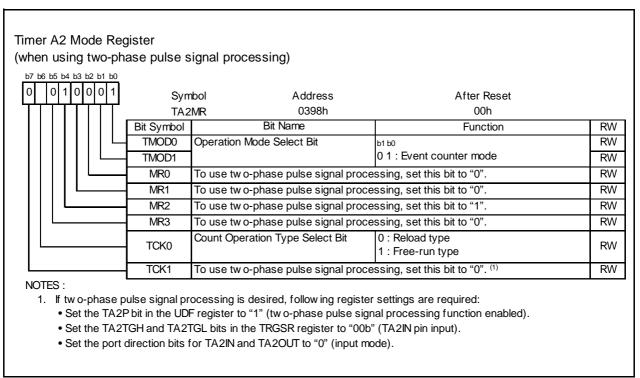

- 1. During event counter mode, the count source can be selected using the ONSF and TRGSR registers.
- 2. TA0OUT pin is N-channel open drain output.
- 3. Effective when the TAiTGH and TAiTGL bits in the ONSF or TRGSR register are "00b" (TAilN pin input).
- 4. Count down when input on TAiOUT pin is low or count up when input on that pin is high. The port direction bit for TAiOUT pin is set to "0" (= input mode).

Figure 14.9 TAIMR Register in Event Counter Mode (when not using two-phase pulse signal processing)

Table 14.3 lists Specifications in Event Counter Mode (when processing two-phase pulse signal with Timer A2). Figure 14.10 shows TA2MR Register in Event Counter Mode (when using two-phase pulse signal processing with Timer A2).

Table 14.3 Specifications in Event Counter Mode (when processing two-phase pulse signal with Timer A2)

Item	Specification
Count Source	Two-phase pulse signals input to TA2IN or TA2OUT pins
Count Operation	 Up-count or down-count can be selected by two-phase pulse signal When the timer overflows or underflows, it reloads the reload register contents and continues counting. When operating in free-running mode, the timer continues counting without reloading.
Divide Ratio	1/ (FFFFh - n + 1) for up-count 1/ (n + 1) for down-count n : set value of TA2 register 0000h to FFFFh
Count Start Condition	Set TA2S bit of TABSR register to "1" (= start counting)
Count Stop Condition	Set TA2S bit to "0" (= stop counting)
Interrupt Request Generation Timing	Timer overflow or underflow
TA2IN Pin Function	Two-phase pulse input
TA2OUT Pin Function	Two-phase pulse input
Read from Timer	Count value can be read by reading Timer A2 register
Write to Timer	 When not counting and until the 1st count source is input after counting start Value written to TA2 register is written to both reload register and counter When counting (after 1st count source input) Value written to TA2 register is written to reload register (Transferred to counter when reloaded next)
Select Function	The timer counts up rising edges or counts down falling edges on TA2IN pin when input signals on TA2OUT pin is "H".
	TA2OUT
	TA2IN Up- Up- Down- Down- Down-
	count count count count count

Figure 14.10 TA2MR Register in Event Counter Mode (when using two-phase pulse signal processing with Timer A2)

14.1.3 **One-shot Timer Mode**

In one-shot timer mode, the timer is activated only once by one trigger (see Table 14.4). When the trigger occurs, the timer starts up and continues operating for a given period. Figure 14.11 shows the TAiMR Register in One-Shot Timer Mode.

Table 14.4 Specifications in One-shot Timer Mode

Item	Specification
Count Source	f1, f2, f8, f32, fC32
Count Operation	 Down-count When the counter reaches 0000h, it stops counting after reloading a new value If a trigger occurs when counting, the timer reloads a new count and restarts counting
Divide Ratio	1/n n : set value of TAi register (i=0 to 2) 0000h to FFFFh However, the counter does not work if the divide-by-n value is set to 0000h.
Count start Condition	TAiS bit in the TABSR register = 1 (start counting) and one of the following triggers occurs. • External trigger input from the TAilN pin • Timer B2 overflow or underflow, Timer Aj (j=i-1, however, do not set when i=0) overflow or underflow, Timer Ak (k=i+1, however, do not set when i=2) overflow or underflow • The TAiOS bit in the ONSF register is set to "1"(= timer starts)
Count Stop Condition	 When the counter is reloaded after reaching "0000h" TAiS bit is set to "0" (= stop counting)
Interrupt Request Generation Timing	When the counter reaches "0000h"
TAilN Pin Function	I/O port or trigger input
TAiOUT Pin Function	I/O port or pulse output
Read from Timer	An indeterminate value is read by reading TAi register
Write to Timer	 When not counting and until the 1st count source is input after counting start Value written to TAi register is written to both reload register and counter When counting (after 1st count source input) Value written to TAi register is written to only reload register (Transferred to counter when reloaded next)
Select Function	Pulse output function The timer outputs a low when not counting and a high when counting.

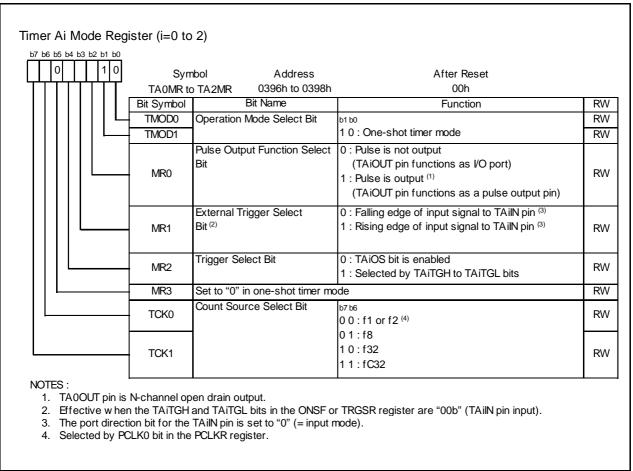


Figure 14.11 TAIMR Register in One-Shot Timer Mode

14.1.4 Pulse Width Modulation (PWM) Mode

In PWM mode, the timer outputs pulses of a given width in succession (see Table 14.5). The counter functions as either 16-bit pulse width modulator or 8-bit pulse width modulator. Figure 14.12 shows TAiMR Register in PWM Mode. Figures 14.13 and 14.14 show Example of 16-bit Pulse Width Modulator Operation and Example of 8-bit Pulse Width Modulator Operation.

Table 14.5 Specifications in PWM Mode

Item	Specification
Count Source	f1, f2, f8, f32, fC32
Count Operation	Down-count (operating as an 8-bit or a 16-bit pulse width modulator)
	• The timer reloads a new value at a rising edge of PWM pulse and continues
	counting
	The timer is not affected by a trigger that occurs during counting
16-bit PWM	• High level width n / fj n : set value of TAi register (i=o to 2)
	• Cycle time (2 ¹⁶ -1) / fj fixed fj: count source frequency (f1, f2, f8, f32, fC32)
8-bit PWM	• High level width n x (m+1) / fj n : set value of TAi register high-order address
	• Cycle time $(2^8-1) \times (m+1) / fj$ m : set value of TAi register low-order address
Count Start Condition	• TAiS bit of TABSR register is set to "1" (= start counting)
	• The TAiS bit = 1 and external trigger input from the TAilN pin
	• The TAiS bit = 1 and one of the following external triggers occurs
	• Timer B2 overflow or underflow,
	Timer Aj (j=i-1, however, do not set when i=0) overflow or underflow,
	Timer Ak (k=i+1, however, do not set when i=2) overflow or underflow
Count Stop Condition	TAiS bit is set to "0" (= stop counting)
Interrupt Request	PWM pulse goes "L"
Generation Timing	
TAilN Pin Function	I/O port or trigger input
TAiOUT Pin Function	Pulse output
Read from Timer	An indeterminate value is read by reading TAi register
Write to Timer	• When not counting and until the 1st count source is input after counting start
	Value written to TAi register is written to both reload register and counter
	When counting (after 1st count source input)
	Value written to TAi register is written to only reload register
	(Transferred to counter when reloaded next)

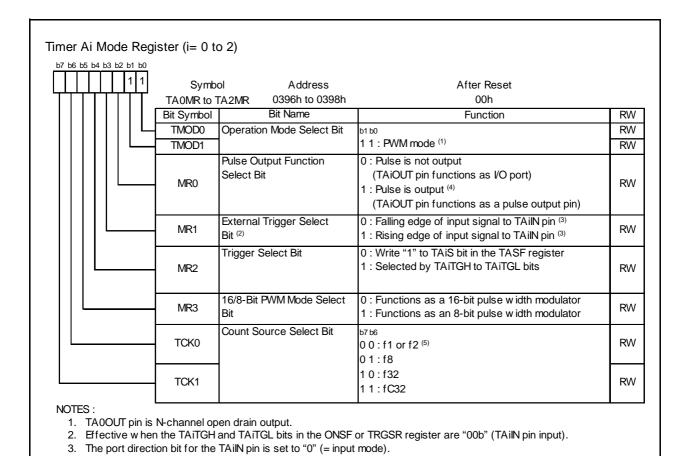


Figure 14.12 TAIMR Register in PWM Mode

5. Selected by PCLK0 bit in the PCLKR register.

4. Set this bit to "1" (Pulse is output) to output PWM pulse.

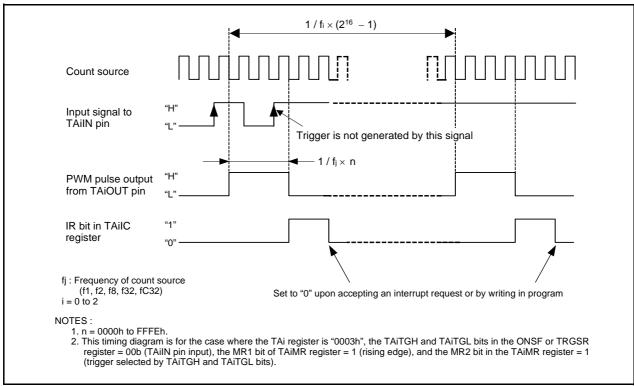


Figure 14.13 Example of 16-bit Pulse Width Modulator Operation

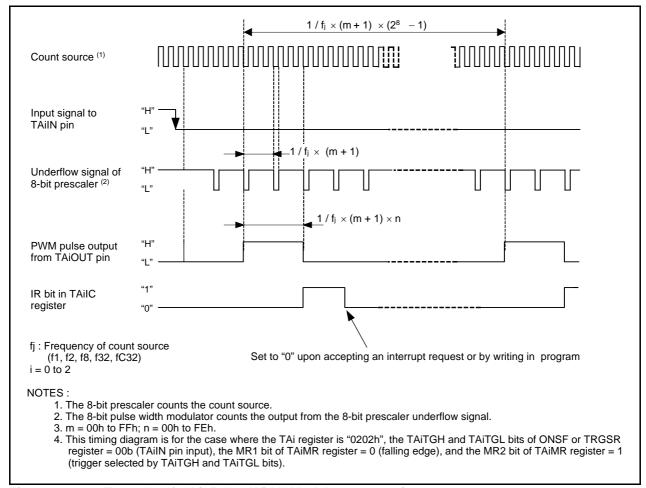


Figure 14.14 Example of 8-bit Pulse Width Modulator Operation

14.2 Timer B

Figure 14.15 shows a Timer B Block Diagram. Figures 14.16 and 14.17 show registers related to the Timer B. Timer B supports the following three modes. Use the TMOD1 and TMOD0 bits in the TBiMR register (i = 0 to 2) to select the desired mode.

• Timer Mode: The timer counts an internal count source.

• Event Counter Mode: The timer counts pulses from an external device or overflows or

underflows of other timers.

• Pulse Period/Pulse Width Measurement Mode:

The timer measures pulse period or pulse width of an external signal.

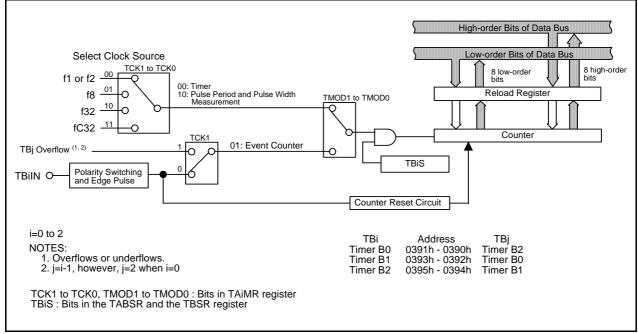
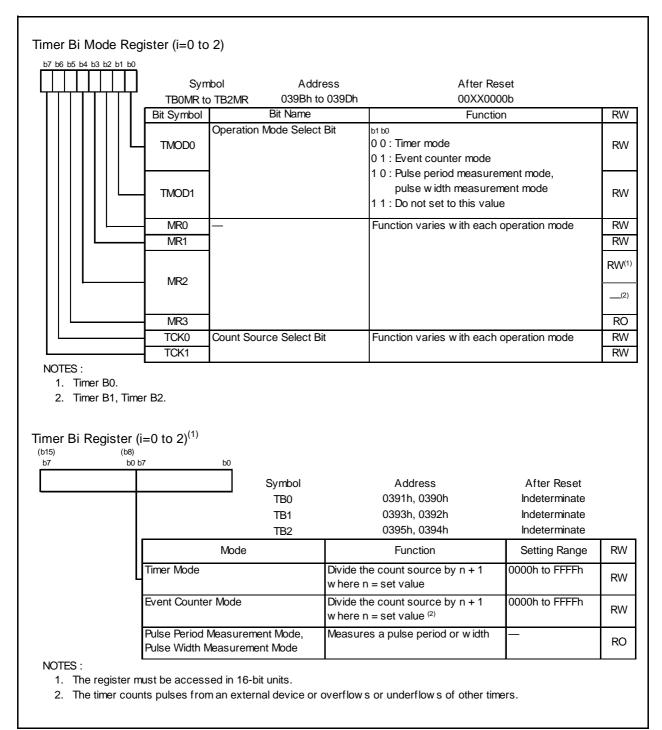



Figure 14.15 Timer B Block Diagram

Figure 14.16 TBiMR and TBi Registers

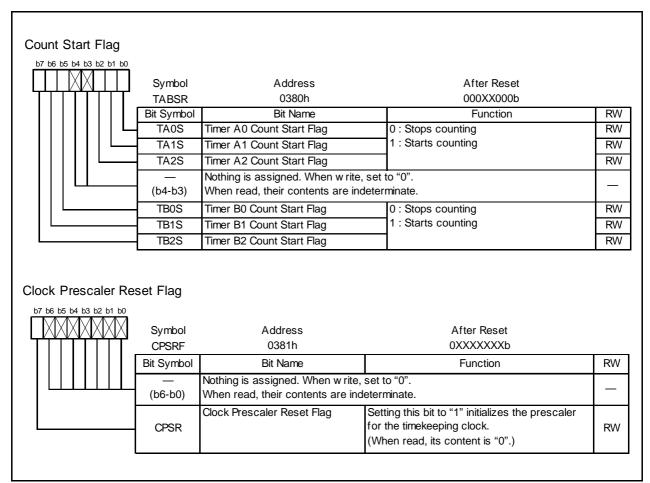


Figure 14.17 TABSR and CPSRF Registers

14.2.1 Timer Mode

In timer mode, the timer counts a count source generated internally (see Table 14.6). Figure 14.18 shows TBiMR Register in Timer Mode.

Table 14.6 Specifications in Timer Mode

Item	Specification
Count Source	f1, f2, f8, f32, fC32
Count Operation	Down-count
	When the timer underflows, it reloads the reload register contents and continues counting
Divide Ratio	1/(n+1) n: set value of TBi register (i= 0 to 2) 0000h to FFFFh
Count Start Condition	Set TBiS bit ⁽¹⁾ to "1" (= start counting)
Count Stop Condition	Set TBiS bit to "0" (= stop counting)
Interrupt Request	Timer underflow
Generation Timing	
TBilN Pin Function	I/O port
Read from Timer	Count value can be read by reading TBi register
Write to Timer	When not counting and until the 1st count source is input after counting start Value written to TBi register is written to both reload register and counter
	When counting (after 1st count source input) Value written to TBi register is written to only reload register
	(Transferred to counter when reloaded next)

NOTES:

1. The TB0S to TB2S bits are assigned to the bit 5 to bit 7 in the TABSR register.

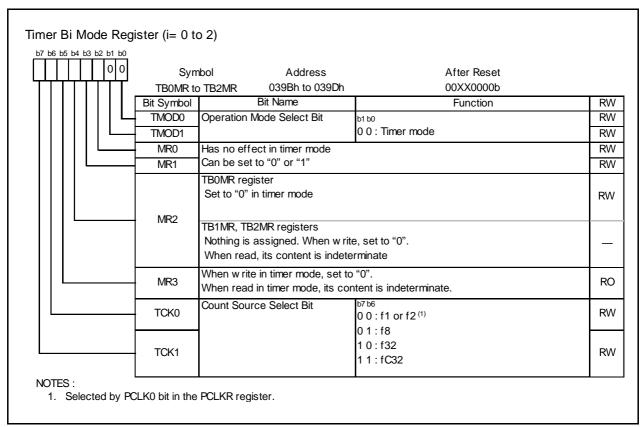


Figure 14.18 TBiMR Register in Timer Mode

14.2.2 **Event Counter Mode**

In event counter mode, the timer counts pulses from an external device or overflows and underflows of other timers (see Table 14.7). Figure 14.19 shows TBiMR Register in Event Counter Mode.

Table 14.7 Specifications in Event Counter Mode

Item	Specification
Count Source	 External signals input to TBiIN pin (i=0 to 2) (effective edge can be selected in program) Timer Bj overflow or underflow (j=i-1, however, j=2 if i=0)
Count Operation	Down-count When the timer underflows, it reloads the reload register contents and continues counting
Divide Ratio	1/(n+1) n: set value of TBi register 0000h to FFFFh
Count Start Condition	Set TBiS bit ⁽¹⁾ to "1" (= start counting)
Count Stop Condition	Set TBiS bit to "0" (= stop counting)
Interrupt Request Generation Timing	Timer underflow
TBilN Pin Function	Count source input
Read from Timer	Count value can be read by reading TBi register
Write to Timer	 When not counting and until the 1st count source is input after counting start Value written to TBi register is written to both reload register and counter When counting (after 1st count source input) Value written to TBi register is written to only reload register (Transferred to counter when reloaded next)

NOTES:

1. The TB0S to TB2S bits are assigned to the TABSR register bit 5 to bit 7.

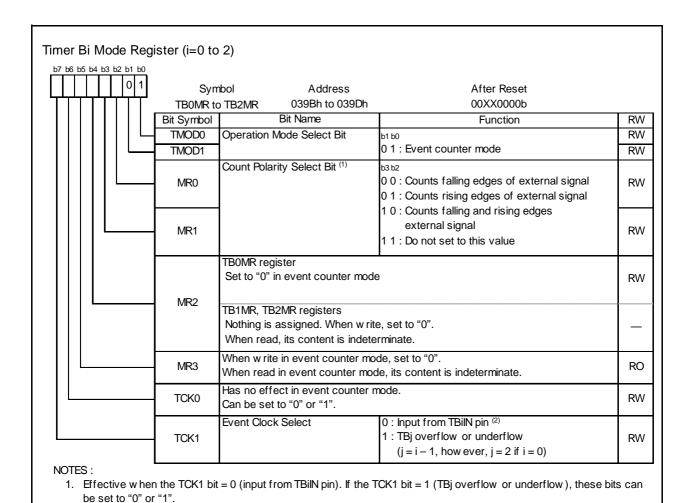


Figure 14.19 TBiMR Register in Event Counter Mode

2. The port direction bit for the TBilN pin must be set to "0" (= input mode).

14.2.3 Pulse Period and Pulse Width Measurement Mode

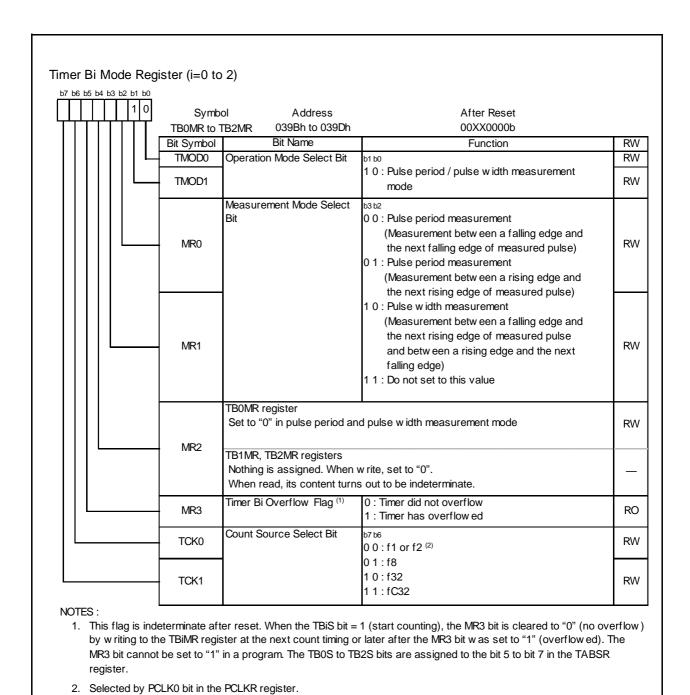

In pulse period and pulse width measurement mode, the timer measures pulse period or pulse width of an external signal (see Table 14.8). Figure 14.20 shows TBiMR Register in Pulse Period and Pulse Width Measurement Mode. Figure 14.21 shows the Operation Timing when Measuring a Pulse Period. Figure 14.22 shows the Operation Timing when Measuring a Pulse Width.

Table 14.8 Specifications in Pulse Period and Pulse Width Measurement Mode

Item	Specification
Count Source	f1, f2, f8, f32, fC32
Count Operation	 Up-count Counter value is transferred to reload register at an effective edge of measurement pulse. The counter value is set to "0000h" to continue counting.
Count Start Condition	Set TBiS (i=0 to 2) bit ⁽³⁾ to "1" (= start counting)
Count Stop Condition	Set TBiS bit to "0" (= stop counting)
Interrupt Request Generation Timing	 When an effective edge of measurement pulse is input ⁽¹⁾ Timer overflow. When an overflow occurs, MR3 bit in the TBiMR register is set to "1" (overflowed) simultaneously. MR3 bit is set to "0" (no overflow) by writing to TBiMR register at the next count timing or later after MR3 bit was set to "1". At this time, make sure TBiS bit is set to "1" (start counting).
TBilN Pin Function	Measurement pulse input
Read from Timer	Contents of the reload register (measurement result) can be read by reading TBi register (2)
Write to Timer	Value written to TBi register is written to neither reload register nor counter

NOTES:

- 1. Interrupt request is not generated when the first effective edge is input after the timer started counting.
- 2. Value read from TBi register is indeterminate until the second valid edge is input after the timer starts counting.
- 3. The TB0S to TB2S bits are assigned to the bit 5 to bit 7 in the TABSR register.

Figure 14.20 TBiMR Register in Pulse Period and Pulse Width Measurement Mode

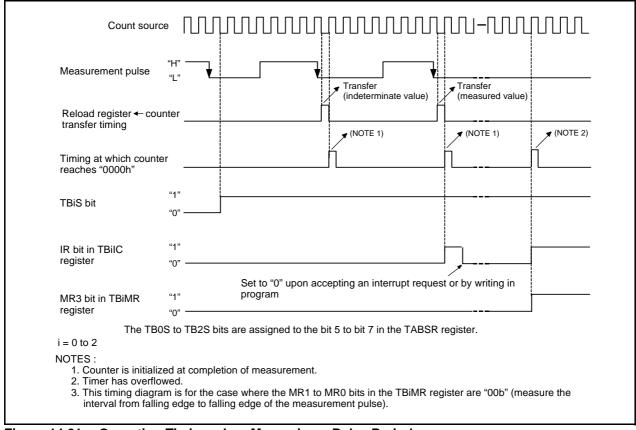


Figure 14.21 Operation Timing when Measuring a Pulse Period

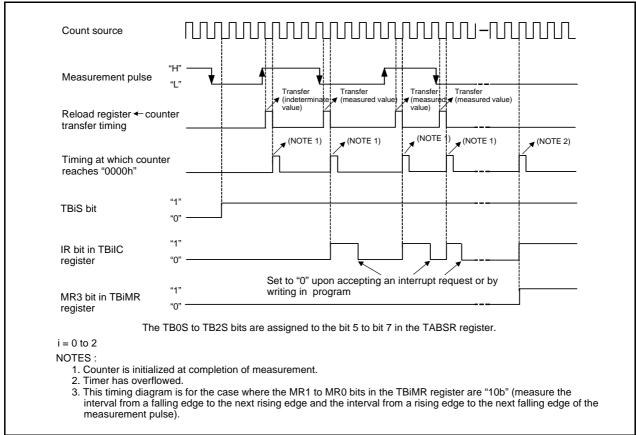


Figure 14.22 Operation Timing when Measuring a Pulse Width

15. Serial Interface

Serial interface is configured with 3 channels: UART0 to UART2.

15.1 UARTi (i=0 to 2)

UARTi each have an exclusive timer to generate a transfer clock, so they operate independently of each other. Figures 15.1 to 15.3 shows the block diagram of UART0 to UART2. Figure 15.4 shows the UARTi Transmit/Receive Unit.

UARTi has the following modes:

- Clock synchronous serial I/O mode
- Clock asynchronous serial I/O mode (UART mode).
- Special mode 1 (I²C mode)
- Special mode 2
- Special mode 3 (Bus collision detection function, IE mode): UART2
- Special mode 4 (SIM mode): UART2

Figures 15.5 to 15.11 show the UARTi-related registers. Refer to tables listing each mode for register setting.

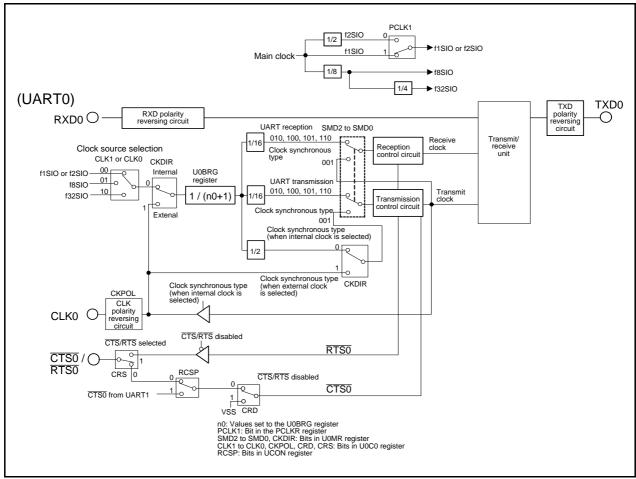


Figure 15.1 UART0 Block Diagram

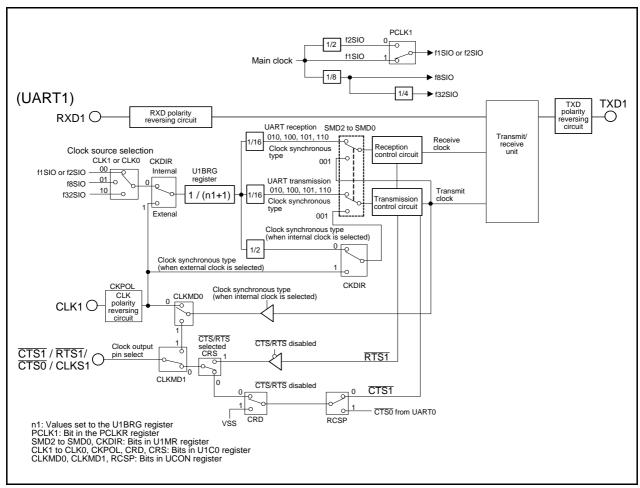


Figure 15.2 UART1 Block Diagram

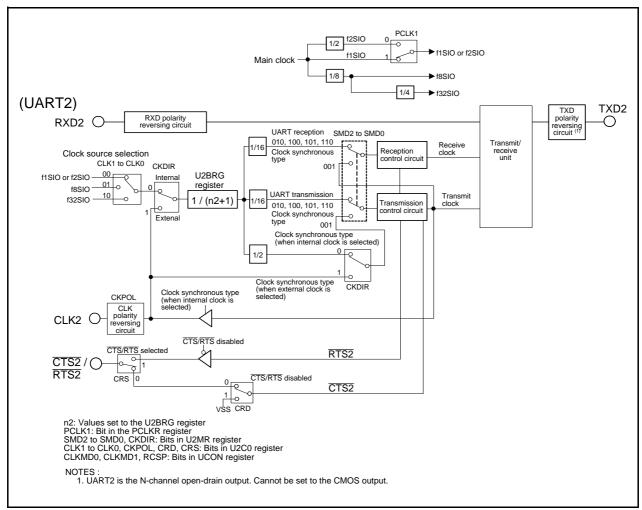
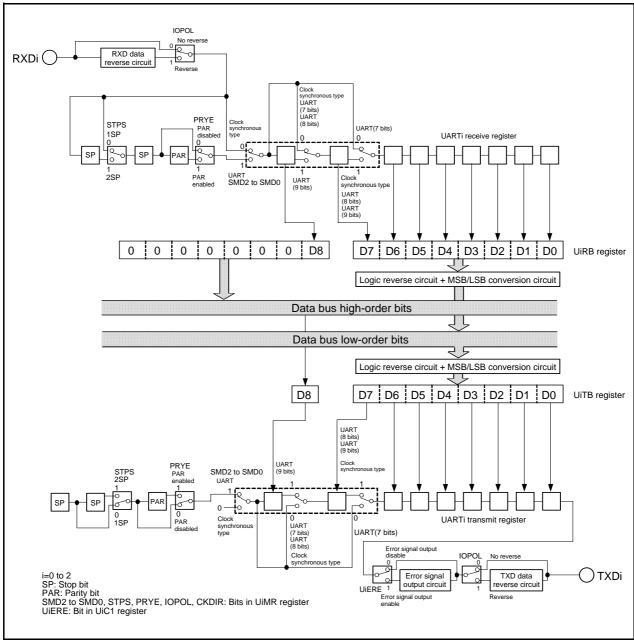


Figure 15.3 UART2 Block Diagram



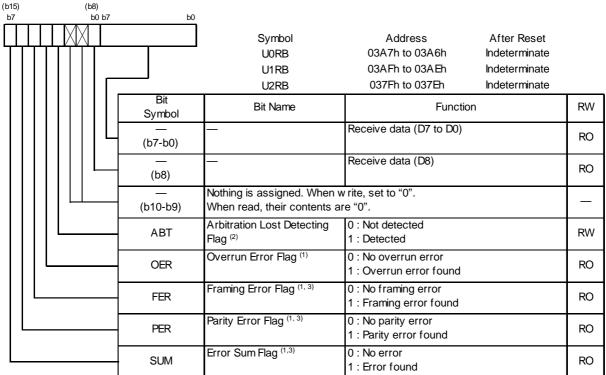
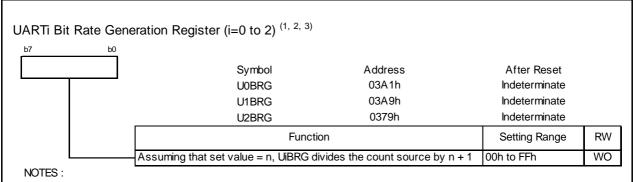


Figure 15.4 UARTi Transmit/Receive Unit


1. Use MOV instruction to write to this register.

UARTi Receive Buffer Register (i=0 to 2)

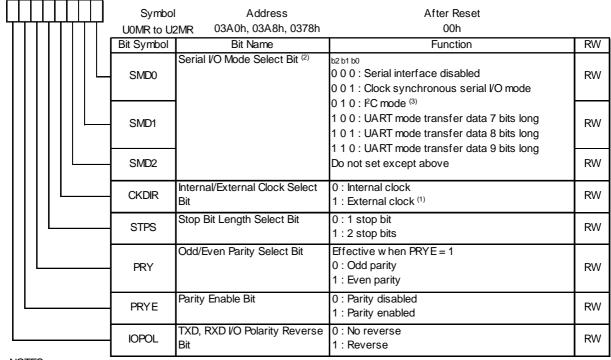
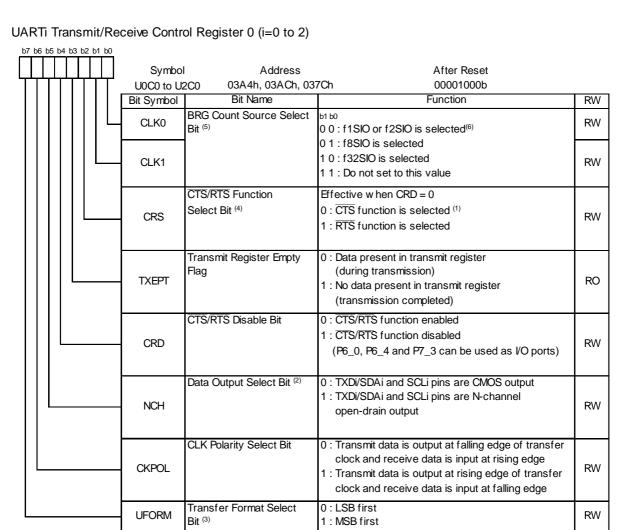

- 1. When the SMD2 to SMD0 bits in the UiMR register = 000b (serial interface disabled) or the RE bit in the UiC1 register = 0 (reception disabled), all of the SUM, PER, FER and OER bits are set to "0" (no error). The SUM bit is set to "0" (no error) when all of the PER, FER and OER bits = 0 (no error).
 - Also, the PER and FER bits are set to "0" by reading the low er byte of the UiRB register.
- 2. The ABT bit is set to "0" by writing "0" in a program. (Writing "1" has no effect)
- 3. These error flags are disabled when the SMD2 to SMD0 bits are set to "001b" (clock synchronous serial I/O mode) or to "010b" (I²C mode). When read, the contents are indeterminate.

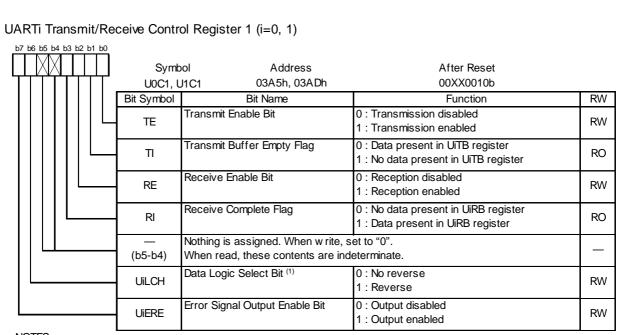
Figure 15.5 **UiTB and UiRB Registers**


- 1. Write to this register while serial interface is neither transmitting nor receiving.
- 2. Use MOV instruction to write to this register.
- 3. Write to this register after setting the CLK1 to CLK0 bits in the UiC0 register.

UARTi Transmit/Receive Mode Register (i=0 to 2)

- 1. Set the corresponding port direction bit for each CLKi pin to "0" (input mode).
- 2. To receive data, set the corresponding port direction bit for each RXDi pin to "0" (input mode).
- 3. Set the corresponding port direction bit for SCL and SDA pins to "0" (input mode).

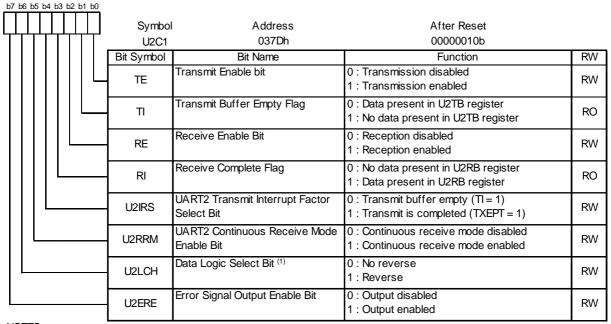
Figure 15.6 **UiBRG and UiMR Registers**


NOTES:

- 1. Set the corresponding port direction bit for each CTSi pin to "0" (input mode).
- 2. TXD2/SDA2 and SCL2 are N-channel open-drain output. Cannot be set to the CMOS output. No NCH bit in U2C0 register is assigned. When write, set to "0".
- 3. The UFORM bit is enabled when the SMD2 to SMD0 bits in the UiMR register are set to "001b" (clock synchronous serial I/O mode), or "101b" (UART mode, 8-bit transfer data). Set this bit to "1" when the SMD2 to SMD0 bits are set to "010b" (FC mode), and to "0" when the SMD2 to SMD0 bits
- 4. CTS1/RTS1 can be used when the CLKMD1 bit in the UCON register = 0 (only CLK1 output) and the RCSP bit in the UCON register = $0 (\overline{CTS0}/\overline{RTS0})$ not separated).

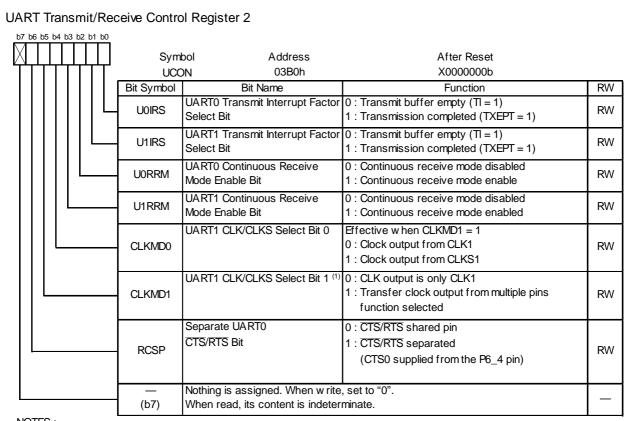
are set to "100b" (UART mode, 7-bit transfer data) or "110b" (UART mode, 9-bit transfer data).

- 5. When changing the CLK1 to CLK0 bits, set the UiBRG register.
- 6. Selected by PCLK1 bit in the PCLKR register.


Figure 15.7 UiC0 to UiC2 Register

NOTES:

1. The UiLCH bit is enabled when the SMD2 to SMD0 bits in the UiMR register are set to "001b" (clock synchronous serial VO mode), "100b" (UART mode, 7-bit transfer data), or "101b" (UART mode, 8-bit transfer data). Set this bit to "0" when the SMD2 to SMD0 bits are set to "010b" (PC mode) or "110b" (UART mode, 9-bit transfer data).


UART2 Transmit/Receive Control Register 1

NOTES:

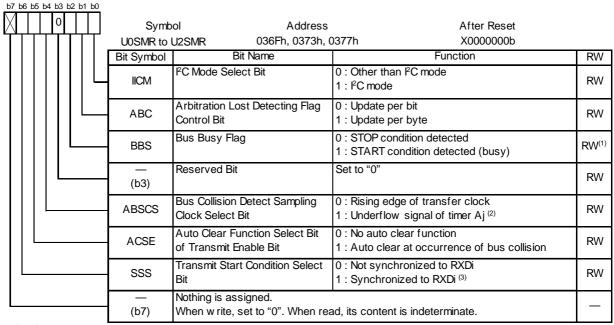
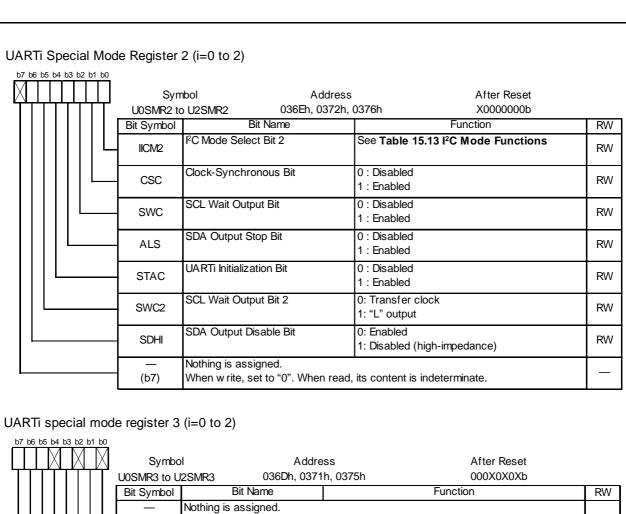
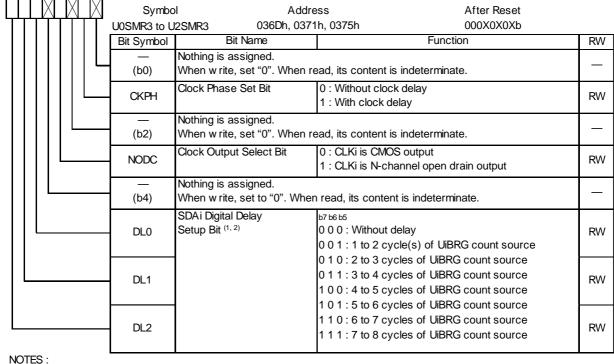

1. The U2LCH bit is enabled when the SMD2 to SMD0 bits in the U2MR register are set to "001b" (clock synchronous serial VO mode), "100b" (UART mode, 7-bit transfer data), or "101b" (UART mode, 8-bit transfer data). Set this bit to "0" when the SMD2 to SMD0 bits are set to "010b" (PC mode) or "110b" (UART mode, 9-bit transfer

Figure 15.8 U0C1 to U2C1 Registers

NOTES:

UARTi Special Mode Register (i=0 to 2)




NOTES:

- 1. The BBS bit is set to "0" by writing "0" in a program (Writing "1" has no effect).
- 2. Underflow signal of timer A0 in UART2.
- 3. When a transfer begins, the SSS bit is set to "0" (Not synchronized to RXDi).

Figure 15.9 **UCON and UiSMR Registers**

^{1.} When using multiple transfer clock output pins, make sure the following conditions are met: CKDIR bit in the U1MR register = 0 (internal clock)

- 1. The DL2 to DL0 bits are used to generate a delay in SDAi output by digital means during PC mode. In other than PC mode, set these bits to "000b" (no delay).
- 2. The amount of delay varies with the load on SCLi and SDAi pins. Also, when using an external clock, the amount of delay increases by about 100 ns.

Figure 15.10 UiSMR2 and UiSMR3 Registers

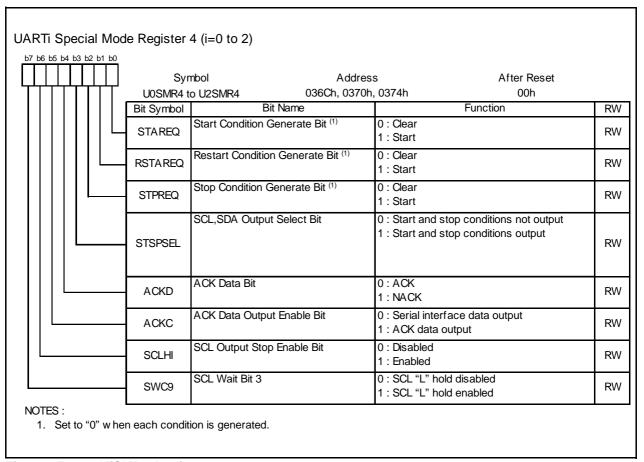


Figure 15.11 UiSMR4 Register

15.1.1 Clock Synchronous Serial I/O Mode

The clock synchronous serial I/O mode uses a transfer clock to transmit and receive data. Table 15.1 lists the Clock Synchronous Serial I/O Mode Specifications. Table 15.2 lists the Registers to Be Used and Settings in Clock Synchronous Serial I/O Mode.

Table 15.1 Clock Synchronous Serial I/O Mode Specifications

Item	Specification
Transfer Data Format	Transfer data length: 8 bits
Transfer Clock	CKDIR bit in the UiMR(i=0 to 2) register = 0 (internal clock) : fj/ (2(n+1)) fj = f1SIO, f2SIO, f8SIO, f32SIO n: Setting value of UiBRG register 00h to FFh CKDIR bit = 1 (external clock) : Input from CLKi pin
Transmission, Reception Control	Selectable from CTS function, RTS function or CTS/RTS function disable
Transmission Start Condition	Before transmission can start, the following requirements must be met (1) • The TE bit in the UiC1 register = 1 (transmission enabled) • The TI bit in the UiC1 register = 0 (data present in UiTB register) • If CTS function is selected, input on the CTSi pin = L
Reception Start Condition	Before reception can start, the following requirements must be met (1) The RE bit in the UiC1 register = 1 (reception enabled) The TE bit in the UiC1 register = 1 (transmission enabled) The TI bit in the UiC1 register = 0 (data present in the UiTB register)
Interrupt Request Generation Timing	For transmission, one of the following conditions can be selected • The UilRS bit (3) = 0 (transmit buffer empty): when transferring data from the UiTB register to the UARTi transmit register (at start of transmission) • The UilRS bit =1 (transfer completed): when the serial interface finished sending data from the UARTi transmit register For reception • When transferring data from the UARTi receive register to the UiRB register (at completion of reception)
Error Detection	Overrun error (2) This error occurs if the serial interface started receiving the next data before reading the UiRB register and received the 7th bit of the next data
Select Function	 CLK polarity selection Transfer data input/output can be chosen to occur synchronously with the rising or the falling edge of the transfer clock LSB first, MSB first selection Whether to start sending/receiving data beginning with bit 0 or beginning with bit 7 can be selected Continuous receive mode selection Reception is enabled immediately by reading the UiRB register Switching serial data logic This function reverses the logic value of the transmit/receive data Transfer clock output from multiple pins selection (UART1) The output pin can be selected in a program from two UART1 transfer clock pins that have been set Separate CTS/RTS pins (UART0) CTS0 and RTS0 are input/output from separate pins

- 1. When an external clock is selected, the conditions must be met while if the CKPOL bit in the UiC0 register = 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the CKPOL bit in the UiC0 register = 1 (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the low state.
- 2. If an overrun error occurs, bits 8 to 0 in the UiRB register are undefined. The IR bit in the SiRIC register does not change to "1" (interrupt requested).
- 3. The U0IRS and U1IRS bits respectively are the bits 0 and 1 in the UCON register; the U2IRS bit is the bit 4 in the U2C1 register.

Registers to Be Used and Settings in Clock Synchronous Serial I/O Mode **Table 15.2**

Register	Bit	Function	
UiTB (3)	0 to 7	Set transmission data	
UiRB (3)	0 to 7	Reception data can be read	
	OER	Overrun error flag	
UiBRG	0 to 7	Set a bit rate	
UiMR (3)	SMD2 to SMD0	Set to "001b"	
	CKDIR	Select the internal clock or external clock	
	IOPOL	Set to "0"	
UiC0	CLK1 to CLK0	Select the count source for the UiBRG register	
	CRS	Select CTS or RTS to use	
	TXEPT	Transmit register empty flag	
	CRD	Enable or disable the CTS or RTS function	
	NCH	Select TXDi pin output mode (2)	
	CKPOL	Select the transfer clock polarity	
	UFORM	Select the LSB first or MSB first	
UiC1	TE	Set this bit to "1" to enable transmission/reception	
	TI	Transmit buffer empty flag	
	RE	Set this bit to "1" to enable reception	
	RI	Reception complete flag	
	U2IRS (1)	Select the source of UART2 transmit interrupt	
	U2RRM (1)	Set this bit to "1" to use continuous receive mode	
	UiLCH	Set this bit to "1" to use inverted data logic	
	UiERE	Set to "0"	
UiSMR	0 to 7	Set to "0"	
UiSMR2	0 to 7	Set to "0"	
UiSMR3	0 to 2	Set to "0"	
	NODC	Select clock output mode	
	4 to 7	Set to "0"	
UiSMR4	0 to 7	Set to "0"	
UCON	U0IRS, U1IRS	Select the source of UART0/UART1 transmit interrupt	
	U0RRM, U1RRM	Set this bit to "1" to use continuous receive mode	
	CLKMD0	Select the transfer clock output pin when CLKMD1 = 1	
	CLKMD1	Set this bit to "1" to output UART1 transfer clock from two pins	
	RCSP	Set this bit to "1" to accept as input the CTS0 signal of the UART0 from the P6_4 pin	
	7	Set to "0"	
		1	

NOTES:

- 1. Set the bit 4 and bit 5 in the U0C1 and U1C1 register to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits in the UCON register.
- 2. TXD2 pin is N channel open-drain output. Set the NCH bit in the U2C0 register to "0".
- 3. Not all register bits are described above. Set those bits to "0" when writing to the registers in clock synchronous serial I/O mode.

i=0 to 2

Table 15.3 lists the functions of the input/output pins during clock synchronous serial I/O mode. Table 15.3 shows pin functions for the case where the multiple transfer clock output pin select function is deselected. Table 15.4 lists the P6_4 Pin Functions during clock synchronous serial I/O mode. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TXDi pin outputs an "H" (If the N-channel open-drain output is selected, this pin is in a high-impedance state).

Table 15.3 Pin Functions (when not select multiple transfer clock output pin function)

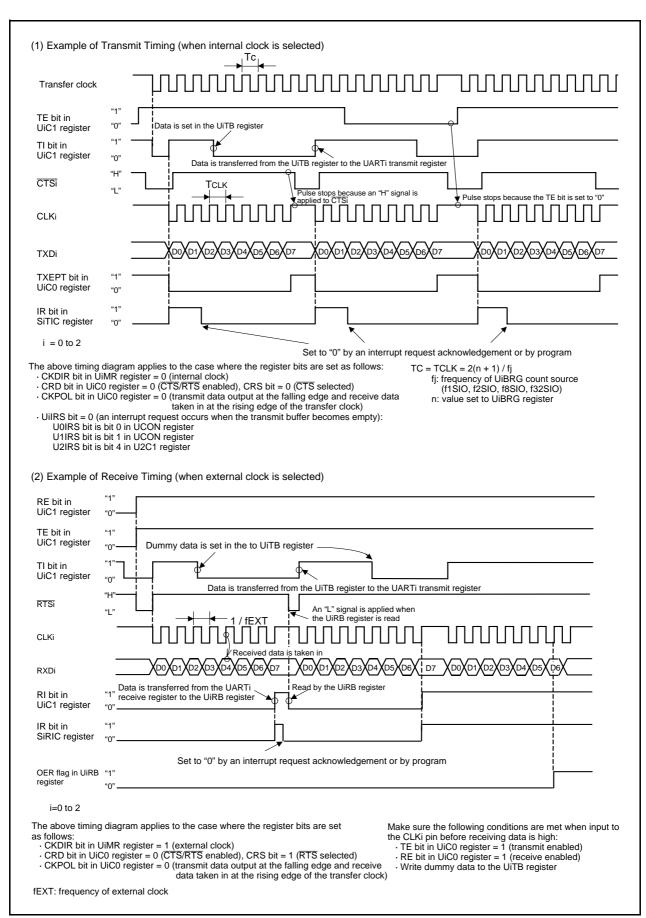

Pin Name	Function	Method of Selection
TXDi (i = 0 to 2) (P6_3, P6_7, P7_0)	Serial Data Output	(Outputs dummy data when performing reception only)
RXDi (P6_2, P6_6, P7_1)	Serial Data Input	PD6_2 bit and PD6_6 bit in the PD6 register = 0, PD7_1 bit in the PD7 register = 0 (Can be used as an input port when performing transmission only)
CLKi (P6_1, P6_5,	Transfer Clock Output	CKDIR bit in the UiMR register = 0
P7_2)	Transfer Clock Input	CKDIR bit = 1 PD6_1 bit and PD6_5 bit in the PD6 register = 0, PD7_2 bit in the PD7 register = 0
CTSi/RTSi (P6_0, P6_4, P7_3)	CTS Input	CRD bit in the UiC0 register = 0 CRS bit in the UiC0 register = 0 PD6_0 and PD6_4 bit in the PD6 register = 0, PD7_3 bit in the PD7 register = 0
	RTS Output	CRD bit = 0 CRS bit = 1
	I/O Port	CRD bit = 1

Table 15.4 P6_4 Pin Functions

	Bit Set Value					
Pin Function	U1C0 Register		UCON Register			PD6 Register
	CRD	CRS	RCSP	CLKMD1	CLKMD0	PD6_4
P6_4	1	_	0	0	-	Input: 0, Output: 1
CTS1	0	0	0	0	_	0
RTS1	0	1	0	0		_
CTS0 (1)	0	0	1	0	-	0
CLKS1	-	_	-	1 (2)	1	_

-: "0" or "1"

- 1. In addition to this, set the CRD bit in the U0C0 register to "0" (CTS0/RTS0 enabled) and the CRS bit in the U0C0 register to "1" (RTS0 selected).
- 2. When the CLKMD1 bit = 1 and the CLKMD0 bit = 0, the following logic levels are output:
 - •High if the CLKPOL bit in the U1C0 register = 0
 - •Low if the CLKPOL bit = 1

Figure 15.12 Transmit and Receive Operation

15. Serial Interface M16C/30P Group

Counter Measure for Communication Error Occurs 15.1.1.1

If a communication error occurs while transmitting or receiving in clock synchronous serial I/O mode, follow the procedures below.

- Resetting the UiRB register (i=0 to 2)
- (1) Set the RE bit in the UiC1 register to "0" (reception disabled)
- (2) Set the SMD2 to SMD0 bits in the UiMR register to "000b" (Serial interface disabled)
- (3) Set the SMD2 to SMD0 bits in the UiMR register to "001b" (Clock synchronous serial I/O mode)
- (4) Set the RE bit in the UiC1 register to "1" (reception enabled)
- Resetting the UiTB register (i=0 to 2)
- (1) Set the SMD2 to SMD0 bits in the UiMR register "000b" (Serial interface disabled)
- (2) Set the SMD2 to SMD0 bits in the UiMR register "001b" (Clock synchronous serial I/O mode)
- (3) "1" is written to RE bit in the UiC1 register (transmission enabled), regardless of the TE bit in the UiCi register

15.1.1.2 CLK Polarity Select Function

Use the CKPOL bit in the UiC0 register (i = 0 to 2) to select the transfer clock polarity. Figure 15.13 shows the Transfer Clock Polarity.

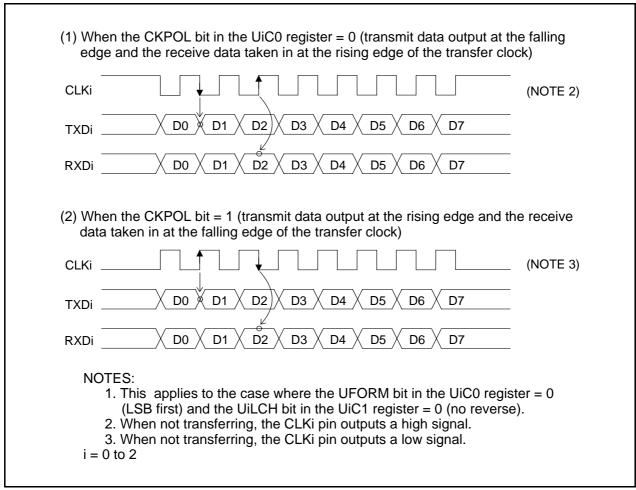


Figure 15.13 Transfer Clock Polarity

15.1.1.3 LSB First/MSB First Select Function

Use the UFORM bit in the UiC0 register (i = 0 to 2) to select the transfer format. Figure 15.14 shows the Transfer Format.

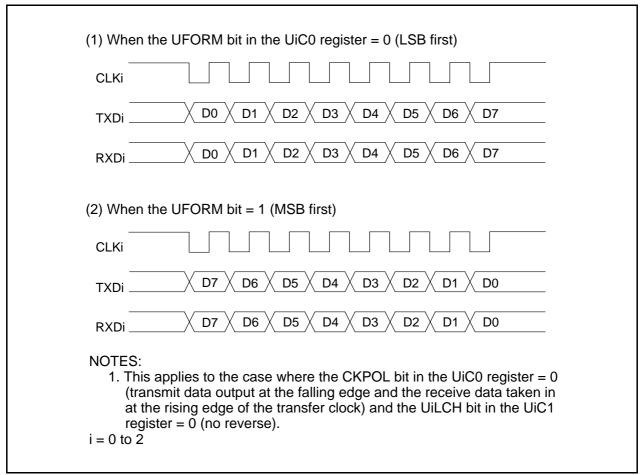


Figure 15.14 Transfer Format

15.1.1.4 Continuous Receive Mode

In continuous receive mode, receive operation becomes enable when the receive buffer register is read. It is not necessary to write dummy data into the transmit buffer register to enable receive operation in this mode. However, a dummy read of the receive buffer register is required when starting the operation mode.

When the UiRRM bit (i = 0 to 2) = 1 (continuous receive mode), the TI bit in the UiC1 register is set to "0" (data present in the UiTB register) by reading the UiRB register. In this case, i.e., UiRRM bit = 1, do not write dummy data to the UiTB register in a program. The U0RRM and U1RRM bits are the bit 2 and bit 3 in the UCON register, respectively, and the U2RRM bit is the bit 5 in the U2C1 register.

15.1.1.5 Serial Data Logic Switching Function

When the UiLCH bit in the UiC1 register (i = 0 to 2) = 1 (reverse), the data written to the UiTB register has its logic reversed before being transmitted. Similarly, the received data has its logic reversed when read from the UiRB register. Figure 15.15 shows Serial Data Logic Switching.

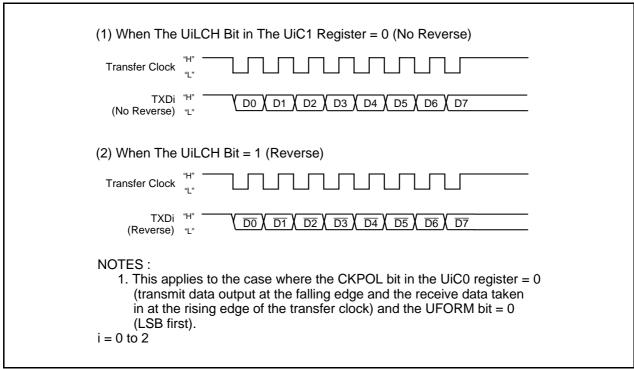


Figure 15.15 Serial Data Logic Switching

15.1.1.6 Transfer Clock Output From Multiple Pins (UART1)

Use the CLKMD1 to CLKMD0 bits in the UCON register to select one of the two transfer clock output pins (see Figure 15.16). This function can be used when the selected transfer clock for UART1 is an internal clock.

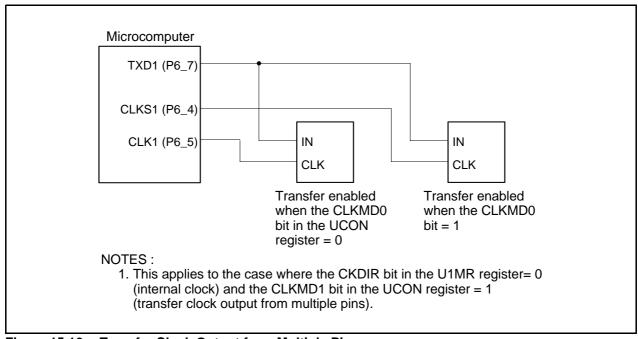


Figure 15.16 Transfer Clock Output from Multiple Pins

15.1.1.7 CTS/RTS Function

When the \overline{CTS} function is used transmit and receive operation start when "L" is applied to the $\overline{CTSi}/\overline{RTSi}$ (i=0 to 2) pin. Transmit and receive operation begins when the $\overline{CTSi}/\overline{RTSi}$ pin is held "L". If the "L" signal is switched to "H" during a transmit or receive operation, the operation stops before the next data.

When the \overline{RTS} function is used, the $\overline{CTSi}/\overline{RTSi}$ pin outputs on "L" signal when the microcomputer is ready to receive. The output level becomes "H" on the first falling edge of the CLKi pin.

• CRD bit in UiC0 register = 1 (disable $\overline{\text{CTS}}/\overline{\text{RTS}}$ of UART0)

CTSi/RTSi pin is programmable I/O function

• CRD bit = 0, CRS bit = 0 ($\overline{\text{CTS}}$ function is selected) $\overline{\text{CTSi}}/\overline{\text{RTSi}}$ pin is $\overline{\text{CTS}}$ function

• CRD bit = 0, CRS bit = 1 (\overline{RTS} function is selected) $\overline{CTSi}/\overline{RTSi}$ pin is \overline{RTS} function

15.1.1.8 CTS/RTS Separate Function (UART0)

This function separates $\overline{CTS0}/\overline{RTS0}$, outputs $\overline{RTS0}$ from the P6_0 pin, and accepts as input the $\overline{CTS0}$ from the P6_4 pin. To use this function, set the register bits as shown below.

- CRD bit in U0C0 register = 0 (enable $\overline{\text{CTS}}/\overline{\text{RTS}}$ of UART0)
- CRS bit in U0C0 register = 1 (output \overline{RTS} of UART0)
- CRD bit in U1C0 register = 0 (enable $\overline{\text{CTS}}/\overline{\text{RTS}}$ of UART1)
- CRS bit in U1C0 register = 0 (input $\overline{\text{CTS}}$ of UART1)
- RCSP bit in UCON register = 1 (inputs CTSO from the P6_4 pin)
- CLKMD1 bit in UCON register = 0 (CLKS1 not used)

Note that when using the $\overline{\text{CTS}}/\overline{\text{RTS}}$ separate function, $\overline{\text{CTS}}/\overline{\text{RTS}}$ of UART1 separate function cannot be used.

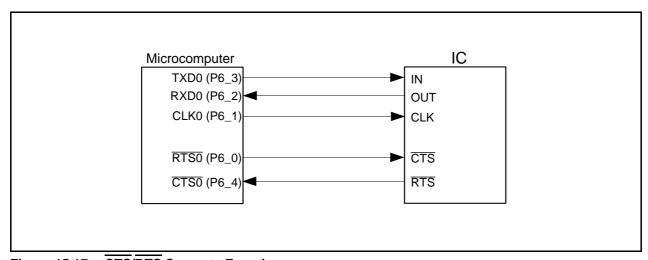


Figure 15.17 CTS/RTS Separate Function

15.1.2 Clock Asynchronous Serial I/O (UART) Mode

The UART mode allows transmitting and receiving data after setting the desired bit rate and transfer data format. Table 15.5 lists the UART Mode Specifications.

Table 15.5 UART Mode Specifications

Item	Specification
Transfer Data Format	 Character bit (transfer data): Selectable from 7, 8 or 9 bits Start bit: 1 bit Parity bit: Selectable from odd, even, or none Stop bit: Selectable from 1 or 2 bits
Transfer Clock	CKDIR bit in the UiMR(i=0 to 2) register = 0 (internal clock) : fj/ (16(n+1)) fj = f1SIO, f2SIO, f8SIO, f32SIO n: Setting value of UiBRG register 00h to FFh CKDIR bit = 1 (external clock) : fEXT/(16(n+1)) fEXT: Input from CLKi pin n :Setting value of UiBRG register 00h to FFh
Transmission, Reception Control	Selectable from CTS function, RTS function or CTS/RTS function disable
Transmission Start Condition	Before transmission can start, the following requirements must be met The TE bit in the UiC1 register= 1 (transmission enabled) The TI bit in the UiC1 register = 0 (data present in UiTB register) If CTS function is selected, input on the CTSi pin = L
Reception Start Condition	Before reception can start, the following requirements must be met • The RE bit in the UiC1 register = 1 (reception enabled) • Start bit detection
Interrupt Request Generation Timing	 For transmission, one of the following conditions can be selected The UilRS bit (2) = 0 (transmit buffer empty): when transferring data from the UiTB register to the UARTi transmit register (at start of transmission) The UilRS bit =1 (transfer completed): when the serial interface finished sending data from the UARTi transmit register For reception When transferring data from the UARTi receive register to the UiRB register (at completion of reception)
Error Detection	 Overrun error ⁽¹⁾ This error occurs if the serial interface started receiving the next data before reading the UiRB register and received the bit one before the last stop bit of the next data Framing error ⁽³⁾ This error occurs when the number of stop bits set is not detected Parity error ⁽³⁾ This error occurs when if parity is enabled, the number of "1" in parity and character bits does not match the number of "1" set Error sum flag This flag is set to "1" when any of the overrun, framing or parity errors occur
Select Function	 LSB first, MSB first selection Whether to start sending/receiving data beginning with bit 0 or beginning with bit 7 can be selected Serial data logic switch This function reverses the logic of the transmit/receive data. The start and stop bits are not reversed. TXD, RXD I/O polarity switch This function reverses the polarities of the TXD pin output and RXD pin input. The logic levels of all I/O data is reversed. Separate CTS/RTS pins (UART0) CTS0 and RTS0 are input/output from separate pins

- 1. If an overrun error occurs, bits 8 to 0 in the UiRB register are undefined. The IR bit in the SiRIC register does not change to "1" (interrupt requested).
- 2. The U0IRS and U1IRS bits are bits 0 and 1 in the UCON register. The U2IRS bit is bit 4 in the U2C1 register.
- 3. The timing at which the framing error flag and the parity error flag are set is detected when data is transferred from the UARTi receive register to the UiRB register.

Registers to Be Used and Settings in UART Mode **Table 15.6**

·	· ·	Function		
UiTB	0 to 8	Set transmission data ⁽¹⁾		
UiRB	0 to 8	Reception data can be read ⁽¹⁾		
	OER,FER,PER,SUM	Error flag		
UiBRG	0 to 7	Set a bit rate		
UiMR	SMD2 to SMD0	Set these bits to "100b" when transfer data is 7 bits long		
		Set these bits to "101b" when transfer data is 8 bits long		
		Set these bits to "110b" when transfer data is 9 bits long		
	CKDIR	Select the internal clock or external clock		
	STPS	Select the stop bit		
	PRY, PRYE	Select whether parity is included and whether odd or even		
	IOPOL	Select the TXD/RXD input/output polarity		
UiC0	CLK0, CLK1	Select the count source for the UiBRG register		
	CRS	Select CTS or RTS to use		
	TXEPT	Transmit register empty flag		
	CRD	Enable or disable the CTS or RTS function		
	NCH	Select TXDi pin output mode (3)		
	CKPOL	Set to "0"		
	UFORM	LSB first or MSB first can be selected when transfer data is 8 bits long. Set this bit to "0" when transfer data is 7 or 9 bits long.		
UiC1	TE	Set this bit to "1" to enable transmission		
	TI	Transmit buffer empty flag		
	RE	Set this bit to "1" to enable reception		
	RI	Reception complete flag		
	U2IRS (2)	Select the source of UART2 transmit interrupt		
	U2RRM (2)	Set to "0"		
	UiLCH	Set this bit to "1" to use inverted data logic		
	UiERE	Set to "0"		
UiSMR	0 to 7	Set to "0"		
UiSMR2	0 to 7	Set to "0"		
UiSMR3	0 to 7	Set to "0"		
UiSMR4	0 to 7	Set to "0"		
UCON	U0IRS, U1IRS	Select the source of UART0/UART1 transmit interrupt		
	U0RRM, U1RRM	Set to "0"		
	CLKMD0	Invalid because CLKMD1 = 0		
l l	CLKMD1	Set to "0"		
	RCSP	Set this bit to "1" to accept as input CTSO signal of UARTO from the P6_4 pin		
	7	Set to "0"		

NOTES:

- 1. The bits used for transmit/receive data are as follows: Bit 0 to bit 6 when transfer data is 7 bits long; bit 0 to bit 7 when transfer data is 8 bits long; bit 0 to bit 8 when transfer data is 9 bits long.
- 2. Set the bit 4 to bit 5 in the U0C1 and U1C1 registers to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are included in the UCON register.
- 3. TXD2 pin is N channel open-drain output. Set the NCH bit in the U2C0 register to "0".

i=0 to 2

Table 15.7 lists the functions of the input/output pins during UART mode. Table 15.8 lists the P6_4 Pin Functions. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TXDi pin outputs an "H" (If the N-channel open-drain output is selected, this pin is in a high-impedance state).

Table 15.7 I/O Pin Functions

Pin Name	Function	Method of Selection
TXDi (i = 0 to 2) (P6_3, P6_7, P7_0)	Serial Data Output	("H" outputs when performing reception only)
RXDi (P6_2, P6_6, P7_1)	Serial Data Input	PD6_2 bit and PD6_6 bit in the PD6 register = 0, PD7_1 bit in the PD7 register = 0 (Can be used as an input port when performing transmission only)
CLKi	Input/Output Port	CKDIR bit in the UiMR register = 0
(P6_1, P6_5, P7_2)	Transfer Clock Input	CKDIR bit = 1 PD6_1 bit and PD6_5 bit in the PD6 register = 0, PD7_2 bit in the PD7 register = 0
CTSi/RTSi (P6_0, P6_4, P7_3)	CTS Input	CRD bit in the UiC0 register = 0 CRS bit in the UiC0 register = 0 PD6_0 bit and PD6_4 bit in the PD6 register = 0, PD7_3 bit in the PD7 register = 0
	RTS Output	CRD bit = 0 CRS bit = 1
	Input/Output Port	CRD bit = 1

Table 15.8 P6_4 Pin Functions

	Bit Set Value					
Pin Function	U1C0 Register		UCON Register		PD6 Register	
	CRD	CRS	RCSP	CLKMD1	PD6_4	
P6_4	1	_	0	0	Input: 0, Output: 1	
CTS1	0	0	0	0	0	
RTS1	0	1	0	0	_	
CTS0 (1)	0	0	1	0	0	

– : "0" or "1"

NOTES:

1. In addition to this, set the CRD bit in the U0C0 register to "0" (CTS0/RTS0 enabled) and the CRS bit in the U0C0 register to "1" (RTS0 selected).

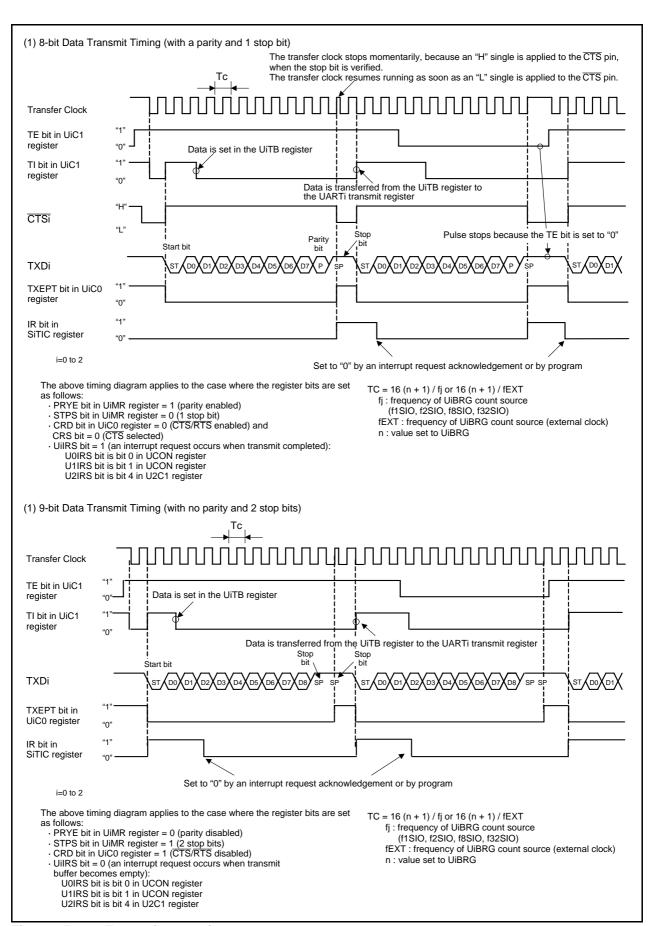


Figure 15.18 Transmit Operation

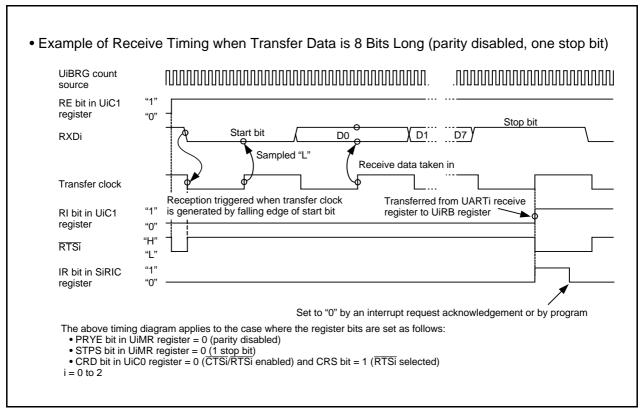


Figure 15.19 Receive Operation

15.1.2.1 Bit Rate

In UART mode, the frequency set by the UiBRG register (i=0 to 2) divided by 16 become the bit rates. Table 15.9 lists Example of Bit Rates and Settings.

Table 15.9 Example of Bit Rates and Settings

Bit Rate (bps)	Count Source of UiBRG	Peripheral Function Clock : 16MHz	
bit Nate (bps)	Count Source of Olbrid	Set Value of UiBRG: n	Bit Rate (bps)
1200	f8	103 (67h)	1202
2400	f8	51 (33h)	2404
4800	f8	25 (19h)	4808
9600	f1	103 (67h)	9615
14400	f1	68 (44h)	14493
19200	f1	51 (33h)	19231
28800	f1	34 (22h)	28571
31250	f1	31 (1Fh)	31250
38400	f1	25 (19h)	38462
51200	f1	19 (13h)	50000

15.1.2.2 Counter Measure for Communication Error Occurs

If a communication error occurs while transmitting or receiving in UART mode, follow the procedures below.

- Resetting the UiRB register (i=0 to 2)
- (1) Set the RE bit in the UiC1 register to "0" (reception disabled)
- (2) Set the RE bit in the UiC1 register to "1" (reception enabled)
- Resetting the UiTB register (i=0 to 2)
- (1) Set the SMD2 to SMD0 bits in the UiMR register "000b" (Serial interface disabled)
- (2) Set the SMD2 to SMD0 bits in the UiMR register "001b", "101b", "110b".
- (3) "1" is written to RE bit in the UiC1 register (transmission enabled), regardless of the TE bit in the UiCi register

15.1.2.3 LSB First/MSB First Select Function

As shown in Figure 15.20, use the UFORM bit in the UiC0 register to select the transfer format. This function is valid when transfer data is 8 bits long.

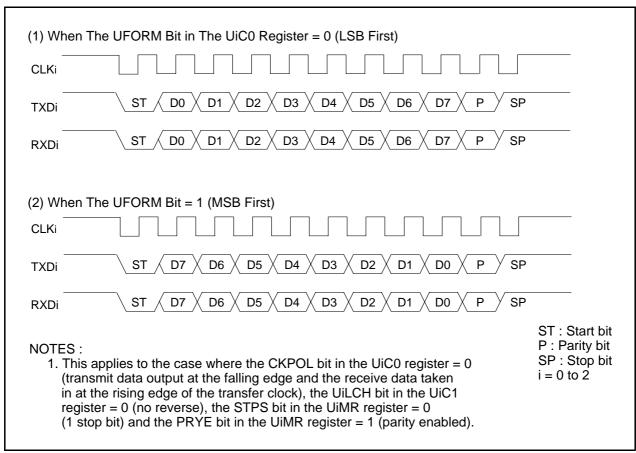


Figure 15.20 Transfer Format

15.1.2.4 Serial Data Logic Switching Function

The data written to the UiTB register has its logic reversed before being transmitted. Similarly, the received data has its logic reversed when read from the UiRB register. Figure 15.21 shows Serial Data Logic Switching.

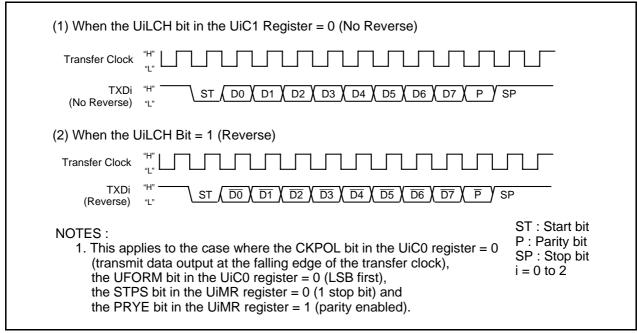


Figure 15.21 Serial Data Logic Switching

15.1.2.5 TXD and RXD I/O Polarity Inverse Function

This function inverses the polarities of the TXDi pin output and RXDi pin input. The logic levels of all input/output data (including the start, stop and parity bits) are inversed. Figure 15.22 shows the TXD and RXD I/O Polarity Inverse.

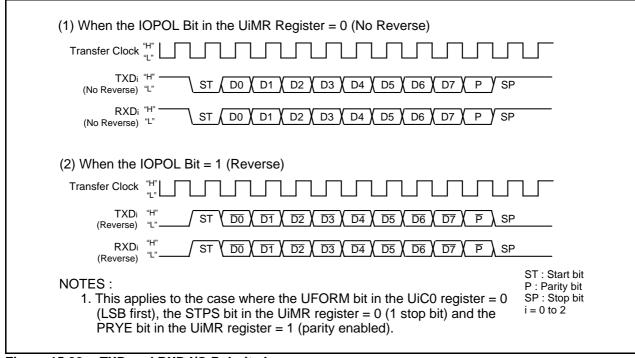


Figure 15.22 TXD and RXD I/O Polarity Inverse

15.1.2.6 CTS/RTS Function

When the $\overline{\text{CTS}}$ function is used transmit operation start when "L" is applied to the $\overline{\text{CTSi}}/\overline{\text{RTSi}}$ (i=0 to 2) pin. Transmit operation begins when the $\overline{\text{CTSi}}/\overline{\text{RTSi}}$ pin is held "L". If the "L" signal is switched to "H" during a transmit operation, the operation stops before the next data.

When the \overline{RTS} function is used, the $\overline{CTSi}/\overline{RTSi}$ pin outputs on "L" signal when the microcomputer is ready to receive. The output level becomes "H" on the first falling edge of the CLKi pin.

• CRD bit in UiC0 register = 1 (disable $\overline{CTS}/\overline{RTS}$ function of UART0)

CTSi/RTSi pin is programmable I/O function

• CRD bit = 0, CRS bit = 0 ($\overline{\text{CTS}}$ function is selected) $\overline{\text{CTSi}}/\overline{\text{RTSi}}$ pin is $\overline{\text{CTS}}$ function

• CRD bit = 0, CRS bit = 1 (\overline{RTS} function is selected) $\overline{CTSi}/\overline{RTSi}$ pin is \overline{RTS} function

15.1.2.7 CTS/RTS Separate Function (UART0)

This function separates $\overline{CTS0}/\overline{RTS0}$, outputs $\overline{RTS0}$ from the P6_0 pin, and accepts as input the $\overline{CTS0}$ from the P6_4 pin. To use this function, set the register bits as shown below.

- CRD bit in U0C0 register = 0 (enable $\overline{\text{CTS}}/\overline{\text{RTS}}$ of UART0)
- CRS bit in U0C0 register = 1 (output \overline{RTS} of UART0)
- CRD bit in U1C0 register = 0 (enable $\overline{\text{CTS}}/\overline{\text{RTS}}$ of UART1)
- CRS bit in U1C0 register = 0 (input $\overline{\text{CTS}}$ of UART1)
- RCSP bit in UCON register = 1 (inputs CTSO from the P6_4 pin)
- CLKMD1 bit in UCON register = 0 (CLKS1 not used)

Note that when using the $\overline{\text{CTS}}/\overline{\text{RTS}}$ separate function, $\overline{\text{CTS}}/\overline{\text{RTS}}$ of UART1 separate function cannot be used.

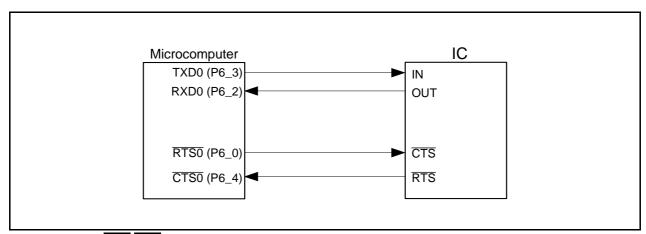


Figure 15.23 CTS/RTS Separate Function

15.1.3 Special Mode 1 (I²C mode)

I²C mode is provided for use as a simplified I²C interface compatible mode. Table 15.10 lists the specifications of the I²C mode. Table 15.11 to 15.12 lists the registers used in the I²C mode and the register values set. Table 15.13 lists the I²C Mode Functions. Figure 15.24 shows the block diagram for I²C mode. Figure 15.25 shows Transfer to UiRB Register and Interrupt Timing.

As shown in Table 15.13, the microcomputer is placed in I²C mode by setting the SMD2 to SMD0 bits to "010b" and the IICM bit to "1". Because SDAi transmit output has a delay circuit attached, SDAi output does not change state until SCLi goes low and remains stably low.

Table 15.10 I²C Mode Specifications

Item	Specification		
Transfer Data Format	Transfer data length: 8 bits		
Transfer Clock	 During master CKDIR bit in the UiMR (i=0 to 2) register = 0 (internal clock): fj/ (2(n+1)) fj = f1SIO, f2SIO, f8SIO, f32SIO n: Setting value of UiBRG register 00h to FFh During slave CKDIR bit = 1 (external clock): Input from SCLi pin 		
Transmission Start	Before transmission can start, the following requirements must be met (1)		
Condition	 The TE bit in the UiC1 register= 1 (transmission enabled) The TI bit in the UiC1 register = 0 (data present in UiTB register) 		
Reception Start Condition	Before reception can start, the following requirements must be met (1) • The RE bit in UiC1 register= 1 (reception enabled) • The TE bit in UiC1 register= 1 (transmission enabled) • The TI bit in UiC1 register= 0 (data present in the UiTB register)		
Interrupt Request Generation Timing	When start or stop condition is detected, acknowledge undetected, and acknowledge detected		
Error Detection	Overrun error ⁽²⁾ This error occurs if the serial interface started receiving the next data before reading the UiRB register and received the 8th bit of the next data		
Select Function	Arbitration lost Timing at which the ABT bit in the UiRB register is updated can be selected SDAi digital delay No digital delay or a delay of 2 to 8 UiBRG count source clock cycles selectable Clock phase setting With or without clock delay selectable		

- 1. When an external clock is selected, the conditions must be met while the external clock is in the high state.
- 2. If an overrun error occurs, bits 8 to 0 in the UiRB register are undefined. The IR bit in the SiRIC register does not change to "1" (interrupt requested).

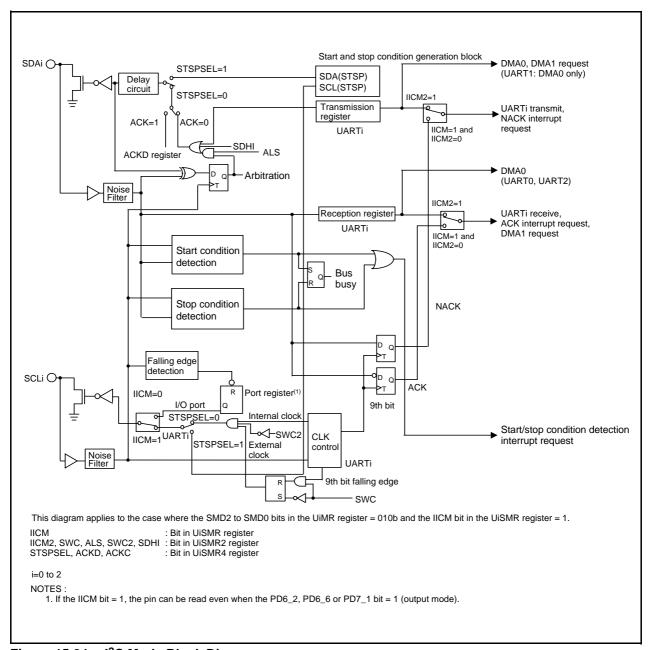


Figure 15.24 I²C Mode Block Diagram

Registers to Be Used and Settings in I²C Mode (1) **Table 15.11**

Register	Bit	Function		
		Master	Slave	
UiTB	0 to 7	Set transmission data	Set transmission data	
UiRB (3)	0 to 7	Reception data can be read	Reception data can be read	
	8	ACK or NACK is set in this bit	ACK or NACK is set in this bit	
	ABT	Arbitration lost detection flag	Invalid	
	OER	Overrun error flag	Overrun error flag	
UiBRG	0 to 7	Set a bit rate	Invalid	
UiMR (3)	SMD2 to SMD0	Set to "010b"	Set to "010b"	
	CKDIR	Set to "0"	Set to "1"	
	IOPOL	Set to "0"	Set to "0"	
UiC0	CLK1, CLK0	Select the count source for the UiBRG register	Invalid	
	CRS	Invalid because CRD = 1	Invalid because CRD = 1	
	TXEPT	Transmit buffer empty flag	Transmit buffer empty flag	
	CRD (4)	Set to "1"	Set to "1"	
	NCH	Set to "1" (2)	Set to "1" (2)	
	CKPOL	Set to "0"	Set to "0"	
	UFORM	Set to "1"	Set to "1"	
UiC1	TE	Set this bit to "1" to enable transmission	Set this bit to "1" to enable transmission	
	TI	Transmit buffer empty flag	Transmit buffer empty flag	
	RE	Set this bit to "1" to enable reception	Set this bit to "1" to enable reception	
	RI	Reception complete flag	Reception complete flag	
	U2IRS (1)	Invalid	Invalid	
	U2RRM ⁽¹⁾ , UiLCH, UiERE	Set to "0"	Set to "0"	
UiSMR	IICM	Set to "1"	Set to "1"	
	ABC	Select the timing at which arbitration-lost is detected	Invalid	
	BBS	Bus busy flag	Bus busy flag	
	3 to 7	Set to "0"	Set to "0"	
UiSMR2	IICM2	See Table 15.13 I ² C Mode Functions	See Table 15.13 I ² C Mode Functions	
	CSC	Set this bit to "1" to enable clock synchronization	Set to "0"	
	SWC	Set this bit to "1" to have SCLi output fixed to "L" at the falling edge of the 9th bit of clock	Set this bit to "1" to have SCLi output fixed to "L" at the falling edge of the 9th bit of clock	
	ALS	Set this bit to "1" to have SDAi output stopped when arbitration-lost is detected	Set to "0"	
	STAC	Set to "0"	Set this bit to "1" to initialize UARTi at start condition detection	
	SWC2	Set this bit to "1" to have SCLi output forcibly pulled low	Set this bit to "1" to have SCLi output forcibly pulled low	
	SDHI	Set this bit to "1" to disable SDAi output	Set this bit to "1" to disable SDAi output	
	7	Set to "0"	Set to "0"	

NOTES:

- 1. Set the bit 4 and bit 5 in the U0C1 and U1C1 register to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are in the UCON register.
- 2. TXD2 pin is N channel open-drain output. No NCH bit in the U2C0 register is assigned. When write, set to "0".
- 3. Not all register bits are described above. Set those bits to "0" when writing to the registers in I²C mode.
- 4. When using UART1 in I²C mode and enabling the CTS/RTS separate function of UART0, set the CRD bit in the U1C0 register to "0" (CTS/RTS enable) and the CRS bit to "0" (CTS input).

i=0 to 2

Table 15.12 Registers to Be Used and Settings in I²C Mode (2)

Register	Bit	Function		
		Master	Slave	
UiSMR3	0, 2, 4 and NODC	Set to "0"	Set to "0"	
	CKPH	See Table 15.13 I ² C Mode Functions	See Table 15.13 I ² C Mode Functions	
	DL2 to DL0	Set the amount of SDAi digital delay	Set the amount of SDAi digital delay	
UiSMR4	STAREQ	Set this bit to "1" to generate start condition	Set to "0"	
	RSTAREQ	Set this bit to "1" to generate restart condition	Set to "0"	
	STPREQ	Set this bit to "1" to generate stop condition	Set to "0"	
	STSPSEL	Set this bit to "1" to output each condition	Set to "0"	
	ACKD	Select ACK or NACK	Select ACK or NACK	
	ACKC	Set this bit to "1" to output ACK data	Set this bit to "1" to output ACK data	
	SCLHI	Set this bit to "1" to have SCLi output stopped when stop condition is detected	Set to "0"	
	SWC9	Set to "0"	Set this bit to "1" to set the SCLi to "L" hold at the falling edge of the 9th bit of clock	
IFSR2A	IFSR26, ISFR27	Set to "1"	Set to "1"	
UCON	U0IRS, U1IRS	Invalid	Invalid	
	U0RRM, U1RRM	Set to "0"	Set to "0"	
	CLKMD0	Set to "0"	Set to "0"	
	CLKMD1	Set to "0"	Set to "0"	
	RCSP	Set to "0"	Set to "0"	
	7	Set to "0"	Set to "0"	

i=0 to 2

Table 15.13 I²C Mode Functions

Function	Clock Synchronous Serial I/O	I ² C Mode (SMD2 to SMD0 = 010b, IICM = 1)			
	Mode (SMD2 to SMD0 = 001b, IICM = 0)	IICM2 = 0 (NACK/ACK interrupt)		IICM2 = 1 (UART transmit/receive interrupt)	
		CKPH = 0 (No clock delay)	CKPH = 1 (Clock delay)	CKPH = 0 (No clock delay)	CKPH = 1 (Clock delay)
Factor of Interrupt Number 6, 7 and 10 (1, 5, 7)	_	Start condition detection or stop condition detection (See Table 15.14 STSPSEL Bit Functions)			
Factor of Interrupt Number 15, 17 and 19 (1, 6)	UARTi transmission Transmission started or completed (selected by UilRS)	No acknowledgment detection (NACK) Rising edge of SCLi 9th bit		UARTi transmission Rising edge of SCLi 9th bit	UARTi transmission Falling edge of SCLi next to the 9th bit
Factor of Interrupt Number 16, 18 and 20 (1, 6)	UARTi reception When 8th bit received CKPOL = 0 (rising edge) CKPOL = 1 (falling edge)	Acknowledgment detection (ACK) Rising edge of SCLi 9th bit		UARTi reception Falling edge of SCLi 9th bit	
Timing for Transferring Data From the UART Reception Shift Register to the UiRB Register	CKPOL = 0 (rising edge) CKPOL = 1 (falling edge)	Rising edge of SCLi 9th bit		Falling edge of SCLi 9th bit	Falling and rising edges of SCLi 9th bit
UARTi Transmission Output Delay	Not delayed	Delayed			
Functions of P6_3, P6_7 and P7_0 Pins	TXDi output	SDAi input/output			
Functions of P6_2, P6_6 and P7_1 Pins	RXDi input	SCLi input/output			
Functions of P6_1, P6_5 and P7_2 Pins	CLKi input or output selected	- (Cannot be used in I ² C mode)			
Noise Filter Width	15ns	200ns			
Read RXDi and SCLi Pin Levels	Possible when the corresponding port direction bit = 0	Always possible no matter how the corresponding port direction bit is set			
Initial Value of TXDi and SDAi Outputs	CKPOL = 0 (H) CKPOL = 1 (L)	The value set in the port register before setting I ² C mode ⁽²⁾			
Initial and End Values of SCLi	-	Н	L	Н	L
DMA1 Factor ⁽⁶⁾	UARTi reception	Acknowledgment detection (ACK) UARTi reception Falling edge of SCLi 9th bit		9th bit	
Store Received Data	1st to 8th bits of the received data are stored into bits 7 to 0 in the UiRB register	1st to 8th bits of the received data are stored into bits 7 to 0 in the UiRB register		1st to 7th bits of the received data are stored into bits 6 to 0 in the UiRB register. 8th bit is stored into bit 8 in the UiRB register.	
					1st to 8th bits are stored into bits 7 to 0 in the UiRB register ⁽³⁾
Read Received Data	The UiRB register status is read				Bits 6 to 0 in the UiRB register (4) are read as bits 7 to 1. Bit 8 in the UiRB register is read as bit 0.

NOTES:

- 1. If the source or factor of any interrupt is changed, the IR bit in the interrupt control register for the changed interrupt may inadvertently be set to "1" (interrupt requested). (Refer to 22.6 Precautions for Interrupt) If one of the bits shown below is changed, the interrupt source, the interrupt timing, etc. change. Therefore, always be sure to clear the IR bit to "0" (interrupt not requested) after changing those bits. SMD2 to SMD0 bits in the UiMR register, IICM bit in the UiSMR register, IICM2 bit in the UiSMR2 register, CKPH bit in the UiSMR3 register
- 2. Set the initial value of SDAi output while the SMD2 to SMD0 bits in the UiMR register = 000b (serial interface disabled).
- 3. Second data transfer to UiRB register (Rising edge of SCLi 9th bit)
- 4. First data transfer to UiRB register (Falling edge of SCLi 9th bit)
- 5. See Figure 15.27 STSPSEL Bit Functions.
- 6. See Figure 15.25 Transfer to UiRB Register and Interrupt Timing.
- 7. When using UART0, be sure to set the IFSR26 bit in the IFSR2A register to "1" (factor of interrupt: UART0 bus collision). When using UART1, be sure to set the IFSR27 bit to "1" (factor of interrupt: UART1 bus collision).

i = 0 to 2

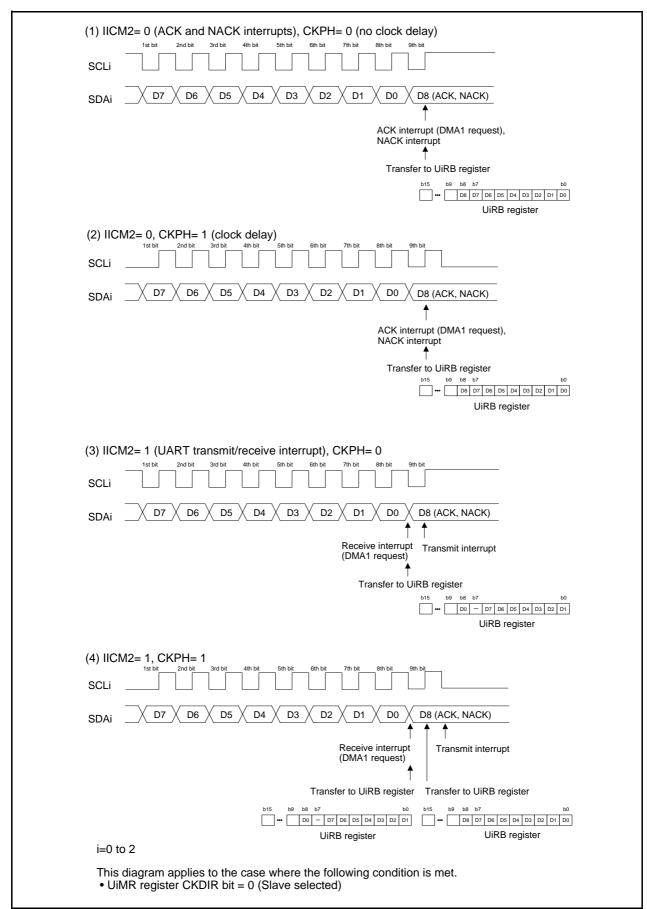


Figure 15.25 Transfer to UiRB Register and Interrupt Timing

15.1.3.1 Detection of Start and Stop Condition

Whether a start or a stop condition has been detected is determined.

A start condition-detected interrupt request is generated when the SDAi pin changes state from high to low while the SCLi pin is in the high state. A stop condition-detected interrupt request is generated when the SDAi pin changes state from low to high while the SCLi pin is in the high state.

Because the start and stop condition-detected interrupts share the interrupt control register and vector, check the BBS bit in the UiSMR register to determine which interrupt source is requesting the interrupt.

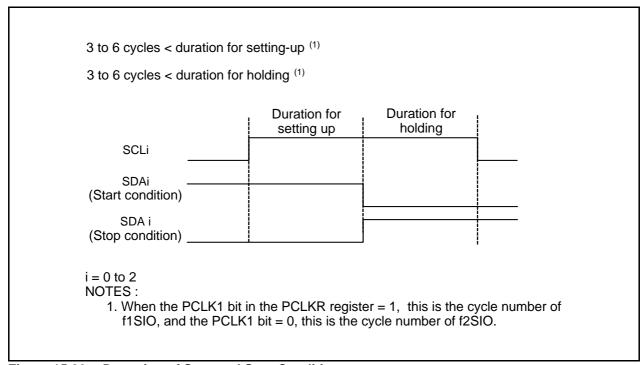


Figure 15.26 Detection of Start and Stop Condition

15.1.3.2 Output of Start and Stop Condition

A start condition is generated by setting the STAREQ bit in the UiSMR4 register (i = 0 to 2) to "1" (start). A restart condition is generated by setting the RSTAREQ bit in the UiSMR4 register to "1" (start). A stop condition is generated by setting the STPREQ bit in the UiSMR4 register to "1" (start). The output procedure is described below.

- (1) Set the STAREQ bit, RSTAREQ bit or STPREQ bit to "1" (start).
- (2) Set the STSPSEL bit in the UiSMR4 register to "1" (output).

The function of the STSPSEL bit is shown in Table 15.14 and Figure 15.27.

Table 15.14 STSPSEL Bit Functions

Function	STSPSEL = 0	STSPSEL = 1
Output of SCLi and SDAi Pins	Output of transfer clock and data Output of start/stop condition is accomplished by a program using ports (not automatically generated in hardware)	Output of a start/stop condition according to the STAREQ, RSTAREQ and STPREQ bit
Start/Stop Condition Interrupt Request Generation Timing	Start/stop condition detection	Finish generating start/stop condition

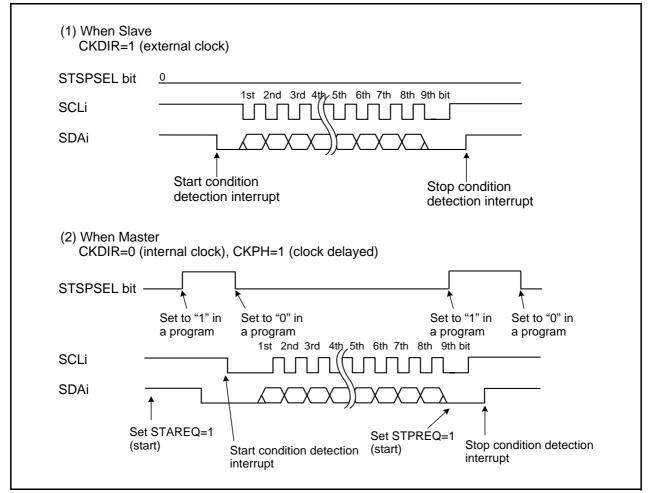


Figure 15.27 STSPSEL Bit Functions

15.1.3.3 Arbitration

Unmatching of the transmit data and SDAi pin input data is checked synchronously with the rising edge of SCLi. Use the ABC bit in the UiSMR register to select the timing at which the ABT bit in the UiRB register is updated. If the ABC bit = 0 (updated bitwise), the ABT bit is set to "1" at the same time unmatching is detected during check, and is cleared to "0" when not detected. In cases when the ABC bit is set to "1", if unmatching is detected even once during check, the ABT bit is set to "1" (unmatching detected) at the falling edge of the clock pulse of 9th bit. If the ABT bit needs to be updated bytewise, clear the ABT bit to "0" (undetected) after detecting acknowledge in the first byte, before transferring the next byte.

Setting the ALS bit in the UiSMR2 register to "1" (SDA output stop enabled) factors arbitration-lost to occur, in which case the SDAi pin is placed in the high-impedance state at the same time the ABT bit is set to "1" (unmatching detected).

15.1.3.4 Transfer Clock

Data is transmitted/received using a transfer clock like the one shown in Figure 15.25 Transfer to UiRB Register and Interrupt Timing.

The CSC bit in the UiSMR2 register is used to synchronize the internally generated clock (internal SCLi) and an external clock supplied to the SCLi pin. In cases when the CSC bit is set to "1" (clock synchronization enabled), if a falling edge on the SCLi pin is detected while the internal SCLi is high, the internal SCLi goes low, at which time the value of the UiBRG register is reloaded with and starts counting in the low-level interval. If the internal SCLi changes state from low to high while the SCLi pin is low, counting stops, and when the SCLi pin goes high, counting restarts.

In this way, the UARTi transfer clock is comprised of the logical product of the internal SCLi and SCLi pin signal. The transfer clock works from a half period before the falling edge of the internal SCLi 1st bit to the rising edge of the 9th bit. To use this function, select an internal clock for the transfer clock.

The SWC bit in the UiSMR2 register allows to select whether the SCLi pin should be fixed to or freed from low-level output at the falling edge of the 9th clock pulse.

If the SCLHI bit in the UiSMR4 register is set to "1" (enabled), SCLi output is turned off (placed in the high-impedance state) when a stop condition is detected.

Setting the SWC2 bit in the UiSMR2 register = 1 (0 output) makes it possible to forcibly output a low-level signal from the SCLi pin even while sending or receiving data. Clearing the SWC2 bit to "0" (transfer clock) allows the transfer clock to be output from or supplied to the SCLi pin, instead of outputting a low-level signal. If the SWC9 bit in the UiSMR4 register is set to "1" (SCL hold low enabled) when the CKPH bit in the UiSMR3 register = 1, the SCLi pin is fixed to low-level output at the falling edge of the clock pulse next to the 9th. Setting the SWC9 bit = 0 (SCL hold low disabled) frees the SCLi pin from low-level output.

15.1.3.5 SDA Output

The data written to the UiTB register bit 7 to bit 0 (D7 to D0) is sequentially output beginning with D7. The 9th bit (D8) is ACK or NACK.

The initial value of SDAi transmit output can only be set when IICM = 1 (I^2C mode) and the SMD2 to SMD0 bits in the UiMR register = 000b (Serial interface disabled).

The DL2 to DL0 bits in the UiSMR3 register allow to add no delays or a delay of 2 to 8 UiBRG count source clock cycles to SDAi output.

Setting the SDHI bit in the UiSMR2 register = 1 (SDA output disabled) forcibly places the SDAi pin in the high-impedance state. Do not write to the SDHI bit synchronously with the rising edge of the UARTi transfer clock. This is because the ABT bit may inadvertently be set to "1" (detected).

15.1.3.6 SDA Input

When the IICM2 bit = 0, the 1st to 8th bits (D7 to D0) of received data are stored in the UiRB register bit 7 to bit 0. The 9th bit (D8) is ACK or NACK.

When the IICM2 bit = 1, the 1st to 7th bits (D7 to D1) of received data are stored in the UiRB register bit 6 to bit 0 and the 8th bit (D0) is stored in the UiRB register bit 8. Even when the IICM2 bit = 1, providing the CKPH bit = 1, the same data as when the IICM2 bit = 0 can be read out by reading the UiRB register after the rising edge of the corresponding clock pulse of 9th bit.

15.1.3.7 ACK and NACK

If the STSPSEL bit in the UiSMR4 register is set to "0" (start and stop conditions not generated) and the ACKC bit in the UiSMR4 register is set to "1" (ACK data output), the value of the ACKD bit in the UiSMR4 register is output from the SDAi pin.

If the IICM2 bit = 0, a NACK interrupt request is generated if the SDAi pin remains high at the rising edge of the 9th bit of transmit clock pulse. An ACK interrupt request is generated if the SDAi pin is low at the rising edge of the 9th bit of transmit clock pulse.

If ACKi is selected for the factor of DMA1 request, a DMA transfer can be activated by detection of an acknowledge.

15.1.3.8 Initialization of Transmission/Reception

If a start condition is detected while the STAC bit = 1 (UARTi initialization enabled), the serial interface operates as described below.

- The transmit shift register is initialized, and the content of the UiTB register is transferred to the transmit shift register. In this way, the serial interface starts sending data synchronously with the next clock pulse applied. However, the UARTi output value does not change state and remains the same as when a start condition was detected until the first bit of data is output synchronously with the input clock.
- The receive shift register is initialized, and the serial interface starts receiving data synchronously with the next clock pulse applied.
- The SWC bit is set to "1" (SCL wait output enabled). Consequently, the SCLi pin is pulled low at the falling edge of the 9th clock pulse.

Note that when UARTi transmission/reception is started using this function, the TI does not change state. Note also that when using this function, the selected transfer clock should be an external clock.

15.1.4 **Special Mode 2**

Multiple slaves can be serially communicated from one master. Transfer clock polarity and phase are selectable. Table 15.15 lists the Special Mode 2 Specifications. Table 15.16 lists the Registers to Be Used and Settings in Special Mode 2. Figure 15.28 shows Serial Bus Communication Control Example (UART2).

Table 15.15 Special Mode 2 Specifications

Item	Specification
Transfer Data Format	Transfer data length: 8 bits
Transfer Clock	Master mode CKDIR bit in UiMR(i=0 to 2) register = 0 (internal clock) : fj/ (2(n+1)) fj = f1SIO, f2SIO, f3SIO, f32SIO n: Setting value of UiBRG register 00h to FFh Slave mode CKDIR bit = 1 (external clock selected) : Input from CLKi pin
Transmit/Receive Control	Controlled by input/output ports
Transmission Start Condition	Before transmission can start, the following requirements must be met (1) The TE bit in UiC1 register= 1 (transmission enabled) The TI bit in UiC1 register = 0 (data present in UiTB register)
Reception Start Condition	Before reception can start, the following requirements must be met (1) The RE bit in UiC1 register= 1 (reception enabled) The TE bit in UiC1 register= 1 (transmission enabled) The TI bit in UiC1 register= 0 (data present in the UiTB register)
Interrupt Request Generation Timing	 For transmission, one of the following conditions can be selected The UilRS bit in UiC1 register = 0 (transmit buffer empty): when transferring data from the UiTB register to the UARTi transmit register (at start of transmission) The UilRS bit =1 (transfer completed): when the serial interface finished sending data from the UARTi transmit register For reception When transferring data from the UARTi receive register to the UiRB register (at completion of reception)
Error Detection	Overrun error ⁽²⁾ This error occurs if the serial interface started receiving the next data before reading the UiRB register and received the 7th bit of the next data
Select Function	 CLK polarity selection Transfer data input/output can be chosen to occur synchronously with the rising or the falling edge of the transfer clock LSB first, MSB first selection Whether to start sending/receiving data beginning with bit 0 or beginning with bit 7 can be selected Continuous receive mode selection Reception is enabled immediately by reading the UiRB register Switching serial data logic This function reverses the logic value of the transmit/receive dataClock phase setting Selectable from four combinations of transfer clock polarities and phases

- 1. When an external clock is selected, the conditions must be met while if the CKPOL bit in the UiC0 register = 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the CKPOL bit = 1 (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the low state.
- 2. If an overrun error occurs, bits 8 to 0 in the UiRB register are undefined. The IR bit in the SiRIC register does not change to "1" (interrupt requested).

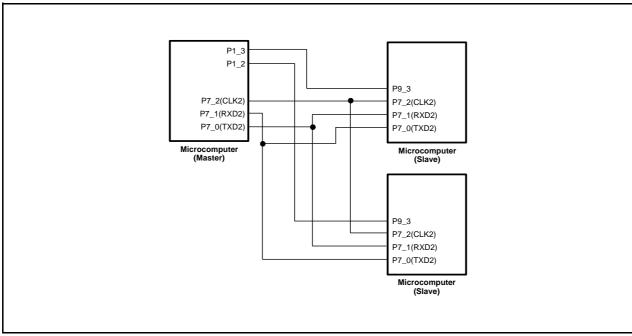


Figure 15.28 Serial Bus Communication Control Example (UART2)

Table 15.16 Registers to Be Used and Settings in Special Mode 2

Register	Bit	Function
UiTB (3)	0 to 7	Set transmission data
UiRB (3)	0 to 7	Reception data can be read
	OER	Overrun error flag
UiBRG	0 to 7	Set a bit rate
UiMR (3)	SMD2 to SMD0	Set to "001b"
	CKDIR	Set this bit to "0" for master mode or "1" for slave mode
	IOPOL	Set to "0"
UiC0	CLK1, CLK0	Select the count source for the UiBRG register
	CRS	Invalid because CRD = 1
	TXEPT	Transmit register empty flag
	CRD	Set to "1"
	NCH	Select TXDi pin output format (2)
	CKPOL	Clock phases can be set in combination with the CKPH bit in the UiSMR3 register
	UFORM	Select the LSB first or MSB first
UiC1	TE	Set this bit to "1" to enable transmission
	TI	Transmit buffer empty flag
	RE	Set this bit to "1" to enable reception
	RI	Reception complete flag
	U2IRS (1)	Select UART2 transmit interrupt factor
	U2RRM (1)	Set this bit to "1" to use continuous receive mode
	UiLCH	Set this bit to "1" to use inverted data logic
	UiERE	Set to "0"
UiSMR	0 to 7	Set to "0"
UiSMR2	0 to 7	Set to "0"
UiSMR3	CKPH	Clock phases can be set in combination with the CKPOL bit in the UiC0 register
	NODC	Set to "0"
	0, 2, 4 to 7	Set to "0"
UiSMR4	0 to 7	Set to "0"
UCON	U0IRS, U1IRS	Select UART0 and UART1 transmit interrupt factor
	U0RRM, U1RRM	Set this bit to "1" to use continuous receive mode
	CLKMD0	Invalid because CLKMD1 = 0
	CLKMD1, RCSP, 7	Set to "0"

- 1. Set the bit 4 and bit 5 in the U0C0 and U1C1 register to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are in the UCON register.
- 2. TXD2 pin is N channel open-drain output. No NCH bit in the U2C0 register is assigned. When write, set to "0".
- 3. Not all register bits are described above. Set those bits to "0" when writing to the registers in Special Mode 2.

15.1.4.1 Clock Phase Setting Function

One of four combinations of transfer clock phases and polarities can be selected using the CKPH bit in the UiSMR3 register and the CKPOL bit in the UiC0 register.

Make sure the transfer clock polarity and phase are the same for the master and salves to be communicated.

Figure 15.29 shows the Transmission and Reception Timing in Master Mode (Internal Clock).

Figure 15.30 shows the Transmission and Reception Timing (CKPH=0) in Slave Mode (External Clock) while Figure 15.31 shows the Transmission and Reception Timing (CKPH=1) in Slave Mode (External Clock).

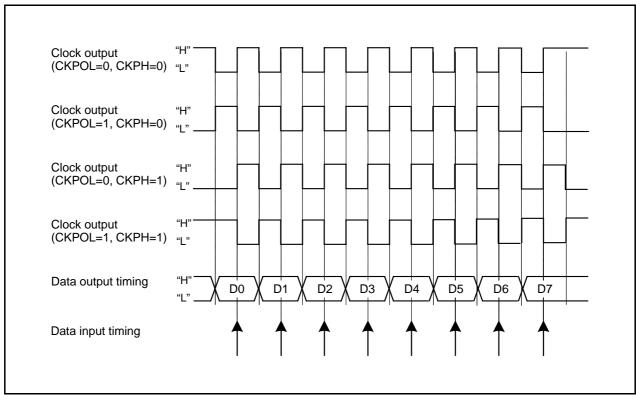


Figure 15.29 Transmission and Reception Timing in Master Mode (Internal Clock)

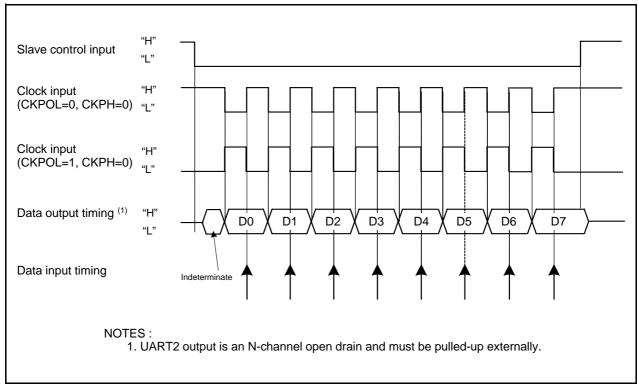


Figure 15.30 Transmission and Reception Timing (CKPH=0) in Slave Mode (External Clock)

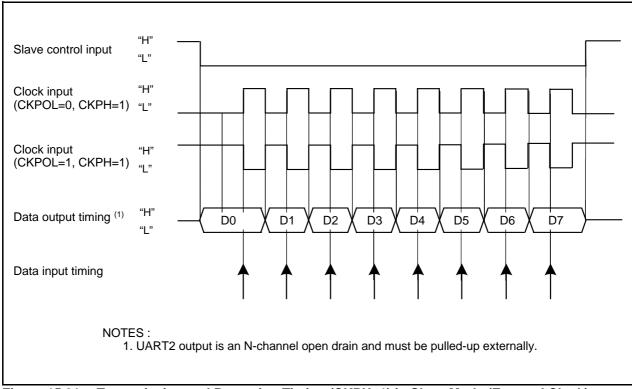


Figure 15.31 Transmission and Reception Timing (CKPH=1) in Slave Mode (External Clock)

15.1.5 Special Mode 3 (IE mode)(UART2)

In this mode, one bit of IEBus is approximated with one byte of UART mode waveform.

Table 15.17 lists the Registers to Be Used and Settings in IE Mode. Figure 15.32 shows the Bus Collision Detect Function-Related BitsBus Collision Detect Function-Related Bits.

If the TXD2 pin output level and RXD2 pin input level do not match, a UART2 bus collision detect interrupt request is generated.

Table 15.17 Registers to Be Used and Settings in IE Mode

Register	Bit	Function
U2TB	0 to 8	Set transmission data
U2RB ⁽²⁾	0 to 8	Reception data can be read
	OER, FER, PER, SUM	Error flag
U2BRG	0 to 7	Set a bit rate
U2MR	SMD2 to SMD0	Set to "110b"
	CKDIR	Select the internal clock or external clock
	STPS	Set to "0"
	PRY	Invalid because PRYE=0
	PRYE	Set to "0"
	IOPOL	Select the TXD/RXD input/output polarity
U2C0	CLK1, CLK0	Select the count source for the U2BRG register
	CRS	Invalid because CRD=1
	TXEPT	Transmit register empty flag
	CRD	Set to "1"
	NCH	Select TXD2 pin output mode (1)
	CKPOL	Set to "0"
	UFORM	Set to "0"
U2C1	TE	Set this bit to "1" to enable transmission
	TI	Transmit buffer empty flag
	RE	Set this bit to "1" to enable reception
	RI	Reception complete flag
	U2IRS	Select the source of UART2 transmit interrupt
	U2RRM, U2LCH, U2ERE	Set to "0"
U2SMR	0 to 3, 7	Set to "0"
	ABSCS	Select the sampling timing at which to detect a bus collision
	ACSE	Set this bit to "1" to use the auto clear function of transmit enable bit
	SSS	Select the transmit start condition
U2SMR2	0 to 7	Set to "0"
U2SMR3	0 to 7	Set to "0"
U2SMR4	0 to 7	Set to "0"

- 1. TXD2 pin is N channel open-drain output. No NCH bit in the U2C0 register is assigned. When write, set to "0".
- 2. Not all register bits are described above. Set those bits to "0" when writing to the registers in IE mode.

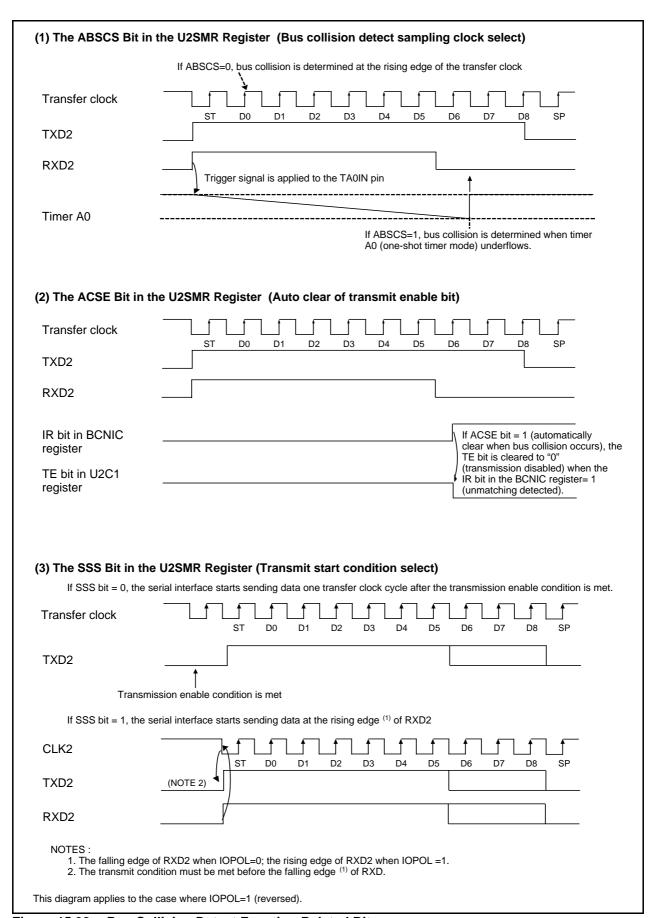


Figure 15.32 Bus Collision Detect Function-Related Bits

15.1.6 Special Mode 4 (SIM Mode) (UART2)

Based on UART mode, this is an SIM interface compatible mode. Direct and inverse formats can be implemented, and this mode allows to output a low from the TXD2 pin when a parity error is detected. Table 15.18 lists the SIM Mode Specifications. Table 15.19 lists the Registers to Be Used and Settings in SIM Mode.

Table 15.18 SIM Mode Specifications

Item	Specification
Transfer Data Format	Direct format Inverse format
Transfer Clock	CKDIR bit in U2MR register = 0 (internal clock) : fi/ (16(n+1)) fi = f1SIO, f2SIO, f8SIO, f32SIO
Transmission Start Condition	Before transmission can start, the following requirements must be met • The TE bit in the U2C1 register = 1 (transmission enabled) • The TI bit in the U2C1 register = 0 (data present in U2TB register)
Reception Start Condition	Before reception can start, the following requirements must be met • The RE bit in the U2C1 register = 1 (reception enabled) • Start bit detection
Interrupt Request Generation Timing (2)	 For transmission When the serial interface finished sending data from the U2TB transfer register (U2IRS bit =1) For reception When transferring data from the UART2 receive register to the U2RB register (at completion of reception)
Error Detection	 Overrun error (1) This error occurs if the serial interface started receiving the next data before reading the U2RB register and received the bit one before the last stop bit of the next data Framing error (3) This error occurs when the number of stop bits set is not detected Parity error (3) During reception, if a parity error is detected, parity error signal is output from the TXD2 pin. During transmission, a parity error is detected by the level of input to the RXD2 pin when a transmission interrupt occurs Error sum flag This flag is set (= 1) when any of the overrun, framing, and parity errors is encountered

- 1. If an overrun error occurs, bits 8 to 0 in the U2RB register are undefined. The IR bit in the S2RIC register does not change to "1" (interrupt requested).
- 2. A transmit interrupt request is generated by setting the U2IRS bit to "1" (transmission complete) and U2ERE bit to "1" (error signal output) in the U2C1 register after reset. Therefore, when using SIM mode, set the IR bit to "0" (no interrupt request) after setting these bits.
- 3. The timing at which the framing error flag and the parity error flag are set is detected when data is transferred from the UARTi receive register to the UiRB register.

Registers to Be Used and Settings in SIM Mode

Register	Bit	Function
U2TB (1)	0 to 7	Set transmission data
U2RB (1)	0 to 7	Reception data can be read
	OER,FER,PER,SUM	Error flag
U2BRG	0 to 7	Set a bit rate
U2MR	SMD2 to SMD0	Set to "101b"
	CKDIR	Select the internal clock or external clock
	STPS	Set to "0"
	PRY	Set this bit to "1" for direct format or "0" for inverse format
	PRYE	Set to "1"
	IOPOL	Set to "0"
U2C0	CLK1, CLK0	Select the count source for the U2BRG register
	CRS	Invalid because CRD = 1
	TXEPT	Transmit register empty flag
	CRD	Set to "1"
	NCH	Set to "0"
	CKPOL	Set to "0"
	UFORM	Set this bit to "0" for direct format or "1" for inverse format
U2C1	TE	Set this bit to "1" to enable transmission
	TI	Transmit buffer empty flag
	RE	Set this bit to "1" to enable reception
	RI	Reception complete flag
	U2IRS	Set to "1"
	U2RRM	Set to "0"
	U2LCH	Set this bit to "0" for direct format or "1" for inverse format
	U2ERE	Set to "1"
U2SMR (1)	0 to 3	Set to "0"
U2SMR2	0 to 7	Set to "0"
U2SMR3	0 to 7	Set to "0"
U2SMR4	0 to 7	Set to "0"

NOTES:

1. Not all register bits are described above. Set those bits to "0" when writing to the registers in SIM mode.

M16C/30P Group 15. Serial Interface

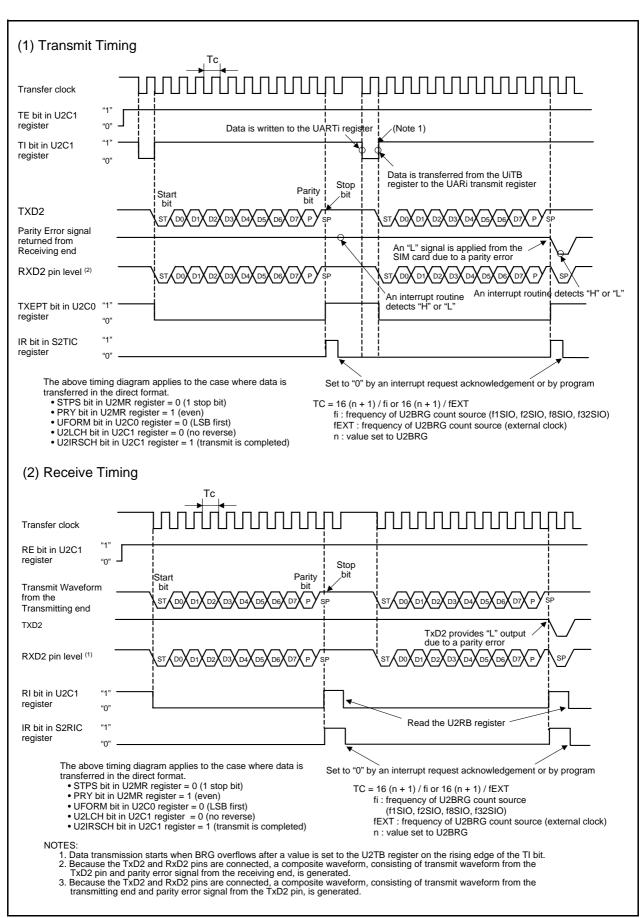


Figure 15.33 Transmit and Receive Timing in SIM Mode

M16C/30P Group 15. Serial Interface

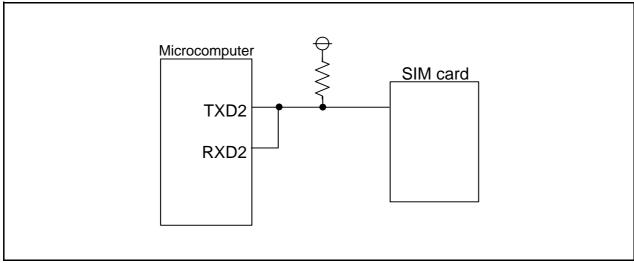


Figure 15.34 SIM Interface Connection

15.1.6.1 Parity Error Signal Output

The parity error signal is enabled by setting the U2ERE bit in the U2C1 register to "1".

The parity error signal is output when a parity error is detected while receiving data. This is achieved by pulling the TXD2 output low with the timing shown in Figure 15.35. If the R2RB register is read while outputting a parity error signal, the PER bit is cleared to "0" and at the same time the TXD2 output is returned high.

When transmitting, a transmission-finished interrupt request is generated at the falling edge of the transfer clock pulse that immediately follows the stop bit. Therefore, whether a parity signal has been returned can be determined by reading the port that shares the RXD2 pin in a transmission-finished interrupt routine.

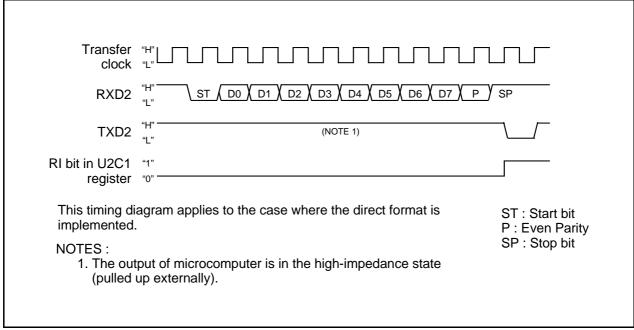


Figure 15.35 Parity Error Signal Output Timing

M16C/30P Group 15. Serial Interface

15.1.6.2 Format

When direct format, set the PRYE bit in the U2MR register to "1", the PRY bit to "1", the UFORM bit in the U2C0 register to "0" and the U2LCH bit in the U2C1 register to "0". When data are transmitted, data set in the U2TB register are transmitted with the even-numbered parity, starting from D0. When data are received, received data are stored in the U2RB register, starting from D0. The even-numbered parity determines whether a parity error occurs.

When inverse format, set the PRYE bit to "1", the PRY bit to "0", the UFORM bit to "1" and the U2LCH bit to "1". When data are transmitted, values set in the U2TB register are logically inversed and are transmitted with the odd-numbered parity, starting from D7. When data are received, received data are logically inversed to be stored in the U2RB register, starting from D7. The odd-numbered parity determines whether a parity error occurs.

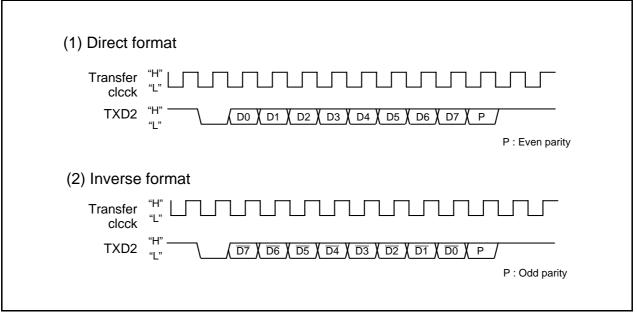


Figure 15.36 SIM Interface Format

16. A/D Converter

The microcomputer contains one A/D converter circuit based on 10-bit successive approximation method configured with a capacitive-coupling amplifier. The analog inputs share the pins with P10_0 to P10_7, P9_5, P9_6, and P0_0 to P0_7. Similarly, \overline{ADTRG} input shares the pin with P9_7. Therefore, when using these inputs, make sure the corresponding port direction bits are set to "0" (= input mode).

When not using the A/D converter, set the VCUT bit to "0" (= Vref unconnected), so that no current will flow from the VREF pin into the resistor ladder, helping to reduce the power consumption of the chip.

The A/D conversion result is stored in the ADi register bits for ANi, and AN0_i pins (i = 0 to 7).

Table 16.1 shows the Performance of A/D Converter. Figure 16.1 shows the A/D Converter Block Diagram, and Figures 16.2 and 16.3 show the A/D converter-related registers.

Table 16.1 Performance of A/D Converter

Item	Performance		
Method of A/D Conversion	Successive approximation (capacitive coupling amplifier)		
Analog input Voltage (1)	0V to AVCC (VCC1)		
Operating clock ϕ AD (2)	fAD/divide-by-2 of fAD/divide-by-3 of fAD/divide-by-4 of fAD/divide-by-6 of fAD/divide-by-12 of fAD		
Resolution	8-bit or 10-bit (selectable)		
Integral Nonlinearity Error	When AVCC = VREF = 5V • With 8-bit resolution: ±2LSB • With 10-bit resolution AN0 to AN7, AN0_0 to AN0_7, ANEX0 and ANEX1 input: ±5LSB When AVCC = VREF = 3.3V • With 8-bit resolution: ±2LSB • With 10-bit resolution AN0 to AN7, AN0_0 to AN0_7, ANEX0 and ANEX1 input: ±7LSB		
Operating Modes	One-shot mode and repeat mode		
Analog Input Pins	8 pins (AN0 to AN7) + 2 pins (ANEX0 and ANEX1) + 8 pins (AN0_0 to AN0_7)		
A/D Conversion Start Condition	Software trigger The ADST bit in the ADCON0 register is set to "1" (A/D conversion starts) External trigger (retriggerable) Input on the ADTRG pin changes state from high to low after the ADST bit is set to "1" (A/D conversion starts)		
Conversion Speed	 Without sample and hold function 8-bit resolution: 49 φAD cycles, 10-bit resolution: 59 φAD cycles With sample and hold function 8-bit resolution: 28 φAD cycles, 10-bit resolution: 33 φAD cycles 		

NOTES:

- 1. Does not depend on use of sample and hold function.
- φAD frequency must be 10 MHz or less.
 When sample & hold function is disabled, φAD frequency must be 250kHz or more.
 When sample & hold function is enabled, φAD frequency must be 1MHz or more.

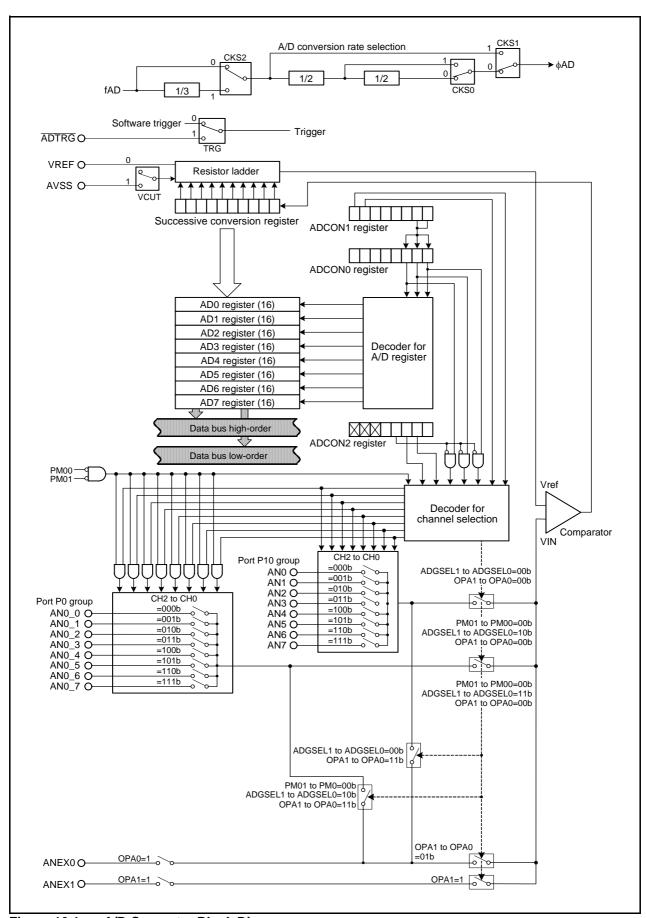
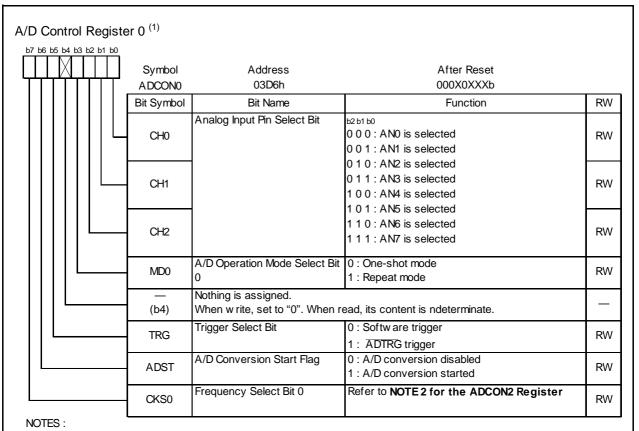
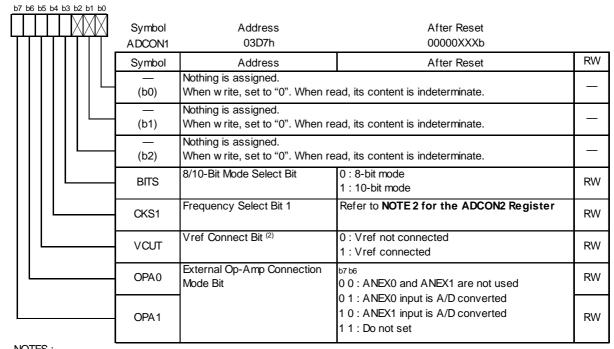
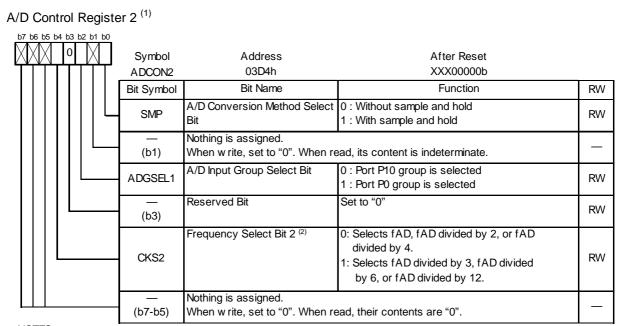
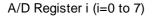




Figure 16.1 A/D Converter Block Diagram


1. If the ADCON0 register is rew ritten during A/D conversion, the conversion result will be indeterminate.

A/D Control Register 1 (1)

- 1. If the ADCON1 register is rew ritten during A/D conversion, the conversion result will be indeterminate.
- 2. If the VCUT bit is reset from "0" (Vref unconnected) to "1" (Vref connected), wait for 1 µs or more before starting A/D conversion.


Figure 16.2 **ADCON0 to ADCON1 Registers**

NOTES:

- 1. If the ADCON2 register is rewritten during A/D conversion, the conversion result will be indeterminate.
- 2. The ØAD frequency must be 10 MHz or less. The selected ØAD frequency is determined by a combination of the CKS0 bit in the ADCON0 register, the CKS1 bit in the ADCON1 register, and the CKS2 bit in the ADCON2 register.

CKS2	CKS1	CKS0	ØAD
0	0	0	Divide-by-4 of fAD
0	0	1	Divide-by-2 of fAD
0	1	0	fAD
0	1	1	1
1	0	0	Ddivide-by-12 of fAD
1	0	1	Divide-by-6 of fAD
1	1	0	Divide-by-3 of fAD
1	1	1	1

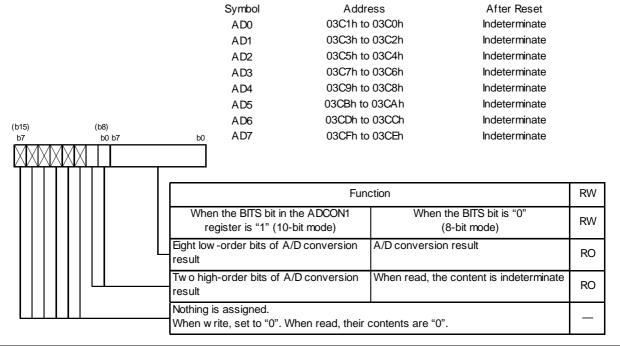
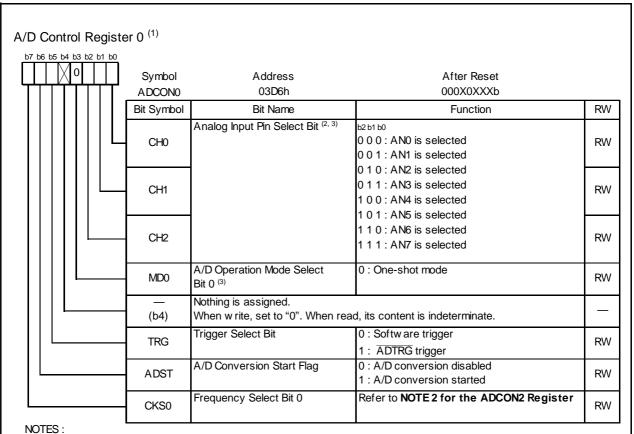


Figure 16.3 ADCON2 and AD0 to AD7 Registers


16.1 Mode Description

16.1.1 One-Shot Mode

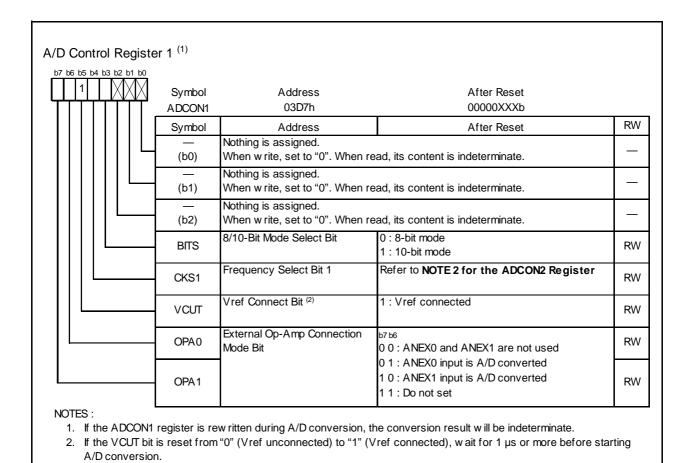
In one-shot mode, analog voltage applied to a selected pin is converted to a digital code once. Table 16.2 shows the One-Shot Mode Specifications. Figures 16.4 and 16.5 shows the ADCON0 and ADCON1 registers in one-shot mode.

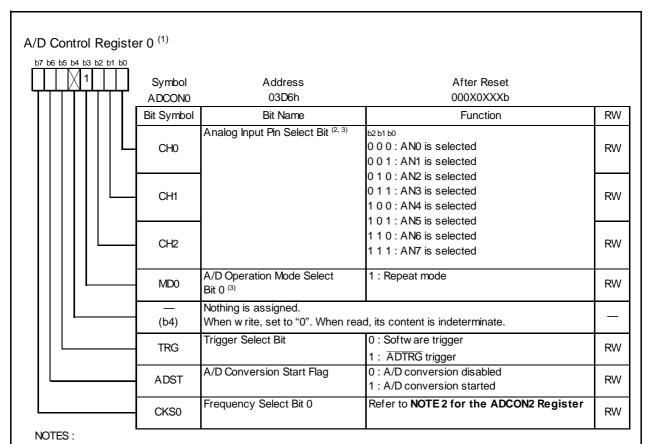
Table 16.2 One-Shot Mode Specifications

Item	Specification
Function	The CH2 to CH0 bits in the ADCON0 register, the ADGSEL1 to ADGSEL0 bits in the ADCON2 register and the OPA1 to OPA0 bits in the ADCON1 register select a pin. Analog voltage applied to the pin is converted to a digital code once.
A/D Conversion Start Condition	When the TRG bit in the ADCON0 register is "0" (software trigger) The ADST bit in the ADCON0 register is set to "1" (A/D conversion starts) When the TRG bit is "1" (ADTRG trigger) Input on the ADTRG pin changes state from high to low after the ADST bit is set to "1" (A/D conversion starts)
A/D Conversion Stop Condition	 Completion of A/D conversion (If a software trigger is selected, the ADST bit is cleared to "0" (A/D conversion halted)) Set the ADST bit to "0"
Interrupt Request Generation Timing	Completion of A/D conversion
Analog Input Pin	Select one pin from AN0 to AN7, AN0_0 to AN0_7, ANEX0 to ANEX1
Reading of Result of A/D Converter	Read one of the AD0 to AD7 registers that corresponds to the selected pin

- 1. If the ADCON0 register is rewritten during A/D conversion, the conversion result will be indeterminate.
- 2. ANO_0 to ANO_7 can be used in the same way as ANO to AN7. Use the ADGSEL1 to ADGSEL0 bits in the ADCON2 register to select the desired pin.
- 3. After rew riting the MD0 bit, set the CH2 to CH0 bits over again using another instruction.

Figure 16.4 **ADCONO Register (One-shot Mode)**




Figure 16.5 **ADCON1 Register (One-shot Mode)**

16.1.2 Repeat Mode

In repeat mode, analog voltage applied to a selected pin is repeatedly converted to a digital code. Table 16.3 shows the Repeat Mode Specifications. Figures 16.6 and 16.7 shows the ADCON0 to ADCON1 registers in repeat mode.

Table 16.3 Repeat Mode Specifications

Item	Specification
Function	The CH2 to CH0 bits in the ADCON0 register, the ADGSEL1 to ADGSEL0 bits in the ADCON2 register and the OPA1 to OPA0 bits in the ADCON1 register select a pin. Analog voltage applied to this pin is repeatedly converted to a digital code.
A/D Conversion Start Condition	When the TRG bit in the ADCON0 register is "0" (software trigger) The ADST bit in the ADCON0 register is set to "1" (A/D conversion starts) When the TRG bit is "1" (ADTRG trigger) Input on the ADTRG pin changes state from high to low after the ADST bit is set to "1" (A/D conversion starts)
A/D Conversion Stop Condition	Set the ADST bit to "0" (A/D conversion halted)
Interrupt Request Generation timing	None generated
Analog Input Pin	Select one pin from AN0 to AN7, AN0_0 to AN0_7, ANEX0 to ANEX1
Reading of Result of A/D Converter	Read one of the AD0 to AD7 registers that corresponds to the selected pin

- 1. If the ADCON0 register is rewritten during A/D conversion, the conversion result will be indeterminate.
- 2. AN0_0 to AN0_7 can be used in the same way as AN0 to AN7. Use the ADGSEL1 to ADGSEL0 bits in the ADCON2 register to select the desired pin.
- 3. After rew riting the MD0 bit, set the CH2 to CH0 bits over again using another instruction.

Figure 16.6 ADCON0 Register (Repeat Mode)

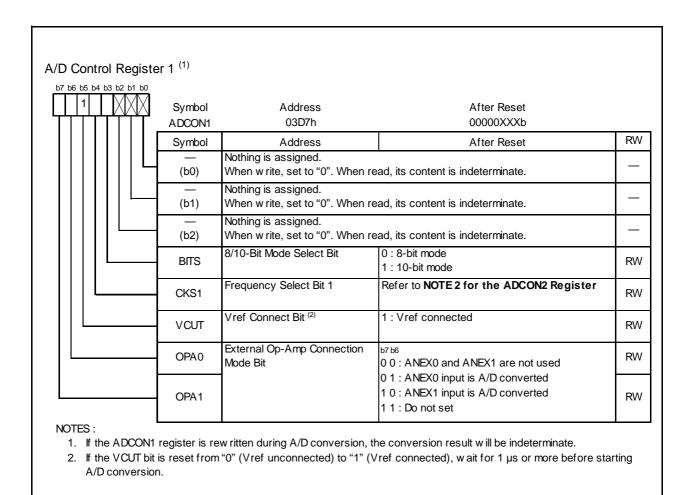


Figure 16.7 **ADCON1 Register (Repeat Mode)**

16.2 Function

16.2.1 Resolution Select Function

The desired resolution can be selected using the BITS bit in the ADCON1 register. If the BITS bit is set to "1" (10-bit conversion accuracy), the A/D conversion result is stored in the bit 0 to bit 9 in the ADi register (i = 0 to 7). If the BITS bit is set to "0" (8-bit conversion accuracy), the A/D conversion result is stored in the bit 0 to bit 7 in the ADi register.

16.2.2 Sample and Hold

If the SMP bit in the ADCON2 register is set to "1" (with sample-and-hold), the conversion speed per pin is increased to $28 \text{ }\phi AD$ cycles for 8-bit resolution or $33 \text{ }\phi AD$ cycles for 10-bit resolution. Sample and Hold is effective in all operation modes. Select whether or not to use the Sample and Hold function before starting A/D conversion.

16.2.3 Extended Analog Input Pins

In one-shot and repeat modes, the ANEX0 and ANEX1 pins can be used as analog input pins. Use the OPA1 to OPA0 bits in the ADCON1 register to select whether or not use ANEX0 and ANEX1.

The A/D conversion results of ANEX0 and ANEX1 inputs are stored in the AD0 and AD1 registers, respectively.

16.2.4 Current Consumption Reducing Function

When not using the A/D converter, its resistor ladder and reference voltage input pin (VREF) can be separated using the VCUT bit in the ADCON1 register. When separated, no current will flow from the VREF pin into the resistor ladder, helping to reduce the power consumption of the chip.

To use the A/D converter, set the VCUT bit to "1" (Vref connected) and then set the ADST bit in the ADCON0 register to "1" (A/D conversion start). The VCUT and ADST bits cannot be set to "1" at the same time. Nor can the VCUT bit be set to "0" (Vref unconnected) during A/D conversion.

16.2.5 Output Impedance of Sensor under A/D Conversion

To carry out A/D conversion properly, charging the internal capacitor C shown in Figure 16.8 has to be completed within a specified period of time. T (sampling time) as the specified time. Let output impedance of sensor equivalent circuit be R0, microcomputer's internal resistance be R, precision (error) of the A/D converter be X, and the A/D converter's resolution be Y (Y is 1024 in the 10-bit mode, and 256 in the 8-bit mode).

$$VC = VIN \left\{ 1 - e^{-\frac{1}{C(R0 + R)}} t \right\}$$

$$VC = VIN - \frac{X}{Y} VIN = VIN \left(1 - \frac{X}{Y} \right)$$

$$And when t = T,$$

$$e^{-\frac{1}{C(R0 + R)}T} = \frac{X}{Y}$$

$$-\frac{1}{C(R0 + R)}T = \ln \frac{X}{Y}$$

$$Hence,$$

$$R0 = -\frac{T}{C \bullet \ln \frac{X}{Y}} - R$$

Figure 16.8 shows Analog Input Pin and External Sensor Equivalent Circuit. When the difference between VIN and VC becomes 0.1LSB, we find impedance R0 when voltage between pins VC changes from 0 to VIN-(0.1/1024) VIN in time T. (0.1/1024) means that A/D precision drop due to insufficient capacitor charge is held to 0.1LSB at time of A/D conversion in the 10-bit mode. Actual error however is the value of absolute precision added to 0.1LSB. When $f(\phi AD) = 10$ MHz, T = 0.3 μs in the A/D conversion mode with sample & hold. Output impedance R0 for sufficiently charging capacitor C within time T is determined as follows.

T = 0.3 μs, R = 7.8 kΩ, C = 1.5 pF, X = 0.1, and Y = 1024. Hence,
$$R0 = -\frac{0.3 \times 10^{-6}}{1.5 \times 10^{-12} \bullet ln \frac{0.1}{1024}} - 7.8 \times 10^{3} = 13.9 \times 10^{3}$$

Thus, the allowable output impedance of the sensor circuit capable of thoroughly driving the A/D converter turns out to be approximately 13.9 k Ω

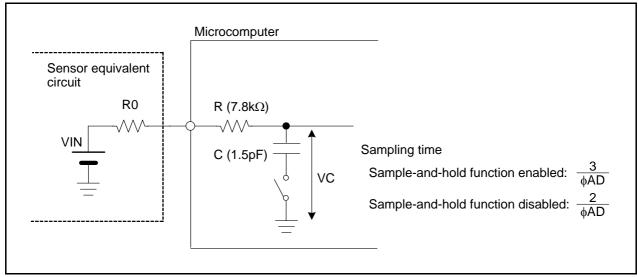


Figure 16.8 Analog Input Pin and External Sensor Equivalent Circuit

M16C/30P Group 17. CRC Calculation

17. CRC Calculation

The Cyclic Redundancy Check (CRC) operation detects an error in data blocks. The microcomputer uses a generator polynomial of CRC_CCITT ($X^{16} + X^{12} + X^5 + 1$) to generate CRC code.

The CRC code consists of 16 bits which are generated for each data block in given length, separated in 8 bit units. After the initial value is set in the CRCD register, the CRC code is set in that register each time one byte of data is written to the CRCIN register. CRC code generation for one-byte data is finished in two cycles.

Figure 17.1 shows the CRC Circuit Block Diagram. Figure 17.2 shows the CRC-related registers.

Figure 17.3 shows the calculation example using the CRC operation.

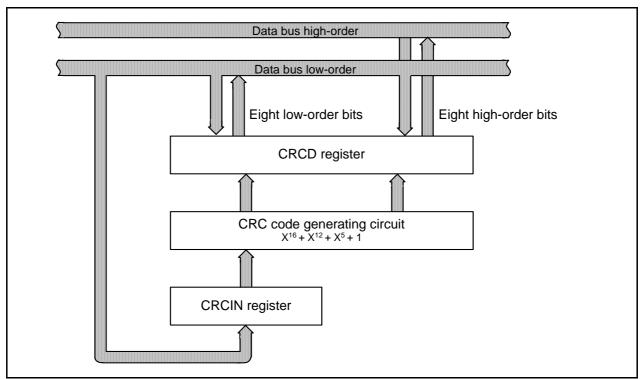


Figure 17.1 CRC Circuit Block Diagram

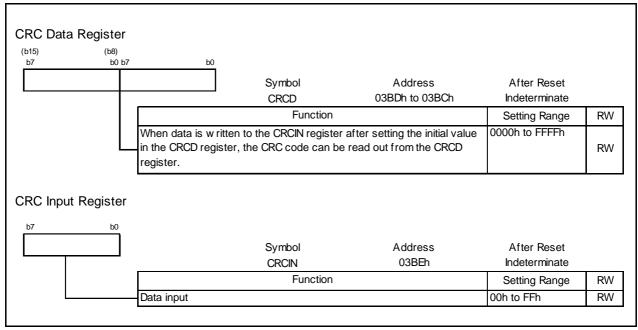
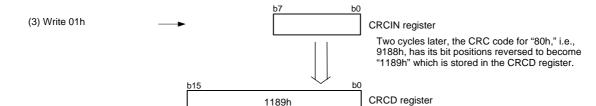
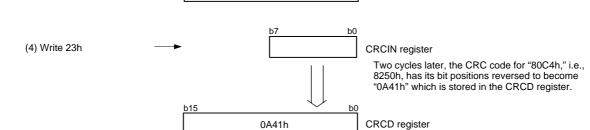


Figure 17.2 CRCD and CRCIN Registers

M16C/30P Group 17. CRC Calculation

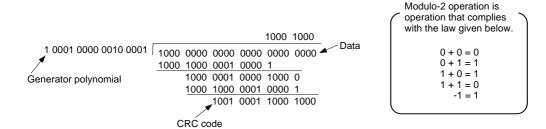
Setup procedure and CRC operation when generating CRC code "80C4h"


• CRC operation performed by the M16C


CRC code: Remainder of a division in which the value written to the CRCIN register with its bit positions reversed is divided by the generator polynomial

Generator polynomial: $X^{16} + X^{12} + X^5 + 1$ (1 0001 0000 0010 0001b)

- Setting procedure
 - (1) Reverse the bit positions of the value "80C4h" by program in 1-byte units. "80h" → "01h", "C4h" → "23h"



Details of CRC operation

As shown in (3) above, bit position of "01h" (00000001b) written to the CRCIN register is inversed and becomes "10000000b"

Add "1000 0000 0000 0000 0000 0000 0000b", as "10000000b" plus 16 digits, to "0000 0000 0000 0000 0000 0000b", as "0000 0000 0000 0000 0000b" plus 8 digits as the default value of the CRCD register to perform the modulo-2 division.

"0001 0001 1000 1001b (1189h)", the remainder "1001 0001 1000 1000b (9188h)" with inversed bit position, can be read from the CRCD register.

When going on to (4) above, "23h (00100011b)" written in the CRCIN register is inversed and becomes "11000100b".

Add "1100 0100 0000 0000 0000 0000 0000b", as "11000100b" plus 16 digits, to "1001 0001 1000 1000 0000 0000b", as "1001 0001 1000 1000b" plus 8 digits as a remainder of (3) left in the CRCD register to perform the modulo-2 division. "0000 1010 0100 0001b (0A41h)", the remainder with inversed bit position, can be read from CRCD register.

Figure 17.3 CRC Calculation

18. Programmable I/O Ports

The programmable input/output ports (hereafter referred to simply as I/O ports) consist of 87 lines P0 to P10 (except P8_5) for the 100-pin version. Each port can be set for input or output every line by using a direction register, and can also be chosen to be or not be pulled high every 4 lines. P8_5 is an input-only port and does not have a pull-up resistor. Port P8_5 shares the pin with \overline{NMI} , so that the \overline{NMI} input level can be read from the P8 register P8_5 bit.

Figures 18.1 to 18.5 show the I/O ports. Figure 18.6 shows the I/O Pins.

Each pin functions as an I/O port, a peripheral function input/output, or a bus control pin.

For details on how to set peripheral functions, refer to each functional description in this manual. If any pin is used as a peripheral function input, set the direction bit for that pin to "0" (input mode). Any pin used as an output pin for peripheral functions output, no matter how the corresponding direction bit is set.

When using any pin as a bus control pin, refer to 7.2 Bus Control.

18.1 Port Pi Direction Register (PDi Register, i = 0 to 10)

Figure 18.7 shows the PDi Registers.

This register selects whether the I/O port is to be used for input or output. The bits in this register correspond one for one to each port.

During memory extension and microprocessor modes, the PDi registers for the pins functioning as bus control pins (A0 to A19, D0 to D15, $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$, $\overline{\text{RD}}$, $\overline{\text{WRL/WR}}$, $\overline{\text{WRH/BHE}}$, ALE, $\overline{\text{RDY}}$, $\overline{\text{HOLD}}$, $\overline{\text{HLDA}}$, and BCLK) cannot be modified.

No direction register bit for P8_5 is available.

18.2 Port Pi Register (Pi Register, i = 0 to 10)

Figure 18.8 shows the Pi Registers.

Data input/output to and from external devices are accomplished by reading and writing to the Pi register.

The Pi register consists of a port latch to hold the input/output data and a circuit to read the pin status. For ports set for input mode, the input level of the pin can be read by reading the corresponding Pi register, and data can be written to the port latch by writing to the Pi register.

For ports set for output mode, the port latch can be read by reading the corresponding Pi register, and data can be written to the port latch by writing to the Pi register. The data written to the port latch is output from the pin. The bits in the Pi register correspond one for one to each port.

During memory extension and microprocessor modes, the Pi registers for the pins functioning as bus control pins (A0 to A19, D0 to D15, \overline{CSO} to $\overline{CS3}$, \overline{RD} , $\overline{WRL/WR}$, $\overline{WRH/BHE}$, ALE, \overline{RDY} , \overline{HOLD} , \overline{HLDA} , and BCLK) cannot be modified.

18.3 Pull-up Control Register 0 to Pull-up Control Register 2 (PUR0 to PUR2 Registers)

Figure 18.9 and Figure 18.10 show the PUR0 to PUR2 Registers.

The PUR0 to PUR2 registers bits can be used to select whether or not to pull the corresponding port high in 4 bit units. The port chosen to be pulled high has a pull-up resistor connected to it when the direction bit is set for input mode.

However, the pull-up control register has no effect on P0 to P3, P4_0 to P4_3, and P5 during memory extension and microprocessor modes. Although the register contents can be modified, no pull-up resistors are connected.

18.4 Port Control Register (PCR Register)

Figure 18.10 shows the PCR Register.

When the P1 register is read after setting the PCR0 bit in the PCR register to "1", the corresponding port latch can be read no matter how the PD1 register is set.

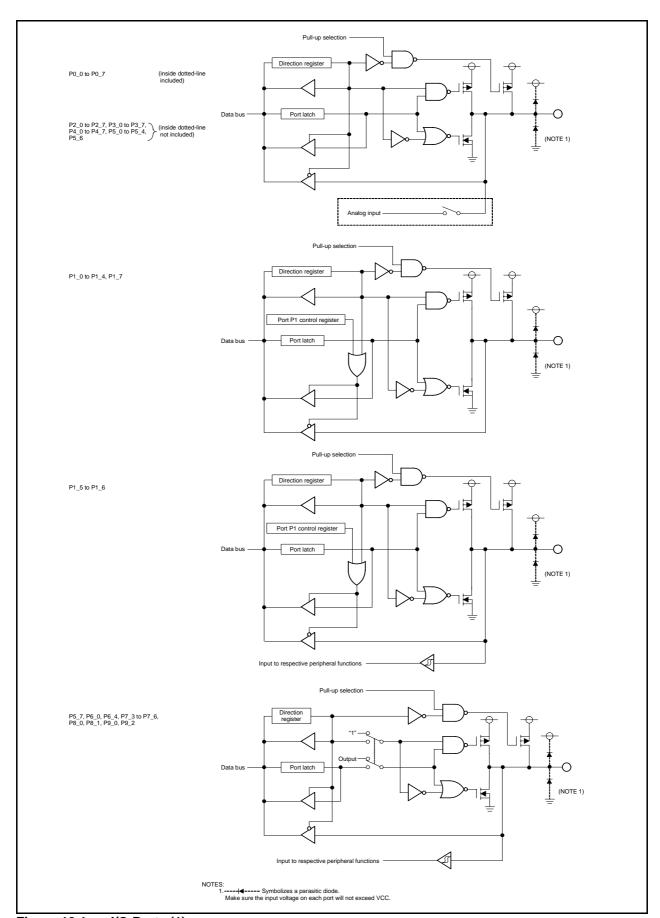


Figure 18.1 I/O Ports (1)

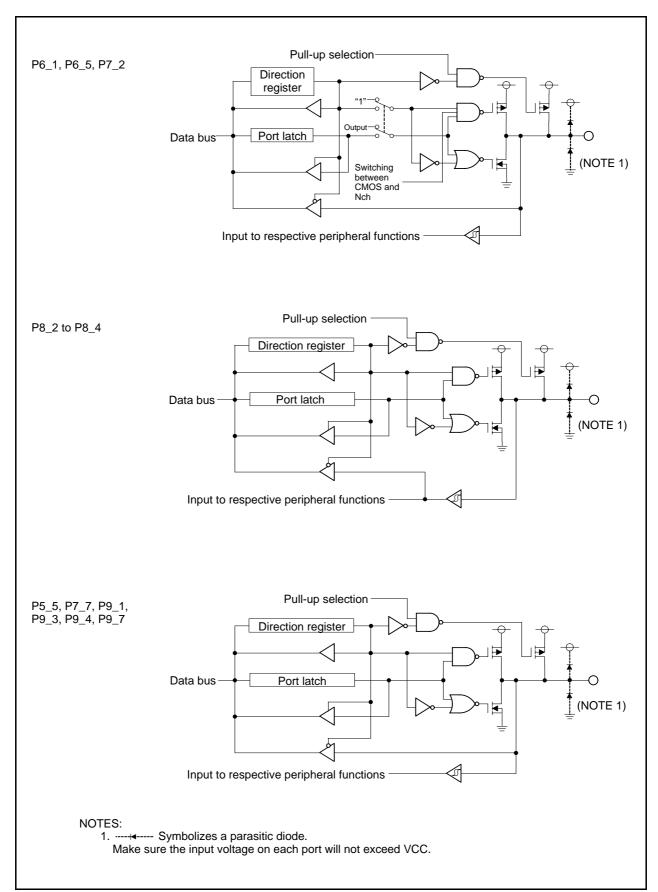


Figure 18.2 I/O Ports (2)

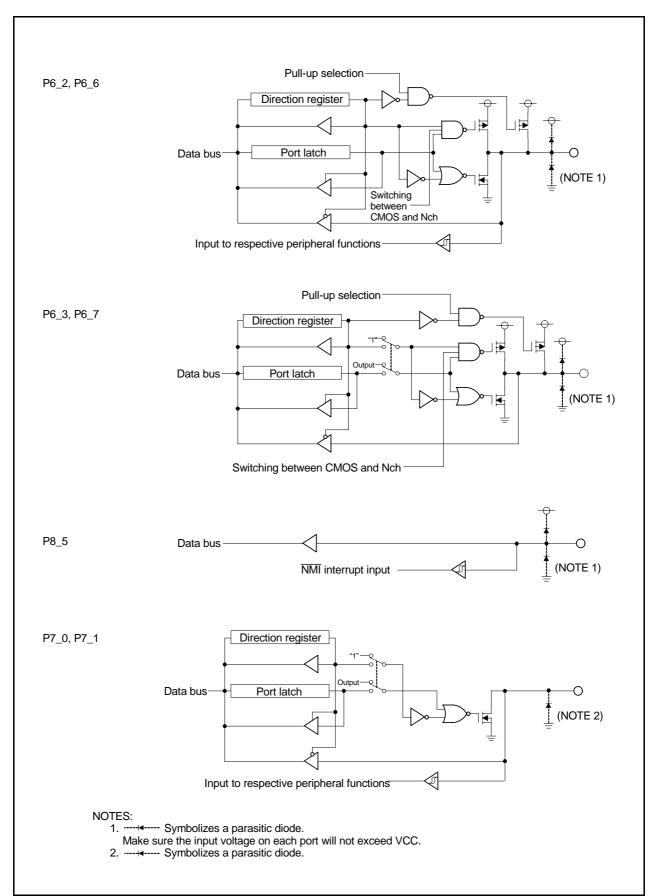


Figure 18.3 I/O Ports (3)



Figure 18.4 I/O Ports (4)

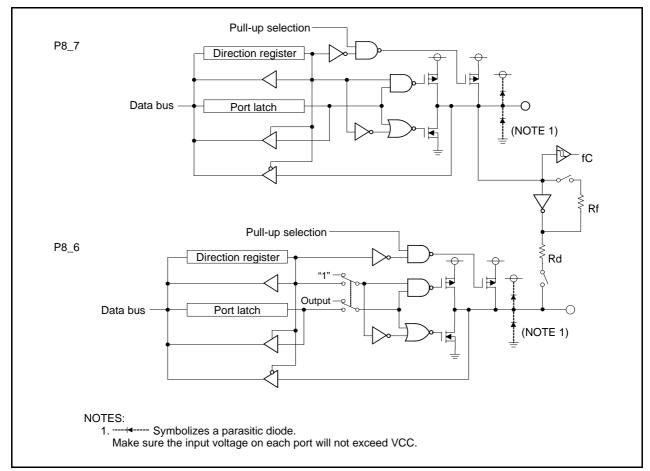


Figure 18.5 I/O Ports (5)

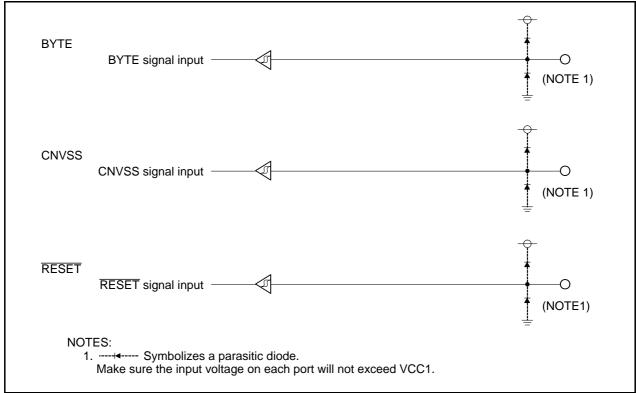
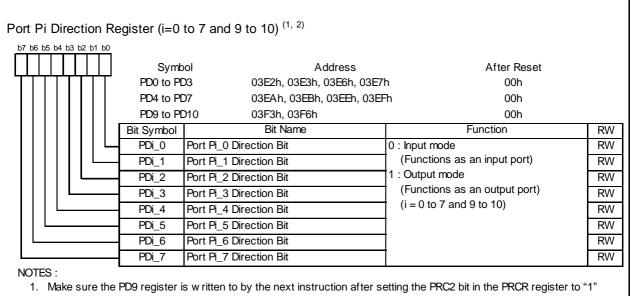



Figure 18.6 I/O Pins

- (w rite enabled).
- 2. During memory extension and microprocessor modes, the PDi register for the pins functioning as bus control pins (A0 to A19, D0 to D15, CS0 to CS3, RD, WRL/WR, WRH/BHE, ALE, RDY, HOLD, HLDA and BCLK) cannot be modified.

Port P8 Direction Register

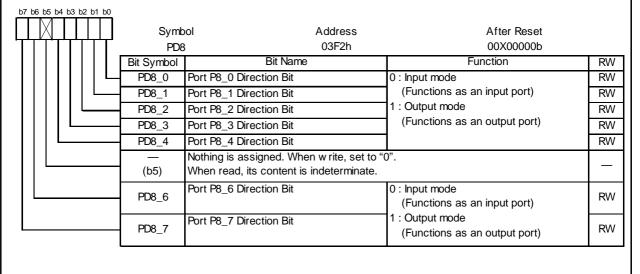
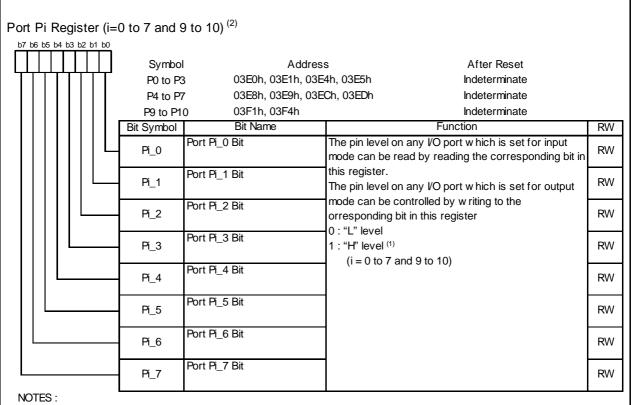
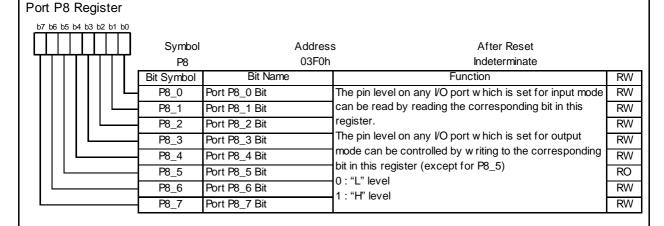
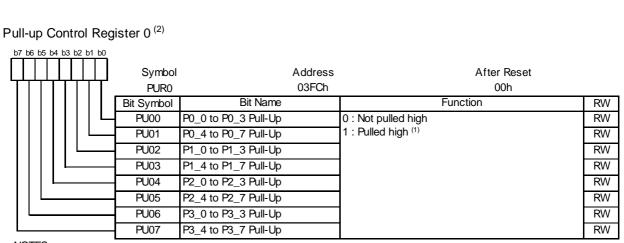
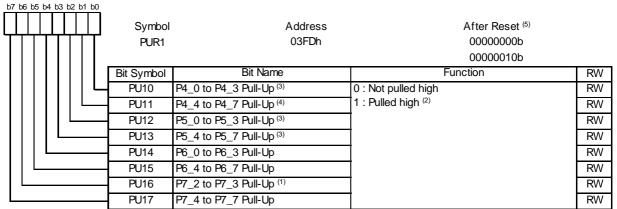



Figure 18.7 PDi Registers

- 1. Since P7_0 and P7_1 are N-channel open drain ports, the data is high-impedance.
- 2. During memory extension and microprocessor modes, the Pi register for the pins functioning as bus control pins (A0 to A19, D0 to D15, CS0 to CS3, RD, WRL/WR, WRH/BHE, ALE, RDY, HOLD, HLDA and BCLK) cannot be modified.


Figure 18.8 Pi Registers

NOTES:

- 1. The pin for w hich this bit is "1" (pulled high) and the direction bit is "0" (input mode) is pulled high.
- 2. During memory extension and microprocessor modes, the pins are not pulled high although their corresponding register contents can be modified.

Pull-Up Control Register 1

NOTES:

- 1. The P7_0 and P7_1 pins do not have pull-ups.
- 2. The pin for w hich this bit is "1" (pulled high) and the direction bit is "0" (input mode) is pulled high.
- 3. During memory extension and microprocessor modes, the pins are not pulled high although the contents of these bits can be modified.
- 4. If the PM01 to PM00 bits in the PM0 register are set to "01b" (memory expansion mode) or "11b" (microprocessor mode) in a program during single-chip mode, the PU11 bit becomes "1".
- 5. The values after hardware reset is as follows:
 - 00000000b when input on CNVSS pin is "L"
 - 00000010b when input on CNVSS pin is "H"

The values after software reset is as follows:

- 00000000b when PM01 to PM00 bits are "00b" (single-chip mode)
- 00000010b w hen PM01 to PM00 bits are "01b" (memory expansion mode) or "11b" (microprocessor mode)

Figure 18.9 PUR0 to PUR1 Registers

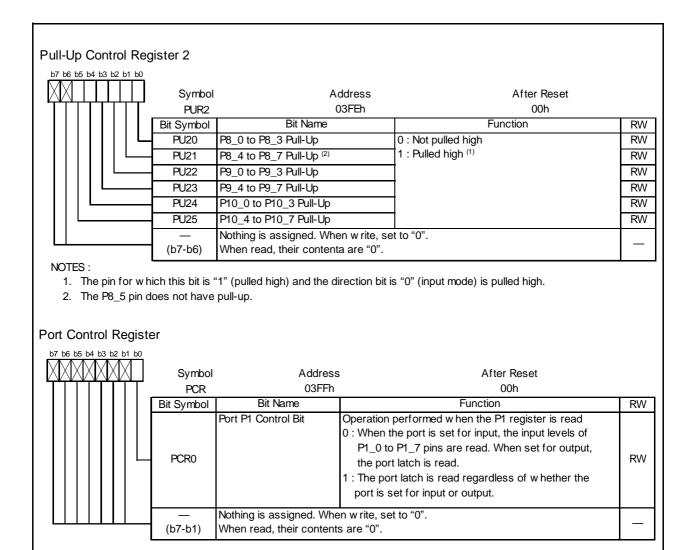


Figure 18.10 PUR2 and PCR Registers

Table 18.1 Unassigned Pin Handling in Single-chip Mode

Pin Name	Connection
Ports P0 to P7,	After setting for input mode, connect every pin to VSS via a resistor (pull-
P8_0 to P8_4, P8_6 to P8_7,	down);
P9 to P10	or after setting for output mode, leave these pins open. (1, 2, 3)
XOUT (4)	Open
NMI (P8_5)	Connect via resistor to VCC (pull-up)
AVCC	Connect to VCC
AVSS, VREF, BYTE	Connect to VSS

NOTES:

- 1. When setting the port for output mode and leave it open, be aware that the port remains in input mode until it is switched to output mode in a program after reset. For this reason, the voltage level on the pin becomes indeterminate, causing the power supply current to increase while the port remains in input mode.
 - Furthermore, by considering a possibility that the contents of the direction registers could be changed by noise or noise-induced runaway, it is recommended that the contents of the direction registers be periodically reset in software, for the increased reliability of the program.
- 2. Make sure the unused pins are processed with the shortest possible wiring from the microcomputer pins (within 2 cm).
- 3. When the ports P7_0 and P7_1 are set for output mode, make sure a low-level signal is output from the pins.
 - The ports P7_0 and P7_1 are N-channel open-drain outputs.
- 4. With external clock input to XIN pin.

Table 18.2 Unassigned Pin Handling in Memory Expansion Mode and Microprocessor Mode

Pin Name	Connection
Ports P0 to P7,	After setting for input mode, connect every pin to VSS via a resistor (pull-
P8_0 to P8_4, P8_6 to P8_7,	down);
P9 to P10	or after setting for output mode, leave these pins open. (1, 2, 3, 4)
P4_4/CS0 to P4_7/CS3	Connect to VCC via a resistor (pulled high) by setting the corresponding direction bit in the PD4 register for $\overline{\text{CSi}}$ (i=0 to 3) to "0" (input mode) and the CSi bit in the CSR register to "0" (chip select disabled).
BHE, ALE, HLDA, XOUT (5), BCLK (6)	Open
HOLD, RDY	Connect via resistor to VCC (pull-up)
NMI (P8_5)	Connect via resistor to VCC (pull-up)
AVCC	Connect to VCC
AVSS, VREF	Connect to VSS

NOTES:

- When setting the port for output mode and leave it open, be aware that the port remains in input mode until it is switched to output mode in a program after reset. For this reason, the voltage level on the pin becomes indeterminate, causing the power supply current to increase while the port remains in input mode.
 - Furthermore, by considering a possibility that the contents of the direction registers could be changed by noise or noise-induced runaway, it is recommended that the contents of the direction registers be periodically reset in software, for the increased reliability of the program.
- 2. Make sure the unused pins are processed with the shortest possible wiring from the microcomputer pins (within 2 cm).
- 3. If the CNVSS pin has the VSS level applied to it, these pins are set for input ports until the processor mode is switched over in a program after reset. For this reason, the voltage levels on these pins become indeterminate, causing the power supply current to increase while they remain set for input ports.
- 4. When the ports P7_0 and P7_1 are set for output mode, make sure a low-level signal is output from the pins.
 - The ports P7_0 and P7_1 are N-channel open-drain outputs.
- 5. With external clock input to XIN pin.
- 6. If the PM07 bit in the PM0 register is set to "1" (BCLK not output), connect this pin to VCC via a resistor (pulled high).

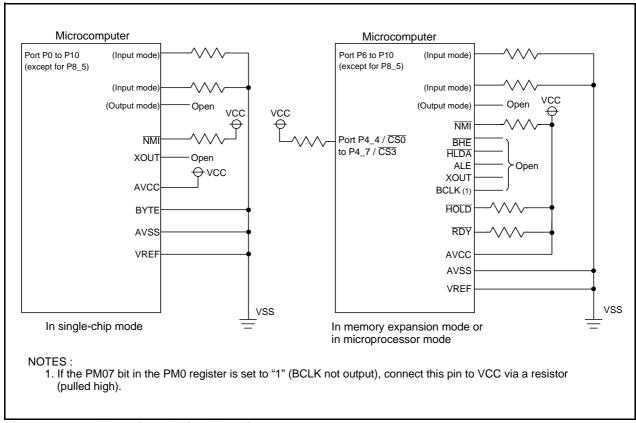


Figure 18.11 Unassigned Pins Handling

19. Flash Memory Version

Aside from the built-in flash memory, the flash memory version microcomputer has the same functions as the masked ROM version.

In the flash memory version, the flash memory can perform in three rewrite modes: CPU rewrite mode, standard serial I/O mode and parallel I/O mode.

Table 19.1 lists specifications of the flash memory version. See Table 1.1 Performance Outline of M16C/30P **Group** for the items not listed in Table 19.1.

Table 19.1 Flash Memory Version Specifications

Item		Specification	
Flash Memory Rewrite Mode		3 modes (CPU rewrite, standard serial I/O, parallel I/O)	
Erase Block	User ROM Area	See Figure 19.1 Flash Memory Block Diagram	
	Boot ROM Area	1 block (4 Kbytes) (1)	
Program Method		In units of word	
Erase Method		Block erase	
Program and Erase Control Method		Program and erase controlled by software command	
Protect Method		The lock bit protects each block	
Number of Commands		8 commands	
Program and Erase Endurance		100 times ⁽²⁾	
Data Retention		10 years	
ROM Code Protection		Parallel I/O and standard serial I/O modes are supported	

NOTES:

- 1. The boot ROM area contains a standard serial I/O mode rewrite control program which is stored in it when shipped from the factory. This area can only be rewritten in parallel input/output mode.
- 2. Definition of program and erase endurance

The programming and erasure times are defined to be per-block erasure times. For example, assume a case where a 4-Kbyte block A is programmed in 2,048 operations by writing one word at a time and erased thereafter.

In this case, the block is reckoned as having been programmed and erased once. If a product is 100 times of programming and erasure, each block in it can be erased up to 100 times.

Table 19.2 Flash Memory Rewrite Modes Overview

Flash Memory Rewrite Mode	CPU rewrite Mode	Standard Serial I/O Mode	Parallel I/O Mode
Function	The User ROM area is rewritten when the CPU executes software commands. EW0 mode: Rewrite in areas other than flash memory (1) EW1 mode: Can be rewritten in the flash memory	The user ROM area is rewritten using a dedicated serial programmer. Standard serial I/O mode 1: Clock synchronous serial I/O Standard serial I/O mode 2: UART	The boot ROM area and user ROM area is rewritten using a dedicated parallel programmer.
Areas which can be Rewritten	User ROM area	User ROM area	User ROM area Boot ROM area
Operating Mode	Single-chip mode Memory expansion mode (EW0 mode) Boot mode (EW0 mode)	Boot mode	Parallel I/O mode
ROM Programmer	None	Serial programmer	Parallel programmer

NOTES:

1. When in CPU mode, the PM10 bit in the PM1 register is set to "1". Execute the rewrite control program in the internal RAM or in an external area usable when the PM10 bit is "1".

19.1 Memory Map

The flash memory contains the user ROM area and the boot ROM area. The user ROM area has space to store the microcomputer operating program in single-chip mode or memory expansion mode and a separate 4-Kbyte space as the block A. Figure 19.1 shows a Flash Memory Block Diagram.

The user ROM area is divided into several blocks, each of which can be protected (locked) from program or erase. The user ROM area can be rewritten in CPU rewrite, standard serial I/O and parallel I/O modes.

Block A is enabled for use by setting the PM10 bit in the PM1 register to "1" (block A enabled, CS2 area at addresses 10000h to 26FFFh).

The boot ROM area is located at the same addresses as the user ROM area. It can only be rewritten in parallel I/O mode (refer to **19.1.1 Boot Mode**). A program in the boot ROM area is executed after a hardware reset occurs while an "H" signal is applied to the CNVSS and P5_0 pins and an "L" signal is applied to the P5_5 pin (refer to **19.1.1 Boot Mode**). A program in the user ROM area is executed after a hardware reset occurs while an "L" signal is applied to the CNVSS pin. However, the boot ROM area cannot be read.

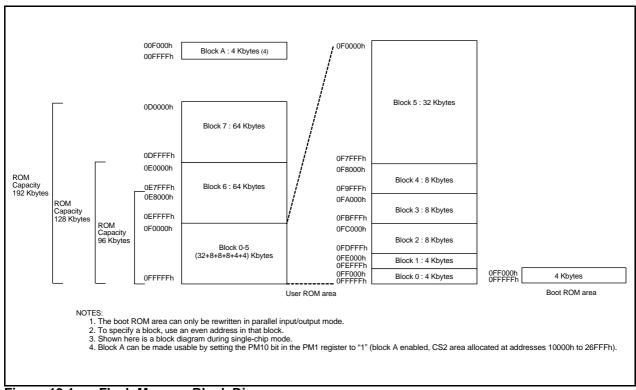


Figure 19.1 Flash Memory Block Diagram

19.1.1 Boot Mode

The microcomputer enters boot mode when a hardware reset occurs while an "H" signal is applied to the CNVSS and P5_0 pins and an "L" signal is applied to the P5_5 pin. A program in the boot ROM area is executed.

In boot mode, the FMR05 bit in the FMR0 register selects access to the boot ROM area or the user ROM area. The rewrite control program for standard serial I/O mode is stored in the boot ROM area before shipment. The boot ROM area can be rewritten in parallel I/O mode only. If any rewrite control program using erase-write mode (EW0 mode) is written in the boot ROM area, the flash memory can be rewritten according to the system implemented.

19.2 Functions To Prevent Flash Memory from Rewriting

The flash memory has a built-in ROM code protect function for parallel I/O mode and a built-in ID code check function for standard I/O mode to prevent the flash memory from reading or rewriting.

19.2.1 ROM Code Protect Function

The ROM code protect function inhibits the flash memory from being read or rewritten during parallel input/output mode. Figure 19.2 shows the ROMCP Address. The ROMCP address is located in the user ROM area. The ROM code protect function is enabled when the ROMCR bits are set to other than "11b". In this case, set the bit 5 to bit 0 to "1111111b".

When exiting ROM code protect, erase the block including the ROMCP address by the CPU rewrite mode or the standard serial I/O mode.

19.2.2 ID Code Check Function

Use the ID code check function in standard serial I/O mode. The ID code sent from the serial programmer is compared with the ID code written in the flash memory for a match. If the ID codes do not match, commands sent from the serial programmer are not accepted. However, if the four bytes of the reset vector are "FFFFFFFF", ID codes are not compared, allowing all commands to be accepted.

The ID codes are 7-byte data stored consecutively, starting with the first byte, into addresses 0FFFDFh, 0FFFE3h, 0FFFEBh, 0FFFEBh, 0FFFFFh, 0FFFF7h, and 0FFFFBh. The flash memory must have a program with the ID codes set in these addresses.

Figure 19.3 shows address for ID code stored.

Reserved character sequence of the ASCII codes: "A", "L", "e", "R", "A", "S", and "E" are used for forced erase function. Table 19.3 lists reserved character sequence.

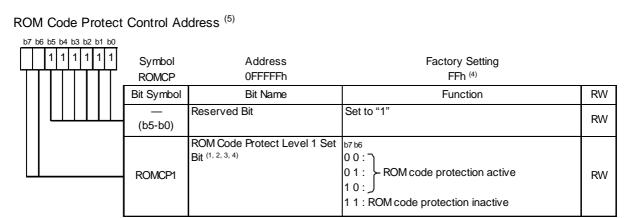
When the ID codes stored in the ID code addresses in the user ROM area are set to the ASCII codes: "A", "L", "e", "R", "A", "S", and "E" as the combination table listed in Table 19.3, forced erase function becomes active. Use the sequence only when forced erase function is necessary.

Table 19.3 Reserved Character Sequence (Reserved Word)

ID Code Address		ID Code
		Hexadecimal Code (ASCII)
FFFDFh	ID1	41h (A)
FFFE3h	ID2	4Ch (L)
FFFEBh	ID3	65h (e)
FFFEFh	ID4	52h (R)
FFFF3h	ID5	41h (A)
FFFF7h	ID6	53h (S)
FFFFBh	ID7	45h (E)

Reserve word for forced erase function: A set of reserved characters that match all the ID code addresses in sequence as the combination table listed in Table 19.3.

19.2.3 Forced Erase Function


This function is available only in standard serial I/O mode.

When the reserved characters, "A", "L", "e", "R", "A", "S", and "E" in ASCII code, are sent from the serial programmer as ID codes, the content of the user ROM area will be erased at once. However, if the ID codes stored in the ID code addresses in the user ROM area are set to other than a reserved word "ALeRASE" (other than the combination table listed in Table 19.3) when the ROMCP bit in the ROMCP address is set to other than 11b (ROM code protect enabled), forced erase function is ignored and ID code check is executed. Table 19.4 lists conditions and functions for forced erase function.

When both the ID codes sent from the serial programmer and the ID codes stored in the ID code addresses correspond to the reserved word ALeRASE", the user ROM area will be erased. However, when the serial programmer sends other than "ALeRASE", even if the ID codes stored in the ID code addresses are "ALeRASE", there is no ID match and any command is ignored. The user ROM area remains protected accordingly.

Table 19.4 Forced Erase Function

	Condition		Function
ID code from	Code in ID code	ROMCP1 bit in the	
serial program-	stored address	ROMCP address	
mer			
ALeRASE	ALeRASE	-	User ROM area all erase (forced erase
	Other than	11b (ROM code pro-	function)
	ALeRASE	tect disabled)	
		00b, 01b, 10b (ROM	ID code check
		code protect enabled)	
Other than	ALeRASE	-	ID code check (no ID match)
ALeRASE	Other than	_	ID code check
	ALeRASE		

- NOTES:
 - 1. When the ROM code protection is active by the ROMCP1 bit setting, the flash memory is protected against reading or rew riting in parallel I/O mode.
 - 2. Set the bit 5 to bit 0 to "111111b" when the ROMCP1 bit is set to a value other than "11b".

 If the bit 5 to bit 0 are set to values other than "111111b", the ROM code protection may not become active by setting the ROMCP1 bit to a value other than "11b".
 - 3. To make the ROM code protection inactive, erase a block including the ROMCP address in standard serial I/O mode or CPU rew rite mode.
 - 4. The ROMCP address is set to "FFh" when a block, including the ROMCP address, is erased.
 - 5. When a value of the ROMCP address is "00h" or "FFh", the ROM code protect function is disabled.

Figure 19.2 ROMCP Address

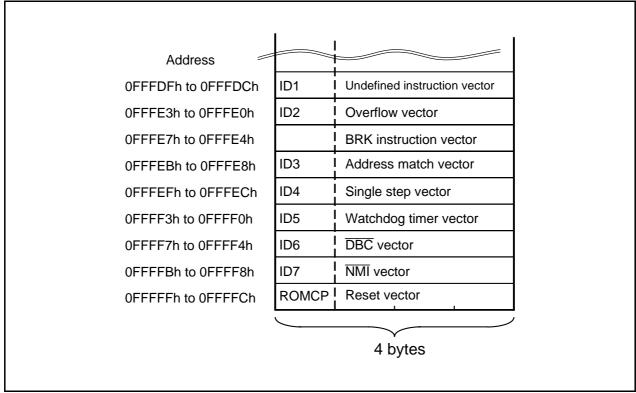


Figure 19.3 Address for ID Code Stored

19.3 **CPU Rewrite Mode**

In CPU rewrite mode, the user ROM area can be rewritten when the CPU executes software commands.

The user ROM area can be rewritten with the microcomputer mounted on a board without using a parallel or serial programmer.

In CPU rewrite mode, only the user ROM area shown in Figure 19.1 can be rewritten. The boot ROM area cannot be rewritten. Program and the block erase command are executed only in the user ROM area.

Erase-write 0 (EW0) mode and erase-write 1 (EW1) mode are provided as CPU rewrite mode. Table 19.5 lists differences between erase-write 0 (EW0) and erase-write 1 (EW1) modes.

EW0 Mode and EW1 Mode **Table 19.5**

Item	EW0 Mode	EW1 Mode
Operating Mode	Single-chip mode	Single-chip mode
	Memory expansion mode	
	Boot mode	
Space where the	User ROM area	User ROM area
rewrite control	Boot ROM area	
program can be		
placed		
Space where the	The rewrite control program must be	The rewrite control program can be
rewrite control	transferred to any space other than the	executed in the user ROM area
program can be	flash memory (e.g., RAM) before being	
executed	executed (2)	
Space which can be	User ROM area	User ROM area
rewritten		However, this excludes blocks with the
		rewrite control program
Software Command	None	Program and block erase commands
Restriction		cannot be executed in a block having
		the rewrite control program.
		Read status register command cannot
		be used.
Mode after Program	Read status register mode	Read array mode
or Erasing		
CPU State during	Operating	Maintains hold state (I/O ports maintains
Auto Write and Auto		the state before the command was
Erase		executed) (1)
Flash Memory State	• Read the FMR00, FMR06 and FMR07	Read the FMR00, FMR06 and FMR07
Detection	bits in the FMR0 register by program	bits in the FMR0 register by program
	Execute the read status register	
	command to read the SR7, SR5 and	
	SR4 bits in the status register.	

NOTES:

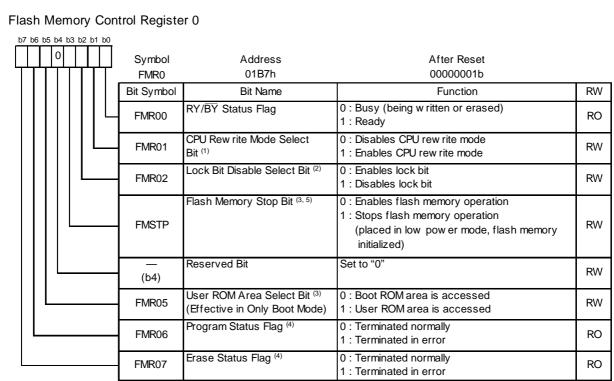
- 1. Do not generate an interrupt (except $\overline{\text{NMI}}$ interrupt) or DMA transfer.
- 2. When in CPU mode, the PM10 bit in the PM1 register is set to "1". Execute the rewrite control program in the internal RAM or in an external area usable when the PM10 bit is "1".

19.3.1 EW0 Mode

The microcomputer enters CPU rewrite mode by setting the FMR01 bit in the FMR0 register to "1" (CPU rewrite mode enabled) and is ready to accept commands. EW0 mode is selected by setting the FMR11 bit in the FMR1 register to "0". To set the FMR01 bit to "1", set to "1" after first writing "0".

The software commands control programming and erasing. The FMR0 register or the status register indicates whether a program or erase operation is completed as expected or not.

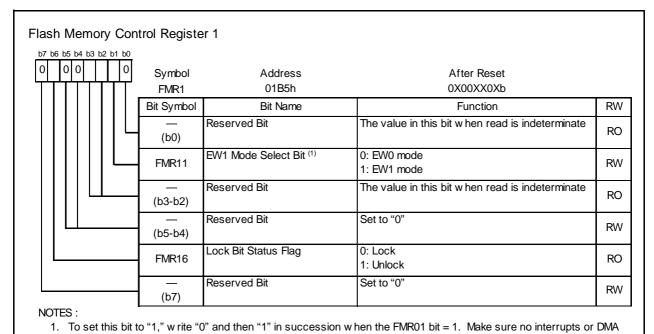
19.3.2 EW1 Mode


EW1 mode is selected by setting the FMR11 bit to "1" after the FMR01 bit is set to "1". (Both bits must be set to "0" first before setting to "1".)

The FMR0 register indicates whether or not a program or erase operation has been completed as expected. The status register cannot be read in EW1 mode.

When an erase/program operation is initiated the CPU halts all program execution until the operation is completed or erase-suspend is requested.

19.3.3 Flash Memory Control Register (FMR0 and FMR1 registers)


Figure 19.4 to Figure 19.5 show the FMR0 and FMR1 Registers.

NOTES:

- 1. To set this bit to "1," w rite "0" and then "1" in succession. Make sure no interrupts or DMA transfers will occur before writing "1" after writing "0".
 - Write to this bit when the NMI pin is in the high state. Also, while in EW0 mode, write to this bit from a program in than the flash memory.
 - Enter read array mode and set this bit to "0".
- 2. To set this bit to "1," write "0" and then "1" in succession when the FMR01 bit = 1. Make sure no interrupts or no DMA transfers will occur before writing "1" after writing "0". Write to this bit when the $\overline{\text{NMI}}$ pin is in the high state.
- 3. Write to this bit from a program in other than the flash memory.
- 4. This flag is cleared to "0" by executing the Clear Status command.
- 5. Effective when the FMR01 bit = 1 (CPU rew rite mode). If the FMR01 bit = 0, although the FMR03 bit can be set to "1" by writing "1" in a program, the flash memory is neither placed in low power mode nor initialized.
- 6. This status includes w riting or reading with the Lock Bit Program or Read Lock Bit Status command.

Figure 19.4 FMR0 Register

transfers will occur before writing "1" after writing "0". Write to this bit when the $\overline{\mbox{NMI}}$ pin is in the high state.

The FMR01 and FMR11 bits both are cleared to "0" by setting the FMR01 bit to "0".

Figure 19.5 FMR1 Register

19.3.3.1 FMR00 Bit

This bit indicates the flash memory operating state. It is set to "0" while the program, block erase, lock bit program, or read lock bit status command is being executed; otherwise, it is set to "1".

19.3.3.2 FMR01 Bit

The microcomputer can accept commands when the FMR01 bit is set to "1" (CPU rewrite mode). Set the FMR05 bit to "1" (user ROM area access) as well if in boot mode.

19.3.3.3 FMR02 Bit

The lock bit is disabled by setting the FMR02 bit to "1" (lock bit disabled). (Refer to **19.3.6 Data Protect Function**.) The lock bit is enabled by setting the FMR02 bit to "0" (lock bit enabled).

The FMR02 bit does not change the lock bit status but disables the lock bit function. If the block erase command is executed when the FMR02 bit is set to "1", the lock bit status changes "0" (locked) to "1" (unlocked) after command execution is completed.

19.3.3.4 FMSTP Bit

The FMSTP bit resets the flash memory control circuits and minimizes power consumption in the flash memory. Access to the flash memory is disabled when the FMSTP bit is set to "1". Set the FMSTP bit by program in a space other than the flash memory.

- Set the FMSTP bit to "1" if one of the followings occurs: A flash memory access error occurs while erasing or programming in EW0 mode (FMR00 bit does not switch back to "1" (ready)).
- Low-power consumption mode is entered

Use the following procedure to change the FMSTP bit setting.

To stop the flash memory,

- (1) Set the FMSTP bit to "1"
- (2) Set tps (the wait time to stabilize flash memory circuit)

To restart the flash memory,

- (1) Set the FMSTP bit to "0"
- (2) Set tps (the wait time to stabilize flash memory circuit)

Figure 19.8 shows a Flow Chart Illustrating How To Start and Stop the Flash Memory Processing Before and After Low Power Dissipation Mode. Follow the procedure on this flow chart.

When entering stop or wait mode, the flash memory is automatically turned off. When exiting stop or wait mode, the flash memory is turned back on. The FMR0 register does not need to be set.

19.3.3.5 FMR05 Bit

This bit selects the boot ROM or user ROM area in boot mode. Set to "0" to access (read) the boot ROM area or to "1" (user ROM access) to access (read, write or erase) the user ROM area.

19.3.3.6 FMR06 Bit

This is a read-only bit indicating an auto program operation state. The FMR06 bit is set to "1" when a program error occurs; otherwise, it is set to "0". Refer to 19.3.8 Full Status Check.

19.3.3.7 FMR07 Bit

This is a read-only bit indicating the auto erase operation status. The FMR07 bit is set to "1" when an erase error occurs; otherwise, it is set to "0". For details, refer to **19.3.8 Full Status Check**.

19.3.3.8 FMR11 Bit

EW0 mode is entered by setting the FMR11 bit to "0" (EW0 mode). EW1 mode is entered by setting the FMR11 bit to "1" (EW1 mode).

19.3.3.9 FMR16 Bit

This is a read-only bit indicating the execution result of the read lock bit status command.

When the block, where the read lock bit status command is executed, is locked, the FMR16 bit is set to "0".

When the block, where the read lock bit status command is executed, is unlocked, the FMR16 bit is set to "1".

Figure 19.6 shows Setting and Resetting of EW0 Mode. Figure 19.7 show Setting and Resetting of EW1 Mode.

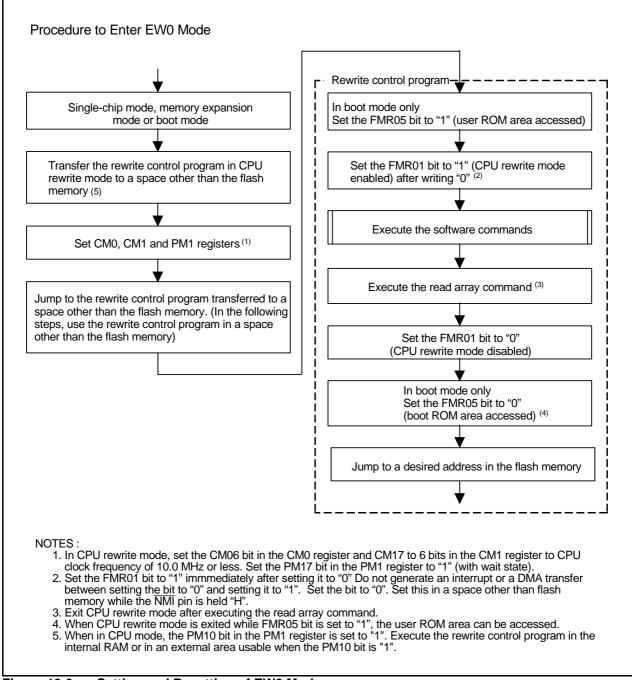


Figure 19.6 Setting and Resetting of EW0 Mode

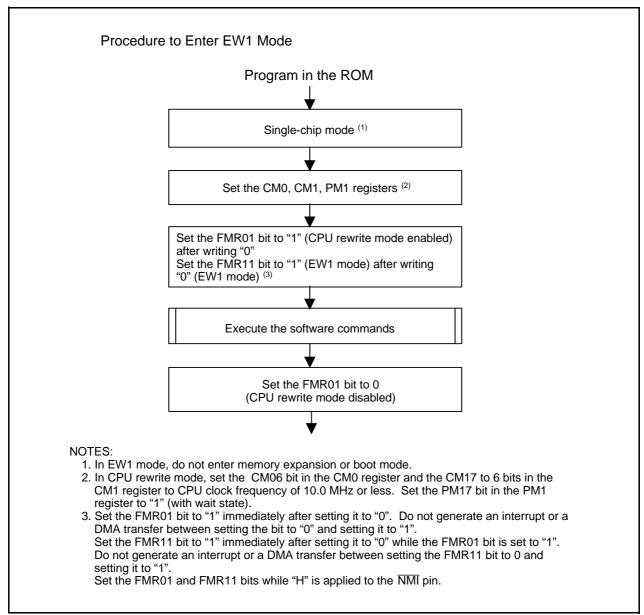


Figure 19.7 Setting and Resetting of EW1 Mode

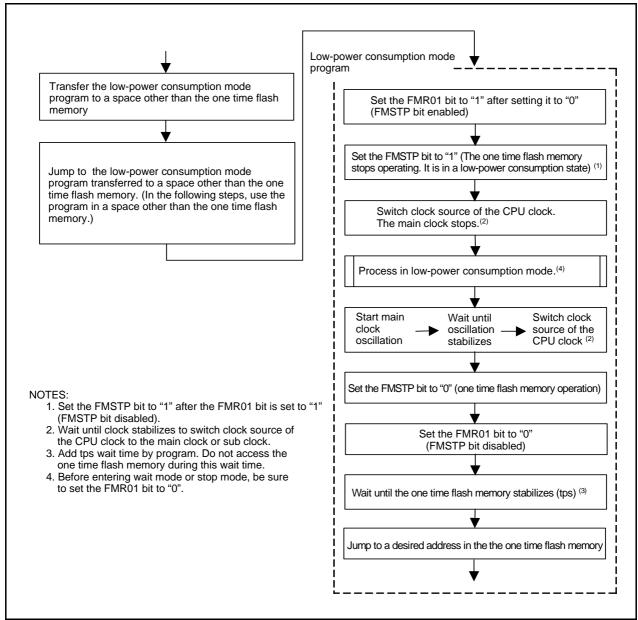


Figure 19.8 Processing Before and After Low Power Dissipation Mode

19.3.4 Precautions on CPU Rewrite Mode

19.3.4.1 Operating Speed

Set the CM06 bit in the CM0 register and the CM17 to CM16 bits in the CM1 register to a CPU clock frequency of 10 MHz or less before entering CPU rewrite mode (EW0 or EW1 mode). Also, set the PM17 bit in the PM1 register to "1" (wait state).

19.3.4.2 Prohibited Instructions

The following instructions cannot be used in EW0 mode because the CPU tries to read data in the flash memory: the UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction.

19.3.4.3 Interrupts (EW0 mode)

- To use interrupts having vectors in a relocatable vector table, the vectors must be relocated to the RAM area.
- The $\overline{\text{NMI}}$ and watchdog timer interrupts are available since the FMR0 and FMR1 registers are forcibly reset when either interrupt occurs. Allocate the jump addresses for each interrupt service routines to the fixed vector table. Flash memory rewrite operation is suspended when the $\overline{\text{NMI}}$ or watchdog timer interrupt occurs. Execute the rewrite program again after exiting the interrupt routine.
- The address match interrupt is not available since the CPU tries to read data in the flash memory.

19.3.4.4 Interrupts (EW1 mode)

- Do not acknowledge any interrupts with vectors in the relocatable vector table or address match interrupt during the auto program or auto erase period.
- Do not use the watchdog timer interrupt.
- The $\overline{\text{NMI}}$ interrupt is available since the FMR0 and FMR1 registers are forcibly reset when the interrupt occurs. Allocate the jump address for the interrupt service routine to the fixed vector table. Flash memory rewrite operation is suspended when the $\overline{\text{NMI}}$ interrupt occurs. Execute the rewrite program again after exiting the interrupt service routine.

19.3.4.5 How to Access

To set the FMR01, FMR02 or FMR11 bit to "1", write "1" after first setting the bit to "0". Do not generate an interrupt or a DMA transfer between the instruction to set the bit to "0" and the instruction to set the bit to "1". Set the bit while an "H" signal is applied to the $\overline{\text{NMI}}$ pin.

19.3.4.6 Rewriting in the User ROM Area (EW0 mode)

If the supply voltage drops while rewriting the block where the rewrite control program is stored, the flash memory cannot be rewritten because the rewrite control program is not correctly rewritten. If this error occurs, rewrite the user ROM area while in standard serial I/O mode or parallel I/O mode.

19.3.4.7 Rewriting in the User ROM Area (EW1 mode)

Avoid rewriting any block in which the rewrite control program is stored.

19.3.4.8 DMA Transfer

In EW1 mode, do not perform a DMA transfer while the FMR00 bit in the FMR0 register is set to "0" (auto programming or auto erasing).

19.3.4.9 Writing Command and Data

Write commands and data to even addresses in the user ROM area.

19.3.4.10 Wait Mode

When entering wait mode, set the FMR01 bit to "0" (CPU rewrite mode disabled) before executing the WAIT instruction.

19.3.4.11 Stop Mode

When entering stop mode, the following settings are required:

• Set the FMR01 bit to "0" (CPU rewrite mode disabled). Disable DMA transfer before setting the CM10 bit to "1" (stop mode).

19.3.4.12 Low-Power Consumption Mode

If the CM05 bit is set to "1" (main clock stopped), do not execute the following commands:

- Program
- Block erase
- Lock bit program
- Read lock bit status

19.3.5 Software Commands

Software commands are described below. The command code and data must be read and written in 16-bit units, to and from even addresses in the user ROM area. When writing command code, the 8 high-order bits (D15 to D8) are ignored.

Table 19.6 Software Commands

	First Bus Cycle			Second Bus Cycle		
Command	Mode	Address	Data (D15 to D0)	Mode	Address	Data (D15 to D0)
Read Array	Write	X	xxFFh			
Read Status Register	Write	Х	xx70h	Read	Х	SRD
Clear Status Register	Write	Х	xx50h			
Program	Write	WA	xx40h	Write	WA	WD
Block Erase	Write	Х	xx20h	Write	BA	xxD0h
Lock Bit Program	Write	BA	xx77h	Write	BA	xxD0h
Read Lock Bit Status	Write	X	xx71h	Write	BA	xxD0h

SRD: Data in the SRD register (D7 to D0)

WA: Address to be written (The address specified in the first bus cycle is the same even address as the address specified in the second bus cycle.)

WD: 16-bit write data

BA: Highest-order block address (must be an even address)

X: Any even address in the user ROM space xx: 8 high-order bits of command code (ignored)

19.3.5.1 Read Array Command (FFh)

The read array command reads the flash memory.

By writing command code "xxFFh" in the first bus cycle, read array mode is entered. Content of a specified address can be read in 16-bit units after the next bus cycle.

The microcomputer remains in read array mode until another command is written. Therefore, contents from multiple addresses can be read consecutively.

19.3.5.2 Read Status Register Command (70h)

The read status register command reads the status register (refer to 19.3.7 Status Register for detail).

By writing command code "xx70h" in the first bus cycle, the status register can be read in the second bus cycle. Read an even address in the user ROM area.

Do not execute this command in EW1 mode.

19.3.5.3 Clear Status Register Command (50h)

The clear status register command clears the status register. By writing "xx50h" in the first bus cycle, the FMR07 to FMR06 bits in the FMR0 register are set to "00b" and the SR5 to SR4 bits in the status register are set to "00b".

19.3.5.4 **Program Command (40h)**

The program command writes 2-byte data to the flash memory. By writing "xx40h" in the first bus cycle and data to the write address in the second bus cycle, an auto program operation (data program and verify) will start. The address value specified in the first bus cycle must be the same even address as the write address specified in the second bus cycle.

The FMR00 bit in the FMR0 register indicates whether an auto program operation has been completed. The FMR00 bit is set to "0" (busy) during auto program and to "1" (ready) when an auto program operation is completed.

After the completion of an auto program operation, the FMR06 bit in the FMR0 register indicates whether or not the auto program operation has been completed as expected. (Refer to **19.3.8 Full Status Check**.)

An address that is already written cannot be altered or rewritten. Figure 19.9 shows a Flow Chart of the Program Command Programming.

The lock bit protects each block from being programmed inadvertently. (Refer to 19.3.6 Data Protect Function.)

In EW1 mode, do not execute this command on the block where the rewrite control program is allocated. In EW0 mode, the microcomputer enters read status register mode as soon as an auto program operation starts. The status register can be read. The SR7 bit in the status register is set to "0" at the same time an auto program operation starts. It is set to "1" when auto program operation is completed. The microcomputer remains in read status register mode until the read array command is written. After completion of an auto program operation, the status register indicates whether or not the auto program operation has been completed as expected.

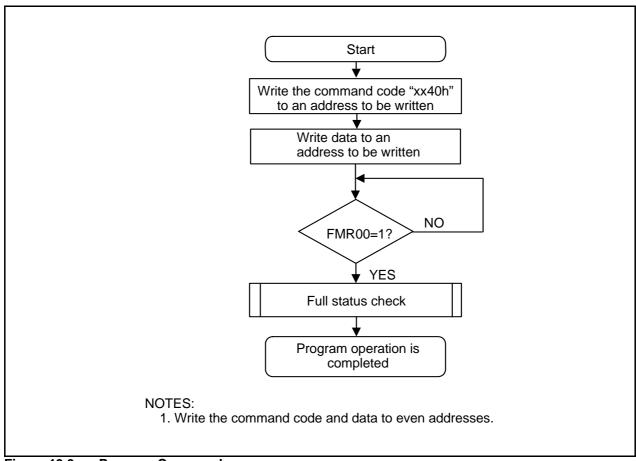


Figure 19.9 Program Command

19.3.5.5 Block Erase Command

The block erase command erases each block.

By writing "xx20h" in the first bus cycle and "xxD0h" to the highest-order even address of a block in the second bus cycle, an auto erase operation (erase and verify) will start in the specified block.

The FMR00 bit in the FMR0 register indicates whether an auto erase operation has been completed.

The FMR00 bit is set to "0" (busy) during auto erase and to "1" (ready) when the auto erase operation is completed.

After the completion of an auto erase operation, the FMR07 bit in the FMR0 register indicates whether or not the auto erase operation has been completed as expected. (Refer to **19.3.8 Full Status Check**.)

Figure 19.10 shows a Flow Chart of the Block Erase Command Programming.

The lock bit protects each block from being programmed inadvertently. (Refer to 19.3.6 Data Protect Function.)

In EW1 mode, do not execute this command on the block where the rewrite control program is allocated. In EW0 mode, the microcomputer enters read status register mode as soon as an auto erase operation starts. The status register can be read. The SR7 bit in the status register is set to "0" at the same time an auto erase operation starts. It is set to "1" when an auto erase operation is completed. The microcomputer remains in read status register mode until the read array command or read lock bit status command is written. Also execute the clear status register command and block erase command at least 3 times until an erase error is not generated when an erase error is generated.

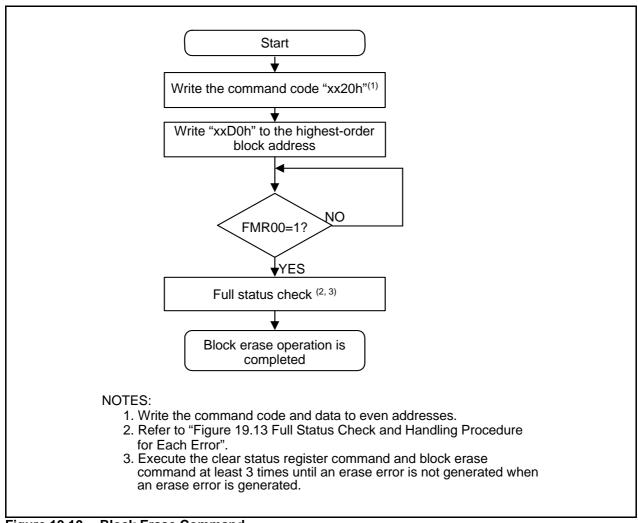


Figure 19.10 Block Erase Command

19.3.5.6 Lock Bit Program Command

The lock bit program command sets the lock bit for a specified block to "0" (locked).

By writing "xx77h" in the first bus cycle and "xxD0h" to the highest-order even address of a block in the second bus cycle, the lock bit for the specified block is set to "0". The address value specified in the first bus cycle must be the same highest-order even address of a block specified in the second bus cycle.

Figure 19.11 shows a Flow Chart of the Lock Bit Program Command Programming. Execute read lock bit status command to read lock bit state (lock bit data).

The FMR00 bit in the FMR0 register indicates whether a lock bit program operation is completed.

Refer to 19.3.6 Data Protect Function for details on lock bit functions and how to set it to "1" (unlocked).

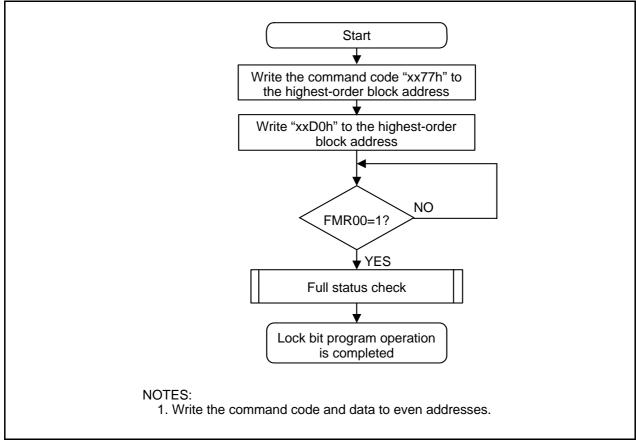


Figure 19.11 Lock Bit Program Command

19.3.5.7 Read Lock Bit Status Command (71h)

The read lock bit status command reads the lock bit state of a specified block.

By writing "xx71h" in the first bus cycle and "xxD0h" to the highest-order even address of a block in the second bus cycle, the FMR16 bit in the FMR1 register stores information on whether or not the lock bit of a specified block is locked. Read the FMR16 bit after the FMR00 bit in the FMR0 register is set to "1" (ready). Figure 19.12 shows a Flow Chart of the Read Lock Bit Status Command Programming.

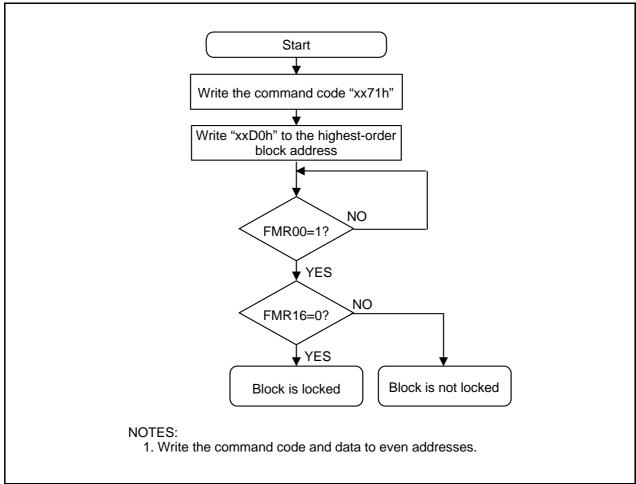


Figure 19.12 Read Lock Bit Status Command

19.3.6 Data Protect Function

Each block in the flash memory has a nonvolatile lock bit. The lock bit is enabled by setting the FMR02 bit to "0" (lock bit enabled). The lock bit allows each block to be individually protected (locked) against program and erase. This helps prevent data from being inadvertently written to or erased from the flash memory.

- When the lock bit status is set to "0", the block is locked (block is protected against program and erase).
- When the lock bit status is set to "1", the block is not locked (block can be programmed or erased).

The lock bit status is set to "0" (locked) by executing the lock bit program command and to "1" (unlocked) by erasing the block. The lock bit status cannot be set to "1" by any commands.

The lock bit status can be read by the read lock bit status command.

The lock bit function is disabled by setting the FMR02 bit to "1". All blocks are unlocked. However, individual lock bit status remains unchanged. The lock bit function is enabled by setting the FMR02 bit to "0". Lock bit status is retained.

If the block erase command is executed while the FMR02 bit is set to "1", the target block is erased regardless of lock bit status. The lock bit status of each block are set to "1" after an erase operation is completed.

Refer to 19.3.5 Software Commands for details on each command.

19.3.7 Status Register

The status register indicates the flash memory operation state and whether or not an erase or program operation is completed as expected. The FMR00, FMR06 and FMR07 bits in the FMR0 register indicate status register states.

Table 19.7 shows the Status Register.

In EW0 mode, the status register can be read when the followings occur.

- Any even address in the user ROM area is read after writing the read status register command.
- Any even address in the user ROM area is read from when the program, block erase, or lock bit program command is executed until when the read array command is executed.

19.3.7.1 Sequence Status (SR7 and FMR00 Bits)

The sequence status indicates the flash memory operation state. It is set to "0" while the program, block erase, lock bit program, or read lock bit status command is being executed; otherwise, it is set to "1".

19.3.7.2 Erase Status (SR5 and FMR07 Bits)

Refer to 19.3.8 Full Status Check.

19.3.7.3 Program Status (SR4 and FMR06 Bits)

Refer to 19.3.8 Full Status Check.

Table 19.7 Status Register

Bits in Status	Bit in FMR0	Status name	Defin	Value after	
Register	Register	Status Harrie	"0"	"1"	Reset
SR0 (D0)	_	Reserved	_	_	_
SR1 (D1)	_	Reserved	-	-	_
SR2 (D2)	_	Reserved	-	-	_
SR3 (D3)	_	Reserved	_	-	_
SR4 (D4)	FMR06	Program status	Terminated normally	Terminated in error	0
SR5 (D5)	FMR07	Erase status	Terminated normally	Terminated in error	0
SR6 (D6)	_	Reserved	_	-	_
SR7 (D7)	FMR00	Sequencer status	Busy	Ready	1

- D0 to D7: These data buses are read when the read status register command is executed.
- The FMR07 bit (SR5) and FMR06 bit (SR4) are set to "0" by executing the clear status register
- When the FMR07 bit (SR5) or FMR06 bit (SR4) is set to "1," the program, block erase, and lock bit program commands are not accepted.

19.3.8 Full Status Check

If an error occurs when a program or erase operation is completed, the FMR06 to FMR07 bits in the FMR0 register are set to "1", indicating a specific error. Therefore, execution results can be confirmed by checking these bits (full status check).

Table 19.8 lists Errors and FMR0 Register State. Figure 19.13 shows a flow chart of the Full Status Check and Handling Procedure for Each Error.

Table 19.8 Errors and FMR0 Register State

FMR0 F	Register				
(Status Register) State		Error	Error Occurrence Conditions		
FMR07 bit	FMR06 bit	LIIOI	End Occurrence Conditions		
(SR5 bit)	(SR4 bit)				
		Command	Command is written incorrectly		
1	1	Sequence error	A value other than "xxD0h" or "xxFFh" is written in the		
'	Į.		second bus cycle of the lock bit program or block erase		
			command (1)		
		Erase error	The block erase command is executed on a locked block		
1	0		The block erase command is executed on an unlock		
			block and auto erase operation is not completed as		
			expected (2)		
		Program error	The program command is executed on locked blocks		
0	1		The program command is executed on unlocked blocks		
			but program operation is not completed as expected		
			The lock bit program command is executed but program		
			operation is not completed as expected (2)		

NOTES:

- 1. The flash memory enters read array mode by writing command code "xxFFh" in the second bus cycle of these commands. The command code written in the first bus cycle becomes invalid.
- 2. When the FMR02 bit is set to "1" (lock bit disabled), no error occurs even under the conditions above.

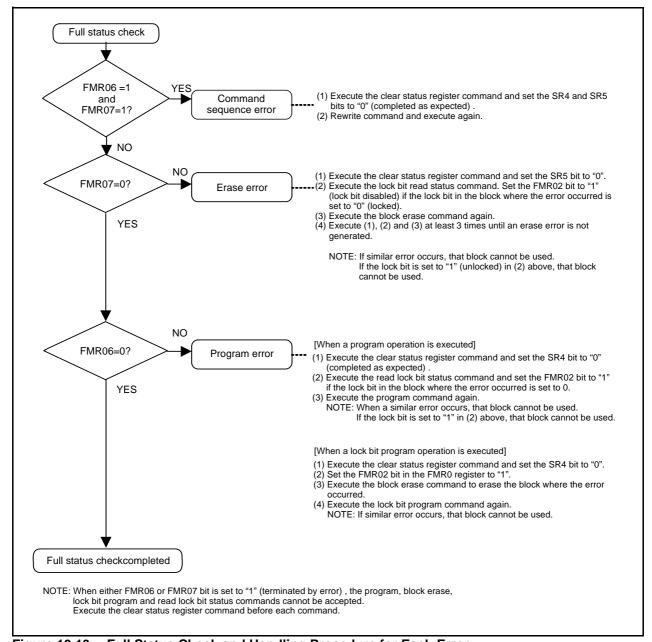


Figure 19.13 Full Status Check and Handling Procedure for Each Error

19.4 Standard Serial I/O Mode

In standard serial I/O mode, the serial programmer supporting the M16C/30P Group can be used to rewrite the flash memory user ROM area in the microcomputer mounted on a board.

For more information about the serial programmer, contact your serial programmer manufacturer. Refer to the user's manual included with your serial programmer for instructions.

Table 19.9 lists Pin Functions (Flash Memory Standard Serial I/O Mode). Figure 19.14 to Figure 19.15 show Pin Connections in Serial I/O Mode.

19.4.1 ID Code Check Function

The ID code check function determines whether the ID codes sent from the serial programmer matches those written in the flash memory. (Refer to 19.2 Functions To Prevent Flash Memory from Rewriting.)

Table 19.9 Pin Functions (Flash Memory Standard Serial I/O Mode)

Pin	Name	I/O	Description
VCC1, VCC2, VSS	Power Input		Apply the Flash Program, Erase Voltage to VCC1 pin and VCC2 pin. Apply 0 V to VSS pin.
CNVSS	CNVSS	I	Connect to VCC1 pin.
RESET	Reset Input	Ι	Reset input pin. While RESET pin is "L" level, input a 20 cycle or longer clock to XIN pin.
XIN	Clock Input	I	Connect a ceramic resonator or crystal oscillator between
XOUT	Clock Output	0	XIN and XOUT pins. To input an externally generated clock, input it to XIN pin and open XOUT pin.
BYTE	BYTE	I	Connect this pin to VCC1 or VSS.
AVCC, AVSS	Analog Power Supply Input		Connect AVSS to VSS and AVCC to VCC1, respectively.
VREF	Reference Voltage Input	_	Enter the reference voltage for A/D from this pin.
P0_0 to P0_7	Input Port P0	I	Input "H" or "L" level signal or open.
P1_0 to P1_7	Input Port P1		Input "H" or "L" level signal or open.
P2_0 to P2_7	Input Port P2	_	Input "H" or "L" level signal or open.
P3_0 to P3_7	Input Port P3	I	Input "H" or "L" level signal or open.
P4_0 to P4_7	Input Port P4	I	Input "H" or "L" level signal or open.
P5_1 to P5_4, P5_6, P5_7	Input Port P5	I	Input "H" or "L" level signal or open.
P5_0	CE Input	I	Input "H" level signal.
P5_5	EPM Input	I	Input "L" level signal.
P6_0 to P6_3	Input Port P6	I	Input "H" or "L" level signal or open.
P6_4/RTS1	BUSY Output	0	Standard serial I/O mode 1: BUSY signal output pin Standard serial I/O mode 2: Monitors the boot program operation check signal output pin.
P6_5/CLK1	SCLK Input	I	Standard serial I/O mode 1: Serial clock input pin Standard serial I/O mode 2: Input "L".
P6_6/RXD1	RXD Input	I	Serial data input pin.
P6_7/TXD1	TXD Input	0	Serial data output pin. (1)
P7_0 to P7_7	Input Port P7	I	Input "H" or "L" level signal or open.
P8_0 to P8_3, P8_6, P8_7	Input Port P8	I	Input "H" or "L" level signal or open.
P8_4	P8_4 input	I	Input "L" level signal. (2)
P8_5/NMI	NMI Input	I	Connect this pin to VCC1.
P9_0 to P9_7	Input Port P9	I	Input "H" or "L" level signal or open.
P10_0 to P10_7	Input Port P10	I	Input "H" or "L" level signal or open.

NOTES:

- 1. When using the standard serial I/O mode, the internal pull-up is enabled for the TXD1 (P6_7) pin while the RESET pin is "L".
- 2. When using the standard serial I/O mode, the P0_0 to P0_7, P1_0 to P1_7 pins may become indeterminate while the P8_4 pin is "H" and the RESET pin is "L". If this causes a program, apply "L" to the P8_4 pin.

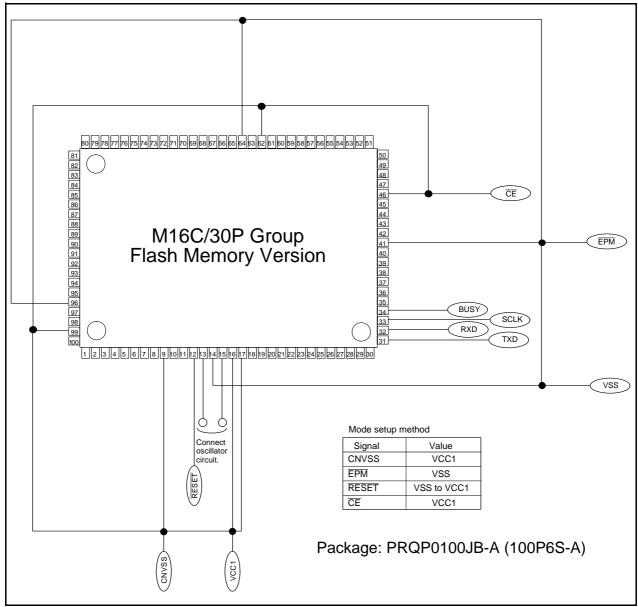


Figure 19.14 Pin Connections for Serial I/O Mode (1)

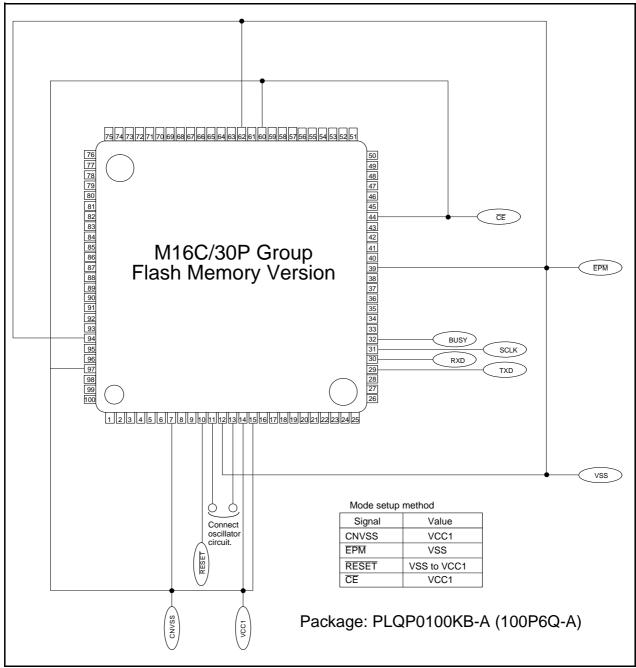


Figure 19.15 Pin Connections for Serial I/O Mode (2)

19.4.2 Example of Circuit Application in the Standard Serial I/O Mode

Figure 19.16 and Figure 19.17 show example of Circuit Application in Standard Serial I/O Mode 1 and Mode 2, respectively. Refer to the user's manual of your serial programmer to handle pins controlled by the serial programmer.

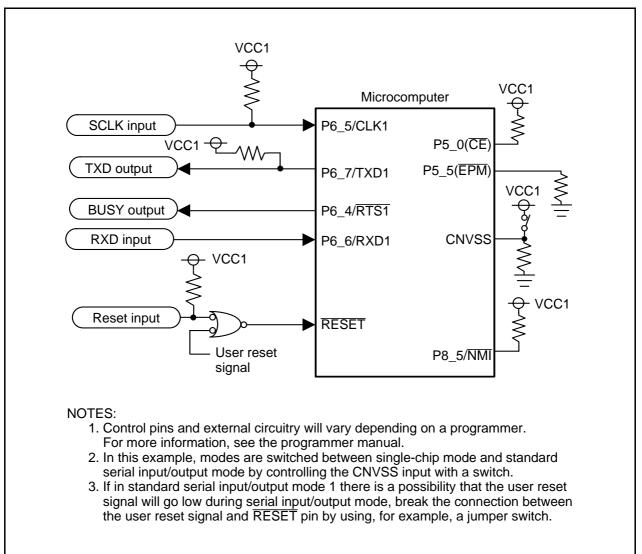


Figure 19.16 Circuit Application in Standard Serial I/O Mode 1

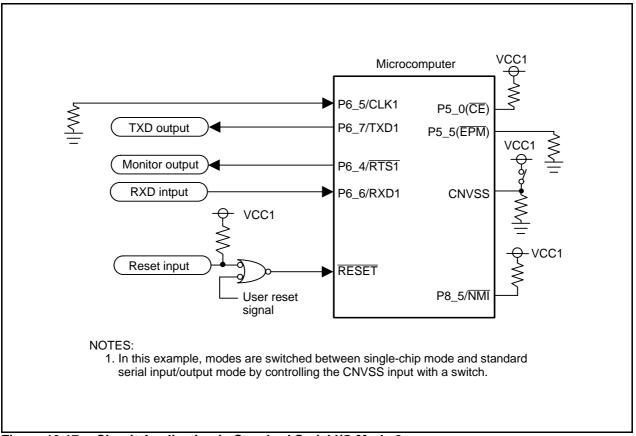


Figure 19.17 Circuit Application in Standard Serial I/O Mode 2

19.5 Parallel I/O Mode

In parallel I/O mode, the user ROM area and the boot ROM area can be rewritten by a parallel programmer supporting the M16C/30P Group. Contact your parallel programmer manufacturer for more information on the parallel programmer. Refer to the user's manual included with your parallel programmer for instructions.

19.5.1 User ROM and Boot ROM Areas

An erase block operation in the boot ROM area is applied to only one 4 Kbyte block. The rewrite control program in standard serial I/O mode is written in the boot ROM area before shipment. Do not rewrite the boot ROM area if using the serial programmer.

In parallel I/O mode, the boot ROM area is located in addresses 0FF000h to 0FFFFFh. Rewrite this address range only if rewriting the boot ROM area. (Do not access addresses other than addresses 0FF000h to 0FFFFFh.)

19.5.2 ROM Code Protect Function

The ROM code protect function prevents the flash memory from being read and rewritten in parallel I/O mode. (Refer to **19.2 Functions To Prevent Flash Memory from Rewriting**.)

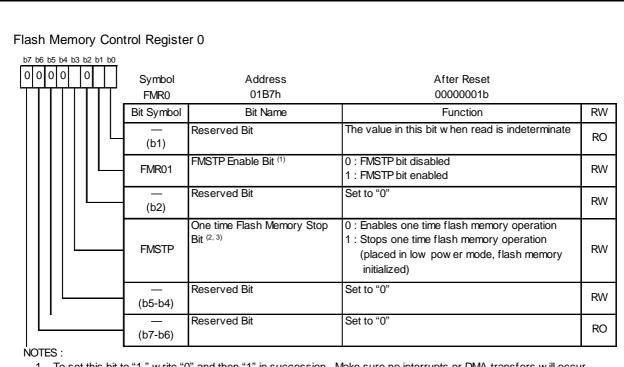
20. One Time Flash Version

The one time flash version microcomputer has the same functions as the masked ROM version except the built-in flash memory. The flash memory will be referred to as the one time flash memory in the one time flash version chapter. The one time flash memory can be written in standard serial I/O mode. It cannot be erased. Table 20.1 lists One Time Flash Memory Version Specifications. See **Table 1.1 Performance Outline of M16C/30P Group** for the items not listed in Table 20.1.

Table 20.1 One Time Flash Memory Version Specifications

Item	Specification	
Program Method	In units of word	
Program Endurance	1 time	
Data Retention	10 years	
ROM Code Protection	Parallel I/O modes and standard serial I/O modes are supported	

Table 20.2 One Time Flash Memory Rewrite Modes Overview


Flash Memory Rewrite Mode	Standard Serial I/O Mode	Parallel I/O Mode	
Function	The user ROM area is written using a dedicated serial programmer. Standard serial I/O mode 1: Clock synchronous serial I/O Standard serial I/O mode 2: UART	erial programmer. are rewritten using a dedicated parallel programmer. ronous serial I/O	
ROM Programmer	Serial programmer	Parallel programmer	

20.1 Low Consumption Mode

The one time flash memory version enters the low power consumption mode to reduce the power consumption by stopping the one time flash memory. Figure 20.1 shows the FMR0 Register in One Time Flash Memory and Figure 20.2 shows the processing before and after low power consumption mode.

To enter stop mode or wait mode, set the FMR01 bit in the FMR0 register to 0 (FMSTP bit disabled).

For models including the PM13 bit, when the FMR01 bit in the FMR0 register is 1 (FMSTP bit enabled), the PM13 bit in the PM1 register automatically becomes 1. Store the program to change the FMSTP bit either in external area that is usable when the PM13 bit is set to 1. When the FMR01 bit is changed to 0 (FMSTP bit disabled), the PM13 bit is set back to the value before the change. However, when the PM13 bit value is changed while the FMR01 bit is 1, the changed value is reflected after the FMR01 bit is set to 0. External area does not change depending on FMR01 bit status for models without the PM13 bit. Refer to **Figure 6.2 PM1 Register (1)** and **Figure 6.3 PM1 Register (2)** for availability of the PM13 bit in the PM1 Register.

- To set this bit to "1," w rite "0" and then "1" in succession. Make sure no interrupts or DMA transfers w ill occur before w riting "1" after w riting "0".
 Write to this bit w hen the NMI pin is in the high state.
- 2. Set this bit in a program area other than the one time flash memory area.
- 3. Effective when the FMR01 bit = 1 (FMSTP bit enabled). If the FMR01 bit = 0, although the FMSTP bit can be set to "1" by writing "1" by program, the one time flash memory is neither placed in low power mode nor initialized.

Figure 20.1 FMR0 Register in One Time Flash Version

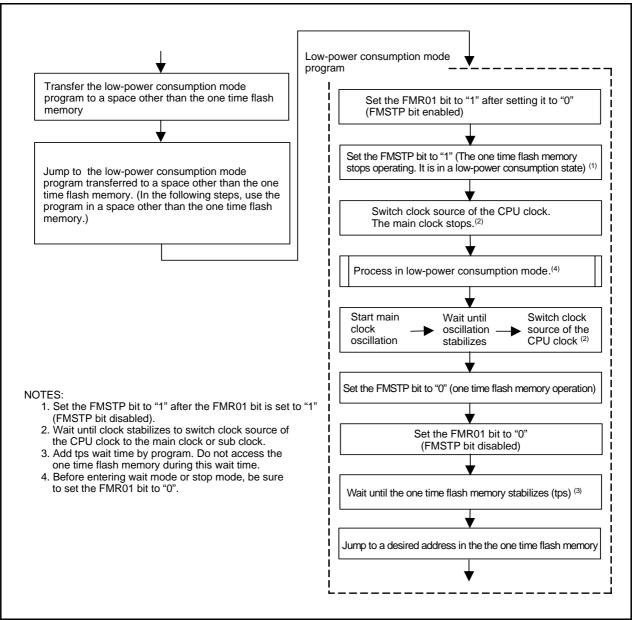


Figure 20.2 Processing Before and After Low Power Consumption Mode

20.2 Functions to Prevent One Time Flash Version from Being Read

Parallel I/O mode of one time flash has a ROM code protect function, and Standard I/O mode of one time flash has an ID code check function.

20.2.1 ROM Code Protect Function

The ROM code protect function prevents the one time flash being read in parallel I/O mode. The ROM code protect function is enabled when the address 0FFFFFh is set to "3Fh". The ROM code protect function is disabled when the address 0FFFFFh is set to "00h" or "FFh". Write a program with "3Fh", "00h" or "FFh" set in the address to one time flash version.

Table 20.3 lists the values and functions of the address 0FFFFh.

Table 20.3 The Values and Functions of Address 0FFFFFh

Set Value	Function	
3Fh	ROM code protect enabled	
00h	ROM code protect disabled	
FFh	- Now code protect disabled	
Other than the above	Do not set.	

20.2.2 ID Code Check Function

The ID code check function is used in standard serial I/O mode. The ID code sent from the serial programmer and the ID code written in the one time flash memory are checked to see if they match. If these ID codes do not match, the commands sent from the serial programmer are not acknowledged. However, if the four bytes of the reset vector are FFFFFFFFh, the ID code is not checked and all commands can be acknowledged.

The ID codes is 7-byte data stored consecutively, beginning with the first byte, into addresses 0FFFDFh, 0FFFE3h, 0FFFE8h, 0FFFE8h, 0FFFF8h, 0FFFF8h, oFFFF8h, oFFFF8h. Write a programs with the ID codes set at these addresses to the one time flash memory.

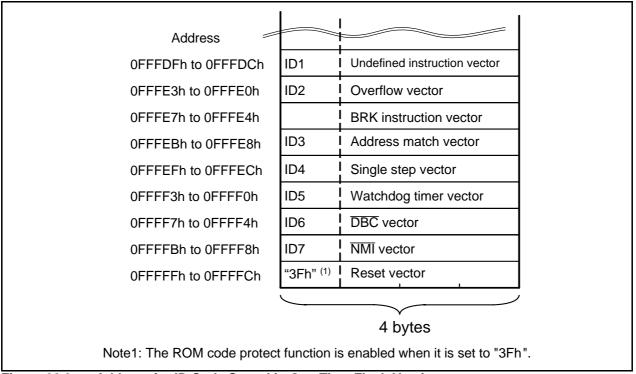


Figure 20.3 Address for ID Code Stored in One Time Flash Version

20.3 Standard Serial I/O Mode

In standard serial I/O mode, the serial programmer supporting the M16C/30P Group can be used to write (the one time flash memory) user ROM area in the microcomputer mounted on a board.

For more information about the serial programmer, contact your serial programmer manufacturer. Refer to the user's manual included with your serial programmer for instructions.

Table 20.4 lists Pin Functions (One Time Flash Memory Standard Serial I/O Mode). Figure 20.4 show Pin Connections for Serial I/O Mode.

20.3.1 ID Code Check Function

The ID code check function determines whether the ID codes sent from the serial programmer matches those written in the one time flash memory. (Refer to **20.2 Functions to Prevent One Time Flash Version from Being Read.**)

Table 20.4 Pin Functions (One Time Flash Memory Standard Serial I/O Mode)

Pin	Name	I/O	Description
VCC1, VCC2, VSS	Power Input		Apply the Flash Program Voltage to VCC1 pin and VCC2 pin. Apply 0 V to VSS pin.
CNVSS	CNVSS	I	Connect to VCC1 pin.
RESET	Reset Input	I	Reset input pin. While RESET pin is "L" level, input a 20 cycle or longer clock to XIN pin.
XIN	Clock Input	I	Connect a ceramic resonator or crystal oscillator between
XOUT	Clock Output	0	XIN and XOUT pins. To input an externally generated clock, input it to XIN pin and open XOUT pin.
BYTE	BYTE	I	Connect this pin to VCC1 or VSS.
AVCC, AVSS	Analog Power Supply Input		Connect AVSS to VSS and AVCC to VCC1, respectively.
VREF	Reference Voltage Input	I	Enter the reference voltage for A/D from this pin.
P0_0 to P0_7	Input Port P0	I	Input "H" or "L" level signal or open.
P1_0 to P1_7	Input Port P1	I	Input "H" or "L" level signal or open.
P2_0 to P2_7	Input Port P2	I	Input "H" or "L" level signal or open.
P3_0 to P3_7	Input Port P3	I	Input "H" or "L" level signal or open.
P4_0 to P4_7	Input Port P4	I	Input "H" or "L" level signal or open.
P5_1 to P5_4, P5_6, P5_7	Input Port P5	I	Input "H" or "L" level signal or open.
P5_0	CE Input	I	Input "H" level signal.
P5_5	EPM Input	I	Input "L" level signal.
P6_0 to P6_3	Input Port P6	I	Input "H" or "L" level signal or open.
P6_4/RTS1	BUSY Output	0	Standard serial I/O mode 1: BUSY signal output pin Standard serial I/O mode 2: Monitors the boot program operation check signal output pin.
P6_5/CLK1	SCLK Input	I	Standard serial I/O mode 1: Serial clock input pin Standard serial I/O mode 2: Input "L".
P6_6/RXD1	RXD Input	I	Serial data input pin.
P6_7/TXD1	TXD Input	0	Serial data output pin. (1)
P7_0 to P7_7	Input Port P7	I	Input "H" or "L" level signal or open.
P8_0 to P8_3, P8_6, P8_7	Input Port P8	I	Input "H" or "L" level signal or open.
P8_4	P8_4 input	I	Input "L" level signal. (2)
P8_5/NMI	NMI Input	I	Connect this pin to VCC1.
P9_0 to P9_7	Input Port P9	I	Input "H" or "L" level signal or open.
P10_0 to P10_7	Input Port P10	I	Input "H" or "L" level signal or open.

NOTES:

- 1. When using the standard serial I/O mode, the internal pull-up is enabled for the TXD1 (P6_7) pin while the RESET pin is "L".
- 2. When using the standard serial I/O mode, the P0_0 to P0_7, P1_0 to P1_7 pins may become indeterminate while the P8_4 pin is "H" and the RESET pin is "L". If this causes a program, apply "L" to the P8_4 pin.

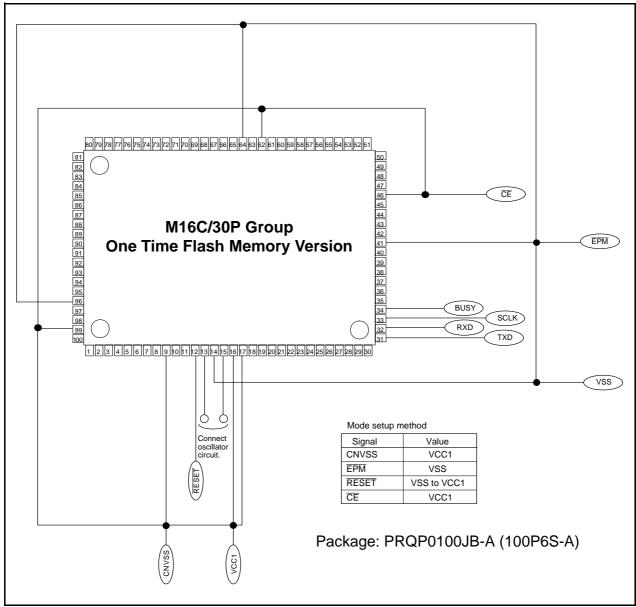


Figure 20.4 Pin Connections for Serial I/O Mode

20.3.2 Example of Circuit Application in the Standard Serial I/O Mode

Figure 20.5 and Figure 20.6 show example of Circuit Application in Standard Serial I/O Mode 1 and Mode 2, respectively. Refer to the user's manual of your serial programmer to handle pins controlled by the serial programmer.

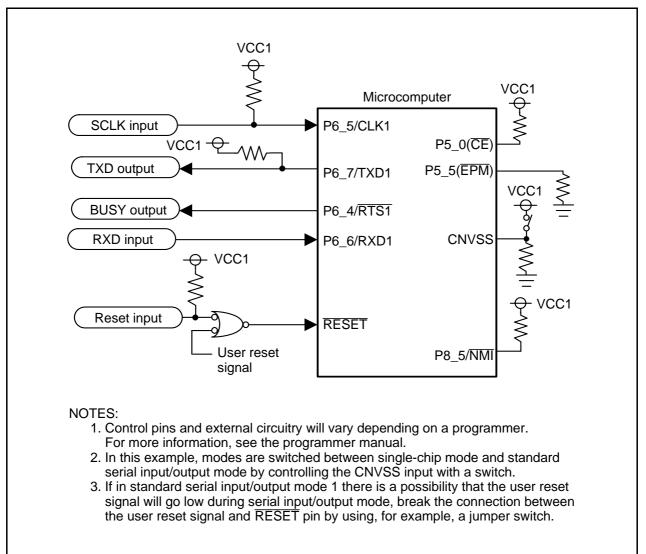


Figure 20.5 Circuit Application in Standard Serial I/O Mode 1

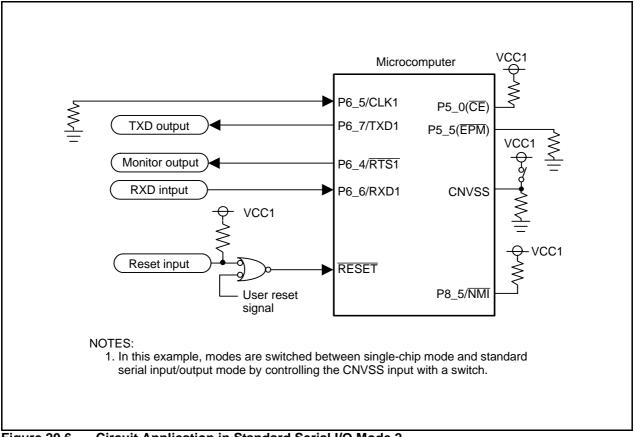


Figure 20.6 Circuit Application in Standard Serial I/O Mode 2

21. Electrical Characteristics

Table 21.1 Absolute Maximum Ratings

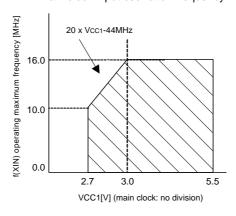

Symbol		Parameter	Condition	Rated Value	Unit
Vcc	Supply Voltage	e(VCC1=VCC2)	Vcc1=Vcc2=AVcc	-0.3 to 6.5	V
AVcc	Analog Supply	Voltage	Vcc1=Vcc2=AVcc	-0.3 to 6.5	V
Vı	Input Voltage	RESET, CNVSS, BYTE, P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, VREF, XIN		-0.3 to Vcc+0.3	V
		P7_0, P7_1		-0.3 to 6.5	V
Vo	Output Voltage	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, XOUT		-0.3 to Vcc+0.3	V
		P7_0, P7_1		-0.3 to 6.5	V
Pd	Power Dissipa	tion	-40°C <topr≤85°c< td=""><td>300</td><td>mW</td></topr≤85°c<>	300	mW
Topr	Operating Ambient	When the Microcomputer is Operating		-20 to 85 / -40 to 85	°C
	Temperature	One Time Flash Program Erase		0 to 60	
		Flash Program Erase		0 to 60	
Tstg	Storage Temp	erature		-65 to 150	°C

Table 21.2 Recommended Operating Conditions (1)

Commanda a l	Dorometer			Stand	ard	I lait	
Symbol		Parameter		Тур. Мах.		Unit	
Vcc	Supply Voltage (\	pply Voltage (Vcc1=Vcc2)			5.5	V	
AVcc	Analog Supply Voltage			Vcc		V	
Vss	Supply Voltage			0		V	
AVss	Analog Supply Vo	oltage		0		V	
VIH	HIGH Input	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7	0.8Vcc		Vcc	V	
	Voltage	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (during single-chip mode)	0.8Vcc		Vcc	V	
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (data input during memory expansion and microprocessor mode)	0.5Vcc		Vcc	V	
		P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, XIN, RESET, CNVSS, BYTE	0.8Vcc		Vcc	V	
		P7_0, P7_1	0.8Vcc		6.5	V	
VIL	LOW Input	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7	0		0.2Vcc	V	
	Voltage	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (during single-chip mode)	0		0.2Vcc	V	
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (data input during memory expansion and microprocessor mode)	0		0.16Vcc	V	
		P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, XIN, RESET, CNVSS, BYTE	0		0.2Vcc	V	
IOH(peak)	HIGH Peak Output Current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7			-10.0	mA	
IOH(avg)	HIGH Average Output Current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7			-5.0	mA	
IOL(peak)	LOW Peak Output Current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7			10.0	mA	
IOL(avg)	LOW Average Output Current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7			5.0	mA	
f(XIN)	Main Clock Input	VCC=3.0V to 5.5V	0		16	MHz	
	Oscillation Frequency (4)	VCC=2.7V to 3.0V	0		20×Vcc1-44	MHz	
f(XCIN)	Sub-Clock Oscilla	tion Frequency		32.768	50	kHz	
f(BCLK)	CPU Operation C	lock	0		16	MHz	

- 1. Referenced to Vcc1 = Vcc2 = 2.7 to 5.5V at $T_{opr} = -20$ to $85^{\circ}C$ / -40 to $85^{\circ}C$ unless otherwise specified.
- 2. The Average Output Current is the mean value within 100ms.
- 3. The total IOL(peak) for ports P0, P1, P2, P8_6, P8_7, P9 and P10 must be 80mA max. The total IOL(peak) for ports P3, P4, P5, P6, P7 and P8_0 to P8_4 must be 80mA max. The total IOH(peak) for ports P0, P1, and P2 must be –40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be –40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be –40mA max.
 - The total IOH(peak) for ports P8_6, P8_7 and P9 must be -40mA max. Set Average Output Current to 1/2 of peak.
- 4. Relationship between main clock oscillation frequency, and supply voltage.

Main clock input oscillation frequency

Table 21.3 A/D Conversion Characteristics (1)

Symbol	Doromo	Parameter		Measuring Condition		Standard	d	Unit
Symbol	Faidille	lei	Weasaring Condition		Min.	Тур.	Max.	Offic
=	Resolution		VREF=VCC				10	Bits
INL	Integral Non-Linearity Error	10bit	VREF= VCC= 5V	AN0 to AN7 input, AN0_0 to AN0_7 input, ANEX0, ANEX1 input			±5	LSB
			VREF= VCC= 3.3V	AN0 to AN7 input, AN0_0 to AN0_7 input, ANEX0, ANEX1 input			±7	LSB
		8bit	VREF=V	/cc=5V, 3.3V			±2	LSB
_	Absolute Accuracy	10bit	VREF= VCC= 5V	AN0 to AN7 input, AN0_0 to AN0_7 input, ANEX0, ANEX1 input			±5	LSB
			VREF= VCC =3.3V	AN0 to AN7 input, AN0_0 to AN0_7 input, ANEX0, ANEX1 input			±7	LSB
		8bit	VREF=V	/cc=5V, 3.3V			±2	LSB
-	Tolerance Level Impeda	ince				3		kΩ
DNL	Differential Non-Linearit	y Error					±2	LSB
=	Offset Error						±5	LSB
=	Gain Error						±5	LSB
RLADDER	Ladder Resistance		VREF=V	/cc	10		40	kΩ
tconv	10-bit Conversion Time, Function Available	Sample & Hold	VREF=V	/cc=5V, φAD=10MHz	3.3			μS
tconv	8-bit Conversion Time, S Function Available	Sample & Hold	VREF=V	/cc=5V, φAD=10MHz	2.8			μS
tsamp	Sampling Time				0.3			μS
VREF	Reference Voltage				3.0		Vcc	V
VIA	Analog Input Voltage				0		VREF	V

- 1. Referenced to Vcc=AVcc=VREF=3.3 to 5.5V, Vss=AVss=0V at T_{opr} = -20 to $85^{\circ}C$ / -40 to $85^{\circ}C$ unless otherwise specified.
- 2. ϕ AD frequency must be 10 MHz or less.
- 3. When sample & hold function is disabled, ϕAD frequency must be 250 kHz or more, in addition to the limitation in Note 2.
- 4. When sample & hold function is enabled, ϕAD frequency must be 1MHz or more, in addition to the limitation in Note 2.

Table 21.4 Flash Memory Version Electrical Characteristics (1)

Cymphol	Parameter			Unit		
Symbol	Parameter	Min.	Тур.	Max.	Unit	
_	Program and Erase Endurance (2)		100 ⁽³⁾			cycle
_	Word Program Time (Vcc1=5.0V)			25	200	μS
_	Lock Bit Program Time			25	200	μS
_	Block Erase Time	4-Kbyte block		0.3	4	S
_	(Vcc1=5.0V)	8-Kbyte block		0.3	4	S
_		32-Kbyte block		0.5	4	S
_		64-Kbyte block		0.8	4	S
tps	Flash Memory Circuit Stabilization Wait Time				15	μS
_	Data Hold Time (4)		10			year

- 1. Referenced to Vcc1=4.5 to 5.5V, 3.0 to 3.6V at Topr = 0 to 60 °C (U3, U5) unless otherwise specified.
- 2. Program and Erase Endurance refers to the number of times a block erase can be performed. If the program and erase endurance is 100, each block can be erased 100 times. For example, if a 4 Kbytes block A is erased after writing 1 word data 2,048 times, each to a different address, this counts as one program and erase endurance. Data cannot be written to the same address more than once without erasing the block. (Rewrite prohibited)
- 3. Maximum number of E/W cycles for which operation is guaranteed.
- 4. Topr = -40 to 85 °C (U3) / -20 to 85 °C (U5).

Table 21.5 Flash Memory Version Program / Erase Voltage and Read Operation Voltage **Characteristics**

Flash Program, Erase Voltage	Flash Read Operation Voltage
$VCC1 = 3.3 \pm 0.3 \text{ V or } 5.0 \pm 0.5 \text{ (Topr} = 0^{\circ}\text{C to } 60^{\circ}\text{C)}$	VCC1=2.7 to 5.5 V (Topr = -40°C to 85°C (U3)
	-20°C to 85°C (U5))

Table 21.6 One Time Flash Version Electrical Characteristics (1)

Symbol	Parameter		Standard			
			Тур.	Max.	Unit	
_	Program Endurance			1	cycle	
_	Word Program Time (Vcc1=5.0V)		50	500	μS	
tPS	One Time Flash Memory Circuit Stabilization Wait Time			15	μS	
_	Data Hold Time (4)	10			year	

- 1. Referenced to Vcc1=4.5 to 5.5V, 3.0 to 3.6V at Topr = 0 to 60 $^{\circ}$ C (U3, U5) unless otherwise specified.
- 2. Topr = -40 to 85 $^{\circ}$ C (U3) / -20 to 85 $^{\circ}$ C (U5).

Table 21.7 One Time Flash Version Program Voltage and Read Operation Voltage Characteristics

Flash Program Voltage	Flash Read Operation Voltage
$VCC1 = 3.3 \pm 0.3 \text{ V or } 5.0 \pm 0.5 \text{ (Topr} = 0^{\circ}\text{C to } 60^{\circ}\text{C} \text{)}$	VCC1=2.7 to 5.5 V (Topr = -40°C to 85°C (U3)
	-20°C to 85°C (U5))

Table 21.8 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Measuring Condition		Unit		
Symbol	r alametel	Measuring Condition	Min.	Тур.	Max.	Offic
td(P-R)	Time for Internal Power Supply Stabilization During Powering-On	Vcc=2.7V to 5.5V			2	ms
td(R-S)	STOP Release Time				1500	μS
td(W-S)	Low Power Dissipation Mode Wait Mode Release Time				1500	μs



Figure 21.1 Power Supply Circuit Timing Diagram

VCC1=VCC2=5V

Electrical Characteristics(1) (1) **Table 21.9**

Cumbal		Dorom	otor	Magazzina Candition	Sta	andard		Unit
Symbol		Param	eter	Measuring Condition	Min.	Тур.	Max.	Unit
Vон	HIGH Output Voltage	P3_0 to P3_7, P4_0	to P1_7, P2_0 to P2_7, to P4_7, P5_0 to P5_7, to P7_7, P8_0 to P8_4, P8_6, 7, P10_0 to P10_7	IOH=-5mA	Vcc-2.0		Vcc	V
Vон	HIGH Output Voltage	P3_0 to P3_7, P4_0	to P1_7, P2_0 to P2_7, to P4_7, P5_0 to P5_7, to P7_7, P8_0 to P8_4, P8_6, 7, P10_0 to P10_7	ΙΟΗ=-200μΑ	Vcc-0.3		Vcc	V
Vон	HIGH Outpu	t Voltage XOUT	HIGHPOWER	IOH=-1mA	Vcc-2.0		Vcc	V
			LOWPOWER	IOH=-0.5mA	Vcc-2.0		Vcc	V
	HIGH Outpu	t Voltage XCOUT	HIGHPOWER	With no load applied		2.5		V
			LOWPOWER	With no load applied		1.6		V
Vol	LOW Output Voltage	P3_0 to P3_7, P4_0 P6_0 to P6_7, P7_0	to P1_7, P2_0 to P2_7, to P4_7, P5_0 to P5_7, to P7_7, P8_0 to P8_4, to P9_7, P10_0 to P10_7	IOL=5mA			2.0	٧
Vol	LOW Output Voltage	P3_0 to P3_7, P4_0 P6_0 to P6_7, P7_0	0 to P1_7, P2_0 to P2_7, 0 to P4_7, P5_0 to P5_7, 0 to P7_7, P8_0 to P8_4, to P9_7, P10_0 to P10_7	IOL=200μA			0.45	V
Vol	LOW Output	t Voltage XOUT	HIGHPOWER	IOL=1mA			2.0	V
			LOWPOWER	IOL=0.5mA			2.0	V
	LOW Output	t Voltage XCOUT	HIGHPOWER	With no load applied		0		V
			LOWPOWER	With no load applied		0		V
VT+-VT-	Hysteresis	CLK0 to CLK2, TA0	OIN to TB2IN, ADTRG, CTS0 to CTS2, OUT to TA2OUT, KI0 to KI3, L0 to SCL2, SDA0 to SDA2		0.2		1.0	٧
VT+-VT-	Hysteresis	RESET	·		0.2		2.5	V
lін	HIGH Input Current	P3_0 to P3_7, P4_0		VI=5V			5.0	μА
lı∟	LOW Input Current	P3_0 to P3_7, P4_0		VI=0V			-5.0	μА
RPULLUP	Pull-Up Resistance	P3_0 to P3_7, P4_0	o to P1_7, P2_0 to P2_7, o to P4_7, P5_0 to P5_7, o to P7_7, P8_0 to P8_4, P8_6, 7, P10_0 to P10_7	VI=0V	30	50	170	kΩ
RfXIN	Feedback R	esistance XIN				1.5		МΩ
RfXCIN	Feedback R	esistance XCIN				15		МΩ
VRAM	RAM Retent	ion Voltage		At stop mode	2.0			V

NOTES: 1. Referenced to Vcc1=Vcc2=4.2 to 5.5V, Vss = 0V at T_{opr} = -20 to 85° C / -40 to 85° C, f(XIN) =16MHz unless otherwise specified.

Table 21.10 Electrical Characteristics (2) (1)

Symbol	Paramet		Maga	uring Condition	;	Standard	t	Unit
Symbol	Paramet	ei	ivieas	uring Condition	Min.	Тур.	Max.	Unit
Icc	Power Supply Current (Vcc1=Vcc2=4.0V to 5.5V)	In single-chip mode, the output	Mask ROM	f(XIN)=16MHz No division		10	15	mA
	,	pins are open and other pins are Vss	One Time Flash	f(XIN)=16MHz, No division		10	18	mA
			Flash Memory	f(XIN)=16MHz, No division		12	18	mA
			One Time Flash	f(XIN)=10MHz, VCC1=5.0V		15		mA
			Flash Memory Program	f(XIN)=10MHz, VCC1=5.0V		15		mA
			Flash Memory Erase	f(XIN)=10MHz, VCC1=5.0V		25		mA
			Mask ROM	f(XCIN)=32kHz Low power dissipation mode, ROM ⁽³⁾		25		μА
			One Time Flash	f(XCIN)=32kHz Low power dissipation mode, RAM ⁽³⁾		25		μА
				f(XCIN)=32kHz Low power dissipation mode, Flash Memory ⁽³⁾		350		μА
			Flash Memory	f(XCIN)=32kHz Low power dissipation mode, RAM ⁽³⁾		25		μА
				f(XCIN)=32kHz Low power dissipation mode, Flash Memory ⁽³⁾		420		μА
			Mask ROM One Time Flash Flash Memory	f(XCIN)=32kHz Wait mode ⁽²⁾ , Oscillation capability High		7.5		μА
			T Idon Monory	f(XCIN)=32kHz Wait mode ⁽²⁾ , Oscillation capability Low		2.0		μА
				Stop mode Topr =25°C		0.8	3.0	μА

NOTES:

1. Referenced to Vcc1=Vcc2=4.2 to 5.5V, Vss = 0V at Topr = -20 to 85°C / -40 to 85°C, f(XIN)=16MHz unless otherwise specified.

2. With one timer operated using fC32.

3. This indicates the memory in which the program to be executed exists.

VCC1=VCC2=5V

Timing Requirements

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified)

Table 21.11 External Clock Input (XIN input) (1)

Symbol	Parameter	Stan	Unit	
	Farameter		Max.	Offic
tc	External Clock Input Cycle Time	62.5		ns
tw(H)	External Clock Input HIGH Pulse Width	25		ns
tw(L)	External Clock Input LOW Pulse Width	25		ns
tr	External Clock Rise Time		15	ns
tf	External Clock Fall Time		15	ns

NOTES:

1. The condition is Vcc1=Vcc2=3.0 to 5.0V.

Table 21.12 Memory Expansion Mode and Microprocessor Mode

Symbol	Parameter	Star	Standard		
	Falanetei	Min.	Max.	Unit	
tac1(RD-DB)	Data Input Access Time (for setting with no wait)		(NOTE 1)	ns	
tac2(RD-DB)	Data Input Access Time (for setting with wait)		(NOTE 2)	ns	
tsu(DB-RD)	Data Input Setup Time	40		ns	
tsu(RDY-BCLK)	RDY Input Setup Time	30		ns	
tsu(HOLD-BCLK)	HOLD Input Setup Time	40		ns	
th(RD-DB)	Data Input Hold Time	0		ns	
th(BCLK-RDY)	RDY Input Hold Time	0		ns	
th(BCLK-HOLD)	HOLD Input Hold Time	0		ns	

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5x10^9}{f(BCLK)}\!-\!45[ns]$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)x10^9}{f(BCLK)} - 45[ns] \qquad \text{n is "2" for 1-wait setting.}$$

VCC1=VCC2=5V

Timing Requirements

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 21.13 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Standard		Linit
	Farameter	Min.	Max.	Unit ns
tc(TA)	TAilN Input Cycle Time	100		ns
tw(TAH)	TAilN Input HIGH Pulse Width	40		ns
tw(TAL)	TAilN Input LOW Pulse Width	40		ns

Table 21.14 Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter	Stan	dard	Linit
	Farameter	Min.	Max.	Unit ns
tc(TA)	TAilN Input Cycle Time	400		ns
tw(TAH)	TAilN Input HIGH Pulse Width	200		ns
tw(TAL)	TAilN Input LOW Pulse Width	200		ns

Table 21.15 Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parameter	Stan	Max.	Unit ns
	Falanielei	Min.	Max.	
tc(TA)	TAilN Input Cycle Time	200		ns
tw(TAH)	TAilN Input HIGH Pulse Width	100		ns
tw(TAL)	TAilN Input LOW Pulse Width	100		ns

Table 21.16 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter	Stan	dard	Unit
Symbol	Farameter	Min.	Max.	Offic
tw(TAH)	TAilN Input HIGH Pulse Width	100		ns
tw(TAL)	TAilN Input LOW Pulse Width	100		ns

Table 21.17 Timer A Input (Counter Increment/Decrement Input in Event Counter Mode)

Symbol	Parameter	Stan	dard	Unit ns ns ns
	Faiametei	Min.	Max.	
tc(UP)	TAiOUT Input Cycle Time	2000		ns
tw(UPH)	TAiOUT Input HIGH Pulse Width	1000		ns
tw(UPL)	TAiOUT Input LOW Pulse Width	1000		ns
tsu(UP-TIN)	TAiOUT Input Setup Time	400		ns
th(TIN-UP)	TAiOUT Input Hold Time	400		ns

Table 21.18 Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Parameter	Stan	Standard Max.	Unit ns
	Falanielei	Min.	Max.	
tc(TA)	TAilN Input Cycle Time	800		ns
tsu(TAIN-TAOUT)	TAiOUT Input Setup Time	200		ns
tsu(TAOUT-TAIN)	TAilN Input Setup Time	200		ns

VCC1=VCC2=5V

Timing Requirements

(VCC1 = VCC2 = 5V, Vss = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 21.19 Timer B Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Stan	dard	Unit
	Falametei	Min.	Max.	Offic
tc(TB)	TBilN Input Cycle Time (counted on one edge)	100		ns
tw(TBH)	TBilN Input HIGH Pulse Width (counted on one edge)	40		ns
tw(TBL)	TBilN Input LOW Pulse Width (counted on one edge)	40		ns
tc(TB)	TBilN Input Cycle Time (counted on both edges)	200		ns
tw(TBH)	TBilN Input HIGH Pulse Width (counted on both edges)	80		ns
tw(TBL)	TBilN Input LOW Pulse Width (counted on both edges)	80		ns

Table 21.20 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Stan	dard	Unit
	Farameter	Min.	Max.	
tc(TB)	TBilN Input Cycle Time	400		ns
tw(TBH)	TBilN Input HIGH Pulse Width	200		ns
tw(TBL)	TBilN Input LOW Pulse Width	200		ns

Table 21.21 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Stan	Max.	Unit
	Falanielei	Min.	Max.	
tc(TB)	TBilN Input Cycle Time	400		ns
tw(TBH)	TBilN Input HIGH Pulse Width	200		ns
tw(TBL)	TBilN Input LOW Pulse Width	200		ns

Table 21.22 A/D Trigger Input

Symbol	Parameter	Stan	Standard Min. Max. 1000	Unit
	Falametei	Min.		
tc(AD)	ADTRG Input Cycle Time	1000		ns
tw(ADL)	ADTRG input LOW Pulse Width	125		ns

Table 21.23 Serial Interface

Symbol	Parameter	Stan	dard	Unit
	Falanetei	Min.	Max.	ns ns
tc(CK)	CLKi Input Cycle Time	200		ns
tw(CKH)	CLKi Input HIGH Pulse Width	100		ns
tw(CKL)	CLKi Input LOW Pulse Width	100		ns
td(C-Q)	TXDi Output Delay Time		80	ns
th(C-Q)	TXDi Hold Time	0		ns
tsu(D-C)	RXDi Input Setup Time	70		ns
th(C-D)	RXDi Input Hold Time	90		ns

Table 21.24 External Interrupt INTi Input

Symbol	Parameter	Stan	dard	- Unit
	Falanielei	Min.	Max.	Offic
tw(INH)	INTi Input HIGH Pulse Width	250		ns
tw(INL)	INTi Input LOW Pulse Width	250		ns

VCC1=VCC2=5V

Switching Characteristics

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 21.25 Memory Expansion and Microprocessor Modes (for setting with no wait)

Symbol	Parameter		Stan	dard	Unit	
Symbol	1 dramoter		Min.	Max.	Offic	
td(BCLK-AD)	Address Output Delay Time			25	ns	
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)]	-3		ns	
th(RD-AD)	Address Output Hold Time (in relation to RD)]	0		ns	
th(WR-AD)	Address Output Hold Time (in relation to WR)]	(NOTE 2)		ns	
td(BCLK-CS)	Chip Select Output Delay Time]		25	ns	
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)]	-3		ns	
td(BCLK-ALE)	ALE Signal Output Delay Time	See Figure 21.2		15	ns	
th(BCLK-ALE)	ALE Signal Output Hold Time		-4		ns	
td(BCLK-RD)	RD Signal Output Delay Time			25	ns	
th(BCLK-RD)	RD Signal Output Hold Time	rigule 21.2	0		ns	
td(BCLK-WR)	WR Signal Output Delay Time]		25	ns	
th(BCLK-WR)	WR Signal Output Hold Time]	0		ns	
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)]		40	ns	
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK) (3)]	4		ns	
td(DB-WR)	Data Output Delay Time (in relation to WR)		(NOTE 1)		ns	
th(WR-DB)	Data Output Hold Time (in relation to WR) (3)		(NOTE 2)		ns	
td(BCLK-HLDA)	HLDA Output Delay Time			40	ns	

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 40[ns] \qquad \qquad f(BCLK) \text{ is } 12.5 \text{MHz or less.}$$

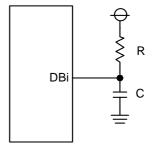
2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in


$$t = -CR \times In (1-VoL / Vcc1)$$

by a circuit of the right figure.

For example, when Vol = 0.2Vcc1, C = 30pF, R = 1k Ω , hold time of output "L" level is

$$t = -30pF X 1k \Omega X In(1-0.2Vcc1 / Vcc1)$$

= 6.7 ns.

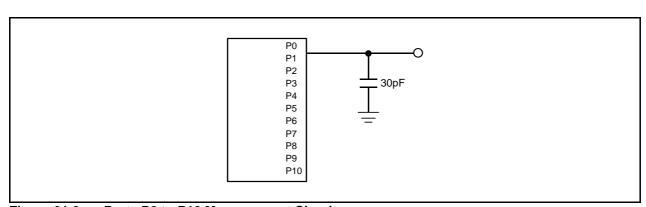


Figure 21.2 Ports P0 to P10 Measurement Circuit

Vcc1=Vcc2=5V

Switching Characteristics

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 21.26 Memory Expansion and Microprocessor Modes (for 1 wait setting and external area access)

Cumbal	Darameter	Parameter Standard		dard	Unit	
Symbol	Parameter		Min. Max.] UIIII	
td(BCLK-AD)	Address Output Delay Time			25	ns	
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		-3		ns	
th(RD-AD)	Address Output Hold Time (in relation to RD)		0		ns	
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 2)		ns	
td(BCLK-CS)	Chip Select Output Delay Time			25	ns	
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		-3		ns	
td(BCLK-ALE)	ALE Signal Output Delay Time			15	ns	
th(BCLK-ALE)	ALE Signal Output Hold Time	0	-4		ns	
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 21.2		25	ns	
th(BCLK-RD)	RD Signal Output Hold Time	I iguic 21.2	0		ns	
td(BCLK-WR)	WR Signal Output Delay Time			25	ns	
th(BCLK-WR)	WR Signal Output Hold Time		0		ns	
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)			40	ns	
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK) (3)		4		ns	
td(DB-WR)	Data Output Delay Time (in relation to WR)		(NOTE 1)		ns	
th(WR-DB)	Data Output Hold Time (in relation to WR)(3)		(NOTE 2)		ns	
td(BCLK-HLDA)	HLDA Output Delay Time			40	ns	

NOTES:

1. Calculated according to the BCLK frequency as follows:

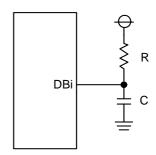
$$\frac{(n-0.5)x10^9}{f(BCLK)} - 40[ns] \qquad \text{n is "1" for 1-wait setting, f(BCLK) is 12.5MHz or less.}$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5x10^9}{f(BCLK)} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.


Hold time of data bus is expressed in

t = -CR X In (1-VoL / Vcc1)

by a circuit of the right figure.

For example, when VoL = 0.2Vcc1, C = 30pF, R = $1k\Omega$, hold time of output "L" level is

$$t = -30pF X 1k\Omega X In(1-0.2Vcc1 / Vcc1)$$

= 6.7ns.

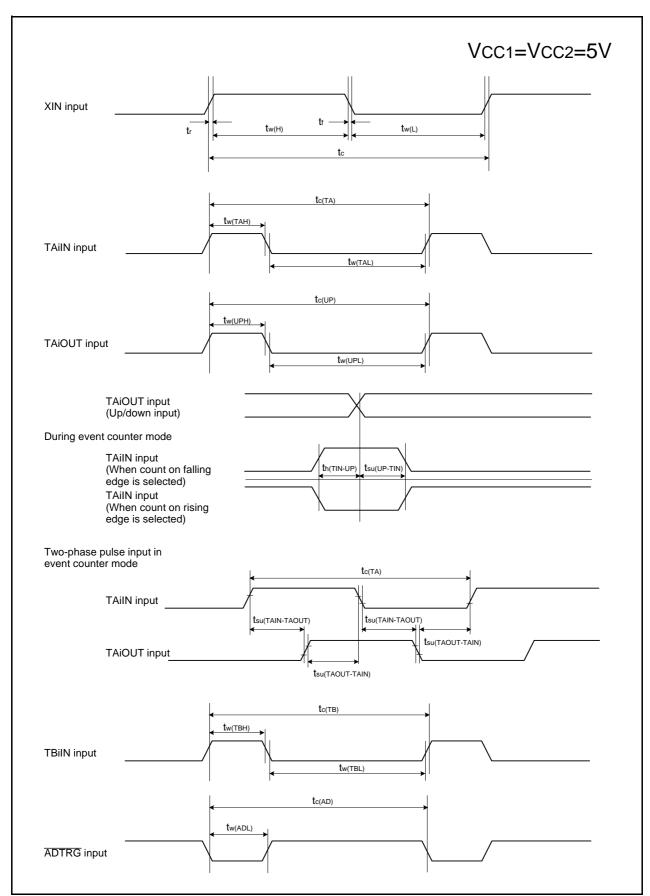


Figure 21.3 Timing Diagram (1)

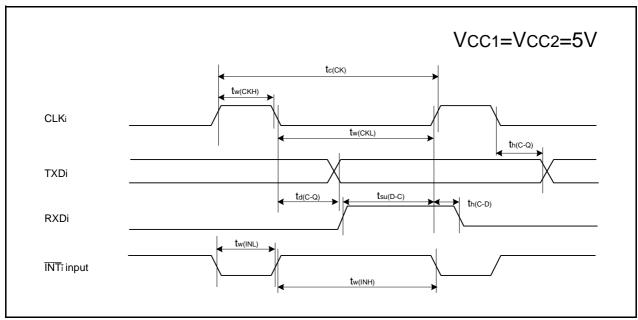


Figure 21.4 Timing Diagram (2)

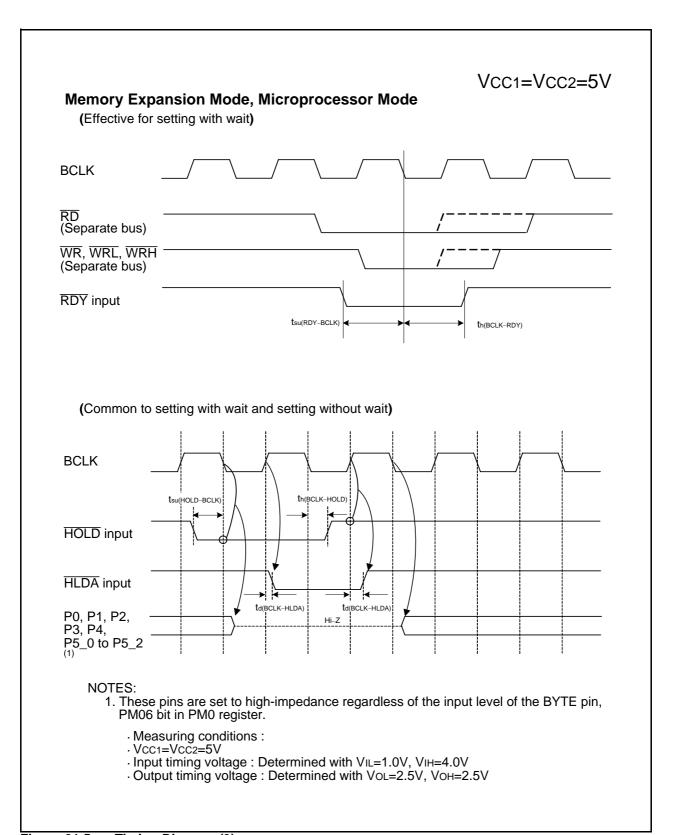


Figure 21.5 Timing Diagram (3)

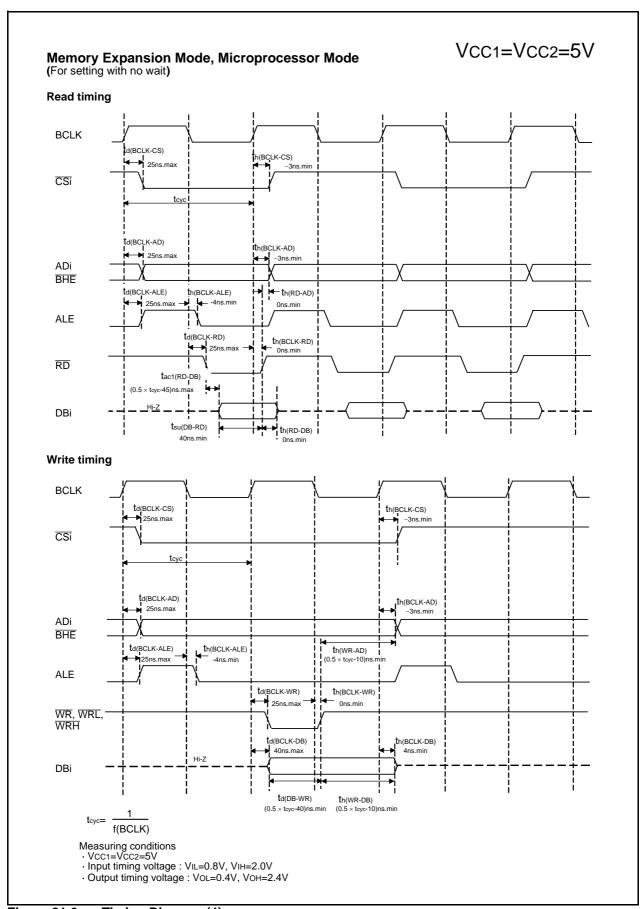


Figure 21.6 Timing Diagram (4)

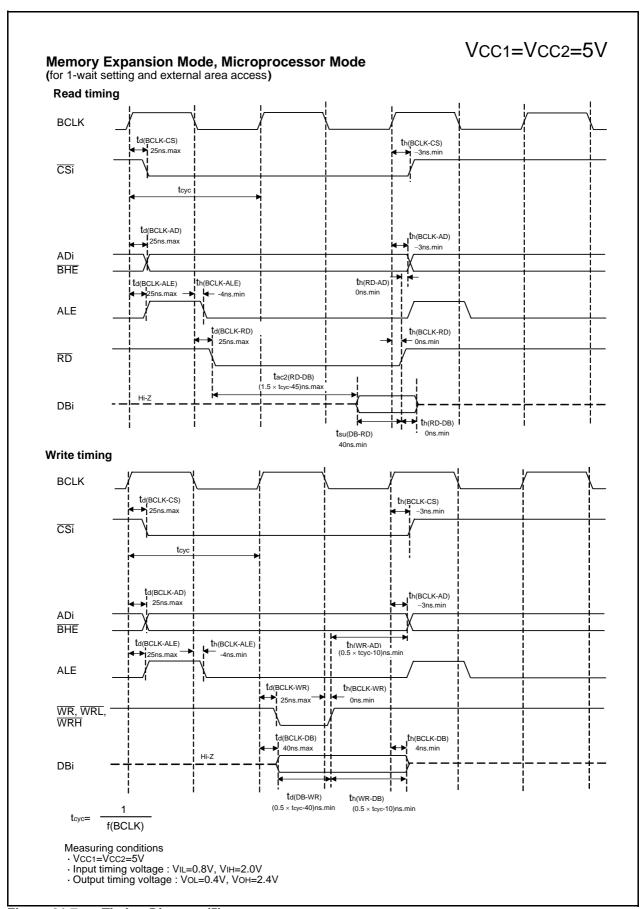


Figure 21.7 Timing Diagram (5)

VCC1=VCC2=3V

Table 21.27 Electrical Characteristics (1) (1)

C. mala al	Parameter		Managemina Canadition	St	andard		Unit	
Symbol		Parameter		Measuring Condition	Min.	Тур.	Max.	Unit
Vон	HIGH Output Voltage	P3_0 to P3_7, P4_0 to P6_0 to P6_7, P7_2 to	o P1_7, P2_0 to P2_7, o P4_7, P5_0 to P5_7, o P7_7, P8_0 to P8_4, P9_7, P10_0 to P10_7	IOH=-1mA	Vcc-0.5		Vcc	V
Vон	HIGH Outpu	t Voltage XOUT	HIGHPOWER	IOH=-0.1mA	Vcc-0.5		Vcc	V
			LOWPOWER	Іон=-50μΑ	Vcc-0.5		Vcc	V
	HIGH Outpu	t Voltage XCOUT	HIGHPOWER	With no load applied		2.5		V
			LOWPOWER	With no load applied		1.6		V
Vol	LOW Output Voltage	P3_0 to P3_7, P4_0 to P6_0 to P6_7, P7_0 to	o P1_7, P2_0 to P2_7, o P4_7, P5_0 to P5_7, o P7_7, P8_0 to P8_4, P9_7, P10_0 to P10_7	IoL=1mA			0.5	V
Vol	LOW Output	Voltage XOUT	HIGHPOWER	IoL=0.1mA			0.5	V
			LOWPOWER	IoL=50μA			0.5	V
	LOW Output	Voltage XCOUT	HIGHPOWER	With no load applied		0		V
			LOWPOWER	With no load applied		0		
VT+-VT-	Hysteresis	TAOIN to TA2IN, TBOIN to TB2IN, INTO ADTRG, CTS0 to CTS CLK0 to CLK2, TA00 KI0 to KI3, SCL0 to S	S2, RXD0 to RXD2, UT to TA2OUT,		0.2		0.8	V
VT+-VT-	Hysteresis	RESET	·		0.2	(0.7)	1.8	V
lін	HIGH Input Current		P7_7, P8_0 to P8_7, to P10_7,	VI=3V			4.0	μА
lı∟	LOW Input Current	P0_0 to P0_7, P1_0 to P3_0 to P3_7, P4_0 to P6_0 to P6_7, P7_0 to P9_0 to P9_7, P10_0 XIN, RESET, CNVSS	P7_7, P8_0 to P8_7, to P10_7,	Vi=0V			-4.0	μА
RPULLUP	Pull-Up Resistance	P3_0 to P3_7, P4_0 to P6_0 to P6_7, P7_2 to	D P1_7, P2_0 to P2_7, D P4_7, P5_0 to P5_7, D P7_7, P8_0 to P8_4, P9_7, P10_0 to P10_7	Vi=0V	50	100	500	kΩ
RfXIN	Feedback R	esistance	XIN			3.0		МΩ
RfXCIN	Feedback R	esistance	XCIN			25		МΩ
VRAM	RAM Retent	ion Voltage		At stop mode	2.0			V

^{1.} Referenced to Vcc1 = Vcc2 = 2.7 to 3.3V, Vss = 0V at Topr = -20 to $85^{\circ}C$ / -40 to $85^{\circ}C$, f(XIN)=10MHz no wait unless otherwise specified.

Table 21.28 Electrical Characteristics (2) (1)

Symbol	Paramet	or	Measuring Condition		(Standar	d	Unit
Symbol	Faramet	ei	ivieas	Measuring Condition		Тур.	Max.	Offic
Icc	Power Supply Current (VCC1=VCC2=2.7V to 3.6V)	In single-chip mode, the output	Mask ROM	f(XIN)=10MHz No division		8	11	mA
		pins are open and other pins are Vss	One Time Flash	f(XIN)=10MHz, No division		8	13	mA
			Flash Memory	f(XIN)=10MHz, No division		8	13	mA
			Flash Memory Program	f(XIN)=10MHz, VCC1=3.0V		12		mA
			One Time Flash Program	f(XIN)=10MHz, VCC1=3.0V		12		mA
			Flash Memory Erase	f(XIN)=10MHz, VCC1=3.0V		22		mA
			Mask ROM	f(XCIN)=32kHz Low power dissipation mode, ROM ⁽³⁾		25		μА
			One Time Flash	f(XCIN)=32kHz Low power dissipation mode, RAM ⁽³⁾		25		μА
				f(XCIN)=32kHz Low power dissipation mode, Flash Memory ⁽³⁾		350		μА
			Flash Memory	f(XCIN)=32kHz Low power dissipation mode, RAM ⁽³⁾		25		μА
				f(XCIN)=32kHz Low power dissipation mode, Flash Memory (3)		420		μА
			Mask ROM One Time Flash Flash Memory	f(XCIN)=32kHz Wait mode ⁽²⁾ , Oscillation capability High		6.0		μА
				f(XCIN)=32kHz Wait mode ⁽²⁾ , Oscillation capability Low		1.8		μА
				Stop mode Topr =25°C		0.7	3.0	μА

NOTES: 1. Referenced to Vcc1=Vcc2=2.7 to 3.3V, Vss=0V at Topr=-20 to $85^{\circ}C$ / -40 to $85^{\circ}C$, f(XIN)=10MHz unless otherwise

<sup>specified.
With one timer operated using fC32.
This indicates the memory in which the program to be executed exists.</sup>

VCC1=VCC2=3V

Timing Requirements

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 21.29 External Clock Input (XIN input)

Symbol	Parameter		Standard		
Symbol			Max.	Unit	
tc	External Clock Input Cycle Time	(NOTE 2)		ns	
tw(H)	External Clock Input HIGH Pulse Width	(NOTE 3)		ns	
tw(L)	External Clock Input LOW Pulse Width	(NOTE 3)		ns	
tr	External Clock Rise Time		(NOTE 4)	ns	
tf	External Clock Fall Time		(NOTE 4)	ns	

NOTES:

- 1. The condition is Vcc1=Vcc2=2.7 to 3.0V.
- 2. Calculated according to the Vcc1 voltage as follows:

$$\frac{10^{-6}}{20 \times V \text{cc1} - 44} \text{ [ns]}$$

3. Calculated according to the Vcc1 voltage as follows:

$$\frac{10^{-6}}{20 \times V\text{CC1} - 44} \times 0.4 \text{ [ns]}$$

4. Calculated according to the Vcc1 voltage as follows:

$$-10 \times Vcc1 + 45 [ns]$$

Table 21.30 Memory Expansion Mode and Microprocessor Mode

Symbol	Parameter		Standard		
Symbol	Falanielei	Min.	Max.	Unit	
tac1(RD-DB)	Data Input Access Time (for setting with no wait)		(NOTE 1)	ns	
tac2(RD-DB)	Data Input Access Time (for setting with wait)		(NOTE 2)	ns	
tsu(DB-RD)	Data Input Setup Time	50		ns	
tsu(RDY-BCLK)	RDY Input Setup Time	40		ns	
tsu(HOLD-BCLK)	HOLD Input Setup Time	50		ns	
th(RD-DB)	Data Input Hold Time	0		ns	
th(BCLK-RDY)	RDY Input Hold Time	0		ns	
th(BCLK-HOLD)	HOLD Input Hold Time	0		ns	

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5x10^9}{f(BCLK)} - 60[ns]$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)x10^9}{f(BCLK)} - 60[ns] \qquad \text{n is "2" for 1-wait setting.}$$

VCC1=VCC2=3V

Timing Requirements

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 21.31 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter		Standard	
Symbol	Farameter	Min.	Max.	Unit
tc(TA)	TAilN Input Cycle Time	150		ns
tw(TAH)	TAilN Input HIGH Pulse Width	60		ns
tw(TAL)	TAilN Input LOW Pulse Width	60		ns

Table 21.32 Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter		Standard		
Symbol	Farantelei	Min.	Max.	Unit	
tc(TA)	TAilN Input Cycle Time	600		ns	
tw(TAH)	TAilN Input HIGH Pulse Width	300		ns	
tw(TAL)	TAilN Input LOW Pulse Width	300		ns	

Table 21.33 Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parameter		Standard		
Symbol	raiailletei	Min.	Max.	Unit	
tc(TA)	TAilN Input Cycle Time	300		ns	
tw(TAH)	TAilN Input HIGH Pulse Width	150		ns	
tw(TAL)	TAilN Input LOW Pulse Width	150		ns	

Table 21.34 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter		Standard		
Symbol	raiametei	Min.	Max.	Unit	
tw(TAH)	TAilN Input HIGH Pulse Width	150		ns	
tw(TAL)	TAilN Input LOW Pulse Width	150		ns	

Table 21.35 Timer A Input (Counter Increment/Decrement Input in Event Counter Mode)

Symbol Parameter	Parameter	Stan	Unit	
Symbol	Faiametei	Min.	Max.	Offic
tc(UP)	TAiOUT Input Cycle Time	3000		ns
tw(UPH)	TAiOUT Input HIGH Pulse Width	1500		ns
tw(UPL)	TAiOUT Input LOW Pulse Width	1500		ns
tsu(UP-TIN)	TAiOUT Input Setup Time	600		ns
th(TIN-UP)	TAiOUT Input Hold Time	600		ns

Table 21.36 Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Parameter	Stan	Unit	
Symbol	Falanielei	Min.	Max.	Offic
tc(TA)	TAilN Input Cycle Time	2		μS
tsu(TAIN-TAOUT)	TAiOUT Input Setup Time	500		ns
tsu(TAOUT-TAIN)	TAilN Input Setup Time	500		ns

VCC1=VCC2=3V

Timing Requirements

(VCC1 = VCC2 = 3V, Vss = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 21.37 Timer B Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit	
Symbol	Falametei	Min.	Max.	Offic	
tc(TB)	TBilN Input Cycle Time (counted on one edge)	nted on one edge) 150			
tw(TBH)	TBilN Input HIGH Pulse Width (counted on one edge)	60			
tw(TBL)	TBilN Input LOW Pulse Width (counted on one edge)	60		ns	
tc(TB)	TBilN Input Cycle Time (counted on both edges)	300		ns	
tw(TBH)	TBilN Input HIGH Pulse Width (counted on both edges)	120		ns	
tw(TBL)	TBilN Input LOW Pulse Width (counted on both edges)	ut LOW Pulse Width (counted on both edges) 120			

Table 21.38 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Standard Min. Max.		Unit	
Symbol	Falametei				
tc(TB)	TBilN Input Cycle Time	600		ns	
tw(TBH)	TBilN Input HIGH Pulse Width	300		ns	
tw(TBL)	TBilN Input LOW Pulse Width	300		ns	

Table 21.39 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Standard		Unit	
Symbol	Farameter	Min.	Max.	Offic	
tc(TB)	TBilN Input Cycle Time	600		ns	
tw(TBH)	TBilN Input HIGH Pulse Width	300		ns	
tw(TBL)	TBilN Input LOW Pulse Width	300		ns	

Table 21.40 A/D Trigger Input

Symbol	Parameter	Stan	Unit		
Symbol	Falameter	Min.	Max.	Offic	
tc(AD)	ADTRG Input Cycle Time	1500		ns	
tw(ADL)	ADTRG Input LOW Pulse Width	200		ns	

Table 21.41 Serial Interface

Symbol	Parameter	Standard		Unit	
	Farameter	Min.	Max.	Offic	
tc(CK)	CLKi Input Cycle Time	300		ns	
tw(CKH)	CLKi Input HIGH Pulse Width	150		ns	
tw(CKL)	CLKi Input LOW Pulse Width	150		ns	
td(C-Q)	TXDi Output Delay Time		160	ns	
th(C-Q)	TXDi Hold Time	0		ns	
tsu(D-C)	RXDi Input Setup Time	100		ns	
th(C-D)	RXDi Input Hold Time	90		ns	

Table 21.42 External Interrupt INTi Input

Symbol	Parameter	Stan	Unit		
Symbol	Falanielei	Min.	Max.	Offic	
tw(INH)	INTi Input HIGH Pulse Width	380		ns	
tw(INL)	INTi Input LOW Pulse Width	380		ns	

VCC1=VCC2=3V

Switching Characteristics

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 21.43 Memory Expansion and Microprocessor Modes (for setting with no wait)

Symbol	Parameter		Standard		Unit
Symbol	, and the second		Min.	Max.	Offic
td(BCLK-AD)	Address Output Delay Time			30	ns
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)	1	0		ns
th(RD-AD)	Address Output Hold Time (in relation to RD)	1	0		ns
th(WR-AD)	Address Output Hold Time (in relation to WR)	1	(NOTE 2)		ns
td(BCLK-CS)	Chip Select Output Delay Time			30	ns
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		0		ns
td(BCLK-ALE)	ALE Signal Output Delay Time			25	ns
th(BCLK-ALE)	ALE Signal Output Hold Time	0	-4		ns
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 21.8		30	ns
th(BCLK-RD)	RD Signal Output Hold Time	Tigure 21.0	0		ns
td(BCLK-WR)	WR Signal Output Delay Time			30	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK) (3)	1	4		ns
td(DB-WR)	Data Output Delay Time (in relation to WR)	1	(NOTE 1)		ns
th(WR-DB)	Data Output Hold Time (in relation to WR) (3)		(NOTE 2)		ns
td(BCLK-HLDA)	HLDA Output Delay Time			40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 40[ns]$$
 f(BCLK) is 12.5MHz or less.

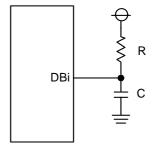
2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in


$$t = -CR \times In (1-VoL / Vcc1)$$

by a circuit of the right figure.

For example, when Vol = 0.2Vcc1, C = 30pF, R = 1k Ω , hold time of output "L" level is

$$t = -30pF X 1k \Omega X In(1-0.2Vcc1 / Vcc1)$$

= 6.7 ns.

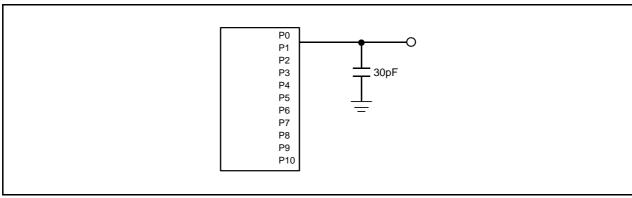


Figure 21.8 Ports P0 to P10 Measurement Circuit

VCC1=VCC2=3V

Switching Characteristics

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 21.44 Memory Expansion and Microprocessor Modes (for 1 wait setting and external area access)

Cumbal	Darameter		Standard		Unit	
Symbol	Parameter		Min.	Max.	Offic	
td(BCLK-AD)	Address Output Delay Time			30	ns	
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		0		ns	
th(RD-AD)	Address Output Hold Time (in relation to RD)		0		ns	
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 2)		ns	
td(BCLK-CS)	Chip Select Output Delay Time			30	ns	
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		0		ns	
td(BCLK-ALE)	ALE Signal Output Delay Time			25	ns	
th(BCLK-ALE)	ALE Signal Output Hold Time	0	-4		ns	
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 21.8		30	ns	
th(BCLK-RD)	RD Signal Output Hold Time	r iguic 21.0	0		ns	
td(BCLK-WR)	WR Signal Output Delay Time			30	ns	
th(BCLK-WR)	WR Signal Output Hold Time		0		ns	
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)			40	ns	
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK) (3)		4		ns	
td(DB-WR)	Data Output Delay Time (in relation to WR)		(NOTE 1)		ns	
th(WR-DB)	Data Output Hold Time (in relation to WR)(3)		(NOTE 2)		ns	
td(BCLK-HLDA)	HLDA Output Delay Time			40	ns	

NOTES:

1. Calculated according to the BCLK frequency as follows:

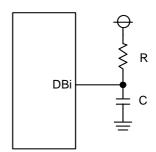
$$\frac{(n-0.5)x10^9}{f(BCLK)} - 40[ns] \qquad \text{n is "1" for 1-wait setting, } f(BCLK) \text{ is 12.5MHz or less.}$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5x10^9}{f(BCLK)} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.


Hold time of data bus is expressed in

t = -CR X In (1-VoL / Vcc1)

by a circuit of the right figure.

For example, when VoL = 0.2Vcc1, C = 30pF, R = $1k\Omega$, hold time of output "L" level is

 $t = -30pF X 1k\Omega X In(1-0.2Vcc1 / Vcc1)$ = 6.7 ns.

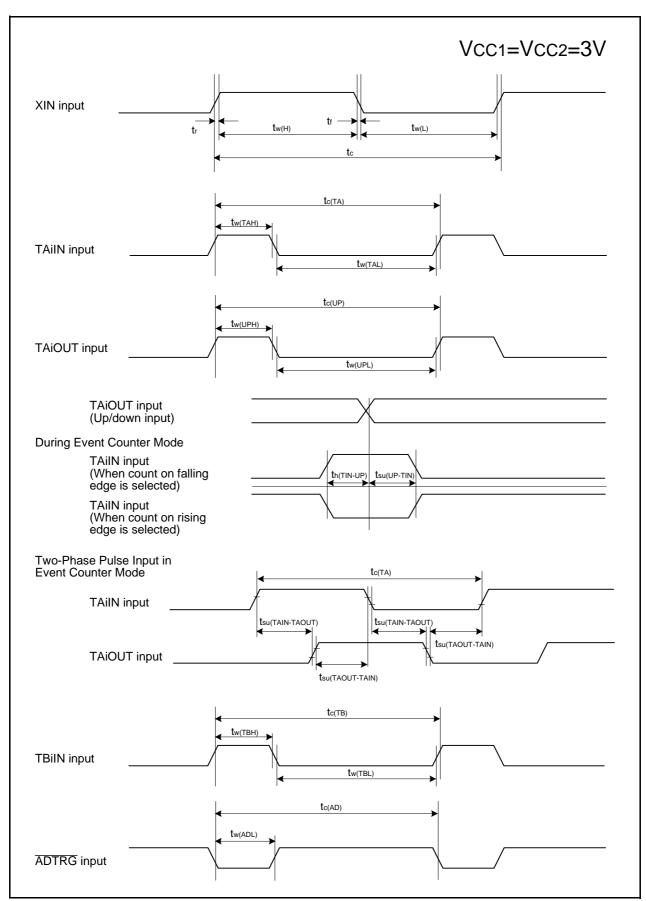


Figure 21.9 Timing Diagram (1)

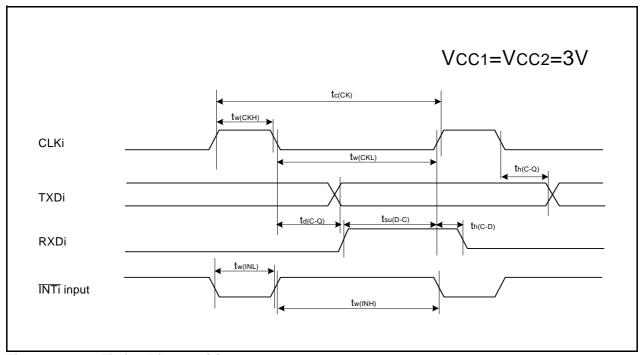


Figure 21.10 Timing Diagram (2)

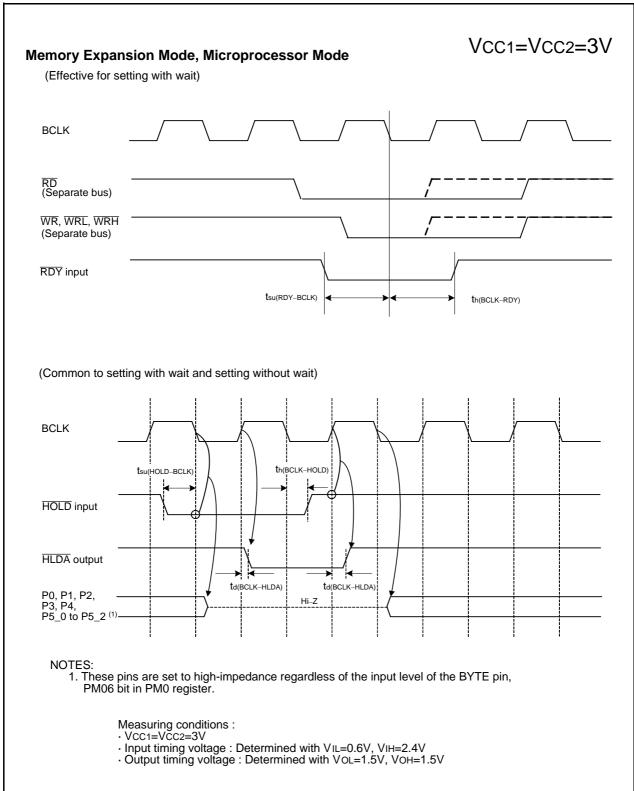


Figure 21.11 Timing Diagram (3)

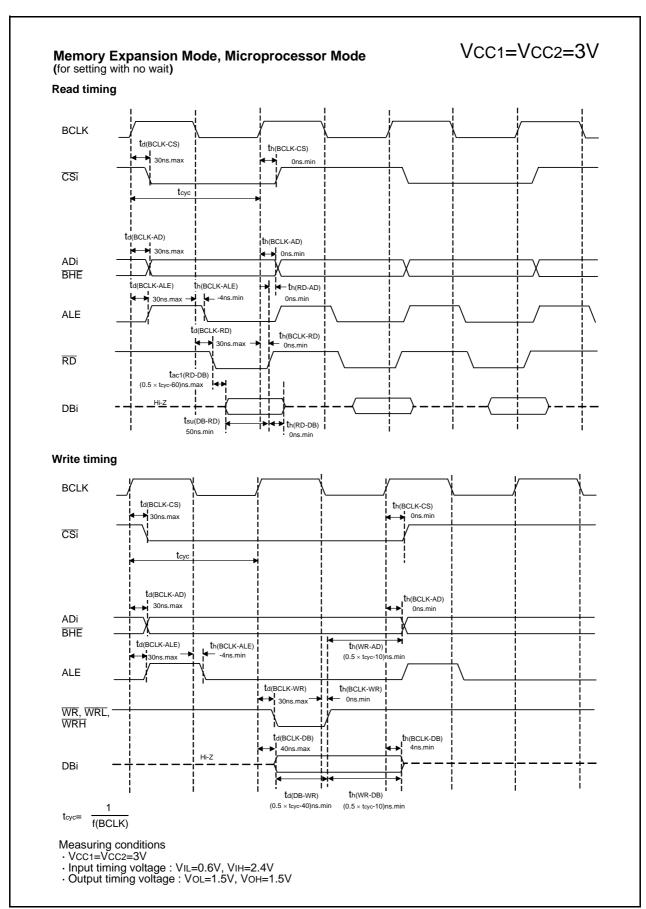


Figure 21.12 Timing Diagram (4)

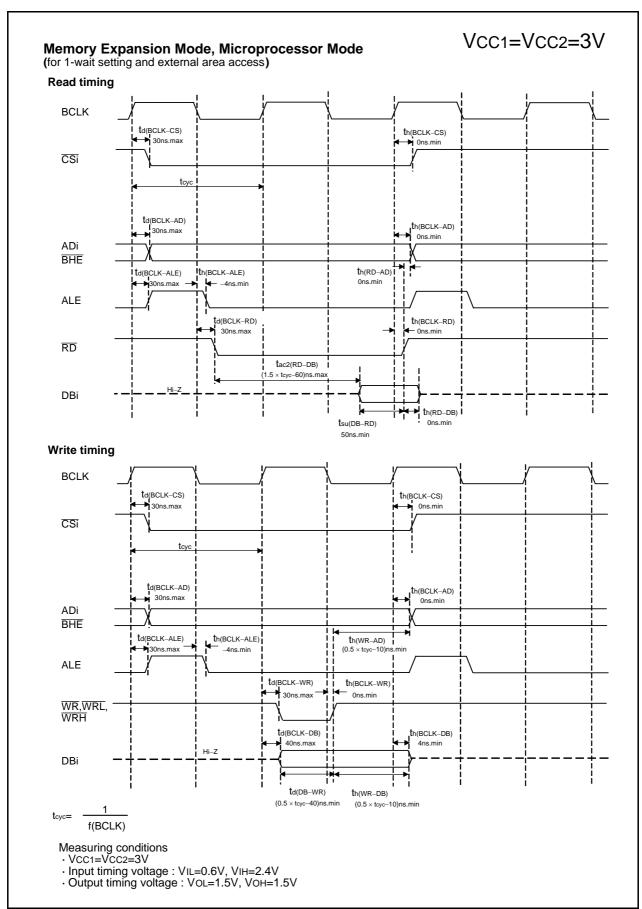


Figure 21.13 Timing Diagram (5)

22. Usage Precaution

22.1 SFR

22.1.1 Register Settings

Table 22.1 Registers with Write-only Bits which can only be written to. Set these registers with immediate values. When establishing the next value by altering the present value, write the present value to the RAM as well as to the register. Transfer the next value to the register after making changes in the RAM.

Table 22.1 Registers with Write-only Bits

Register	Symbol	Address
Watchdog timer start register	WDC	000E
UART0 bit rateregister	U0BRG	03A1
UART1 bit rateregister	U1BRG	03A9
UART2 bit rate register	U2BRG	0379
UART0 Transmit buffer register	U0TB	03A3 to 03A2
UART1 Transmit buffer register	U1TB	03AB to 03AA
UART2 Transmit buffer register	U2TB	037B to 037A
Ups and downs flag	UDF	0384
Timer 0 register	TA0	0387 to 0386
Timer 1 register	TA1	0389 to 0388
Timer 2 register	TA2	038B to 038A

22.2 Reset

When supplying power to the microcomputer, the power supply voltage applied to the VCC1 and VCC2 pins must meet the conditions of SVCC.

Cymphol	Davamatar		1 1 :4		
Symbol	Symbol Parameter		Тур.	Max.	Unit
SVcc	Power supply rising gradient (Vcc1)	0.05			V/ms

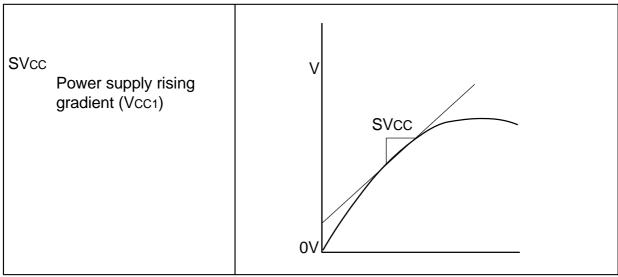


Figure 22.1 Timing of SVCC

22.3 Bus

• The ROMless version can operate only in the microprocessor mode, connect the CNVSS pin to VCC1.

• When resetting CNVss pin with "H" input, contents of internal ROM cannot be read out.

22.4 Precautions for Power Control

- When exiting stop mode by hardware reset, set RESET pin to "L" until a main clock oscillation is stabilized.
- Set the MR0 bit in the TAiMR register (i=0 to 2) to "0" (pulse is not output) to use the timer A to exit stop mode.
- When entering wait mode, insert a JMP.B instruction before a WAIT instruction. Do not execute any instructions which can generate a write to RAM between the JMP.B and WAIT instructions. Disable the DMA transfers, if a DMA transfer may occur between the JMP.B and WAIT instructions. After the WAIT instruction, insert at least 4 NOP instructions. When entering wait mode, the instruction queue roadstead the instructions following WAIT, and depending on timing, some of these may execute before the microcomputer enters wait mode.

Program example when entering wait mode

Program Example:		JMP.B	L1	; Insert JMP.B instruction before WAIT instruction
	L1:			
		FSET	I	;
		WAIT		; Enter wait mode
		NOP		; More than 4 NOP instructions
		NOP		
		NOP		
		NOP		

• When entering stop mode, insert a JMP.B instruction immediately after executing an instruction which sets the CM10 bit in the CM1 register to Åg1Åh, and then insert at least 4 NOP instructions. When entering stop mode, the instruction queue reads ahead the instructions following the instruction which sets the CM10 bit to "1" (all clock stops), and, some of these may execute before the microcomputer enters stop mode or before the interrupt routine for returning from stop mode.

Program example when entering stop mode

Program Example:		FSET	I	
		BSET	CM10	; Enter stop mode
		JMP.B	L2	; Insert JMP.B instruction
	L2:			
		NOP		; More than 4 NOP instructions
		NOP		
		NOP		
		NOP		

- Wait the main clock oscillation stabilizes, before switching the clock source for CPU clock to the main clock.
- Similarly, wait until the sub clock oscillates stably before switching the clock source for CPU clock to the sub clock.

• Suggestions to reduce power consumption

Ports

The processor retains the state of each I/O port even when it goes to wait mode or to stop mode. A current flows in active I/O ports. A pass current flows in input ports that high-impedance state. When entering wait mode or stop mode, set non-used ports to input and stabilize the potential.

A/D converter

When A/D conversion is not performed, set the VCUT bit of ADiCON1 register to "0" (no VREF connection).

When A/D conversion is performed, start the A/D conversion at least 1 µs or longer after setting the VCUT bit to "1" (VREF connection).

Stopping peripheral functions

Use the CM0 register CM02 bit to stop the unnecessary peripheral functions during wait mode.

However, because the peripheral function clock (fC32) generated from the sub-clock does not stop, this measure is not conducive to reducing the power consumption of the chip. If low speed mode or low power dissipation mode is to be changed to wait mode, set the CM02 bit to "0" (do not peripheral function clock stopped when in wait mode), before changing wait mode.

Switching the oscillation-driving capacity

Set the driving capacity to "LOW" when oscillation is stable.

22.5 Precautions for Protect

Set the PRC2 bit to "1" (write enabled) and then write to any address, and the PRC2 bit will be cleared to "0" (write protected). The registers protected by the PRC2 bit should be changed in the next instruction after setting the PRC2 bit to "1". Make sure no interrupts or DMA transfers will occur between the instruction in which the PRC2 bit is set to "1" and the next instruction.

22.6 Precautions for Interrupt

22.6.1 Reading address 00000h

Do not read the address 00000h in a program. When a maskable interrupt request is accepted, the CPU reads interrupt information (interrupt number and interrupt request priority level) from the address 00000h during the interrupt sequence. At this time, the IR bit for the accepted interrupt is cleared to "0".

If the address 00000h is read in a program, the IR bit for the interrupt which has the highest priority among the enabled interrupts is cleared to "0". This factors a problem that the interrupt is canceled, or an unexpected interrupt request is generated.

22.6.2 Setting the SP

Set any value in the SP(USP, ISP) before accepting an interrupt. The SP(USP, ISP) is cleared to "0000h" after reset. Therefore, if an interrupt is accepted before setting any value in the SP(USP, ISP), the program may go out of control.

Especially when using \overline{NMI} interrupt, set a value in the ISP at the beginning of the program. For the first and only the first instruction after reset, all interrupts including \overline{NMI} interrupt are disabled.

22.6.3 The NMI Interrupt

The $\overline{\text{NMI}}$ interrupt cannot be disabled. If this interrupt is unused, connect the $\overline{\text{NMI}}$ pin to VCC1 via a resistor (pull-up).

The input level of the $\overline{\text{NMI}}$ pin can be read by accessing the P8_5 bit in the P8 register. Note that the P8_5 bit can only be read when determining the pin level in $\overline{\text{NMI}}$ interrupt routine.

Stop mode cannot be entered into while input on the $\overline{\text{NMI}}$ pin is low. This is because while input on the $\overline{\text{NMI}}$ pin is low the CM10 bit in the CM1 register is fixed to "0".

Do not go to wait mode while input on the $\overline{\text{NMI}}$ pin is low. This is because when input on the $\overline{\text{NMI}}$ pin goes low, the CPU stops but CPU clock remains active; therefore, the current consumption in the chip does not drop. In this case, normal condition is restored by an interrupt generated thereafter.

The low and high level durations of the input signal to the $\overline{\text{NMI}}$ pin must each be 2 CPU clock cycles + 300 ns or more.

22.6.4 Changing the Interrupt Generate Factor

If the interrupt generate factor is changed, the IR bit in the interrupt control register for the changed interrupt may inadvertently be set to "1" (interrupt requested). If you changed the interrupt generate factor for an interrupt that needs to be used, be sure to clear the IR bit for that interrupt to "0" (interrupt not requested).

Changing the interrupt generate factor refered to here means any act of changing the source, polarity or timing of the interrupt assigned to each software interrupt number. Therefore, if a mode change of any peripheral function involves changing the generate factor, polarity or timing of an interrupt, be sure to clear the IR bit for that interrupt to "0" (interrupt not requested) after making such changes. Refer to the description of each peripheral function for details about the interrupts from peripheral functions.

Figure 22.2 shows the Procedure for Changing the Interrupt Generate Factor.

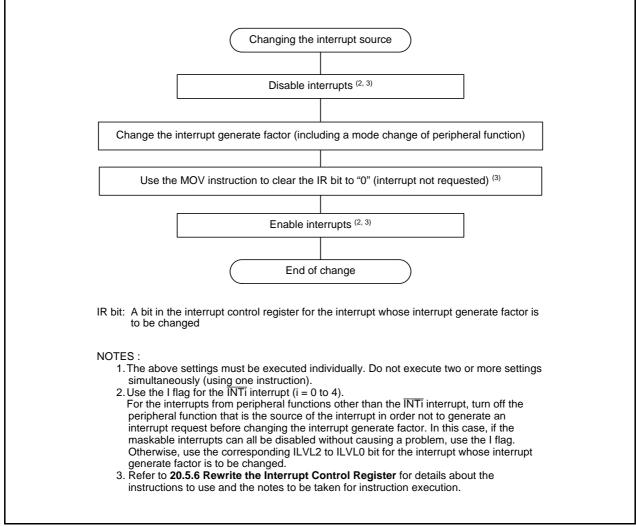


Figure 22.2 Procedure for Changing the Interrupt Generate Factor

22.6.5 INT Interrupt

- Either an "L" level of at least tW(INH) or an "H" level of at least tW(INL) width is necessary for the signal input to pins INT0 through INT4 regardless of the CPU operation clock.
- If the POL bit in the INT0IC to INT4IC registers or the IFSR7 to IFSR0 bits in the IFSR register are changed, the IR bit may inadvertently set to 1 (interrupt requested). Be sure to clear the IR bit to 0 interrupt not requested) after changing any of those register bits.

22.6.6 Rewrite the Interrupt Control Register

(a) The interrupt control register for any interrupt should be modified in places where no requests for that interrupt may occur. Otherwise, disable the interrupt before rewriting the interrupt control register.

- (b) To rewrite the interrupt control register for any interrupt after disabling that interrupt, be careful with the instruction to be used.
 - · Changing any bit other than the IR bit

If while executing an instruction, a request for an interrupt controlled by the register being modified occurs, the IR bit in the register may not be set to "1" (interrupt requested), with the result that the interrupt request is ignored. If such a situation presents a problem, use the instructions shown below to modify the register. Usable instructions: AND, OR, BCLR, BSET

Changing the IR bit

Depending on the instruction used, the IR bit may not always be cleared to "0" (interrupt not requested). Therefore, be sure to use the MOV instruction to clear the IR bit.

(c) When using the I flag to disable an interrupt, refer to the sample program fragments shown below as you set the I flag. (Refer to (b) for details about rewrite the interrupt control registers in the sample program fragments.)

Examples 1 through 3 show how to prevent the I flag from being set to "1" (interrupts enabled) before the interrupt control register is rewrited, owing to the effects of the internal bus and the instruction queue buffer.

Example 1:Using the NOP instruction to keep the program waiting until the interrupt control register is modified

```
INT_SWITCH1:
FCLR I ; Disable interrupts.
AND.B #00h, 0055h ; Set the TA0IC register to "00h".
NOP ;
NOP
FSET I ; Enable interrupts.
```

The number of NOP instruction is as follows.

When using HOLD function: 4.

Example 2:Using the dummy read to keep the FSET instruction waiting

```
INT_SWITCH2:

FCLR I ; Disable interrupts.

AND.B #00h, 0055h ; Set the TA0IC register to "00h".

MOV.W MEM, R0 ; Dummy read.

FSET I ; Enable interrupts.
```

Example 3:Using the POPC instruction to changing the I flag

```
INT_SWITCH3:
PUSHC FLG
FCLR I ; Disable interrupts.
AND.B #00h, 0055h ; Set the TA0IC register to "00h".
POPC FLG ; Enable interrupts.
```

22.6.7 Watchdog Timer Interrupt

Initialize the watchdog timer after the watchdog timer interrupt occurs.

22.7 Precautions for DMAC

22.7.1 Write to DMAE Bit in DMiCON Register

When both of the conditions below are met, follow the steps below.

Conditions

- The DMAE bit is set to "1" again while it remains set (DMAi is in an active state).
- A DMA request may occur simultaneously when the DMAE bit is being written.

Steps

- (1) Write "1" to the DMAE bit and DMAS bit in the DMiCON register simultaneously(1).
- (2) Make sure that the DMAi is in an initial state⁽²⁾ in a program.

If the DMAi is not in an initial state, the above steps should be repeated.

NOTES:

- 1.The DMAS bit remains unchanged even if "1" is written. However, if "0" is written to this bit, it is set to "0" (DMA not requested). In order to prevent the DMAS bit from being modified to "0", "1" should be written to the DMAS bit when "1" is written to the DMAE bit. In this way the state of the DMAS bit immediately before being written can be maintained.
 - Similarly, when writing to the DMAE bit with a read-modify-write instruction, "1" should be written to the DMAS bit in order to maintain a DMA request which is generated during execution.
- 2.Read the TCRi register to verify whether the DMAi is in an initial state. If the read value is equal to a value which was written to the TCRi register before DMA transfer start, the DMAi is in an initial state. (If a DMA request occurs after writing to the DMAE bit, the value written to the TCRi register is "1".) If the read value is a value in the middle of transfer, the DMAi is not in an initial state.

22.8 Precautions for Timers

22.8.1 Timer A

22.8.1.1 Timer A (Timer Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 2) register and the TAi register before setting the TAiS bit in the TABSR register to "1" (count starts).

Always make sure the TAiMR register is modified while the TAiS bit remains "0" (count stops) regardless whether after reset or not.

While counting is in progress, the counter value can be read out at any time by reading the TAi register. However, if the counter is read at the same time it is reloaded, the value "FFFFh" is read.

Also, if the counter is read before it starts counting after a value is set in the TAi register while not counting, the set value is read.

22.8.1.2 Timer A (Event Counter Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 2) register, the TAi register, the UDF register, the ONSF register TAZIE, TA0TGL and TA0TGH bits and the TRGSR register before setting the TAiS bit in the TABSR register to "1" (count starts).

Always make sure the TAiMR register, the UDF register, the TAZIE, TA0TGL and TA0TGH bits in the ONSF register and the TRGSR register are modified while the TAiS bit remains "0" (count stops) regardless whether after reset or not.

While counting is in progress, the counter value can be read out at any time by reading the TAi register. However, "FFFFh" can be read in underflow, while reloading, and "0000h" in overflow. When setting TAi register to a value during a counter stop, the setting value can be read before a counter starts counting. Also, if the counter is read before it starts counting after a value is set in the TAi register while not counting, the set value is read.

22.8.1.3 Timer A (One-shot Timer Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 2) register, the TAi register, the TAOTGL and TAOTGH bits in the ONSF register and the TRGSR register before setting the TAiS bit in the TABSR register to "1" (count starts).

Always make sure the TAiMR register, the TA0TGL and TA0TGH bits and the TRGSR register are modified while the TAiS bit remains "0" (count stops) regardless whether after reset or not.

When setting TAiS bit to "0" (count stop), the followings occur:

- A counter stops counting and a content of reload register is reloaded.
- TAiOUT pin outputs "L".
- After one cycle of the CPU clock, the IR bit in the TAilC register is set to "1" (interrupt request).

Output in one-shot timer mode synchronizes with a count source internally generated. When an external trigger has been selected, one-cycle delay of a count source as maximum occurs between a trigger input to TAiIN pin and output in one-shot timer mode.

The IR bit is set to "1" when timer operation mode is set with any of the following procedures:

- Select one-shot timer mode after reset.
- Change an operation mode from timer mode to one-shot timer mode.
- Change an operation mode from event counter mode to one-shot timer mode.

To use the Timer Ai interrupt (the IR bit), set the IR bit to "0" after the changes listed above have been made.

When a trigger occurs, while counting, a counter reloads the reload register to continue counting after generating a re-trigger and counting down once. To generate a trigger while counting, generate a second trigger between occurring the previous trigger and operating longer than one cycle of a timer count source.

22.8.1.4 Timer A (Pulse Width Modulation Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 2) register, the TAi register, the TAOTGL and TAOTGH bits in the ONSF register and the TRGSR register before setting the TAiS bit in the TABSR register to "1" (count starts).

Always make sure the TAiMR register, TA0TGL and TA0TGH bits and the TRGSR register are modified while the TAiS bit remains "0" (count stops) regardless whether after reset or not.

The IR bit is set to "1" when setting a timer operation mode with any of the following procedures:

- Select the PWM mode after reset.
- Change an operation mode from timer mode to PWM mode.
- Change an operation mode from event counter mode to PWM mode.

To use the Timer Ai interrupt (interrupt request bit), set the IR bit to "0" by program after the above listed changes have been made.

When setting TAiS register to "0" (count stop) during PWM pulse output, the following action occurs:

- Stop counting.
- When TAiOUT pin is output "H", output level is set to "L" and the IR bit is set to "1".
- When TAiOUT pin is output "L", both output level and the IR bit remains unchanged.

22.8.2 Timer B

22.8.2.1 Timer B (Timer Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TBiMR (i = 0 to 2) register and TBi register before setting the TBiS bit in the TABSR or the TBSR register to "1" (count starts). Always make sure the TBiMR register is modified while the TBiS bit remains "0" (count stops) regardless whether after reset or not.

A value of a counter, while counting, can be read in TBi register at any time. "FFFFh" is read while reloading. Setting value is read between setting values in TBi register at count stop and starting a counter.

22.8.2.2 Timer B (Event Counter Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TBiMR (i = 0 to 2) register and TBi register before setting the TBiS bit in the TABSR or the TBSR register to "1" (count starts). Always make sure the TBiMR register is modified while the TBiS bit remains "0" (count stops) regardless whether after reset or not.

The counter value can be read out on-the-fly at any time by reading the TBi register. However, if this register is read at the same time the counter is reloaded, the read value is always "FFFFh". If the TBi register is read after setting a value in it while not counting but before the counter starts counting, the read value is the one that has been set in the register.

22.8.2.3 Timer B (Pulse Period/pulse Width Measurement Mode)

The timer remains idle after reset. Set the mode, count source, etc. using the TBiMR (i = 0 to 2) register before setting the TBiS bit in the TABSR or the TBSR register to "1" (count starts).

Always make sure the TBiMR register is modified while the TBiS bit remains "0" (count stops) regardless whether after reset or not. To clear the MR3 bit to "0" by writing to the TBiMR register while the TBiS bit = 1 (count starts), be sure to write the same value as previously written to the TM0D0, TM0D1, MR0, MR1, TCK0 and TCK1 bits and a 0 to the MR2 bit.

The IR bit in the TBiIC register (i=0 to 2) goes to "1" (interrupt request), when an effective edge of a measurement pulse is input or Timer Bi is overflowed. The factor of interrupt request can be determined by use of the MR3 bit in the TBiMR register within the interrupt routine.

If the source of interrupt cannot be identified by the MR3 bit such as when the measurement pulse input and a timer overflow occur at the same time, use another timer to count the number of times Timer B has overflowed.

To set the MR3 bit to "0" (no overflow), set TBiMR register with setting the TBiS bit to "1" and counting the next count source after setting the MR3 bit to "1" (overflow).

Use the IR bit to detect only overflows. Use the MR3 bit only to determine the interrupt factor.

When a count is started and the first effective edge is input, an indeterminate value is transferred to the reload register. At this time, Timer Bi interrupt request is not generated.

A value of the counter is indeterminate at the beginning of a count. MR3 may be set to "1" and Timer Bi interrupt request may be generated between a count start and an effective edge input.

For pulse width measurement, pulse widths are successively measured. Use program to check whether the measurement result is an "H" level width or an "L" level width.

22.9 Precautions for Serial interface

22.9.1 Clock Synchronous Serial I/O

22.9.1.1 Transmission/reception

With an external clock selected, and choosing the \overline{RTS} function, the output level of the \overline{RTSi} pin goes to "L" when the data-receivable status becomes ready, which informs the transmission side that the reception has become ready. The output level of the \overline{RTSi} pin goes to "H" when reception starts. So if the \overline{RTSi} pin is connected to the \overline{CTSi} pin on the transmission side, the circuit can transmission and reception data with consistent timing. With the internal clock, the \overline{RTS} function has no effect.

22.9.1.2 Transmission

When an external clock is selected, the conditions must be met while if the CKPOL bit in the UiC0 register = 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the CKPOL bit in the UiC0 register = 1 (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the low state.

- The TE bit in the UiC1 register= 1 (transmission enabled)
- The TI bit in the UiC1 register = 0 (data present in UiTB register)
- If $\overline{\text{CTS}}$ function is selected, input on the $\overline{\text{CTSi}}$ pin = L

22.9.1.3 **Reception**

In operating the clock-synchronous serial I/O, operating a transmitter generates a shift clock. Fix settings for transmission even when using the device only for reception. Dummy data is output to the outside from the TXDi pin when receiving data.

When an internal clock is selected, set the TE bit in the UiC1 register (i = 0 to 2) to 1 (transmission enabled) and write dummy data to the UiTB register, and the shift clock will thereby be generated.

When an external clock is selected, set the TE bit to 1 and write dummy data to the UiTB register, and the shift clock will be generated when the external clock is fed to the CLKi input pin.

When successively receiving data, if all bits of the next receive data are prepared in the UARTi receive register while the RE bit in the UiC1 register (i = 0 to 2) = 1 (data present in the UiRB register), an overrun error occurs and the OER bit in the UiRB register is set to "1" (overrun error occurred). In this case, because the content of the UiRB register is indeterminate, a corrective measure must be taken by programs on the transmit and receive sides so that the valid data before the overrun error occurred will be retransmitted. Note that when an overrun error occurred, the IR bit in the SiRIC register does not change state.

To receive data in succession, set dummy data in the lower-order byte of the UiTB register every time reception is made.

When an external clock is selected, the conditions must be met while if the CKPOL bit = 0, the external clock is in the high state; if the CKPOL bit = 1, the external clock is in the low state.

- The RE bit in the UiC1 register= 1 (reception enabled)
- The TE bit in the UiC1 register= 1 (transmission enabled)
- The TI bit in the UiC1 register= 0 (data present in the UiTB register)

22.9.2 UART

22.9.2.1 Special Mode 1(I²C Mode)

When generating start, stop and restart conditions, set the STSPSEL bit in the UiSMR4 register to "0" and wait for more than half cycle of the transfer clock before setting each condition generate bit (STAREQ, RSTAREQ and STPREQ) from "0" to "1".

22.9.2.2 Special Mode 4 (SIM Mode)

A transmit interrupt request is generated by setting the U2C1 register U2IRS bit to "1" (transmission complete) and U2ERE bit to "1" (error signal output) after reset. Therefore, when using SIM mode, be sure to clear the IR bit to "0" (no interrupt request) after setting these bits.

22.10 A/D Converter

Set ADCON0 (except bit 6), ADCON1 and ADCON2 registers when A/D conversion is stopped (before a trigger occurs).

When the VCUT bit in the ADCON1 register is changed from "0" (Vref not connected) to "1" (Vref connected), start A/D conversion after passing 1 µs or longer.

To prevent noise-induced device malfunction or latchup, as well as to reduce conversion errors, insert capacitors between the AVCC, VREF, and analog input pins (ANi(i=0 to 7), AN0_i) each and the AVSS pin. Similarly, insert a capacitor between the VCC1 pin and the VSS pin. Figure 22.3 is an example connection of each pin.

Make sure the port direction bits for those pins that are used as analog inputs are set to "0" (input mode). Also, if the TGR bit in the ADCON0 register = 1 (external trigger), make sure the port direction bit for the ADTRG pin is set to "0" (input mode).

When using key input interrupts, do not use any of the four AN4 to AN7 pins as analog inputs. (A key input interrupt request is generated when the A/D input voltage goes low.)

The ϕAD frequency must be 10MHz or less. Without sample-and-hold function, limit the ϕAD frequency to 250kHz or more. With the sample and hold function, limit the ϕAD frequency to 1MHz or more.

When changing an A/D operation mode, select analog input pin again in the CH2 to CH0 bits in the ADCON0 register.

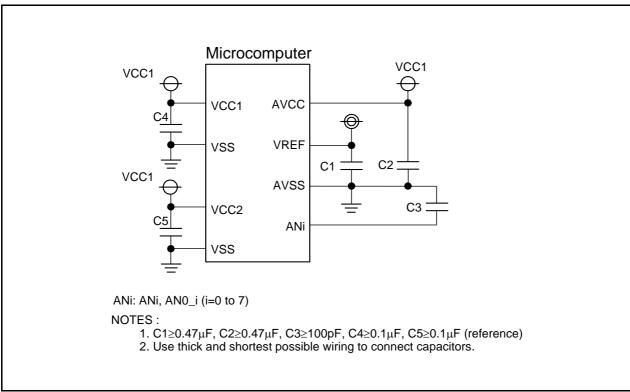


Figure 22.3 Use of Capacitors to Reduce Noise

If the CPU reads the ADi register (i = 0 to 7) at the same time the conversion result is stored in the ADi register after completion of A/D conversion, an incorrect value may be stored in the ADi register. This problem occurs when a divide-by-n clock derived from the main clock or a subclock is selected for CPU clock.

- When operating in one-shot mode
 - Check to see that A/D conversion is completed before reading the target ADi register. (Check the IR bit in the ADIC register to see if A/D conversion is completed.)
- When operating in repeat mode

Use the main clock for CPU clock directly without dividing it.

If A/D conversion is forcibly terminated while in progress by setting the ADST bit in the ADCON0 register to "0" (A/D conversion halted), the conversion result of the A/D converter is indeterminate. The contents of ADi registers irrelevant to A/D conversion may also become indeterminate. If while A/D conversion is underway the ADST bit is cleared to "0" in a program, ignore the values of all ADi registers.

The applied intermediate potential may cause more increase in power consumption than other analog input pins (AN0 to AN3 and AN0_0 to AN0_7), since the AN4 to AN7 are used with the KI0 to KI3.

22.11 Precautions for Programmable I/O Ports

The input threshold voltage of pins differs between programmable input/output ports and peripheral functions. Therefore, if any pin is shared by a programmable input/output port and a peripheral function and the input level at this pin is outside the range of recommended operating conditions VIH and VIL (neither "high" nor "low"), the input level may be determined differently depending on which side-the programmable input/output port or the peripheral function-is currently selected.

22.12 Electric Characteristic Differences Between Mask ROM and Flash Memory Version Microcomputers

Flash memory version and mask ROM version may have different characteristics, operating margin, noise tolerated dose, noise width dose in electrical characteristics due to internal ROM, different layout pattern, etc. When switching to the mask ROM version, conduct equivalent tests as system evaluation tests conducted in the flush memory version.

22.13 Mask ROM

When using the masked ROM version, write nothing to internal ROM area.

22.14 Flash Memory Version

22.14.1 Functions to Inhibit Rewriting Flash Memory Rewrite

ID codes are stored in addresses 0FFFDFh, 0FFFE3h, 0FFFEBh, 0FFFF5h, 0FFFF7h, and 0FFFFBh. If wrong data are written to theses addresses, the flash memory cannot be read or written in standard serial I/O mode.

The ROMCP address is mapped in address 0FFFFh. If wrong data is written to this address, the flash memory cannot be read or written in parallel I/O mode.

In the flash memory version of MCU, these addresses are allocated to the vector addresses (H) of fixed vectors.

22.14.2 Stop mode

When the MCU enters stop mode, execute the instruction which sets the CM10 bit to "1" (stop mode) after setting the FMR01 bit to "0" (CPU rewrite mode disabled) and disabling the DMA transfer.

22.14.3 Wait mode

When shifting to wait mode, set the FMR01 bit to "0" (CPU rewrite mode disabled) before executing the WAIT instruction

22.14.4 Low power dissipation mode

If the CM05 bit is set to "1" (main clock stop), the following commands must not be executed.

- Program
- Block erase
- · Lock bit program
- Read Lock bit Status

22.14.5 Writing command and data

Write the command code and data at even addresses.

22.14.6 Program Command

Write "xx40h" in the first bus cycle and write data to the write address in the second bus cycle, and an auto program operation (data program and verify) will start. Make sure the address value specified in the first bus cycle is the same even address as the write address specified in the second bus cycle.

22.14.7 Lock Bit Program Command

Write "77h" in the first bus cycle and write "xxD0h" to the uppermost address of a block (even address, however) in the second bus cycle, and the lock bit for the specified block is cleared to "0". Make sure then address value specified in the first bus cycle is the same uppermost block address that is specified in the second bus cycle.

22.14.8 Operation speed

Before entering CPU rewrite mode (EW0 or EW1 mode), set the CM11 bit in the CM1 register to "0" (main clock), select 10 MHz or less for CPU clock using the CM06 bit in the CM0 register and CM17 to CM16 bits in the CM1 register. Also, set the PM17 bit in the PM1 register to "1" (with wait state).

22.14.9 Prohibited instructions

The following instructions cannot be used in EW0 mode because they reference data in the flash memory: UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction.

22.14.10 Interrupts

EW0 Mode

- To use interrupts having vectors in a relocatable vector table, the vectors must be relocated in the RAM area.
- The $\overline{\text{NMI}}$ and watchdog timer interrupts are available because the FMR0 and FMR1 registers are forcibly reset when either interrupt occurs. Allocate jump addresses for individual interrupt routine to the fixed vector table. Rewrite operation is aborted when the $\overline{\text{NMI}}$ or watchdog timer interrupt occurs. Execute a rewrite program again after exiting the interrupt routine.
- The address match interrupt is not available because the CPU references data in the flash memory.

EW1 Mode

- Do not acknowledge any interrupts having vectors in the relocatable vector table or address match interrupt during auto-program or auto-erase operation.
- Do not use the watchdog timer interrupt.
- The $\overline{\text{NMI}}$ interrupt is available since registers FMR0 and FMR1 are forcibly reset when the interrupt occurs. Allocate a jump address for individual interrupt routine to the fixed vector table. Rewrite operation is aborted when the $\overline{\text{NMI}}$ interrupt occurs. Execute a rewrite program again after exiting the interrupt routine.

22.14.11 How to access

To set the FMR01, FMR02, or FMR11 bit to "1", write "0" and then "1" in succession. This is necessary to ensure that no interrupts or DMA transfers will occur before writing "1" after writing "0". Also only when $\overline{\text{NMI}}$ pin is "H" level.

22.14.12 Writing in the user ROM area

EW0 Mode

• If the power supply voltage drops while rewriting any block in which the rewrite control program is stored, a problem may occur that the rewrite control program is not correctly rewritten and, consequently, the flash memory becomes unable to be rewritten thereafter. In this case, standard serial I/O or parallel I/O mode should be used.

EW1 Mode

• Avoid rewriting any block in which the rewrite control program is stored.

22.14.13 DMA transfer

In EW1 mode, make sure that no DMA transfers will occur while the FMR00 bit in the FMR0 register = 0 (during the auto program or auto erase period).

22.15 One Time Flash Version

22.15.1 Stop mode

When the MCU enters stop mode, execute the instruction which sets the CM10 bit to "1" (stop mode) after setting the FMR01 bit to "0" and disabling the DMA transfer.

22.15.2 Wait mode

When shifting to wait mode, set the FMR01 bit to "0" before executing the WAIT instruction.

22.15.3 Operation speed

Before the FMR01 bit is set to "1", set the CM11 bit in the CM1 register to "0" (main clock), select 10 MHz or less for CPU clock using the CM06 bit in the CM0 register and CM17 to CM16 bits in the CM1 register. Also, set the PM17 bit in the PM1 register to "1" (with wait state).

22.15.4 Prohibited Instructions

The following instructions cannot be used when the FMR01 bit is set to "1" because they reference data in the flash memory: UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction.

22.15.5 Interrupts

When the FMR01 bit is set to "1",

- To use interrupts having vectors in relocatable vector table, the vectors must be relocated in the RAM area.
- The $\overline{\text{NMI}}$ and watchdog timer interrupts are available because the FMR0 and FMR1 registers are forcibly reset when either interrupt occurs. Allocate jump addresses for individual interrupt routine to fixed vector table. When the $\overline{\text{NMI}}$ or watchdog timer interrupt occurs, wait until the interrupt routine is completed and then set the FMR01 bit to "1" in order to set the FMSTP bit in the FMR0 register to "1" again.
- The address match interrupt is not available because the CPU references data in the flash memory.

22.15.6 How to access

Set the FMR01 bit to 1 immediately after setting them first to 0 while a high-level ("H") signal is applied to the $\overline{\text{NMI}}$ pin. Do not generate an interrupt or a DMA transfer between setting the FMR01 bit to 0 and setting them to 1.

22.16 Precautions for Noise

Connect a bypass capacitor (approximately $0.1~\mu F$) across the VCC1 and XSS pins, and VCC2 and VSS pins using the shortest and thicker possible wiring. Figure 22.4 shows the Bypass Capacitor Connection.

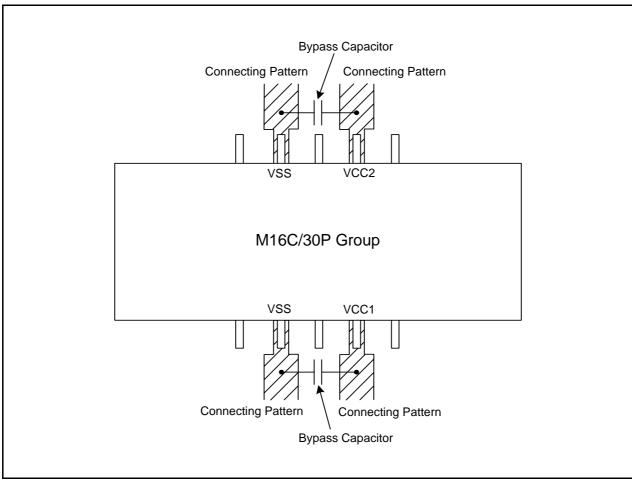
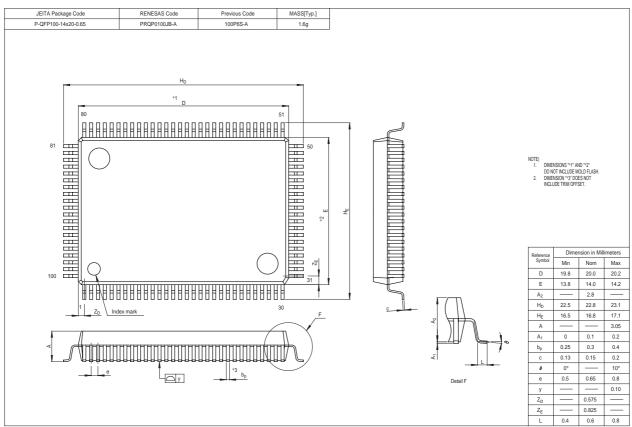
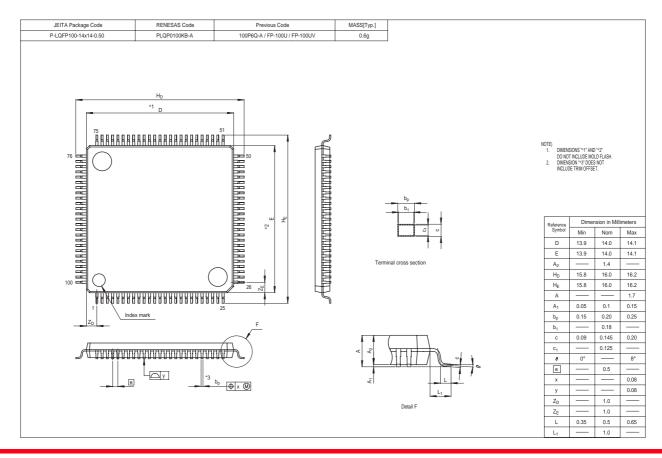




Figure 22.4 Bypass Capacitor Connection

Appendix 1. Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Technology website.

Appendix 2. Difference between M16C/62P and M16C/30P

Appendix Table 2.1 Function Difference (1)(1)

Item	M16C/62P	M16C/30P
Minimum instruction	41.7ns(f(BCLK)=24MHz, VCC1=3.0 to 5.5V)	62.5ns(f(XIN)=16MHz, VCC=3.0 to 5.5V)
Execution Time		
	100ns(f(BCLK)=10MHz, VCC1=2.7 to 5.5V)	100ns(f(XIN)=10MHz, VCC=2.7 to 5.5V)
Supply Voltage	VCC1=3.0 to 5.5V, VCC2=3.0V to VCC1	VCC1=VCC2=3.0 to 5.5V(f(XIN)=16MHz)
	(f(BCLK)=24MHz)	VCC1=VCC2=2.7 to 5.5V(f(XIN)=10MHz)
	VCC1=VCC2=2.7 to 5.5V (f(BCLK)=10MHz)	
I/O Power Supply	Double (VCC1, VCC2)	Single (VCC1=VCC2)
Package	80-pin, 100-pin, 128-pin plastic mold QFP	100-pin plastic mold QFP
Memory	Mask ROM	Mask ROM
	Flash Memory	Flash Memory
	ROMIess	One time Flash Memory
		ROMless
Voltage Detection Circuit	Built-in	None
	Vdet3, Vdet4 detect	
	Voltage down detect interrupt	
	Voltage down detect reset (hardware reset 2)	
Clock Generating Circuit	PLL, XIN, XCIN, On-chip oscillator	XIN, XCIN
System Clock Protective	Built-in	None
Function		(protected by protect register)
Oscillation Stop,	Built-in	None
Re-oscillation Detection		
Function		
Power Consumption	18mA(VCC1=VCC2=5V, f(BCLK)=24MHz)	10mA(VCC=5V, f(XIN)=16MHz)
	8mA(VCC1=VCC2=3V, f(BCLK)=10MHz)	8mA(VCC=3V, f(XIN)=10MHz)
	1.8μA(VCC1=VCC2=3V, f(XCIN)=32kHz, wait	1.8μA(VCC=3V, f(XCIN)=32kHz, wait
	mode)	mode)
Memory Area	Memory area expandable (4M bytes)	1 M bytes fixed
External Device Connect	04000h to 07FFFh (PM13=0)	04000h to 07FFFh
Area	08000h to 0FFFFh(PM10=0)	08000h to 0FFFFh (PM10=0)
	10000h to 26FFFh	10000h to 26FFFh
	28000h to 7FFFFh	28000h to 7FFFFh
	80000h to CFFFFh (PM13=0)	80000h to CFFFFh
	D0000h to FFFFFh (Microprocessor mode)	(PM13=0 or without the PM13 bit)
	Dood of the First In (initial processor initial)	D0000h to FFFFFh
		(Microprocessor mode)
Bus Mode	Separate bus	Separate bus
Dus Mode		Separate bus
	Multiplexed bus	

NOTES:

1. About the details and the characteristics, refer to Hardware Manual.

Appendix Table 2.2 Function Difference (2)(1)

Item	M16C/62P	M16C/30P
Upper Address Memory	P4_0 to P4_3(A16 to A19),	P4_0 to P4_3(A16 to A19)
Expansion Mode and	P3_4 to P3_7(A12 to A15)	: Switchable between address bus and I/O
Microprocessor mode	: Switchable between address bus and I/O	port
	port	P3_4 to P3_7(A12 to A15)
		: Can not be switched
Access to SFR	Variable (1 to 2 waits)	1 wait fixed
Software Wait to	Variable (0 to 3 waits)	Variable (0 to 1 wait)
External Area		
Protect	Can be set for PM0, PM1, PM2, CM0, CM1,	Can be set for PM0, PM1, CM0, CM1, PD9
	CM2, PLC0, INVC0, INVC1, PD9, S3C,	registers
	S4C, TB2SC, PCLKR, VCR2, D4INT	
Watchdog Timer	registers Watchdog timer interrupt or watchdog timer	Watchdog timer interrupt
Watchdog Timei	reset is selected	watchdog timer interrupt
	Count source protective mode is available	No count source protective mode
INIT Laterment		
INT Interrupt Address Match Interrupt	6 (INT0 to INT5)	5 (INT0 to INT4)
Multifunction Timer	11 channels	6 channels
Multifunction Timer		
Timer A two-phase pulse	Timer A x 5 channels, Timer B x 6 channels Function Z-phase (counter reset) input	Timer A x 3 channels, Timer B x 3 channels No function Z-phase (counter reset) input
signal processing	Function 2-phase (counter reset) input	No function 2-priase (counter reset) input
Timer Functions for	Built-in	None
Three-phase Motor	Built-III	NOTIC
Control		
Serial Interface	(UART, Clock synchronous, I ² C bus ^{TM (2)} ,	(UART, Clock synchronous, I ² C bus ^{TM (2)}) x
(UART0 to UART2)	IEBus TM (3))x 3	(UART, Clock Synchronous, I ² C bus ¹ (²) X
(UAKTO IO UAKTZ)	ILBus ···· (9/)X 3	(UART, Clock synchronous, I ² C bus ^{TM (2)} ,
		IEBus TM (3)) x 1
Clock Synchronous	2 channels	None
Serial I/O	2 orial mole	THORE
(SI/O3, SI/O4)		
A/D Converter	10 bits x 8 channels	10 bits x 8 channels
	Expandable up to 26 channels	Expandable up to 18 channels
A/D Converter	One-shot mode, Repeat mode,	One-shot mode, Repeat mode
Operation Mode	Single sweep mode, Repeat sweep mode 0,	
'	Repeat sweep mode 1	
	With External Op-amp mode	Without External Op-amp mode
A/D Converter Input Pin	Select from ports P0, P2, P10	Select from ports P0, P10
D/A Converter	8 bits x 2 channels	None
Forced erase function	None	Built-in
of Flash Memory		
· · · · · · · · · · · · · · · · · · ·		

NOTES:

- 1. About the details and the characteristics, refer to Hardware Manual.
- 2. I²C bus is a trademark of Koninklijke Philips Electronics N. V.
- 3. IEBus is a trademark of NEC Electronics Corporation.

Register Index

[A]		[P]	
AD0 to AD7	171	P0 to P10	189
ADCON0	170, 173, 176	PCLKR	48
ADCON1	170, 174, 177	PCR	191
ADCON2		PD0 to PD10	188
ADIC	66	PM0	30
AIER			31, 32, 8
, <u>-</u>			60
(D)			190
[B]	22		191
BCNIC	66	1 0102	101
[C]		[R]	70
CM0	47		78
CM1	48	ROMCP	200
CPSRF	98, 112		
CRCD	180	[S]	
CRCIN	180	S0RIC to S2RIC	66
CSR	35		66
		SAR0. SAR1	86
101		, -	
[D]	86	(7)	
DAR0, DAR1		[T]	٥
DM0CON			95
DM0IC to DM1IC			66
DM0IC, DM1IC			95, 100, 102, 106, 108
DM0SL			104
DM1CON			96, 112
DM1SL	84		111
			66
[F]			111, 113, 115, 117
FMR0	203, 229		86
FMR1	204	TRGSR	97
[1]		[U]	
IFSR	75	U0BCNIC	66
IFSR2A		U0BCNIC to U1BCNIC	66
INT0IC to INT2IC	67	U0BRG to U2BRG	124
INTOIC to INT4IC		U0C0 to U2C0	125
INT3IC		U0C1 to U2C1	126
INT4IC			124
1111410		U0RB to U2RB	123
			127
[K]			128
KUPIC	66		128
			129
[0]			123
ONSF	97		66
			127
			96
		UDF	90
		[W]	_
		WDC	28, 80

WDTS80

D.	Data		Description
Rev.	Date	Page	Summary
0.70	Aug 26, 2004	_	First Edition issued
0.80	Mar 18, 2005	_	development support tools -> development tools
		_	BCLK -> CPU clock
		2	Table 1.1 Performance Outline of M16C/30P Group Serial interface is revised.
		4	Figure 1.2 Type., Memory Size, and Package is partly revised.
		8	Table 1.4 Pin Detection (2) is partly revised.
		18	5.1 Hardware Reset 1 -> 5.1 Hardware Reset
		21	6.1 Types of Processor Modes is revised.
		25	Figure 7.1 Clock Generation Circuit is partly revised.
		26	Note 3 of Figure 7.2 CM0 Register is revised.
		30	Tittle of 7.2.1 CPU Clock and BCLK is revised.
		31	7.4.1 Normal Operation Mode is partly revised.
		33	Table 7.4 Interrupts to Exit Wait Mode is partly revised.
		57	Figure 10.1 Watchdog Timer Block Diagram is partly revised.
		59	Figure 10.3 Typical Operation of Cold start / Warm start is revised.
		63	Figure 11.3 DM1SL Register is partly revised.
		71	Figure 12.1 Timer A Configuration is revised.
		73	Figure 12.3 Timer A Block Diagram is revised.
		83	Table 12.4 Specifications in One-shot Timer Mode is revised.
		85	Table 12.5 Specifications in PWM Mode is revised.
		88	Figure 12.14 Timer B Block Diagram is partly revised.
		92	Table 12.7 Specifications in Event Counter Mode is partly revised.
		93	Figure 12.18 TBiMR Register in Event counter Mode is partly revised.
		95	Figure 12.19 TBiMR Register in Pulse Period and Pulse Width Measurement Mode is partly revised.
		96	Figure 12.20 Operation Timing when Measuring a Pulse Period is partly revised.
			Figure 12.21 Operation Timing when Measuring a Pulse Width is partly revised.
		108	Table 13.1 Clock Synchronous Serial I/O Mode Specifications is partly revised.
		111	Figure 13.12 Transmit and Receive Operation is partly revised.
		112	13.1.1.1 Counter Measure for Communication Error Occurs is partly revised.
		120	13.1.2.1 Bit Rate is partly revised.
			Table 13.9 Example of Rates and Settings is revised.
		124	Table 13.10 I ² C Mode Specifications is partly revised.
		134	Table 13.15 Special Mode 2 Specifications is partly revised.
		141	Table 13.18 SIM Mode Specifications is partly revised.

D	Data		Description
Rev.	Date	Page	Summary
		146	Table 14.1 Performance of A/D Converter is revised.
		148	ADCON1 Register of Figure 14.2 ADCON0 to ADCON1 Registers is partly revised.
		149	ADCON2 Register of Figure 14.3 ADCON2 and AD0 to AD7 Registers is partly revised.
		152	Figure 14.5 ADCON1 Register (One-shot Mode) is partly revised.
		155	Figure 14.7 ADCON1 Register (Repeat Mode) is partly revised.
		158	Figure 14.8 Analog Input Pin and External Sensor Equivalent Circuit is partly revised.
		167	Figure 16.7 PDi Registers is partly revised.
		174	Note 2 Table 17.3 A/D Conversion Characteristics is partly revised.
		175	Symbol of Table 17.4 Power Supply Circuit Timing Characteristics is partly revised.
		176	Table 17.5 Electrical Characteristics is revised.
		182	Table 17.19 Electrical Characteristics is revised.
		189	A/D converter of 18.2 Precautions for Power Control is partly revised.
		191	Note 2 of Figure 18.2 Procedure for Changing the Interrupt Generate Factor is partly revised.
		199	18.8 Precautions for A/D Converter is partly revised.
		200	18.8 Precautions for A/D Converter is partly revised.
		203- 204	Appendix 2. Difference between M16C/62P and M16C/30P is added.
1.00	Sep 01, 2005	2	Table 1.1 Performance Outline of M16C/30P Group is partly revised.
		4	Table 1.2 Product List is partly revised.
			Figure 1.2 Type No., Memory Size, and Package is partly revised.
		5	Figure 1.3 Pin Configuration is partly revised.
		6	Figure 1.4 Pin Configuration is partly revised.
		7-8	Tables 1.3 to 1.4 Pin Characteristics are added.
		9	Table 1.5 Pin Description is revised.
		14	3. Memory is partly revised.
		15	Table 4.1 SFR Information is partly revised.
		19	Table 4.5 SFR Information is partly revised
		20-23	Change Sections in Chapter 5.
		21	Figure 5.2 Reset Sequence is revised.
		22	Table 5.1 Pin Status When RESET Pin Level is "L" is revised.
		25-26	5.4 Cold Start-up / Warm Start-up Determine Function is added.
		27-30	6. Processor Mode is revised.
		31-39	7. Bus is Added.
		40	8. Memory Space Expansion Function is added.
		45	Figure 9.5 Example of Main Clock Connection Circuit is partly revised.

Day	Doto		Description
Rev.	Date	Page	Summary
		46	Figure 9.6 Example of Sub Clock Connection Circuit is partly revised.
		49	Table 9.3 Pin Status During Wait Mode is partly revised.
		50	Table 9.4 Interrupts to Exit Wait Mode and Use Conditions is partly revised.
		51	9.4.3 Stop Mode is partly revised.
			Table 9.5 Interrupts to Exit Stop Mode and Use Conditions id added.
		76	12.1 Cold Start / Warm Start moved to 5. Reset.
		78	Table 13.1 DMAC Specifications is partly revised.
		83	13.1.2 Effect of BYTE Pin Level is added.
		85	Table 13.2 DMA Transfer Cycles is partly revised.
			Table 13.3 Coefficient J, k is partly revised.
		115	Figure 15.1 UART0 Block Diagram is partly revised.
		116	Figure 15.2 UART1 Block Diagram is partly revised.
		117	Figure 15.3 UART2 Block Diagram is partly revised.
		119	Note 3 is added in Figure 15.5 UiRB Register.
		126	Note 2 is partly revised in Table 15.1 Clock Synchronous Serial I/O Mode Specifications.
		129	Figure 15.12 Transmit and Receive Operation is revised.
		134	Note 1 is partly revised in Table 15.5 UART Mode Specifications.
		137	Figure 15.18 Transmit Operation is revised.
		138	Table 15.9 Example of Bit Rates and Settings is partly revised.
		144	Note 4 is added in table 15.11 Registers to Be Used and Settings in I ² C Mode.
		161	Figure 15.33 Transmit and Receive Timing in SIM Mode is revised.
		163	15.1.6.2 Format is revised.
		178	Figure 17.3 CRC Calculation is partly revised.
		179	18.1 Port Pi Direction Register is partly revised.
			18.2 Port Pi Register is partly revised.
			18.3 Pull-up Control Register 0 to Pull-up Control Register 2 is partly revised.
		184	Figure 18.6 I/O Pins is partly revised.
		185	Note 2 is added in Figure 18.7 PDi Registers.
		186	Note 2 is added in Figure 18.8 Pi Registers.
		187	Note 2 is added in Figure 18.9 PUR0 Register.
			Note 3 to 5 are added in Figure 18.9 PUR1 Register.
		190	Table 18.2 Unassigned Pin Handling in Memory Expansion Mode and Microprocessor Mode is added.
		191	Figure 18.11 Unassigned Pins Handling is revised.
		193	Table 19.2 Recommended Operating Conditions is partly revised.
		194	Table 19.3 A/D Conversion Characteristics is partly revised.

Davis	Dete		Description
Rev.	Date	Page	Summary
		197	Note 1 is added in Table 19.6 External Clock Input (XIN input)
			Table 19.7 Memory Expansion Mode and Microprocessor Mode is added.
		200	Table 19.20 Memory Expansion Mode and Microprocessor Modes (for setting with no wait) is added.
			Figure 19.2 Ports P0 to P10 Measurement Circuit is added.
		201	Table 19.21 Memory Expansion Mode and Microprocessor Modes (for 1-to 3-wait setting and external area access) is added.
		204	Figure 19.5 Timing Diagram (3) is added.
		205	Figure 19.6 Timing Diagram (4) is added.
		206	Figure 19.7 Timing Diagram (5) is added.
		208	Note 1 to 4 are added in Table 19.23 External Clock Input (XIN input)
			Table 19.24 Memory Expansion Mode and Microprocessor Mode is added.
		211	Table 19.37 Memory Expansion Mode and Microprocessor Modes (for setting with no wait) is added.
			Figure 19.8 Ports P0 to P10 Measurement Circuit is added.
		212	Table 19.38 Memory Expansion Mode and Microprocessor Modes (for 1-to 3-wait setting and external area access) is added.
		215	Figure 19.11 Timing Diagram (3) is added.
		216	Figure 19.12 Timing Diagram (4) is added.
		217	Figure 19.13 Timing Diagram (5) is added.
		219	20.2 Bus is added.
		220	20.3 Precautions for Power Control is revised.
		231	Figure 20.3 Use of Capacitors to Reduce Noise is partly revised.
		232	20.8 Precautions for A/D Converter is partly revised.
		235-236	Appendix Table 2.1 to 2.2 are partly revised.

D	Dete		Description
Rev.	Date	Page	Summary
1.10	Oct 01, 2005	2	Table 1.1 Performance Outline of M16C/30P Group is partly revised.
		4	Table 1.2 Product List is partly revised.
			Figure 1.2 Type No., Memory Size, and Package is partly revised.
		5	Table 1.3 Product Code of Mask ROM version Version for M16C/30P is added.
			Figure 1.3 Marking Diagram of Mask ROM Version for M16C/30P is added.
		6	Figure 1.4 Marking Diagram of ROM -less Version for M16C/30P is added.
		6	Table 1.4 Product Code of ROM-less version for M16C/30P is added.
		16	Figure 3.1 Memory Map is partly added.
		32	Figure 6.3 Memory Map is partly added.
		54	9.4.3.3 Exiting Stop Mode is partly revised.
		85	13.1 Transfer Cycles information is added.
		99	14.1.2 Event Counter Mode is partly revised.
		101	Information is added
		123	Note 5 is added in Figure 15.7 UiC0 Register.
		194	Table 19.2 information is revised.
		236	Appendix Table 2.1 Function Difference Memory is partly added.
1.11	May 31, 2006	1	A note is add in Chapter 1. Overview.
		2	Table 1.1 Performance Outline of M16C/30P Group is partly revised.
		4	1.4 Product List information is added. Table 1.2 Product List is partly revised.
		5	Figure 1.2 Type No., Memory Size, and Package is added.
		7	Table 1.4 Product Code of Flash Memory version and ROM-less version for M16C/30P is added.
			Figure 1.4 Marking Diagram of Flash Memory version and ROM-less Version for M16C/30P (Top View) is partly added.
		17	3. Memory information is revised. Figure 3.1 Memory Map is partly revised.
		18	Table 4.1 SFR Information(1) is partly revised.
		19	Table 4.2 SFR Information(2) is partly added.
		23	5.1 Hardware Reset information is deleted.
		29	Table 6.1 Features of Processor Modes is partly deleted.
		31	Figure 6.2 PM1 Register is partly revised.
		32	Figure 6.3 Memory Map in Single Chip Mode is partly added.
		39	Table 7.5 Pin Functions for Each Processor Mode NOTES is partly deleted.
		42	Figure 8.1 Memory Mapping and CS Area in 1-Mbyte mode is partly revised.
		62	11.4.1 Fixed Vector Tables Information is added.
		63	Table 11.2 Relocatable Vector Tables is partly added.
		65	Figure 11.4 Interrupt Control Registers (2) NOTES 4 is added.

D :	Data		Description
Rev.	Date	Page	Summary
		73	Figure 11.11 IFSR and IFSR2A Registers NOTES is added.
		75	11.9 Address Match Interrupt information is added.
		77	Figure 12.1 Watchdog Timer Block Diagram is partly revised.
		85	13.1 Transfer Cycles is entirely revised.
		89	13.5 Channel Priority and DMA Transfer Timing is partly added.
		90	Figure 14.1 Timer A Configuration is partly deleted.
		98	Figure 14.8 TAiMR Register in Timer Mode is partly added.
		104	Figure 14.11 TAiMR Register in One-Shot Timer Mode is partly added.
		106	Figure 14.12 TAiMR Register in PWM Mode is partly added.
		111	Figure 14.18 TBiMR Register in Timer Mode is partly added.
		115	Figure 14.20 TBiMR Register in Pulse Period and Pulse Width Measurement Mode is partly added.
		128	Table 15.1 Clock Synchronous Serial I/O Mode Specifications is partly added.
		136	Table 15.5 UART Mode Specifications is partly added.
		145	Figure 15.24 I ² C Mode Block Diagram is partly revised.
		147	Table 15.12 Registers to Be Used and Settings in I2C Mode (2) is partly added.
		154	Table 15.15 Special Mode 2 Specifications is partly added.
		156	Table 15.16 Registers to Be Used and Settings in Special Mode 2 is partly revised.
		161	Table 15.18 SIM Mode Specifications is partly added.
		180	18. Programmable I/O Ports Information is revised.
		190	Table 18.1 Unassigned Pin Handling in Single-chip Mode is partly revised.
		191	Table 18.2 Unassigned Pin Handling in Memory Expansion Mode and Microprocessor Mode is partly revised.
		192	Figure 18.11 Unassigned Pins Handling is partly revised.
		193	19. Flash Memory Version is added.
		208	Table 19.4 Software Commands NOTES: 1 is partly revised.
		211	19.3.5.6 Erase All Unlocked Block is partly revised.
		219	Figure 19.14 Pin Connections for Serial I/O Mode (1)
		220	Figure 19.15 Pin Connections for Serial I/O Mode (2) is partly revised.
		224	Table 20.1 Absolute Maximum Ratings is partly revised.
		225	Table 20.2 Recommended Operating Conditions is partly revised.
		227	Table 20.4 Flash Memory Version Electrical Characteristic sum Ratings and Table 20.5 Flash Memory Version Program / Erase Voltage and Read Operation Voltage Characteristics is added.
		229	Table 20.7 Electrical Characteristics (1) is partly revised.
		230	Table 20.8 Electrical Characteristics (2) is partly revised.
		234	Table 20.23 Memory Expansion and Microprocessor Modes (for setting with no wait) is partly revised.
		235	Table 20.24 Memory Expansion and Microprocessor Modes (for 1 wait setting and external area access) is partly revised.

	_		Description
Rev.	Date	Page	Summary
		241	Table 20.25 Electrical Characteristics (1) is partly revised.
		242	Table 20.26 Electrical Characteristics (2) is partly revised.
		246	Table 20.41 Memory Expansion and Microprocessor Modes (for setting with no wait) is partly revised.
		247	Table 20.42 Memory Expansion and Microprocessor Modes (for 1 wait setting and external area access) is partly revised.
		253	21.1 SFR, 21.1.1 Register Settings, and Table 21.1 Registers with Write-only Bits is added.
		255	21.3 Bus information is added.
		267	Figure 21.3 Use of Capacitors to Reduce Noise is partly revised.
		269	21.12 Electric Characteristic Differences Between Mask ROM and Flash Memory Version Microcomputers information is added.
		270-272	21.14 Flash Memory Version information is added.
1.21	Jan 24, 2007	All chapters	Added the contents relevant to one-time flash to body texts, tables, and diagrams to all chapters. Deleted Erase all unlock block command in all chapters. Type No. Æ Part No.
		2	Table 1.1 Performance Outline of M16C/30P Group is partly revised.
		4	Table 1.2 Product List is partly revised.
		17	Figure 3.1 Memory Map is partly revised.
		32	Figure 6.3 PM1 Register (2) (M30304GDPFP, M30304GDPGP, M30304GEPFP, M30304GEPGP, M30302GGPFP, M30302GGPGP) is partly revised.
		33	Figure 6.4 Memory Map in Single Chip Mode is partly revised.
		43	8. Memory Space Expansion Function
			Figure 8.1 Memory Mapping and CS Area in 1-Mbyte mode (PM13=0) is partly revised.
		44	Figure 8.2 Memory Mapping and CS Area in 1-Mbyte mode (PM13=1) is partly revised.
		130	Table 15.1 Clock Synchronous Serial I/O Mode Specifications is partly revised.
		138	Table 15.5 UART Mode Specifications is partly revised.
		146	Table 15.10 I ² C Mode Specifications is partly revised. Table 15.11 Periotors to Be Used and Settings in I ² C Mode (1) is partly revised.
		148 156	Table 15.11 Registers to Be Used and Settings in I2C Mode (1) is partly revised. Table 15.15 Special Mode 2 Specifications is partly revised.
		163	Table 15.18 SIM Mode Specifications is partly revised.
		197	Figure 19.1 Flash Memory Block Diagram
		199	19.2.2 ID Code Check Function, Table 19.3 Reserved Character Sequence (Reserved Word) is added.
		200	19.2.3 Forced Erase Function, Table 19.4 Forced Erase Function is added.
		229	Chapter 20. One Time Flash Version is added.
		241	Table 21.4 Flash Memory Version Electrical Characteristics (1) is partly revised.
		285	22.14.4 Low power dissipation mode is partly added.
		290	Appendix Table 2.1 Function Difference (1) is partly added.
		291	Appendix Table 2.2 Function Difference (2) is partly added.

Rev.	ov Date		Date		Description
Rev.	ev. Date	Page	Summary		
1.22	Mar 29, 2007	4	Table 1.2 Product List (1) is partly revised.		
		5	Table 1.3 Product List (2) is partly revised.		
		19	Table 4.2 SFR Information (2) is partly revised.		
		31	Figure 6.2 PM1 Register (1) is partly revised.		
		32	Figure 6.3 PM1 Register (2) (M30304GDPFP, M30304GDPGP, M30304GEPFP, M30304GEPGP, M30302GGPFP, M30302GGPGP) is partly deleted.		
		195	Table 19.1 Flash Memory Version Specifications is partly deleted. Table 19.2 Flash Memory Rewrite Modes Overview is partly revised.		
		201	Table 19.5 EW0 Mode and EW1 Mode is partly revised.		
		203	Figure 19.4 FMR0 Register is partly added.		
		205	19.3.3.4 FMSTP Bit is partly added.		
		228	20. One Time Flash Version is partly revised. Table 20.1 One Time Flash Memory Version Specifications is partly added. Table 20.2 One Time Flash Memory Rewrite Modes Overview is partly added.		

M16C/30P Group Hardware Manual

Publication Date: Rev.1.22 Mar 29, 2007

Published by: Sales Strategic Planning Div.

Renesas Technology Corp.

© 2007. Renesas Technology Corp., All rights reserved. Printed in Japan

