

Current Transducer LTS 15-NP

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data Primary nominal r.m.s. current 15 Αt I_{PN} Primary current, measuring range 0 .. ± 45 Αt **V**_{OUT} $2.5 \pm (0.625 \cdot \mathbf{I}_{P}/\mathbf{I}_{PN}) \text{ V}$ Analog output voltage @ In $I_{D} = 0$ 2.5 1) N_s 2000 Number of secondary turns (± 0.1 %) R, Load resistance ≥ 2 kΩ \mathbf{R}_{IM} Internal measuring resistance (± 0.5 %) 83.33 Ω TCR IM Thermal drift of R < 50 ppm/K \mathbf{V}_{C} Supply voltage (± 5 %) I_C V_d V_e V_w $23 + I_S^2 + (V_{CUT}/R_L) \text{ m A}$ Current consumption @ $V_c = 5 \text{ V}$ R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn 3 kVR.m.s. voltage for partial discharge extinction @ 10 pC kV > 1.5 kV Impulse with stand voltage 1.2/50 µs > 8

Ac	Accuracy - Dynamic performance data							
X	Accuracy @ \mathbf{I}_{PN} , $\mathbf{T}_{A} = 25^{\circ}\text{C}$			±0.2				
	Accuracy with $\mathbf{R}_{\text{IM}} @ \mathbf{I}_{\text{PN}}$, $\mathbf{T}_{\text{A}} = 25^{\circ}\text{C}$			±0.7				
$\mathbf{\epsilon}_{\scriptscriptstyle extsf{L}}$	Linearity			< 0.1				
			Тур	Max				
TCV	Thermal drift of \mathbf{V}_{OUT} @ $\mathbf{I}_{P} = 0$	- 10°C + 85°C	100	150	ppm/K			
TCE 3	Thermal drift of the gain	- 10°C + 85°C		50 ³⁾	ppm/K			
V _{OM}	Residual voltage $@I_p = 0$, after an overload of $3 \times I_{pN}$			±0.5	mV			
		5 x I _{PN}		±2.0	mV			
		10 x I _{PN}		±2.0	mV			
t _{ra}	Reaction time @ 10 % of I _{PN}		< 50)	ns			
t,	Response time @ 90 % of I _{PN}			< 400				
di/dt	di/dt accurately followed			> 35				
f	Frequency bandwidth (0 0.5 dB)			DC 100				
	(- 0.5 1 dB)			200	kHz			

G	General data							
$T_{\scriptscriptstyle \Delta}$	Ambient operating temperature	- 10 + 85	°C					
Ts	Ambientstoragetemperature	- 25 + 100	°C					
Ü	Insulatingmaterialgroup	⊪a						
m	Mass	10	g					
	Standards	EN 50178						
		EN 60950						

Notes: 1) Absolute value @ $T_A = 25$ °C, 2.475 < V_{OUT} < 2.525

2) Please see the operation principle on the other side

3) Only due to TCR

$I_{PN} = 5 - 7.5 - 15 A$

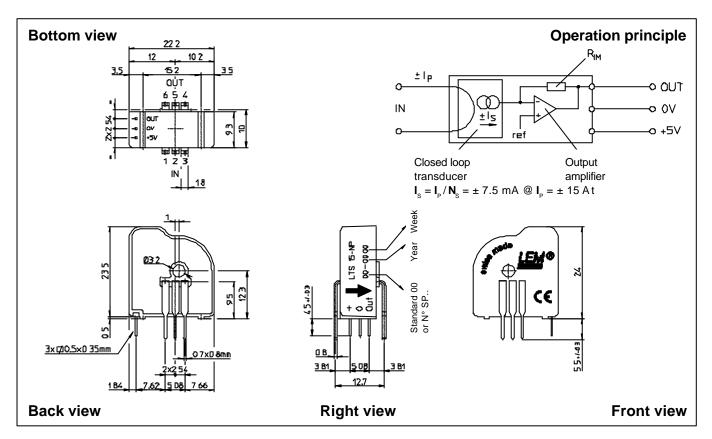
Features

- Closed loop (compensated) multirange current transducer using the Hall effect
- Unipolar voltage supply
- Compact design for PCB mounting
- Insulated plastic case recognized according to UL 94-V0
- · Incorporated measuring resistance
- Extended measuring range.

Advantages

- Excellent accuracy
- Very good linearity
- Very low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications


- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Copyright protected.

001208/4

Dimensions LTS 15-NP (in mm. 1 mm = 0.0394 inch)

Number of primary turns	Primary nominal r.m.s. current I _{PN} [A]	Nominal output voltage \mathbf{V}_{OUT} [V]	Primary resistance \mathbf{R}_{P} [$m\Omega$]	Primary insertion inductance L _P [µH]	Recommended connections
1	± 15	2.5 ± 0.625	0.18	0.013	6 5 4 OUT O O O IN 1 2 3
2	± 7.5	2.5 ± 0.625	0.81	0.05	6 5 4 OUT O O IN 1 2 3
3	±5	2.5 ± 0.625	1.62	0.12	6 5 4 OUT O O O IN 1 2 3

Mechanical characteristics

General tolerance

 Fastening & connection of primary Recommended PCB hole

• Fastening & connection of secondary Recommended PCB hole

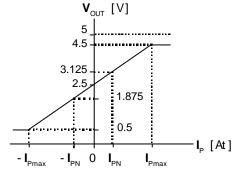
• Additional primary through-hole

± 0.2 mm

6 pins 0.7 x 0.8 mm

1.3 mm

3 pins $0.5 \times 0.35 \, \text{mm}$


0.8 mm

Ø 3.2 mm

Remark

• \mathbf{V}_{OUT} is positive when \mathbf{I}_{P} flows from terminals 1, 2, 3 to terminals 6, 5, 4.

Output Voltage - Primary Current

