

MN200B02

200 mA LOAD SWITCH FEATURING PRE-BIASED PNP TRANSISTOR AND N-MOSFET WITH GATE PULL DOWN RESISTOR

General Description

LMN200B02 is best suited for applications where the load needs to be turned on and off using control circuits like micro-controllers, comparators etc. particularly at a point of load. It features a discrete pass transistor with stable V_{CE(SAT)} which does not depend on the input voltage and can support continuous maximum current of 200 mA . It also contains a discrete N-MOSFET that can be used as control. This N-MOSFET also has a built-in pull down resistor at its gate. The component can be used as a part of a circuit or as a stand alone discrete device.

Features

- Voltage Controlled Small Signal Switch
- N-MOSFET with Gate Pull-Down Resistor
- Surface Mount Package
- Ideally Suited for Automated Assembly Processes
- Lead Free By Design/ROHS Compliant (Note 1)
- "Green" Device (Note 2)

Mechanical Data

- Case: SOT-363
- Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020C
- Terminal Connections: See Diagram
- Terminals: Finish Matte Tin annealed over Alloy 42 leadframe. Solderable per MIL-STD-202, Method 208
- Marking & Type Code Information: See Page 8
- Ordering Information: See Page 8
- Weight: 0.006 grams (approximate)

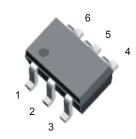


Fig. 1: SOT-363

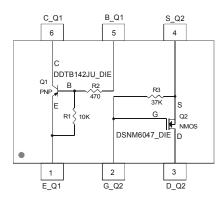


Fig. 2 Schematic and Pin Configuration

Sub-Component P/N	Sub-Component P/N Reference		R1 (NOM)	R2 (NOM)	R3 (NOM)	Figure
DDTB142JU_DIE	Q1	PNP Transistor	10K	470	_	2
DSNM6047_DIE (with Gate Pull-Down Resistor)	Q2	N-MOSFET	_	_	37K	2

Maximum Ratings, Total Device @TA = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit
Power Dissipation (Note	P _d	200	mW
Power Derating Factor above 125°C	P _{der}	1.6	mW/°C
Output Current	l _{out}	200	mA

Thermal Characteristics @TA = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit
Operating and Storage Temperature Range	T_j, T_{stg}	-55 to +150	°C
Thermal Resistance, Junction to Ambient Air (Equivalent to One Heated Junction of PNP Transistor) (Note 3)	$R_{ hetaJA}$	625	°C/W

Notes:

- 1. No purposefully added lead.
- 2. Diodes Inc.'s "Green" policy can be found on our website at http://www.diodes.com/products/lead_free/index.php.
- Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch, pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.

Maximum Ratings:

Sub-Component Device: Pre-Biased PNP Transistor (Q1) @TA = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	-50	V
Collector-Emitter Voltage	V _{CEO}	-50	V
Supply Voltage	V _{cc}	-50	V
Input Voltage	V _{in}	+5 to -6	V
Output Current	Ic	-200	mA

Sub-Component Device: N-MOSFET With Gate

Pull-Down Resestor (Q2) @T_A = 25°C unless otherwise specified

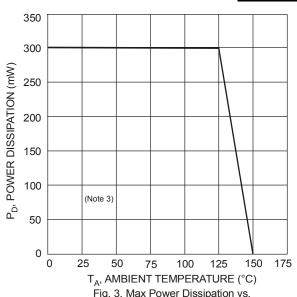
Cha	racteristic	Symbol	Value	Unit
Drain-Source Voltage		V_{DSS}	60	V
Drain Gate Voltage (R _{GS} ≤1MO	hm)	V_{DGR}	60	V
Gate-Source Voltage Continuous Pulsed (tp<50 uS)		Vees	+/-20	V
		V _{GSS}	+/-40	V
Drain Current (Page 1: Note 3)	Continuous (V _{gs} = 10V)	1-	115	mA
	Pulsed (tp <10 uS, Duty Cycle <1%)	ID	800	IIIA
Continuous Source Current		Is	115	mA

Electrical Characteristics, Pre-Biased PNP Transistor (Q1) @TA = 25°C unless otherwise specified

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
OFF CHARACTERISTICS						-
Collector-Base Cut Off Current	I _{CBO}	_	_	-100	nA	V _{CB} = -50V, I _E = 0
Collector-Emitter Cut Off Current	I _{CEO}	_	_	-500	nA	$V_{CE} = -50V, I_{B} = 0$
Emitter-Base Cut Off Current	I _{EBO}	_	-0.5	-1	mA	V _{EB} = -5V, I _C = 0
Collector-Base Breakdown Voltage	V _{(BR)CBO}	-50	_	_	V	$I_C = -10 \text{ uA}, I_E = 0$
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	-50	_	_	V	$I_C = -2 \text{ mA}, I_B = 0$
Input Off Voltage	V _{I(OFF)}		-0.55	-0.3	V	$V_{CE} = -5V, I_{C} = -100uA$
Output Voltage	V _{OH}	-4.9	_	_	V	$V_{CC} = -5V, V_B = -0.05V,$ $R_L = 1K$
Ouput Current (leakage current same as I _{CEO})	I _{O(OFF)}	_	_	-500	nA	V _{CC} = -50V, V _I = 0V
ON CHARACTERISTICS						
		_	_	-0.15	V	$I_C = -10 \text{ mA}, I_B = -0.5 \text{ mA}$
			_	-0.2	V	$I_C = -50 \text{mA}, I_B = -5 \text{mA}$
Collector-Emitter Saturation Voltage	V		_	-0.2	V	$I_C = -20 \text{mA}, I_B = -1 \text{mA}$
Conector-Emitter Saturation Voltage	V _{CE(SAT)}		_	-0.25	V	I _C = -100mA, I _B = -10mA
			_	-0.25	V	I _C = -200mA, I _B = -10mA
			_	-0.3	V	I _C = -200mA, I _B = -20mA
Equivalent on-resistance*	R _{CE(SAT)}		_	1.5	Ω	I _C = -200mA, I _B = -10mA
		60	150	_	_	V_{CE} = -5V, I_{C} = -20 mA
DC Current Gain	h	60	215	_	_	$V_{CE} = -5V, I_{C} = -50 \text{ mA}$
De current Gain	h _{FE}	60	245	_	_	$V_{CE} = -5V, I_{C} = -100 \text{ mA}$
		60	250	_	_	V_{CE} = -5V, I_{C} = -200 mA
Input On Voltage	V _{I(ON)}	-2.45	-0.7	_	V	$V_{O} = -0.3V$, $I_{C} = -2 \text{ mA}$
Output Voltage (equivalent to $V_{CE(SAT)}$ or $V_{O(ON)}$)	V _{OL}	_	-0.065	-0.15	V	$V_{CC} = -5V$, $V_{B} = -2.5V$, $I_{o}/I_{I} = -50$ mA /-2.5mA
Input Current	li		-9	-28	mA	V _I = -5V
Base-Emitter Turn-on Voltage	V _{BE(ON)}		-1.13	-1.3	V	$V_{CE} = -5V, I_{C} = 200 \text{mA}$
Base-Emitter Saturation Voltage	V		-3.2	-3.6	V	$I_C = -50 \text{mA}, I_B = -5 \text{mA}$
base-Emitter Saturation Voltage	V _{BE(SAT)}	_	-4.6	-5.5	V	$I_C = -80 \text{mA}, I_B = -8 \text{mA}$
Input Resistor (Base), +/- 30%	R2	_	0.47	_	ΚΩ	_
Pull-up Resistor (Base to Vcc supply), +/- 30%	R1	_	10	_	ΚΩ	_
Resistor Ratio (Input Resistor/Pull-up resistor) +/- 20%	R1/R2	_	21	_	_	_
SMALL SIGNAL CHARACTERISTICS				1	1	
Transition Frequency (gain bandwidth product)	f _T	_	200	_	MHz	$V_{CE} = -10V, I_{E} = -5mA,$ f = 100MHz
Collector capacitance, (Ccbo-Output Capacitance)	C _C	_	20	_	pF	V_{CB} = -10V, I_E = 0A, f = 1MHz

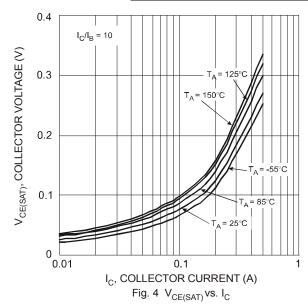
^{*} Pulse Test: Pulse width, tp<300 μ S, Duty Cycle, d<=0.02

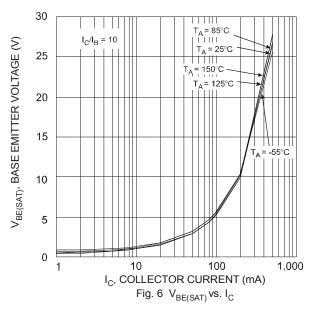
Electrical Characteristics:

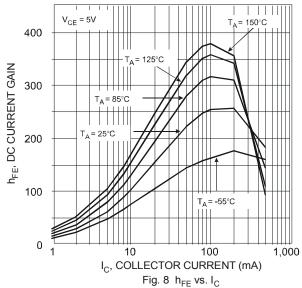

N-MOSFET with Gate Pull-Down Resistor (Q2)

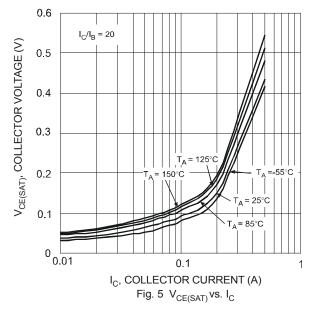
@T_A = 25°C unless otherwise specified

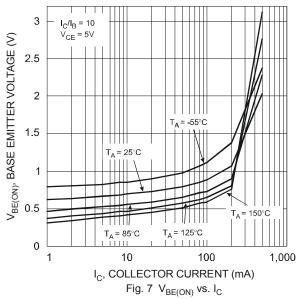
Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
OFF CHARACTERISTICS (Note 4)			•	•		
Drain-Source Breakdown Voltage, BVDSS	V _{(BR)DSS}	60	_		V	$V_{GS} = 0V, I_D = 10\mu A$
Zero Gate Voltage Drain Current (Drain Leakage Current)	I _{DSS}	_	_	1	μА	V _{GS} =0V, V _{DS} = 60V
Gate-Body Leakage Current, Forward	IGSSF	_	_	0.95	mA	V _{GS} = 20V, V _{DS} = 0V
Gate-Body Leakage Current, Reverse	I _{GSSR}	_	_	-0.95	mA	V_{GS} = -20V, V_{DS} = 0V
ON CHARACTERISTICS (Note 4)						
Gate Source Threshold Voltage (Control Supply Voltage)	V _{GS(th)}	1	1.9	2.2	V	$V_{DS} = V_{GS}, I_{D} = 0.25 \text{mA}$
Static Drain-Source On-State Voltage	\/·	_	0.10	1.5	V	$V_{GS} = 5V, I_D = 50mA$
Static Drain-Source On-State Voltage	V _{DS(on)}	_	0.15	3.75	- V	V _{GS} = 10V, I _D = 115mA
On-State Drain Current	I _{D(on)}	500	_	_	mA	$V_{GS} = 10V,$ $V_{DS} \ge 2\chi V_{DS(ON)}$
Static Drain-Source On Resistance	R _{DS(on)}	_	1.6	3	Ω	V _{GS} = 5V, ID = 50mA
Static Dialii-Source Off Resistance		_	1.4	2		V _{GS} = 10V, ID = 500mA
Forward Transconductance	g	80	240	_	mS	$V_{DS} \ge 2_X V_{DS(ON)}$, $I_D = 115 \text{ mA}$
Torward Transconductance	9 FS	80	350	_		$V_{DS} \ge 2_X V_{DS(ON)}$, $I_D = 200 \text{ mA}$
Gate Pull-Down Resistor, +/- 30%	R3	_	37	_	ΚΩ	_
DYNAMIC CHARACTERISTICS						
Input Capacitance	C _{iss}	_	_	50	pF	, osv. v. ov.
Output Capacitance	Coss	_	_	25	pF	$V_{DS} = -25V, V_{GS} = 0V,$ f = 1MHz
Reverse Transfer Capacitance	C _{rss}	_		5	pF	J TIVITIZ
SWITCHING CHARACTERISTICS						
Turn-On Delay Time	t _{D(on)}	_	_	20	ns	$V_{DD} = 30V, V_{GS} = 10V,$
Turn-Off Delay Time	t _{D(off)}	_	_	40	ns	I _D = 200mA, R _G = 25 Ohm, R _L = 150 Ohm
SOURCE-DRAIN (BODY) DIODE CHARACTERISTI	CS AND MAX	KIMUM RAT	INGS			
Drain-Source Diode Forward On-Voltage	V_{SD}	_	0.90	1.5	V	$V_{GS} = 0V, I_S = 115 \text{ mA*}$
Maximum Continuous Drain-Source Diode Forward Current (Reverse Drain Current)	I _S	_	_	115	mA	_
Maximum Pulsed Drain-Source Diode Forward Current	I _{SM}	_	_	800	mA	

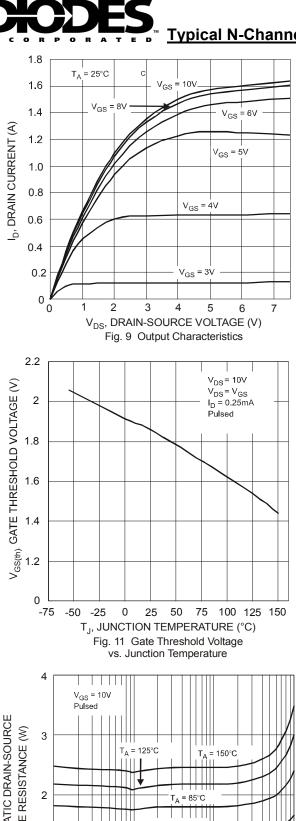

Notes: 4. Short duration pulse test used to minimize self-heating effect.

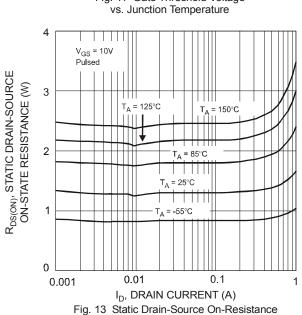

Typical Characteristics

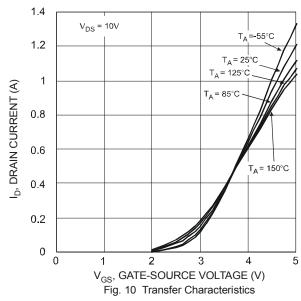





Typical Pre-Biased PNP Transistor (Q1) Characteristics







Typical N-Channel MOSFET (Q2) Characteristics

vs. Drain Current

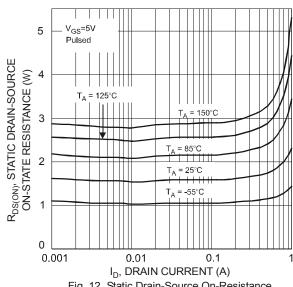


Fig. 12 Static Drain-Source On-Resistance vs. Drain Current

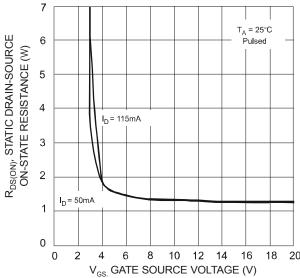


Fig. 14 Static Drain-Source On-Resistance vs. Gate-Source Voltage

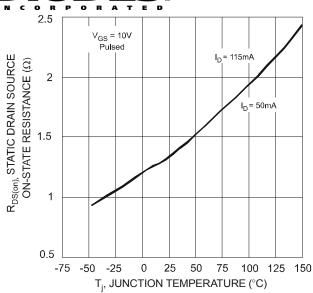
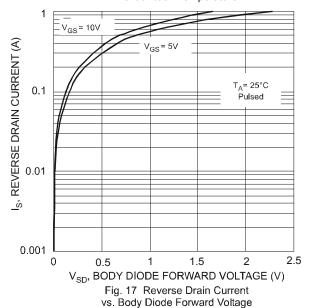



Fig. 15 Static Drain-Source On-State Resistance vs. Junction Temperature

0.01

T_A = 25°C

T_A = 85°C

T_A = 85°C

T_A = 85°C

T_A = 150°C

Fig. 16 Reverse Drain Current vs. Source-Drain Voltage

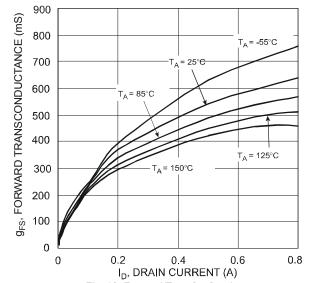


Fig. 18 Forward Transfer Conductance vs. Drain Current (V_{DS} > I_D *R_{DS(ON)})

Application Details

PNP Transistor (DDTB142JU) and N-MOSFET (DSNM6047) with gate pull-down resistor integrated as one in LMN200B02 can be used as a discrete entity for general purpose applications or as an integrated circuit to function as a Load Switch. When it is used as the latter as shown in Fig 19, various input voltage sources can be used as long as it does not exceed the maximum ratings of the device. These devices are designed to deliver continuous output load current up to a maximum of 200 mA. The MOSFET Switch draws no current, hence loading of control circuit is prevented. Care must be taken for higher levels of dissipation while designing for higher load conditions. These devices provide high power and also consume less space. The product mainly helps in optimizing power usage, thereby conserving battery life in a controlled load system like portable battery powered applications. (Please see Fig. 20 for one example of a typical application circuit used in conjunction with voltage regulator as a part of a power management system)

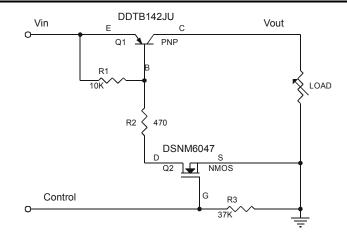
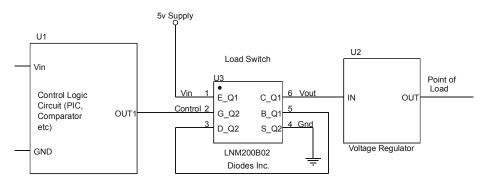
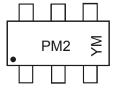


Fig. 19 Circuit Diagram

Typical Application Circuit




Fig. 20

Ordering Information (Note 5)

Device	Packaging	Shipping
LMN200B02-1	SOT-363	3000/Tape & Reel

Notes: 5. For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information

PM2 = Product Type Marking Code, YM = Date Code Marking Y = Year ex: T = 2006

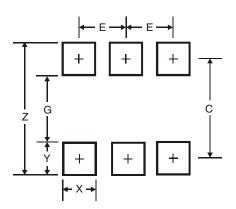
M = Month ex: 9 = September

Fig. 21


Date Code Key

Year	200	6	2007		2008	20	09	2010		2011	2	2012
Code	Т		U		V	V	٧	Х		Y		Z
Month	lan	Eob	Mar	Anr	May	lun	lul	Aug	Son	Oct	Nov	Doc

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	0	Ν	D



Mechanical Details

	SOT-363							
Dim	Min	Max						
Α	0.1	0.3						
В	1.15	1.35						
С	2	2.2						
D	0.65 Nominal							
F	0.3	0.4						
Н	1.8	2.2						
7	-	0.1						
K	0.9	1						
L	0.25	0.4						
M	0.1	0.25						
α	0°	8°						
All Di	All Dimensions in mm							

Suggested Pad Layout: (Based on IPC-SM-782)

Figure 23 Dimensions	SOT-363*
Z	2.5
G	1.3
Х	0.42
Y	0.6
С	1.9
E	0.65

^{*} Typical dimensions in mm

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.