LM3370 Evaluation Board

National Semiconductor Application Note 1428 Anne Lu January 9, 2008

Introduction

The LM3370 evaluation board is a working demonstration of a DUAL step down DC-DC converter. This application note contains information about the evaluation board. For more details and electrical characteristic on the dual buck converter operation, please refer to the LM3370 datasheet.

General Description

The LM3370 is a dual step-down DC-DC converter optimized for powering ultra-low voltage circuits from a single Li-Ion cell or 3 cell NiMH/NiCd batteries. Automatic intelligent switching between PWM low-noise and PFM low current mode offers improved system efficiency. The I²C compatible offers dynamic controls of the output voltages, Auto PFM/PWM mode

Typical Application

selection and other enabling enchantment features such as power-on-reset (nPOR) and spread spectrum.

Operating Conditions

- V_{IN} range: 2.7V $\leq V_{IN} \leq 5.5V$
- Recommended load current: 0 to 600mA

I²C Compatible Interface

- V_{OUT1} (1V to 2V at 50mV step increment)
- V_{OUT2} (1.8V to 3.3V at 100mV steps increment).

Package

- TLA20CWA micro SMD, (3.0mm x 2.0mm x 0.6mm)
- LLP16 non-pullback, (4mm x 5mm x 0.8mm)

FIGURE 1. Typical Application Circuit

Operating Information

The LM3370SD evaluation board is pre-programmed to 1.2V at V_{OUT1} and 3.3V at V_{OUT2} for evaluation purpose (no additional interface hardware is needed). If different default output option is desired, the same evaluation board can be used by demount the existing device and replace with new voltage option (voltage option can be order from National's website). The device comes with the following default setting: Auto PFM and PWM transition mode when the I²C compatible interface is not enabled. For other settings, I²C compatible interface must be used to enable all other functions. Registers information are listed on page 4 for I²C compatible interface.

Powering Up The Evaluation Board

• Apply a voltage at the "Vin_EXT" pin only (not Vin_IO).

- All logic pins are tied to "Vin" on the evaluation board
- Do not power the "Vin_IO" pin unless powering the logic pins via an external source. (Jumper at Vin_IO must be removed.)
- V_{DD} pin is tied to $V_{IN1} \& V_{IN2}$ on the evaluation board, no additional connection required. (For any reason if V_{DD} is not directly tied to V_{IN} , V_{DD} needs to be equal or greater than the two inputs (V_{IN1} or V_{IN2}) for proper operation.)

I²C Interface Ready

If interface capability is available via I²C compatible, the SDA & SCL test pins of the evaluation board are brought out for such function. The SDA & SCL pins of the evaluation board are connected to 2 k Ω resistors and pulled up to V_{IN} pin.

Pin Descriptions (LLP)

1	V _{IN2}	Power supply voltage input to PFET and NFET switches for
		Buck2
2	SW2	Buck 2 Switch pin
3	PGND2	Buck 2 Power Ground
4	V _{DD}	Signal supply voltage input, V _{DD} must be equal or greater of
		the two inputs (V_{IN1} or V_{IN2})
5	SGND	Signal GND
6	PGND1	Buck 1 Power Ground
7	SW1	Buck 1 Switch pin
8	V _{IN1}	Power supply voltage input to PFET and NFET switches for
		Buck1
9	FB1	Analog feedback input for Buck 1
10	SDA	I ² C Compatible Data, a 2 k Ω pull up resistor is required
11	SCL	I ² C Compatible Data, a 2 k Ω pull up resistor is required
12	nPOR1	Power ON Reset for Buck 1, Open drain output low when
		Buck 2 output is 92% of target output. A 100 $k\Omega$ pull up resistor
		is required
13	nPOR2	Power ON Reset for Buck 2, Open drain output low when
		Buck 2 output is 92% of target output. A 100 k Ω pull up resistor
		is required
14	EN1	Buck 1 Enable
15	EN2	Buck 2 Enable
16	FB2	Analog feedback input for Buck 2

Pin Descriptions (micro SMD)

Pin #	Name	Description	
A1	SW1	Buck 1 Switch Pin	
A2	V _{IN1}	Power supply voltage input to PFET and NFET switches for Buck 1	
A3	SGND	Signal GND	
A4	FB1	Analog Feedback Input for Buck 1	
B1	PGND1	Buck 1 Power Ground	
B2	PGND1_S	Buck 1 Power Ground Sense	
B3	SDA	I ² C Compatible Data, a 2 k Ω pull up resistor is required	
B4	SCL	I ² C Compatible Clock, a 2 k Ω pull up resistor is required	
C1	V _{DD}	Signal supply voltage input, V_{DD} must be equal or greater of the two inputs ($V_{IN1} \& V_{IN2}$)	
C2	SGND	Signal GND	
C3	nPOR1	Power ON Reset for Buck 1, Open drain output Low when Buck 1 output is 92% of targe	
		output. A 100 k Ω pull up resistor is required	
C4	nPOR2	Power ON Reset for Buck 2, Open drain output Low when Buck 2 output is 92% of target	
		output. A 100 k Ω pull up resistor is required	
D1	PGND2	Buck 2 Power Ground	
D2	PGND2_S	Buck 2 Power Ground Sense	
D3	EN2	Buck 2 Enable	
D4	EN1	Buck 1 Enable	
E1	SW2	Buck 2 Switch Pin	
E2	V _{IN2}	Power supply voltage input to PFET and NFET switches for Buck 2	
E3	SGND	Signal GND	
E4	FB2	Analog feedback for Buck 2	

AN-1428

AN-1428

TABLE 1. Output Selection Table via I²C Programing

	Buck Output Voltage Selection Codes				
Data Code	Buck_1 (V)	Buck_2 (V)			
00000	NA	NA			
00001	NA	1.8			
00010	NA	1.85 or 1.9*			
00011	NA	2.0			
00100	NA	2.1			
00101	1.00	2.2			
00110	1.05	2.3			
00111	1.10	2.4			
01000	1.15	2.5			
01001	1.20	2.6			
01010	1.25	2.7			
01011	1.30	2.8			
01100	1.35	2.9			
01101	1.40	3.0			
01110	1.45	3.1			
01111	1.50	3.2			
10000	1.55	3.3			
10001	1.60	NA			
10010	1.65	NA			
10011	1.70	NA			
10100	1.75	NA			
10101	1.80	NA			
10110	1.85	NA			
10111	1.90	NA			
11000	1.95	NA			
11001	2.00	NA			

* Can be trimmed at the factory at 1.85V or 1.9V using the same trim code.

Device Ordering Information (LLP)

Order Number	Voltage Option	Package marking	Supplied As
LM3370SD - 3013	1.2V & 2.5V	S0003UB	1000 units, Tape-and-Reel
LM3370SDX - 3013		S0003UB	4500 units, Tape-and-Reel
LM3370SD - 3021	1.2V & 3.3V	S0003TB	1000 units, Tape-and-Reel
LM3370SDX - 3021		S0003TB	4500 units, Tape-and-Reel
LM3370SD - 3416	1.4V & 2.8V	S0003VB	1000 units, Tape-and-Reel
LM3370SDX - 3416		S0003VB	4500 units, Tape-and-Reel
LM3370SD-3621	1.5V & 3.3V	S0004AB	1000 units, Tape-and-Reel
LM3370SDX-3621		S0004AB	4500 units, Tape-and-Reel
LM3370SD - 3806	1.6V & 1.8V	S0003XB	1000 units, Tape-and-Reel
LM3370SDX - 3806		S0003XB	4500 units, Tape-and-Reel
LM3370SD - 4221	1.8V & 3.3V	S0003YB	1000 units, Tape-and-Reel
LM3370SDX - 4221		S0003YB	4500 units, Tape-and-Reel

Device Ordering Information (micro SMD)

Order Number	Voltage Option	Package Marking	Supplied As
LM3370TL-3607 NOPB	1.5V & 1.9V	SPSB	1000 units, Tape-and-Reel
LM3370TLX-3607 NOPB		SPSB	3000 units, Tape-and-Reel
LM3370TL-3008 NOPB	1.2V & 2.0V	SPTB	1000 units, Tape-and-Reel
LM3370TLX-3008 NOPB		SPTB	3000 units, Tape-and-Reel
LM3370TL-3006 NOPB	1.2V & 1.8V	SPUB	1000 units, Tape-and-Reel
LM3370TLX-3006 NOPB		SPUB	3000 units, Tape-and-Reel
LM3370TL-3806 NOPB	1.6V & 1.8V	SPVB	1000 units, Tape-and-Reel
LM3370TLX-3806 NOPB		SPVB	3000 units, Tape-and-Reel
LM3370TL-3206 NOPB	1.3V & 1.8V	SPXB	1000 units, Tape-and-Reel
LM3370TLX-3206 NOPB		SPXB	3000 units, Tape-and-Reel
LM3370TL-3022 NOPB	1.2V & 1.85V	STHB	1000 units, Tape-and-Reel
LM3370TLX-3022 NOPB		STHB	3000 units, Tape-and-Reel

Registers Information

AN-1428

Evaluation Board Layout (LLP)

LM3370SD is a 4-layer board designed to maximize the performance fo the device.

AN-1428

Top Layer

Mid Layer 1

Evaluation Board Layout (micro SMD)

The LM3370TL applications is of similar layout to the LLP board with the exception of the SCL, SDA pins. When using the USB interface cable the order of these pins is reversed.

AN-1428

Bottom Layer

20175029

AN-1428

Bill of Materials

Component Name	Manufacture		Manufacture #		Specification	
LM3370	I.					
C _{IN1} & C _{IN2}	IN1 & CIN2 TDK		C2012X5R0J475K		4.7µF/6.3V/0805/X5R	
	muRata		GRM219R60J475KE19D		-	
C _{OUT1} & C _{OUT2}	TDK		C2012X5R0J106K		10µF/6.3V/0805/X5R	
	muRata		GRM219R60J106KE19D			
L1 & L2	Taiyo-Yuden		NR3015T-2R2M		2.2µH	
R1-2(SDA+SCL)	Vishay				2k ohms	
R3-4 (nPOR1-2)	Vishay				100k ohms	
TEST Pins & Con	nectors					
V _{OUT1} ,V _{OUT2} , GNE), *Vin_EXT, Vin_IO				Turret 0.09 in	
nPOR1. nPOR2, SDA, SCL, PGND1,					Turret 0.072 in	
PGND2, V _{IN1} , V _{IN2}	,					
Jumper						
SDA/SCL/nPOR1			Jumpers Female(Handle centerline)		A26242-ND	
nPOR2/EN1/EN2						
*VIN & *VIN_IO						
*VIN_IO					2 in series (2x1)	
*VIN_EXT					2 in series (2x1)	
Int			Berk stick	Header	4 in series (4x1)	
JP2:SDA & SCL	JP2:SDA & SCL				6 in series(6x2)	
nPOR1/ nPOR2/E	N1& EN2				2 in series 2(2x1)	

Notes

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

Products		Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH	www.national.com/webench	
Audio	www.national.com/audio	Analog University	www.national.com/AU	
Clock Conditioners	www.national.com/timing	App Notes	www.national.com/appnotes	
Data Converters	www.national.com/adc	Distributors	www.national.com/contacts	
Displays	www.national.com/displays	Green Compliance	www.national.com/quality/green	
Ethernet	www.national.com/ethernet	Packaging	www.national.com/packaging	
Interface	www.national.com/interface	Quality and Reliability	www.national.com/quality	
LVDS	www.national.com/lvds	Reference Designs	www.national.com/refdesigns	
Power Management	www.national.com/power	Feedback	www.national.com/feedback	
Switching Regulators	www.national.com/switchers			
LDOs	www.national.com/ldo			
LED Lighting	www.national.com/led			
PowerWise	www.national.com/powerwise			
Serial Digital Interface (SDI)	www.national.com/sdi			
Temperature Sensors	www.national.com/tempsensors			
Wireless (PLL/VCO)	www.national.com/wireless			

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2008 National Semiconductor Corporation

For the most current product information visit us at www.national.com

AN-1428

National Semiconductor Americas Technical Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com German Tel: +49 (0) 180 5010 771 English Tel: +44 (0) 870 850 4288 National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com