

# LM3280 Evaluation Board

National Semiconductor  
Application Note 1539  
Naomi Sugiura  
January 2007



## Introduction

The LM3280 evaluation board is designed to demonstrate the capability of the LM3280 power management device, which incorporates a step down DC-DC (buck) converter and three LDOs. This application note contains information about the evaluation board. For further information on buck converter topology, device electrical characteristics, and component selection please refer to the datasheet.

## General Description

The buck converter converts high input voltages to lower output voltages with high efficiency through an inductor-based switching topology. It has three operating modes. Fixed-frequency (2MHz) PWM mode operation offers regulated output at high efficiency. Bypass mode operation uses an internal FET switch to connect the input supply voltage directly to the load. Shutdown mode turns the device off and reduces the input supply consumption. The mode selection between PWM and Bypass can be fixed by the BYP pin setting.

The LDO provides a nominal output voltage of 2.85V with a maximum load current capability of 20mA. It has a separate enable pin for each LDO.

## Schematic Diagram

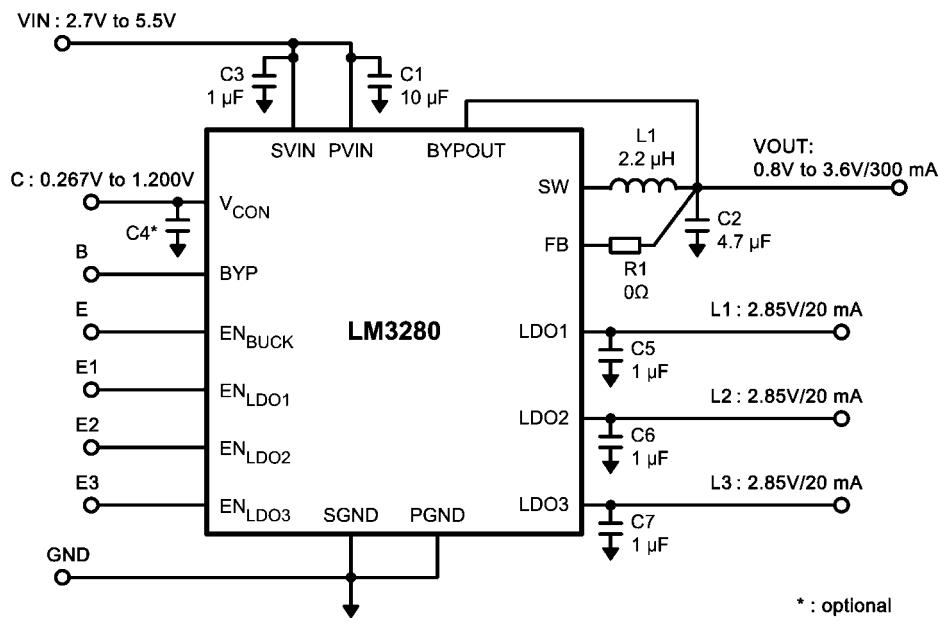


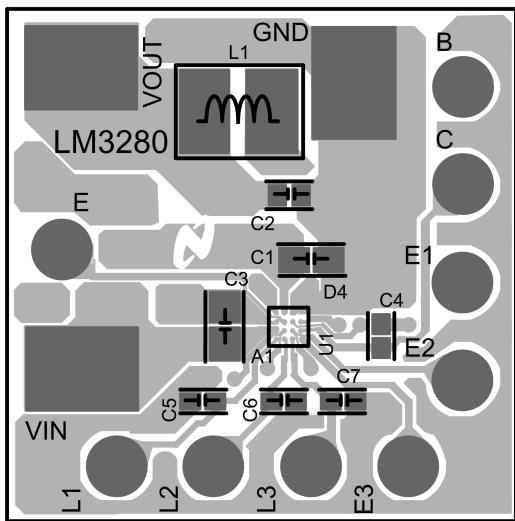

FIGURE 1. Evaluation Board Schematic

## BOM for Common Configurations

| Designator | Manufacturer | Model          | Description                                                                                                       |
|------------|--------------|----------------|-------------------------------------------------------------------------------------------------------------------|
| C1         | TDK          | C2012X5R0J106M | 10µF, 6.3V, 0805 (2012)                                                                                           |
| C2         | TDK          | C1608X5R0J475M | 4.7µF, 6.3V, 0603 (1608)                                                                                          |
| C3         | TDK          | C1608JB1C105K  | 1.0µF, 16V, 0603 (1608)                                                                                           |
| C4         |              |                | 0.1µF, 6.3V, 0603 (1608),<br>* optional: filter for $V_{CON}$ . C4 is recommended for a better noise performance. |
| C5         | TDK          | C1608JB1C105K  | 1.0µF, 16V, 0603 (1608)                                                                                           |
| C6         | TDK          | C1608JB1C105K  | 1.0µF, 16V, 0603 (1608)                                                                                           |
| C7         | TDK          | C1608JB1C105K  | 1.0µF, 16V, 0603 (1608)                                                                                           |
| L1         | Coilcraft    | DO3314-222MLC  | 2.2 µH, Irms = 1.3A, Rdc = 0.2Ω, 3.5×3.5×1.4 mm                                                                   |
| R1         |              |                | 0Ω, 0603 (1608)                                                                                                   |
| VIN        | Keystone     | 1502-1         | test terminal                                                                                                     |
| VOUT       | Keystone     | 1502-1         | test terminal                                                                                                     |
| GND        | Keystone     | 1502-1         | test terminal                                                                                                     |

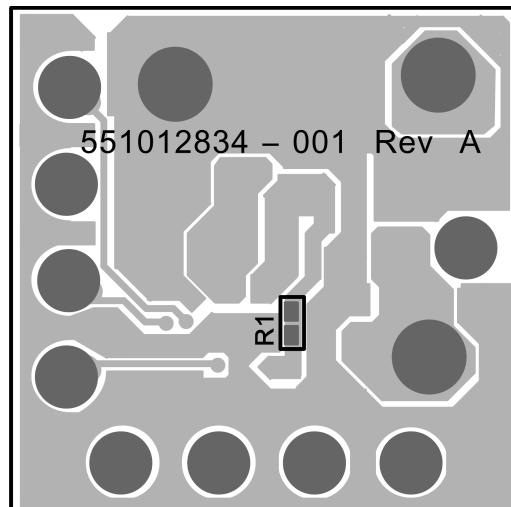
## Component Selection Considerations

### INDUCTOR


1. A 2.2µH inductor with a saturation current rating of over 940mA is recommended.
2. The inductor resistance should be less than 0.2Ω for better efficiency.
3. The acceptable inductance tolerance is 1.55µH to 3.1µH over the operating temperature range.

### CAPACITOR

1. The DC bias and temperature characteristics of the capacitor must be considered.

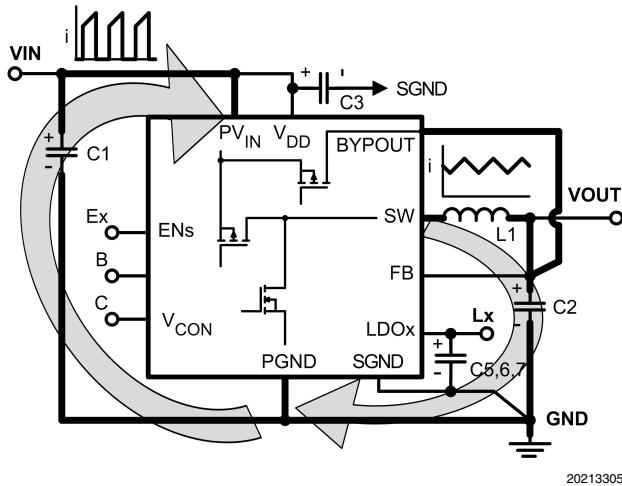

2. The lower limit of acceptable C2 capacitance for stable performance is 3µF.
3. The lower limit of acceptable LDO caps, C5, C6, and C7, is 0.5µF.
4. A 10µF capacitor for PVIN and a 1µF capacitor for SVIN are recommended. Smaller capacitance may be acceptable if the VIN line is sufficiently clean. Sufficient evaluation must be done before making a decision to use smaller capacitance.

## Evaluation Board Layout



Top Layer

20213302




Bottom Layer

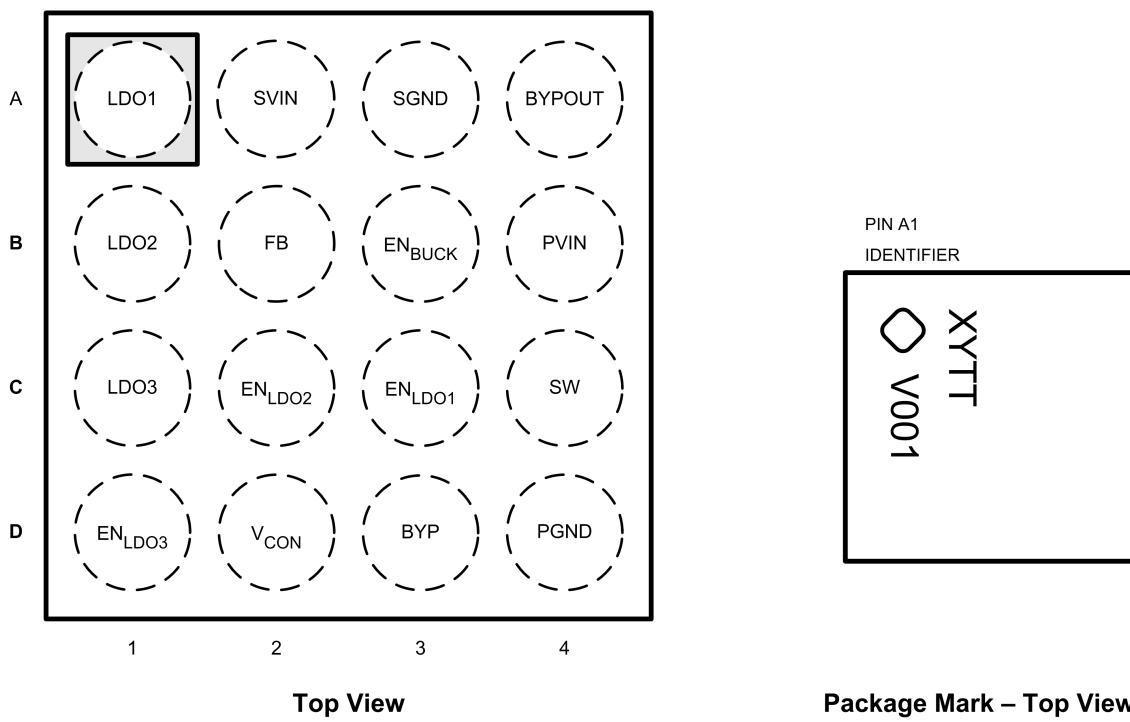
20213303

FIGURE 2. Board Layout

## Board Layout Consideration



**FIGURE 3. Current Loop**


The LM3280 converts higher input voltage to lower output voltage with high efficiency. This is achieved with an inductor-based switching topology. During the first half of the switching cycle, the internal PFET switch turns on, the input voltage is applied to the inductor, and the current flows from PVIN line to the output capacitor (C2) through the inductor. During the second half cycle, the PFET turns off and the internal NFET turns on. The inductor current continues to flow via the inductor from the device PGND line to the output capacitor (C2). Referring to Figure, the LM3280 in PWM mode has two major current loops where pulse and ripple current flow. The loop shown in the left had side is important because pulse current flows in the path. In the loop on the right hand side, the current waveform in this path is triangular. Pulse current has many high-frequency components due to fast  $di/dt$ . Triangular ripple

current also has wide high-frequency components. Board layout and circuit pattern design of these two loops are key factors for reducing noise radiation and achieving stable operation. Other lines, such as input and output terminals are DC current, Therefore pattern width (current capability) and DCR drop considerations are needed.

### BOARD LAYOUT GUIDELINES

1. Minimize C1, PVIN, and PGND loop. These traces should be as wide and short as possible.
2. Minimize L1, C2, SW and PGND loop. These traces also should be wide and short.
3. Above layout patterns should be placed on the component side of the PCB to minimize parasitic inductance and resistance due to via-holes. It may be a good idea that the SW to L1 path is routed between C2 (+) and C2(-) land patterns. If vias are used in these large current paths, multiple via-holes should be used if possible.
4. Connect C1(-), C2(-), and PGND with side GND pattern. This pattern should be short, so C1(-), C2(-), and PGND should be as close as possible. Then connect to a PCB common GND pattern with as many via-holes as possible.
5. SGND should not connect directly to PGND. Connecting these pins under the device should be avoided. (If possible, connect SGND to the common port of C1(-), C2 (-), and PGND.)
6. Place C3 as close to SVIN as possible to avoid noise.
7. FB line should be protected from noise. It is a good idea to use an inner GND layer (if available) as a shield.
8. It is recommended to connect BYPOUT to VOUT at C2 (+) using a separate trace, instead of connecting it directly to the FB for better noise immunity.
9. The LDO caps, C5, C6, and C7, should be placed as far away from the buck convertor as possible to suppress high frequency switching noise.

## Connection Diagram and Package Mark Information



Package Mark – Top View

20213304

FIGURE 4. 16—Bump Thin Micro SMD Package

## Pin Descriptions

| Pin # | Name               | Description                                                                                                                                                                                                                               |
|-------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A1    | LDO1               | LDO1 Output.                                                                                                                                                                                                                              |
| B1    | LDO2               | LDO2 Output.                                                                                                                                                                                                                              |
| C1    | LDO3               | LDO3 Output.                                                                                                                                                                                                                              |
| D1    | EN <sub>LDO3</sub> | LDO3 Enable Input. Set this digital input high to turn on LDO3. (EN <sub>BUCK</sub> pin must be also set high.) For turning LDO3 off, set low.                                                                                            |
| A2    | SVIN               | Analog, Signal and LDO Supply Input.                                                                                                                                                                                                      |
| B2    | FB                 | Buck Converter Feedback Analog Input. Connect to the output at the output filter capacitor.                                                                                                                                               |
| C2    | EN <sub>LDO2</sub> | LDO2 Enable Input. Set this digital input high to turn on LDO2. (EN <sub>BUCK</sub> pin must be also set high.) For turning LDO2 off, set low.                                                                                            |
| D2    | V <sub>CON</sub>   | Buck Converter Voltage Control Analog Input. This pin controls V <sub>OUT</sub> in PWM mode. Set: V <sub>OUT</sub> = 3 × V <sub>CON</sub> . Do not leave floating.                                                                        |
| A3    | SGND               | Analog, Signal, and LDO Ground.                                                                                                                                                                                                           |
| B3    | EN <sub>BUCK</sub> | Buck Converter Enable Input. Set this digital input high after V <sub>IN</sub> > 2.7V for normal operation. For shutdown, set low.                                                                                                        |
| C3    | EN <sub>LDO1</sub> | LDO1 Enable Input. Set this digital input high to turn on LDO1. (EN <sub>BUCK</sub> pin must be also set high.) For turning LDO1 off, set low.                                                                                            |
| D3    | BYP                | Forced Bypass Input. Use this digital input to command operation in Bypass mode. Set BYP low for normal operation.                                                                                                                        |
| A4    | BYPOUT             | Bypass FET Drain. Connect to the output capacitor. Do not leave floating.                                                                                                                                                                 |
| B4    | PVIN               | Buck Converter Power Supply Voltage Input to the internal P-FET switch and Bypass FET.                                                                                                                                                    |
| C4    | SW                 | Buck Converter Switch Node connection to the internal P-FET switch and N-FET synchronous rectifier. Connect to an inductor with a saturation current rating that exceeds the maximum Switch Peak Current Limit of the PWM Buck Converter. |
| D4    | PGND               | Buck Converter Power Ground.                                                                                                                                                                                                              |

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

#### **LIFE SUPPORT POLICY**

**NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.** As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2007 National Semiconductor Corporation

For the most current product information visit us at [www.national.com](http://www.national.com)



**National Semiconductor  
Americas Customer  
Support Center**  
Email:  
[new.feedback@nsc.com](mailto:new.feedback@nsc.com)  
Tel: 1-800-272-9959

**National Semiconductor Europe  
Customer Support Center**  
Fax: +49 (0) 180-530-85-86  
Email: [europe.support@nsc.com](mailto:europe.support@nsc.com)  
Deutsch Tel: +49 (0) 69 9508 6208  
English Tel: +49 (0) 870 24 0 2171  
Français Tel: +33 (0) 1 41 91 8790

**National Semiconductor Asia  
Pacific Customer Support Center**  
Email: [ap.support@nsc.com](mailto:ap.support@nsc.com)

**National Semiconductor Japan  
Customer Support Center**  
Fax: 81-3-5639-7507  
Email: [jpn.feedback@nsc.com](mailto:jpn.feedback@nsc.com)  
Tel: 81-3-5639-7560