

LM27341/LM27342

2 MHz 1.5A/2A Wide Input Range Step-Down DC-DC **Regulator with Frequency Synchronization**

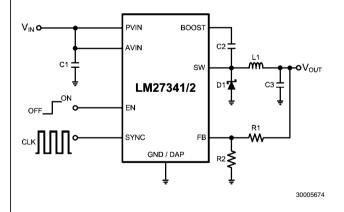
General Description

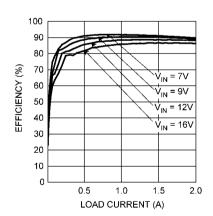
The LM27341 and LM27342 regulators are monolithic, high frequency, PWM step-down DC-DC converters in 10-pin LLP and 10-pin eMSOP packages. They contain all the active functions to provide local DC-DC conversion with fast transient response and accurate regulation in the smallest possible PCB area.

With a minimum of external components the LM27341 and LM27342 are easy to use. The ability to drive 1.5A or 2A loads respectively, with an internal 150 m Ω NMOS switch results in the best power density available. The world-class control circuitry allows for on-times as low as 65 ns, thus supporting exceptionally high frequency conversion. Switching frequency is internally set to 2 MHz and synchronizable from 1 to 2.35 MHz, which allows the use of extremely small surface mount inductors and chip capacitors. Even though the operating frequency is very high, efficiencies up to 90% are easy to achieve. External shutdown is included featuring an ultra-low shutdown current of 70 nA. The LM27341 and LM27342 utilize peak current-mode control and internal compensation to provide high-performance regulation over a wide range of operating conditions. Additional features include internal soft-start circuitry to reduce inrush current, pulse-by-pulse current limit, thermal shutdown, and output over-voltage protection.

Features

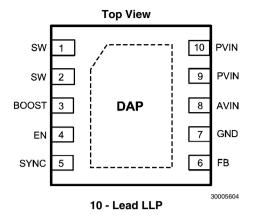
- Space saving 3 X 3 mm LLP-10 & eMSOP-10 package
- Wide input voltage range

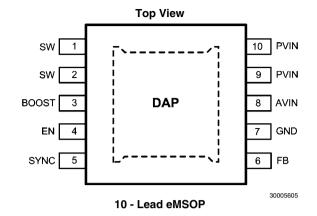

3 to 20 V


- Wide output voltage range
- 1 to 18 V
- LM27341 delivers 1.5A maximum output current
- LM27342 delivers 2A maximum output current High switching frequency
 - 2 MHz
- Frequency synchronization $1.00 \text{ MHz} < f_{SW} < 2.35 \text{ MHz}$
- 150 m Ω NMOS switch with internal bootstrap supply
- 70 nA shutdown current
- Internal voltage reference accuracy of 1%
- Peak Current-Mode, PWM operation
- Thermal shutdown

Applications

- Local 12V to Vcore Step-Down Converters
- Radio Power Supply
- Core Power in HDDs
- Set-Top Boxes
- Automotive
- **USB Powered Devices**
- **DSL Modems**


Typical Application Circuit



Efficiency vs Load Current $V_{OUT} = 5V$, $f_{sw} = 2 MHz$

Connection Diagrams

Ordering Information

Order Number	Package Type	NSC Package Drawing	Package Marking	Transport Media
LM27341MY	eMSOP -10	MUC10A	SSCB	1000 Units on Tape and Reel
LM27341MYX	eMSOP -10	MUC10A	SSCB	3500 Units on Tape and Reel
LM27342MY	eMSOP -10	MUC10A	SSCA	1000 Units on Tape and Reel
LM27342MYX	eMSOP -10	MUC10A	SSCA	3500 Units on Tape and Reel
LM27341SD	LLP - 10	SDA10A	L231B	1000 Units on Tape and Reel
LM27341SDX	LLP - 10	SDA10A	L231B	4500 Units on Tape and Reel
LM27342SD	LLP - 10	SDA10A	L231A	1000 Units on Tape and Reel
LM27342SDX	LLP - 10	SDA10A	L231A	4500 Units on Tape and Reel

Pin Descriptions

Pin	Name	Function
1,2	SW	Output switch. Connects to the inductor, catch diode, and bootstrap capacitor.
3	BOOST	Boost voltage that drives the internal NMOS control switch. A bootstrap capacitor is connected between the BOOST and SW pins.
4	EN	Enable control input. Logic high enables operation. Do not allow this pin to float or be greater than V_{IN} + 0.3V.
5	SYNC	Frequency synchronization input. Drive this pin with an external clock or pulse train. Ground it to use the internal clock.
6	FB	Feedback pin. Connect FB to the external resistor divider to set output voltage.
7	GND	Signal and Power Ground pin. Place the bottom resistor of the feedback network as close as possible to this pin for accurate regulation.
8	AVIN	Supply voltage for the control circuitry.
9,10	PVIN	Supply voltage for output power stage. Connect a bypass capacitor to this pin.
DAP	GND	Signal / Power Ground and thermal connection. Tie this directly to GND (pin 7). See Application Information regarding optimum thermal layout.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

AVIN. PVIN -0.5V to 24V SW Voltage -0.5V to 24V **Boost Voltage** -0.5V to 28V Boost to SW Voltage -0.5V to 6.0V FB Voltage -0.5V to 3.0V SYNC Voltage -0.5V to 6.0V **EN Voltage** -0.5V to $(V_{IN} + 0.3V)$ Storage Temperature Range -65°C to +150°C Junction Temperature 150°C

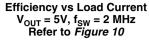
ESD Susceptibility (Note 2) 2kV Soldering Information
Infrared Reflow (5sec) 260°C

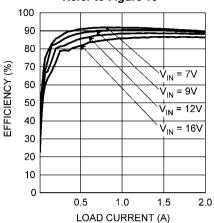
Operating Ratings (Note 1)

Electrical Characteristics

Specifications with standard typeface are for $T_J = 25^{\circ}C$, and those in **boldface type** apply over the full **Operating Temperature Range** ($T_J = -40^{\circ}C$ to 125°C). $V_{IN} = 12V$, and $V_{BOOST} - V_{SW} = 4.3V$ unless otherwise specified. Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.

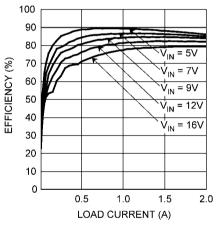
Symbol	Parameter	Conditions	Min	Тур	Max	Units	
YSTEM PARA	AMETERS			•	•		
V	Facility of Maltage	$T_J = 0$ °C to 85°C	0.990	1.0	1.010	V	
V_{FB}	Feedback Voltage	T _J = -40°C to 125°C	0.984	1.0	1.014		
$\Delta V_{FB}/\Delta V_{IN}$	Feedback Voltage Line Regulation	V _{IN} = 3V to 20V		0.003		% / V	
I _{FB}	Feedback Input Bias Current			20	100	nA	
OVP	Over Voltage Protection, V _{FB} at which PWM Halts.			1.13		٧	
11/4/0	Undervoltage Lockout	V _{IN} Rising until V _{SW} is Switching	2.60	2.75	2.90		
UVLO	UVLO Hysteresis	V _{IN} Falling from UVLO	0.30	0.47	0.6	V	
SS	Soft Start Time		0.5	1	1.5	ms	
1	Quiescent Current, $I_Q = I_{Q_AVIN} + I_{Q_PVIN}$	V _{FB} = 1.1 (not switching)		2.4		mA	
Ι _Q	Quiescent Current, $I_Q = I_{Q_AVIN} + I_{Q_PVIN}$	V _{EN} = 0V (shutdown)		70		nA	
		f _{SW} = 2 MHz		8.2	10	4	
I _{BOOST}	Boost Pin Current	f _{SW} = 1 MHz		4.4	6	6 mA	
SCILLATOR					,	•	
f_{SW}	Switching Frequency	SYNC = GND	1.75	2	2.3	MHz	
V_{FB_FOLD}	FB Pin Voltage where SYNC input is overridden.			0.53		V	
f _{FOLD_MIN}	Frequency Foldback Minimum	$V_{FB} = 0V$		220	250	kHz	
OGIC INPUTS	(EN, SYNC)			,	,		
f _{SYNC}	SYNC Frequency Range		1		2.35	MHz	
V_{IL}	EN, SYNC Logic low threshold	Logic Falling Edge			0.4	V	
V _{IH}	EN, SYNC Logic high threshold	Logic Rising Edge	1.8			\ \	
t _{SYNC_HIGH}	SYNC, Time Required above V _{IH} to Ensure a Logical High.				100	ns	
t _{SYNC_LOW}	SYNC, Time Required below V _{IL} to Ensure a Logical Low.				100	ns	
I _{SYNC}	SYNC Pin Current	V _{SYNC} < 5V		20		nA	
		V _{EN} = 3V		6	15		
I _{EN}	Enable Pin Current	$V_{IN} = V_{EN} = 20V$		50	100	μA	

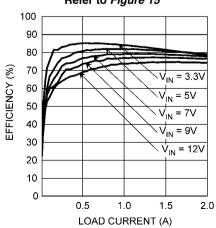

Symbol	Parameter	Conditions	Min	Тур	Max	Units
INTERNAL MO	OSFET					
R _{DS(ON)}	Switch ON Resistance			150	320	mΩ
I _{CL}	Switch Current Limit	LM27342	2.5		4.0	- A
		LM27341	2.0		3.7] ^
D _{MAX}	Maximum Duty Cycle	SYNC = GND	85	93		%
t _{MIN}	Minimum on time			65		ns
I _{SW}	Switch Leakage Current			40		nA
BOOST LDO	•		•	•	•	•
V _{LDO}	Boost LDO Output Voltage			3.9		V
THERMAL				•	•	•
T _{SHDN}	Thermal Shutdown Temperature	Junction temperature rising		165		°C
	Thermal Shutdown Hysteresis	Junction temperature falling		15		°C


Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the recommended Operating Ratings is not implied. The recommended Operating Ratings indicate conditions at which the device is functional and should not be operated beyond such conditions.

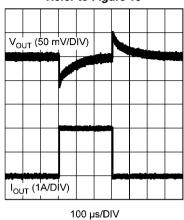
Note 2: Human body model, 1.5 k Ω in series with 100 pF.

Note 3: Thermal shutdown will occur if the junction temperature exceeds 165°C. The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly onto a 3" x 3" PC board with 2oz. copper on 4 layers in still air.

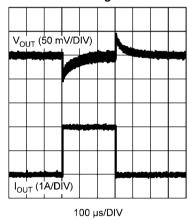

Typical Performance Characteristics All curves taken at $V_{IN} = 12V$, $V_{BOOST} - V_{SW} = 4.3V$ and $T_A = 25^{\circ}C$, unless specified otherwise.


30005676

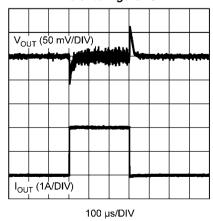
Efficiency vs Load Current V_{OUT} = 3.3V, f_{SW} = 2 MHz Refer to *Figure 12*


30005680

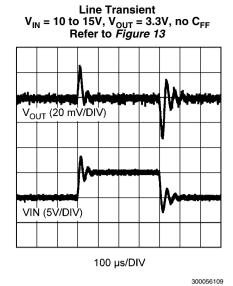
Efficiency vs Load Current V_{OUT} = 1.8V, f_{SW} = 2 MHz Refer to *Figure 15*

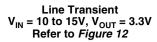

30005684

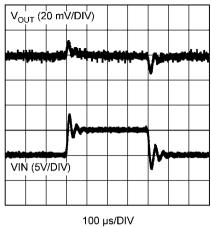
Load Transient V_{OUT} = 5V, I_{OUT} = 100 mA - 2A @ slewrate = 2A / μ s Refer to *Figure 10*


300056100

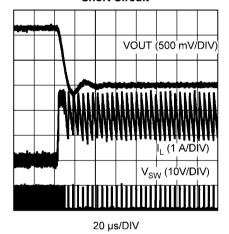
Load Transient V_{OUT} = 3.3V, I_{OUT} = 100 mA - 2A @ slewrate = 2A / μ s Refer to Figure 12



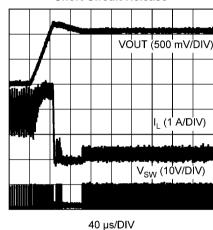

300056102

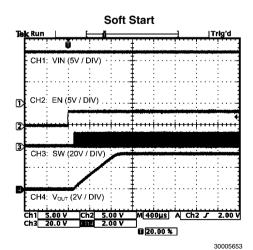

Load Transient V_{OUT} = 1.8V, I_{OUT} = 100 mA - 2A @ slewrate = 2A / μs Refer to Figure 15

300056105

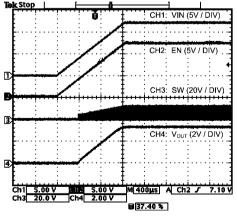


pc/211

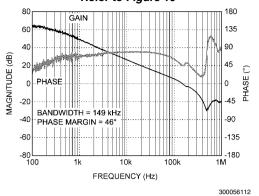

300056108



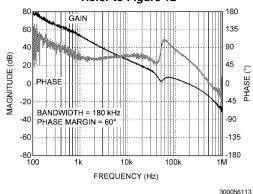
300056110


Short Circuit Release

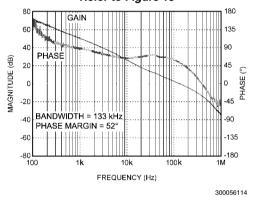
300056111

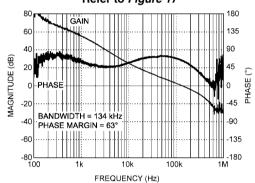


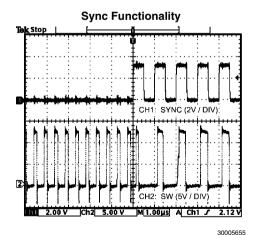
Soft Start with EN Tied to V_{IN}

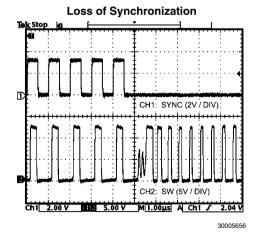


30005654


V_{IN} = 12V, V_{OUT} = 5 V, L = 2.2 $\mu H,$ C_{OUT} = 44 μF lout =1A Refer to Figure 10

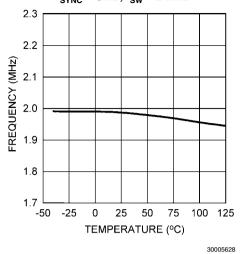

 V_{IN} = 12V, V_{OUT} = 3.3V, L = 1.5 μH C_{OUT} = 44 μF lout =1A Refer to Figure 12

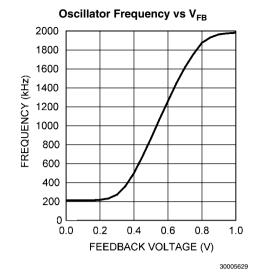

 V_{IN} = 5V, V_{OUT} = 1.8V, L = 1.0 μH C_{OUT} = 44 μF lout =1A Refer to Figure 15



 V_{IN} = 5V, V_{OUT} = 1.2V, L = 0.56 μH C $_{OUT}$ = 68 μF lout =1A Refer to Figure 17

300056115





www.national.com

7

Oscillator Frequency vs Temperature V_{SYNC} = GND, f_{SW} = 2 MHz

V_{FB} vs Temperature

2.0

1.5

1.0

0.5

0.5

-1.0

-1.5

-2.0

-50 -25 0 25 50 75 100 125

TEMPERATURE (°C)

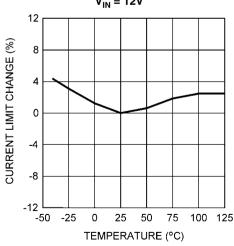
1.002

1.001

T_A = 25 °C

T_A = -40 °C

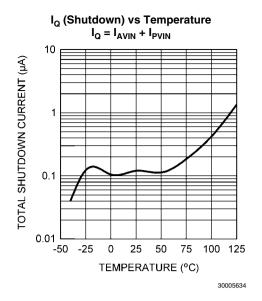
0.999

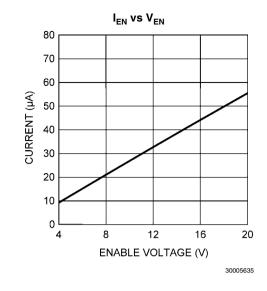

T_A = 85 °C

INPUT VOLTAGE (V)

Current Limit vs Temperature $V_{\text{IN}} = 12V$

30005630


30005632



R_{DSON} vs Temperature 60 40 R_{DS-ON} CHANGE (%) 20 0 -20 -40 -50 -25 0 25 50 75 100 125 TEMPERATURE (°C) 30005633

30005633

30005631

Block Diagram

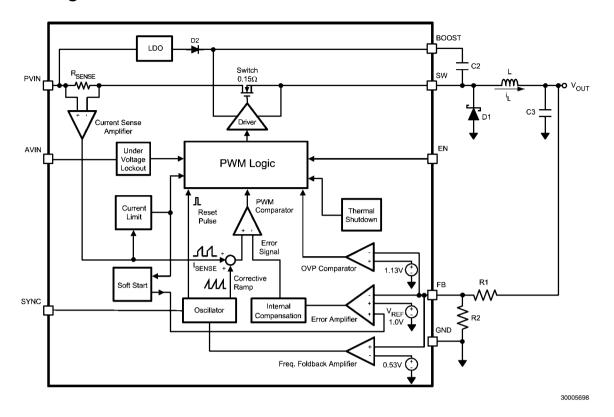


FIGURE 1.

Application Information

THEORY OF OPERATION

The LM27341/LM27342 is a constant-frequency, peak current-mode PWM buck regulator IC that delivers a 1.5 or 2A load current. The regulator has a preset switching frequency of 2 MHz. This high frequency allows the LM27341/LM27342 to operate with small surface mount capacitors and inductors, resulting in a DC-DC converter that requires a minimum amount of board space. The LM27341/LM27342 is internally compensated, which reduces design time, and requires few external components.

The following operating description of the LM27341/LM27342 will refer to the Block Diagram (Figure 1) and to the waveforms in Figure 2. The LM27341/LM27342 supplies a regulated output voltage by switching the internal NMOS switch at a constant frequency and varying the duty cycle. A switching cycle begins at the falling edge of the reset pulse generated by the internal oscillator. When this pulse goes low, the output control logic turns on the internal NMOS switch. During this ontime, the SW pin voltage ($\rm V_{SW}$) swings up to approximately $\rm V_{IN}$, and the inductor current (i_l) increases with a linear slope. The current-sense amplifier measures i_l, which generates an output proportional to the switch current typically called the sense signal. The sense signal is summed with the regulator's corrective ramp and compared to the error amplifier's output, which is proportional to the difference between the feedback

voltage (V $_{FB}$) and V $_{REF}$. When the output of the PWM comparator goes high, the switch turns off until the next switching cycle begins. During the switch off-time (t $_{OFF}$), inductor current discharges through the catch diode D1, which forces the SW pin (V $_{SW}$) to swing below ground by the forward voltage (V $_{D1}$) of the catch diode. The regulator loop adjusts the duty cycle (D) to maintain a constant output voltage.

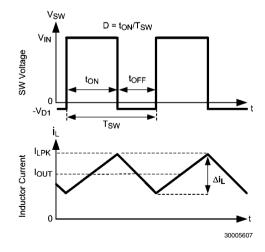


FIGURE 2. LM27341/LM27342 Waveforms of SW Pin Voltage and Inductor Current

BOOST FUNCTION

Capacitor C_2 in *Figure 1*, commonly referred to as C_{BOOST} , is used to store a voltage V_{BOOST} . When the LM27341/LM27342 starts up, an internal LDO charges C_{BOOST} ,via an internal diode, to a voltage sufficient to turn the internal NMOS switch on. The gate drive voltage supplied to the internal NMOS switch is V_{BOOST} - V_{SW} .

During a normal switching cycle, when the internal NMOS control switch is off (t_{OFF}) (refer to $\mathit{Figure~2}), \, V_{\text{BOOST}}$ equals V_{LDO} minus the forward voltage of the internal diode $(V_{\text{D2}}).$ At the same time the inductor current (i_L) forward biases the catch diode D1 forcing the SW pin to swing below ground by the forward voltage drop of the catch diode $(V_{\text{D1}}).$ Therefore, the voltage stored across C_{BOOST} is

$$V_{BOOST} - V_{SW} = V_{LDO} - V_{D2} + V_{D1}$$

Thus,

$$V_{BOOST} = V_{SW} + V_{LDO} - V_{D2} + V_{D1}$$

When the NMOS switch turns on (t_{ON}) , the switch pin rises to

$$V_{SW} = V_{IN} - (R_{DSON} \times I_L),$$

reverse biasing D1, and forcing \mathbf{V}_{BOOST} to rise. The voltage at \mathbf{V}_{BOOST} is then

$$\label{eq:VBOOST} V_{BOOST} = V_{IN} - (R_{DSON} \ x \ I_L) + V_{LDO} - V_{D2} + V_{D1}$$
 which is approximately

$$V_{IN} + V_{IDO} - 0.4V$$

 $V_{\mbox{\footnotesize BOOST}}$ has pulled itself up by its "bootstraps", or boosted to a higher voltage.

LOW INPUT VOLTAGE CONSIDERATIONS

When the input voltage is below 5V and the duty cycle is greater than 75 percent, the gate drive voltage developed across C_{BOOST} might not be sufficient for proper operation of the NMOS switch. In this case, C_{BOOST} should be charged via an external Schottky diode attached to a 5V voltage rail, see *Figure 3*. This ensures that the gate drive voltage is high enough for proper operation of the NMOS switch in the triode region. Maintain V_{BOOST} - V_{SW} less than the 6V absolute maximum rating.

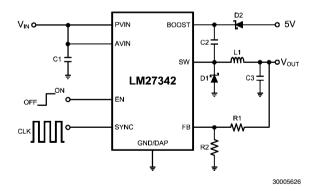


FIGURE 3. External Diode Charges C_{BOOST}

HIGH OUTPUT VOLTAGE CONSIDERATIONS

When the output voltage is greater than 3.3V, a minimum load current is needed to charge C_{BOOST} , see *Figure 4*. The minimum load current forward biases the catch diode D1 forcing the SW pin to swing below ground. This allows C_{BOOST} to charge, ensuring that the gate drive voltage is high enough for proper operation. The minimum load current depends on many factors including the inductor value.

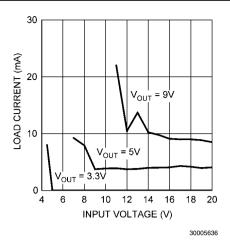


FIGURE 4. Minimum Load Current for L = 1.5 µH

ENABLE PIN / SHUTDOWN MODE

Connect the EN pin to a voltage source greater than 1.8V to enable operation of the LM27341/LM27342. Apply a voltage less than 0.4V to put the part into shutdown mode. In shutdown mode the quiescent current drops to typically 70 nA. Switch leakage adds another 40 nA from the input supply. For proper operation, the LM27341/LM27342 EN pin should never be left floating, and the voltage should never exceed $\rm V_{IN} + 0.3V.$

The simplest way to enable the operation of the LM27341/LM27342 is to connect the EN pin to AVIN which allows self start-up of the LM27341/LM27342 when the input voltage is applied.

When the rise time of $V_{\rm IN}$ is longer than the soft-start time of the LM27341/LM27342 this method may result in an overshoot in output voltage. In such applications, the EN pin voltage can be controlled by a separate logic signal, or tied to a resistor divider, which reaches 1.8V after $V_{\rm IN}$ is fully established (see *Figure 5*). This will minimize the potential for output voltage overshoot during a slow $V_{\rm IN}$ ramp condition. Use the lowest value of $V_{\rm IN}$, seen in your application when calculating the resistor network, to ensure that the 1.8V minimum EN threshold is reached.

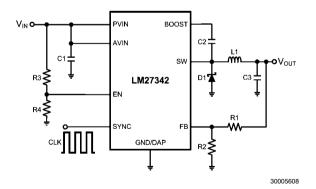


FIGURE 5. Resistor Divider on EN

$$R3 = \left(\frac{V_{IN}}{1.8} - 1\right) \times R4$$

www.national.com

11

FREQUENCY SYNCHRONIZATION

The LM27341/LM27342 switching frequency can be synchronized to an external clock, between 1.00 and 2.35 MHz, applied at the SYNC pin. At the first rising edge applied to the SYNC pin, the internal oscillator is overridden and subsequent positive edges will initiate switching cycles. If the external SYNC signal is lost during operation, the LM27341/LM27342 will revert to its internal 2 MHz oscillator within 1.5 µs. To disable Frequency Synchronization and utilize the internal 2 MHz oscillator, connect the SYNC pin to GND.

The SYNC pin gives the designer the flexibility to optimize their design. A lower switching frequency can be chosen for higher efficiency. A higher switching frequency can be chosen to keep EMI out of sensitive ranges such as the AM radio band. Synchronization can also be used to eliminate beat frequencies generated by the interaction of multiple switching power converters. Synchronizing multiple switching power converters will result in cleaner power rails.

The selected switching frequency (f_{SYNC}) and the minimum on-time (t_{MIN}) limit the minimum duty cycle (D_{MIN}) of the device

$$D_{MIN} = t_{MIN} x f_{SYNC}$$

Operation below D_{MIN} is not reccomended. The LM27341/LM27342 will skip pulses to keep the output voltage in regulation, and the current limit is not guaranteed. The switching is in phase but no longer at the same switching frequency as the SYNC signal.

CURRENT LIMIT

The LM27341 and LM27342 use cycle-by-cycle current limiting to protect the output switch. During each switching cycle, a current limit comparator detects if the output switch current exceeds 2.0A min (LM27341) or 2.5A min (LM27342), and turns off the switch until the next switching cycle begins.

FREQUENCY FOLDBACK

The LM27341/LM27342 employs frequency foldback to protect the device from current run-away during output short-circuit. Once the FB pin voltage falls below regulation, the switch frequency will smoothly reduce with the falling FB voltage until the switch frequency reaches 220 kHz (typ). If the device is synchronized to an external clock, synchronization is disabled until the FB pin voltage exceeds 0.53V

SOFT-START

The LM27341/LM27342 has a fixed internal soft-start of 1 ms (typ). During soft-start, the error amplifier's reference voltage ramps from 0.0 V to its nominal value of 1.0 V in approximately 1 ms. This forces the regulator output to ramp in a controlled fashion, which helps reduce inrush current. Upon soft-start the part will initially be in frequency foldback and the frequency will rise as FB rises. The regulator will gradually rise to 2 MHz. The LM27341/LM27342 will allow synchronization to an external clock at FB > 0.53V.

OUTPUT OVERVOLTAGE PROTECTION

The overvoltage comparator turns off the internal power NFET when the FB pin voltage exceeds the internal reference voltage by 13% ($V_{FB} > 1.13 * V_{REF}$). With the power NFET turned off the output voltage will decrease toward the regulation level.

UNDERVOLTAGE LOCKOUT

Undervoltage lockout (UVLO) prevents the LM27341/LM27342 from operating until the input voltage exceeds 2.75V(typ).

The UVLO threshold has approximately 470 mV of hysteresis, so the part will operate until $V_{\rm IN}$ drops below 2.28V(typ). Hysteresis prevents the part from turning off during power up if $V_{\rm IN}$ has finite impedance.

THERMAL SHUTDOWN

Thermal shutdown limits total power dissipation by turning off the internal NMOS switch when the IC junction temperature exceeds 165°C (typ). After thermal shutdown occurs, hysteresis prevents the internal NMOS switch from turning on until the junction temperature drops to approximately 150°C.

Design Guide

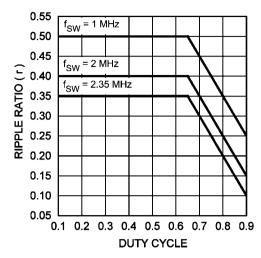
INDUCTOR SELECTION

Inductor selection is critical to the performance of the LM27341/LM27342. The selection of the inductor affects stability, transient response and efficiency. A key factor in inductor selection is determining the ripple current (Δi_L) (see *Figure 2*).

The ripple current (Δi_1) is important in many ways.

First, by allowing more ripple current, lower inductance values can be used with a corresponding decrease in physical dimensions and improved transient response. On the other hand, allowing less ripple current will increase the maximum achievable load current and reduce the output voltage ripple (see Output Capacitor section for more details on calculating output voltage ripple). Increasing the maximum load current is achieved by ensuring that the peak inductor current ($\rm I_{LPK}$) never exceeds the minimum current limit of 2.0A min (LM27341) or 2.5A min (LM27342) .

$$I_{LPK} = I_{OUT} + \Delta i_L / 2$$


Secondly, the slope of the ripple current affects the current control loop. The LM27341/LM27342 has a fixed slope corrective ramp. When the slope of the current ripple becomes significantly less than the converter's corrective ramp (see Figure 1), the inductor pole will move from high frequencies to lower frequencies. This negates one advantage that peak current-mode control has over voltage-mode control, which is, a single low frequency pole in the power stage of the converter. This can reduce the phase margin, crossover frequency and potentially cause instability in the converter. Contrarily, when the slope of the ripple current becomes significantly greater than the converter's corrective ramp, resonant peaking can occur in the control loop. This can also cause instability (Sub-Harmonic Oscillation) in the converter. For the power supply designer this means that for lower switching frequencies the current ripple must be increased to keep the inductor pole well above crossover. It also means that for higher switching frequencies the current ripple must be decreased to avoid resonant peaking.

With all these factors, how is the desired ripple current selected? The ripple ratio (r) is defined as the ratio of inductor ripple current (Δi_L) to output current (I_{OUT}), evaluated at maximum load:

$$r = \frac{\Delta i_L}{I_{OUT}}$$

A good compromise between physical size, transient response and efficiency is achieved when we set the ripple ratio between 0.2 and 0.4. The recommended ripple ratio vs. duty cycle shown below (see *Figure 6*) is based upon this compromise and control loop optimizations. Note that this is just

a guideline. Please see Application note AN-1197 for further considerations.

30005627

FIGURE 6. Recommended Ripple Ratio Vs. Duty Cycle

The Duty Cycle (D) can be approximated quickly using the ratio of output voltage (V_{OUT}) to input voltage (V_{IN}):

$$D = \frac{V_{OUT}}{V_{IN}}$$

The application's lowest input voltage should be used to calculate the ripple ratio. The catch diode forward voltage drop (V_{D1}) and the voltage drop across the internal NFET (V_{DS}) must be included to calculate a more accurate duty cycle. Calculate D by using the following formula:

$$D = \frac{V_{OUT} + V_{D1}}{V_{IN} + V_{D1} - V_{DS}}$$

V_{DS} can be approximated by:

$$V_{DS} = I_{OUT} \times R_{DS(ON)}$$

The diode forward drop (V_{D1}) can range from 0.3V to 0.5V depending on the quality of the diode. The lower V_{D1} is, the higher the operating efficiency of the converter.

Now that the ripple current or ripple ratio is determined, the required inductance is calculated by:

$$L = \frac{V_{OUT} + V_{D1}}{I_{OUT} \times r \times f_{SW}} \times (1-D_{MIN})$$

where D_{MIN} is the duty cycle calculated with the maximum input voltage, f_{sw} is the switching frequency, and I_{OUT} is the maximum output current of 2A. Using I_{OUT} = 2A will minimize the inductor's physical size.

INDUCTOR CALCULATION EXAMPLE

Operating conditions for the LM27342 are:

$$V_{IN} = 7 - 16V$$
 $V_{OUT} = 3.3V$ $I_{OUT} = 2A$ $f_{SW} = 2 \text{ MHz}$ $V_{D1} = 0.5V$

First the maximum duty cycle is calculated.

$$D_{MAX} = (V_{OUT} + V_{D1}) / (V_{IN} + V_{D1} - V_{DS})$$
$$= (3.3V + 0.5V) / (7V + 0.5V - 0.30V)$$
$$= 0.528$$

Using *Figure 6* gives us a recommended ripple ratio = 0.4. Now the minimum duty cycle is calculated.

$$D_{MIN} = (V_{OUT} + V_{D1}) / (V_{IN} + V_{D1} - V_{DS})$$

$$= (3.3V + 0.5V) / (16V + 0.5V - 0.30V)$$

$$= 0.235$$

The inductance can now be calculated.

$$\begin{split} L &= (1 - D_{MIN}) \ x \ (V_{OUT} + V_{D1}) \ / \ (I_{OUT} \ x \ r \ x \ f_{sw}) \\ &= (1 - 0.235) \ x \ (3.3V + .5V) \ / \ (2A \ x \ 0.4 \ x \ 2 \ MHz) \\ &= 1.817 \ \mu H \end{split}$$

This is close to the standard inductance value of 1.8 μ H. This leads to a 1% deviation from the recommended ripple ratio, which is now 0.4038.

Finally, we check that the peak current does not reach the minimum current limit of 2.5A.

$$I_{LPK} = I_{OUT} x (1 + r/2)$$

$$= 2A x (1 + .4038 / 2)$$

$$= 2.404A$$

The peak current is less than 2.5A, so the DC load specification can be met with this ripple ratio. To design for the LM27341 simply replace $I_{\rm OUT}=1.5{\rm A}$ in the equations for $I_{\rm LPK}$ and see that $I_{\rm LPK}$ does not exceed the LM27341's current limit of 2.0A (min).

INDUCTOR MATERIAL SELECTION

When selecting an inductor, make sure that it is capable of supporting the peak output current without saturating. Inductor saturation will result in a sudden reduction in inductance and prevent the regulator from operating correctly. To prevent the inductor from saturating over the entire -40 °C to 125 °C range, pick an inductor with a saturation current higher than the upper limit of $\rm I_{CL}$ listed in the Electrical Characteristics table.

Ferrite core inductors are recommended to reduce AC loss and fringing magnetic flux. The drawback of ferrite core inductors is their quick saturation characteristic. The current limit circuit has a propagation delay and so is oftentimes not fast enough to stop a saturated inductor from going above the current limit. This has the potential to damage the internal switch. To prevent a ferrite core inductor from getting into saturation, the inductor saturation current rating should be higher than the switch current limit $\rm I_{\rm CL}.$ The LM27341/LM27342 is quite robust in handling short pulses of current that are a few amps above the current limit. Saturation protection is provided by a second current limit which is 30% higher than the cycle by cycle current limit. When the saturation protection is triggered the part will turn off the output switch and attempt to soft-start. (When a compromise has to be made, pick an inductor with a saturation current just above the lower limit of the I_{CL} .) Be sure to validate the short-circuit protection over the intended temperature range.

An inductor's saturation current is usually lower when hot. So consult the inductor vendor if the saturation current rating is only specified at room temperature.

Soft saturation inductors such as the iron powder types can also be used. Such inductors do not saturate suddenly and

therefore are safer when there is a severe overload or even shorted output. Their physical sizes are usually smaller than the Ferrite core inductors. The downside is their fringing flux and higher power dissipation due to relatively high AC loss, especially at high frequencies.

INPUT CAPACITOR

An input capacitor is necessary to ensure that V_{IN} does not drop excessively during switching transients. The primary specifications of the input capacitor are capacitance, voltage, RMS current rating, and Equivalent Series Inductance (ESL). The recommended input capacitance is 10 μ F, although 4.7 μ F works well for input voltages below 6V. The input voltage rating is specifically stated by the capacitor manufacturer. Make sure to check any recommended deratings and also verify if there is any significant change in capacitance at the operating input voltage and the operating temperature. The input capacitor maximum RMS input current rating (I_{RMS-IN}) must be greater than:

$$I_{\text{RMS-IN}} = I_{\text{OUT}} \times \sqrt{D \times \left(1 - D + \frac{r^2}{12}\right)}$$

where r is the ripple ratio defined earlier, I_{OUT} is the output current, and D is the duty cycle. It can be shown from the above equation that maximum RMS capacitor current occurs when D = 0.5. Always calculate the RMS at the point where the duty cycle. D. is closest to 0.5. The ESL of an input capacitor is usually determined by the effective cross sectional area of the current path. A large leaded capacitor will have high ESL and a 0805 ceramic chip capacitor will have very low ESL. At the operating frequencies of the LM27341/ LM27342, certain capacitors may have an ESL so large that the resulting impedance (2TfL) will be higher than that required to provide stable operation. As a result, surface mount capacitors are strongly recommended. Sanyo POSCAP, Tantalum or Niobium, Panasonic SP or Cornell Dubilier Low ESR are all good choices for input capacitors and have acceptable ESL. Multilayer ceramic capacitors (MLCC) have very low ESL. For MLCCs it is recommended to use X7R or X5R dielectrics. Consult the capacitor manufacturer's datasheet to see how rated capacitance varies over operating conditions.

OUTPUT CAPACITOR

The output capacitor is selected based upon the desired output ripple and transient response. The LM27341/2's loop compensation is designed for ceramic capacitors. A minimum of 22 μ F is required at 2 MHz (33 uF at 1 MHz) while 47 - 100 μ F is recommended for improved transient response and higher phase margin. The output voltage ripple of the converter is:

$$\Delta V_{OUT} = \Delta I_L \times (R_{ESR} + \frac{1}{8 \times f_{SW} \times C_{OUT}})$$

When using MLCCs, the ESR is typically so low that the capacitive ripple may dominate. When this occurs, the output ripple will be approximately sinusoidal and 90° phase shifted from the switching action. Another benefit of ceramic capacitors is their ability to bypass high frequency noise. A certain amount of switching edge noise will couple through parasitic capacitances in the inductor to the output. A ceramic capacitor will bypass this noise while a tantalum will not.

The transient response is determined by the speed of the control loop and the ability of the output capacitor to provide

the initial current of a load transient. Capacitance can be increased significantly with little detriment to the regulator stability. However, increasing the capacitance provides dimininshing improvement over 100 uF in most applications, because the bandwidth of the control loop decreases as output capacitance increases. If improved transient performance is required, add a feed forward capacitor. This becomes especially important for higher output voltages where the bandwidth of the LM27341/LM27342 is lower. See Feed Forward Capacitor and Frequency Synchronization sections.

Check the RMS current rating of the capacitor. The RMS current rating of the capacitor chosen must also meet the following condition:

$$I_{RMS-OUT} = I_{OUT} \times \frac{r}{\sqrt{12}}$$

where I_{OUT} is the output current, and r is the ripple ratio.

CATCH DIODE

The catch diode (D1) conducts during the switch off-time. A Schottky diode is recommended for its fast switching times and low forward voltage drop. The catch diode should be chosen so that its current rating is greater than:

$$I_{D1} = I_{OUT} x (1-D)$$

The reverse breakdown rating of the diode must be at least the maximum input voltage plus appropriate margin. To improve efficiency choose a Schottky diode with a low forward voltage drop.

BOOST DIODE (OPTIONAL)

For circuits with input voltages $V_{\rm IN} < 5V$ and duty cycles (D) >0.75V. a small-signal Schottky diode is recommended. A good choice is the BAT54 small signal diode. The cathode of the diode is connected to the BOOST pin and the anode to a 5V voltage rail.

BOOST CAPACITOR

A ceramic 0.1 μ F capacitor with a voltage rating of at least 6.3V is sufficient. The X7R and X5R MLCCs provide the best performance.

OUTPUT VOLTAGE

The output voltage is set using the following equation where R2 is connected between the FB pin and GND, and R1 is connected between V_{OUT} and the FB pin. A good starting value for R2 is 1 k Ω .

$$R1 = \left(\frac{V_{OUT}}{V_{REF}} - 1\right) \times R2$$

FEED FORWARD CAPACITOR (OPTIONAL)

A feed forward capacitor C_{FF} can improve the transient response of the converter. Place C_{FF} in parallel with R1. The value of C_{FF} should place a zero in the loop response at, or above, the pole of the output capacitor and R_{LOAD} . The C_{FF} capacitor will increase the crossover frequency of the design, thus a larger minimum output capacitance is required for designs using C_{FF} . C_{FF} should only be used with an output capacitance greater than or equal to 44 uF.

$$C_{FF} \leftarrow \frac{V_{OUT} \times C_{OUT}}{I_{OUT} \times R1}$$

Calculating Efficiency, and Junction Temperature

The complete LM27341/LM27342 DC-DC converter efficiency can be calculated in the following manner.

$$\eta = \frac{\mathsf{P}_{\mathsf{OUT}}}{\mathsf{P}_{\mathsf{IN}}}$$

Or

$$\eta = \frac{P_{OUT}}{P_{OUT} + P_{LOSS}}$$

Calculations for determining the most significant power losses are shown below. Other losses totaling less than 2% are not discussed.

Power loss (P_{LOSS}) is the sum of two basic types of losses in the converter, switching and conduction. Conduction losses usually dominate at higher output loads, where as switching losses remain relatively fixed and dominate at lower output loads. The first step in determining the losses is to calculate the duty cycle (D).

$$D = \frac{V_{OUT} + V_{D1}}{V_{IN} + V_{D1} - V_{DS}}$$

 $\ensuremath{V_{DS}}$ is the voltage drop across the internal NFET when it is on, and is equal to:

$$V_{DS} = I_{OUT} \times R_{DSON}$$

 $\rm V_D$ is the forward voltage drop across the Schottky diode. It can be obtained from the Electrical Characteristics section of the schottky diode datasheet. If the voltage drop across the inductor ($\rm V_{DCR}$) is accounted for, the equation becomes:

$$D = \frac{V_{OUT} + V_{D1} + V_{DCR}}{V_{IN} + V_{D1} - V_{DS}}$$

 V_{DCR} usually gives only a minor duty cycle change, and has been omitted in the examples for simplicity.

SCHOTTKY DIODE CONDUCTION LOSSES

The conduction losses in the free-wheeling Schottky diode are calculated as follows:

$$P_{DIODE} = V_{D1} \times I_{OUT} (1-D)$$

Often this is the single most significant power loss in the circuit. Care should be taken to choose a Schottky diode that has a low forward voltage drop.

INDUCTOR CONDUCTION LOSSES

Another significant external power loss is the conduction loss in the output inductor. The equation can be simplified to:

$$P_{IND} = I_{OUT}^2 \times R_{DCR}$$

MOSFET CONDUCTION LOSSES

The LM27341/LM27342 conduction loss is mainly associated with the internal NFET:

$$P_{COND} = I_{OUT}^2 \times R_{DSON} \times D$$

MOSFET SWITCHING LOSSES

Switching losses are also associated with the internal NFET. They occur during the switch on and off transition periods, where voltages and currents overlap resulting in power loss. The simplest means to determine this loss is to empirically measuring the rise and fall times (10% to 90%) of the switch at the switch node:

$$\begin{split} P_{SWF} &= 1/2 (V_{IN} \times I_{OUT} \times f_{SW} \times t_{FALL}) \\ P_{SWR} &= 1/2 (V_{IN} \times I_{OUT} \times f_{SW} \times t_{RISE}) \\ P_{SW} &= P_{SWF} + P_{SWR} \end{split}$$

Typical Rise and Fall Times vs Input Voltage

V _{IN}	t _{RISE}	t _{FALL}
5V	8ns	8ns
10V	9ns	9ns
15V	10ns	10ns

IC QUIESCENT LOSSES

Another loss is the power required for operation of the internal circuitry:

$$P_Q = I_Q \times V_{IN}$$

 ${\bf I}_{\bf Q}$ is the quiescent operating current, and is typically around 2.4 mA.

MOSFET DRIVER LOSSES

The other operating power that needs to be calculated is that required to drive the internal NFET:

$$P_{BOOST} = I_{BOOST} \times V_{BOOST}$$

 V_{BOOST} is normally between 3VDC and 5VDC. The I_{BOOST} rms current is dependant on switching frequency f_{SW} . I_{BOOST} is approximately 8.2 mA at 2 MHz and 4.4 mA at 1 MHz.

TOTAL POWER LOSSES

Total power losses are:

 $P_{LOSS} = P_{COND} + P_{SWR} + P_{SWF} + P_{Q} + P_{BOOST} + P_{DIODE} + P_{IND}$ Losses internal to the LM27341/LM27342 are:

$$P_{INTERNAL} = P_{COND} + P_{SWR} + P_{SWF} + P_{Q} + P_{BOOST}$$

EFFICIENCY CALCULATION EXAMPLE

Operating conditions are:

$$V_{IN}$$
 = 12V V_{OUT} = 3.3V I_{OUT} = 2A f_{SW} = 2 MHz V_{D1} = 0.5V R_{DCR} = 20 m Ω

Internal Power Losses are:

$$\begin{array}{lll} P_{COND} &= I_{OUT}^2 \ x \ R_{DSON} \ x \ D \\ &= 2^2 \ x \ 0.15\Omega \ x \ 0.314 &= 188 \ mW \\ \\ P_{SW} &= (V_{IN} \ x \ I_{OUT} \ x \ f_{SW} \ x \ t_{FALL}) \\ &= (12V \ x \ 2A \ x \ 2 \ MHz \ x \ 10ns) &= 480 \ mW \\ \\ P_{Q} &= I_{Q} \ x \ V_{IN} \\ &= 2.4 \ mA \ x \ 12V &= 29 \ mW \\ \\ P_{BOOST} &= I_{BOOST} \ x \ V_{BOOST} \\ &= 8.2 \ mA \ x \ 4.5V &= 37 \ mW \\ \\ \hline P_{INTERNAL} &= P_{COND} + P_{SW} + P_{Q} + P_{BOOST} &= 733 \ mW \\ \end{array}$$

Total Power Losses are:

$$\begin{array}{ll} P_{DIODE} & = V_{D1} \times I_{OUT} (1 - D) \\ & = 0.5 \text{V} \times 2 \times (1 - 0.314) & = 686 \text{ mW} \\ \\ P_{IND} & = I_{OUT}^2 \times R_{DCR} \\ & = 2^2 \times 20 \text{ m}\Omega & = 80 \text{ mW} \\ \\ P_{LOSS} & = P_{INTERNAL} + P_{DIODE} + P_{IND} & = 1.499 \text{ W} \end{array}$$

The efficiency can now be estimated as:

$$\eta = \frac{P_{OUT}}{P_{OUT} + P_{LOSS}} = \frac{6.6 \text{ W}}{6.6 \text{ W} + 1.499 \text{ W}} = 81 \text{ \%}$$

With this information we can estimate the junction temperature of the LM27341/LM27342.

CALCULATING THE LM27341/LM27342 JUNCTION TEMPERATURE

Thermal Definitions:

 $T_1 = IC$ junction temperature

T_A = Ambient temperature

 $R_{\theta,IC}$ = Thermal resistance from IC junction to device case

R_{BJA} = Thermal resistance from IC junction to ambient air

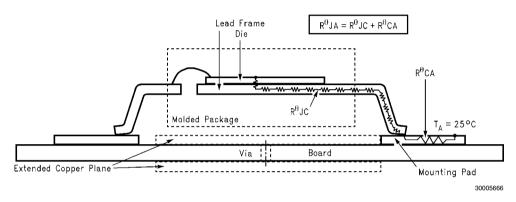


FIGURE 7. Cross-Sectional View of Integrated Circuit Mounted on a Printed Circuit Board.

Heat in the LM27341/LM27342 due to internal power dissipation is removed through conduction and/or convection.

Conduction: Heat transfer occurs through cross sectional areas of material. Depending on the material, the transfer of heat can be considered to have poor to good thermal conductivity properties (insulator vs conductor).

Heat Transfer goes as:

Silicon→Lead Frame→PCB

Convection: Heat transfer is by means of airflow. This could be from a fan or natural convection. Natural convection occurs when air currents rise from the hot device to cooler air.

Thermal impedance is defined as:

$$R_{\theta} = \frac{\Delta T}{Power}$$

Thermal impedance from the silicon junction to the ambient air is defined as:

$$R_{\theta JA} = \frac{T_J - T_A}{Power}$$

This impedance can vary depending on the thermal properties of the PCB. This includes PCB size, weight of copper used to route traces, the ground plane, and the number of

layers within the PCB. The type and number of thermal vias can also make a large difference in the thermal impedance. Thermal vias are necessary in most applications. They conduct heat from the surface of the PCB to the ground plane. Six to nine thermal vias should be placed under the exposed pad to the ground plane. Placing more than nine thermal vias results in only a small reduction to $R_{\theta JA}$ for the same copper area. These vias should have 8 mil holes to avoid wicking solder away from the DAP. See AN-1187 and AN-1520 for more information on package thermal performance. If a compromise for cost needs to be made, the thermal vias for the eMSOP package can range from 8-14 mils, this will increase the possibility of solder wicking.

To predict the silicon junction temperature for a given application, three methods can be used. The first is useful before prototyping and the other two can more accurately predict the junction temperature within the application.

Method 1:

The first method predicts the junction temperature by extrapolating a best guess $R_{\theta JA}$ from the table or graph. The tables and graph are for natural convection. The internal dissipation can be calculated using the efficiency calculations. This allows the user to make a rough prediction of the junction temperature in their application. Methods two and three can later be used to determine the junction temperature more accurately.

The two tables below have values of $R_{\theta JA}$ for the LLP and the eMSOP package.

R_{BJA} values for the eMSOP @ 1Watt dissipation:

Number	Size of	Size of Top	Number	$R_{\theta JA}$
of Board	Bottom Layer	Layer Copper	of 10 mil	
Layers	Copper	Connected to	Thermal	
	Connected to	Dap	Vias	
	DAP			
2	0.25 in ²	0.05 in ²	8	80.6°
				C/W
2	0.5625 in ²	0.05 in ²	8	70.9 °
				C/W
2	1 in ²	0.05 in ²	8	62.1 °
				C/W
2	1.3225 in ²	0.05 in ²	8	54.6°
				C/W
4 (Eval	3.25 in ²	2.25 in ²	14	35.3 °
Board)				C/W

$R_{\theta JA}$ values for the LLP @ 1Watt dissipation:

Number of Board Layers	Size of Bottom Layer Copper Connected to DAP	Size of Top Layer Copper Connected to Dap	Number of 8 mil Thermal Vias	R _{eJA}
2	0.25 in ²	0.05 in ²	8	78 °C/ W
2	0.5625 in ²	0.05 in ²	8	65.6 ° C/W
2	1 in²	0.05 in ²	8	58.6 ° C/W
2	1.3225 in ²	0.05 in ²	8	50 °C/ W
4 (Eval Board)	3.25 in ²	2.25 in ²	15	30.7 ° C/W

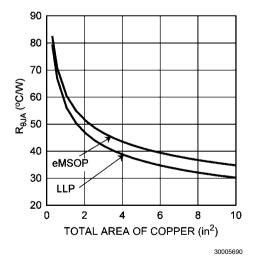


FIGURE 8. Estimate of Thermal Resistance vs. Ground Copper Area Eight Thermal Vias and Natural Convection

Method 2:

The second method requires the user to know the thermal impedance of the silicon junction to case. ($R_{\rm 0JC}$) is approximately 9.5°C/W for the eMSOP package or 9.1°C/W for the LLP. The case temperature should be measured on the bottom of the PCB at a thermal via directly under the DAP of the LM27341/LM27342. The solder resist should be removed from this area for temperature testing. The reading will be more accurate if it is taken midway between pins 2 and 9, where the NMOS switch is located. Knowing the internal dissipation from the efficiency calculation given previously, and the case temperature ($T_{\rm C}$) we have:

$$R_{\theta JC} = \frac{T_J - T_C}{Power}$$

Therefore:

$$T_{.I} = (R_{0.IC} \times P_{I.OSS}) + T_{C}$$

METHOD 2 EXAMPLE

The operating conditions are the same as the previous Efficiency Calculation:

$$\begin{split} V_{IN} &= 12V & V_{OUT} = 3.3V & I_{OUT} = 2A \\ f_{SW} &= 2 \text{ MHz} & V_{D1} = 0.5V & R_{DCR} = 20 \text{ } m\Omega \end{split}$$

Internal Power Losses are:

The junction temperature can now be estimated as:

 $P_{INTERNAL} = P_{COND} + P_{SW} + P_{Q} + P_{BOOST}$

$$T_J = (R_{\theta JC} \times P_{INTERNAL}) + T_C$$

= 733 mW

A National Semiconductor eMSOP evaluation board was used to determine the $\rm T_J$ of the LM27341/LM27342. The four layer PCB is constructed using FR4 with 2oz copper traces. There is a ground plane on the internal layer directly beneath the device, and a ground plane on the bottom layer. The ground plane is accessed by fourteen 10 mil vias. The board measures 2in x 2in (50.8mm x 50.8mm). It was placed in a container with no airflow. The case temperature measured on this LM27342MY Demo Board was 48.7°C . Therefore,

$$T_J = (9.5 \text{ °C/W x 733 mW}) + 48.7 \text{ °C}$$

 $T_J = 55.66 \text{ °C}$

To keep the Junction temperature below 125 °C for this layout, the ambient temperature must stay below 94.33 °C.

$$T_{A_MAX} = T_{J_MAX} - T_{J} + T_{A}$$
 $T_{A_MAX} = 125 \text{ °C} - 55.66 \text{ °C} + 25 \text{ °C}$
 $T_{A_MAX} = 94.33 \text{ °C}$

Method 3:

The third method can also give a very accurate estimate of silicon junction temperature. The first step is to determine

R_{e,IA} of the application. The LM27341/LM27342 has overtemperature protection circuitry. When the silicon temperature reaches 165 °C, the device stops switching. The protection circuitry has a hysteresis of 15 °C. Once the silicon temperature has decreased to approximately 150 °C, the device will start to switch again. Knowing this, the $R_{\theta,JA}$ for any PCB can be characterized during the early stages of the design by raising the ambient temperature in the given application until the circuit enters thermal shutdown. If the SW-pin is monitored, it will be obvious when the internal NFET stops switching indicating a junction temperature of 165 °C. We can calculate the internal power dissipation from the above methods. All that is needed for calculation is the estimate of R_{DSON} at 165 °C. This can be extracted from the graph of R_{DSON} vs. Temperature. The value is approximately 0.267 ohms. With this, the junction temperature, and the ambient temperature R_{0,JA} can be determined.

$$R_{\theta JA} = \frac{165^{\circ}C - T_{A}}{P_{INTERNAL}}$$

Once this is determined, the maximum ambient temperature allowed for a desired junction temperature can be found.

METHOD 3 EXAMPLE

The operating conditions are the same as the previous Efficiency Calculation:

$$V_{IN} = 12V$$
 $V_{OUT} = 3.3V$ $I_{OUT} = 2A$ $f_{SW} = 2 \text{ MHz}$ $V_{D1} = 0.5V$ $R_{DCR} = 20 \text{ m}\Omega$

Internal Power Losses are:

$$\begin{array}{lll} P_{COND} &= I_{OUT}^2 \ x \ R_{DSON} \ x \ D \\ &= 2^2 \ x \ 0.267 \Omega \ x \ .314 &= 335 \ mW \\ \\ P_{SW} &= (V_{IN} \ x \ I_{OUT} \ x \ f_{SW} \ x \ t_{FALL}) \\ &= (12V \ x \ 2A \ x \ 2 \ MHz \ x \ 10nS) &= 480 \ mW \\ \\ P_{Q} &= I_{Q} \ x \ V_{IN} \\ &= 1.5 \ mA \ x \ 12V &= 29 \ mW \\ \\ P_{BOOST} &= I_{BOOST} \ x \ V_{BOOST} \\ &= 7 \ mA \ x \ 4.5V &= 37 \ mW \\ \\ \hline P_{INTERNAL} &= P_{COND} + P_{SW} + P_{Q} + P_{BOOST} &= 881 \ mW \end{array}$$

Using a National Semiconductor eMSOP evaluation board to determine the $R_{\rm BJA}$ of the board. The four layer PCB is con-

structed using FR4 with 2oz copper traces. There is a ground plane on the internal layer directly beneath the device, and a ground plane on the bottom layer. The ground plane is accessed by fourteen 10 mil vias. The board measures 2in x 2in (50.8mm x 50.8mm). It was placed in an oven with no forced airflow

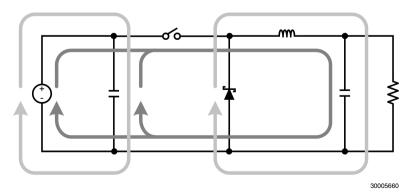
The ambient temperature was raised to 132 $^{\circ}\text{C}$, and at that temperature, the device went into thermal shutdown. $R_{\text{θJA}}$ can now be calculated.

$$R_{\theta JA} = \frac{165^{\circ}C - 132^{\circ}C}{0.881 \text{ W}} = 37.46 \,^{\circ}C/W$$

To keep the Junction temperature below 125 °C for this layout, the ambient temperature must stay below 92 °C.

$$T_{A_MAX} = T_{J_MAX} - (R_{\theta JA} \times P_{INTERNAL})$$

 $T_{A_MAX} = 125 \text{ °C} - (37.46 \text{ °C/W} \times 0.881 \text{ W})$
 $T_{A_MAX} = 92 \text{ °C}$


This calculation of the maximum ambient temperature is only 2.3 °C different from the calculation using method 2. The methods described above to find the junction temperature in the eMSOP package can also be used to calculate the junction temperature in the LLP package. The 10 pin LLP package has a $R_{\rm BJC}=9.1\,^{\circ}\text{C/W},$ while $R_{\rm BJA}$ can vary depending on the layout. $R_{\rm BJA}$ can be calculated in the same manner as described in method 3.

PCB Layout Considerations

COMPACT LAYOUT

The performance of any switching converter depends as much upon the layout of the PCB as the component selection. The following guidelines will help the user design a circuit with maximum rejection of outside EMI and minimum generation of unwanted EMI.

Parasitic inductance can be reduced by keeping the power path components close together and keeping the area of the loops small, on which high currents travel. Short, thick traces or copper pours (shapes) are best. In particular, the switch node (where L1, D1, and the SW pin connect) should be just large enough to connect all three components without excessive heating from the current it carries. The LM27341/LM27342 operates in two distinct cycles (see *Figure 2*) whose high current paths are shown below in *Figure 9*:

FIGURE 9. Buck Converter Current Loops

The dark grey, inner loop represents the high current path during the MOSFET on-time. The light grey, outer loop represents the high current path during the off-time.

GROUND PLANE AND SHAPE ROUTING

The diagram of Figure 9 is also useful for analyzing the flow of continuous current vs. the flow of pulsating currents. The circuit paths with current flow during both the on-time and offtime are considered to be continuous current, while those that carry current during the on-time or off-time only are pulsating currents. Preference in routing should be given to the pulsating current paths, as these are the portions of the circuit most likely to emit EMI. The ground plane of a PCB is a conductor and return path, and it is susceptible to noise injection just like any other circuit path. The path between the input source and the input capacitor and the path between the catch diode and the load are examples of continuous current paths. In contrast, the path between the catch diode and the input capacitor carries a large pulsating current. This path should be routed with a short, thick shape, preferably on the component side of the PCB. Multiple vias in parallel should be used right at the pad of the input capacitor to connect the component side shapes to the ground plane. A second pulsating current loop that is often ignored is the gate drive loop formed by the SW and BOOST pins and boost capacitor CBOOST. To minimize this loop and the EMI it generates, keep C_{BOOST} close to the SW and BOOST pins.

FB LOOP

The FB pin is a high-impedance input, and the loop created by R2, the FB pin and ground should be made as small as possible to maximize noise rejection. R2 should therefore be placed as close as possible to the FB and GND pins of the IC.

PCB SUMMARY

 Minimize the parasitic inductance by keeping the power path components close together and keeping the area of the high-current loops small.

- The most important consideration when completing the layout is the close coupling of the GND connections of the C_{IN} capacitor and the catch diode D1. These ground connections should be immediately adjacent, with multiple vias in parallel at the pad of the input capacitor connected to GND. Place C_{IN} and D1 as close to the IC as possible.
- Next in importance is the location of the GND connection of the C_{OUT} capacitor, which should be near the GND connections of C_{IN} and D1.
- There should be a continuous ground plane on the copper layer directly beneath the converter. This will reduce parasitic inductance and EMI.
- 5. The FB pin is a high impedance node and care should be taken to make the FB trace short to avoid noise pickup and inaccurate regulation. The feedback resistors should be placed as close as possible to the IC, with the GND of R2 placed as close as possible to the GND of the IC. The V_{OUT} trace to R1 should be routed away from the inductor and any other traces that are switching.
- High AC currents flow through the V_{IN}, SW and V_{OUT} traces, so they should be as short and wide as possible.
 However, making the traces wide increases radiated noise, so the layout designer must make this trade-off.
 Radiated noise can be decreased by choosing a shielded inductor.

The remaining components should also be placed as close as possible to the IC. Please see Application Note AN-1229 for further considerations and the LM27342 demo board as an example of a four-layer layout.

LM27341/LM27342 Circuit Examples

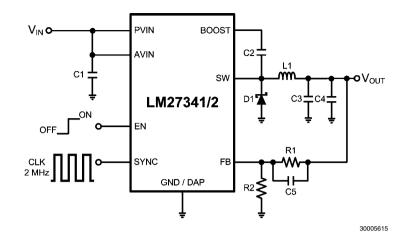
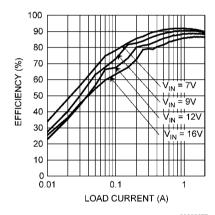
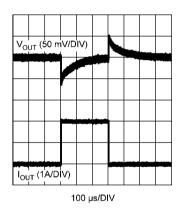




FIGURE 10. $V_{IN} = 7 - 16V$, $V_{OUT} = 5V$, $f_{SW} = 2$ MHz, $I_{OUT} = Full Load$

LM27342 Efficiency vs. Load Current

Transient Response
I_{OUT} = 100 mA - 2A @ slewrate = 2A / μs

Bill of Materials for Figure 10

Part Name	Part ID	Part Value	Part Number	Manufacturer
Buck Regulator	U1	1.5 or 2A Buck Regulator	LM27341 / LM27342	National Semiconductor
C _{PVIN}	C1	10 μF	GRM32DR71E106KA12L	Murata
C _{BOOST}	C2	0.1 μF	GRM188R71C104KA01D	Murata
C _{OUT}	СЗ	22 μF	C3225X7R1C226K	TDK
C _{OUT}	C4	22 μF	C3225X7R1C226K	TDK
C _{FF}	C5	0.18 μF	0603ZC184KAT2A	AVX
Catch Diode	D1	Schottky Diode Vf = 0.32V	CMS06	Toshiba
Inductor	L1	2.2 µH	CDRHD5D28RHPNP	Sumida
Feedback Resistor	R1	560Ω	CRCW0603560RFKEA	Vishay
Feedback Resistor	R2	140Ω	CRCW0603140RFKEA	Vishay

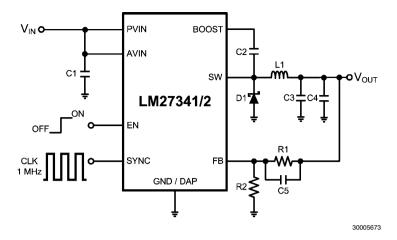
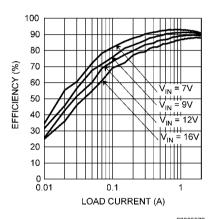
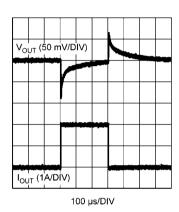




FIGURE 11. $V_{IN} = 7 - 16V$, $V_{OUT} = 5V$, $f_{SW} = 1$ MHz, $I_{OUT} = Full Load$

LM27342 Efficiency vs. Load Current

Transient Response I_{OUT} = 100 mA - 2A @ slewrate = 2A / μs

Part Name	Part ID	Part Value	Part Number	Manufacturer
Buck Regulator	U1	1.5 or 2A Buck Regulator	LM27341 / LM27342	National Semiconductor
C _{PVIN}	C1	10 μF	GRM32DR71E106KA12L	Murata
C _{BOOST}	C2	0.1 μF	GRM188R71C104KA01D	Murata
C _{OUT}	СЗ	47 μF	GRM32ER61A476KE20L	Murata
C _{OUT}	C4	22 μF	C3225X7R1C226K	TDK
C _{FF}	C5	0. 27 μF	C0603C274K4RACTU	Kemet
Catch Diode	D1	Schottky Diode Vf = 0.32V	CMS06	Toshiba
Inductor	L1	3.3 µH	CDRH6D26HPNP	Sumida
Feedback Resistor	R1	560Ω	CRCW0603560RFKEA	Vishay
Feedback Resistor	R2	140Ω	CRCW0603140RFKEA	Vishay

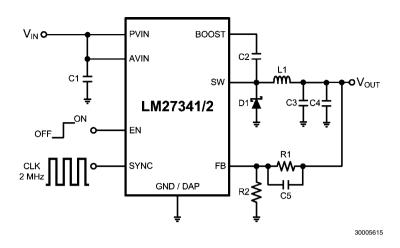
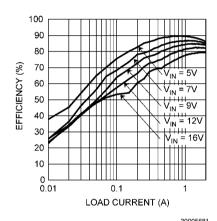
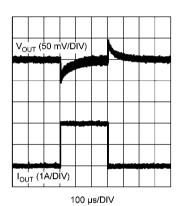




FIGURE 12. V_{IN} = 5 - 16V, V_{OUT} = 3.3V, f_{SW} = 2 MHz, I_{OUT} = Full Load

LM27342 Efficiency vs. Load Current

Transient Response I_{OUT} = 100 mA - 2A @ slewrate = 2A / μs

Part Name	Part ID	Part Value	Part Number	Manufacturer
Buck Regulator	U1	1.5 or 2A Buck Regulator	LM27341 / LM27342	National Semiconductor
C _{PVIN}	C1	10 μF	GRM32DR71E106KA12L	Murata
C _{BOOST}	C2	0.1 μF	GRM188R71C104KA01D	Murata
C _{OUT}	СЗ	22 μF	C3225X7R1C226K	TDK
C _{OUT}	C4	22 μF	C3225X7R1C226K	TDK
C _{FF}	C5	0.18 μF	0603ZC184KAT2A	AVX
Catch Diode	D1	Schottky Diode Vf = 0.32V	CMS06	Toshiba
Inductor	L1	1.5 µH	CDRH5D18BHPNP	Sumida
Feedback Resistor	R1	430 Ω	CRCW0603430RFKEA	Vishay
Feedback Resistor	R2	187 Ω	CRCW0603187RFKEA	Vishay

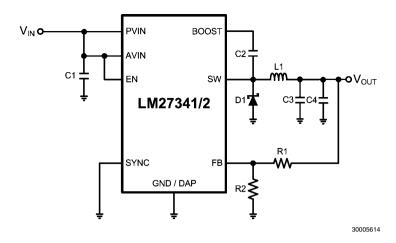
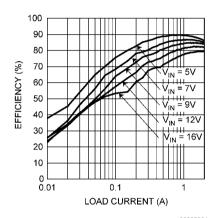



FIGURE 13. V_{IN} = 5 - 16V, V_{OUT} = 3.3V, f_{SW} = 2 MHz, I_{OUT} = Full Load

LM27342 Efficiency vs. Load Current

Transient Response I_{OUT} = 100 mA - 2A @ slewrate = 2A / μs

Part Name	Part ID	Part Value	Part Number	Manufacturer
Buck Regulator	U1	1.5 or 2A Buck Regulator	LM27341 / LM27342	National Semiconductor
C _{PVIN}	C1	10 μF	GRM32DR71E106KA12L	Murata
C _{BOOST}	C2	0.1 μF	GRM188R71C104KA01D	Murata
C _{OUT}	СЗ	22 μF	C3225X7R1C226K	TDK
C _{OUT}	C4	22 μF	C3225X7R1C226K	TDK
Catch Diode	D1	Schottky Diode Vf = 0.32V	CMS06	Toshiba
Inductor	L1	1.5 μH	CDRH5D18BHPNP	Sumida
Feedback Resistor	R1	430 Ω	CRCW0603430RFKEA	Vishay
Feedback Resistor	R2	187 Ω	CRCW0603187RFKEA	Vishay

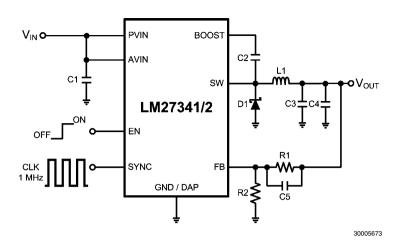
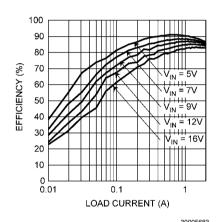
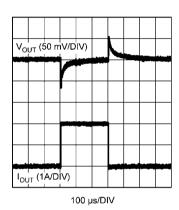




FIGURE 14. V_{IN} = 5 - 16V, V_{OUT} = 3.3V, f_{SW} = 1 MHz, I_{OUT} = Full Load

LM27342 Efficiency vs. Load Current

Transient Response
I_{OUT} = 100 mA - 2A @ slewrate = 2A / μs

Part Name	Part ID	Part Value	Part Number	Manufacturer
Buck Regulator	U1	1.5 or 2A Buck Regulator	LM27341 / LM27342	National Semiconductor
C _{PVIN}	C1	10 μF	GRM32DR71E106KA12L	Murata
C _{BOOST}	C2	0.1 μF	GRM188R71C104KA01D	Murata
C _{OUT}	СЗ	47 μF	GRM32ER61A476KE20L	Murata
C _{OUT}	C4	22 μF	C3225X7R1C226K	TDK
C _{FF}	C5	0.27 μF	C0603C274K4RACTU	Kemet
Catch Diode	D1	Schottky Diode Vf = 0.32V	CMS06	Toshiba
Inductor	L1	2.7 μH	CDRH5D18BHPNP	Sumida
Feedback Resistor	R1	430 Ω	CRCW0603430RFKEA	Vishay
Feedback Resistor	R2	187 Ω	CRCW0603187RFKEA	Vishay

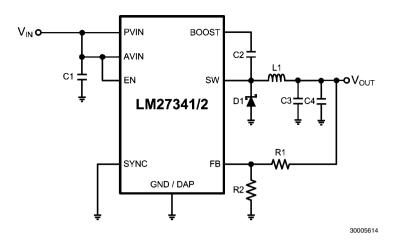
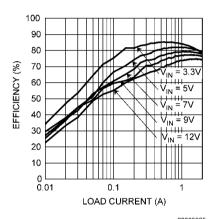
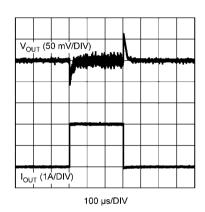




FIGURE 15. V_{IN} = 3.3 - 16V, V_{OUT} = 1.8V, f_{SW} = 2 MHz, I_{OUT} = Full Load

LM27342 Efficiency vs. Load Current

Transient Response I_{OUT} = 100 mA - 2A @ slewrate = 2A / μ s

Part Name	Part ID	Part Value	Part Number	Manufacturer
Buck Regulator	U1	1.5 or 2A Buck Regulator	LM27341 / LM27342	National Semiconductor
C _{PVIN}	C1	10 μF	GRM32DR71E106KA12L	Murata
C _{BOOST}	C2	0.1 μF	GRM188R71C104KA01D	Murata
C _{OUT}	C3	22 μF	C3225X7R1C226K	TDK
C _{OUT}	C4	22 μF	C3225X7R1C226K	TDK
Catch Diode	D1	Schottky Diode Vf = 0.32V	CMS06	Toshiba
Inductor	L1	1.0 μH	CDRH5D18BHPNP	Sumida
Feedback Resistor	R1	12 kΩ	CRCW060312K0FKEA	Vishay
Feedback Resistor	R2	15 kΩ	CRCW060315K0FKEA	Vishay

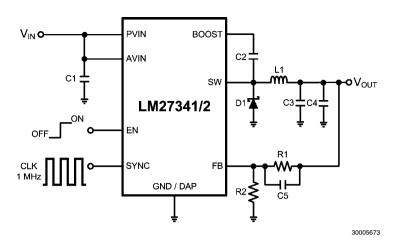
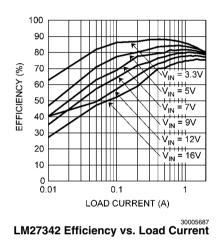
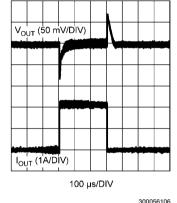




FIGURE 16. V_{IN} = 3.3 - 16V, V_{OUT} = 1.8V, f_{SW} = 1 MHz, I_{OUT} = Full Load

Transient Response
I_{OUT} = 100 mA - 2A @ slewrate = 2A / μs

Part Name	Part ID	Part Value	Part Number	Manufacturer
Buck Regulator	U1	1.5 or 2A Buck Regulator	LM27341 / LM27342	National Semiconductor
C _{PVIN}	C1	10 μF	GRM32DR71E106KA12L	Murata
C _{BOOST}	C2	0.1 μF	GRM188R71C104KA01D	Murata
C _{OUT}	СЗ	22 uF	C3225X7R1C226K	TDK
C _{OUT}	C4	22 uF	C3225X7R1C226K	TDK
C _{FF}	C5	3.9 nF	GRM188R71H392KA01D	Murata
Catch Diode	D1	Schottky Diode Vf = 0.32V	CMS06	Toshiba
Inductor	L1	1.8 µH	CDRH5D18BHPNP	Sumida
Feedback Resistor	R1	12 kΩ	CRCW060312K0FKEA	Vishay
Feedback Resistor	R2	15 kΩ	CRCW060315K0FKEA	Vishay

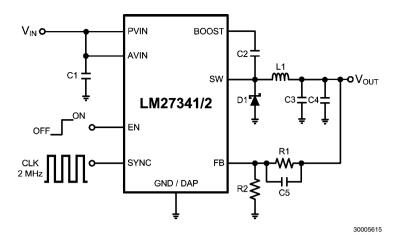
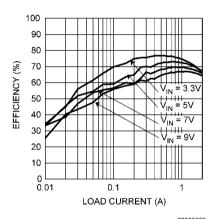
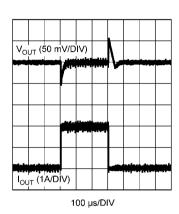




FIGURE 17. V_{IN} = 3.3 - 9V, V_{OUT} = 1.2V, f_{SW} = 2 MHz, I_{OUT} = Full Load

LM27342 Efficiency vs. Load Current

Transient Response I_{OUT} = 100 mA - 2A @ slewrate = 2A / μs

Part Name	Part ID	Part Value	Part Number	Manufacturer
Buck Regulator	U1	1.5 or 2A Buck Regulator	LM27341 / LM27342	National Semiconductor
C _{PVIN}	C1	10 μF	GRM32DR71E106KA12L	Murata
C _{BOOST}	C2	0.1 μF	GRM188R71C104KA01D	Murata
C _{OUT}	СЗ	47 μF	GRM32ER61A476KE20L	Murata
C _{OUT}	C4	22 μF	C3225X7R1C226K	TDK
C _{FF}	C5	NOT MOUNTED		
Catch Diode	D1	Schottky Diode Vf = 0.32V	CMS06	Toshiba
Inductor	L1	0.56 μΗ	CDRH2D18/HPNP	Sumida
Feedback Resistor	R1	1.02 kΩ	CRCW06031K02FKEA	Vishay
Feedback Resistor	R2	5.10 kΩ	CRCW06035K10FKEA	Vishay

Physical Dimensions inches (millimeters) unless otherwise noted DIMENSIONS ARE IN MILLIMETERS DIMENSIONS IN () FOR REFERENCE ONLY (10X 0.6) -(8X 0.5) RECOMMENDED LAND PATTERN C PIN 1 INDEX AREA-3 ± 0 . 1 10X 0.4±0.1 ____A В 3 ± 0 . 1 8X 0.5 SDA10A (Rev A) 10-Lead LLP Package NS Package Number SDA10A .118±.004 [3±0.1] NOT INCLUDING MOLD FLASH .006[0.15] MAX PER END .193±.006 [4.9±0.15] RECOMMENDED LAND PATTERN -8X [.0197 -GAGE PLANE 043 MAX [1.09] □ .004 [0.1]A 10x .009^{±.004} [0.23^{±0}.105] (0.23^{±0}.105] (0.002 (0.05)) (0.05) .002-.006 [0.06-0.15] TYP -SEATING PLANE

CONTROLLING DIMENSION IS INCH VALUES IN [] ARE MILLIMETERS

10-Lead eMSOP Package NS Package Number MUC10A

MUC10A (Rev A)

www.national.com 28

.075±.006 [1.9±0.15]

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

Products		Design Support	
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench
Audio	www.national.com/audio	App Notes	www.national.com/appnotes
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns
Data Converters	www.national.com/adc	Samples	www.national.com/samples
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback
Voltage Reference	www.national.com/vref	Design Made Easy	www.national.com/easy
PowerWise® Solutions	www.national.com/powerwise	Solutions	www.national.com/solutions
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero
Temperature Sensors	www.national.com/tempsensors	Solar Magic®	www.national.com/solarmagic
Wireless (PLL/VCO)	www.national.com/wireless	Analog University®	www.national.com/AU

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2008 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com German Tel: +49 (0) 180 5010 771 English Tel: +44 (0) 870 850 4288 National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: ion.feedback@nsc.com