
Data Sheet – JN5121 
IEEE802.15.4 Wireless Microcontroller 

i JN-DS-JN5121 v1.2 © Jennic 2005 

Features: Transceiver 
• 2.4GHz IEEE802.15.4 

compliant 
• Security processor (128-bit 

AES) 
• MAC accelerator with packet 

formatting, CRCs, address 
check, auto-acks, timers 

• Integrated power management 
and sleep oscillator for low 
power 

• On-chip power regulation for 
2.2V to 3.6V battery operation 

• Sleep current  (with active 
beacon timer) < 5µA 

• Minimum of external 
components at < US$1 cost 

• Rx current < 50mA 
• Tx current < 40mA 
• Receiver sensitivity  -93dBm 
• Transmit power +1dBm 

Features: Microcontroller 
• 16MHz 32-bit RISC optimised 

for low power (3MIPS/mA) and 
efficient code density 

• 96k RAM for shared program, 
data and routing tables 

• 64k ROM for program code 
• 4-input 12-bit ADC, 2 11-bit 

DACs, 2 comparators, 
temperature sensor 

• 2 Application timer/counters,  
3 system timers 

• 2 UARTs (one for in-system 
debug) 

• SPI port with 5 selects 
• 2 wire serial interface 
• 21 GPIO 

 

Industrial temperature range 
(-40°C to +85°C) 
 

8x8mm 56 lead QFN package 
 

Lead-free and RoHS compliant 

 

Overview 
The JN5121 is the first in a series of low power, low cost IEEE802.15.4 compliant 
wireless microcontrollers. Combining an on chip 32-bit RISC core, a fully compliant 
2.4GHz IEEE802.15.4 transceiver, 64Kb of ROM and 96Kb of RAM, provides a 
versatile low cost solution for wireless sensor networking applications.  The high level 
of integration helps to reduce the overall system cost.  In particular, the ROM enables 
integration of point-to-point and mesh network stack protocols, and the RAM allows 
support of router and controller functions without the need for additional external 
memory.  The JN5121 uses hardware MAC and highly secure AES encryption 
accelerators for low power and minimum processor overhead. Integrated sleep 
oscillator and power saving facilities are provided, giving low system power 
consumption.  The device also incorporates a wide range of digital and analogue 
peripherals for the user to connect to their application. 

Block Diagram 

Timers

UARTs

12-bit ADC,
comparators

11-bit DACs,
temp sensor

2-wire serial

SPI
RAM
96kb

128-bit AES
Encryption
Accelerator

2.4GHz
 Radio

ROM
64kb

RISC CPU

Power
Management

XTAL

O-QPSK
Modem

IEEE802.15.4
MAC

Accelerator

Benefits 
• Single chip solution with integrated 

transceiver and microcontroller for 
wireless sensor networks 

• Capacity and power efficient 
microcontroller for both controllers 
and sensor units 

• Low application BOM cost and 
size 

• Hardware MAC ensures low power 
consumption and low processor 
overhead 

• Extensive user peripherals 

 

Applications 
• Robust and secure low power 

wireless applications 
• Wireless sensor networks, 

particularly IEEE802.15.4 / 
ZigBee systems 

• Home and commercial building 
automation 

• Home networks 
• Toys and gaming peripherals 
• Industrial systems 
• Telemetry and utilities 

(e.g. AMR) 

 





����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 i 

Contents 
1 Introduction 1 
1.1 Wireless Microcontroller 1 
1.2 Wireless Transceiver 1 
1.3 RISC CPU and Memory 1 
1.4 Peripherals 2 
1.5 Block Diagram 3 

2 Pin Configurations 4 
2.1 Pin Assignment 5 
2.2 Pin Descriptions 6 
2.2.1 Power Supplies 6 
2.2.2 Reset 6 
2.2.3 16MHz System Clock 6 
2.2.4 Radio 6 
2.2.5 Analogue Peripherals 6 
2.2.6 Digital Input/Output 7 

3 CPU 8 

4 Memory Organisation 9 
4.1 ROM 10 
4.2 RAM 10 
4.3 Low-Power RAM 10 
4.4 External Memory 10 
4.5 Peripherals 11 
4.6 Unused Memory Addresses 11 

5 System Clocks 12 
5.1 16MHz Oscillator 12 
5.2 32kHz Oscillator 12 

6 Reset 13 
6.1 Power-on Reset 13 
6.2 External Reset 13 
6.3 Software Reset 14 
6.4 RESETN Pin 14 

7 Interrupt System 15 
7.1 System Calls 15 
7.2 Processor Exceptions 15 
7.2.1 Bus Error 15 
7.2.2 Alignment 15 
7.2.3 Illegal Instruction 15 
7.3 Hardware Interrupts 16 

8 Wireless Transceiver 17 
8.1 Radio 17 
8.1.1 Radio External components 18 
8.2 Modem 18 
8.3 Baseband Processor 19 
8.3.1 Transmit 19 



������������������������ 

ii JN-DS-JN5121 v1.2 © Jennic 2005 

8.3.2 Reception 20 
8.3.3 Auto Acknowledge 20 
8.3.4 Beacon Generation 20 
8.3.5 Security 20 
8.4 Security Coprocessor 20 

9 Digital Input/Output 22 

10 Serial Peripheral Interface 23 
10.1 Programming Example 24 

11 Intelligent Peripheral Interface 26 
11.1 Data Transfer Format 26 
11.2 JN5121 Initiated Data Transfer 27 
11.3 Remote Processor Initiated Data Transfer 27 

12 Timers 29 
12.1 Peripheral Timer / Counters 29 
12.1.1 Pulse Width Modulation Mode 30 
12.1.2 Capture Mode 30 
12.1.3 Counter / Timer Mode 31 
12.1.4 Delta-Sigma Mode 31 
12.1.5 Timer / Counter Application 32 
12.2 Tick Timer 33 
12.3 Wakeup Timers 34 
12.3.1 RC Oscillator Calibration 34 

13 Serial Communications 35 
13.1 Interrupts 36 
13.2 UART Application 36 
13.3 Programming Example 37 

14 Two-Wire Serial interface 38 
14.1 Connecting Devices 39 
14.2 Multi-Master Operation 39 
14.3 Clock Stretching 40 
14.4 Programming Example 40 

15 Analogue Peripherals 43 
15.1 Analogue to Digital Converter 44 
15.1.1 Operation 44 
15.1.2 Supply Monitor 44 
15.1.3 Temperature Sensor 44 
15.1.4 Programming Example 45 
15.2 Digital to Analogue Converter 45 
15.2.1 Operation 45 
15.2.2 Programming Example 46 
15.3 Comparators 46 

16 Power Management and Sleep Modes 47 
16.1 Power Domains 47 
16.2 Sleep Modes 47 
16.2.1 CPU Doze 47 



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 iii 

16.2.2 Sleep 47 
16.2.3 Deep Sleep 47 
16.3 Wakeup Events 48 
16.3.1 Wakeup Timer Event 48 
16.3.2 DIO Event 48 
16.3.3 Comparator Event 48 

17 Electrical Characteristics 49 
17.1 Maximum ratings 49 
17.2 DC Electrical Characteristics 49 
17.2.1 Operating Conditions 49 
17.2.2 DC Current Consumption 50 
17.2.3 I/O Characteristics 51 
17.3 AC Characteristics 51 
17.3.1 Reset 51 
17.3.2 SPI Timing 52 
17.3.3 Two-wire serial interface 53 
17.3.4 Power Down and Wake-Up timings 53 
17.3.5 32kHz Oscillator 54 
17.3.6 16MHz Crystal Oscillator 54 
17.3.7 Analogue to Digital Converters 54 
17.3.8 Digital to Analogue Converters 55 
17.3.9 Comparators 56 
17.3.10 Temperature Sensor 57 
17.3.11 Radio Transceiver 57 

Appendix A Mechanical and Ordering information 59 
A.1 Package Drawing 59 
A.2 Ordering Information: 60 

Appendix B Development Support 61 
B.1 Crystal Requirements 61 
B.2 Applications Schematic 62 

Appendix C 63 
Related Documents 63 
Version Control 63 
Disclaimers 63 
 

 





����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 1 

1 Introduction 
The JN5121 IEEE802.15.4 wireless microcontroller provides a fully integrated solution for applications using the 
IEEE802.15.4 standard in the 2.4 - 2.5GHz ISM frequency band, including ZigBeeTM.  It includes all the functionality 
required to meet the IEEE802.15.4 specification and has additional processor capability to run a wide range of 
applications including but not limited to Remote Control, Home and Building Automation, Toys and Gaming.  

The device includes a Wireless Transceiver, RISC CPU, on-chip memory and an extensive range of peripherals. 

1.1  Wireless Microcontroller 
Applications that transfer data wirelessly tend to be more complex than wired ones.  Wireless protocols make 
stringent demands on frequencies, data formats, timing of data transfers, security and other issues.  Application 
development must consider the requirements of the wireless network in addition to the product functionality and user 
interfaces.  To minimise this complexity, Jennic provides a series of software libraries that control the transceiver and 
peripherals of the JN5121.  These libraries, with functions called by an Application Programming Interface (API) 
remove the need for the developer to understand wireless protocols and greatly simplify the programming 
complexities of power modes, interrupts and hardware functionality.  In addition the JN5121 is expected to be 
programmed in the C high level language and debugged using the JN5 series software developer kit. 

In view of the above the register details of the JN5121 are not provided in the datasheet and access to all peripherals 
is gained using API calls to the peripheral library.  Extensive reference to such calls is made throughout the datasheet 
and the convention used is to format the function call in the courier font e.g. vAHI_Init().  Full details of these 
function calls can be found in the JN-RM-2001 Hardware Peripheral Library Reference Manual [2]. 

An IEEE802.15.4 compliant wireless network can be developed using the IEEE802.15.4 MAC library described in JN-
RM-2002 Stack Software Reference Manual [3].  Applications over simple (point-point, star or tree) wireless networks 
can use this library directly or more complex wireless mesh networks such as ZigBeeTM or IPv6 can be built on top of 
the IEEE802.15.4 library. 

1.2  Wireless Transceiver  
The Wireless Transceiver is highly integrated and, together with the IEEE802.15.4 MAC library requires little 
knowledge of RF or wireless design. 

The Wireless Transceiver comprises a low-IF 2.45GHz radio, an O-QPSK modem, a baseband controller and a 
security coprocessor.  The radio has a 200� resistive differential antenna port which includes all the required 
matching components on-chip, allowing a differential antenna to be connected directly to the port, minimising the 
system BOM costs.  Connection to a single ported antenna can be achieved using a 200/50� 2.45GHz balun.  In 
addition, the radio also provides an output to control transmit-receive switching of external devices such as power 
amplifiers allowing applications which require increased transmit power to be realised very easily. 

The Security coprocessor provides hardware-based 128-bit AES-CCM, CBC, CTR and CCM* processing as specified 
by the 802.15.4 standard.  It does this in-band on packets during transmission and reception, requiring minimal 
intervention from the CPU.  It is also available for off-line use under software control for encrypting and decrypting 
packets generated by software layers such as ZigbeeTM and user applications.  This means that these algorithms can 
be off-loaded by the CPU, increasing the processor bandwidth available for user applications. 

The transceiver elements (radio, modem and baseband) work together to provide 802.15.4 Medium Access Control 
under the control of a protocol stack supplied with the device as a software library. Applications incorporating 
IEEE802.15.4 functionality can be rapidly developed by combining user-developed application software with this 
library.  The facilities provided by this library to applications together with examples of their use are described in more 
detail in [3]. 

1.3  RISC CPU and Memory 
A 32-bit RISC CPU allows software to be run on-chip, its processing power being shared between the IEEE802.15.4 
MAC protocol, other higher layer protocols and the user application.  The memory space of the JN5121 is configured 
as a unified memory architecture.  Code memory, data memory, peripheral devices and I/O ports are organized within 
the same linear address space.  The device contains 64K bytes of ROM, 96K bytes of RAM and 128 bytes of Low 
Power RAM (LPRAM). 

 



������������������������ 

2 JN-DS-JN5121 v1.2 © Jennic 2005 

1.4  Peripherals 
The following peripherals are available on-chip: 

• Master SPI port with five select outputs 

• Two UARTs 

• Two programmable Timer/Counters with capture/compare facility 

• Two programmable Sleep Timers and a Tick Timer 

• Two-wire serial interface (compatible with SMbus and I2C)  

• Slave SPI port 

• Twenty-one digital IO lines (multiplexed with UARTs, timers and SPI selects)  

• Four-channel, 12-bit, 100ksps Analogue-to-Digital converter 

• Two 11-bit Digital-to-Analogue converters 

• Two programmable analogue comparators 

• Internal temperature sensor and battery monitor 

User applications access the peripherals using the Hardware Peripheral Library with a simple API.  This allows 
applications to use a tested and easily understood view of the peripherals allowing rapid system development.  The 
JN-RM-2001 Hardware Peripheral Library Reference Manual [2] describes this interface in more detail. 



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 3 

1.5  Block Diagram 

32-bit RISC CPU

RAM
64Kb

ROM
96Kb

LPRAM
128 bytes

Reset

SPI

M
U
X

UART0

UART1

32kHz
Osc

WT1

WT0

Wakeup

Security
Coprocessor

DIO6/TXD0
DIO7/RXD0

DIO4/CTS0
DIO5/RTS0

DIO19/TXD1
DIO20/RXD1

DIO17/CTS1/IP_SEL
DIO18/RTS1/IP_INT

Baseband
Controller

Modem

Radio

Programmable
Interrupt

Controller

Timer0

2-wire
interface

Timer1

DAC1

DAC2

ADC

Comp1

Comp2

SPICLK

DIO10/TIM0OUT

SPIMOSI
SPIMISO
SPISEL0

DIO0/SPISEL1

DIO3/SPISEL4/RFTX
DIO2/SPISEL3
DIO1/SPISEL2

DIO9/TIM0CAP
DIO8/TIM0CK_GT

DIO13/TIM1OUT

DIO11/TIM1CK_GT
DIO12/TIM1CAP

DIO14/SIF_CLK/IP_CLK
DIO15/SIF_D/IP_DI

DIO16/IP_DO

From Peripherals

M
U
X

RESETN

Wireless
Transceiver

ADC4

ADC1
ADC2
ADC3

DAC1

DAC2

COMP2P
COMP2M

COMP1M
COMP1P

Clock
Generator

XTALIN
XTALOUT

RFM
RFP

VCOTUNE

Tick Timer

Voltage
Regulators 1.8V

Temperature
Sensor

Supply
Monitor

VDD1

VDD2

Intelligent
Peripheral

IBAIS

VB_xx

 

Figure 1: JN5121 Block Diagram 



������������������������ 

4 JN-DS-JN5121 v1.2 © Jennic 2005 

2 Pin Configurations 

D
IO

6/
TX

D
0

D
IO

7/
R

X
D

0

D
IO

4/
C

TS
0

D
IO

5/
R

TS
0

DIO19/TXD1

DIO20/RXD1

DIO17/CTS1/IP_SEL

DIO18/RTS1/IP_INT

V
B

_V
C

O

D
IO

10
/T

IM
0O

U
T

SPIMISO

SPIMOSI

SPISEL0

DIO0/SPISEL1

D
IO

3/
S

P
IS

E
L4

/R
FT

X

DIO2/SPISEL3

DIO1/SPISEL2

D
IO

9/
TI

M
0C

A
P

D
IO

8/
TI

M
0C

K
_G

T

D
IO

13
/T

IM
1O

U
T

D
IO

11
/T

IM
1C

K
_G

T

D
IO

12
/T

IM
1C

A
P

D
IO

14
/S

IF
_C

LK
/IP

_C
LK

D
IO

15
/S

IF
_D

/IP
_D

O

DIO16/IP_DI 1

2

3

4

5

VSS2

RESETN

VSS3

VSSS

6

7

8

9

10

11

12

13

14

XTALOUT

XTALIN

VB_SYN

VCOTUNE

VB_PROT

56 55 54 53 52 51 50 49 48 47 46 45 44 43

29

30

31

32

33

34

35

36

37

38

39

40

41

42

15 16 17 18 19 20 21 22 23 24 25 26 27 28

JN5121

V
D

D
1

C
O

M
P

1M

C
O

M
P

1P

IB
IA

S

R
FP

V
B

_R
F

R
FM

V
R

E
F

A
D

C
1

A
D

C
2

A
D

C
3

A
D

C
4

V
B

_A

DAC1

DAC2

COMP2P

COMP2M

SPICLK

VB_APP

VSS1

VB_MEM

V
D

D
2

 

Figure 2: Pin Configuration (top view) 



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 5 

2.1  Pin Assignment 
Pin No Power supplies Description 

3, 13, 15, 21 28, 
35, 40  

VB_PROT, VB_SYN, VB_VCO, VB_RF, VB_A, 
VB_APP, VB_MEM  

Regulated supply voltage 

16, 49 VDD1, VDD2 Device supplies: VDD1 for analog, VDD2 for digital 

7, 9, 10, 39 
Paddle 

VSS2, VSS3, VSSS, VSS1 
VSSA 

Device grounds 
(see appendix A.1 for paddle details) 

 General  

8 RESETN Reset input 

11, 12 XTALOUT, XTALIN System crystal oscillator 

 Radio  

14 VCOTUNE VCO tuning RC network 

19 IBIAS Bias current control 

20, 22 RFP, RFM Differential antenna port 

 Analogue Peripheral I/O  

24, 25, 26, 27 ADC1, ADC2, ADC3, ADC4 ADC inputs 

23 VREF Analogue peripheral reference voltage 

29, 30 DAC1, DAC2 DAC outputs  

17, 18, 31, 32 COMP1M, COMP1P, COMP2P, COMP2M Comparator inputs 

 Digital I/O  

 Primary Function Alternate Function  

33 SPICLK  SPI Clock 

36 SPIMOSI  SPI Master Out Slave In 

34 SPIMISO  SPI Master In Slave Out 

37 SPISEL0  SPI Slave Select Input/Output 0  

38 DIO0 SPISEL1 DIO0 or SPI Slave Select Output 1 

41 DIO1 SPISEL2 DIO1 or SPI Slave Select Output 2 

42 DIO2 SPISEL3 DIO2 or SPI Slave Select Output 3 

43 DIO3 SPISEL4, RFTX DIO3 or SPI Slave Select Output 4 or 
Radio Transmit Control Output 

44 DIO4 CTS0 DIO4 or UART 0 Clear To Send Input 

45 DIO5 RTS0 DIO5 or UART 0 Request To Send Output 

46 DIO6 TXD0 DIO6 or UART 0 Transmit Data Output 

47 DIO7 RXD0 DIO7 or UART 0 Receive Data Input 

48 DIO8 TIM0CK_GT DIO8 or Timer0 Clock/Gate Input 

50 DIO9 TIM0CAP DIO9 or Timer0 Capture Input 

51 DIO10 TIM0OUT DIO10 or Timer0 PWM Output 

52 DIO11 TIM1CK_GT DIO11 or Timer1 Clock/Gate Input 

53 DIO12 TIM1CAP DIO12 or Timer1 Capture Input 

54 DIO13 TIM1OUT DIO13 or Timer1 PWM Output 

55 DIO14 SIF_CLK, IP_CLK DIO14 or Serial Interface Clock or Intelligent 
Peripheral Clock Input 

56 DIO15 SIF_D, IP_DO DIO15 or Serial Interface Data or Intelligent 
Peripheral Data Out 

1 DIO16 IP_DI DIO16 or Intelligent Peripheral Data In 

2 DIO17 CTS1, IP_SEL DIO17 or UART 1 Clear To Send Input or Intelligent 
Peripheral Device Select Input 

4 DIO18 RTS1, IP_INT DIO18 or UART 1 Request To Send Output or 
Intelligent Peripheral Interrupt Output 

5 DIO19 TXD1 DIO19 or UART 1 Transmit Data Output 

6 DIO20 RXD1 DIO20 or UART 1 Receive Data Input 



������������������������ 

6 JN-DS-JN5121 v1.2 © Jennic 2005 

2.2  Pin Descriptions 

2.2.1  Power Supplies 
The device is powered from the VDD1 and VDD2 pins, each being decoupled with a 100nF ceramic capacitor.  VDD1 
is the power supply to the analogue circuitry and should be decoupled to analogue ground. VDD2 is the power supply 
for the digital circuitry and should be decoupled to digital ground.  A 10uF tantalum capacitor is required at the 
common ground star point of analogue and digital supplies.  Decoupling pins for the internal 1.8V regulators are 
provided which require a 100nF capacitor located as close to the device as practical.  VB_VCO, VB_RF, VB_A and 
VB_SYN should be decoupled to analogue ground, while VB_MEM, VB_APP and VB_PROT should be decoupled to 
digital ground.  See also Appendix B for connection details. 

VSSA is the analogue ground, connected to the paddle of the device, while VSSS, VSS1, VSS2, VSS3 are digital 
ground pins.  

2.2.2  Reset 
RESETN is a bidirectional active low reset pin that is connected to a 45k� internal pull-up resistor.  It may be pulled 
low by an external circuit, or can be driven low by the JN5121 if an internal reset is generated.  Typically, it will be 
used to provide a system reset signal.  Refer to section 6.2, External Reset, for more details. 

2.2.3  16MHz System Clock 
The system clock is driven by a crystal connected between XTALIN and XTALOUT.  A capacitor to analogue ground 
is required on each of these pins.  Refer to section 5.1 16MHz Oscillator for more details. 

2.2.4  Radio 
A 200� balanced antenna (such as a printed circuit antenna) can be connected directly to the radio interface pins 
RFM and RFP.   

A single-ended 50� antenna such as a ceramic type or SMA connector for an external antenna requires the addition 
of a 200/50� 2.45GHz balun transformer connected to the antenna pins.  The balun differential port should be 
connected to the antenna port with 200� balanced controlled impedance track.  A 50� controlled impedance track 
should be used to connect the unbalanced port of the balun to the antenna to ensure good impedance matching and 
reduce losses and reflections. 

A simple external loop filter circuit consisting of two capacitors and a resistor is connected to VCOTUNE. Refer to 
section 8.1 Radio for more details. 

An external resistor (43k�) is required between IBIAS and analogue ground to set various bias currents and 
references within the radio. 

2.2.5  Analogue Peripherals 
Several of the analogue peripherals require a reference voltage to use as part of their operations.  They can use 
either an internal reference voltage or an external reference connected to VREF.  This voltage is referenced to 
analogue ground and the performance of the analogue peripherals is dependant on the quality of this reference. 

There are four ADC inputs, four comparator inputs and two DAC outputs. The analogue IO pins on the JN5121 can 
have signals applied up to 0.3v higher than VDD1.  A schematic view of the analogue IO cell is shown in Figure 3 
Analogue IO Cell. 

In reset and deep sleep the analogue peripherals are all off and the DAC outputs are in a high impedance state.  
During sleep the ADC and DAC’s are off, with the DAC outputs in a high impedance state and the comparators may 
optionally be used as a wakeup. 



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 7 

VDD1

Analogue
I/O Pin

VSSA

Analogue
Peripheral

 

Figure 3 Analogue IO Cell 

2.2.6  Digital Input/Output 
Digital IO pins on the JN5121 can have signals applied up to 2V higher than VDD2 and are therefore TTL-compatible 
with VDD2 > 3V.  For other DC properties of these pins see section 17.2.3 I/O Characteristics. 

When used in their primary function all Digital Input/Output pins are bi-directional and are connected to weak internal 
pull up resistors (45kΩ nominal) that can be disabled.  When used in their secondary function (selected when the 
appropriate peripheral block is enabled) their direction is fixed by the function. 

A schematic view of the digital IO cell is in Figure 4: DIO Pin Equivalent Schematic. 

I

O

IE

VDD2

VSS

Pu

RPU

RPROT

OE

DIO[x] Pin

 

Figure 4: DIO Pin Equivalent Schematic 

Each DIO pin configuration is programmed by functions in Hardware Peripheral Library.  The pin direction is set by 
calling the vAHI_DioSetDirection() function that enables OE and IE as required, or by enabling a peripheral 
which uses the cell as part of its IO.  The use of the pull-up resistor Rpu for each pin is controlled through the 
vAHI_DioPullupControl() routine in the peripheral library. 

In reset the digital peripherals are all off and the DIO pins are set as high-impedance inputs.  During sleep and deep 
sleep the DIO pins retain both their input/output state and output level that was set as sleep commences.  If the DIO 
pins were enabled as inputs and the interrupts were enabled these pins may be used to wake up the JN5121 from 
sleep. 

 



������������������������ 

8 JN-DS-JN5121 v1.2 © Jennic 2005 

3 CPU 
The CPU of the JN5121 is a 32-bit load and store RISC processor.  It has been architected for three key 
requirements: 

• Low power consumption for battery powered applications 

• High performance to implement a wireless protocol at the same time as complex applications 

• Efficient coding of high-level languages such as C/C++ provided with the Jennic Software Developers Kit  

It features a linear 32-bit logical address space with unified memory architecture, accessing both code and data in the 
same address space.  Registers for peripheral units, such as the timers, UARTs and the baseband processor are 
also mapped into this space.   

The CPU contains a block of 32 32-bit General-Purpose (GP) registers together with a small number of special 
purpose registers which are used to store processor state and control interrupt handling.  The contents of any GP 
register can be loaded from or stored to memory, while arithmetic and logical operations, shift and rotate operations, 
and signed and unsigned comparisons can be performed either between two registers and stored in a third, or 
between registers and a constant carried in the instruction.  Operations between general or special-purpose registers 
execute in one cycle (16MHz) while those that access memory require a further cycle to allow the memory to 
respond. 

The instruction set manipulates 8, 16 and 32-bit data; this means that programs can use objects of these sizes very 
efficiently.  Manipulation of 32-bit quantities is particularly useful for protocols and high-end applications allowing 
algorithms to be implemented in fewer instructions than on smaller word-size processors, and to execute in fewer 
clock cycles.  In addition the CPU supports a number of hardware Multiply/Accumulate instructions which can be 
used to efficiently implement algorithms needed by Digital Signal Processing applications. 

The instruction set is designed for the efficient implementation of high-level languages such as C.  Access to fields in 
complex data structures is very efficient due to the provision of several addressing modes, together with the ability to 
be able to use any of the GP registers to contain the address of objects.  Subroutine parameter passing is also made 
more efficient by using GP registers rather than pushing objects on the stack.  The recommended programming 
method for the JN5121 is by using C, which is supported by a software developer kit comprising a C compiler, linker 
and debugger.  For more detail on the CPU instruction set, refer to the JN-RM-2010 CPU Reference Manual [5]. 

The CPU architecture also contains features which make the processor suitable for embedded, real-time applications.  
In more complex applications, it may be necessary to use a real-time operating system to allow multiple tasks to run 
on the processor.  To provide protection for device-wide resources being altered by one task and affecting another, 
the processor can run in either supervisor or user mode, the former allowing access to all processor registers, while 
the latter only allows the GP registers to be manipulated.  Supervisor mode is entered on reset or interrupt; tasks 
starting up would normally run in user mode in a RTOS environment. 

Embedded applications require efficient handling of external hardware events.  Exception processing  (including reset 
and interrupt handling) is enhanced by the inclusion of a number of special-purpose registers into which the PC and 
status register contents are copied as part of the operation of the exception hardware.  This means that the essential 
registers for exception handling are stored in one cycle, rather than the slower method of pushing them onto the 
processor stack.  The PC is also loaded with the vector address for the exception which has occurred, allowing the 
handler to start executing in the next cycle. 

To improve power consumption a number of power-saving modes are implemented in the JN5121, and are described 
more fully in section 16, Power Management and Sleep Modes.  One of these modes is the doze mode which affects 
only the CPU, which shuts down the processor under software control when it is known to be idle and wakes up on 
interrupt.   

 



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 9 

4 Memory Organisation 
This section describes the different memories found within the JN5121.  The device contains ROM, RAM, the 
wireless transceiver and peripherals all within the same linear address space. 

0x00000000

0x00010000

RAM
(96K)

0xF0000000

LPRAM (128 Bytes)
0xF1000000

0xF0016800

System Controller

Baseband Controller

Security Coprocessor

PHY Controller

Analogue Peripherals

GPIO

UART0

UART1

Timer0

SPI

Intelligent Peripheral

0x100000FF

0x10000000

0x10000400

0x100009FF

0x10000C00

0x10000DFF
0x10000E00

0x10000E57

0x10000F00

0x10000F23

0x20000000

0x2000000B

0x30000000

0x3000007F

0x40000000

0x4000007F

0x50000000

0x5000001B

0x60000000

0x6000001B

0x70000000

0x70000013

0x80000000

Timer1

2-Wire Interface

0x80000017

0x90000000

0x90000013

0x98000000

Intelligent Peripheral
Memory Block

0x980001FF
0xEFFFFFFF0xFFFFFFFF

0xF100007F

PeripheralsUnpopulated

ROM
(64K)

0x10000000

 

Figure 5: JN5121 Memory Map 



������������������������ 

10 JN-DS-JN5121 v1.2 © Jennic 2005 

4.1  ROM 
The ROM is 64K bytes in size, organized as 16k x 32-bit words and can be accessed by the CPU in a single clock 
cycle.  The ROM contents change for different versions of the device which may contain different protocol stacks or 
applications, although all versions will carry a default interrupt vector table and interrupt manager.  Variants which can 
be used for application or protocol development will carry support for debugging and a boot loader, to allow the non-
ROMed code to be loaded from external Flash memory.  The operation of the boot loader is described in detail in 
Application Note JN-AN-1003 Boot Loader Operation [4].  Further information regarding the debug support can be 
found in the JN-UG-3001 SDK Installation User Guide [6].  For development variants the interrupt manager routes 
interrupt calls to the application’s soft interrupt vector table contained within RAM.  Section 7 contains further 
information regarding the handling of interrupts.  Typical ROM contents for a development variant containing a 
protocol stack is shown in Figure 6. 

Interrupt Vectors

Interrupt Manager

Debug Support

Boot Loader

IEEE802.15.4
Stack

0x00000000

0x00001F00

0x0000FFFF

Spare

 

Figure 6: Typical ROM contents 

4.2  RAM 
The JN5121 contains 96K bytes of high speed RAM organized as 24k x 32-bit words.  It can be used for both code 
and data storage and is accessed by the CPU in a single clock cycle.  At reset, segments of code and data of the 
software not in ROM may be loaded from an external memory connected to the SPI port with a dedicated select line, 
under control of a boot loader utility.  Software can control the power supply to the RAM allowing the contents to be 
maintained during a sleep period when other parts of the device are unpowered.   

4.3  Low-Power RAM 
The 128 bytes of low power RAM are organized as 32 x 32-bit words and are available for the storage of application 
data.  The power to this memory is maintained as long as an external supply is present and therefore the contents 
are held during all sleep modes.  This allows key parameters, for example a MAC address to be stored at lowest 
power in an application.  Unlike the other areas of memory the CPU requires 3 clock cycles to access the LPRAM. 

4.4  External Memory 
An external memory with an SPI interface may be used to provide storage for program code and data for the device 
when external power is removed.  The memory is connected to the SPI interface using select line SPISEL0; this 
select line is dedicated to the external memory interface and is not available for use with other external devices.  See 
Figure 7 for connection details. 



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 11 

JN5121
Serial

Memory

SPISEL0

SPIMISO

SPIMOSI

SPICLK

SS

SDO

SDI

CLK

 

Figure 7: Connecting External Serial Memory 

At reset, the contents of this memory are copied into RAM by the software boot loader.  A number of types of memory 
device may be used with the JN5121 boot loader so long as they conform to the format of read instructions issued by 
the boot loader over the SPI interface.  See application note JN-AN-1003 Boot Loader Operation for details on the 
format of the read command and other details of the boot loader. 

4.5  Peripherals 
All peripherals have their registers mapped into the memory space.  Access to these registers requires 3 clock 
cycles.  Applications have access to the peripherals through the peripherals library, which presents a high-level view 
of the peripheral’s functions through a series of dedicated software routines.  These routines provide both a tested 
method for using the peripherals and operation of power and interrupts with the IEEE802.15.4 software protocol stack 
allowing bug-free application code to be developed more rapidly. 

4.6  Unused Memory Addresses 
Any attempt to access an unpopulated memory area will result in a bus error exception (interrupt) being generated. 

 



������������������������ 

12 JN-DS-JN5121 v1.2 © Jennic 2005 

5 System Clocks 
Two separate oscillators are used to provide system clocks: a crystal controlled 16MHz oscillator, using an external 
crystal and an internal, RC based 32kHz oscillator. 

5.1  16MHz Oscillator 
The JN5121 contains the necessary on-chip components to build a 16 MHz reference oscillator with the addition of 
an external crystal resonator and two tuning capacitors.  The schematic and layout of these components are shown in 
Figure 8.  The two capacitors, C1 and C2, should be 12pF ±5% and use a COG dielectric.  For a detailed 
specification of the crystal required see Appendix B.1. 

XTALOUT

C2C1

R1XTALIN

JN5121

 

Figure 8: Crystal oscillator connections  

The clock generated by this oscillator provides the reference for most of the JN5121 subsystems, including the 
transceiver, processor, memory and digital and analogue peripherals.  

5.2  32kHz Oscillator 
The internal 32kHz RC oscillator requires no external components.  It provides a low speed clock for use in sleep 
mode.  The clock is used for timing the length of a sleep period (see section 16 Power Management and Sleep 
Modes) and also to generate the system clock used internally during reset.  The timing components within the device 
have a wide tolerance due to process variations, meaning that the oscillator is nominally 32kHz ±30%.  In order to 
calibrate the actual frequency of this oscillator, a reference timer is provided which is clocked from the more accurate 
crystal oscillator.  The RC oscillator can be set in a mode where the number of 16MHz clocks per 32kHz period is 
measured, and then used by software as a correction factor when programming the number of (nominally) 32kHz 
clock periods to be used in a sleep period. See section 12.3.1 for more details. 



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 13 

6 Reset 
A system reset initializes the device to a predefined state and forces the CPU to start program execution from the 
reset vector.  The reset process that the JN5121 goes through is as follows. 

When power is applied, the 32kHz oscillator starts up and stabilises, which takes approximately 100µsec.  At this 
point, the 16MHz crystal oscillator is enabled and power is applied to processor and peripheral logic. The logic blocks 
are held in reset until the crystal oscillator has begun oscillating at 16MHz.  The crystal oscillator is running at full 
speed when at least 300 16MHz positive clock edges are seen in one 32kHz clock period.  This figure takes into 
account the situation where the 32kHz oscillator runs at its fastest allowed tolerance.   

The typical start-up time for the 16MHz oscillator is 2.5msec. 

Once the oscillator is up and running the internal reset is removed from the CPU and peripheral logic and the CPU 
starts to run code beginning at the reset vector, consisting of initialisation code and then optionally the resident Boot 
Loader (described in reference [4]). 

Section 17.3.1 provided detailed electrical data and timing.  Appendix B describes the JN5121 pin states during and 
after reset. 

The JN5121 has three sources of reset: 

• Power-on Reset 

• External Reset 

• Software Reset 

6.1  Power-on Reset 
A power-on reset is generated by an on-chip detection circuit eliminating the need for an external reset circuit.  The 
power-on reset is activated whenever VDD is below the detection level, and causes the JN5121 to be held in reset.  
Once VDD has risen above this level, and the power supply and oscillator stabilization time tSTAB has elapsed, the 
reset is removed and the CPU is allowed to run.  During the time that the internal reset is active the RESETN pin is 
driven low to provide a reset signal to any other devices in the system. 

RESETN Pin

Internal RESET

VDD

 

Figure 9: Power-on Reset 

6.2  External Reset 
An external reset is generated by a low level on the RESETN pin.  Reset pulses longer than the minimum pulse width 
will generate a reset during active or sleep modes.  Shorter pulses are not guaranteed to generate a reset.  The 
JN5121 is held in reset while the RESETN pin is low and when the applied signal reaches the Reset Threshold 
Voltage (VRST) on its positive edge, the internal reset process starts. 



������������������������ 

14 JN-DS-JN5121 v1.2 © Jennic 2005 

Internal Reset

RESETN pin

Reset

 

Figure 10: External Reset 

6.3  Software Reset 
A system reset can be triggered at any time by calling the Software Reset function, vAHI_SwReset() from the 
peripheral library.  This function can be executed within a users application, upon detection of a system failure for 
example.  The RESETN line can be driven low by the JN5121 to provide a reset to other devices in the system (e.g. 
external sensors). The reset output feature can be enabled or disabled for the software generated reset using the 
function vAHI_DriveResetOut() within the peripheral library (the default state is disabled).   

6.4  RESETN Pin 
Multiple devices may connect to the RESETN pin in an open-collector mode.  The JN5121 has an internal pull-up 
resistor although an external pull-up resistor is recommended when multiple devices connect to the RESETN pin.  
The pin is an input for an external reset, an output during the power-on reset and may optionally be an output during 
a software reset.  No devices should drive the RESETN pin high.   



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 15 

7 Interrupt System 
The interrupt system on JN5121 is a hardware-vectored interrupt system.  The JN5121 provides several interrupt 
sources, some associated with CPU operations (CPU exceptions) and others which are used by hardware in the 
device.  When an interrupt occurs the CPU stops executing the current program and loads its program counter with a 
fixed hardware address specific to that interrupt.  The interrupt handler or interrupt service routine is stored at this 
location and is run on the next CPU cycle.  Execution of interrupt service routines are always performed in supervisor 
mode.  For more detail, refer to the JN-RM-2010 CPU Reference Manual [5].  Interrupt sources and their vector 
locations are listed in Table 1 below: 

Interrupt Source Vector Location Interrupt Definition 

Reset 0x100 Software or hardware reset 

Bus Error 0x200  Bus error or attempt to access invalid physical address 
Tick Timer 0x500 Tick Timer expiry 

Alignment 0x600 Load/Store to naturally not aligned location 
Illegal Instruction 0x700 Illegal instruction in instruction stream 
Hardware Interrupts 0x800 Hardware Interrupt  

System Call 0xC00 System Call Initiated by software (l.sys instruction) 
Trap 0xE00 Caused by l.trap instruction 

Table 1: Interrupt Vectors 

7.1  System Calls 
Executing the l.sys instruction causes a system call interrupt to be generated.  The purpose of this interrupt is to 
allow a task to switch into supervisor mode when a real time operating system is in use, see section 3 for further 
details.  It also allows a software interrupt to be issued, as does execution of the l.trap instruction. 

7.2  Processor Exceptions 

7.2.1  Bus Error 
A bus error exception is generated when software attempts to access a memory address which does not exist or is 
not populated with memory or peripheral registers. 

7.2.2  Alignment 
Alignment exceptions are generated when software attempts to access objects which are not aligned to natural word 
boundaries.  16-bit objects must be stored on even byte boundaries, while 32-bit objects must be stored on quad byte 
boundaries.  For instance, attempting to read a 16-bit object from address 0xFFF1 will trigger an alignment exception 
as will a read of a 32-bit object from 0xFFF1, 0xFFF2 or 0xFFF3.  Examples of legal 32-bit object addresses are 
0xFFF0, 0xFFF4, 0xFFF8 etc. 

7.2.3  Illegal Instruction 
If the CPU reads an unrecognised instruction from memory as part of its instruction fetch, it will cause an illegal 
instruction exception. 
 



������������������������ 

16 JN-DS-JN5121 v1.2 © Jennic 2005 

 

7.3  Hardware Interrupts 
Hardware interrupts generated from the transceiver, analogue or digital peripherals and DIO pins are individually 
masked using the Programmable Interrupt Controller (PIC).  Management of interrupts is provided in the peripherals 
library.  Further details of interrupts are provided for the functions in their respective sections in this datasheet. 

Interrupts are used to wake the JN5121 from sleep.  The peripherals, baseband controller, security coprocessor and 
PIC are powered down during sleep but the wake-up timers, DIO interrupts and analogue comparator interrupts 
remain powered to bring the JN5121 out of sleep. 

Wake-up
Timers

Baseband
Controller

Hardware
Interrupt

Security
Coprocessor

DIO Pins

UART0

UART1

Timer0

Timer1

2-wire Serial
Interface

SPI Controller

Intelligent
Peripheral

Analogue
Peripheral

Programmable
Interrupt

Controller

 

Figure 11: Programmable Interrupt Controller 



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 17 

8 Wireless Transceiver 
The wireless transceiver comprises a 2.45GHz radio, an O-QPSK modem, a baseband processor, a security 
coprocessor and PHY controller.  These blocks, with protocol software provided as a library, implement an 
IEEE802.15.4 standards-based wireless transceiver that transmits and receives data over the air in the unlicensed 
2.4GHz band.  IEEE802.15.4 wireless functionality is provided with the transceiver and the protocol software 
described in JN-RM-2002 Stack Software Reference Manual [3].  Applications interface to the protocol software via 
an API interface which corresponds to the SAP interfaces defined in  IEEE Std 802.15.4-2003  [1] 

8.1  Radio 

IDATA

QDATA

IF DATA

AGC

DAC

DAC

PA

PA
Power

PA (I)
Trim

PA (Q)
Trim

�

Calibration

Reference
& BIAS

ADCLNA

TX

RX

VGA2VGA1

VGA

VGA

PLL
90

0

LOI

LOQ

LOI

LOQ

LOI

LOQ

Calibration

VCO

 

Figure 12: Radio Architecture 

The radio comprises a low-IF receive path and a direct up-conversion transmit path, which converge at the TX/RX 
switch.  This switch includes the necessary matching components such that a 200Ω differential antenna may be 
directly connected without external components.  Alternatively, a balun can be used for single ended antennas.   

The 16MHz crystal oscillator feeds a frequency synthesiser to provide a reference frequency to the internal Voltage 
Controlled Oscillator (VCO).  The VCO has no external components, and includes calibration circuitry to compensate 
for differences in internal component values due to process and temperature variations.  The VCO is controlled by a 
Phase Lock Loop (PLL) which has a loop filter comprising 3 external components .  A programmable charge pump is 
also used to tune the loop characteristic.  Finally quadrature (I and Q) local oscillator signals for the mixer drives are 
derived.  

The receiver chain starts with the low noise amplifier / mixer combination whose outputs are passed to the polyphase 
bandpass filter.  This filter provides the channel definition as well as image frequency rejection.  The signal is then 
passed to two variable gain amplifier blocks.  The gain control for these stages, and the bandpass filter, is derived in 
the automatic gain control (AGC) block within the Modem.  The signal is conditioned with the anti-alias low pass filter, 
before being converted to a digital signal with a flash ADC. 

In the transmit direction, the digital I and Q streams from the Modem are passed to I and Q quadrature DAC blocks 
which are buffered and low-pass filtered, before being applied to the modulator mixers.  The summed 2.4 GHz signal 
is then passed to the RF Power Amplifier (PA), whose power control can be selected from one of six settings.  The 
output of the PA drives the antenna via the RX/TX switch. 



������������������������ 

18 JN-DS-JN5121 v1.2 © Jennic 2005 

8.1.1  Radio External components 
The VCO loop filter requires three external components and the IBIAS pin requires one external component as shown 
in Figure 13.  These components to be placed close to the JN5121 pins and analogue ground. 

15

VCOTUNE

3n3

680p
4k7
1%

VB_VCO

19

43k
1%

VSSA

IBIAS

VSSA

100n

 

Figure 13: VCO Loop Filter and IBIAS 

The radio is powered from a number of internal 1.8V regulators fed from the analogue supply VDD1, in order to 
provide good noise isolation between the digital logic of the JN5121 and the analogue blocks.  These regulators are 
also controlled by the baseband controller and protocol software to minimise power consumption.  Decoupling for 
internal regulators is required as described in section 2.2.1, Power Supplies. 

8.2  Modem 
The modem performs all the necessary modulation and spreading functions required for digital transmission and 
reception of data at 250kbps in the 2450MHz radio frequency band in compliance with the IEEE802.15.4 standard. 

AGC Demodulation  Despreading 4:1 Demux

Modulation Spreading 1:4 Mux

PN
Sequence

IData

QData

AGC

IF Data

Symbol

Symbol

Rx
Bitstream

Tx
Bitstream

PN
Sequence

 

Figure 14: Modem Architecture 

The transmitter assembles serial bitstream data from the baseband processor into 4-bit symbols.  These are passed 
to the spreading function which maps each unique 4-bit symbol to a 32-chip Pseudo-random Noise (PN) sequence.  
Offset-QPSK modulation and half-sine pulse shaping is applied to the resultant spreading sequence to produce two 
independent quadrature phase signals, I and Q.  These baseband signals are subsequently converted to an analogue 
voltage in the radio transmit path. 

The Automatic Gain Control (AGC) monitors the received signal level and adjusts the gain of the amplifiers in the 
radio receiver to ensure that the optimum signal amplitude is maintained during reception. 

The demodulator performs digital IF down-conversion, matched filtering, synchronization and data slicing.  The 
synchronization scheme is tolerant to both carrier and symbol frequency offsets in excess of ±80ppm, thereby 
satisfying the maximum centre frequency tolerance specified in the IEEE802.15.4 standard. 



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 19 

Symbol detection and synchronization is performed using direct sequence correlation techniques in conjunction with 
searches for the Preamble and Start-of-Frame Delimiter (SFD) fields contained in the transmitted IEEE 802.15.4 
Synchronization Header (SHR). 

Features are provided to support network channel selection algorithms include Energy Detection (ED), Link Quality 
Indication (LQI) and fully programmable Clear Channel Assessment (CCA).  The Modem has an integrated Receive 
Signal Strength Indication (RSSI) that facilitates the implementation of the IEEE 802.15.4  ED function.   

The LQI is defined in the IEEE 802.15.4 standard as a characterization of the strength and/or data quality of a 
received packet.  The minimum and maximum LQI values are associated with the lowest and highest quality IEEE 
802.15.4 signals detectable by the receiver and the modem produces a LQI based upon the ED measurement. 

The CCA capability of the Modem supports all modes of operation defined in the IEEE 802.15.4 standard, namely 
Energy above ED threshold, Carrier Sense and Carrier Sense and/or energy above ED threshold. 

8.3  Baseband Processor 
The baseband processor provides all time-critical functions of the IEEE802.15.4 MAC layer.  Dedicated hardware 
guarantees air interface timing is precise.  The MAC layer hardware/software partition provides for software to 
implement the sequencing of events required by the protocol and to schedule events at times with millisecond 
resolution, whereas the hardware implements specific events, with microsecond timing resolution.  The protocol 
software layer performs the higher-layer aspects of the protocol, sending management and data messages between 
endpoint and coordinator nodes, using the services provided by the baseband processor.   

Append
Checksum

Verify
Checksum

CSMA CCA Backoff
Control

Deserialiser

Serialiser
Transmit
Frame
Buffer

Protocol
Timers

Receive
Frame
Buffer

Tx
Bitstream

Rx
Bitstream

Protocol Timing Engine

Supervisor

Radio

Status

Control

AES
Codec

Inline
Security

Decrypt
Port

Encrypt
Port

AES
Codec

Processor
Bus  

Figure 15: Baseband Processor 

8.3.1  Transmit 
A transmission is performed by software writing the data to be transferred into the transmit frame buffer, together with 
parameters such as the destination address and the number of retries allowed, and programming one of the protocol 
timers to indicate the time at which the frame is to be sent.  This time will be determined by the software tracking the 
higher-layer aspects of the protocol such as superframe timing and slot boundaries.  Once the packet is prepared and 
protocol timer set, the supervisor block controls the transmission.  When the scheduled time arrives the supervisor 
controls the sequencing of the radio and modem to perform the type of transmission required.  It can perform all the 
algorithms required by IEEE802.15.4 such as CSMA/CA, GTS without processor intervention including retries and 
random backoffs. 

When the transmission begins, the header of the frame is constructed from the parameters programmed by the 
software and sent with the frame data through the serialiser to the Modem.  At the same time the radio is prepared for 



������������������������ 

20 JN-DS-JN5121 v1.2 © Jennic 2005 

transmission.  During the passage of the bitstream to the modem, it passes through a CRC checksum generator 
which calculates the checksum on-the-fly, and appends it to the end of the frame. 

It is possible for a transmission to overrun the time in its allocated slot; the Baseband Processor handles this situation 
autonomously and notifies the protocol software via interrupt, rather than requiring it to handle the overrun explicitly. 

8.3.2  Reception 
In a reception, the radio is set to receive on a particular channel.  On receipt of data from the modem the frame is 
directed into the Receive Frame Buffer where both header and frame data can be read by the protocol software.  An 
interrupt may be provided on receipt of the frame header.  As the frame data is being received from the modem it is 
passed through a checksum generator; at the end of the reception the checksum result is compared with the 
checksum at the end of the message to ensure that the data has been received correctly. 

During reception the modem is monitoring the Link Quality determined by the number of bit errors in the packet.  The 
Link Quality Indication (LQI) value is made available at the end of the reception as part of the requirements of 
IEEE802.15.4. 

8.3.3  Auto Acknowledge 
Part of the protocol allows for transmitted frames to be acknowledged by the destination sending an acknowlege 
packet within a very short window after the transmitted frame has been received.  The packet contains details of 
whether the transmitted packet was received error free.  The JN5121 baseband processor can automatically 
construct and send the acknowledgement packet without processor intervention and hence avoid the protocol 
software being involved in time-critical processing within the acknowledge sequence. 

8.3.4  Beacon Generation 
In beaconing networks the baseband processor can automatically generate and send beacon frames; the repetition 
rate of the beacons is programmed by the CPU, and the baseband then constructs the beacon contents from data 
delivered by the CPU.  The baseband processor schedules the beacons and transmits them without CPU 
intervention. 

8.3.5  Security 
The baseband processor supports the transmission and reception of secured frames using the Advanced Encryption 
Standard (AES) algorithm transparently to the CPU.  This is done by passing all incoming and outgoing data through 
an in-line security engine which is able to perform encryption and decryption operations on-the-fly, with the result that 
minimal processor intervention is required.  The CPU must provide the appropriate encrypt/decrypt keys for the 
transmission or reception; on transmission the key can be programmed at the same time as the rest of the frame data 
and setup information.   

During reception the CPU must look up the key and provide it from information held in the header of the incoming 
frame.  However the hardware of the security engine can process data much faster than the incoming frame data 
rate.  This means that it is possible to allow the CPU to receive the interrupt from the header of an incoming packet, 
read where the frame originated, look up the key and program it to the security hardware before the end of the frame 
has arrived.  By providing a small amount of buffering to store incoming data while the lookup process is taking place, 
the security engine can catch up processing the frame so that when the frame arrives in the receive frame buffer it is 
fully decrypted. 

8.4  Security Coprocessor 
As well as being used during in-line encryption and decryption operations over a streaming interface, it is also 
possible to use the AES core as a coprocessor to be used by the CPU of the JN5121.  To allow the hardware to be 
shared between the two interfaces an arbiter ensures that the streaming interface to the AES core always has 
priority, to ensure that in-line processing can take place at any time.   

Some protocols (for example the ZigbeeTM standard) require that security operations can be performed on buffered 
data rather than in-line.  A hardware implementation of the encryption engine significantly speeds up the processing 
of the contents of these buffers.  The peripheral library for the JN5121 provides two operations 
vAHI_SecurityEncode() and vAHI_SecurityDecode() which utilise the encryption engine in the device and 



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 21 

allow the contents of memory buffers to be transformed.  Information such as the type of security operation to be 
performed and the encrypt/decrypt key to be used must also be provided. 

Bus
Interface

Streaming
Interface

A
rb

ite
r AES

Block
Encrytion
Controller

AES
Encoder

K
ey

 G
en

er
at

io
n

 

Figure 16: Security Coprocessor Architecture 

 



������������������������ 

22 JN-DS-JN5121 v1.2 © Jennic 2005 

9 Digital Input/Output 
There are 21 Digital IO (DIO) pins, which can be configured as either an input or an output, and each has a 
selectable internal pull-up resistor.  Most DIO pins are multiplexed with alternate functions for the peripheral features 
on the device.  The alternate function is selected by enabling the relevant peripheral.  Refer to the individual module 
sections for a full description of the alternate functions.  From reset all peripherals are off and the DIO pins are 
configured as inputs with the internals pull-ups turned on. 

SPI Port

UART 0

UART 1

Counter/Timer 0

Counter/Timer 1

MUX

RFTX

Chip
Pins

2-Wire Serial
Interface

GPIO
Data / Direction

Registers

DIO<20:0>

DIO<20:0>

SPISEL<4:0>

Processor Bus
(Address, Data, Interrupts)

SPICLK, MOSI, MISO

SPISEL<0>

TxD

CTS

RxD

RTS

TxD

CTS

RxD

RTS

TIM0CK_GT

TIM0CAP

TIM0OUT

TIM1CK_GT

TIM1CAP

TIM1OUT

SIF_CLK

SIF_D

RFTX

Intelligent
Peripheral

IP_CLK

IP_SEL

IP_DI

IP_DO

IP_INT

 

Figure 17: DIO Block Diagram 

When a peripheral is not enabled the DIO pins associated with it can be used as digital inputs or outputs.  Each pin 
can be controlled individually with the direction being set using the vAHI_DioSetDirection() function.  Reading 
and writing to the pins is controlled using the vAHI_DioSetOutput() and u32AHI_DioReadInput() functions.  

The individual pull-up resistors, RPU, are selected using the vAHI_DioSetPullup() function. 

When configured as an input each pin can be used to generate an interrupt upon a change of state (selectable 
transition either from low to high or high to low); the interrupt can be enabled or disabled.  When the device is 
sleeping these interrupts become events which can be used to wake the device up.  Selection of the interrupt 
transition is done using vAHI_DioIntEdge().  Enabling and masking of DIO interrupts is done using 
vAHI_DioIntEnable() while the status of a DIO interrupt is given by u32AHI_DioIntStatus().  See section 
16.3 for further details on sleep and wakeup. 



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 23 

10 Serial Peripheral Interface  
The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the JN5121 and 
peripheral devices.  The JN5121 operates as a master on the SPI bus and all other devices connected to the SPI are 
expected to be slaves devices under the control of the JN5121 CPU.  The SPI includes the following features: 

• Full-duplex, three-wire synchronous data transfer 

• Programmable bit rates 

• Programmable transaction size of 8,16 or 32 bits 

• Selectable transmit on positive or negative edge of clock 

• Selectable receive on positive or negative edge of clock 

• Automatic slave select generation (up to 5 slaves) 

• Maskable transaction complete interrupt 

• LSB First or MSB First Data Transfer 

Clock
Divider

SPI Bus
Cycle

Controller

Data Buffer

�� 15 7

D
IV

C
lo

ck
 E

dg
e

S
el

ec
t

D
at

a

C
H

A
R

_L
E

N

LS
B

SPIMISO

SPIMOSI

SPICLK

Select
Latch

SPISEL [4..0]

16 MHz
0

 

Figure 18: SPI Block Diagram 

 

The SPI bus employs a simple shift register data transfer scheme.  Data is clocked out of and into the active devices 
in a first-in, first-out fashion allowing SPI devices to transmit and receive data simultaneously.   

There are three dedicated pins SPICLK, SPIMOSI, SPIMISO that are shared across all devices on the bus.  Master-
Out-Slave-In or Master-In-Slave-Out data transfer is relative to the clock signal SPICLK generated by the JN5121. 

The JN5121 provides five slave selects, SPISEL0 to SPISEL4 to allow five SPI peripherals on the bus.  SPISEL0 is a 
dedicated pin and SPISEL1 to 4, are alternate functions of pins DIO0 to 3 respectively.  This allows a serial flash 
memory to be connected to SPISEL0 and download to internal RAM via software from reset.  

The interface can transfer 8, 16 or 32 bits without software intervention and can keep the slave select lines asserted 
between transfers when required, to enable longer transfers to be performed. 



������������������������ 

24 JN-DS-JN5121 v1.2 © Jennic 2005 

S
I S
O

C

S
S

Slave 0

Flash
Memory

JN5121

37 38 41 42 43

36

33

34

S
I

S
O

C

S
S

Slave 1

User
Defined

S
I S
O

C

S
S

Slave 2

User
Defined

S
I

S
O

C

S
S

Slave 3

User
Defined

S
I S
O

C

S
S

Slave 4

User
Defined

SPIMISO

SPIMOSI

SPICLK

SPISEL4

SPISEL2
SPISEL3

SPISEL1

SPISEL0

 
Figure 19: Typical JN5121 SPI Peripheral Connection 

The data transfer rate on the SPI bus is determined by the SPICLK signal.  The JN5121 supports transfers at 
selectable data rates from 16MHz to 250kHz selected by a clock divider.  Both SPICLK clock phase and polarity are 
configurable.  The SPICLK line is held high when the interface is not being used.  The clock phase determines which 
edge of SPICLK is used by the JN5121 to present new data on the SPIMOSI line; the opposite edge will be used to 
read data from the SPIMISO line.  These options are specified using the vAHI_SpiConfigure() function.  

The slave select outputs, SPISELn, are controlled using the vAHI_SpiSelect() function.  If more than one SPISEL 
line is to be used in a system they must be used in numerical order, for instance if 3 SPI select lines are to be used, 
they must be SPISEL0, 1 and 2.  The number of SPISEL lines to be used in a system is controlled using 
vAHI_SpiConfigure().  A SPISEL line can be automatically deasserted between transactions if required, or it may 
stay asserted over a number of transactions until removed by a call to vAHI_SpiSelect().  For devices such as 
memories where a large amount of data can be received by the master by continually providing SPICLK transitions, 
the ability for the select line to stay asserted is an advantage since it keeps the slave enabled over the whole of the 
transfer. 

A transaction commences with the SPI bus being set to the correct configuration using vAHI_SpiConfigure(), 
and then the slave device being selected using vAHI_SpiSelect().  Transmit commences using the 
vAHI_SpiStartTransferxx() function (where xx is either 8, 16 or 32 bits)  This will cause data to be placed in 
the FIFO data buffer and be clocked out, at the same time generating the corresponding SPICLK transitions.  Since 
the transfer is full-duplex, the same number of data bits is being received from the slave as it transmits.  The data that 
is received during this transmission can be read using u32AHI_SpiReadTransferxx() (again xx is either 8, 16 or 
32 bits).  If the master simply needs to provide a number of SPICLK transitions to allow data to be sent from a slave, 
it can perform a vAHI_SpiStartTransferxx() using dummy transmit data.  An interrupt can be generated when 
the transaction has completed when enabled by vAHI_SpiConfigure().  Alternatively the interface can be polled 
using the bAHI_SpiPollBusy() or vAHI_SpiWaitBusy() functions. 

If a slave device wishes to signal the JN5121 indicating it has data to provide it may be connected to one of the DIO 
pins that can be enabled as an interrupt. 

10.1  Programming Example 
The following code example shows how to initialize the SPI and perform a simple read from a slave device.  The 
device being read requires 40 clocks to send an 8-bit instruction, a 24-bit address and retrieve the 8-bit data.  This 
cannot be achieved by a single transfer, so multiple transfers are combined without the automatic de-assertion of the 
selects.  The waveforms generated by the example code are illustrated in Figure 20. 



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 25 

 

Programming Example 
PRIVATE void vReadFromFlash(uint32 u32Addr, uint32 u32NumWords, uint8 *pau8Buffer ) 
{ 
    #define FLASHREADCMD 0x03 
 
    uint32 u32Temp; 
    uint32 i; 
 
    vAHI_SpiConfigure(  1,         /* number of slave select lines in use*/ 
                        MSBFIRST,  /* data to be sent MSB first */ 
                        TXNEG,     /* TX data to change on negative edge */  
                        RXNEG,     /* RX data to change on negative edge */ 
                        SPICLK16M, /* Generate 16MHz SPI clock */ 
                        SPIINTOFF, /* Disable SPI interrupt */ 
                        SPIASSOFF);   /* Disable auto slave select */ 
 
    /* combine read cmd & addr into single value to be sent over SPI */ 
    u32Temp = (u32Addr & x00FFFFFF) | (FLASHREADCMD << 24); 
 
    vAHI_SpiSelect(SPISEL0);              /* select spi device */ 
    vAHI_SpiStartTransfer32(u32Temp);     /* send read cmd and address location */ 
    vAHI_SpiWaitBusy(); 
 
    for (i=0; i<=u32NumWords; i++) 
    { 
        vAHI_SpiStartTransfer32(u32Addr);   /* read data 4 bytes at a time */ 
        vAHI_SpiWaitBusy(); 
        u32Temp = u32AHI_SpiReadTransfer32(); /* copy into temp variable */ 
        memcpy( (pau8Buffer+i), &u32Temp, sizeof(u32Temp) ); /* copy to buffer */ 
    } 
    vAHI_SpiSelect(SPISELNONE);              /* deselect select spi device */ 
} 

0 1 2 3 4 5 6 7

Instruction (0x03)

23 22 21 3 2 1 0

8 9 10 28 29 30 31

24-Bit Address

MSB

Instruction Transaction

7 6 5 4 3 2 1 0
MSB

0 1 2 3 4 5 7 28 29 30 31

3 2 1 0

LSB

Read Data Bytes Transaction(s) 1-N

SPISEL

SPICLK

SPIMOSI

SPIMISO

SPISEL

SPICLK

SPIMOSI

SPIMISO

8 9 10

7 6 5
MSB

Octet  0 Octet 4N-3 Octet 4N-1

Changes every spi clk but value is unused by peripheral

 

Figure 20: SPI Transaction Waveforms 



������������������������ 

26 JN-DS-JN5121 v1.2 © Jennic 2005 

11 Intelligent Peripheral Interface 
The Intelligent Peripheral (IP) Interface is provided for use in more complex systems where there is a processor that 
requires a wireless peripheral.  As an example, the JN5121 may provide a complete IEEE802.15.4, ZigBeeTM or other 
wireless network to a phone, computer, PDA, set-top box or games console. No resources are required from the main 
processor compared to a transceiver as the complete wireless protocol may be run on the internal JN5121 CPU.  The 
wireless peripheral may be controlled via one of the UARTs but the IP interface is intended to provide a high-speed, 
low-processor-overhead interface. 

The intelligent peripheral interface is a SPI slave interface and uses pins shared with other DIO signals.  The 
interface is designed to allow message passing and data transfer.  Data received and transmitted on the IP interface 
is copied directly to and from a dedicated area of memory without intervention from the CPU.  This memory area, the 
intelligent peripheral memory block, contains 64 32-bit word receive and transmit buffers. 

JN5121

Intelligent
Peripheral
Interface

SPI
MASTER

System Processor
(e.g. in cellphone, computer)

CPU

IP_DO SPIMISO

IP_INT SPIINT

IP_DI SPIMOSI

SPISELIP_SEL

IP_CLK SPICLK

 

Figure 21: Intelligent Peripheral Connection 

The interface conforms to the SPI protocol as described in section 10.  It is possible to select the clock edge of 
IP_CLK on which data on the IP_DIN line of the interface is sampled, and the state of data output IP_DOUT is 
changed.  The order of transmission is MSB first.  The IP_DOUT data output is tri-stated when the device is inactive, 
i.e. the device is not selected via IP_SEL.  An interrupt output line IP_INT is available so that the JN5121 can indicate 
to an external master that it has data to transfer. 

The IP interface signals IP_CLK, IP_DO, IP_DI, IP_SEL, IP_INT are alternate functions of pins DIO14 to 18 
respectively.   

11.1  Data Transfer Format 
Transfers are started by the remote processor asserting the IPSEL line and terminated by the remote processor de-
asserting IP_SEL. 

Data transfers are bi-directional and traffic in both directions has a format of status byte, data length byte (of the 
number of 32-bit words to transfer) and data packet (from the receive and transmit buffers).  The first byte transferred 
in either direction is a status byte with the following format: 

Bit Field Description 

7:2 RSVD Reserved, set to 0. 

1 TXQ 1: Data queued for transmission 

0 RXRDY 1: Buffer ready to receive data 
Table 2: IP Status Byte Format 

 

If data is queued for transmission and the recipient has indicated that they are ready for it (RXRDY in incoming status 
byte was 1), the next byte to be transmitted is the data length in words. If either the JN5121 or the remote processor 



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 27 

have no data to transfer the data length should set to zero.  The transaction can be terminated by the master after the 
status byte has been sent if it is not possible to send data in either direction.  This may be because neither party has 
data to send or because the receiver does not have a buffer available.  If the data length is non-zero, the data in the 
JN5121 transmit memory buffer is sent, beginning at the start of the buffer.  At the same time that data bytes are 
being sent from the transmit buffer, the JN5121 receive buffer is being filled with incoming data, beginning from the 
start of the buffer.  

The remote processor, acting as the master must determine the larger of its incoming or outgoing data transfers and 
deassert IP_SEL when all the transmit and receive data have been transferred.  The data is transferred into or out of 
the buffers starting from the lowest address in the buffer, and each word is assembled with the MSB first on the serial 
data lines. 

IP_SEL

IP_CLK

IP_DI Status (8 bit)  N words of data

IP_DO

data length or 0s (8 bit)

Status (8 bit) N words of datadata length or 0s (8 bit)padding (8 bit)

padding (8 bit)

 

Figure 22: Intelligent Peripheral Data Transfer Waveforms 

11.2  JN5121 Initiated Data Transfer 
To send data, the data is written into either buffer 0 or 1 of the intelligent peripheral memory area. Then the buffer 
number is written together with the data length using bAHI_IpSendData().  If the call is successful the interrupt line 
IP_INT will signal to the remote processor that there is a message ready to be sent from the JN5121.  When a remote 
processor starts a transfer to the JN5121, by deasserting IP_SEL, then IP_INT is deasserted.  If the transfer is 
unsuccessful and the data is not output then IP_INT is reasserted after the transfer to indicate that data is still waiting 
to be sent. 

The interface can be configured to generate an internal interrupt whenever a transaction completes (ie IP_SEL 
becomes inactive after a transfer starts).  It is also possible to mask the interrupt.  The end of the transmission can be 
signalled by an interrupt, or the interface can be polled using the function bAHI_IpTxDone() 

To receive data the receive buffer needs to be configured in memory using bAHI_IpSetRxBuffer().  When this is 
done, the bit RXRDY sent in the status byte from the IP block will show that data can be received by the JN5121.  
Successful data arrival can be indicated by an interrupt, or the interface can be polled using 
bAHI_IpRxDataAvailable() 

To send and receive at the same time the transmit and receive buffers must be set to be different. 

11.3  Remote Processor Initiated Data Transfer 
The remote processor (master) may initiate a transfer to send data to the JN5121 by asserting the slave select pin, 
IP_SEL, and generating its status byte on IP_DI with TXRDY set.  After receiving the status byte from the JN5121, it 
should check that the JN5121 has a buffer ready by reading the RXRDY bit.  If the RXRDY bit is 0 indicating that the 
JN5121 cannot accept data, it should terminate the transfer by deasserting IP_SEL unless it is receiving data from 
the JN5121.  If the RXRDY bit is 1, indicating that the JN5121 can accept data, then the master should generate a 
further 6 clocks on IP_CLK in order to transfer its own message length on IP_DI.  The master should continue 
clocking the interface until sufficient clocks have been generated to send all the data specified in the length field to 
the JN5121.   The master should then deassert IP_SEL to show the transfer is complete. 

The master may initiate a transfer to read data from the JN5121 by asserting the slave select pin, IP_SEL, and 
generating its status byte on IP_DI with RXRDY set.  After receiving the status byte from the JN5121, it should check 
that the JN5121 has a buffer ready by reading the TXRDY bit.  If the TXRDY bit is 0, indicating that the JN5121 does 
not have data to send, it should terminate the transfer by deasserting IP_SEL unless it is transmitting data to the 
JN5121.  If the TXRDY bit is 1, indicating that the JN5121 can send data, then the master should generate a further 6 
clocks on IP_CLK in order to receive the message length on IP_DO.  The master should continue clocking the 
interface until sufficient clocks have been generated to receive all the data specified in the length field from the 
JN5121.  The master should then deassert IP_SEL to show the transfer is complete. 



������������������������ 

28 JN-DS-JN5121 v1.2 © Jennic 2005 

Data can be sent in both directions at once and the master must ensure both transfers have completed before 
deasserting IP_SEL. 



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 29 

12 Timers 

12.1  Peripheral Timer / Counters 
Two general-purpose timer / counter units are available that can be independently configured to operate in one of five 
modes.  The timers have the following features: 

• 16-bit prescaler, divides system clock by of 2 x Prescale value as the clock to the timer 

• Clock source selectable between internal system clock and external input 

• 16-bit counter 

• 16-bit High and Low (period) registers 

• Timer: can generate interrupts off High and Low count.  Can be gated by external signal 

• Counter: counts number of transitions on external event signal.  Can use low-high, high-low or both 
transitions 

• PWM/Single pulse: outputs repeating Pulse Width Modulation signal or a single pulse.  Can set period and 
mark-space ratio 

• Sigma-Delta: NRZ and RZ modes  

Interrupt
Generator

High

Low

Delta-Sigma

Counter

Reset Generator

=

Prescaler

INT

Int Enable

Sys Clk

S/w
Reset

System
Reset

Single
Shot

=

S

R

OE

Gate

Gate

Edge
Select

Reset

PWM/
Sigma-Delta

Capture
Generator

Capture
Enable

Clock
Select

����Σ−∆

����Σ−∆

TIMxCK_GT

TIMxOUT

TIMxCAP

 

Figure 23: Timer Unit Block Diagram 

The clock source is selectable using vAHI_TimerClockSelect() between the system clock or an external pin 
(TIMxCK_GT); the selected clock is fed to a divider or prescaler.  The prescaler has a 16-bit divider value, a value of 
0 leaving the clock unmodified, with other values dividing the clock by 2 x prescale value.  Hence a prescale value of 



������������������������ 

30 JN-DS-JN5121 v1.2 © Jennic 2005 

2 applied to the 16MHz system clock results in a frequency of 4MHz.  The value of the prescaler is set using the 
vAHI_TimerEnable() function.   

The counter is optionally gated by a signal on the clock / gate input (TIMxCK_GT).  If the gate function is selected 
(using vAHI_TimerClockSelect()) the counter is frozen when the clock/gate input is high. 

If enabled using the vAHI_TimerEnable() function, an interrupt is generated whenever counter is equal to the 
value stored in either of the High or Low registers. 

The internal Output Enable (OE) signal enables or disables the timer output. 

The Timer 0 signals CK_GT, CAP and OUT are alternate functions of pins DIO8, 9 and 10 respectively and Timer 1 
signals CK_GT, CAP and OUT are alternate functions of pins DIO11, 12, and 13 respectively. 

12.1.1  Pulse Width Modulation Mode 
Pulse Width Modulation (PWM) mode allows the user to specify an overall cycle time and pulse length within the 
cycle.  The pulse can be generated either as a single shot or as a train of pulses with a repetition rate determined by 
the cycle time. 

In this mode, the cycletime and low periods of the PWM output signal can be set by the values of two independent 
16-bit registers (Low and High).  The counter increments and its output is compared to the 16-bit High and Low 
registers.  When the counter is equal to the High register, the PWM output is set to high; when the counter reaches 
the Low value, the output returns to low.  In continuous mode, when the counter reaches the Low value, it will reset 
and the cycle repeats.  Depending upon the mode of operation either the vAHI_TimerStartRepeat() function or 
the vAHI_TimerStartSingleShot() is used to set the values of the High and Low registers.  The PWM 
waveform is available on TIMxOUT when the output driver is enabled using vAHI_TimerEnable(). 

High

Low
 

Figure 24: PWM Output Timings 

12.1.2  Capture Mode 
The capture mode can be used to measure the time between transitions of a signal applied to the capture input 
(TIMxCAP) with a resolution set by the selected clock and prescaler value.  The mode is selected and the counter 
started by vAHI_TimerStartCapture().  On the next low-to-high transition of the signal on the capture input the 
count value is stored in the High register, and on the following high-to-low transition the counter value is stored in the 
Low register.  The pulse width is the difference in counts in the two registers multiplied by the clock period driving the 
counter.  The counter is stopped and Low and High registers read with vAHI_TimerReadCapture().  The values in 
the High and Low registers will be updated whenever there is a corresponding transition on the capture input, and the 
value stored will be relative to when the mode was started.  Therefore, if multiple pulses are seen on TIMxCAP before 
the counter is stopped only the last pulse width will be stored. 



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 31 

CLK

CAPT

x 10 18

x 15

tHIGH tHIGH

tLOW tLOW

High

Low

10 5 43

22

Capture Mode Enabled

 

Figure 25: Capture Mode 

12.1.3  Counter / Timer Mode 
The counter/timer can be used to generate timing or count interrupts for software to use.  As a timer the clock source 
is from the system clock, prescaled if required.  The timer period is programmed into the Low register and the Low 
register match interrupt enabled.  The timer is started either as a single-shot or repeating timer 
(vAHI_TimerStartSingleShot() or vAHI_TimerStartRepeat()), and generates an interrupt when the 
counter reaches the Low register value. 

When used to count external events on TIMxCK_GT the clock source is selected from the input pin and the number 
of events programmed into the Low register.  The low register match interrupt is enabled and the counter started, 
usually in single shot mode.  An interrupt is generated when the programmed number of low-to-high transitions is 
seen on the input pin. 

12.1.4  Delta-Sigma Mode 
A separate delta-sigma mode is available, allowing a low speed delta-sigma DAC to be implemented with up to 16-bit 
resolution.  This requires that a resistor-capacitor network is placed between the output DIO pin and digital ground.  A 
stream of pulses with digital voltage levels is generated which is integrated by the RC network to give an analogue 
voltage.  A conversion time is defined in terms of a number of clock cycles.  The width of the pulses generated is the 
period of a clock cycle.  The number of pulses output in the cycle, together with the integrator RC values will 
determine the resulting analogue voltage.  For example, generating approximately half the number of pulses which 
make up a complete conversion period will produce a voltage on the RC output of VDD1/2, provided the RC time 
constant is chosen correctly.  During a conversion, the pulses will be pseudo-randomly dispersed throughout the 
cycle in order to produce a steady voltage on the output of the RC network. 

The output signal is asserted for the number of clock periods defined in the High register set by 
vAHI_TimerStartDeltaSigma(), with the total period being 216 cycles.  For the same value in the High register 
the pattern of pulses on subsequent cycles is different, due to the pseudo-random distribution. 

The delta-sigma convertor output can operate in a Return-To-Zero (RTZ) or a Non-Return-to-Zero (NRZ) mode.  The 
NRZ mode will allow several pulses to be output next to each other, which may cause the response of the RC 
network to be uneven, especially if the time constant chosen is comparable to the individual pulse width.  The RTZ 
mode ensures that each pulse is separated from the next by at least one period.  This improves linearity if the rise 
and fall times of the output are different to one another.  Essentially, the output signal is low on every other output 
clock period, and the conversion cycle time is twice the NRZ cycle time ie 217 clocks.  The integrated output will only 
reach half VDD2 in RTZ mode, since even at full scale only half the cycle contains pulses.  Figure 26 and Figure 27 
illustrate the difference between NRZ and RTZ for the same programmed cycle time value and number of pulses. 



������������������������ 

32 JN-DS-JN5121 v1.2 © Jennic 2005 

1 2 N 1 2 1 N 1N 2 N2

Conversion cycle 1 Conversion cycle 3

Σ−∆
Output

Conversion cycle 2 Conversion cycle 4
 

Figure 26: Return To Zero Mode in Operation 

1 2 N 1 2 1 N 1N 2 N2

Conversion cycle 1

1 N2

Σ−∆
Output

Conversion cycle 2 Conversion cycle 3 Conversion cycle 4 Conversion cycle 5  

Figure 27: Non-Return to Zero Mode 

12.1.5  Timer / Counter Application 
Figure 28 shows an application of the JN5121 timers to provide closed loop speed control. Timer 0 is configured in 
PWM mode to provide a variable mark-space ratio switching waveform to the gate of the NFET. This in turn controls 
the power in the DC motor. 

Timer 1 is configured to count the rising edge events on the clk/gate pin over a constant period. This converts the 
tacho pulse stream output into a count proportional to the motor speed.  This value is then used by the application 
software executing the control algorithm. 

JN5121

Timer 0

Timer 1

CLK/GATE

CLK/GATE

CAPTURE

CAPTURE

PWM

PWM

M  Tacho

48

50

52

53

54

1N4007

+12V

IRF521
51

1 pulse/rev

 

Figure 28: Closed Loop PWM Speed Control Using JN5121 Timers 



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 33 

12.2  Tick Timer 
The JN5121 contains a hardware timer which can be used for generating timing interrupts to software.  It may be 
used to implement regular events such as ticks for software timers or an operating system, as a high-precision timing 
reference or can be used to implement system monitor timeouts as used in a watchdog timer. Features include: 

• 32-bit counter 

• 28-bit match value 

• Maskable timer interrupt 

• Single-shot, Restartable or Continuous modes of operation 

Match Value

Counter

=

Mode
Control

&

&

SysClk

Run

Match

Int
Enable

Tick Timer
Interrupt

Reset

Mode

 

Figure 29: Tick Timer 

The Tick Timer is clocked from the system clock (16 MHz), which is fed to a 32-bit wide resettable up-counter, gated 
by a signal from the mode control block.  A match register allows comparison between the counter and a 
programmed value.  The match value, measured in 16MHz clock cycles can be programmed using 
vAHI_TickTimerInterval(), in the range 0 to 0x0FFFFFFF.  The output of the comparison can be used to 
generate an interrupt if the interrupt is enabled, and is also used in controlling the counter in the different modes.  The 
mode is programmed using vAHI_TickTimerConfigure(), which also resets the counter to zero. 

The interrupt is enabled by vAHI_TickTimerIntEnable().  The interrupt state is returned by 
bAHI_TickTimerIntStatus() and if an interrupt is generated it can be cleared by vAHI_TickTimerIntClr(). 

If the mode is programmed as single shot, the counter begins to count from zero until the match value is reached.  
The match signal will be generated which will cause an interrupt if enabled, and the counter will stop counting.  The 
counter can be restarted by reprogramming the mode using vAHI_TickTimerConfigure(). 

If the mode is programmed as restartable, the operation of the counter is the same as for the single shot mode, 
except that when the match value is reached, the counter is reset and begins counting from zero.  An interrupt will be 
generated when the match value is reached if it is enabled. 

Continuous mode operation is similar to restartable, except that when the match value is reached, the counter is not 
reset but continues to count.  An interrupt will be generated when the match value is reached if enabled. 

 



������������������������ 

34 JN-DS-JN5121 v1.2 © Jennic 2005 

12.3  Wakeup Timers 
Two 32-bit wakeup timers are available in the JN5121 driven from the 32kHz internal clock.  They continue to run 
during sleep periods when the majority of the rest of the device is powered down.  The wakeup timers do not run 
during deep sleep.  They are intended to be used in timing sleep periods or other long period timings that may be 
required by the application.  When a wakeup timer expires it typically generates an interrupt which, if the device is 
asleep may be used as an event to end the sleep period.  See Section 16 for further details on how they are used 
during sleep periods. Feature include: 

• 32-bit down-counter 

• Runs during sleep periods 

• Clocked from 32 kHz RC oscillator 

A wakeup timer consists of a 32-bit down counter clocked from the 32 kHz internal clock.  An interrupt or wakeup 
event can be generated when the counter reaches zero.  On reaching zero the counter will continue to count down 
until stopped, which allows the latency in responding to the interrupt to be measured.  If an interrupt or wakeup event 
is required, the timer interrupt should be enabled using vAHI_WakeTimerEnable() before loading the count value 
for the period.  The count value is loaded using vAHI_WakeTimerStart() and causes the counter to begin to 
count down to zero; the counter can be stopped at any time using vAHI_WakeTimerStop().  The counter will 
remain at the value it contained when the timer was stopped and no interrupt will be generated.  The status of the 
timers can be checked using the u8AHI_WakeTimerStatus() function, which indicates if the timers are running.  
The timers can be checked to see if they have expired using u8AHI_WakeTimerFiredStatus() which is useful 
when the timer interrupts are masked.  If a timer has expired the fired status will be reset by the function.  The value 
of the counter can be read using u32AHI_WakeTimerRead(). 

12.3.1  RC Oscillator Calibration 
The RC oscillator used to time sleep periods is designed to require very little power to operate and be self-contained, 
requiring no external timing components.  As a consequence it has low accuracy and temperature stability.  Sleep 
time periods should be as close to the desired time as possible in order to allow the device to wake up in time for 
important events, for example beacon transmissions in the IEEE802.15.4 protocol.  If the sleep time is accurate the 
device can be programmed to wake up very close to the calculated time of the event and still expect to see it.  For 
less accurate sleep times it will be necessary to wake up earlier in order to be certain the event will be captured.  If 
the device wakes earlier, it will be awake for longer and will consume more power.   

In order to allow sleep time periods to be as close to the desired length as possible, the true frequency of the RC 
oscillator needs to be determined to better than the specified 30% accuracy.  The calibration factor can then be used 
to calculate the true number of nominal 32kHz periods needed to make up a particular sleep time.  A calibration 
reference timer, clocked from the crystal oscillator, is provided to allow comparisons to be made between the RC 
clock and the 16MHz crystal oscillator when the JN5121 is awake.  Operation is as follows: 

• Wakeup timer0 is disabled and programmed with a number of 32kHz ticks 

• Calibration mode is enabled which causes the Calibration Reference counter to be zeroed.  Both counters start 
counting, the wakeup timer decrementing and the calibration counter incrementing 

• When the wakeup timer reaches zero the Reference Counter is stopped, allowing software to read the number 
of 16MHz clock ticks generated during the time represented by the number of 32kHz ticks programmed in the 
wakeup timer.  The true period of the 32kHz clock can thus be determined and used when programming a 
wakeup timer to achieve a better accuracy and hence more accurate sleep periods 

Due to the temperature dependent behaviour of the RC Oscillator, the calibration process should be done performed 
regularly (for example once every wakeup period) to account for changes in ambient temperature. 

A calibration can be performed by calling u32AHI_WakeTimerCalibrate(), which calibrates over twenty 32kHz 
ticks and returns the number of 16MHz ticks recorded.  For a RC oscillator running at exactly 32kHz the value 
returned should be 10000.  If the oscillator is running faster than 32kHz the count will be less than 10000, if running 
slower the value will be higher.  For a calibration count of 9000, indicating that the RC oscillator period is running at 
approximately 35kHz, to time for a period of 10 seconds the timer should be loaded with 35,556 ((10000/9000) * 
(32000*10)) rather than 32000. 

 



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 35 

13 Serial Communications  
The JN5121 has two independent Universal Asynchronous Transmit / Receive (UART) serial communication 
interfaces.  These provide similar operating features to the industry standard 16550A device operating in FIFO mode.  
Each interface performs serial-to-parallel conversion on incoming serial data and parallel-to-serial conversion on 
outgoing data from the CPU to external devices.  In both directions a 16-byte deep FIFO buffer allows the CPU to 
read and write multiple characters on each transaction.  This means that the CPU is freed from handling data on a 
character-by-character basis, with the associated high processor overhead.  The UARTs have the following features: 

• Emulates behaviour of industry standard NS16450 and NS16550 UARTs 

• 16 byte transmit and receive FIFO buffers reduce interrupts to CPU 

• Adds / deletes standard start, stop and parity communication bits to or from the serial data 

• Independently controlled transmit, receive, status and data sent interrupts 

• Modem flow control signals CTS and RTS 

• Fully programmable data formats: baud rate, start, stop and parity settings 

• False start bit detection 

• Internal diagnostic capabilities: loop-back controls for communications link fault isolation 

P
ro

ce
ss

or
 B

us

Divisor
Latch

Register
s

Line
Status

Register

Line
Control
Register

FIFO
Control
Register

Receiver FIFO

Transmitter FIFO

Baud Generator
Logic

Transmitter Shift
Register

Receiver Shift
Register

Transmitter
Logic

Receiver
Logic

RXD

TXD

Modem
Control
Register

Modem
Status

Register
Modem
Signals
Logic

RTS

CTS

Interrupt
ID

Register

Interrupt
Enable

Register

Interrupt
Logic

Internal
Interrupt

 

Figure 30 UART Block Diagram 

The serial interface characteristics are programmed using the peripheral library call vAHI_UartSetControl(). This 
sets the number of data bits (5, 6,7 or 8), even, odd, set-at-1, set-at-0 or no-parity detection and generation and 
single or multiple stop bit generation (for 5 bit data, multiple is 1.5 stop bits; for 6, 7 or 8 data bits, multiple is 2 bits). 

The baud rate is programmable between 4800, 9600, 19.2k, 38.4k, 76.8k and 115.2 kbaud via the 
vAHI_UartSetClockDivisor() function. 

Two hardware flow control signals are provided: Clear To Send (CTS) and Request To Send (RTS).  CTS is an 
indication sent by an external device to the UART that it is ready to receive data.  RTS is an indication sent by the 
UART to the external device that it is ready to receive data.  Both signals are active low.  RTS is controlled from 
software using the vAHI_UartSetControl() function, while the value of CTS can be read using 
u8AHI_UartReadModemStatus().  This result of this routine also indicates if the state of CTS has changed, 
indicating that the connected device has signalled the UART that it can begin transmitting.  Monitoring and control of 



������������������������ 

36 JN-DS-JN5121 v1.2 © Jennic 2005 

CTS and RTS is a software activity, normally performed as part of interrupt processing.  The signals do not control 
parts of the UART hardware, but simply indicate to software the state of the UART external interface. 

Characters are read one byte at a time from the Receive FIFO using the u8AHI_UartReadData() routine and are 
written to the Transmit FIFO using u8AHI_UartWriteData().  The Transmit and Receive FIFOs can be cleared 
and reset independently of each other using vAHI_UartReset().  The status of the transmitter can be checked 
using u8AHI_UartReadLineStatus(), which indicates if the transmit FIFO is empty, and if there is a character 
being transmitted.  The status of the receiver is also checked using this call, which can indicate if conditions such as 
parity error, framing error or break indication have occurred.  It also shows if an overrun error occurred (receive buffer 
full and another character arrives) and if there is data held in the receive FIFO. 

UART 0 signals CTS, RTS, TXD and RXD are alternate functions of pins DIO4, 5, 6 and 7 respectively and UART 1 
signals CTS, RTS, TXD and RXD are alternate functions of pins DIO17, 18, 19 and 20 respectively. 

13.1  Interrupts  
Interrupt generation is controlled for the UART block using the vAHI_UartSetInterrupt() routine, and are 
divided into four categories: 

• Received Data Available: Is set when data in the Rx FIFO queue reaches a particular level.  The trigger level 
can be configured as 1, 4, 8 or 14. 

• Transmit Character Buffer Empty: Is set when the current character transmission has completed. 

• Receiver Line Status: Is set when one of the following occur (1) Parity Error - the character at the head of the 
receive FIFO has been received with a parity error, (2) Overrun Error - the FIFO is full and another character 
has been received at the Receiver shift register, (3) Framing Error - the character at the head of the receive 
FIFO does not have a valid stop bit and (4) Break Interrupt – occurs when the RxD line has been held low for an 
entire character.  The source of the interrupt is determined using u8AHI_UartReadLineStatus() 

• Modem Status: Generated when the CTS (Clear To Send) input control line changes. 

13.2  UART Application 
The following example shows the UART connect to a 9-pin connector compatible with a PC.  The software developer 
kit uses such an interface as the debugger interface between the JN5121 and a PC.  As the JN5121 device pins do 
not provide the RS232 line voltage a level shifter is used. 

JN5121

CTS

RTS

RXD

TXDUART0
RS232
Level
Shifter

1
2
3
4
5
6
7
8
9

CD
RD
TD

DTR
SG

DSR
RTS
CTS
RI

PC COM Port

Pin Signal1 5

6 9

47

46

44

45

 

Figure 31 JN5121 Serial Communication Link 

 

 



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 37 

13.3  Programming Example 
The following code shows the peripheral library calls to configure UART0 and output the message ‘Hello World’ 

Programming Example 
/* Set up uart0 */ 
 
vAHI_UartEnable(E_AHI_UART_0);  
/* Reset the Tx and Rx */ 
vAHI_UartReset(E_AHI_UART_0, UART_TX_RESET, UART_RX_RESET); 
/* set baud rate */ 
vAHI_UartSetClockDivisor(0, E_AHI_UART_RATE_38400); 
/* set parity, start bits, number data bits */ 
vAHI_UartSetControl(E_AHI_UART_0,  
                    UART_EVEN_PARITY, 
                    UART_NO_PARITY,  
                    E_AHI_UART_WORD_LEN_8, 
                    UART_1_STOP_BIT, 
                    UART_RTS_INACTIVE); 
/* clear reset */ 
vAHI_UartReset(E_AHI_UART_0, UART_TX_ENABLE, UART_RX_ENABLE); 
 
/* output message */ 
char acstring[] = “Hello World”; 
char *pcstring = acstring; 
 
while (*pcstring) 
{ 
    vAHI_UartWriteData(E_AHI_UART_0, *pcstring); 
    pcstring++; 

} 

 

 



������������������������ 

38 JN-DS-JN5121 v1.2 © Jennic 2005 

14 Two-Wire Serial interface 
The JN5121 includes an industry standard two-wire synchronous serial interface (SIF) that provides a simple and 
efficient method of data exchange between devices. The system uses a serial data line (SIF_D) and a serial clock 
line (SIF_CLK) to perform bidirectional data transfers and includes the following features: 

• Compatible with both I2C and SMbus peripherals 

• Multi-master operation 

• Software programmable clock frequency 

• Clock stretching and wait state generation 

• Software programmable acknowledge bit 

• Interrupt or bit-polling driven byte-by-byte data-transfers 

• Bus busy detection 

• Support for 7 and 10 bit addressing modes 

Prescale
Register

Receive
Register

Command
Register

Status
Register

Transmit
Register

Byte
Command
Controller

Data I/O
Shift

Register

Bit
Command
Controller

Clock
Generator

SIF_CLK

SIF_D

P
rocessor B

us

 

Figure 32: SIF Block Diagram 

The prescale register, set using the vAHI_SiConfigure() function, allows the interface to be configured to operate 
at up to 400kbit/s.  The clock generator handles the clock stretching required by some slave devices.  

The Byte Command Controller handles traffic at the byte level.  It takes data from the Command Register and 
translates it into sequences based on the transmission of a single byte.  By setting the start, stop, read, write and 
acknowledge control bits in the command register using the vAHI_SiSetCmdReg() function it is possible to 
generate read or write sequences on the bus. 

The data I/O shift register contains the data associated with the current transfer.  During a read operation data is 
shifted into this register from the SIF_D line.  When the read is complete the byte is copied into the receive register 
and can be accessed using the vAHI_SiReadData8() function. 

During a write operation the contents of the transmit register are copied into the shift register and then onto the SIF_D 
line.  The transmit register can be accessed using the vAHI_SiWriteData8() function.  It is possible to generate 
an interrupt upon the completion of a byte transmission or reception.  If required this interrupt can be enabled by 
using the vAHI_SiConfigure() function.  



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 39 

If interrupt-driven communication is not desired it is possible to poll the status of the interface by using the 
bAHI_SiPollBusy() and bAHI_SiPollTransferInProgress() functions. 

The first byte of data transferred by the device after a start bit is the slave address.  The JN5121 supports both 7 and 
10-bit slave addresses by generating either one or two address transfers.  Only the slave with a matching address will 
respond by returning an acknowledge bit.  The slave address to be used is set using the 
vAHI_SiWriteSlaveAddr() function. 

The SIF signals SIF_CLK, SIF_D are alternate functions of pins DIO14 and 15 respectively. 

 

14.1  Connecting Devices 
The clock and data lines, SIF_D and SIF_CLK, are alternate functions of DIO lines 14 and 15 respectively.  The serial 
interface function of these pins is selected when the interface is enabled using the vAHI_SiConfigure() function.  
They are both bidirectional lines, connected internally to the positive supply voltage via weak (45kΩ) programmable 
pull-up resistors.  However, it is recommended that external 4.7kΩ pull-ups be used for reliable operation at high bus 
speeds, as shown in Figure 33.  When the bus is free, both lines are HIGH.  The output stages of devices connected 
to the bus must have an open-drain or open-collector in order to perform the wired-AND function.  The number of 
devices connected to the bus is solely dependent on the bus capacitance limit of 400pF. 

SIF_CLK

SIF_D

Vdd

D1_OUT

D1_IN CLK1_IN

CLK1_OUT

D2_IN CLK2_IN

CLK2_OUT

DEVICE 1 DEVICE 2

RPRP
Pullup
Resistors

D2_OUT

JN5121

SIF
55

56

 

Figure 33: Connection Details 

14.2  Multi-Master Operation 
The interface provides a true multi-master bus including collision detection and arbitration that prevents data 
corruption.  If two or more masters simultaneously try to control the bus, a clock synchronization procedure 
determines the bus clock.  Because of the wired-AND connection of the interface a high-to-low transition on the bus 
affects all connected devices.  Therefore a high-to-low transition on the SF_CLK line causes all concerned devices to 
count off their low period.  Once a devices clock input has gone low it will hold the SF_CLK line in that state until the 
clock high state is reached.  Due to the wired-AND connection the SF_CLK line will therefore be held low by the 
device with the longest low period, and held high by the device with the shortest high period. 



������������������������ 

40 JN-DS-JN5121 v1.2 © Jennic 2005 

SIF_CLK1

SIF_CLK2

SIF_CLK

Master1 SIF_CLK

Master2 SIF_CLK

Wired-AND SIF_CLK

Start counting
low period

Start counting
high period

Wait
State

 

Figure 34: Multi-Master Clock Synchronization 

14.3  Clock Stretching 
Slave devices can use clock stretching to slow down the transfer bit rate.  After the master has driven SIF_CLK low, 
the slave can drive SIF_CLK low for the required period and then release it.  If the slave’s SIF_CLK low period is 
greater than the master’s low period the resulting SIF_CLK bus signal low period is stretched thus inserting wait 
states. 

SIF_CLK

SIF_CLK

SIF_CLK

Master SIF_CLK

Slave SIF_CLK

Wired-AND SIF_CLK

Clock held low
by Slave

 

Figure 35: Clock Stretching 

14.4  Programming Example 
The two-wire serial interface protocol is implemented by a combination of hardware and software.  Normally, a 
standard communication cycle consists of four parts: 

• Start signal generation 

• Slave address transfer 

• Data transfer 

• Stop signal generation 

The hardware API supports several calls to support the protocol on the interface.  All bit-level timing is implemented 
by dedicated hardware within the JN5121.  The following code example shows how to read a set of values for a slave 
device into a buffer.  A typical application would be data logging from a sensor. 

Note that bAHI_SiPollTransferInProgress() function is used to block execution until a byte has been 
transferred.  Higher performance applications should use interrupts to detect end of transfer, running the two-wire 
interface as a background task outside the main program thread. 

The waveforms below illustrate the operation of the bSIFRead() function listed on the following page. 

D7 D6 D5 NAck P

Slave Address Transfer Slave Data Transfer

S Rd Ack

SIF_CLK

SIF_D 7-bit address 0x4E D4 D3 D2 D1 D0

Repeated x u32Length

 

Figure 36: Read From Slave Device 



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 41 

 

Programming Example 
PRIVATE bool_t bSIFRead(uint8 u8SlaveAddress, uint8 *pau8ReadBuffer, uint32 
u32Length) 
{ 
    int i; 
    for (i=0;i<u32Length;i++) 
    { 
        /* set slave address */ 
        vAHI_SiWriteSlaveAddr(u8SlaveAddress, E_AHI_SI_SLAVE_RW_SET); 
 
        /* send read command */ 
        vAHI_SiSetCmdReg(E_AHI_SI_START_BIT_,  
                         E_AHI_SI_NO_STOP_BIT, 
                         E_AHI_SI_NO_SLAVE_READ, 
                         E_AHI_SI_SLAVE_WRITE, 
                         E_AHI_SI_SEND_ACK, 
                         E_AHI_SI_NO_IRQ_ACK); 
  
        while(bAHI_SiPollTransferInProgress()); /* busy wait  */ 
     
        if (bAHI_SiCheckArbitrationLost()|bAHI_SiCheckRxNack()) 
        { 
            /* release bus & abort */ 
            vAHI_SiSetCmdReg(E_AHI_SI_NO_START_BIT, E_AHI_SI_STOP_BIT, 
                             E_AHI_SI_NO_SLAVE_READ, E_AHI_SI_SLAVE_WRITE,         
                             E_AHI_SI_SEND_ACK, E_AHI_SI_NO_IRQ_ACK); 
            return FALSE; 
        } 
        if (i < u32Length - 1) 
        { 
            /* read and ack */ 
            vAHI_SiSetCmdReg(E_AHI_SI_NO_START_BIT, E_AHI_SI_NO_STOP_BIT, 
                             E_AHI_SI_SLAVE_READ, E_AHI_SI_NO_SLAVE_WRITE, 
                             E_AHI_SI_SEND_ACK, E_AHI_SI_NO_IRQ_ACK); 
 
        } 
        else /* last byte */ 
        { 
            /* read, stop, nack */ 
            vAHI_SiSetCmdReg(E_AHI_SI_NO_START_BIT, E_AHI_SI_STOP_BIT, 
                             E_AHI_SI_SLAVE_READ, E_AHI_SI_NO_SLAVE_WRITE, 
                             E_AHI_SI_SEND_NACK, E_AHI_SI_NO_IRQ_ACK); 
        } 
    
        while(bAHI_SiPollTransferInProgress()); /* busy wait  */ 
    
        if (bAHI_SiCheckArbitrationLost()) 
        { 
            /* release bus & abort */ 
            vAHI_SiSetCmdReg(E_AHI_SI_NO_START_BIT_DISABLE, E_AHI_SI_STOP_BIT, 
                             E_AHI_SI_NO_SLAVE_READ, E_AHI_SI_NO_SLAVE_WRITE, 
                             E_AHI_SI_SEND_ACK, E_AHI_SI_NO_IRQ_ACK); 
            return FALSE; 
        } 
 
        /* Store data read from device */ 
        pau8ReadBuffer[i] = u8AHI_SiReadData8(); 
    } 
    /* transfer complete */ 
    vAHI_SiSetCmdReg(E_AHI_SI_NO_START_BIT, E_AHI_SI_STOP_BIT, 
                     E_AHI_SI_NO_SLAVE_READ, E_AHI_SI_NO_SLAVE_WRITE, 



������������������������ 

42 JN-DS-JN5121 v1.2 © Jennic 2005 

                      E_AHI_SI_SEND_ACK, E_AHI_SI_NO_IRQ_ACK); 
    return TRUE; 
} 

 



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 43 

15 Analogue Peripherals 
The JN5121 contains a number of analogue peripherals allowing the direct connection of a wide range of external 
sensors, switches and actuators.  

ADC

DAC1

DAC2

VREF

Chip
Boundary

Internal  Reference

Processor Bus

Supply Voltage
(VDD1)

Vref select

Temp
Sensor

Comparator 2

Comparator 1

COMP2M

COMP1M

COMP1P

COMP2P

DAC1

DAC2

ADC1

ADC2

ADC3

ADC4

Vref

  

Figure 37: On-chip Analogue Peripherals 

In order to provide good isolation from digital noise, the analogue peripherals are powered by a separate regulator, 
supplied from the analogue supply VDD1 and referenced to analogue ground VSSA. 

The ADC and DAC reference Vref can be selected by vAHI_ApConfigure() between an internal bandgap 
reference or an external voltage reference supplied to the VREF pin. 

 



������������������������ 

44 JN-DS-JN5121 v1.2 © Jennic 2005 

15.1  Analogue to Digital Converter 
The 12-bit analogue to digital converter (ADC) uses a successive approximation design to perform high accuracy 
conversions as typically required in wireless sensor network applications.  It has six multiplexed single-ended input 
channels: four available externally, one connected to an internal temperature sensor, and one connected to an 
internal supply monitoring circuit.   

15.1.1  Operation 
The input range of the ADC can be set between 0V to either the reference voltage or twice the reference voltage.  
The reference can be taken either from the internal voltage reference or from the external voltage applied to the 
VREF pin.  For example an external reference of 0.8v supplied to VREF may be used to set the ADC range between 
0V and 1.6V. 

The device has programmable clock periods to allow a trade-off between conversion speed and resolution with the 
full 12-bit resolution being achieved with the 250kHz clock rate.  See section 17.3.7 electrical characteristic for more 
details. 

The input clock to the ADC is 16MHz and is divided down to 2MHz, 1MHz, 500kHz or 250kHz with a programmable 
divider.  During an ADC conversion the selected input channel is sampled for a fixed period and then held.  This 
sampling period is defined as a number of ADC clock periods and can be programmed to 2, 4, 6 or 8.  The 
conversion rate is (2 x sampling interval) + (14 x Clock periods), for example if the sampling period is set to 2 clock 
periods and the clock is set to 2MHz (the fastest clock rate), the conversion rate will be 2 x 2 + 14 = 18 clock periods 
or 111.1kHz.  

If the source resistance of the input voltage is 1k� or less, then the default sampling time of 2 clocks should be used.  
The input to the ADC can be modelled as a resistor of 10k� to represent the on-resistance of the switches and the 
sampling capacitor 8pF.  The sampling time required can then be calculated, by adding the sensor source resistance 
to the switch resistance, multiplying by the capacitance giving a time constant.  Assuming normal exponential RC 
charging, the number of time constants required to give an acceptable error can be calculated, for example 7 time 
constants gives an error of 0.1%, but for 12-bit accuracy, 10 time constants should be the target.  For a source with 
zero resistance, 10 time constants is 800 nsecs, hence the smallest sampling window of 2 clock periods can be used.  

The ADC clock and sampling periods are set with vAHI_ApConfigure().  The ADC input range and input is 
selected and the ADC enabled in either single shot mode with vAHI_AdcStartSample() or continuous mode using 
vAHI_AdcEnable().   

When the ADC conversion is complete an interrupt is generated.  This is enabled using vAHI_ApConfigure().  
Alternatively the conversion status can monitored using bAHI_AdcPoll().  When operating in continuous mode, it 
is recommended that the interrupt is used to signal the end of a conversion, since conversion times may range from 9 
to 120 µsecs.  Polling over this period would be wasteful of processor bandwidth.  The result of a conversion can be 
read using vAHI_AdcRead() function. 

15.1.2  Supply Monitor 
The internal supply monitor allows the voltage on the analogue supply pin VDD1 to be measured. This is achieved 
with a potential divider which reduces the voltage by a factor of 0.666, allowing it to fall inside the input range of the 
ADC when set with an input range twice the internal voltage reference.  The resistor chain that performs the voltage 
reduction is disabled until the measurement is made to avoid a continuous drain on the supply. 

15.1.3  Temperature Sensor 
The on-chip temperature sensor can be used either to provide an absolute measure of the device temperature or to 
detect changes in the ambient temperature.  In common with most on-chip temperature sensors it is not trimmed and 
so the absolute accuracy variation is large; the user may wish to calibrate the sensor prior to use.  The sensor forces 
a constant current through a forward biased diode to provide a voltage output proportional to the chip die temperature 
which can then be measured using the ADC.  The measured voltage has a linear relationship to temperature as 
described in section 17.3.10.  

Because this sensor is on-chip any measurements taken must account for the thermal time constants.  For example if 
the device just came out of sleep mode the user application should wait until the temperature has stabilized before 
taking a measurement. 



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 45 

15.1.4  Programming Example 
The following example uses demonstrates data logging using the ADC1 input channel. 

Programming Example 
PRIVATE void vAdcDataLogger(uint16 *pau16DataBuffer, uint32 u32Length) 
{ 
    /* configure Analogue Peripheral timings, interrupt & ref voltage */    
    vAHI_ApConfigure(E_AHI_AP_INT_DISABLE, 
                     E_AHI_AP_SAMPLE_2, 
                     E_AHI_AP_CLOCKDIV_2MHZ, 
                     E_AHI_AP_INTREF); 
     
    /* configure & enable DAC */ 
    vAHI_AdcEnable(E_AHI_ADC_CONVERT_ENABLE, 
                   E_AHI_ADC_GAIN_1, 
                   E_AHI_ADC_SRC_ADC_1); 
    while(TRUE) 
    { 
        for (i=0;i<u32Length;i++) 
        { 
            vAHI_AdcStartSample(); /* start capture */ 
            while(bAHI_AdcPoll()); /* busy wait until capture complete  
            pau16DataBuffer[i] = u16AHI_AdcRead(); /* store in buffer */ 
        } 
    } 
} 

15.2  Digital to Analogue Converter 
The Digital to Analogue Converter (DAC) provides two output channels and is capable of producing voltages of 0 to 
Vref or 0 to 2Vref where Vref is selected between the internal reference and the VREF pin, with a resolution of 11 bits 
and a minimum conversion time of 9µs.  

15.2.1  Operation 
The output range of each DAC can be set independently to swing between 0V to either the reference voltage or twice 
the reference voltage.  The reference voltage is selected from the internal reference or the VREF pin.  For example 
an external reference of 0.8V supplied to VREF may be used to set DAC1 maximum output of 0.8V and DAC2 
maximum output of 1.6V. 

The DAC output amplifier is capable of driving a RC load up to that specified in section 17.3.8. 

Programmable clock periods set with vAHI_ApConfigure() allow a trade-off between conversion speed and 
resolution. The full 11-bit resolution is achieved with the 250kHz clock rate. See section 17.3.7, electrical 
characteristics, for more details. 

The conversion period of the DACs are given by the same formula as the ADC conversion time and so can vary 
between 9 and 120uS.  The DAC values may be updated at the same time as the ADC is active. 

The clock divider ratio, interrupt enable and reference voltage select are all controlled by the vAHI_ApConfigure() 
function which is for options common to both the ADC and DAC.  The DAC output range and value is set with 
vAHI_DacEnable() and subsequent updates may use vAHI_DacOutput(), which only requires the new DAC 
value.  The call bAHI_DacPoll() can be used to determine if a DAC channel is busy performing a conversionThe 
vAHI_DacDisable() function is used to power down a DAC cell.  



������������������������ 

46 JN-DS-JN5121 v1.2 © Jennic 2005 

15.2.2  Programming Example 
The following code example illustrates how to generate a sawtooth waveform on pin 29 (DAC1) 

Programming Example 
PRIVATE void vDacSawtooth(void) 
{ 
    /* configure Analogue Peripheral timings, interrupt & ref voltage */ 
    vAHI_ApConfigure( E_AHI_AP_INT_DISABLE, 
                      E_AHI_AP_SAMPLE_2, 
                      E_AHI_AP_CLOCKDIV_2MHZ, 
                      E_AHI_AP_INTREF); 
    vAHI_DacEnable(E_AHI_DAC_1, FALSE, 0); /* configure & enable DAC */ 
    while(TRUE) 
    { 
        for (i=0;i<2048;i++) 
        { 
            vAHI_DacOutput(E_AHI_DAC_1, i); /* value to output */ 
            while(bAHI_DacPoll());     /* busy wait until conversion 
complete */ 
        } 
    } 
} 
 

15.3  Comparators 
The JN5121 contains two analogue comparators COMP1 and COMP2.  They are designed to have true rail-to-rail 
inputs and operate over the full voltage range of the analogue supply VDD1.  The hysteresis level (common to both 
comparators) can be set to a nominal value of 0mV, 5mV, 10mV or 20mV using the vAHI_ComparatorEnable() 
function.  In addition, the source of the negative input signal for each comparator (COMP1M and COMP2M) can be 
set to one of the internal voltage reference, the output of DAC1 (COMP2 only) or the external pin, using 
vAHI_ComparatorEnable().  The comparator outputs are routed to internal registers and can be polled using the 
u8AHI_ComparatorStatus() function, or can be used to generate interrupts controlled by 
vAHI_ComparatorIntEnable().  The comparators can be individually disabled using the 
vAHI_ComparatorDisable() function to reduce power consumption. 

The comparators have a low power mode where the response time of the comparator is slower than normal and is 
specified in section 17.3.9.  This mode is useful to wake up the JN5121 from sleep where low current consumption is 
important.  The function vAHI_ComparatorIntEnable() enables the wakeup action and sets which edge of the 
comparator output will be active.  In sleep mode the negative input signal source defaults to the external pins. 

 



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 47 

16 Power Management and Sleep Modes 

16.1  Power Domains 
There are six power domains present in the device allowing different parts to be turned off to save power under 
different operating conditions. These domains are as follows: 

• The supply power domain is directly powered from VDD1, VDD2 that supplies the wake-up timers and 
controller, DIO blocks, Comparators, low-power RAM, 32kHz RC oscillator and bandgap reference.  This 
domain remains powered as long as the external supply is maintained 

• The Application Logic domain comprising the SPI interface, CPU, and ROM is powered from an on-chip 
regulator.  It is powered off during sleep and powered on at wakeup 

• The Analogue Peripheral domain comprises the ADC, DACs and the temperature sensor is powered from an 
on-chip regulator.  It is powered off during sleep and optionally powered on under software control 

• Memory (RAM) power domain provides the ability to power the CPU RAM during sleep periods in order to keep 
the memory contents.  It is powered from an on-chip regulator that is on when the JN5121 is not in sleep and 
optionally, under software control powered off during sleep 

• The Transceiver Logic domain, comprising the Baseband Controller, Modem and Encryption coprocessor, is 
powered from an onchip regulator.  It is typically under software control and powered when wireless 
communications is required 

• The Radio power domain supplies the radio interface.  It is powered during transmit and receive and controlled 
by the baseband processor. 

16.2  Sleep Modes 
Sleep modes enable the application to shut down unused functions in the device, thereby saving power.  The JN5121 
provides three sleep modes allowing the user to tailor the power consumption to the application’s requirements. 

The state of the JN5121 pins during sleep are described in section 2.2.  The DIO pins retain their input or output 
status and their output value for the sleep period. 

16.2.1  CPU Doze 
Whilst in doze mode CPU operation is stopped but it remains powered and the digital peripherals continue to run. 
Doze mode is entered by executing the vAHI_CpuDoze() function and is terminated by any interrupt request.  Once 
the interrupt service routine has been executed the vAHI_CpuDoze() function returns and normal program 
execution resumes.  Doze mode uses more power than sleep and deep sleep modes but requires less time to restart 
and can therefore be used as a low power alternative to an idle loop. 

16.2.2  Sleep 
The JN5121 enters sleep under CPU control using the vAHI_PowerDown() function.  All power domains are turned 
off except the supply power domain and optionally the memory domain, determined by vAHI_MemoryHold().  A 
wakeup event, caused by an interrupt from the wakeup timers, DIO pins or analogue comparator inputs bring the 
device out of sleep.  Wakeup from sleep is described in detail in section 16.3.   

16.2.3  Deep Sleep 
Deep sleep mode gives the lowest power consumption as all switchable power domains are off and functions in the 
supply power domain, including the 32kHz oscillator are stopped.  It is entered by executing the 
vAHI_PowerDown() function.  This mode can only be exited by a power down or hardware reset on the RESETN 
pin. 



������������������������ 

48 JN-DS-JN5121 v1.2 © Jennic 2005 

16.3  Wakeup Events 
Wakeup events are interrupts that can be used to restart the JN5121 from sleep mode.  These interrupts are powered 
from the supply power domain which remains powered during sleep mode.  There are three sources of wakeup 
events; transitions on DIO inputs, expiry of wakeup timers and comparator events. Only one wakeup will occur even if 
multiple sources were triggered.  Software should remove the pending wakeup events prior to requesting a power-
down in order to avoid a wakeup event generated during the previous awake period persisting and re-awakening the 
device immediately it goes to sleep.  

Wakeup has a similar sequence of events to the reset process described in section 6.1.  The 16MHz oscillator is 
started up and, once stable, the application power domain is powered and the CPU reset removed.  Software 
determines a reset from sleep and commences the wakeup process. 

16.3.1  Wakeup Timer Event 
The JN5121 contains two 32-bit wakeup timers, which are counters clocked from the 32kHz oscillator, and can be 
programmed to generate a wake-up event.  These timers are described in section 12.3.  

Timer events can be generated from both of the two timers; one is intended for use by the 802.15.4 protocol, the 
other being available for use by the Application running on the CPU.  These timers are available to run at any time, 
even during sleep mode, and are controlled by API calls as detailed in the Jennic document JN5121 Hardware 
Peripheral API Reference Manual [2]. 

16.3.2  DIO Event 
Any DIO pin when used as an input has the capability, by detecting a transition, to generate a wake-up event.  Once 
this feature has been enabled using the vAHI_DioIntEnable() function the type of transition can be specified 
(rising or falling edge) by using the vAHI_DioIntEdge() function.  Even when groups of DIO lines are configured to 
be used for alternative functions such as the UARTs or Timers etc, any input line in the group can still be used to 
provide a wakeup event.  This means that an external device communicating over the UART can wakeup a sleeping 
device by asserting its RTS signal pin. 

16.3.3  Comparator Event 
The comparators can generate a wakeup interrupt when a change in the relative levels of the positive and negative 
inputs occurs, the  negative input being selectable between the external pin COMP1N and COMP2N or the internal 
voltage reference.  The ability to wakeup when continuously monitoring analogue signals is useful in ultra-low power 
applications.  The JN5121 can remain in sleep mode until the voltage drops below a threshold and then be woken up 
to deal with the alarm condition. 



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 49 

17 Electrical Characteristics 

17.1  Maximum ratings 
Exceeding these conditions will result in damage to the device. 

Parameter Min Max 

Device supply voltage VDD1, VDD2 -0.3V 3.6V 

Supply voltage at voltage regulator bypass pins 
VB_xxx 

-0.3V 1.98V 

Voltage on analogue pins XTALOUT, XTALIN, 
VCOTUNE, COMP1P, COMP1M, RFP, RFM,  

-0.3V VB_xxx + 0.3V 

Voltage on analogue pins VREF, ADC1-4, DAC1-2, 
COMP2M, COMP2P, IBIAS 

-0.3V VDD1 + 0.3V 

Voltage on 5v tolerant digital pins SPICLK, 
SPIMOSI, SPIMISO, SPISEL0, GPIO0-GPIO20, 
RESETN 

-0.3V Lower of VDD2 + 2V and 
5.5V 

Storage temperature -40ºC 150ºC 

 

17.2  DC Electrical Characteristics 

17.2.1  Operating Conditions 

Supply Min (V) Max (V) 

VDD1, VDD2 2.2 3.6 

Ambient temperature range -40ºC 85ºC 



������������������������ 

50 JN-DS-JN5121 v1.2 © Jennic 2005 

17.2.2  DC Current Consumption 
VDD = 2.2-3.6V, -40 to +85 deg. C 

Mode: Min Typ Max Notes 

Deep sleep  <1uA   

Sleep  <5uA   

CPU running and peripherals 
enabled 

 9mA  CPU running @ 16MHz 

CPU running, peripherals and 
baseband enabled 

 12mA  CPU running @ 16MHz 

CPU doze, peripherals enabled, 
baseband processing packets, 
radio transmit 

 35mA   

CPU running, peripherals 
enabled, baseband processing 
packets, radio transmit 

 40mA  CPU running @ 16MHz 

CPU running, peripherals 
enabled, baseband processing 
packets, radio receive. 

 50mA  CPU running @ 16MHz 

Comparator   72uA   

Comparator (Low power mode)  1.3uA   

ADC  700uA   

DAC  300/410uA  One/both 

Temperature sensor  10uA   



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 51 

17.2.3  I/O Characteristics 
VDD = 2.2 to 3.6V, -40 to +85 deg. C 

Parameter Min Typ Max Notes 

Internal DIO pull – up resistors 24kΩ 
27kΩ 
38kΩ 

35kΩ 
42kΩ 
59kΩ 

53kΩ 
63kΩ 
92kΩ 

VDD2 = 3.6V, 25C 
VDD2 = 3.0V, 25C 
VDD2 = 2.2V, 25C 

Digital I/O High Input VDD2 x 0.7V  Lower of 
VDD2 + 2V 
and 5.5V 

5V Tolerant 

Digital I/O low Input -0.3V  VDD x 0.27  

Digital IO input hysteresis 0.175V  0.4V  

Digital I/O High Output  VDD2 x 0.8  VDD2 With 4mA load 

Digital I/O Low Output  0V  0.4V With 4mA load 

Current sink capability  4mA 
3mA 

 VDD2 = 2.7V – 3.6V 
VDD2 = 2.2-2.7V 

17.3  AC Characteristics 

17.3.1  Reset 

RESETN

Internal RESET

VDD
VPOT

tSTAB

 

Figure 38: Power-on Reset 



������������������������ 

52 JN-DS-JN5121 v1.2 © Jennic 2005 

Internal RESET

RESETN
VRST

tSTAB

tRST

 

Figure 39: External Reset 

 

Parameter Min Typ Max Notes 

External Reset pulse width 1 µsec   Assumes internal pullup 
resistor value of 100K 
worst and ~5pF 
external capacitance. 

External Reset threshold 
voltage 

VDD2 x 0.7V    

Internal Power-on Reset 
threshold voltage (VPOT)  

 2.1V 
2.3V 

2.45V 

 VDD2 = 2.2V 
VDD2 = 3.0V 
VDD2 = 3.6V 
Note 1 

1 The power-on reset will not operate unless VDD has fallen below VPOT(falling) 

 

17.3.2  SPI Timing 

tSSHtSSS

tCK

tSI

tHI

MOSI
(tx_neg=0)

SS

MOSI
(tx_neg=1)

MISO
(rx_neg=0)

MISO
(rx_neg=1)

tVO

tVO

CLK

tSI

tHI

 

Figure 40: SPI Timing (Master) 

Parameter Symbol Min Max Unit 

Clock period tCK 62.5 - nsec 

Data setup time tSI 5 - nsec 
Data hold time tHI 10  nsec 
Data invalid period tVO - 15ns nsec 



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 53 

Select set-up period tSSS 10 - nsec 
Select hold period tSSH 10 - nsec 

17.3.3  Two-wire serial interface 

tBUF

Sr P SS

tLOW

tHD;STA

tF tR

tHD;DAT

tHIGH

tSU;DAT

tSU;STA

tHD;STA

tSU;STO

tSP tR

tF

SIF_D

SIF_CLK

 

Figure 41: Two-wire serial Interface Timing 

Parameter Symbol Min Max. Unit 

SIF_CLK clock frequency fSCL 0 400 kHz 

Hold time (repeated) START condition.  After this period, the 
first clock pulse is generated 

tHD:STA 0.6 - µsec 

LOW period of the SIF_CLK clock tLOW 1.3 - µsec 

HIGH period of the SIF_CLK clock tHIGH 0.6  µsec 

Set-up time for repeated START condition tSU:STA 0.6 - µsec 

Data hold time SIF_D tHD:DAT 0 0.9 µsec 

Data setup time SIF_D tSU:DAT 100 0 µsec 

Rise Time SIF_D and SIF_CLK tR 20+0.1Cb 300 nsec 
Fall Time SIF_D and SIF_CLK tF 20+0.1Cb 300 nsec 

Set-up time for STOP condition tSU:STO 0.6 - µsec 

Bus free time between a STOP and START condition tBUF 1.3 - µsec 

Capacitive load for each bus line Cb - 400 pF 
Noise margin at the LOW level for each connected device 
(including hysteresis) 

Vnl 0.1VDD - V 

Noise margin at the HIGH level for each connected device 
(including hysteresis) 

Vnh 0.2VDD - V 

Pulse width of spikes which must be suppressed by input filter tSP N/a 50 nsec 

 

17.3.4  Power Down and Wake-Up timings 
Parameter Min Typ Max Notes 

Wake up from Deep Sleep  2.5 + 0.84* 
program size 
in kBytes ms 

  

Wake up from Sleep (memory 
not held) 

 2.5 + 0.84* 
program size 
in kBytes ms 

  

Wake up from Sleep (Memory 
held) 

 2.5ms   

Wake up from Processor Doze 
mode 

 0.5us   



������������������������ 

54 JN-DS-JN5121 v1.2 © Jennic 2005 

 

17.3.5  32kHz Oscillator 
VDD = 2.2 to 3.6V,  -40 to +85 deg. C 

Parameter Min Typ Max Notes 

Current consumption of cell and 
counter logic  

 5uA 
3.8uA 
3.0uA 

 3.3V 
2.5V 
2.2v 

32kHz clock native accuracy -30%  +30%  

Calibrated 32kHz accuracy  +/-40ppm  Dependant on crystal 
accuracy 

Un-calibrated variation with 
temperature 

 8Hz/ deg. C   

Un-calibrated variation with 
VDD2 

 150Hz/V   

 

17.3.6  16MHz Crystal Oscillator 
VDD = 2.2 to 3.6V,  -40 to +85 deg. C 

Parameter Min Typ Max Notes 

Current consumption   150uA  Excluding bandgap ref. 

Start – up time  2.5mS  Assuming xtal with ESR 
of 40ohms and CL=9pF. 
External caps =12pF 

Input capacitance  2pF  Bondpad and package 

Transconductance  1.15mA/V   

DC voltages, XTALIN, XTALOUT  410mV   

External Capacitors ( C1 & C2)   12pF  Total external 
capacitance needs to be 
2*CL. , allowing for stray 
capacitance from chip, 
package and PCB  

 

17.3.7  Analogue to Digital Converters 
VDD = 3.0V, VREF = 1.2V, -40 to +85 deg. C 

Parameter Min Typ Max Notes 

Resolution   12 bits 250KHz Clock 

Current consumption  700uA   



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 55 

Parameter Min Typ Max Notes 

Integral nonlinearity  +/-2 LSB   

Differential nonlinearity   +/-1 LSB Guaranteed monotonic 

Offset error  +/- 20 mV   

Gain error  TBA   

Internal clock  2MHz, 1MHz, 
500kHz, 
250kHz 

 16MHz input clock, 
programmable prescaler 

No. internal clock periods to 
sample input 

 2,4,6 or 8  Programmable 

Conversion time 9us   2MHz Clock with sample 
period of 2 

Effective No. bits  with Clock  
 
                  250KHz 
                  500KHz 
                  1MHz 
                  2MHz 

  
 
TBA 
TBA 
TBA 
TBA 

  

Input voltage range   0 to Vref 
or 0 to 2*Vref 

Switchable  

Vref (Internal) 1.15 1.2 1.25 Bandgap voltage 

Vref (External) 0.8 1.2 1.6 Allowable range into 
VREF pin 

Input capacitance  8pF  In series with 5K ohms 

 

17.3.8  Digital to Analogue Converters 
VDD = 3.0V, VREF = 1.2V, -40 to +85 deg. C 

Parameter Min Typ Max Notes 

Resolution  11bits   

Current consumption:    300uA (single) 
410uA (both) 

  

Integral nonlinearity  +/-1 LSB   

Differential nonlinearity   +/-1 LSB Guaranteed monotonic 

Offset error  +/- 20 mV   

Gain error     

Internal clock  2MHz, 1MHz, 
500kHz, 
250kHz 

 16MHz input clock, 
programmable prescaler 



������������������������ 

56 JN-DS-JN5121 v1.2 © Jennic 2005 

Parameter Min Typ Max Notes 

Output settling time to 0.5LSB 5uS   With and 10K ohms & 
20pF load 

Minimum Update time  9us   2MHz Clock with sample 
period of 2 

Output voltage swing  0 to VREF or 0 
to 2xVREF 

 Switchable 

Vref (Internal) 1.15V 1.2V 1.25V Bandgap voltage 

VREF (External) 0.8V 1.2V 1.6V Allowable range into 
VREF pin 

Resistive load 10kΩ   To gnd 

Capacitive load   20pF  

 

17.3.9  Comparators 
VDD = 2.2 to 3.6V -40 to +85 deg. C 

Parameter Min Typ Max Notes 

Analog response time (normal)  60ns 73ns +/- 250mV overdrive 

Total response time (normal) 
including delay to Interrupt 
controller 

  73ns +125nS Digital delay can be up to 
a max. of two 16MHz 
clock periods 

Analog response time (low 
power) 

 2.5us 4.2us +/- 250mV overdrive 
No digital delay 

Hysteresis  10mV 
20mV 
40mV 

 Programmable in 3 steps 
and zero.  

Vref (Internal) 1.15V 1.2V 1.25V  

Common Mode input range 0V  Vdd  

Current ( normal mode )  72uA   

Current (low power mode)  1.3uA   

Analog response time (normal)  60ns 73ns +/- 250mV overdrive 

 



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 57 

17.3.10  Temperature Sensor 
 

Parameter Min Typ Max Notes 

Operating Range -40°C - 85°C  

Sensor Gain -1.55 mV/°C -1.6 mV/°C -1.63 mV/°C  

Accuracy - - ±10°C  

Non-linearity - - 2°C  

Output Voltage Range 620 mV 750 mV 845 mV  
Resolution 0.19°C/LSB 0.183°C/LSB 0.179°C/LSB 0 to Vref ADC I/P 

Range 

 

17.3.11  Radio Transceiver 
This device is fully compatible with the IEEE802.15.4 standard and offers the following improved RF characteristics:  

All RF characteristics are measured single ended and include the losses of a ceramic balun. 

Parameter Min Typical Max Notes 

Frequency range 2.4 GHz  2.4835GHz  

Receiver Characteristics 

Receive sensitivity  -93dBm  Nominal for 1% PER, as 
per 802.15.4 section 
6.5.3.3 

Maximum input signal  -10dBm  For 1% PER, measured 
as sensitivity 

Adjacent channel rejection  20dB  For 1% PER with wanted 
signal 3dB above 
sensitivity, as per 
802.15.4 section 6.5.3.4 

Alternate channel rejection  40dB  For 1% PER with wanted 
signal 3dB above 
sensitivity, as per 
802.15.4 section 6.5.3.4 

Other in band rejection   40dB  2.4 to 2.4835 GHz, 
excluding adjacent 
channels 
For 1% PER with wanted 
signal 3dB above 
sensitivity, measured as 
per 802.15.4 section 
6.5.3.4 

Out of band rejection  TBA   

Spurious emissions (RX)  -57dBm 
-47dBm 

 30MHz - 1GHz  
1 - 12GHz 



������������������������ 

58 JN-DS-JN5121 v1.2 © Jennic 2005 

Parameter Min Typical Max Notes 

Intermodulation protection  35dB  For 1% PER at with 
wanted signal 3dB above 
sensitivity. Modulated 
Interferers at 2 & 4 
channel separation 

RSSI range  -95 to -10 dBm  Linear within +/-2dB. 
Available through 
Hardware API 

Transmitter Characteristics 

Transmit power  1dBm  Nominal 

Output power control range  -30dB  in 5 6dB steps 

Spurious emissions (TX) 
 
 

 -36dBm 
-47dBm 
 
-43dBm 

 30MHz to 1GHz   
1.8-1.9GHz &  
5.15-5.3GHz 
1GHz-12.5GHz 

EVM   25% At maximum output 
power 

Transmit Power Spectral Density  -20dBc  At 3.5MHz offset, as per 
802.15.4, section 6.5.3.1 

RF Port Characteristics 

Type    Differential 

Impedance  200ohm  2.4-2.5GHz 



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 59 

Appendix A Mechanical and Ordering information   

A.1  Package Drawing 

 

Controlling Dimension: mm 

  Millimeter 
Symbol 

Min. Nom. Max. 
A ------ ------ 0.9 
A1 0.00 0.01 0.05 
A2 ------ 0.65 0.7 
A3   0.20 Ref.   
b 0.2 0.25 0.3 

D   8.00 bsc   
D1   7.75 bsc   
D2 6.20 6.40 6.60 
E   8.00 bsc   
E1   7.75 bsc   
E2 6.20 6.40 6.60 
L 0.30 0.40 0.50 
e   0.50 bsc   

υ1 0° ------ 12° 
R 0.09 ------ ------ 

Tolerances of Form and Position 

aaa   0.10   
bbb   0.10   
ccc   0.05   



������������������������ 

60 JN-DS-JN5121 v1.2 © Jennic 2005 

A.2  Ordering Information: 
Part numbering: 

JN5121(-XXX) - Y1Y2 - Y3Y4 

XXX is an optional identifier for customer specific masked ROM versions of the chip. 

Y1: Temperature Range: 

I -40°C to +85°C  - Industrial Temperature Range 

Y2: Screening Options 

G  Standard Jennic Product Screening 

Y3:  Package Variant 

A 56 lead, 0.5mm pitch 8x8mm Quad Flat No Leads (QFN) 

Y4: Packing Options 

R Trays 

T Tape and reel 

Ordering codes: 
 

Shipping Format: Ordering Code Notes 
Tape & Reel JN5121-xxx-IG-AT Multiples of 2,500 on a 13” reel 
Tray JN5121-xxx-IG-AR Up to 348 devices per tray 



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 61 

Appendix B Development Support 

B.1  Crystal Requirements 
16MHz Crystal Requirements 

Parameter Min Typ Max Notes 

Crystal Frequency  16MHz   

Crystal Tolerance  +/-40ppm  Including  temperature 
and aging 

Crystal ESR 20Ω  60Ω  

Crystal Load Capacitance CL  9pF   

External Capacitors (C1 & C2)   12pF  
Total external 
capacitance needs to be 
2*CL. , allowing for stray 
capacitance from chip, 
package and PCB  



������������������������ 

62 JN-DS-JN5121 v1.2 © Jennic 2005 

B.2  Applications Schematic 

43

CTS1

VB_PROT

1

RTS1

TXD1

RXD1

VSS2

RESETN

VSSS

XTALOUT

CLK_OP

XTALIN
VB_SYN

VB_APP
A

D
C

2

R
FP

V
B

_R
F

R
FM

V
R

E
F

A
D

C
1

A
D

C
4

V
B

_A

DAC129

15

A
D

C
3

VSS3

IB
IA

S

MOSI

SPISEL0

SPISEL1

VSS1

VB_MEM

SPISEL2

SPISEL3

VCOTUNE

MISO

V
B

_V
C

O

V
D

D
1

C
O

M
P

1M

C
O

M
P

1P

DAC2

COMP2P

COMP2M

SPICLK

TI
M

0C
K

_G
T

V
D

D
2

TI
M

1C
K

_G
T

TI
M

1C
A

P

TI
M

1O
U

T

S
IF

_C
LK

S
IF

_D

S
P

IS
E

L4

C
TS

0

R
TS

0

TX
D

0

R
X

D
0

TI
M

0O
U

T

TI
M

0C
A

P
������

IC1: JN5121

Vcc

UART 0
Timers

8

7

6

5

1

2

3

4

Vcc

Vcc

UART 1

RESET

Two Wire
Serial Port

SPI Selects

Analogue IO

SS

SDO

WP

Vss

Vcc

HOLD

CLK

SDI

Printed Antenna

CLK O/P

C2

C9

C8
R4

R9
C3

C1
C4

C5

C6

C15
C11

C10

C7

Y1

C12

C13

IC2
Serial
Flash

Memory

 

Components Values 
C1, C2, C3, C4, C5, C6, C7, C13, C12 100nF 
C10, C11 12pF 
C9 3n3F 
C8 680pF 
R4 4k7 
R9 43k 
Y1 16MHz Xtal 
IC1 JN5121 
IC2 128kB Serial Flash 

 
Table 3: Bill of Materials 



����������������������������

© Jennic 2005 JN-DS-JN5121 v1.2 63 

Appendix C  

Related Documents 
[1] IEEE Std 802.15.4-2003 IEEE Standard for Information technology – Part 15.4 Wireless Medium Access Control 

(MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs) 

[2] JN-RM-2001 Hardware Peripheral Library Reference Manual 

[3] JN-RM-2002 Stack Software Reference Manual 

[4] JN-AN-1003 Boot Loader Operation 

[5] JN-RM-2010 CPU Reference Manual 

[6] JN-UG-3001 SDK Installation User Guide 

 

Version Control 
Version Notes 

1.0 26th August 2005 Final Draft 

1.1 Modifications to pin list and pin configurations 
1.2  

Disclaimers 
The contents of this document are subject to change without notice.  Jennic reserves the right to make 
changes, without notice, in the products, including circuits and/or software, described or contained herein 
in order to improve design and/or performance.  Information contained in this document regarding device 
applications and the like is intended through suggestion only and may be superseded by updates. It is 
your responsibility to ensure that your application meets with your specifications 

Jennic assumes no responsibility or liability for the use of any of these products, conveys no license or 
title under any patent, copyright, or mask work right to these products, and makes no representations or 
warranties that these products are free from patent, copyright, or mask work infringement, unless 
otherwise specified. 

Jennic products are not intended for use in life support systems, appliances or systems where 
malfunction of these products can reasonably be expected to result in personal injury, death or severe 
property or environmental damage.  Jennic customers using or selling these products for use in such 
applications do so at their own risk and agree to fully indemnify Jennic for any damages resulting from 
such use.  

All trademarks are the property of their respective owners. 



������������������������ 

64 JN-DS-JN5121 v1.2 © Jennic 2005 

Contact Details 
 

UK Corporate Headquarters 
Jennic Ltd, Furnival Street 
Sheffield S1 4QT, UK 
Tel: +44 (0)114 281 2655 
Fax: +44 (0) 114 281 2951 
info@jennic.com 
www.jennic.com 

 

Japan Sales Office 
Osakaya building 4F 
1-11-8 Higashigotanda Shinagawa-ku 
Tokyo 141-0022, Japan 
Tel: +81 3 5449 7501 
Fax: +81 3 5449 0741 
info@jp.jennic.com 
www.jennic.com 

 

Taiwan Sales Office 
19F-1, 182, Sec.2 Tun Hwa S. Rd. 
Taipei 106, Taiwan 
Tel: +886 2 2735 7357 
Fax: +886 2 2739 5687 
info@tw.jennic.com 
www.jennic.com 

 

USA Sales Office 
1322 Scott Street 
Point Loma, CA 92106, USA 
Tel: +619 223 2215 
Fax: +619 223 2081 
info@us.jennic.com 
www.jennic.com 


