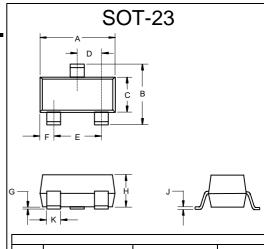


Micro Commercial Components

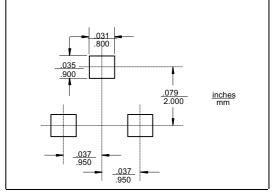
Micro Commercial Components 20736 Marilla Street Chatsworth Chatsworth, CA 91311

Phone: (818) 701-4933 Fax: (818) 701-4939

ESDA6V1L


Features

- Dual Transil Array For ESD Protection
- 2 Unidirectional Transil Functions
- Low leakageCurrent: IRmax<20 uA at Vwm
- 300W peak pulse power (8/20 us)
- Case Material: Molded Plastic. UL Flammability Classification Rating 94V-0and MSL rating 1


6.1Volts ESD Protection Device

Maximum Ratings

Parameter	Symbol	Limits	unit
Electrostatic discharge MIL STD 883C-Method 3015-6 IEC61000-4-2 air discharge IEC61000-4-2 contact discharge	V_{PP}	25 16 9	KV KV KV
Peak pulse power 8/20us	P _{PP}	300	W
Junction temperature	T _j	150	°C
Storage temperature range	T _{stg}	-55~+150	°C
Maximum lead temperature For soldering during 10s	T _L	260	°C

	INCHES		MM		
DIM	MIN	MAX	MIN	MAX	NOTE
Α	.110	.120	2.80	3.04	
В	.083	.098	2.10	2.64	
C	.047	.055	1.20	1.40	
D	.035	.041	.89	1.03	
Е	.070	.081	1.78	2.05	
F	.018	.024	.45	.60	
G	.0005	.0039	.013	.100	
Ι	.035	.044	.89	1.12	
J	.003	.007	.085	.180	
K	.015	.020	.37	.51	

Pin Configuration-Top View



ESDA6V1L

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Symbol	Parameter	
V_{WM}	Stand-off voltage	
V_{BR}	Breakdown voltage	
V_{CL}	Clamping voltage	
I _{RM}	Leakage current	
I_{PP}	Peak pulse current	
αΤ	Voltage temperature coefficient	
С	Capacitance	
R_d	Dynamic resistance	
V_{F}	Forward voltage drop	

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
Breakdown voltage	I _R =1.0mA	V_{BR}	6.1	6.65	7.2	V
Leakage current	V _{WM} =5.25V	I _R	-	-	20	μΑ
Capacitance	0V bias	С	-	140	-	pF
Forward voltage drop	I _F =200mA	V _F	-	-	1.25	V

100

ESDA6V1L

TYPICAL CHARACTERISTICS

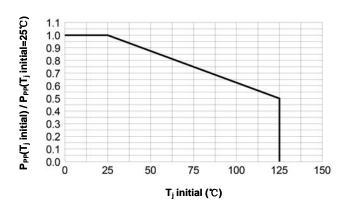


Fig.1: Peak power dissipation vs. initial junction temperature

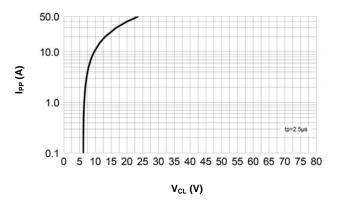


Fig.3: Clamping voltage vs. peak pulse current (Tj initial = 25°C, rectangular waveform tp = 2.5µs)

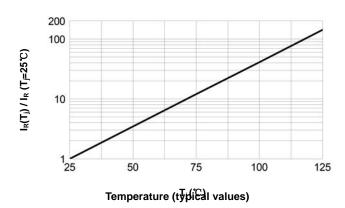


Fig.5: Relative variation of leakage current vs. junction

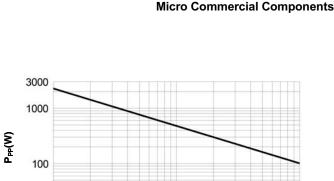


Fig.2: Peak pulse power vs. exponential pulse duration $(T_j initial = 25 \degree)$

10

tp (µs)

10 1

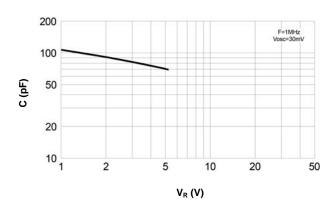


Fig.4: Capacitance vs. reverse applied voltage (typical values)

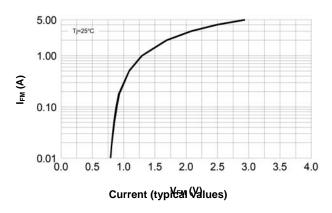


Fig.6: Peak forward voltage drop vs. peak forward

Ordering Information

Device	Packing
(Part Number)-TP	Tape&Reel3Kpcs/Reel

IMPORTANT NOTICE

Micro Commercial Components Corp. reserves the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes.
Micro Commercial Components Corp. does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Micro Commercial Components Corp. and all the companies whose products are represented on our website, harmless against all damages.

APPLICATIONS DISCLAIMER

Products offer by *Micro Commercial Components Corp* . are not intended for use in Medical,

Aerospace or Military Applications.