MULTILAYER CERAMIC CAPACITORS/AXIAL & RADIAL LEADED Multilayer ceramic capacitors are available in a variety of physical sizes and configurations, including leaded devices and surface mounted chips. Leaded styles include molded and conformally coated parts with axial and radial leads. However, the basic capacitor element is similar for all styles. It is called a chip and consists of formulated dielectric materials which have been cast into thin layers, interspersed with metal electrodes alternately exposed on opposite edges of the laminated structure. The entire structure is fired at high temperature to produce a monolithic block which provides high capacitance values in a small physical volume. After firing, conductive terminations are applied to opposite ends of the chip to make contact with the exposed electrodes. Termination materials and methods vary depending on the intended use. #### **TEMPERATURE CHARACTERISTICS** Ceramic dielectric materials can be formulated with a wide range of characteristics. The EIA standard for ceramic dielectric capacitors (RS-198) divides ceramic dielectrics into the following classes: Class I: Temperature compensating capacitors, suitable for resonant circuit application or other applications where high Q and stability of capacitance characteristics are required. Class I capacitors have predictable temperature coefficients and are not affected by voltage, frequency or time. They are made from materials which are not ferro-electric, yielding superior stability but low volumetric efficiency. Class I capacitors are the most stable type available, but have the lowest volumetric efficiency. Class II: Stable capacitors, suitable for bypass or coupling applications or frequency discriminating circuits where Q and stability of capacitance characteristics are not of a major importance. Class II capacitors have temperature characteristics of \pm 15% or less. They are made from materials which are ferro-electric, yielding higher volumetric efficiency but less stability. Class II capacitors are affected by temperature, voltage, frequency and time. Class III: General purpose capacitors, suitable for by-pass coupling or other applications in which dielectric losses, high insulation resistance and stability of capacitance characteristics are of little or no importance. Class III capacitors are similar to Class II capacitors except for temperature characteristics, which are greater than \pm 15%. Class III capacitors have the highest volumetric efficiency and poorest stability of any type. KEMET leaded ceramic capacitors are offered in the three most popular temperature characteristics: **COG:** Class I, with a temperature coefficient of 0 \pm 30 ppm per degree C over an operating temperature range of - 55°C to + 125°C (Also known as "NPO"). **X7R:** Class II, with a maximum capacitance change of \pm 15% over an operating temperature range of - 55°C to + 125°C. **Z5Ú:** Class III, with a maximum capacitance change of + 22% - 56% over an operating temperature range of + 10°C to + 85°C. Specified electrical limits for these three temperature characteristics are shown in Table 1. # SPECIFIED ELECTRICAL LIMITS | | TEMPERATURE CHARACTERISTICS | | TERISTICS | |--|-----------------------------|--------------------------|-------------------------| | PARAMETER | C0G | X7R | Z5U | | Dissipation Factor: Measured at following conditions: COG — 1 kHz and 1 vrms if capacitance > 1000 pF 1 MHz and 1 vrms if capacitance ≤ 1000 pF X7R — 1 kHz and 1 vrms* Z5U — 1 kHz and 0.5 vrms | 0.15% | 2.5% | 4.0% | | Dielectric Strength: 2.5 times rated DC voltage. | Pass Subsequent IR Test | | | | Insulation Resistance (IR): At rated DC voltage, whichever of the two is smaller | 1,000 MΩ-μF
or 100 GΩ | 1,000 MΩ-μF
or 100 GΩ | 1,000 MΩ-μF
or 10 GΩ | | Temperature Characteristics: Range, °C Capacitance Change without DC voltage | -55 to 125
0 ± 30 ppm/°C | -55 to 125
±15% | +10 to 85
+22%, -56% | ^{* 1} MHz and 1 vrms if capacitance ≤ 100 pF on military product. Table I # Conformally Coated Axial/Radial # **CERAMIC CONFORMALLY COATED/AXIAL & RADIAL** PERFORMANCE CHARACTERISTICS #### **GENERAL SPECIFICATIONS** | Working | Voltage: | Axial | Radial | |---------|----------|-----------|---------------------| | C0G | 50 & | 100 volts | 100 & 200 volts | | X7R | 50 & | 100 volts | 50, 100 & 200 volts | | Z5U | 50 & | 100 volts | 50 & 100 volts | #### Temperature Characteristics: COG $0 \pm 30 \text{ PPM/°C from } - 55^{\circ}\text{C to } + 125^{\circ}\text{C}^{(1)}$ X7R $\pm 15\% \text{ from } - 55^{\circ}\text{C to } + 125^{\circ}\text{C}$ Z5U + 22%; $- 56\% \text{ from } + 10^{\circ}\text{C to } + 85^{\circ}\text{C}$ #### Capacitance Tolerance: COG ± 5%, ± 10%, ± 20% X7R ± 10%, ± 20% Z5U ± 20%, - 20 + 80%, - 0 + 100% #### Construction: Epoxy encapsulated - meets flame test requirements of UL Standard 94V-0. High-temperature solder - meets EIA RS-198D, Method 302, Condition B (260°C for 10 sec.) #### Lead Material: Solder Coated Copper Clad Steel #### Solderability: EIA RS-198D, Method 302, Solder temperature - $230^{\circ} \pm 5^{\circ}$ C. Dwell time in solder - $7 \pm 1/2$ seconds. # **Terminal Strength:** EIA RS-198D, Method 303, Condition A (2.2 kg) #### **ELECTRICAL @ 25°C** ## Capacitance: Within specified tolerance at 25°C and following test conditions. COG - Greater than 1000 pF with 1.0 vrms at 1 kHz. - 1000 pF and less with 1.0 vrms at 1 MHz. X7R - with 1.0 vrms at 1 kHz. Z5U - with 0.5 vrms at 1 kHz. #### Dissipation Factor: At 25°C - same test conditions as capacitance. COG - 0.15% maximum X7R - 2.5% maximum Z5U - 4.0% maximum # Insulation Resistance: EIA RS-198D, Method 104, Condition A COG - 100 gigohms or 1000 megohm x μF , whichever is less. X7R -100 gigohms or 1000 megohm x μF , whichever is less. Z5U -10 gigohms or 1000 megohm x μ F, whichever is less. #### Dielectric Withstanding Voltage: EIA RS-198D, Method 103 (250% of rated voltage for 5 seconds, with current limited to 50mA) #### **ENVIRONMENTAL** #### Vibration. EIA RS-198D, Method 304, Condition D (10-2000 Hz; 20g) #### Shock EIA RS-198D, Method 305, Condition I (100g) #### Life Test: EIA RS-198D, Method 201, Condition D. Test Potential and Temperature. COG- 200% of rated voltage at + 125°C X7R - 200% of rated voltage at + 125°C Z5U - 200% of rated voltage at + 85°C Post-Test Limits at + 25°C are: #### Capacitance Change: COG - ± 3%, or 0.25 pF, whichever is greater. X7R - \pm 20% of initial value. (2) Z5U - \pm 30% of initial value. (2) #### Dissipation Factor: COG - 0.25% maximum X7R - 3.0% maximum Z5U - 4.0% maximum # Insulation Resistance: COG - 10 gigohms or 100 megohm x μF , whichever is less. $\mbox{X7R}$ - 10 gigohms or 100 megohm x $\mbox{$\mu$F},$ whichever is less. Z5U - 1 gigohm or 100 megohm x μF , whichever is less. #### Moisture Resistance: EIA RS-198D, Method 204, Condition A (10 cycles without applied voltage. Post-Test Limits at + 25°C are: # Capacitance Change: COG - 3%, or 0.25 pF, whichever is greater. X7R - \pm 20% of initial value. (2) Z5U - \pm 30% of initial value. (2) #### **Dissipation Factor:** COG - 0.25% maximum X7R - 3.0% maximum Z5U - 4.0% maximum #### Insulation Resistance: COG - 10 gigohms or 100 megohm x μ F, whichever is less. X7R - 10 gigohms or 100 megohm x μF, whichever is less. Z5U - 1 gigohm or 100 megohm x μF , whichever is less. #### Thermal Shock: EIA RS-198D, Method 202, Condition B (COG & X7R: - 55°C to + 125°C; Z5U: - 55°C to + 85°C) - (1) $+53 \text{ ppm } -30 \text{ ppm/}^{\circ}\text{C from } + 25^{\circ}\text{C to } 55^{\circ}\text{C}, \pm 60 \text{ ppm below } 10 \text{ pF}.$ - (2) X7R & Z5U dielectrics exhibit aging characteristics; therefore, it is highly recommended that capacitors be deaged for 2 hours at 150°C and stabilized at room temperature for 48 hours before capacitance measurements are made. # CERAMIC CONFORMALLY COATED/AXIAL "AXIMAX" # CAPACITANCE OUTLINE DRAWING # MAXIMUM DIMENSIONS—INCHES & (MILLIMETERS) | STYLE | L
MAX | D
MAX | LD
+.001,003
(+.025,076) | LL
MIN | |-------|--------------|-------------|--------------------------------|------------| | C410 | .170 (4.32) | .100 (2.54) | .020 (.51) | 1.0 (25.4) | | C412 | .170 (4.32) | .120 (3.05) | .020 (.51) | 1.0 (25.4) | | C420 | .260 (6.60) | .100 (2.54) | .020 (.51) | 1.0 (25.4) | | C430 | .290 (7.37) | .150 (3.81) | .020 (.51) | 1.0 (25.4) | | C440 | .400 (10.16) | .150 (3.81) | .020 (.51) | 1.0 (25.4) | # ORDERING INFORMATION *Part Number Example: C410C104M5U5CA (14 digits - no spaces) # MARKING INFORMATION # CERAMIC CONFORMALLY COATED/AXIAL "AXIMAX" # **RATINGS & PART NUMBER REFERENCE** ULTRA-STABLE TEMPERATURE CHARACTERISTIC—COG/NPO SINGLE TEMPERATURE CHARACTERISTIC—X7R GENERAL PURPOSE TEMPERATURE CHARACTERISTIC—Z5U | CHARACTERISTIC—C0G/NP0 | | | | | | |------------------------|--|--|--|--|--| | CAPACITANCE | KEMET | | | | | | pF PART NUMBER | | | | | | | 100 VOLT - COG | | | | | | | 10
12 | C410C100(<u>1</u>)1G5CA
C410C120(<u>1</u>)1G5CA | | | | | | 15 | C410C120(<u>1</u>)1G5CA
C410C150(<u>1</u>)1G5CA | | | | | | 18 | C410C180(<u>1</u>)1G5CA | | | | | | 22 | C410C220(1)1G5CA | | | | | | 27 | C410C270(<u>1</u>)1G5CA | | | | | | 33 | C410C330(<u>1</u>)1G5CA | | | | | | 39 | C410C390(<u>1</u>)1G5CA | | | | | | 47
56 | C410C470(<u>1</u>)1G5CA
C410C560(<u>1</u>)1G5CA | | | | | | 68 | C410C680(1)1G5CA | | | | | | 82 | C410C820(1)1G5CA | | | | | | 100 | C410C101(<u>1</u>)1G5CA | | | | | | 120 | C410C121(<u>1</u>)1G5CA | | | | | | 150 | C410C151(<u>1</u>)1G5CA | | | | | | 180 | C410C181(<u>1</u>)1G5CA | | | | | | 220
270 | C410C221(<u>1</u>)1G5CA
C410C271(<u>1</u>)1G5CA | | | | | | 330 | C410C271(<u>1</u>)1G5CA
C410C331(<u>1</u>)1G5CA | | | | | | 390 | C410C391(<u>1</u>)1G5CA | | | | | | 470 | C410C471(<u>1</u>)1G5CA | | | | | | 560 | C410C561(<u>1</u>)1G5CA | | | | | | 680 | C410C681(<u>1</u>)1G5CA | | | | | | 820 | C410C821(<u>1</u>)1G5CA | | | | | | 1,000
1,200 | C410C102(<u>1</u>)1G5CA
C420C122(1)1G5CA | | | | | | 1,500 | C420C122(1)1G5CA
C420C152(1)1G5CA | | | | | | 1,800 | C420C182(<u>1</u>)1G5CA | | | | | | 2,200 | C420C222(<u>1</u>)1G5CA | | | | | | 2,700 | C430C272(<u>1</u>)1G5CA | | | | | | 3,300 | C430C332(<u>1</u>)1G5CA | | | | | | 3,900 | C430C392(<u>1</u>)1G5CA | | | | | | 4,700
5,600 | C430C472(<u>1</u>)1G5CA
C430C562(<u>1</u>)1G5CA | | | | | | 6,800 | C430C682(1)1G5CA
C430C682(1)1G5CA | | | | | | 8,200 | C430C822(<u>1</u>)1G5CA | | | | | | 10,000 | C440C103(<u>1</u>)1G5CA | | | | | | 12,000 | C440C123(<u>1</u>)1G5CA | | | | | | 15,000 | C440C153(<u>1</u>)1G5CA | | | | | | | VOLT - C0G | | | | | | 560
680 | C410C561(<u>1</u>)5G5CA
C410C681(<u>1</u>)5G5CA | | | | | | 820 | C410C821(1)5G5CA | | | | | | 1,000 | C410C102(<u>1</u>)5G5CA | | | | | | 1,200 | C412C122(<u>1</u>)5G5CA | | | | | | 1,500 | C412C152(<u>1</u>)5G5CA | | | | | | 1,800 | C412C182(<u>1</u>)5G5CA | | | | | | 2,200 | C412C222(<u>1</u>)5G5CA | | | | | | 2,700
1,200 | C412C272(<u>1</u>)5G5CA | | | | | | 1,200 | C420C122(<u>1</u>)5G5CA
C420C152(1)5G5CA | | | | | | 1,800 | C420C132(<u>1</u>)5G5CA
C420C182(<u>1</u>)5G5CA | | | | | | 2,200 | C420C222(<u>1</u>)5G5CA | | | | | | 2,700 | C430C272(<u>1</u>)5G5CA | | | | | | 3,300 | C430C332(<u>1</u>)5G5CA | | | | | | 3,900 | C430C392(<u>1</u>)5G5CA | | | | | | 4,700 | C430C472(<u>1</u>)5G5CA | | | | | | 5,600
6,800 | C430C562(<u>1</u>)5G5CA
C430C682(<u>1</u>)5G5CA | | | | | | 8,200 | C430C882(<u>1</u>)5G5CA
C430C822(<u>1</u>)5G5CA | | | | | | 10,000 | C440C103(1)5G5CA | | | | | | 12,000 | C440C103(<u>1</u>)5G5CA
C440C123(<u>1</u>)5G5CA | | | | | | 15,000 | C440C153(<u>1</u>)5G5CA | | | | | | _ | | | | | | | CHARACTERISTIC—X7R | | | | | |------------------------------|--|--|--|--| | CAPACITANCE | KEMET | | | | | pF | PART NUMBER | | | | | 470 | O VOLT - X7R
C410C471(1)1R5CA | | | | | 560 | C410C471(1)1R5CA
C410C561(1)1R5CA | | | | | 680 | C410C681(1)1R5CA | | | | | 820 | C410C821(<u>1</u>)1R5CA | | | | | 1,000 | C410C102(<u>1</u>)1R5CA | | | | | 1,200 | C410C122(<u>1</u>)1R5CA | | | | | 1,500 | C410C152(<u>1</u>)1R5CA | | | | | 1,800
2,200 | C410C182(<u>1</u>)1R5CA
C410C222(<u>1</u>)1R5CA | | | | | 2,700 | C410C272(1)1R5CA | | | | | 3,300 | C410C332(<u>1</u>)1R5CA | | | | | 3,900 | C410C392(<u>1</u>)1R5CA | | | | | 4,700 | C410C472(<u>1</u>)1R5CA | | | | | 5,600 | C410C562(<u>1</u>)1R5CA | | | | | 6,800
8,200 | C410C682(<u>1</u>)1R5CA
C410C822(<u>1</u>)1R5CA | | | | | 10,000 | C410C622(<u>1</u>)1R5CA
C410C103(<u>1</u>)1R5CA | | | | | 12,000 | C410C123(1)1R5CA | | | | | 15,000 | C412C153(1)1R5CA | | | | | 18,000 | C412C183(<u>1</u>)1R5CA | | | | | 22,000 | C412C223(<u>1</u>)1R5CA | | | | | 27,000 | C412C273(<u>1</u>)1R5CA | | | | | 15,000 | C420C153(<u>1</u>)1R5CA | | | | | 18,000 | C420C183(<u>1</u>)1R5CA | | | | | 22,000 | C420C223(<u>1</u>)1R5CA | | | | | 27,000
33,000 | C420C273(1)1R5CA
C420C333(1)1R5CA | | | | | 39,000 | C420C393(<u>1</u>)1R5CA | | | | | 47,000 | C430C373(1)1R5CA | | | | | 56,000 | C430C563(1)1R5CA | | | | | 68,000 | C430C683(<u>1</u>)1R5CA | | | | | 82,000 | C430C823(<u>1</u>)1R5CA | | | | | 100,000 | C430C104(<u>1</u>)1R5CA | | | | | 120,000 | C440C124(<u>1</u>)1R5CA | | | | | 150,000 | C440C154(<u>1</u>)1R5CA
VOLT - X7R | | | | | 8,200 | C410C822(<u>1</u>)5R5CA | | | | | 10,000 | C410C622(<u>1</u>)5R5CA
C410C103(<u>1</u>)5R5CA | | | | | 12,000 | C410C123(<u>1</u>)5R5CA | | | | | 15,000 | C410C153(<u>1</u>)5R5CA | | | | | 18,000 | C410C183(<u>1</u>)5R5CA | | | | | 22,000 | C410C223(<u>1</u>)5R5CA | | | | | 27,000 | C410C273(<u>1</u>)5R5CA
C410C333(1)5R5CA | | | | | 33,000
39,000 | C410C333(<u>1</u>)5R5CA
C410C393(<u>1</u>)5R5CA | | | | | 47,000 | C410C373(<u>1</u>)5R5CA
C410C473(<u>1</u>)5R5CA | | | | | 56,000 | C412C563(1)5R5CA | | | | | 68,000 | C412C683(1)5R5CA | | | | | 82,000 | C412C823(<u>1</u>)5R5CA | | | | | 100,000 | C412C104(1)5R5CA | | | | | 56,000 | C420C563(<u>1</u>)5R5CA | | | | | 68,000 | C420C683(<u>1</u>)5R5CA | | | | | 82,000 | C420C823(<u>1</u>)5R5CA | | | | | 100,000 | C420C104(<u>1</u>)5R5CA | | | | | 120,000 | C430C124(<u>1</u>)5R5CA | | | | | 150,000
180,000 | C430C154(<u>1</u>)5R5CA
C430C184(<u>1</u>)5R5CA | | | | | 220,000 | C430C184(1)5R5CA
C430C224(1)5R5CA | | | | | 270,000 | C430C274(<u>1</u>)5R5CA | | | | | 330,000 | C440C334(1)5R5CA | | | | | 390,000 | C440C394(1)5R5CA | | | | | 470,000 | C440C474(<u>1</u>)5R5CA | | | | | | for capacitance tolerance desired: | | | | | $K = \pm 10\%, M = \pm 20\%$ | | | | | | CAPACITANCE | KEMET | | | |---|---|--|--| | pF | PART NUMBER | | | | 100 VOLT - Z5U | | | | | 10,000 | C410C103(<u>1</u>)1U5CA | | | | 12,000 | C410C123(1)1U5CA | | | | 15,000 | C410C153(1)1U5CA | | | | 18,000 | C410C183(<u>1</u>)1U5CA | | | | 22,000 | C410C223(<u>1</u>)1U5CA | | | | 27,000 | C420C273(<u>1</u>)1U5CA | | | | 33,000 | C420C333(<u>1</u>)1U5CA | | | | 39,000 | C420C393(<u>1</u>)1U5CA | | | | 47,000 | C420C473(<u>1</u>)1U5CA | | | | 56,000 | C430C563(<u>1</u>)1U5CA | | | | 68,000 | C430C683(<u>1</u>)1U5CA | | | | 82,000 | C430C823(<u>1</u>)1U5CA | | | | 100,000 | C430C104(<u>1</u>)1U5CA | | | | 120,000 | C430C124(1)1U5CA | | | | 150,000 | C430C154(<u>1</u>)1U5CA | | | | 180,000 | C440C184(<u>1</u>)1U5CA | | | | 220,000 | C440C224(<u>1</u>)1U5CA | | | | | VOLT - Z5U | | | | 27,000 | C410C273(<u>1</u>)5U5CA | | | | 33,000 | C410C333(<u>1</u>)5U5CA | | | | 39,000 | C410C393(<u>1</u>)5U5CA | | | | 47,000
56,000 | C410C473(<u>1</u>)5U5CA
C410C563(1)5U5CA | | | | 68,000 | C410C503(1)5U5CA
C410C683(1)5U5CA | | | | 82,000 | C410C823(1)5U5CA | | | | 100,000 | C410C104(1)5U5CA | | | | 120,000 | C410C124(<u>1</u>)5U5CA | | | | 150,000 | C410C154(1)5U5CA | | | | 180,000 | C410C184(1)5U5CA | | | | 220,000 | C410C224(<u>1</u>)5U5CA | | | | 270,000 | C412C274(<u>1</u>)5U5CA | | | | 330,000 | C412C334(<u>1</u>)5U5CA | | | | 270,000 | C420C274(1)5U5CA | | | | 330,000 | C420C334(<u>1</u>)5U5CA | | | | 390,000 | C430C394(1)5U5CA | | | | 470,000 | C430C474(<u>1</u>)5U5CA | | | | 560,000 | C430C564(<u>1</u>)5U5CA | | | | 680,000 | C430C684(<u>1</u>)5U5CA | | | | 820,000 | C440C824(<u>1</u>)5U5CA | | | | 1,000,000 | C440C105(<u>1</u>)5U5CA | | | | (1) Insert proper letter for capacitance tolerance desired: | | | | ⁽¹⁾ Insert proper letter for capacitance tolerance desired: $M = \pm 20\%$, Z = +80, -20% NOTE: Certain NPO and X7R dielectric capacitance values are available upon request in 200 volts. Contact your local KEMET sales representative for exact values, price and delivery. ⁽¹⁾ Insert proper letter for capacitance tolerance desired: J = ±5% K = ±10% M = ±20% # Ceramic Axial Lead Tape and Reel Packaging KEMET offers standard reeling of Molded and Conformally Coated Axial Leaded Ceramic Capacitors for automatic insertion or lead forming machines per EIA specification RS-296. KEMET'S internal specification four-digit suffix, 7200, is placed at the end of the part number to designate tape and reel packaging, ie: C410C104Z5U5CA7200. Paper (50 lb.) test minimum is inserted between the layers of capacitors wound on reels for component pitch $\leq 0.400".$ Capacitor lead length may extend only a maximum of .0625" (1.59mm) beyond the tapes' edges. Capacitors are centered in a row between the two tapes and will deviate only \pm 0.031 (0.79mm) from the row center. A minimum of 36" (91.5 cm) leader tape is provided at each end of the reel capacitors. Universal splicing clips are used to connect the tape. Standard reel quantities are shown on page 34. Table 1 Dimensions in Inches & (Millimeters) | Component
Body Diameter | Component
Pitch "A" | Inside Tape Spacing "B"
± 1.5mm (0.059") | | |--|-------------------------------------|---|---------------| | | 0.020" or (±0.5mm) | I | III* | | 0" (0mm) to 0.197" (5mm)
0.197" (5.01mm) to 0.394: (10mm) | 0.197" or (5mm)
0.394" or (10mm) | 2.062" (52.4mm) | 2.874" (73mm) | **Adhesive Tape** Adhesive Tape ^{*} Not Available for Conformally Coated Parts. | CERAMIC I | CERAMIC PACKAGING | | | | | |-----------------|-------------------|---------------------------|----------------------------------|------------------------------|--------------| | KEMET
Number | Military
Style | Military
Specification | Standard (1)
Bulk
Quantity | Standard
Reel
Quantity | Reel
Size | | C114C-K-G | CK12, CC75 | MIL-C-11015/ | 200/Box | 5000 | 12" | | C124C-K-G | CK13, CC76 | MIL-PRF-20 | 200/Box | 5000 | 12" | | C192C-K-G | CK14, CC77 | | 100/Box | 3000 | 12" | | C202C-K | CK15 | | 25/Box | 500 | 12" | | C222C-K | CK16 | | 10/Tray | 300 | 12" | | C052C-K-G | CK05, CC05 | | 100/Bag | 2000 | 12" | | C062C-K-G | CK06, CC06 | | 100/Bag | 1500 | 12" | | C114G | CCR75 | MIL-PRF-20 | 200/Box | 5000 | 12" | | C124G | CCR76 | | 200/Box | 5000 | 12" | | C192G | CCR77 | | 100/Box | 3000 | 12" | | C202G | CC78-CCR78 | | 25/Box | 500 | 12" | | C222G | CC79-CCR79 | | 10/Tray | 300 | 12" | | C052/56G | CCR05 | | 100/Bag | 1700 | 12" | | C062/66G | CCR06 | | 100/Bag | 1500 | 12" | | C512G | CC07-CCR07 | | Footnote (2) | N/A | N/A | | C522G | CC08-CCR08 | | Footnote (2) | N/A | N/A | | C114T | CKR11 | MIL-PRF-39014 | 200/Box | 5000 | 12" | | C124T | CKR12 | | 200/Box | 5000 | 12" | | C192T | CKR14 | | 100/Box | 3000 | 12" | | C202T | CKR15 | | 25/Box | 500 | 12" | | C222T | CKR16 | | 10/Tray | 300 | 12" | | C052/56T | CKR05 | | 100/Bag | 1700 | 12" | | C062/66T | CKR06 | | 100/Bag | 1500 | 12" | | C31X | | | 500/Bag | 2500 | 12" | | C32X | | | 500/Bag | 2500 | 12" | | C33X | | | 250/Bag | 1500 | 12" | | C340 | | | 100/Bag | 1000 | 12" | | C350 | | | 50/Bag | N/A | N/A | | C410 | | | 300/Box | 5000 | 12" | | C412 | | | 200/Box | 5000 | 12" | | C420 | | | 300/Box | 5000 | 12" | | C430 | | | 200/Box | 2500 | 12" | | C440 | | | 200/Box | 2500 | 12" | | C512 | N/A | N/A | Footnote (2) | N/A | N/A | | C522 | N/A | N/A | Footnote (2) | N/A | N/A | NOTE: (1) Standard packaging refers to number of pieces per bag, box, tray or vial. (2) Quantity varies. For further details, please consult the factory.