Best Selection

Fiber Sensors

Best Selection Catalog

OMRON's Fiber Sensors continue to support an increasing range of applications.
This catalog brings you the latest information on our Fiber Units.

E32-series Fiber Units

㯺ber

These Fibers Units can be used in a variety of applications, such as detecting the presence of workpieces and positioning.

A Wide Variety of Shapes for Adapting to Different Installation Locations

Choose the model that suits the installation space from a wide variety of shapes and sizes.

Space Savings and Simple Mounting
Flat Models
Flat models that allow simple screw mounting and straightforward wiring have been added to the lineup. Using these models eliminates the problem of fibers getting caught on surrounding objects.

Flat model

Detect Workpieces in Tight Spaces Custom-produced Sleeves
Models with sleeves allow detection in tight spaces. We will perform the time-consuming task of fashioning the sleeve, with a length and bends to suit the space (except for ultrafine sleeves).

Models with sleeves

Flexible, Pliable Fiber

That Can Be Handled Like Wire

We have developed a broad range of fibers to meet a wide variety of needs. Multicore (flexible) fiber is a new type of standard fiber that can be used like wire without worrying about the bending radius. We have also produced fiber that will not break when used in moving parts and fiber that is not degraded by contact with oil.

You will certainly appreciate the ease of use that flexible fiber ensures.

Length Can Be Specified in 1-m Units Saving Energy and Work

We will produce fiber of the required length (in meter units). For large-scale installations, specifications of up to 20 m can be handled. (Specifications of 0.3 m and 0.5 m are also possible.)

Special-beam Models

Detection with Increased Reliability

A variety of heads incorporating the latest optical technology makes it possible to solve common problems related to detection and to increase reliability.

- Resistant to dust and dirt
- Capable of detecting small workpieces
- Resistant to workpiece vibration Use these models to handle unstable detection conditions.
 E32-C42+ E39-F3A
 E32-T16J

High Resistance to External

Environment-resistive Models

 Conditions with FiberWe have developed model variations for adapting to a variety of environmental conditions.
These models enable detection in high-temperature environments and vacuums.

Heat-resistant models

Chemical-resistant models

- High-temperature environments
- Environments subject to the splattering of chemicals
- Vacuums

Use these models to handle applications in special environments.

Application-corresponding Models

Fiber Units for the Food-packaging,

These models, which were developed for specific applications, offer top-quality detection performance.

Label-detection models E32-G14

Alignment-check models E32-L16

Page Reference

Type		Feature/ applications	Variations	Type	Ratings and performance	Dimensions
Standard models		\rightarrow Page 6	\rightarrow Page 8	$\begin{aligned} & \text { Through- } \rightarrow \text { Page } 19 \\ & \text { beam } \end{aligned}$	\rightarrow Page 37	$\begin{aligned} & \text { Through- } \rightarrow \text { Page } 40 \\ & \text { beam } \end{aligned}$
				Reflective \rightarrow Page 26		Reflective \rightarrow Page 43
Special-beam models		\rightarrow Page 10	---	$\begin{aligned} & \text { Through- } \rightarrow \text { Page } 22 \\ & \text { beam } \end{aligned}$	\rightarrow Page 38	$\begin{aligned} & \text { Through- } \rightarrow \text { Page } 39 \\ & \text { beam } \end{aligned}$
				Reflective \rightarrow Page 29		Reflective \rightarrow Page 44
Environment resistant models		\rightarrow Page 14	---	$\begin{aligned} & \text { Through- } \rightarrow \text { Page } 24 \\ & \text { beam } \end{aligned}$	\rightarrow Page 39	$\begin{aligned} & \text { Through- } \rightarrow \text { Page } 40 \\ & \text { beam } \end{aligned}$
				Reflective \rightarrow Page 32		Reflective \rightarrow Page 48
Applicationcorresponding models		\rightarrow Page 16	---	\rightarrow Page 33	\rightarrow Page 39	\rightarrow Page 49
Accessories		---	---	\rightarrow Page $25 \begin{aligned} & \text { (Vacuum- } \\ & \text { resisitant) }\end{aligned}$	---	\rightarrow Page 42 (Vacuumresisitant)
				\rightarrow Page 35		\rightarrow Page 51

Selection Guide

Fiber Units

Amplifier Units

Type	Digital		Manual
Appearance			
Response time	$48 \mu \mathrm{~s}, 1 \mathrm{~ms}$, or 4 ms (2-output models: $80 \mu \mathrm{~s}, 1 \mathrm{~ms}$, or 4 ms)	$100 \mu \mathrm{~s}, 1 \mathrm{~ms}$, or 4 ms	$\begin{array}{\|l} 200 \mu \mathrm{~s} \\ \text { (high-speed models: } 20 \mu \mathrm{~s} \text {) } \end{array}$
Light source	Red, green, blue, or infrared LED		Red or green LED
Function	Dual display (including digital, bar, percent, and hold display functions) Threshold adjustment performed manually or by teaching OFF-delay, ON-delay, one-shot timer (adjustable from 1 ms to 5 s)		LED bar display (5 levels) 8 -turn sensitivity adjuster OFF delay timer (fixed at 40 ms)
	Advanced-function models are available (2-output/input models).		Water-resistant models are available.
Models	E3X-DA■-S E3X-DA $\square T W-S$ (2-output model) E3X-DA $\square R M-S$ (input model)	E3X-MDA \square	E3X-NA \square E3X-NA $\square \mathrm{F}$ (high-speed model) E3X-NA $\square V$ (water-resistant model)

Selection Guide P4

- Overview of Features, Applications, and Variations
Standard Models Flexible (New Standard) P6
Standard P6
Break-resistant P6
Fluorine Coating P7
Special-beam Models Long Distance, High Power P10
Ultracompact, Ultrafine Sleeve P10
Coaxial, Small Spot P11
Fine Beam (Narrow Vision Field) P12
Area Sensing. P12
Retroreflective P13
Limited-reflective P13
Environment-resistive Models Heat-resistant P14
Chemical-resistant. P14
Vacuum-resistant P15
Application-corresponding Models Label Detection. P16
Liquid-level Detection P16
Glass-substrate Alignment P17
Glass-substrate Mapping P17
Water Mapping P18
- Ordering Information
Through-beam Fiber Units P19
Fiber Units with Reflective Sensors P26
Application-corresponding Fiber Units P33
Ratings/Characteristics P37
Dimensions
Through-beam Fiber Units P40
Fiber Units with Reflective Sensors P47
Application-corresponding Fiber Units P53
Precautions P58

Standard Models

Flexible (New Standard)

- Perform wiring without worrying about the bending radius.
- Choose the model to suit the installation space from a variety of shapes.

Feature: Multicore (Flexible) Fibers

A large number of ultrafine cores are all surrounded by cladding. As a result, the fiber is flexible and can be bent without significantly reducing the light intensity. This helps solve problems, such as fiber being broken by getting caught on other objects.
Ratings/Characteristics

Min. sensing ob- ject	$0.005-\mathrm{mm}$ dia.
Min. bending ra- dius	1 mm
Ambient temper- ature range	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (no icing or condensation)
Fiber material	Plastic Free-cut

Standard

- Choose the model to suit the installation space from a variety of shapes.
- New flat models allow space savings and simple installation.

Feature: Flat Models

Flat models, which allow simple attachment and wiring, have been added to the lineup. Choose the model to suit the installation space from 3 sensing directions and 2 sizes, standard and small.

Ratings/Characteristics

Min. sensing ob- ject	$0.005-\mathrm{mm}$ dia.
Min. bending ra- dius	10 or $25 \mathrm{~mm}^{\star}$
Ambient temper- ature range	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (no icing or condensation)
Fiber material	Plastic Free-cut)

*Depends on the fiber diameter.

Break-resistant

- Bundle-fiber models can be used for moving parts.
- Capable of withstanding at least one million repeated bends (in typical applications).

Feature: Bundle Fibers

The Fiber Units contain a large number of independent fine fibers, ensuring a high degree of flexibility.

Ratings/Characteristics

Min. sensing ob- ject	$0.005-\mathrm{mm}$ dia.
Min. bending ra- dius	4 mm (withstands repeated bending)
Ambient temper- ature range	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (no icing or condensation)
Fiber material	Plastic Free-cut)

Standard Models

- Fiber degradation due to oil is prevented using a fluororesin coating.
- Free cutting is possible with cutter provided.

Feature: Fluorine Coating

Fluororesin is used as the sheath material to prevent fiber degradation resulting from oil adhesion. Note: The tip of the head is not chemical-resistant.

- Ratings/Characteristics

Min. sensing ob- ject	$0.005-\mathrm{mm}$ dia.
Min. bending ra- dius	4 mm
Ambient temper- ature range	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)
Fiber material	Plastic Free-cut)

Fiber Customization Service $\begin{aligned} & \text { (Fiber Length, Sleeve } \\ & \text { Length, and Bends) }\end{aligned}$

■Model Number Used for Ordering Standard model number + Fiber length Fiber length: $0.3 \mathrm{~m}, 0.5 \mathrm{~m}$, or any length from 1 to 20 m (in 1-m units)

■Applicable Models

E32-TC200B/E32-TC200F
E32-DC200B/E32-DC200F
The E32-DC200B cannot be bent.

This customization/delivery service applies to standard models. It is aimed at reducing industrial waste and simplifying the installation procedure.

■ Fiber Length vs. Sensing Distance Through-beam Fiber Units
(Fiber length of 2 m corresponds to 100\%.)

Fiber Units with Reflective Sensors (Fiber length of 2 m corresponds to 100\%.)

■ Model Number Used When Changing Only the Sleeve Length

■ Model Number Used When Changing the Sleeve Length and Bends

Model Numbers Incorporating the Bending Radius, R, and Dimensions L1 and L2

Specifying L1 Only (Un			Specifying L2 Only (Units: mm)		
$\begin{array}{\|c} \hline \text { Bending } \\ \text { radius } \end{array}$	L1 (± 1)	Model number		L2 (± 1)	Model number
R5	10	E32-*1C200*2]-S*3 A1	R5	5	E32-*1C200*2]-S*3A3
	15	E32-*1C200*2]-S*3A2		10	2-*1C200**2-S*3 A 4
R7.5	12.5	E32-*1]C200*2]-S*3 B1	R7.5	7.5	E32-*1]C200*2]-S**3] ${ }^{*}$
	17.5	E32-*1C200*2]-S*3 B2		17.5	E32-*1C200*2]-S*3B4
R10	15	E32-*1C200*2-S*3 C1	R10	10	E32-*1C200*2-S**3 C 3
	20	E32-*1C200*2-S*3 C2		20	E32-*1C200*2]-S*3 C4
R12.5	17.5	E32-*1C200*2-S*3 D1	R12.5	12.5	E32-*1C200*2]-S*3] 3
	22.5	E32-*1C200*2]-S*3] D2		22.5	

*1: Insert "T" for Through-beam Fiber Units and "D" for Fiber Units with Reflective Sensors.
2: Insert the "B" or "F" that appears at the end of the original model number.
*3: Insert " 50 " if the total length is 50 mm . The total length must not exceed 120 mm .

Standard Models
Overview of Model Variations
Through-beam Fiber Units
Sensing distance (mm)
(See note 1.)
Model

Type (See note 2.) Shape of head [For dimensions, refer to page 40.]		Flexible (New Standard) Flexible and pliable	Standard	Withstands repeated bending	
	M4	- 530			
		E32-T11N			
Screw-shaped (top-view)	M4	530	760	- 680	680
		E32-T11R	E32-TC200	E32-T11	E32-T11U
	M3	$\square 130$	220	$\square 200$	
		E32-T21R	E32-TC200E	E32-T21	
(with sleeve)	M4 (1.2-dia. sleeve)	$\square 530$	$\square 760$		
		E32-TC200BR	E32-TC200B		
	M3 (0.9-dia. sleeve)	130	$\square 220$		
		E32-TC200FR	E32-TC200F		
Cylindrical (top-view)	3 dia.	530	760	680	
		E32-T12R	E32-T12	E32-T12B	
	1.5 dia.	$\square 130$	$\square 220$	200	
		E32-T222R	E32-T222	E32-T22B	
(side	3 dia.	$\square 210$	460		
		E32-T14LR	E32-T14L		
	1 dia.	$\square 50$	$\square 130$		
		E32-T24R	E32-T24		
Flat (top-view)	$15 \times 8 \times 3$	530	760	$\square 680$	
		E32-T15XR	E32-T15X	E32-T15XB	
	$12 \times 7 \times 2$	130	$\square 220$	150	
		E32-T25XR	E32-T25X	E32-T25XB	
	$15 \times 8 \times 3$	210	460		
		E32-T15YR	E32-T15Y		
	$12 \times 7 \times 2$	50	$\square 130$		
		E32-T25YR	E32-T25Y		
(flat-view)	$15 \times 8 \times 3$	$\square 210$	$\square 460$		
		E32-T15ZR	E32-T15Z		
	$12 \times 7 \times 2$	$\square 50$	$\square 130$		
		E32-T25ZR	E32-T25Z		

[^0]Standard Models
Overview of Model Variations
Fiber Units with Reflective Sensors
Sensing distance (mm)
(See note 1)
Model

Type (See note 2.) Shape of head [For dimensions, refer to page 40.]		Flexible (New Standard) Flexible and pliable	Standard		Cable protected against oil		
$\\|^{\\|}$	M6	170					
		E32-D11N					
	M6	170					
		E32-C11N					
	M3	25					
		E32-C31N					
Screw-shaped (top-view)	M6	170	300	170	170		
		E32-D11R	E32-DC200	E32-D11	E32-D11U		
	M3	30	80	30			
		E32-D21R	E32-DC200E	E32-D21			
ith sleeve)	M6 (2.5-dia. sleeve)	170	300				
		E32-DC200BR	E32-DC200B				
	M3 (1.2-dia. sleeve)	30	80				
		E32-DC200FR	E32-DC200F				
Cylindrical (top-view)\qquad	3 dia.	170	230	70			
		E32-D12R	E32-D12	E32-D221B			
	$\begin{aligned} & 3 \text { dia. } \\ & \text { (1.5 dia.) } \end{aligned}$	30	80	30			
		E32-D22R	E32-D22	E32-D22B			
(side-view)	6 dia.	45	110				
		E32-D14LR	E32-D14L				
	2 dia.	15	30				
		E32-D24R	E32-D24				
Flat (top-view)	$15 \times 10 \times 3$	170	300	170			
		E32-D15XR	E32-D15X	E32-D15XB			
フ—®のك	$12 \times 7 \times 2$	30	80	50			
		E32-D25X	E32-D25X	E32-D25XB			
(side-vis	$15 \times 10 \times 3$	40	100				
		E32-D15YR	E32-D15Y				
	$12 \times 8 \times 2$	8	20				
		E32-D25YR	E32-D25Y				
(flat-view)	$15 \times 10 \times 3$] 40	100				
		E32-D15ZR	E32-D15Z				
	$12 \times 8 \times 2$	8	20				
		E32-D25ZR	E32-D25Z				

[^1]
Special－beam Models

Long Distance，High Power

－Powerful beam reduces influence of dust and dirt．
－Long sensing distance enables use in large－scale

Applications

Ratings／Characteristics

Overview of Model Variations

Type	Features	Shape，sensing distance（mm）＊	Model number
	Equipped with large lens		E32－T17L
	Side－view，screw mounting	3，400	E32－T14
	M4 screw	蚛 \rightarrow 咃—— 1，330	E32－T11L
$\stackrel{\dot{\omega}}{\stackrel{\omega}{0}} \underset{\sim}{0} \stackrel{0}{0}$	Equipped with large lens		E32－D16
	M6 screw	－ 4 何 $\rightleftharpoons 400$	E32－D11L

Ultracompact，Ultrafine Sleeve
－Ultracompact head can be installed in tight spaces．
－Ultrafine sleeve ensures reliable detection of small objects，such as electronic components．

Applications

Ratings／Characteristics

Min．sensing object	$0.005-\mathrm{mm}$ dia．
Ambient temperature range	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$（no icing or condensation）
Material	Plastic

Overview of Model Variations

	Features	Shape，sensing distance（mm）＊		Model number
	1－dia．cylinder	$\square \rightarrow \square$	130	E32－T223R
	0.5 －dia．sleeve（ $0.25-$ dia．opening）	$\square \rightarrow-$	44	E32－T33－S5
	0.22 －dia．sleeve（0．1－dia．opening）	$\square \square-\square$	5	E32－T334－S5
	0．8－dia．sleeve	－	16	E32－D33
	0．5－dia．sleeve	ص－	3	E32－D331

[^2]
Special-beam Models

Coaxial, Small Spot

- Small spot diameter (0.1 mm min. in diameter) enables the reliable detection of small workpieces.
- Use of red light ensures easy visual recognition and

Applications

Detecting of CDs

Ratings/Characteristics

Min. sensing object	$0.005-\mathrm{mm}$ dia.
Ambient tempera- ture range	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (no icing or condensation)
Fiber material	Plastic

Overview of Model Variations

Type	Features	Shape, sensing distance (mm)*	Model number
	Coaxial, M6 screw		E32-CC200
	Coaxial, 3-dia. cylinder	$\square \sqsupset \quad 150$	E32-D32L
	Small spot	0.1-dia. spot at a distance of 7 mm	$\begin{aligned} & \text { E32-C41+ } \\ & \text { E39-F3A-5 } \end{aligned}$
	Small variable spot	Spot diameter variable in the range 0.1 to 0.6 mm at distances in the range 6 to 15 mm	$\begin{array}{\|l} \text { E32-C42+ } \\ \text { E39-F3A } \end{array}$
	Long distance, small spot	0.5 -dia. spot at 17 mm	$\begin{array}{\|l\|l\|} \text { E32-C31+ } \\ \text { E39-F3B } \end{array}$
	Long distance, parallel light	Spot diameter of 4 mm max. at distances in the range 0 to 20 mm	$\begin{array}{\|l\|} \hline \text { E32-C31+ } \\ \text { E39-F3C } \end{array}$

*The sensing distances apply for use in combination with the E3X-DA-S Amplifier Unit (general-purpose, standard mode).

Special-beam Models

Fine Beam (Narrow Vision Field)

- Fine beam reduces unwanted light in surrounding area.
- Powerful beam allows use in applications requiring a

Applications

Alignment inspection
of orientation flats

Ratings/Characteristics

Min. bending radius	10 mm
Ambient tempera- ture range	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (no icing or condensation)
Fiber material	Plastic Free-cut)

Overview of Model Variations

Type	Features	Shape, sensing distance (mm)*	Model number
¢	Top view	$\checkmark \rightarrow \square \longleftarrow$ 1,900	E32-T22S
을 을 ¢	Side view	$\uparrow \downarrow$ 行 1,300	E32-T24S

*The sensing distances apply for use in combination with the E3X-DA-S Amplifier Unit (general-purpose, standard mode).

Area Sensing

- These Fiber Units ensure greater reliability with the detection of position inconsistencies in passing workpieces and the presence of workpieces with holes.
- Wide sensing bands of 11 and 30 mm (through-beam models) enable the detection of large position inconsistencies.

Applications

Detecting passage of

E32-T16WR
Ratings/Characteristics

Ambient tempera- ture range	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (no icing or condensation) $\mathrm{E} 32-\mathrm{T} 16 \mathrm{~W} \square$ only: $-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
Fiber material	Plastic Free-cut)

Overview of Model Variations

Type	Features	Shape, sensing distance (mm)*		Model number
	Sensing width: 11 mm	\%	840	E32-T16PR
	Sensing width: 11 mm Flat-view		750	E32-T16JR
	Sensing width: 30 mm		1,300	E32-T16WR
	Beam width: 11 mm	$\overbrace{0}^{\square 凹 \pi}$	150	E32-D36P1

*The sensing distances apply for use in combination with the E3X-DA-S Amplifier Unit (general-purpose, standard mode).

Special－beam Models

Retroreflective

－The return optical path ensures that more light is interrupted by transparent workpieces than with through－beam models．
－Equipped with MSR function to eliminate light reflected directly from the workpiece．

Applications

－Ratings／Characteristics

Ambient temperature range	E32－R21：$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ E32－R16：$-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ （with no icing or condensation）
Fiber material	Plastic Free－cut）

Overview of Model Variations

Type	Features	Shape，sensing distance（mm）＊		Model number
$\stackrel{\text { d. }}{0}: \geq$	MSR function，M6 screw	二哳期 \rightleftarrows	250	E32－R21
$\begin{aligned} & \text { O} \\ & \frac{0}{0} \\ & \mathbb{O} \\ & \end{aligned}$	MSR function，screw mounting，long distance	$\overrightarrow{-m}$	1，500	E32－R16

＊The sensing distances apply for use in combination with the E3X－DA－S Amplifier Unit（general－purpose，standard mode）．

Limited－reflective

－Limited－reflective models eliminate light reflected from distant objects．
－Small level differences can be reliably detected．
－The optical－axis direction can be selected according to the installation space．

Applications

E32－L25L

Detecting wafers

（glass substrates）

E32－L24L
Ratings／Characteristics

Min．sensing object	$0.005-\mathrm{mm}$ dia．
Fiber material	Plastic Free－cut $200^{\circ} \mathrm{C}$ models only：Glass

Overview of Model Variations

Type	Features	Shape，sensing distance（mm）＊		Model number
	Ultracompact，flat－view Ideal for checking stocks of glass sub－ strates	\dagger	0 to 4	E32－L24S
	Heat－resistant up to $105^{\circ} \mathrm{C}$ ， top－view	$\begin{aligned} & 1 \downarrow \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 5.4 \text { to } 9 \\ \text { (center: } 7.2 \text {) } \end{gathered}$	E32－L25L
	Wide sensing range， flat－view	$\uparrow \downarrow$	0 to 15	E32－A10
	Heat－resistant up to $200^{\circ} \mathrm{C}$ ， flat－view	$\stackrel{!}{\circ}$	4 to 10	E32－L86

＊The sensing distances apply for use in combination with the E3X－DA－S Amplifier Unit（general－purpose，standard mode）．

Environment-resistant Models

Heat-resistant

- These Fiber Units can be used for various applications in temperatures up to $400^{\circ} \mathrm{C}$.

- Applications

Ratings/Characteristics

	$150^{\circ} \mathrm{C}$ models	$200^{\circ} \mathrm{C}$ and higher models	
		$\begin{aligned} & \text { E32-T81R } \\ & \text { E32-D81R } \\ & \hline \end{aligned}$	All other models
Min. bending radius	35 mm	10 mm	25 mm
Fiber material	Plastic Free-cut (fluororesin coating)	Glass (fluororesin coating)	Glass (SUS spiral coating)

Overview of Model Variations

Type	Ambient temperature range	Features	Shape, sensing distance (mm)**	Model number
	$-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	M4 screw	$\longrightarrow 760$	E32-T51
	$-40^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$	L-shaped, long distance	$\overbrace{}^{\square \rightarrow \infty}$	E32-T84S-S
	$-60^{\circ} \mathrm{C}$ to $350^{\circ} \mathrm{C}$	M4 screw		E32-T61-S
	$-60^{\circ} \mathrm{C}$ to $350^{\circ} \mathrm{C}$	M6 screw		E32-D61-S
	$-40^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$	M6 screw, with sleeve	$\underset{\text { mmmma }}{ }$	E32-D73-S

*1 The sensing distances apply for use in combination with the E3X-DA-S Amplifier Unit (general-purpose, standard mode).
*2 Order the Fiber Unit based on the Amplifier Unit. Use the E32-D \square-S if the E3X-DA \square-S, E3X-MDA \square, or E3X-DAC $\square-S$ is used. Use the E32-D \square if any other Amplifier is used.

Chemical-resistant

- Built-in lens and high-power beam reduce the influence of dirt and drops of water.
- Round design prevents drops of water sticking to the head (E32-T11F).

Applications

Detecting workpieces in cleaning processes

Ratings/Characteristics

	All other models	E32-T51F	E32-T81F-S
Ambient tem- perature range	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
Fiber material	Plastic (fluororesin cout	Glating) (fluororesin coating)	

Overview of Model Variations

Type	Features	Shape, sensing distance (mm)*	Model number
	Water-resistant round head		E32-T11F
	Built-in lens, high power	$\square \rightarrow \square 3,000$	E32-T12F
	Heat-resistant up to $200^{\circ} \mathrm{C}$	$\checkmark \rightarrow$ 700	E32-T81F-S
- ${ }_{\text {¢ }}^{\text {¢ }}$	Built-in lens, high power	$\square \geq 95$	E32-D12F

*The sensing distances apply for use in combination with the E3X-DA-S Amplifier Unit (general-purpose, standard mode).

Environment-resistant Models

Vacuum-resistant

- These models can be used in high-vacuum environments at pressures from 10^{-5} to 0.1 Pa .
- The 4 -channel multi-flange, which has a maximum leakage rate of $1 \times 10^{-10} \mathrm{~Pa} \cdot \mathrm{~m}^{3} / \mathrm{s}$, contributes to space savings.

I Applications (Configuration Example)

Ratings/Characteristics

	$120^{\circ} \mathrm{C}$ models	$200^{\circ} \mathrm{C}$ models	Atmospheric- pressure side
Min. bend- ing radius	30 mm	25 mm	
Fiber mate- rial	Glass (fluorores- in coating)	Glass (SUS spiral coating)	Plastic Free-cut

Overview of Model Variations

Type	Features	Shape, sensing distance (mm)*		Model number
	M4 screw, top-view, heat-resistant up to $120^{\circ} \mathrm{C}$, long distance	\rightarrow -	1,000	$\begin{aligned} & \text { E32-T51V+ } \\ & \text { E39-F1V } \end{aligned}$
	L-shaped, heat-resistant up to $120^{\circ} \mathrm{C}$		130	$\begin{aligned} & \text { E32-T54V } \\ & 1 \mathrm{M} \end{aligned}$
	L-shaped, long distance, heat-resistant up to $200^{\circ} \mathrm{C}$		480	$\begin{aligned} & \text { E32-T84SV } \\ & 1 \mathrm{M} \end{aligned}$

*The sensing distances apply for use in combination with the E3X-DA-S Amplifier Unit (general-purpose, standard mode).
Fiber Units on Atmospheric-pressure Side

Appearance	Type	Model number
	Common	E32-T10V 2M

Flanges

Appearance	Type	Model number
4-channel flange	E32-VF4	
1-channel flange	E32-VF1	

- Ratings/Characteristics

Number of channels Item	4 channels	
	E32-VF4	1 channels
Leakage rate	$1 \times 10^{-10} \mathrm{~Pa} \cdot \mathrm{~m}^{3} / \mathrm{s}$ max.	E32-VF1
Ambient temperature range	Operating: $-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ Storage: $-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$	
Material	Aluminum (A5056)	Stainless steel (SUS304) Aluminum (A5056)
Flange-seal material	Fluorocarbon rubber (Viton)	
Weight (packed state)	Approx. 280 g	Approx. 240 g

Application-corresponding Models

Label Detection

- Built-in lens and high-power beam enable the reliable detection of labels through a mounting board.
- These Fiber Units can be washed with hydrogen peroxide, making them ideal for the food industry.

Applications

Detecting labels

Ratings/Characteristics

Ambient tempera- ture range	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (no icing or condensation)
Fiber material	Plastic Froe-curt
Degree of protec- tion	IP67

Overview of Model Variations

Type	Features	Shape, sensing distance (mm)*	Model number
	Slot sensor, no adjustment of optical axis required	近 10	E32-G14
$\begin{aligned} & \text { 흥 } \\ & \text { 을 } \\ & \text { } \end{aligned}$	Screw mounting, side-view	$\square_{\square}^{\square}$	E32-T14

*The sensing distances apply for use in combination with the E3X-DA-S Amplifier Unit (general-purpose, standard mode).

Liquid-level Detection

- Area sensing is possible with minimal influence from bubbles and drops of water (E32-A01/A02/D36T).
- For safety when disconnections occur, two models have been developed, a light ON model for liquid presence and a light ON model for liquid absence (E32-A01/ A02).
Tube-mounting model

Liquid-contact model

Operating Principle

Tube-mounting
Liquid-contact model

The presence/absence of liquid is detected using the refractive properties of light. More specifically, it utilizes the fact that the difference in refractive index between the air and the tip/tube is larger than the difference between the liquid and the tip/tube.

- Overview of Model Variations

Type	Features	Shape, sensing distance (mm)*	Model number
	Light ON when liquid is present (ideal for checking lower limits)	Applicable tube: Transparent tube with a diameter of $3.2,6.4$, or 9.5 mm and a recommended wall thickness of 1 mm	E32-A01
	Light ON when liquid is absent (ideal for checking for overflow)	Applicable tube: Transparent tube with a diameter in the range 6 to 13 mm and a recommended wall thickness of 1 mm	E32-A02
	No restriction on tube diameter, resistant to bubbles and drops of water	Applicable tube: Transparent tube (no restriction on diameter)	E32-D36T
	Heat-resistant up to $200^{\circ} \mathrm{C}$, shape prevents liquid buildup	Liquid-contact model	E32-D82F1

*The sensing distances apply for use in combination with the E3X-DA-S Amplifier Unit (general-purpose, standard mode).

Application-corresponding Models

Glass-substrate Alignment

- There is little variation of detection position within the

Engineering Data (E32-A07/A08/L16-N) detection range ($\pm 0.1 \mathrm{~mm}$ max.)

- The different model variations can handle a variety of sensing distances and temperature conditions.

Overview of Model Variations

Type	Features	Shape, sensing distance (mm)*		Model number
	0 to 15 mm , wide-range sensing		0 to 15	E32-L16-N
	Long-distance sensing		10 to 20	E32-A08
			15 to 25	$\begin{aligned} & \text { E32-A07E1 } \\ & \text { E32-A07E2 } \end{aligned}$
	Heat-resistant up to $300^{\circ} \mathrm{C}$	$\uparrow 1$	5 to 18	E32-L66

*The sensing distances apply for use in combination with the E3X-DA-S Amplifier Unit (general-purpose, standard mode).

Glass-substrate Mapping

- These models can reliably detect thin glass-substrate end faces ($\mathrm{t}=0.5 \mathrm{~mm}$, beveled edge).
- Using a large-diameter lens makes it possible to cope with tilting of the glass substrates.

E32-A09
■ Overview of Model Variations

Type	Features	Shape, sensing distance (mm)*		Model number
	Large-diameter lens ensures resistance to tilting	15 to 38 (center: 25)		E32-A09
	Heat-resistant up to $150^{\circ} \mathrm{C}$			E32-A09H
	Heat-resistant up to $300^{\circ} \mathrm{C}$	\because	20 to 30 (center: 25)	E32-A09H2

*The sensing distances apply for use in combination with the E3X-DA-S Amplifier Unit (general-purpose, standard mode).

Application-corresponding Models

Wafer Mapping

- Wafers are reliable detected with an ultrafine beam.
- The optical axis is adjusted before delivery to allow

- Features

Optical axis adjusted before delivery so that displacement is typically within 0.1°

- Engineering Data

Overview of Model Variations

Type	Features	Shape, sensing distance (mm)*	Model number
	Opening angle: 1.5°	890	E32-A03
	With mounting flange		E32-A03-1
	Opening angle: 3° ultraslim	340	E32-A04
	With mounting flange		E32-A04-1

[^3]
Ordering Information

Through-beam Fiber Units Standard models

\square High-resolution mode \square Standard mode \square High-speed mode *When used in combination with the E3X-DA-S Amplifier Unit (general-purpose).

*1. The values for the minimum sensing object are representative values that indicate values obtained in standard mode with the sensing distance and sensitivity set to optimum values.
*2. Free-cut Indicates models that allow free cutting.

Through-beam Fiber Units Standard models

*1. The values for the minimum sensing object are representative values that indicate values obtained in standard mode with the sensing distance and sensitivity set to optimum values.
*2. Free-cut) Indicates models that allow free cutting.
(R)Flexible B Break-resistant (U) Fluororesin coating

Standard models

High-resolution mode \square Standard modHigh-speed mode Super-high-speed mode)

Type	Appearance (mm) *2	Dimensions page	Sensing distance (mm)	Standard object (min. sensing object) (mm) *1	Min. bending radius (mm)	Features	Model number
		42	$\begin{aligned} & 1680 \\ & 1800 \end{aligned}$	$\begin{aligned} & 1 \mathrm{dia} \\ & \text { (0.005 dia.) } \end{aligned}$	B R4	M4 screw	E32-T11
		42				3-dia. cylinder	E32-T12B
		42				Flat shape	E32-T15XB
		42				M3 screw (small)	E32-T21
		42	240 $\square 200$ $\square \square 110(45)$	0.5 dia		2-dia. cylinder (small)	E32-T221B
		42		(0.005 dia.)		1.5-dia. cylinder (small)	E32-T22B
	Free-cut $\frac{09}{12 \times 7 \times 2} \rightarrow 00$	42	180 \square $\square \square 85(35)$ \square			Flat shape (small)	E32-T25XB
읓 ¢ 0	Free-cut	42		1 dia. (0.005 dia.)	$\begin{aligned} & \text { R4 } \end{aligned}$	M4 screw, fluorine coating	E32-T11U

[^4]*2. Free-cut Indicates models that allow free cutting.
R Flexible B Break-resistant Uluororesin coating

Through-beam Fiber Units Special-beam models

\square High-resolution mode \square Standard mode \square High-speed mode $\quad \square$ Super-high-speed mode) \quad When used in combination with the E3X-DA-S Amplifier Unit (general-purpose).

*1. The values for the minimum sensing object are representative values that indicate values obtained in standard mode with the sensing distance and sensitivity set to optimum values.
*2. Free-cut Indicates models that allow free cutting
*3. The optical fiber is 10 m long on each side, so the sensing distance is $20,000 \mathrm{~mm}$.
*4. The optical fiber is 2 m long on each side, so the sensing distance is $4,000 \mathrm{~mm}$.
R Flexible B Break-resistant (U) Fluororesin coating

Special-beam models

\square High-resolution mode \square Standard mode \square High-speed mode *When used in combination with the E3X-DA-S Amplifier Unit (general-purpose).

[^5]
Through-beam Fiber Units Environment-resistant models

$\begin{aligned} & \square \text { High-resolution mode } \square \text { Standard mode } \square \square \text { High-speed mode } \\ &(\square \text { Super-high-speed mode) }\end{aligned}$

Type	Appearance (mm) *2		$\begin{array}{\|l} \hline \text { Dimen- } \\ \text { sions } \\ \text { page } \end{array}$	Sensing distance (mm)			Standard object (min. sensing object) (mm)*1	Min. bending radius (mm)	Features	Model number		
	$\begin{aligned} & 150^{\circ} \mathrm{C} \\ & { }^{*} 5 \end{aligned}$	Free.cul)	44		$500(200$	$\begin{aligned} & 1,000 \\ & 760 \\ & 00 \end{aligned}$	1.5 dia. (0.1 dia.)	R35	Heat-resistant up to $150^{\circ} \mathrm{C}$	E32-T51		
		Free cur $2 \text { dia }\\|-\\|$	44	300 $\square \quad 230$ $\square \square 150(60)$					Heat-resistant up to $150^{\circ} \mathrm{C}$; sideview	E32-T54		
			45	 \square $\square \square 180(70)$ \square			$\begin{aligned} & 1 \text { dia. } \\ & \text { (} 0.005 \text { dia.) } \end{aligned}$	R10	Heat-resistant up to $200^{\circ} \mathrm{C}$	E32-T81R-S		
			$\begin{array}{\|l} 45 \\ 55 \end{array}$	$-\quad 13$ $-\quad 300$ ($\begin{aligned} & 600 \\ & 450 \\ & 120) \end{aligned}$		3 dia. (0.1 dia.)		Heat-resistant up to $200^{\circ} \mathrm{C}$; sideview	$\begin{aligned} & \text { E32-T61-S+ } \\ & \text { E39-F2 } \end{aligned}$		
	$\begin{aligned} & 200^{\circ} \mathrm{C} \\ & { }^{2} 6 \end{aligned}$	$\underset{M 4}{\operatorname{man}} \rightarrow$	$\begin{array}{\|l} 45 \\ 55 \end{array}$			$\begin{aligned} & 4,000 \times 7 \\ & b^{3,400} \\ & 2,200 \text { (900) } \end{aligned}$	4 dia. (0.1 dia.)	R2	Heat-resistant up to $200^{\circ} \mathrm{C}$, long distance	$\begin{aligned} & \text { E32-T61-S+ } \\ & \text { E39-F1 } \end{aligned}$		
		$\int_{3}^{\frac{+}{4} \rightarrow \square}$	45			$\begin{aligned} & 1,750 \\ & 1,100 \\ & 870(350) \end{aligned}$	$\begin{aligned} & 1.7 \mathrm{dia} . \\ & \text { (} 0.1 \mathrm{dia} \text {) } \end{aligned}$	R2	Heat-resistant up to $200^{\circ} \mathrm{C}$; Lshaped; long distance	E32-T84S-S		
	$\begin{aligned} & 350^{\circ} \mathrm{C} \\ & { }^{2} 6 \end{aligned}$		45		$\begin{aligned} & 600 \\ & 1200 \\ & 120) \end{aligned}$		$\begin{aligned} & 1 \text { dia. } \\ & \text { (} 0.005 \text { dia.) } \end{aligned}$		Heat-resistant up to $350^{\circ} \mathrm{C}$	E32-T61-S		
			45	E		$\begin{array}{r} 2,500 \\ \square 2,000 \\ \square 1,300(520) \end{array}$	4 dia. (0.1 dia.)	R4	Fluororesin cover, round head	E32-T11F		
		$\stackrel{\text { cuit }}{=} \stackrel{+}{5 \text { dia. }} \rightarrow$	45			$4,00{ }^{*} 7$ 32,000 $2,000(800)$	4 dia. (0.1 dia.)		Fluororesin cover, long distance	E32-T12F		
		$5 \text { dia }-\\|\rightarrow\\|$	45		$\begin{aligned} & 500 \\ & 00 \\ & 00 \\ & 0 \text {) } \end{aligned}$		3 dia. (0.1 dia.)	R40	Fluororesin cover, sideview	E32-T14F		
		$=\stackrel{t}{5 \text { dia. }}=\square$	45		$=$	$\begin{aligned} & 1,800 \\ & \square 1,400 \\ & \square 900(350) \end{aligned}$	4 dia. (0.1 dia.)		Fluororesin cover, heatresistant up to $150^{\circ} \mathrm{C} * 5$	E32-T51F		
		$=\underset{6 \text { dia. }}{t} \rightarrow \square$	45			$\begin{aligned} & 920 \\ & 700 \\ & 30) \end{aligned}$	$\begin{aligned} & 1 \text { dia. } \\ & \text { (} 0.005 \text { dia.) } \end{aligned}$	R10	Fluororesin cover, heatresistant up to $200^{\circ} \mathrm{C} * 6$	E32-T81F-S		

*1. The values for the minimum sensing object are representative values that indicate values obtained in standard mode with the sensing distance and sensitivity set to optimum values.
*2. Free-cut) Indicates models that allow free cutting.
*3. This is the value for which detection is possible within the sensing area, with the sensing distance set to 300 mm . (The sensing object is stationary.)
*4. This is the value for which detection is possible within the sensing area, with the sensing distance set to give a digital value of 1,000 . (The sensing object is stationary.)
*5. For continuous operation, use the products within a temperature range of $-40^{\circ} \mathrm{C}$ to $130^{\circ} \mathrm{C}$
*6. The maximum temperature that can be withstood varies with the location. Refer to dimensions diagrams for details.
*7. The optical fiber is 2 m long on each side, so the sensing distance is $4,000 \mathrm{~mm}$.

Environment-resistant models

\square High-resolution mode \square Standard mode \square High-speed mode \square When used in combination with the E3X-DA-S Amplifier Unit (general-purpose).

* The values for the minimum sensing object are representative values that indicate values obtained in standard mode with the sensing distance and sensitivity set to optimum values.

Flanges

Appearance (mm)	Dimensions page	Type	Model number
	46	4-channel flange	E32-VF4
	46	1-channel flange	E32-VF1

Fiber Units for Atmospheric-pressure Side

Appearance (mm)	Dimen- sions page	Type	Model number
	46	Amplifier-Flange Connection Fiber	E32-T10V 2M

[^6]Lens Units

Appear- ance (mm)	Dimen- sions page	Type	Quan- tity	Remarks
60	46	E39-F1V	2	Long-distance Lens Unit Can be used for the E32-T51V and the E32-T54V.

Mounting Brackets

Appear- ance (mm)	Dimen- sions page	Type	Quan- tity	Remarks
R	46	E39-L54V	2	Can be used for the E32-T54V.

Fiber Units with Refilective Sensors Standard models

*1. The sensing distances are for white paper.
*2. The values for the minimum sensing object are representative values that indicate values obtained in standard mode with the sensing distance and sensitivity set to optimum values.
*3. Free-cut Indicates models that allow free cutting.
(R)Flexible B Break-resistant (U) Fluororesin coating

Standard models

*1. The sensing distances are for white paper.
*2. The values for the minimum sensing object are representative values that indicate values obtained in standard mode with the sensing distance and sensitivity set to optimum values.
*3. Free-cut Indicates models that allow free cutting.
R Flexible B Break-resistant (U) Fluororesin coating

Fiber Units with Reflective Sensors Standard models

\square High-resolution mode \square Standard mode \square High-speed mode *When used in combination with the E3X-DA-S Amplifier Unit (general-purpose).
\qquad

Type	Appearance (mm) *3		Dimensions page	Sensing distance (mm) *1		(Min. sensing object) (mm) *2	Min. bending radius (mm)	Features	Model number
			48	1300		(0.005 dia.)	$\begin{aligned} & \mathrm{B} \\ & \mathrm{R} 4 \end{aligned}$	M6 screw	E32-D11
			49	$\begin{aligned} & 170 \\ & \square 120 \text { (50) } \end{aligned}$				Flat shape	E32-D15XB
	$\begin{aligned} & \stackrel{N}{N} \\ & \stackrel{N}{N} \\ & \overline{\tilde{\sigma}} \\ & \underset{\sim}{N} \end{aligned}$		48					M4 screw (small)	E32-D21B
			48					3-dia. cylinder (small)	E32-D221B
		$\xlongequal{\text { Fire-cult }}=-4$	48	$\begin{array}{r} 50 \\ -\quad 30 \\ -120(8) \end{array}$				M3 screw (small)	E32-D21
			48					1.5-dia. cylinder (small)	E32-D22B
		Free-cut $\underset{12 \times 8 \times 2}{\sigma}$	49	$\square 85$ $\square 50$ $\square 30(15)$				Flat shape (small)	E32-D25XB
$\begin{aligned} & \text { O} \\ & \text { 듣 } \\ & \text { © } \\ & 0 \end{aligned}$			48	$\quad 170$ \square $\square \square 120(50)$		(0.005 dia.)	$\begin{aligned} & \mathrm{U} 4 \\ & \text { R4 } \end{aligned}$	M6 screw, fluorine coating	E32-D11U

*1. The sensing distances are for white paper.
*2. The values for the minimum sensing object are representative values that indicate values obtained in standard mode with the sensing distance and sensitivity set to optimum values.
*3. Free-cut Indicates models that allow free cutting.
RFlexible B Break-resistant (U) Fluororesin coating

Special-beam models

High-resolution mode \square Standard mode

High-speed mode
*When used in combination with the E3X-DA-S Amplifier Unit (general-purpose). Super-high-speed mode)

*1. The sensing distances are for white paper.
*2. The values for the minimum sensing object are representative values that indicate values obtained in standard mode with the sensing distance and sensitivity set to optimum values.
*3. Free-cut Indicates models that allow free cutting.

Fiber Units with Reflective Sensors Special-beam models

\square High-resolution mode \square Standard mode \square High-speed mode *When used in combination with the E3X-DA-S Amplifier Unit (general-purpose).Super-high-speed mode)

Type	Appearance (mm) *3	Dimensions page	Sensing distance (mm) *1		(Min. sensing object) (mm) *2	Min. bending radius (mm)	Features	Model number
		50	$\begin{aligned} & { }^{170} \\ & \hline \square 160(50) \\ & \hline \square \quad 1 \end{aligned}$		(0.005 dia.)	$\begin{array}{r} R \\ R 4 \end{array}$	M6 right angle	E32-C11N
		50	$\begin{aligned} & 40 \\ & 125 \\ & 123(7) \end{aligned}$				M3 right angle	E32-C31N
	Free-cut	50	250 $\square 150$ $\square 100(45)$				M6 screw	E32-CC200R
		50	$-\quad 300$ $-\quad 1200(90)$	500		R25		E32-CC200
	Free-cut	50	 $\square 150$ $\square \square 100(45)$				3-dia. cylinder	E32-D32L
	Free-cut	50	120				M3 screw (small)	E32-C31
	Free-cut	50	$\begin{aligned} & \square 75 \\ & \square 50(22) \end{aligned}$				2-dia. cylinder (small)	E32-D32
		$\begin{aligned} & 50 \\ & 56 \end{aligned}$	6 to 15 mm ; spot diameter: 0.1 to 0.6 mm				Small spot (variable)	$\begin{aligned} & \text { E32-C42+ } \\ & \text { E39-F3A } \end{aligned}$
		$\begin{aligned} & 50 \\ & 56 \end{aligned}$	Spot diameter of 0.5 to 1 mm at distances in the range 6 to 15 mm					$\begin{aligned} & \text { E32-D32+ } \\ & \text { E39-F3A } \end{aligned}$
		$\begin{aligned} & 50 \\ & 56 \end{aligned}$	Spot diameter of 0.1 mm at 7 mm				Small spot	$\begin{aligned} & \text { E32-C41+ } \\ & \text { E39-F3A-5 } \end{aligned}$
		$\begin{aligned} & 50 \\ & 56 \end{aligned}$	Spot diameter of 0.5 mm at 7 mm					$\begin{aligned} & \text { E32-C31+ } \\ & \text { E39-F3A-5 } \end{aligned}$
		$\begin{aligned} & 50 \\ & 56 \end{aligned}$	Spot diameter of 0.2 mm at 17 mm				Long distance, small spot	$\begin{aligned} & \text { E32-C41+ } \\ & \text { E39-F3B } \end{aligned}$
		$\begin{aligned} & 50 \\ & 56 \end{aligned}$	Spot diameter of 0.5 mm at 17 mm					$\begin{aligned} & \text { E32-C31+ } \\ & \text { E39-F3B } \end{aligned}$
	Free-cut	$\begin{aligned} & 50 \\ & 56 \end{aligned}$	Spot diameter of 4 mm max. at distances in the range 0 to 20 mm				Long-distance sensing, parallel light	$\begin{aligned} & \text { E32-C31+ } \\ & \text { E39-F3C } \end{aligned}$
		50	$\begin{array}{r} 250 \\ \square 150 \\ \square \square 100(45) \end{array}$		(0.005 dia.)	$\begin{gathered} \mathrm{B} \\ \mathrm{R} 4 \end{gathered}$	Beam width: 11 mm	E32-D36P1
		51	$\begin{aligned} & 10 \text { to } 250 \\ & 10 \text { to } 250 \\ & 10 \text { to } 250 \text { (10 to } 250 \text {) } \end{aligned}$		(0.1 dia.)	R10	M6 screw	$\begin{aligned} & \text { E32-R21+ } \\ & \text { E39-R3 } \\ & \text { (Attached) } \end{aligned}$
	Free-cut	51		150 to 1,500 150 to 1,500 150 to 1,500 $(150$ to 1,500$)$	(0.2 dia.)	R25	Screw mounting, long distance	$\begin{aligned} & \text { E32-R16+ } \\ & \text { E39-R1 } \\ & \text { (Attached) } \end{aligned}$

*1. The sensing distances are for white paper.
*2. The values for the minimum sensing object are representative values that indicate values obtained in standard mode with the sensing distance and sensitivity set to optimum values.
*3. Free-cut Indicates models that allow free cutting.
R Flexible B Break-resistant U Fluororesin coating

High-speed mode
*When used in combination with the E3X-DA-S Amplifier Unit (general-purpose). Super-high-speed mode)

*1. The sensing distances are for white paper.
*2. The values for the minimum sensing object are representative values that indicate values obtained in standard mode with the sensing distance and sensitivity set to optimum values.
*3. Free-cut Indicates models that allow free cutting.
*4. For continuous operation, use the products within a temperature range of $-40^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$.

Fiber Units with Reflective Sensors Environment-resistant models

Type	Appe	earance (mm) *3	Dimensions page	Sensing dista	tance (mm) *1	(Min. sensing object) (mm) *2	Min. bending radius (mm)	Features	Model number			
	$\begin{aligned} & 150^{\circ} \mathrm{C} \\ & { }^{2} 4 \end{aligned}$		52	$\square 230$ $\square \square 160(72)$		(0.005 dia.)	R35	Heat resistant up to $150^{\circ} \mathrm{C}$	E32-D51			
	$\begin{aligned} & 200^{\circ} \mathrm{C} \\ & { }^{5} 5 \end{aligned}$	$=\underset{\mathrm{M6}}{\square}$	52	1150			R10	Heat resistant up to $200^{\circ} \mathrm{C}$	$\begin{aligned} & \text { E32-D81R-S } \\ & \text { E32-D81R*6 } \end{aligned}$			
	$\begin{aligned} & 350^{\circ} \mathrm{C} \\ & { }^{*} 5 \end{aligned}$		52	1160 (27)			R25	Heat resistant up to $350^{\circ} \mathrm{C}$	$\begin{aligned} & \text { E32-D61-S } \\ & \text { E32-D61*6 } \end{aligned}$			
	$\begin{aligned} & 400^{\circ} \mathrm{C} \\ & { }^{5} 5 \end{aligned}$	of sleeve: 10	53	$\quad 100$ $\square 60$ $\square 40(18)$				Heat resistant up to $400^{\circ} \mathrm{C}$, with sleeve	$\begin{aligned} & \text { E32-D73-S } \\ & \text { E32-D73*6 } \end{aligned}$			
	Free-cut		53	$\begin{aligned} & \quad 160 \\ & \square 95 \\ & \square 65(30) \end{aligned}$		(0.005 dia.)	R40	Fluororesin cover, long distance	E32-D12F			
	Free-cut	$\rightarrow \mid\\| \\| \\|^{\leftrightarrows}$	53	$\square 70$ $\square 40$ $\square 30(10)$				Fluororesin cover, sideview	E32-D14F			

*1. The sensing distances are for white paper.
*2. The values for the minimum sensing object are representative values that indicate values obtained in standard mode with the sensing distance and sensitivity set to optimum values.
*3. Free-cut Indicates models that allow free cutting.
*4. For continuous operation, use the products within a temperature range of $-40^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$.
*5. The maximum temperature that can be withstood varies with the location. Refer to dimensions diagrams for details.
*6. Order the Fiber Unit based on the Amplifier Unit. Use the E32-D \square-S if the E3X-DA \square-S, E3X-MDA \square, or E3X-DAC $\square-S$ is used. Use the E32-D \square if any other Amplifier is used.

R Flexible B Break-resistant (U) Fluororesin coating

${ }^{*}$. The values for the minimum sensing object are representative values that indicate values obtained in standard mode with the sensing distance and sensitivity set to optimum values.
*2. Free-cut Indicates models that allow free cutting.
*3. The maximum temperature that can be withstood varies with the location. Refer to dimensions diagrams for details.
*4. These values are based on the assumption that there are no repeated sudden changes in temperature.
*5. The characteristics for sensing object incline are different between the Attachments with model numbers ending in "E1" and "E2." Refer to page 52 for installation precautions.

Application-corresponding Fiber Units

*1. The values for the minimum sensing object are representative values that indicate values obtained in standard mode with the sensing distance and sensitivity set to optimum values.
*2. Free-cut Indicates models that allow free cutting.
*3. For continuous operation, use the products within a temperature range of $-40^{\circ} \mathrm{C}$ to $130^{\circ} \mathrm{C}$.
*4. The maximum temperature that can be withstood varies with the location. Refer to dimensions diagrams for details.
*5. These values are based on the assumption that there are no repeated sudden changes in temperature.
RFlexible B Break-resistant (U) Fluororesin coating

Accessories

Lens Units
*When used in combination with the E3X-DA-S Amplifier Unit (general-purpose).

Type		Appearance	Dimensions page	Applicable Fiber Units	Sensing distance (mm)				Standard object (min. sensing object) (mm) *1	Features	Model number	
		Highresolution mode			Standard mode	Highspeed mode	Super-highspeed mode					
				55	E32-T11L	4,000*2	3,200	2,100	840	4 dia. (0.1 dia.)	Long-distance sensing; opening angle: 5° to 40° (heat resistant up to $200^{\circ} \mathrm{C}$)	E39-F1
		E32-TC200			4,000*2	4,000*2	2,600	1,500				
		E32-T11R			4,000*2	3,700	2,400	970				
		E32-T11			4,000*2	3,600	2,300	930				
		E32-T11U			4,000*2	3,600	2,300	930				
		E32-T81R-S			2,650	2,100	1,300	520				
		E32-T61-S			4,000*2	3,400	2,200	900				
			55	E32-T11L	910	800	500	180	3 dia. (0.1 dia.)	Side-view, space-saving (heat resistant up to $200^{\circ} \mathrm{C}$)	E39-F2	
				E32-TC200	840	700	450	160				
				E32-T11R	520	400	250	100				
				E32-T11	820	660	430	160				
				E32-T11U	820	660	430	160				
				E32-T81R-S	360	280	180	70				
				E32-T61-S	600	450	300	120				
			55	E32-T11L E32-TC200 E32-T11R E32-T11 E32-T11U E32-T81R-S E32-T61-S		--			---	Long distance reflection (heat resistant up to $200^{\circ} \mathrm{C}$)	E39-F3	
		5	56	E32-C42	Spot diameter variable in the range 0.1 to 0.6 mm at distances in the range 6 to 15 mm					Small spot (variable)	E39-F3A	
				E32-D32	Spot diameter variable in the range 0.5 to 1 mm at distances in the range 6 to 15 mm							
				E32-C41	0.1 -dia. spot at a distance of 7 mm					Small spot	E39-F3A-5	
				E32-C31	0.5 -dia. spot at a distance of 7 mm							
				E32-C41	0.2-dia. spot at a distance of 17 mm					Long distance, small spot	E39-F3B	
				E32-C31	0.5-dia. spot at a distance of 17 mm							
			56	$\begin{aligned} & \text { E32-C31 } \\ & \text { E32-C41 } \end{aligned}$	Spot diameter of 4 mm max. at distances in the range 0 to 20 mm					Long-distance sensing, parallel light	E39-F3C	

*1. The values for the minimum sensing object are representative values that indicate values obtained in standard mode with the sensing distance and sensitivity set to optimum values.
*2. The optical fiber is 2 m long on each side, so the sensing distance is $4,000 \mathrm{~mm}$.

Accessories

Protective Spiral Tube

Appearance	Dimensions page	Application	Applicable Fiber Units	Tube length	Model number
	56	Fiber protection	M3-screw modelsE32-D21/E32-D21RE32-DC200EE32-DC200F \squareE32-C31	500 mm	E39-F32A5
				1 m	E39-F32A
			M3-screw models E32-T21 (Except the E32-T21R.) E32-TC200E E32-TC200F	500 mm	E39-F32B5
				1 m	E39-F32B
	56		```M4-screw models E32-T11 \(\square\) (except the E32-T11N Right-angle Model) E32-TC200 E32-TC200B \(\square\) E32-T51 E32-D21L/E32-D21B```	500 mm	E39-F32C5
				1 m	E39-F32C
	56		```M6-screw models E32-D11 \(\square\) (except the E32-D11N Right-angle Model) E32-DC200 E32-DC200B E32-CC200 \(\square\) E32-D51```	500 mm	E39-F32D5
				1 m	E39-F32D

Note: Before using a Protective Spiral Tube, remove the protective tube that protects the area between the head and the optical fiber provided with some models.
Other Accessories

Appearance	Dimensions page	Application	Name	Applicable Fiber Units	Remarks	Model number
	57	Used to cut the fiber.	Cutter	Fiber Units that allow free cutting	Provided with applicable Fiber Units.	E39-F4
8	57	Attachments for in serting thin fibers into Amplifier Units	Thin-fiber Attachments	Fiber Units that allow free cutting and have a 1.0-dia. sheath	- 2 per set - Provided with applicable Fiber Units.	E39-F9
∞	57	Used to extend fibers.		Fiber Units that allow free cutting and have a 2.2-dia. sheath	---	E39-F10
	57	Easy-to-use, onetouch relay connectors	Fiber Connectors	Fiber Units that allow free cutting	E39-F13: Used for Fiber Units with a 2.2-dia. sheath. E39-F14: Used for Fiber Units with a 1.0-dia. sheath. E39-F15: Used to connect Fiber Units with different sheath diameters, 1.0 mm and 2.2 mm .	$\begin{aligned} & \text { E39-F13 } \\ & \text { E39-F14 } \\ & \text { E39-F15 } \end{aligned}$
	57	Used to bends in sleeves.	Sleeve Bender	$\begin{aligned} & \text { E32-TC200B(4) } \\ & \text { E32-TC200F(4) } \\ & \text { E32-DC200F(4) } \end{aligned}$	---	E39-F11
	57	Used to secure the 3.5-dia. Fiber Head	Mounting Bracket	$\begin{aligned} & \text { E32-T24S } \\ & \text { E32-A03 } \end{aligned}$	Provided with applicable Fiber Units.	E39-L83

Standard models

Standard models (continued)

Models	Ambient operating temperature range	Ambient humidity range	Fiber core material (sheath material)	Permissible bending radius	Tightening force (N.m)	Pulling force (N)	IEC standard degree of protection
E32-T24	-40 to $+70^{\circ} \mathrm{C}$	35\% to 85\%	Plastic (polyethylene coating)	R10	0.29	9.8	IP67
E32-T24R			Plastic (polyethylene coating)	R1	0.29	9.8	
E32-T25X			Plastic (polyethylene coating)	R10	0.15	9.8	
E32-T25XB			Plastic (PVC coating)	R4	0.15	9.8	
E32-T25XR			Plastic (polyethylene coating)	R1	0.15	9.8	
E32-T25Y			Plastic (polyethylene coating)	R10	0.15	9.8	
E32-T25YR			Plastic (polyethylene coating)	R1	0.15	9.8	
E32-T25Z			Plastic (polyethylene coating)	R10	0.15	9.8	
E32-T25ZR			Plastic (polyethylene coating)	R1	0.15	9.8	
E32-TC200			Plastic (polyethylene coating)	R25	0.78	29.4	
E32-TC200A			Plastic (polyethylene coating)	R25	0.78	29.4	
E32-TC200B(B4)			Plastic (polyethylene coating)	R25	0.78	29.4	
E32-TC200BR(B4R)			Plastic (PVC coating)	R1	0.78	29.4	
E32-TC200E			Plastic (polyethylene coating)	R10	0.78	9.8	
E32-TC200F(F4)			Plastic (polyethylene coating)	R10	0.78	9.8	
E32-TC200FR(F4R)			Plastic (polyethylene coating)	R1	0.78	9.8	

Special-beam models

Models	Ambient operating temperature range	Ambient humidity range	Fiber core material (sheath material)	Permissible bending radius	Tightening force (N•m)	$\begin{array}{\|c\|} \hline \text { Pulling } \\ \text { force (N) } \end{array}$	IEC standard degree of protection
E32-A10	-40 to $+70^{\circ} \mathrm{C}$	35\% to 85\%	Plastic (polyethylene coating)	R25	0.53	29.4	IP30
E32-C11N	-40 to $+70^{\circ} \mathrm{C}$		Plastic (combination of PVC and polyethylene)	R4	0.98	29.4	IP67
E32-C31	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R25	0.78	9.8	IP67
E32-C31N	-40 to $+70^{\circ} \mathrm{C}$		Plastic (combination of PVC and polyethylene)	R4	0.29	9.8	IP67
E32-C41	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R25	0.78	9.8	IP67
E32-C42	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R25	0.29	9.8	IP67
E32-CC200	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R25	0.98	29.4	IP67
E32-CC200R	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R4	0.98	29.4	IP67
E32-D11L	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R25	0.98	29.4	IP67
E32-D16	-40 to $+70^{\circ} \mathrm{C}$		Plastic (PVC coating)	R4	0.53	29.4	IP40
E32-D21L	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R10	0.78	9.8	IP67
E32-D22L	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R10	0.29	9.8	IP67
E32-D32	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R25	0.29	9.8	IP67
E32-D32L	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R25	0.29	29.4	IP67
E32-D33	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R4	0.29	9.8	IP67
E32-D331	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R4	0.29	9.8	IP67
E32-D36P1	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R4	0.78	29.4	IP50
E32-L24L	-40 to $+105^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R10	0.29	9.8	IP50
E32-L24S	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R10	0.29	9.8	IP40
E32-L25	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R25	0.29	19.6	IP50
E32-L25A	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R25	0.29	19.6	IP50
E32-L25L	-40 to $+105^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R10	0.29	9.8	IP50
E32-L64	-40 to $+300^{\circ} \mathrm{C}$		Glass (SUS spiral coating)	R25	0.54	9.8	IP50
E32-L86	-40 to $+200^{\circ} \mathrm{C}$		Glass (SUS spiral coating)	R25	0.54	9.8	IP40
E32-M21	-40 to $+70^{\circ} \mathrm{C}$		Plastic (PVC coating)	R25	0.49. 0.78*	9.8	IP50
E32-R16	-25 to $+55^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R25	0.54	29.4	IP66
E32-R21	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R10	0.39	9.8	IP67
E32-T11L	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R25	0.78	29.4	IP67
E32-T12L	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R25	0.29	29.4	IP67
E32-T14	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R25	0.49	29.4	IP67
E32-T16	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R25	0.49	29.4	IP67
E32-T16J	-40 to $+70^{\circ} \mathrm{C}$		Plastic (PVC coating)	R10	0.29	29.4	IP50
E32-T16JR	-40 to $+70^{\circ} \mathrm{C}$		Plastic (PVC coating)	R1	0.29	29.4	IP50
E32-T16P	-40 to $+70^{\circ} \mathrm{C}$		Plastic (PVC coating)	R10	0.29	29.4	IP50
E32-T16PR	-40 to $+70^{\circ} \mathrm{C}$		Plastic (PVC coating)	R1	0.29	29.4	IP50
E32-T16W	-25 to $+55^{\circ} \mathrm{C}$		Plastic (PVC coating)	R10	0.29	9.8	IP50
E32-T16WR	-25 to $+55^{\circ} \mathrm{C}$		Plastic (PVC coating)	R1	0.29	9.8	IP50
E32-T17L	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R25	0.78	29.4	IP67
E32-T21L	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R10	0.78	9.8	IP67
E32-T223R	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R1	0.20	9.8	IP67
E32-T22L	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R10	0.29	9.8	IP67
E32-T22S	-40 to $+70^{\circ} \mathrm{C}$		Plastic (PVC coating)	R10	0.29	29.4	IP50
E32-T24S	-40 to $+70^{\circ} \mathrm{C}$		Plastic (PVC coating)	R10	0.29	29.4	IP50
E32-T333-S5	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R10	0.29	9.8	IP67
E32-T334-S5	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R10	0.29	9.8	IP67
E32-T33-S5	-40 to $+70^{\circ} \mathrm{C}$		Plastic (PVC coating)	R10	0.29	9.8	IP67

*The strength depends on the section. Use $0.49 \mathrm{~N} \bullet \mathrm{~m}$ max. to 5 mm from the tip and $0.78 \mathrm{~N} \bullet \mathrm{~m}$ max. at a distance of more than 5 mm from the tip.

Environment-resistant models

Models	Ambient operating temperature range	Ambient humidity range	Fiber core material (sheath material)	Permissible bending radius	Tightening force (N.m)	Pulling force (N)	IEC standard degree of protection
E32-D12F	-40 to $+70^{\circ} \mathrm{C}$	35\% to 85\%	Plastic (fluororesin coating)	R40	0.78	29.4	IP67
E32-D14F	-40 to $+70^{\circ} \mathrm{C}$		Plastic (fluororesin coating)	R40	0.78	29.4	IP67
E32-D51	-40 to $+150^{\circ} \mathrm{C}$		Plastic (fluororesin coating)	R35	0.98	29.4	IP67
E32-D61	-60 to $+350^{\circ} \mathrm{C}$		Glass (SUS spiral coating)	R25	0.98	29.4	IP67
E32-D61-S	-60 to $+350^{\circ} \mathrm{C}$		Glass (SUS spiral coating)	R25	0.98	29.4	IP67
E32-D73	-40 to $+400^{\circ} \mathrm{C}$		Glass (SUS spiral coating)	R25	0.78	29.4	IP67
E32-D73-S	-40 to $+400^{\circ} \mathrm{C}$		Glass (SUS spiral coating)	R25	0.78	29.4	IP67
E32-D81R	-40 to $+200^{\circ} \mathrm{C}$		Glass (fluororesin coating)	R10	0.78	9.8	IP67
E32-D81R-S	-40 to $+200^{\circ} \mathrm{C}$		Glass (fluororesin coating)	R10	0.78	9.8	IP67
E32-T11F	-40 to $+70^{\circ} \mathrm{C}$		Plastic (fluororesin coating)	R4	0.29	29.4	IP67
E32-T12F	-40 to $+70^{\circ} \mathrm{C}$		Plastic (fluororesin coating)	R40	0.78	29.4	IP67
E32-T14F	-40 to $+70^{\circ} \mathrm{C}$		Plastic (fluororesin coating)	R40	0.78	29.4	IP67
E32-T51	-40 to $+150^{\circ} \mathrm{C}$		Plastic (fluororesin coating)	R35	0.78	29.4	IP67
E32-T51F	-40 to $+150^{\circ} \mathrm{C}$		Plastic (fluororesin coating)	R40	0.78	29.4	IP67
E32-T51V	-25 to $+120^{\circ} \mathrm{C}$		Glass (fluororesin coating)	R30	0.29	29.4	---
E32-T54	-40 to $+150^{\circ} \mathrm{C}$		Plastic (fluororesin coating)	R35	0.29	29.4	IP67
E32-T54V	-25 to $+120^{\circ} \mathrm{C}$		Glass (fluororesin coating)	R30	0.29	29.4	---
E32-T61-S	-60 to $+350^{\circ} \mathrm{C}$		Glass (SUS spiral coating)	R25	0.78	29.4	IP67
E32-T81F-S	-40 to $+200^{\circ} \mathrm{C}$		Glass (fluororesin coating)	R10	0.78	9.8	IP67
E32-T81R-S	-40 to $+200^{\circ} \mathrm{C}$		Glass (fluororesin coating)	R10	0.78	9.8	IP67
E32-T84S-S	-40 to $+200^{\circ} \mathrm{C}$		Glass (fluororesin coating)	R25	0.29	9.8	IP67
E32-T84SV	-25 to $+200^{\circ} \mathrm{C}$		Glass (SUS spiral coating)	R25	0.29	29.4	---

Application-corresponding models

Models	Ambient operating temperature range	Ambient humidity range	Fiber core material (sheath material)	Permissible bending radius	Tightening force ($\mathrm{N} \cdot \mathrm{m}$)	Pulling force (N)	IEC standard degree of protection
E32-A01	-40 to $+70^{\circ} \mathrm{C}$	35\% to 85\%	Plastic (fluororesin coating)	R4	---	9.8	IP50
E32-A02	-40 to $+70^{\circ} \mathrm{C}$		Plastic (fluororesin coating)	R4	---	9.8	IP50
E32-A03	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R1	0.29	9.8	IP50
E32-A03-1	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R10	0.29	9.8	IP50
E32-A04	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R10	0.29	9.8	IP50
E32-A04-1	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R10	0.29	9.8	IP50
E32-A07E1(E2)	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R25	0.53	9.8	IP40
E32-A08	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R25	0.53	9.8	IP40
E32-A08H2	-40 to $+300^{\circ} \mathrm{C}$		Glass (SUS spiral coating)	R25	0.53	29.4	IP30
E32-A09	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R25	0.53	9.8	IP40
E32-A09H	-40 to $+150^{\circ} \mathrm{C}$		Plastic (fluororesin coating)	R35	0.53	9.8	IP40
E32-A09H2	-40 to $+300^{\circ} \mathrm{C}$		Glass (SUS spiral coating)	R25	0.53	9.8	IP40
E32-D36T	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R4	---	29.4	IP50
E32-D82F1	-40 to $+200^{\circ} \mathrm{C}$		Tip: Glass and fluororesin coating Amplifier insert: Plastic (fluororesin coating)	R40	0.29	29.4	IP68
E32-D82F2	-40 to $+200^{\circ} \mathrm{C}$		(Fluororesin coating)	R40	0.29	29.4	IP68
E32-G14	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R25	0.49	29.4	IP67
E32-L16-N	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R25	0.29	29.4	IP40
E32-L25T	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R10	---	9.8	IP50
E32-L66	-40 to $+300^{\circ} \mathrm{C}$		Glass (SUS spiral coating)	R25	0.53	9.8	IP40
E32-T14	-40 to $+70^{\circ} \mathrm{C}$		Plastic (polyethylene coating)	R25	0.49	29.4	IP67

Through-beam Fiber Units Through-beam models consist of two parts: an emitter and a receiver.

Standard Standard/Flexible Models

E32-T22
E32-T22R

E32-T25X
E32-T25XR

E32-T12
 E32-T12R

E32-T15X
 E32-T15XR

Two, 2.2-dia. mounting holes with
Material: Aluminum
two, 4.4-dia. countersinks on both sides
Note: 1. Set of two symmetrical parts.
2. Mounting screws (countersunk screw M2 $\times 84 \mathrm{pcs}$) included

E32-TC200B/-TC200B4
Hree. .uI)
E32-TC200BR/-TC200B4R

Through-beam Fiber Units Through-beam models consist of two parts: an emitter and a receiver.
Standard Standard/Flexible Models
Free-cul) Indicates models that allow free cutting.

E32-TC200F/-TC200F4
E32-TC200FR/-TC200F4R

Two, 2.2-dia. mounting holes with
two, 4.4-dia. countersinks on one sides
Note: 1. Set of two symmetrical parts.
2. Mounting screws (countersunk screw M2 $\times 84 \mathrm{pcs}$) included

E32-T14L
 E32-T14LR

E32-T15Y

E32-T15YR

E32-T15Z

E32-T15ZR

Two, 2.2-dia. mounting holes with
two, 4.4-dia. countersinks on both sides
*Material: Aluminum
Note: 1. Set of two symmetrical parts.
2. Mounting screws (countersunk screw M2 $\times 84 \mathrm{pcs}$) included

Heo...4.

Note: 1. Set of two symmetrical parts.
2. Mounting screws (countersunk screw $\mathrm{M} 2 \times 84 \mathrm{pcs}$) included

Free-cut

Sensing surface:
Four, 0.25 dia.

Through-beam Fiber Units Through-beam models consist of two parts: an emitter and a receiver.
Special-beam Models Long-distance/High-power Models
Free-cuti Indicates models that allow free cutting.

Special-beam Models Ultracompact/Thin-sleeve Models

E32-T223R

*Material: Stainless steel

E32-T333-S5

Note: The Fiber Attachment is attached with *Material: Stainless steel adhesive and cannot be removed.

E32-T33-S5

E32-T334-S5

Note: The Fiber Attachment is attached with *Material: Stainless steel adhesive and cannot be removed.

E32-T22S

(Hee.cul E32-T24S
Free-cul:

Special-beam Models Area-sensing Models

Through-beam Fiber Units Through-beam models consist of two parts: an emitter and a receiver.
Environment-resistant Models Heat-resistant Models

E32-T51

Note: The maximum allowable temperature is $150^{\circ} \mathrm{C}$. The maximum allowable temperature for continuous operation is $130^{\circ} \mathrm{C}$.

E32-T54

Material: Stainless steel (SUS303)
Note: The maximum allowable temperature is $150^{\circ} \mathrm{C}$. The maximum allowable temperature for continuous operation is $130^{\circ} \mathrm{C}$.

E32-T81R-S

*1. Material: Stainless steel (SUS303)
Note: The maximum allowable temperatures for sections A and B are $200^{\circ} \mathrm{C}$ and $110^{\circ} \mathrm{C}$, respectively. The section inserted into the Amplifier Unit (indicated by *2), however, must stay within the Amplifier Unit's operating temperature range.

E32-T84S-S

*1. Material: Stainless steel (SUS303)
Note: The maximum allowable temperatures for sections A and B are $200^{\circ} \mathrm{C}$ and $110^{\circ} \mathrm{C}$, respectively. The section inserted into the Amplifier Unit (indicated by *2), however, must stay within the Amplifier Unit's operating temperature range.

E32-T61-S

Note: The maximum allowable temperatures for sections A and B are $200^{\circ} \mathrm{C}$ and $110^{\circ} \mathrm{C}$, respectively. The section inserted into the Amplifier Unit (indicated by *2), however, must stay within the Amplifier Unit's operating temperature range.

Environment-resistant Models Chemical-resistant Models

E32-T11F

*1. Material: PFA
${ }^{*}$ 2. Sheath material: Fluororesin
E32-T14F

E32-T12F
Hee. .uI)

E32-T81F-S

Note: The maximum allowable temperatures for sections A and B are $200^{\circ} \mathrm{C}$ and $110^{\circ} \mathrm{C}$, respectively. The section inserted into the Amplifier Unit (indicated by *2), however, must stay within the Amplifier Unit's operating temperature range.

Environment-resistant Models Vacuum-resistant Models

E32-VF4

Note 1. Perform mounting so that the V40 O-ring is on the atmosphericpressure side of the vacuum chamber wall.
2. Mounting-hole cutout dimensions: 38 dia. $\pm 0.5 \mathrm{~mm}$
E32-T10V-2M Fre-.6IT

E32-T54V
C---7)

Dimensions

Fiber Units with Reflective Sensors

Standard Models Standard/Flexible Models
Free-cuti) Indicates models that allow free cutting.

E32-D211
E32-D211R
Two Fiber Attachments (E39-F9: Included)

E32-D14L Frectut
E32-D14LR

Special-beam Models Long-distance/High-power Models

E32-D21L

Free-cut Indicates models that allow free cutting.
E32-D11L

Special-beam Models Ultracompact/Thin-sleeve Models

E32-D33

E32-D331

*Material: Stainless steel (SUS304)
Note: There is a yellow dotted line on the fiber that is inserted in the emitter-side port.
E32-D32 Free-cut

*Material: Stainless steel (SUS303)
Note: There is a white line on the cable fiber that is inserted in the emitter-side port.

Special-beam Models Area-sensing Models

E32-D36P1

Fiber Units with Reflective Sensors
Special-beam Models Retroreflective Fiber Units

E32-R21
(An E39-R3 Reflector is provided as an accessory.)

E32-R16

(An E39-R1 Reflector is provided as an accessory.)

Special-beam Models Convergent-reflective Models

E32-L24L
Hee.cul

E32-L25

Note: There is a white line on the fiber that is inserted in the emitter-side port.

E32-L25L

Hee..ul)

E32-L25A

Special-beam Models Convergent-reflective Models
E32-L86

Free-cul Indicates models that allow free cutting.
Note: The maximum allowable temperatures for sections A and B are $200^{\circ} \mathrm{C}$ and $110^{\circ} \mathrm{C}$, respectively. The section inserted into the Amplifier Unit (indicated by *2), however, must stay within the Amplifier Unit's operating temperature range.

E32-L64

Note 1. The maximum allowable temperatures are $300^{\circ} \mathrm{C}$ for section A and $110^{\circ} \mathrm{C}$ for section B (section inserted
2. Remove the label before using the E32-L64.

E32-A10

Environment-resistant Models Heat-resistant Models
E32-D51
 allowable temperature for continuous operation is $130^{\circ} \mathrm{C}$.

E32-D81R-S
 Using the E32-D81R-S
 Using the E32-D81R
 E32-D81R

Note 1. The maximum allowable temperatures for sections A and B are $200^{\circ} \mathrm{C}$ and $110^{\circ} \mathrm{C}$, respectively. The section inserted into the Amplifier Unit (indicated by *2), however, must stay within the Amplifier Unit's operating temperature range.
2. Order the Fiber Unit based on the Amplifier Unit. Use the E32-D \square-S if the E3X-DA \square-S, E3X-MDA \square, or E3XDAC \square-S is used. Use the E32-D \square if any other Amplifier is used.

E32-D61-S
E32-D61

Using the E32-D61

1. Material: Stainless steel (SUS303)
*. Material: Stainless steel (SUS303)
$* 3$. The diameter is 6 it the fiber length exceeds 10 m .
${ }^{*} 4$. The diameter is 10 if the fiber lenglt exceeds 10 m .

Note 1. The maximum allowable temperatures for sections A and B are $350^{\circ} \mathrm{C}$ and $110^{\circ} \mathrm{C}$, respectively. The section inserted into the Amplifier Unit (indicated by *2), however, must stay within the Amplifier Unit's operating temperature range.
2. Order the Fiber Unit based on the Amplifier Unit. Use the E32-D \square-S if the E3X-DA \square-S E3X-MDA \square, or E3XDAC \square-S is used. Use the E32-D \square if any other Amplifier is used.

Note 1. The maximum allowable temperatures for sections A, B, and C are $400^{\circ} \mathrm{C}, 300^{\circ} \mathrm{C}$, and $110^{\circ} \mathrm{C}$, respectively. The section inserted into the Amplifier Unit (indicated by *2), however, must stay within the Amplifier Unit's operating temperature range.
2. Order the Fiber Unit based on the Amplifier Unit. Use the E32-D \square-S if the E3X-DAD-S, E3X-MDA \square, or
E3XDAC \square-S is used. Use the E32-D \square if any other Amplifier is used.

Environment-resistant Models Chemical-resistant Models
E32-D12F Free-cut E32-D14F Free-cut

Application-corresponding Fiber Units
Label-detection Models

Liquid-level Detection Models
E32-D36T

E32-L25T

Models for Glass-substrate Alignment/Mapping
free-cul Indicates models that allow free cutting.

E32-A08
E32-A07E1/-A07E2

* The E32-A07E1(E2) has a reception fiber and an emission fiber. Use the fiber with a model display tube (fiber with blue dotted line) as light emitting side.

Note: The maximum allowable temperatures for sections A and B are $300^{\circ} \mathrm{C}$ and $110^{\circ} \mathrm{C}$, respectively. The section inserted into the Amplifier Unit (indicated by *2), however, must stay within the Amplifier Unit's operating temperature range.

Wafer-mapping Models

E32-A03

Note: Use the stamped surface and its opposing surface as installation (reference) surfaces.

Note: Use the stamped surface and its opposing surface as installation (reference) surfaces.

Accessories

Lens Units

Brass for the body and optical glass for the lens itself.
Note: Two per set.
Side-view Units
E39-F2

Material:
Brass for the body and optical glass for the lens itself.
Note: Two per set.
Reflection Unit with Lens
E39-F3

Material:
Brass for the body and aluminum for the base. (E39-F1).

E32-A03-1

Note 1. Use the stamped surface and its opposing surface as installation (reference) surfaces.
2. Set of two symmetrical parts.

*Secure the fiber head with the slotted-head set screws. Do not insert a lens

Lens Unit for Reflective Fiber Units

E39-F3A

Material:
Aluminum for body and Note: This is the Lens Unit for the E32-D32 and E32optical glass for lens.

Lens Unit for Reflective Fiber Units

E39-F3B

Material:
Aluminum for body and optical glass for lens.

Note: This is the Lens Unit for the E32-C31 and E32-C41.

Lens Unit for Reflective Fiber Units

E39-F3A-5

Material: (lens diameter: 3.7 mm)

Aluminum for body and optical glass for lens
Lens Unit for Reflective Fiber Units

E39-F3C

Note: This is the Lens Unit for the E32-C31 and E32-C41.

Protective Spiral Tubes

E39-F32A/F32A5

E39-F32B/F32B5

*1. Material: Brass/nickel plating *2. Material: Stainless steel (SUS304)

Note 1. The length L is 1,000 for the E39-F32A/-F32B and 500 for the E39-F32A5/-F32B5.
2. The E39-F32B(5) consists of two E39-F32A(5)s.

E39-F32C/F32C5

*1. Material: Brass/nickel plating *2. Material: Stainless steel (SUS304)

Note: The length L is 1,000 for the E39-F32C and 500 for the E39-F32C5.

E39-F32D/F32D5

*1. Material: Brass/nickel plating *2. Material: Stainless steel (SUS304)
Note: The length L is 1,000 for the E39-F32D and 500 for the E39-F32D5.

Accessories

Other Accessories
Fiber Cutter
E39-F4
E39-F10

Fiber Connector
E39-F13
E39-F14
E39-F15

Refer to Warranty and Limitations of Liability.

\bigwedge WARNING
This product is not designed or rated for ensuring
safety of persons either directly or indirectly.
Do not use it for such purposes.

Precautions for Correct Use

Do not use the product in atmospheres or environments that exceed product ratings.

Fiber Units

- Mounting

Tightening Force
The tightening force used to mount the Fiber Unit must not be more than the value given in Ratings/Characteristics.

Screw-mounting Model

Chemical-resistive Models

The following method is recommended to prevent the fluororesin case from cracking when the Sensor is being secured. Be especially careful not to crack the case when using screws to secure the Sensor.

Fiber Cutting Procedure
Cut a thin fiber as follows:

(1) \begin{tabular}{l}
The fiber is shipped

loosely tightened as

shown in the figure

at the right.

(2)

Adjust the fiber to

the desired length

and then tighten it

securely.

Insert the fiber to be
cut into the E39-F4.

Finished state
(proper cutting
state)

(4)
\end{tabular}

Connection

- Do not excessively pull or press the Fiber Unit. Use a pulling force no higher than what is given in Ratings/Characteristics.
- Do not bend the Fiber Unit beyond the permissible bending radius given under Ordering Information.
- Do not bend the edge of the Fiber Units (excluding the E32-T $\square \mathrm{R}$ and E32-D $\square \mathrm{R}$).

Correct

Incorrect

The Fiber Head could be broken by excessive vibration. To prevent this, the following is effective:

E39-F11 Sleeve Bender

- The bending radius of the stainless steel tube should be as large as possible. The smaller the bending radius becomes, the shorter the sensing distance will be.
- Insert the tip of the stainless steel tube to the Sleeve Bender and bend the stainless steel tube slowly along the curve of the Sleeve Bender.

Heat-resistant Fiber Units

(E32-D51 and E32-T51)

- The fibers of these Units cannot be extended using the E39F10 Fiber Connector.
- The maximum allowable temperature for continuous operation with these Units is $130^{\circ} \mathrm{C}$. It is $150^{\circ} \mathrm{C}$ for short-term use.

E32-T14 and E32-G14

These Units may enter the light-ON state if there are reflecting objects at the ends of the lenses. In this case, attach the black stickers provided to the ends of the lenses.

Wafer Sensors (E32-L25(A))

- To ensure correct performance, insert the fiber with a white line into the emitter-side port of the Amplifier Unit.

E32-T16 and E32-T16P

To use the slit provided, peel off the backing sheet, align it with the edges of the sensing surface, and attach it to the sensing head. Use the slit in applications where saturation occurs (i.e., changes in light intensity cannot be obtained) due to short sensing distances.

Example
E32-T16's sensing head

E32-M21

Separate the 4 fibers by distances sufficient to prevent interference.

Vacuum-resistant Fiber Units (E32-V)

Although Flanges, Fiber Units on the vacuum side, and Lens Units have been cleaned, as an extra precaution, clean these products with alcohol before use in high-vacuum environments to ensure that they are properly degreased.

Liquid-level Detection Sensors (E32-D82F)

- Secure the Fiber Unit using the unbendable section. Otherwise, the liquid-level detection position may be displaced.
- For applications in hazardous environments, install the Fiber Unit in the hazardous environment but install the Amplifier Unit in a safe environment.

Liquid-level Detection Sensors: Tube-mounting Models

- Ensure that the tube is not deformed when using a band to secure the Fiber Unit.
- Drops of water, bubbles, or haze inside the tube may cause malfunctions.

E32-A07E1(E2)

There is a difference in sensing object angle between E32-A07E1 and E32-A07E2. Select a model in accordance with the bending direction of a sensing object. Use the fiber with a model display tube as light emitting side.

Adjustment
E32-G14
When a Digital Fiber Amplifier is used, the sensing distance is short, making the incident light intensity large. This makes it impossible to teach without a workpiece.

Liquid-level (E32-D82F) Detection Position

The liquid-level detection position is at a distance of $5.2 \pm 2 \mathrm{~mm}$ from the end of the fluororesin section.
(Refer to the diagram on the right.)
The liquid-level detection po-
 sition varies with the surface tension of the liquid and the degree of wetness at the Fiber Unit's detection position.

- Other Considerations

Liquid Level (E32-D82F)

- Operation may become unstable in the following cases:
(1) Bubbles stick to the cone of the sensing head.
(2) Solute is deposited on the cone of the sensing head.
(3) The liquid has a high viscosity.
- There are some liquids, such as milky white liquids, for which detection is not possible.
- Do not let the end of the fluororesin section bump into another object. Damage to, or deformation of, the sensing head may result in unstable operation.

Heat-resistant Fiber Units (E32-D81R(-S), E32-D61(-S), and E32-D73(-S))
The pitch of the emission-side and reception-side fiber-insertion ports varies with the Amplifier Unit. Be sure to use an appropriate Fiber Unit.

Amplifier Unit	Fiber Unit
E3X-DA $\square-S$ E3X-MDA \square	E32-D \square-S
E3X-DA $\square-N$ E3X-NA \square	E32-D \square

Chemical-resistant Fiber and Liquid Level (E32-D82F)

Fluororesin has high chemical resistance. However, applications in the atmosphere of vaporized chemicals (gases) or steam may cause malfunction or damage inside sensors. Run a full check before using in such environments.

Accessories

Use of E39-R3 Reflector

1. Use detergent, etc., to remove any dust or oil from the surfaces where tape is applied. Adhesive tape will not be attached properly if oil or dust remains on the surface.
2. The E39-R3 cannot be used in places where it is exposed to oil or chemicals.

E39-F32 \square Protective Spiral Tubes

1. Insert a fiber to the Protective Spiral Tube from the head connector side (screwed) of the tube.
2.Push the fiber into the Protective Spiral Tube. The tube should be straight so that the fiber is not twisted when inserted. Then turn the end cap of the spiral tube.

3.Secure the Protective Spiral Tube on a suitable place with the attached nut.

End cap
4.Use the attached saddle to secure the end cap of the Protective Spiral Tube. To secure the Protective Spiral Tube at a position other than the end cap, apply tape to the tube so that the portion becomes thicker in diameter.

E39-F10 Fiber Connector

Mount the Fiber Connector as shown in the following illustrations.

1. Insert the Fiber Unit into the retention clip.
2. Insert the retention clip into the splice.

- The Fiber Units should be as close as possible when they are connected.
Sensing distance will be reduced by approximately 25% when fibers are connected.
- Only 2.2-mm dia. fibers can be connected.

READ AND UNDERSTAND THIS DOCUMENT

Please read and understand this document before using the products. Please consult your OMRON representative if you have any questions or comments

WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON.

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.

In no event shall responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted.
IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

SUITABILITY FOR USE

THE PRODUCTS CONTAINED IN THIS DOCUMENT ARE NOT SAFETY RATED. THEY ARE NOT DESIGNED OR RATED FOR ENSURING SAFETY OF PERSONS, AND SHOULD NOT BE RELIED UPON AS A SAFETY COMPONENT OR PROTECTIVE DEVICE FOR SUCH PURPOSES. Please refer to separate catalogs for OMRON's safety rated products.

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the product.

At the customer's request, OMRON will provide applicable third party certification documents identifying ratings and limitations of use that apply to the products. This information by itself is not sufficient for a complete determination of the suitability of the products in combination with the end product, machine, system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses listed may be suitable for the products:

- Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this document.
- Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations.
- Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.
NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

PERFORMANCE DATA

Performance data given in this document is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and Limitations of Liability.

CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other reasons.
It is our practice to change model numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the product may be changed without any notice. When in doubt, special model numbers may be assigned to fix or establish key specifications for your application on your request. Please consult with your OMRON representative at any time to confirm actual specifications of purchased products.

DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown.

ERRORS AND OMISSIONS

The information in this document has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.

PROGRAMMABLE PRODUCTS

OMRON shall not be responsible for the user's programming of a programmable product, or any consequence thereof.

COPYRIGHT AND COPY PERMISSION

This document shall not be copied for sales or promotions without permission.
This document is protected by copyright and is intended solely for use in conjunction with the product. Please notify us before copying or reproducing this document in any manner, for any other purpose. If copying or transmitting this document to another, please copy or transmit it in its entirety

Read and Understand This Catalog

Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

Warranty and Limitations of Liability

WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON.

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.

In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted.
IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

Application Considerations

SUITABILITY FOR USE

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the products.

At the customer's request, OMRON will provide applicable third party certification documents identifying ratings and limitations of use that apply to the products. This information by itself is not sufficient for a complete determination of the suitability of the products in combination with the end product, machine, system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses listed may be suitable for the products:

- Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this catalog.
- Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations.
- Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.
NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCTS ARE PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

PROGRAMMABLE PRODUCTS
OMRON shall not be responsible for the user's programming of a programmable product, or any consequence thereof.

Disclaimers

CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other reasons.
It is our practice to change model numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the products may be changed without any notice. When in doubt, special model numbers may be assigned to fix or establish key specifications for your application on your request. Please consult with your OMRON representative at any time to confirm actual specifications of purchased products

DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown.

PERFORMANCE DATA

Performance data given in this catalog is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and Limitations of Liability.

ERRORS AND OMISSIONS

The information in this document has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.

[^0]: Note 1. The sensing distances apply for use in combination with the E3X-DA-S Amplifier Unit (general-purpose, standard mode).
 2. These symbols are defined as follows. R : Flexible fiber, B : Bendable fiber, U : Fluorine-coated fiber.

[^1]: Note 1. The sensing distances apply for use in combination with the E3X-DA-S Amplifier Unit (general-purpose, standard mode).
 2. These symbols are defined as follows. $\quad R$: Flexible fiber, B : Bendable fiber, U : Fluorine-coated fiber.

[^2]: ＊The sensing distances apply for use in combination with the E3X－DA－S Amplifier Unit（general－purpose，standard mode）．

[^3]: ${ }^{*}$ The sensing distances apply for use in combination with the E3X-DA-S Amplifier Unit (general-purpose, standard mode).

[^4]: 1. The values for the
[^5]: *1. The values for the minimum sensing object are representative values that indicate values obtained in standard mode with the sensing distance and sensitivity set to optimum values.
 *2. Free-cut Indicates models that allow free cutting.
 *3. This is the value for which detection is possible within the sensing area, with the sensing distance set to 300 mm . (The sensing object is stationary.)
 *4. This is the value for which detection is possible within the sensing area, with the sensing distance set to give a digital value of 1,000 . (The sensing object is stationary.)

[^6]: * Free-cut Indicates models that allow free cutting.

