
# DVR1V8W - DVR5V0W

#### **Features**

- Epitaxial Planar Die Construction
- Selectively Paired NPN Transistors & Zener Diodes for Series Pass Voltage Regulator Circuits
- Ideally Suited for Automated Assembly Processes
- Lead Free By Design/RoHS Compliant (Note 1)
- "Green" Device (Note 2)

#### **Mechanical Data**

- Case: SOT-363
- Case Material: Molded Plastic. "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020C
- Terminals: Finish Matte Tin annealed over Alloy 42 leadframe. Solderable per MIL-STD-202, Method 208
- Terminal Connections: See Diagram
- Marking & Type Code Information: See Page 5
- Ordering Information: See Page 5
- Weight: 0.008 grams (approximate)



|         | SOT-363      |       |  |  |  |  |  |  |  |
|---------|--------------|-------|--|--|--|--|--|--|--|
| Dim     | Min          | Max   |  |  |  |  |  |  |  |
| Α       | 0.10         | 0.30  |  |  |  |  |  |  |  |
| В       | 1.15         | 1.35  |  |  |  |  |  |  |  |
| С       | 2.00 2.20    |       |  |  |  |  |  |  |  |
| D       | 0.65 Nominal |       |  |  |  |  |  |  |  |
| F       | 0.30         | 0.40  |  |  |  |  |  |  |  |
| Н       | 1.80         | 2.20  |  |  |  |  |  |  |  |
| J       | — 0.10       |       |  |  |  |  |  |  |  |
| K       | 0.90         | 1.00  |  |  |  |  |  |  |  |
| L       | 0.25         | 0.40  |  |  |  |  |  |  |  |
| М       | 0.10         | 0.25  |  |  |  |  |  |  |  |
| α       | 8            | 0     |  |  |  |  |  |  |  |
| All Dir | nensions     | in mm |  |  |  |  |  |  |  |

#### **Maximum Ratings, Total Device** @T<sub>A</sub> = 25°C unless otherwise specified

| Characteristic                              |          | Symbol                            | Value       | Unit |
|---------------------------------------------|----------|-----------------------------------|-------------|------|
| Power Dissipation                           | (Note 3) | $P_d$                             | 200         | mW   |
| Thermal Resistance, Junction to Ambient     | (Note 3) | $R_{	hetaJA}$                     | 625         | °C/W |
| Operating and Storage and Temperature Range |          | T <sub>i</sub> , T <sub>STG</sub> | -55 to +150 | °C   |

# **Maximum Ratings, NPN Transistor** @T<sub>A</sub> = 25°C unless otherwise specified

| Characteristic                          | Symbol           | Value | Unit |
|-----------------------------------------|------------------|-------|------|
| Collector-Base Voltage                  | $V_{CBO}$        | 45    | V    |
| Collector-Emitter Voltage               | V <sub>CEO</sub> | 18    | V    |
| Emitter-Base Voltage                    | $V_{EBO}$        | 5     | V    |
| Collector Current - Continuous (Note 3) | Ic               | 1     | Α    |

### **Maximum Ratings, Zener Element** @T<sub>A</sub> = 25°C unless otherwise specified

|                 | Characteristic          | Symbol         | Value | Unit |
|-----------------|-------------------------|----------------|-------|------|
| Forward Voltage | @ I <sub>F</sub> = 10mA | V <sub>F</sub> | 0.9   | V    |

Notes:

- 1. No purposefully added lead.
- 2. Diodes Inc's "Green" policy can be found on our website at http://www.diodes.com/products/lead\_free/index.php.
- 3. Part mounted on FR-4 board with recommended pad layout, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.



# **Electrical Characteristics, NPN Transistor**

 $@T_A = 25^{\circ}C$  unless otherwise specified

| Characteristic                       | Symbol                | Min | Max | Unit | Test Condition                                |
|--------------------------------------|-----------------------|-----|-----|------|-----------------------------------------------|
| OFF CHARACTERISTICS (Note 4)         | •                     |     |     |      |                                               |
| Collector-Base Breakdown Voltage     | V <sub>(BR)CBO</sub>  | 45  | _   | V    | $I_C = 100 \mu A, I_E = 0$                    |
| Collector-Emitter Breakdown Voltage  | V <sub>(BR)CEO</sub>  | 18  | _   | V    | $I_{C} = 1 \text{mA}, I_{B} = 0$              |
| Emitter-Base Breakdown Voltage       | V <sub>(BR)EBO</sub>  | 5   | _   | V    | $I_E = 100 \mu A, I_C = 0$                    |
| Collector Cutoff Current             | I <sub>CBO</sub>      | _   | 1   | μА   | $V_{CB} = 40V, I_{E} = 0$                     |
| Emitter Cutoff Current               | I <sub>EBO</sub>      | _   | 1   | μА   | V <sub>EB</sub> = 4V, I <sub>C</sub> = 0      |
| ON CHARACTERISTICS (Note 4)          |                       |     |     |      |                                               |
| DC Current Gain                      | h <sub>FE</sub>       | 150 | 800 | _    | I <sub>C</sub> = 100mA, V <sub>CE</sub> = 1V  |
| Collector-Emitter Saturation Voltage | V <sub>CE</sub> (SAT) | _   | 0.5 | V    | I <sub>C</sub> = 300mA, I <sub>B</sub> = 30mA |
| SMALL SIGNAL CHARACTERISTICS         |                       |     |     |      |                                               |
| Output Capacitance                   | C <sub>obo</sub>      | _   | 8   | pF   | $V_{CB} = 10V, f = 1.0MHz, I_E = 0$           |
| Current Gain-Bandwidth Product       | f <sub>T</sub>        | 100 | _   | MHz  | $V_{CB} = 10V, I_E = 50mA, f = 100MHz$        |

# **Electrical Characteristics, Zener Element** @T<sub>A</sub> = 25°C unless otherwise specified

| Туре    |         | Zener Voltage   | Maximum Reverse<br>Leakage Current |                         |                  |                       |    |   |
|---------|---------|-----------------|------------------------------------|-------------------------|------------------|-----------------------|----|---|
| Number  |         | $V_Z @ I_{ZT}$  |                                    | I <sub>ZT</sub>         | I <sub>R</sub> @ | <b>V</b> <sub>R</sub> |    |   |
|         | Nom (V) | Nom (V) Min (V) |                                    | Nom (V) Min (V) Max (V) |                  | mA                    | μΑ | V |
| DVR1V8W | 3.3     | 3.1             | 3.5                                | 5                       | 5                | 1                     |    |   |
| DVR2V5W | 3.9     | 3.7             | 4.1                                | 5                       | 3                | 1                     |    |   |
| DVR3V3W | 4.7     | 4.4             | 5.0                                | 5                       | 3                | 2                     |    |   |
| DVR5V0W | 5.1     | 4.85            | 5.36                               | 0.05                    | 5                | 3                     |    |   |

Notes:

- 4. Short duration test pulse used to minimize self-heating effect. 5. Nominal Zener voltage is measured with the device junction in thermal equilibrium at  $T_T = 30$ °C  $\pm 1$ °C.

DVR1V8W - DVR5V0W DS30578 Rev. 5 - 2 2 of 5 © Diodes Incorporated



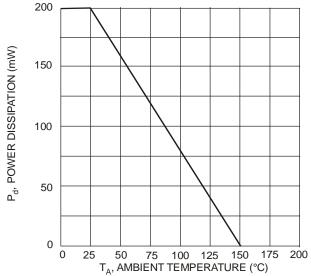
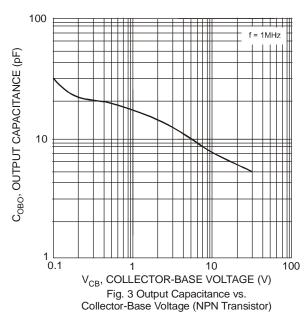




Fig. 1 Max Power Dissipation vs. Ambient Temperature (Total Device)



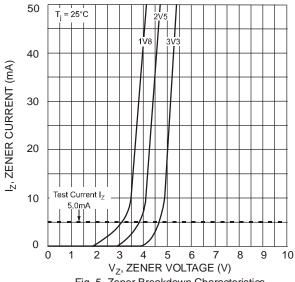



Fig. 5 Zener Breakdown Characteristics (DVR1V8W - DVR3V3W)

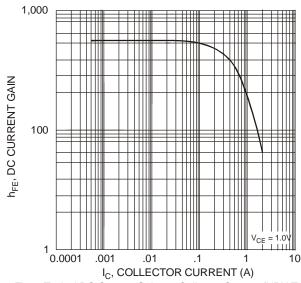



Fig. 2 Typical DC Current Gain vs. Collector Current (NPN Transistor)

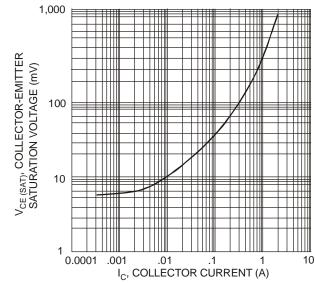



Fig. 4 Collector Saturation Voltage vs. Collector Current (NPN Transistor)

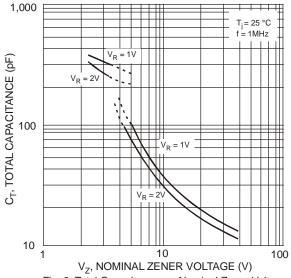
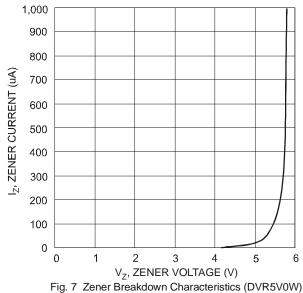
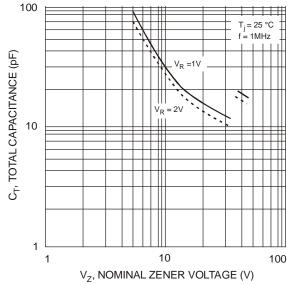
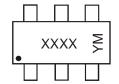




Fig. 6 Total Capacitance vs. Nominal Zener Voltage (DVR1V8W - DVR3V3W)









Fig. 8 Total Capacitance vs. Nominal Zener Voltage (DVR5V0W)

## Ordering Information (Note 6)

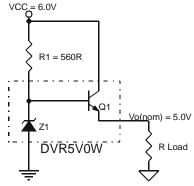
| Device    | Packaging | Shipping         |
|-----------|-----------|------------------|
| DVR1V8W-7 | SOT-363   | 3000/Tape & Reel |
| DVR2V5W-7 | SOT-363   | 3000/Tape & Reel |
| DVR3V3W-7 | SOT-363   | 3000/Tape & Reel |
| DVR5V0W-7 | SOT-363   | 3000/Tape & Reel |

Notes: 6. For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

## **Marking Information**



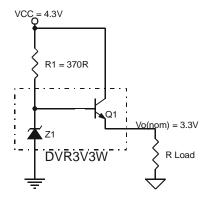
XXXX = Product Type Marking Code, See Table Above, e.g., VR01 = DVR1V8W


YM = Date Code Marking Y = Year ex: R = 2004 M = Month ex: 9 = September

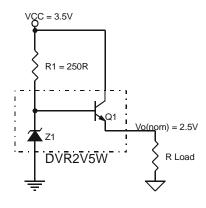
#### Date Code Key

| Year | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |
|------|------|------|------|------|------|------|------|------|------|
| Code | R    | S    | Т    | U    | V    | W    | Х    | Y    | Z    |

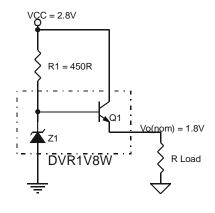
| Month | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Code  | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 0   | Ν   | D   |


# **Sample Applications**




Sample Application for DVR5V0W:  $VCC^9 = 6.0V$   $R1^7 = 560\Omega$  Vo(nom) = 5.0V Io = 100mA  $Iq(typical^8) = 0.5mA @ Io = 0mA$ 

Typical<sup>8</sup> Vreg(load) = 0.2V from Io = 100mA to 0mA






Sample Application for DVR3V3W:  $VCC^9 = 4.3V$   $R1^7 = 3700\Omega$  Vo(nom) = 3.3V Io = 100mA  $Iq(typical^8) = 0.7mA$  @ Io = 0.7mA Io



Sample Application for DVR2V5W:  $\begin{array}{ll} \text{VCC}^9 = 3.5 \text{V} & \text{R1}^7 = 250 \Omega \\ \text{Vo(nom)} = 2.5 \text{V} & \text{Io} = 100 \text{mA} \\ \text{Iq(typical}^8) = 0.91 \text{mA} & \text{Io} = 0 \text{mA} \\ \text{Typical}^8 \text{ Vreg(load)} = 0.13 \text{V from Io} = 100 \text{mA to 0mA} \\ \end{array}$ 



Sample Application for DVR1V8W:  $VCC^9 = 2.8V \qquad R17=450\Omega$   $Vo(nom) = 1.8V \qquad Io = 100mA$   $Iq(typical^8) = 0.55mA @ Io = 0mA$   $Typical^8 Vreg(load) = 0.25V from Io = 100mA to 0mA$ 

Notes: 7. F

- 7. Resistor R1 not included.
- 8. Typical performance shown is under setup and operating conditions specified in the sample applications.
- 9. Recommended VCC(min) ~ Vo(nom) + 1V.

#### IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

#### LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.