

DS90CR485/486 48-bit, 66 – 133 MHz Channel Link SerDes Chipset Evaluation Kit User Manual

Part Number: CLINK3V48BT-133

January 2005
PC and Networking Group
National Semiconductor Corporation
Document Revision 1.01

Table of Contents

Introduction	3
Introduction	4
Evaluation Board Features	4
Contents of the Evaluation Kit	4
Applications	
Getting Started	
Setup	
Board Configuration	
CLINK3V48BT-133 Evaluation Board Layout Silkscreen	
Power Connection	
Transmitter CLKIN Input Clock	
Default Switch & Jumper Configuration	
Alternative Switch & Jumper Configurations	
Power Down mode	
Cable Deskew	
DS OPT	
Transmitter PRBS Generator Mode	
LVDS Cable Sense (TSEN) Status Flag	
Pin & Signal Assignments	
IDC Connector	
MDR Connector	
Probing LVDS Signals	
Switches	
Jumpers	
On-Board Termination Resistors	
Transmitter LVCMOS/LVTTL Data Input Termination Resistors	. 25
Receiver LVDS Input Termination	
Optional Receiver LVCMOS/LVTTL Output Termination Resistor	
(Únpopulated)	
Troubleshooting	
Troubleshooting	
Trouble shooting chart:	
Additional Information	
Other Resources	32

Introduction

Introduction

The National Semiconductor CLINK3V48BT-133 evaluation kit demonstrates the performance of the DS90CR485/485 48-bit, 66 – 133 MHz Channel Link SerDes chipset.

The printed circuit board (PCB) is optimized for the high-speed operation. The LVCMOS/LVTTL parallel bus trace impedance is 50 Ohms and LVDS differential impedance is 100 Ohms. Both LVCMOS/LVTTL and LVDS buses have matched trace lengths for low signal-to-signal skew.

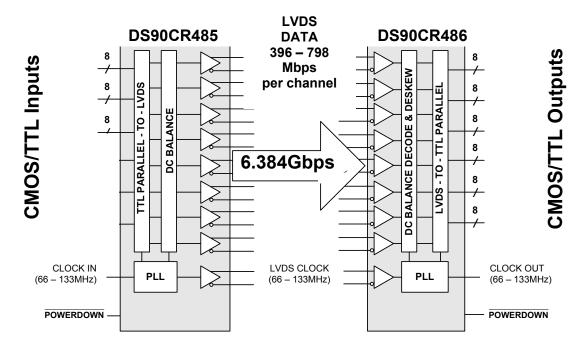
The transmitter serializes 24 LVCMOS/LVTTL double edge inputs (48 bits data latched in per clock cycle) onto 8 Low Voltage Differential Signaling (LVDS) streams. A phase-locked clock is also transmitted in parallel with the data streams over a 9th LVDS pair. The receiver converts the 8 LVDS data streams plus clock back to 48 LVCMOS/LVTTL data bits plus clock.

This evaluation kit can be used to test and verify the following:

- Data serialization and deserialization over backplanes or cable
- Bit error rate testing (BERT)
- Eye pattern signal quality
- Transmitter adjustable LVDS output pre-emphasis
- DC balance mode
- Transmitter cable detector
- Cable deskew function
- Interoperability with National's 112 MHz DS90CR481/482/482/484 chips (112 MHz CLINK3V48BT-112 evaluation kit required)

Evaluation Board Features

- National Semiconductor's 48-bit, 66 133 MHz DS90CR485/486 Channel Link serializer/deserializer
- On-board selectable 66MHz and 133MHz oscillators
- Provision for external clock source
- Configuration controls for pre-emphasis, DC balance, cable deskew, power-down, internal pattern generator and pattern select
- 3M MDR cable and connectors


Contents of the Evaluation Kit

- CLINK3V485/486 PCB with the DS90CR485VS Transmitter and the DS90CR486VS Receiver
- One 2-meter 3M MDR LVDS cable interface
- Evaluation Kit Documentation (this manual)
- DS90CR485/486 Datasheet

Applications

Channel Link Application

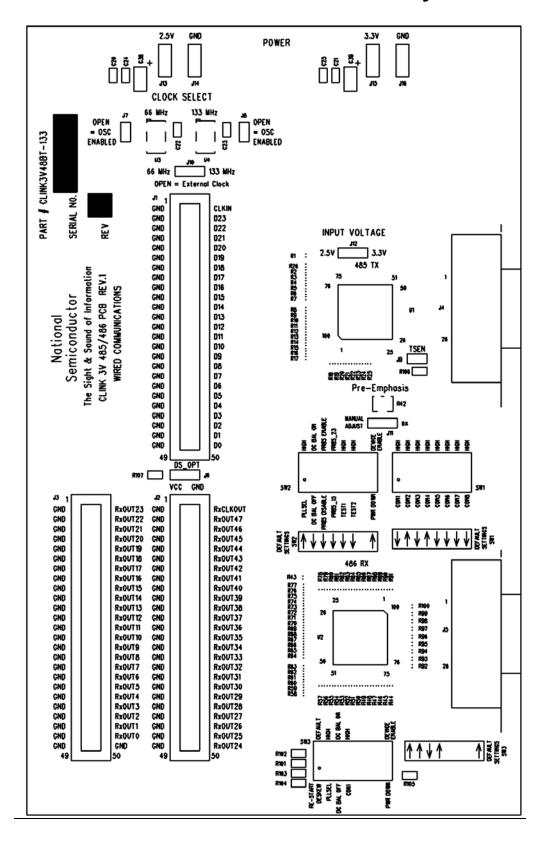
The diagram above illustrates the use of the Chipset (Tx/Rx). This chipset is able to transmit 48 bits of TTL/CMOS data using eight LVDS channels at the speed of 6.384Gbps.

Please refer to datasheet for information on Chipsets

Getting Started

Setup

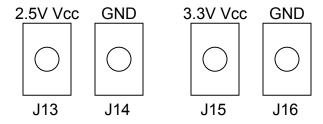
The CLINK3V48BT-133 evaluation board is delivered ready to run with configuration switches and jumpers set to their default positions. To start using the evaluation kit, follow these steps:


- 1) Connect one end of the D26-1 MDR cable to the transmitter output connector (J4) and the other end to the receiver input connector (J5). If a longer cable is desired, please contact 3M for more information (3M contacts are included at the end of this document). Cables from other manufacturers (e.g. Amphenol SKEWCLEAR) can be used and/or the board can be modified to interface to custom cable or backplane interconnect.
- 2) Jumpers and switches have been configured at the factory for default operation. Please refer to Default Configuration on page 13 & 14 of this manual for more detail. For alternative configurations, please refer to Alternative Switch & Jumper Configurations on page 15 to 19 of this manual for information.
- 3) Connect the appropriate IDC cable from the incoming data and clock to the transmitter input section (J1) and connect two 50-pin IDC cables from the receiver output section (J2 & J3) to the receiver load.
- 4) Power and ground for the board must be supplied externally through J13 (2.5V Vcc), J15 (3.3V Vcc), J14 and J16 (GND). See Power Connections on page 11 of this manual for details.

Board Configuration

CLINK3V48BT-133 Evaluation Board Layout Silkscreen

Overview


The CLINK3V48BT-133 evaluation kit is configured using switches SW1 – SW3 and jumpers J6 – J12.

The DS90CR485 Transmitter and DS90CR485 Receiver parallel LVCMOS/LVTTL data buses and clocks are accessed through the 50-pin IDC connectors, J1 – J3. The transmitter clock can be applied through the 50-pin IDC connector or one of the two on-board oscillators can be selected. The high speed, serialized LVDS data plus the LVDS clock is transmitted and received through 3M D26-1 MDR connectors, J4 and J5.

The evaluation board has two power planes, 2.5V for the Transmitter and 3.3V for the Receiver. Power and ground are supplied through connectors J13 – J16. The Transmitter inputs can be made 3V input tolerant using jumper J12.

Power Connection

The CLINK348BT-133 evaluation board has two power plane layers: one for the transmitter's 2.5V supply and the other layer for the receiver's 3.3V supply. The power and ground connections for the evaluation board must be applied through power spade connectors J13 (2.5V_Vcc), J15 (3.3V_Vcc), J14 and J16 (GND). See datasheets for recommended operating conditions.

Tantalum 10uF capacitors (C38 and C39) placed near each power connection provide bulk energy storage. In addition to excellent bypassing provided by the closely sandwiched power and ground planes, a network of 0.1uF (C1 – C19), 0.01uF (C26 – C31), and 10uF (C32 – C37) bypass capacitors is placed between each Vcc and ground group to provide additional bypassing near each device.

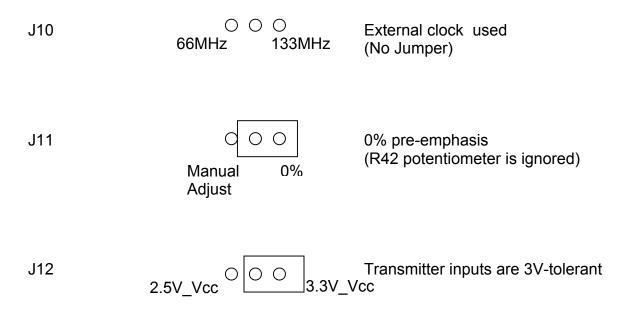
When using any high speed SerDes, it is recommended that power supply noise measured at device power and ground pins (especially PLL Vcc and PLL GND) be less than 100 mV peak-to-peak.

Transmitter CLKIN Input Clock

An external low jitter clock may be supplied at pin 2 of jumper J1 or alternatively, one of two convenient on-board oscillators (66 MHz or 133 MHz) may be selected instead. Jumper J10 selects the clock source, while jumpers J7 and J8 enable either the 66 MHz or 133 MHz on-board oscillators, respectively.

<u>Designator</u>	<u>Settings</u>	<u>Note</u>
J10	66MHz 0 0 133MHz	Use external clock source (Default setting. No Jumper)
J7	00	66 MHz oscillator disabled (default setting)
J8	00	133 MHz oscillator disabled (default setting)
J10	66MHz 133MHz	Use on-board 66 MHz oscillator
J7	0 0	66 MHz oscillator ENABLED (no jumper)
J8	00	133 MHz oscillator disabled (default setting)
J10	66MHz 133MHz	Use on-board 133 MHz oscillator
J7	00	66 MHz oscillator disabled (default setting)
J8	0 0	133 MHz oscillator ENABLED (no jumper)

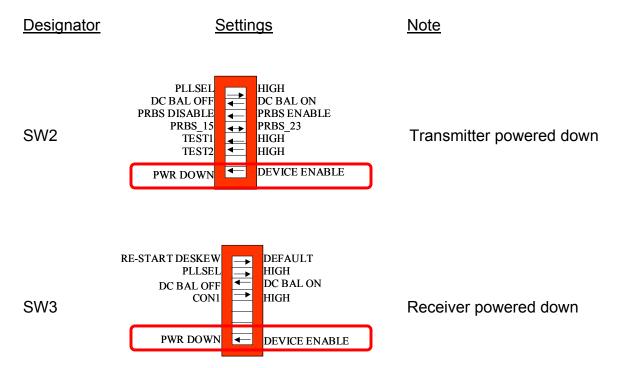
Pletronics 2.5V CMOS crystal oscillators. See Appendix for information.



Default Switch & Jumper Configuration

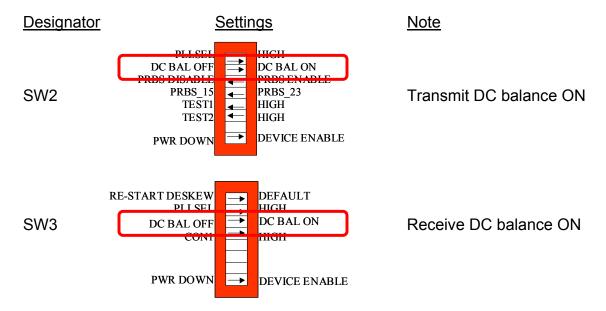
The following default settings are for normal data transmission operation.

<u>Designator</u>	<u>Settings</u>	<u>Note</u>
SW1	CON1 CON2 CON3 CON4 CON5 CON6 CON6 CON7 CON8 HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIG	
SW2	PLLSEL DC BAL OFF PRBS DISABLE PRBS_15 TEST1 TEST2 PWR DOWN HIGH DC BAL ON PRBS ENABLE PRBS_23 HIGH HIGH DEVICE ENABLE	
SW3	RE-START DESKEW PLLSEL DC BAL OFF CON1 PWR DOWN DEFAULT HIGH DC BAL ON HIGH DEVICE ENABLE	
J6	DS OPT OOO Vcc GND	
J7	00	66MHz Oscillator disabled
J8	00	133MHz Oscillator disabled



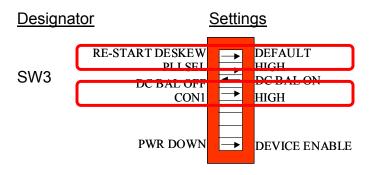
Alternative Switch & Jumper Configurations

Power Down mode


Both the transmitter and receiver have power down control pins. Power down mode shuts down the internal PLL and other circuitry to minimize power consumption. Power down control is accessed using switches SW2 and SW3 on the evaluation board as shown on below figure. Please see datasheet for detail on power down operation and timing.

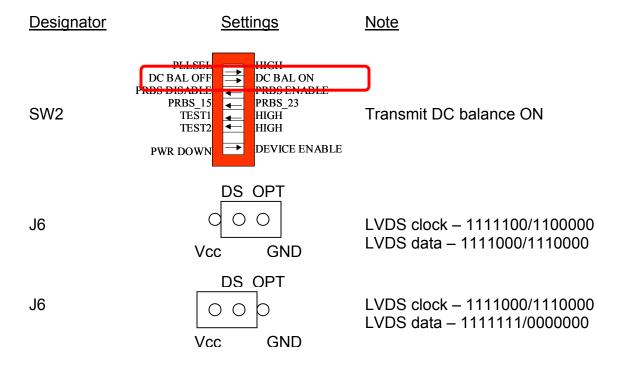
DC Balance mode

DC balance mode helps minimize the short-and-long-term DC bias on the LVDS lines to facilitate driving long cables. To use this function, both transmitter and receiver DC balance (BAL) pins must be switched ON.

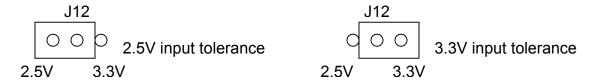

Cable Deskew

The receiver DESKEW function removes fixed pair-to-pair skew between the LVDS clock and data. The receiver performs deskew calibration automatically on power up provided that sufficient transitions appear on its LVDS data inputs during this time (4096 clock cycles). Automatic deskew on power up is enabled by setting pin CON1 (SW3) to HIGH and the DESKEW pin (SW3) to DEFAULT.

In addition, deskew calibration can be initiated any time by toggling the DESKEW pin (SW3) for more than one clock cycle. Once deskew is initiated, the LVDS data inputs must have edge transitions for the receiver to perform the deskew operation. Unlike older chipsets, the DS90CR486 receiver deskew operates in either DC balance or non-DC-balance mode (transmitter and receiver must be in the same DC balance mode).


NOTE: DESKEW pin must set to "DEFAULT" for normal operation. Setting the pin to "RE-START DESKEW" will continuously recalibrate the sampling strobes. Data outputs are LOW during this period.

DS_OPT

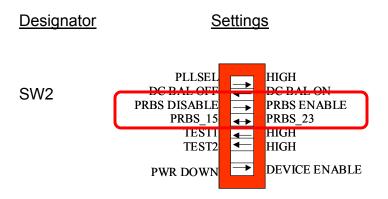

The DS90CR485 transmitter DS_OPT pin (J6) automatically generates an LVDS switching pattern at the LVDS outputs. This pattern instructs DS90CR482/484 receivers to initiate deskew calibration. This switching pattern is also suitable for DS90CR486 deskew, however, the DS90CR486 deskew operation is not initiated by this DS_OPT pattern but instead is initiated automatically on power up or on command by toggling its DESKEW pin. For optimal deskew calibration, it is recommended the DS_OPT pin be pulled HIGH for at least 4096 clock cycles (plus 20 ms if the transmitter and receiver are not yet powered up and synchronized). Please see datasheet for deskew more details regarding DS_OPT and deskew operation. NOTE: DC_BAL pin of SW2 must set to "DC BAL ON" for the transmitter to output switching pattern. DS_OPT will be ignored if DC BAL pin of SW2 set to "DC BAL OFF"

Transmitter Input Voltage Tolerance Setting

The DS90CR485 transmitter inputs are configurable as either 2.5V or 3.3V tolerant. This can be achieved by connecting input voltage jumper (J12) to 2.5V or 3.3V. Typically, the inputs should be set for 3V tolerance.

Transmitter Pre-Emphasis

Transmitter pre-emphasis boosts LVDS drive current during each LVDS logic transition to reduce cable-loading effects. The jumper (J11) either disables pre-emphasis or allows the manual adjustment of pre-emphasis level using potentiometer R42.


<u>Designator</u>	<u>Settings</u>	<u>Note</u>
J11	000	Pre-emphasis disabled (i.e. 0%) (Default setting. R42 is ignored.)
	Manual 0% Adjust	(Boldan bolding, 1712 to ignoroa.)
J11	000	R42 adjusts pre-emphasis level
	Manual 0% Adjust	

When the jumper J11 is set to MANUAL ADJUST, a 2K-Ohm potentiometer (R42) can be adjusted using a jeweler's screwdriver to increase or decrease preemphasis. Turning clockwise increases pre-emphasis; turning counterclockwise decreases pre-emphasis.

Transmitter PRBS Generator Mode

The DS90CR485 transmitter is equipped with an internal test pattern generator that can be used to check signal quality (eye-patterns) on the link. To enable this test mode, select PRBS ENABLE from the switch block SW2 and choose either the PRBS 15 or the PRBS 23 pattern.

LVDS Cable Sense (TSEN) Status Flag

The TSEN pin reports the presence of a remote termination resistor on the LVDS clock line. The user may monitor the status of the TSEN pin through jumper (J9). When TSEN is HIGH, a termination resistor of approximately 100 Ohms has been detected. When TSEN is LOW, no termination has been detected. The TSEN status flag provides a "gross detect function," meaning it is meant check whether a cable or other interconnect is present between the transmitter and receiver. A high signal on the TSEN line does not guarantee the termination is correct or the link is capable of carrying data without bit errors. See the DS90CR485 datasheet for more detail on the TSEN pin.

Pin & Signal Assignments

The following tables show signal mapping for IDC connectors, MDR connectors, switches and jumpers.

IDC Connector

Note: All odd number pins in the IDC connectors are grounded (GND).

Transmitter Parallel Inputs

Pin #	NAME
Pin 2	CLKIN
Pin 4	D23
Pin 6	D22
Pin 8	D21
Pin 10	D20
Pin 12	D19
Pin 14	D18
Pin 16	D17
Pin 18	D16
Pin 20	D15
Pin 22	D14
Pin 24	D13
Pin 26	D12
Pin 28	D11
Pin 30	D10
Pin 32	D9
Pin 34	D8
Pin 36	D7
Pin 38	D6
Pin 40	D5
Pin 42	D4
Pin 44	D3
Pin 46	D2
Pin 48	D1
Pin 50	D0

		_
Receiver	Parallel	Outputs

Pin #	NAME
Pin 2	RxCLKOUT
Pin 4	RXOUT47
Pin 6	RXOUT46
Pin 8	RXOUT45
Pin 10	RXOUT44
Pin 12	RXOUT43
Pin 14	RXOUT42
Pin 16	RXOUT41
Pin 18	RXOUT40
Pin 20	RXOUT39
Pin 22	RXOUT38
Pin 24	RXOUT37
Pin 26	RXOUT36
Pin 28	RXOUT35
Pin 30	RXOUT34
Pin 32	RXOUT33
Pin 34	RXOUT32
Pin 36	RXOUT31
Pin 38	RXOUT30
Pin 40	RXOUT29
Pin 42	RXOUT28
Pin 44	RXOUT27
Pin 46	RXOUT26
Pin 48	RXOUT25
Pin 50	RXOUT24

Receiver Parallel Outputs

Pin#	NAME
Pin 2	RXOUT23
Pin 4	RXOUT22
Pin 6	RXOUT21
Pin 8	RXOUT20
Pin 10	RXOUT19
Pin 12	RXOUT18
Pin 14	RXOUT17
Pin 16	RXOUT16
Pin 18	RXOUT15
Pin 20	RXOUT14
Pin 22	RXOUT13
Pin 24	RXOUT12
Pin 26	RXOUT11
Pin 28	RXOUT10
Pin 30	RXOUT9
Pin 32	RXOUT8
Pin 34	RXOUT7
Pin 36	RXOUT6
Pin 38	RXOUT5
Pin 40	RXOUT4
Pin 42	RXOUT3
Pin 44	RXOUT2
Pin 46	RXOUT1
Pin 48	RXOUT0
Pin 50	GND

J1 J2 J3

MDR Connector

Transmitter	<u>LVDS</u>	<u>Output</u>

Pin#	NAME	
Pin 1	NC	
Pin 2	GND	
Pin 3	TxOUT0P	
Pin 4	TxOUT1P	
Pin 5	TxOUT2P	
Pin 6	CLK1P	
Pin 7	GND	
Pin 8	GND	
Pin 9	TxOUT3P	
Pin 10	TxOUT4P	
Pin 11	TxOUT5P	
Pin 12	TxOUT6P	
Pin 13	TxOUT7P	
Pin 14	NC	
Pin 15	TxOUT0M	
Pin 16	TxOUT1M	
Pin 17	TxOUT2M	
Pin 18	CLK1M	
Pin 19	GND	
Pin 20	GND	
Pin 21	TxOUT3M	
Pin 22	TxOUT4M	
Pin 23	TxOUT5M	
Pin 24	TxOUT6M	
Pin 25	TxOUT7M	
Pin 26	GND	

Receiver LVDS Input

Pin#	NAME
PIN#	INAIVIE
Pin 1	NC
Pin 2	GND
Pin 3	RxOUT0P
Pin 4	RxOUT1P
Pin 4 Pin 5	RxOUT1P
Pin 6	RxCLK1P
Pin 7	GND
Pin 8	GND
Pin 9	RxOUT3P
Pin 10	RxOUT4P
Pin 11	RxOUT5P
Pin 12	RxOUT6P
Pin 13	RxOUT7P
Pin 14	NC
Pin 15	RxOUT0M
Pin 16	RxOUT1M
Pin 17	RxOUT2M
Pin 18	RxCLK1M
Pin 19	GND
Pin 20	GND
Pin 21	RxOUT3M
Pin 22	RxOUT4M
Pin 23	RxOUT5M
Pin 24	RxOUT6M
Pin 25	RxOUT7M
Pin 26	GND

J4 J5

Probing LVDS Signals

LVDS signals are high speed, low swing signals. Improper probing can result in deceiving results since the probe and/or scope can filter high-speed components of the signal. Using a >1 GHz bandwidth scope (such as the Agilent 86100 or Tektronix 694C) and a high-speed differential probe (such as the Tektronix P6247/8 or P6330) is highly recommended. LVDS drivers are not compatible with 50-Ohm probes.

Switches

<u>Transmitter</u> <u>Configuration Control</u>

SIGNAL BOARD LABEL Pin# NAME Pin 1 CON1 / HIGH CON1 Pin 2 CON2 / HIGH CON2 Pin 3 CON3 / HIGH CON3 Pin 4 CON4 / HIGH CON4 CON5 Pin 5 CON5 / HIGH Pin 6 CON6 / HIGH CON6 Pin 7 CON7 / HIGH CON7 Pin 8 CON8 / HIGH CON8

<u>Transmitter</u> <u>Configuration Control</u>

Pin#	BOARD LABEL	SIGNAL NAME
Pin 1	PLLSEL / HIGH	PLL_SEL
Pin 2	DC_BAL OFF / DC_BAL ON	BAL
Pin 3	PRBS DISABLED / PRBS ENABLED	PRBS_EN
Pin 4	PRBS-15 / PRBS- 23	PAT_SEL
Pin 5	TEST1 / HIGH	TEST1
Pin 6	TEST2 / HIGH	TEST2
Pin 7		
Pin 8	PWR DOWN / DEVICE ENABLED	PD

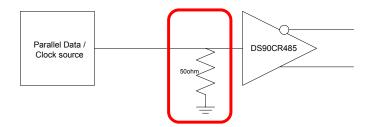
Receiver Configuration Control

Pin#	BOARD LABEL	SIGNAL NAME
Pin 1	RE-START DESKEW / DEFAULT	DESKEW
Pin 2	PLLSEL / HIGH	PLL_SEL
Pin 3	DC_BAL OFF / DC_BAL ON	BAL
Pin 4	CON1 / HIGH	CON1
Pin 5		
Pin 6		
Pin 7		
Pin 8	PWR DOWN / DEVICE ENABLED	PD

SW1 SW2 SW3

Jumpers

Jumper Number	Signal Name	Purpose	Туре
J6	DS_OPT	Cable Deskew Option	Transmitter's Configuration Input
J7		TURN-OFF 66MHz OSCILLATOR	
J8		TURN-OFF 133MHz OSCILLATOR	
J9	TSEN	LVDS Clock Termination Detect	Receiver's Configuration Output
J10		Selection of CLKIN source	Transmitter's Clock Select
J11	PRE	Pre-Emphasis Select	Transmitter's Configuration Input
J12	Vcc3v	Transmitter's Input Tolerant Select	

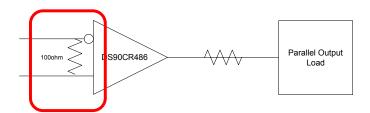


On-Board Termination Resistors

Transmitter LVCMOS/LVTTL Data Input Termination Resistors

An on-board 50-Ohm termination resistor to ground is provided at each transmitter LVCMOS/LVTTL clock and data input to match standard 50-Ohm test environments. In a real application, these series termination resistors are optional.

On-board transmitter LVCMOS/LVTTL input termination resistors (R1 – R25)


Connector J1 Pin #	Device Pin#	NAME	Termination Resistor
Pin 2	87	CLKIN	R1
Pin 4	81	D23	R2
Pin 6	82	D22	R3
Pin 8	83	D21	R4
Pin 10	84	D20	R5
Pin 12	85	D19	R6
Pin 14	86	D18	R7
Pin 16	89	D17	R8
Pin 18	90	D16	R9
Pin 20	91	D15	R10
Pin 22	92	D14	R11
Pin 24	93	D13	R12
Pin 26	94	D12	R13
Pin 28	97	D11	R14
Pin 30	98	D10	R15
Pin 32	99	D9	R16
Pin 34	100	D8	R17
Pin 36	1	D7	R18
Pin 38	2	D6	R19
Pin 40	3	D5	R20
Pin 42	4	D4	R21
Pin 44	5	D3	R22
Pin 46	6	D2	R23
Pin 48	7	D1	R24
Pin 50	8	D0	R25

Receiver LVDS Input Termination

The DS90CR486 Receiver has nine total LVDS input pairs (eight pairs of data and one pair of clock). Impedance and lengths are matched on all nine pairs and between each pair to reduce reflection and board skew. See MDR Connector under Connector Mapping Tables on page 22 for detail on receiver's inputs signal mapping.

A 100-Ohm differential termination resistor is provided on each input pair (R92 – R100) near the receiver's device pins to generate proper differential voltage and minimize stub length. See below figure for simply circuit schematic and mapping for resistor and its corresponding signal. LVDS termination is required in all applications.

5 . 5		Termination
Device Pin #	NAME	Resistor
99	RxINM0	R92
98	RxINP0	R92
97	RxINM1	R93
96	RxINP1	R93
95	RxINM2	R94
94	RxINP2	R94
92	RxCLKM	R95
91	RxCLKP	R95
90	RxINM3	R96
89	RxINP3	R96
87	RxINM4	R97
86	RxINP4	R97
85	RxINM5	R98
84	RxINP5	R98
83	RxINM6	R99
82	RxINP6	R99
80	RxINM7	R100
79	RxINP7	R100

Optional Receiver LVCMOS/LVTTL Output Termination Resistors (Unpopulated)

0402-size resistor pads are provided on each receiver output trace (R43 - R91). These pads are <u>unpopulated</u> from the factory. Note: The user must cut the metal trace between the pads before mounting a series termination resistor. Connector pin number, device pin and name number, and resistor placement are mapped below:

Connector J2			Termination
Pin #	Device Pin #	NAME	Resistor
Pin 2	42	RxCLKOUT	R43
Pin 4	68	RxOUT47	R44
Pin 6	67	RxOUT46	R45
Pin 8	65	RxOUT45	R46
Pin 10	64	RxOUT44	R47
Pin 12	62	RxOUT43	R48
Pin 14	61	RxOUT42	R49
Pin 16	60	RxOUT41	R50
Pin 18	59	RxOUT40	R51
Pin 20	58	RxOUT39	R52
Pin 22	57	RxOUT38	R53
Pin 24	55	RxOUT37	R54
Pin 26	53	RxOUT36	R55
Pin 28	52	RxOUT35	R56
Pin 30	51	RxOUT34	R57
Pin 32	50	RxOUT33	R58
Pin 34	49	RxOUT32	R59
Pin 36	48	RxOUT31	R60
Pin 38	47	RxOUT30	R61
Pin 40	46	RxOUT29	R62
Pin 42	43	RxOUT28	R63
Pin 44	41	RxOUT27	R64
Pin 46	40	RxOUT26	R65
Pin 48	39	RxOUT25	R66
Pin 50	38	RxOUT24	R67

Connector J3			Termination
Pin#	Device Pin #	NAME	Resistor
Pin 2	37	RxOUT23	R68
Pin 4	36	RxOUT22	R69
Pin 6	34	RxOUT21	R70
Pin 8	32	RxOUT20	R71
Pin 10	31	RxOUT19	R72
Pin 12	30	RxOUT18	R73
Pin 14	29	RxOUT17	R74
Pin 16	28	RxOUT16	R75
Pin 18	27	RxOUT15	R76
Pin 20	26	RxOUT14	R77
Pin 22	24	RxOUT13	R78
Pin 24	22	RxOUT12	R79
Pin 26	21	RxOUT11	R80
Pin 28	20	RxOUT10	R81
Pin 30	19	RxOUT9	R82
Pin 32	18	RxOUT8	R83
Pin 34	17	RxOUT7	R84
Pin 36	15	RxOUT6	R85
Pin 38	14	RxOUT5	R86
Pin 40	12	RxOUT4	R87
Pin 42	11	RxOUT3	R88
Pin 44	10	RxOUT2	R89
Pin 46	9	RxOUT1	R90
Pin 48	8	RxOUT0	R91
Pin 50	GND	GND	

Troubleshooting

Troubleshooting

If the demo boards are not performing properly, use the following as a guide for quick solutions to common problems. If the problem persists, contact the hotline number listed under Additional Information section of this document.

Check the following:

- 1. Power and Ground are connected to both power connections of the board.
- 2. Supply voltage (2.5V and 3.3V) and current (It's around 130mA for the 2.5V supply and 90mA for the 3.3V supply with clock and one data bit at 66MHz.) are correct.
- 3. Input clock and input data (It's best to start with one data bit.) to the Tx input connector.
- 4. Switches and Jumpers are set correctly or to default settings.
- 5. The 2 meter cable is connecting the Tx portion and Rx portion.
- 6. Make sure all of the connections are good.
- 7. Start with a low clock frequency (66 MHz) and work from there.

Trouble shooting chart:

Problem	Solution
There is only the output clock. There is no output data.	Make sure the data scramble/mapping is correct.
•	Make sure there is data input.
No output data and clock.	Make sure Power is on. Input data and clock are active and connected correctly.
	Make sure that the 2 meter cable is secured to both demo boards.
Power, ground, input data and input clock are connected correctly, but no outputs.	Check the Power Down pins of both boards and make sure the devices are enabled (/PD=ON) for operation.
The devices are pulling more than 1A of current.	Check for shorts on the demo boards.
After powering up the demo boards, the power supply reads less than 3V when it is set to 3.3V.	Use a larger power supply that will provide enough current for the demo boards.

Additional Information

PCB Schematic

Document number: CLINK3V485/486 PCB

Rev: 1.01

PCB Bill of Material

Document number: CLINK3V485/486 BOM

Rev: 1.02

PCB Layouts

Rev: 1

Cable & Connector Info

Crystal Oscillator Info

Other Resources

For more information on Channel Link devices, refer to the National's LVDS website at:

LVDS.national.com

Interface Application Hotline: +1 (408) 721-8500 (California, USA)

© National Semiconductor, 2003. National Semiconductor and the "N" logo are registered trademarks of National Semiconductor Corporation. All other brand or product names are trademarks of their respective owners.

All rights reserved.