

CLC730227,CLC730216 Single High Speed Op Amp Evaluation Boards (SOIC and SOT)

The CLC730227 and CLC730216 evaluation boards are designed to aid in the characterization of National Semiconductor's High Speed monolithic amplifiers.

- CLC730227 SOIC packages
- CLC730216 SOT packages

Use the evaluation boards as a guide for high frequency layout and as a tool to aid in device testing and characterization.

The evaluation boards accommodate general purpose amplifiers, as well as amplifiers with the following features:

- Supply current adjustment via external Resistor
- Output disable

The evaluation board schematic is shown below. Refer to the product data sheets for recommendations for component values.

BASIC OPERATION

Both boards have identical circuit configurations and are designed to accommodate both non-inverting and inverting operation. By changing RT or RIN and ROUT different input and output impedances can be matched. The SMA connectors and board traces are optimized for 50Ω operation, however other impedances can be matched as shown below.

Inverting Gain = R_F/R_G (Input Resistance = $R_T \parallel R_G$) Non Inverting Gain = 1 + $R_F/(R_G + R_T)$ (Input Resistance = R_{IN})

(R_T may be set to zero for non inverting operation)

For current feedback operational amplifiers be careful to use appropriate values of $\rm R_{F}.$ In addition the required value of Rg will limit choices for input impedance with Inverting gains.

FIGURE 1. SOT Schematic

CLC730227, CLC730216

(Continued)

LAYOUT CONSIDERATIONS

Printed circuit board layout and supply bypassing play major roles in determining high frequency performance. When designing your own board use these evaluation boards as a guide and follow these steps to optimize high frequency performance:

20066603

FIGURE 3. Probe Schematic

- 1. Use a ground plane
- 2. Include large ($^{\sim}6.8\mu$ F) capacitors on both supplies.
- 3. Near the device use .01 μ F ceramic capacitors from both supplies to ground C₁, C₃.
- 4. Near the device use a .1 μ F ceramic capacitor between the supplies C₅.
- 5. Remove the ground and power planes from under and around the part, especially the input and output pins.
- 6. Minimize all trace lengths
- 7. Use terminated transmission lines for long traces.
- 8. High-speed disable/ enable operation requires that the enable pin be treated as a signal input.

Diode D_1 is to protect the device from reverse polarity supply connections and will not be necessary for most designs.

CLC730227,CLC730216

There tion to some degree. Also, conductors, fingers etc. near the device will change measurement results. or sug National Semiconductor Layer1 Silk

ances.

(Continued)

Capacitor C_5 is necessary for best Harmonic Distortion performance. If C_5 is not used increase the values of C_1 and C_3 to .1µF.

 $\rm R_{IN},\,R_{T}$ and $\rm R_{OUT}$ are all impedance matching resistors. $\rm R_{IN}$ and $\rm R_{OUT}$ should be equal to the desired input/output impedance. $\rm R_{T}~II~R_{G}$ should equal the desired inverting input impedance. Note that with current feedback op amps, the optimum value of $\rm R_{F}$ and $\rm R_{G}$ is determined by the desired gain and raising $\rm R_{G}$ to obtain higher input impedance may require compromising device performance at large values of inverting gain.

The disable trace has provisions for input termination. There are also pads for series resistance and capacitance for programmable gain parts. See part datasheets for suggested values.

Sample artwork for National's Evaluation boards is included below.

20066604

SOIC Board Layout (Actual size = 1.5" x 1.5")

National Semiconductor Layer1 Silk

SOT Board Layout (Actual size = 1.5" x 1.5")

The board is designed for 50Ω input and output connections into coaxial cables. For other impedances the terminating

resistors can be modified to help match different imped-

Do not use normal oscilloscope probes to test these circuits.

The capacitive loading will change circuit performance dras-

tically. Instead use low impedance resistive divider probes of

100 to 500Ω . See *Figure 3* for a sample resistive probe. The

Low impedance resistor should be $50-450\Omega$. The ground

connection should be as short as possible (~1/2"). Even with

careful use of these probes results should be considered

preliminary until verified with controlled impedance measure-

ments. Even the best probes will interfere with circuit opera-

20066605

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

 National Semiconductor

 Europe Customer Support Center

 Fax: +49 (0) 180-530 85 86

 Email: europe.support@nsc.com

 Deutsch Tel: +49 (0) 69 9508 6208

 English Tel: +44 (0) 870 24 0 2171

 Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Fax: +65-6250 4466 Email: ap.support@nsc.com Tel: +65-6254 4466 National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.