Notice for TAIYO YUDEN products

Please read this notice before using the TAIYO YUDEN products.

/!\ REMINDERS

■Product information in this catalog is as of October 2008. All of the contents specified herein are subject to change without notice due to technical improvements, etc. Therefore, please check for the latest information carefully before practical application or usage of the Products.

Please note that Taiyo Yuden Co., Ltd. shall not be responsible for any defects in products or equipment incorporating such products, which are caused under the conditions other than those specified in this catalog or individual specification.

- Please contact Taiyo Yuden Co., Ltd. for further details of product specifications as the individual specification is available.
- Please conduct validation and verification of products in actual condition of mounting and operating environment before commercial shipment of the equipment.
- All electronic components or functional modules listed in this catalog are developed, designed and intended for use in general electronics equipment.(for AV, office automation, household, office supply, information service, telecommunications, (such as mobile phone or PC) etc.). Before incorporating the components or devices into any equipment in the field such as transportation,(automotive control, train control, ship control), transportation signal, disaster prevention, medical, public information network (telephone exchange, base station) etc. which may have direct influence to harm or injure a human body, please contact Taiyo Yuden Co., Ltd. for more detail in advance.

Do not incorporate the products into any equipment in fields such as aerospace, aviation, nuclear control, submarine system, military, etc. where higher safety and reliability are especially required.

In addition, even electronic components or functional modules that are used for the general electronic equipment, if the equipment or the electric circuit require high safety or reliability function or performances, a sufficient reliability evaluation check for safety shall be performed before commercial shipment and moreover, due consideration to install a protective circuit is strongly recommended at customer's design stage.

- The contents of this catalog are applicable to the products which are purchased from our sales offices or distributors (so called "TAIYO YUDEN's official sales channel"). It is only applicable to the products purchased from any of TAIYO YUDEN's official sales channel.
- Please note that Taiyo Yuden Co., Ltd. shall have no responsibility for any controversies or disputes that may occur in connection with a third party's intellectual property rights and other related rights arising from your usage of products in this catalog. Taiyo Yuden Co., Ltd. grants no license for such rights.
- Caution for export

Certain items in this catalog may require specific procedures for export according to "Foreign Exchange and Foreign Trade Control Law" of Japan, "U.S. Export Administration Regulations," and other applicable regulations. Should you have any question or inquiry on this matter, please contact our sales staff.

Should you have any question or inquiry on this matter, please contact our sales staff.

積層チップインダクタ MULTILAYER CHIP INDUCTORS CK SERIES

OPERATING TEMP. −40~85°C

特長 FEATURES

- ・磁気シールドタイプのため、クロストークの発生がなく、高密度実装に 最適
- ・完全モノリシック構造のため、高い信頼性を実現

- Internal printed coil structure creates a closed magnetic circuit which acts as a magnetic shield eliminating crosstalk, thus permitting higher mounting densities.
- · Multilayer block structure yields higher reliability.

用途 APPLICATIONS

- ・デジタル回路とアナログ回路の分離。
- ・PLL回路とその他デジタル回路間の干渉防止。

- · Separation of analog and digital cuircuits.
- · Prevents interference between PLL and the other digital circuits.

形名表記法 ORDERING CODE

形式 CK 積層チップインダクタ

2

×W) [mm]
1.6×0.8
2.0×1.25

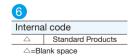
3 公称インダクタンス [μ H] 例

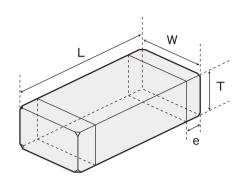
例								
1R0	1							
100	10							
※R=小数点								

4 インダクタンス許容差[%] M ±20

6 当社管理記号 △ 標準品 △=スペース

Type
CK Multilayer chip inductors


2


External Dimens	$(L \times W)$	(mm)						
1608 (0603)	1608 (0603)							
2125 (0805)	2.0×1	.25						

*R=decimal point

5		
Packa	ging	
T	Tape & Reel	

Type	L	W	Т	е		
CK1608	1.6±0.15	0.8±0.15	0.8±0.15	0.3±0.2		
(0603)	(0.063±0.006)	(0.031 ± 0.006)	(0.031 ± 0.006)	(0.012±0.008)		
	2.0+0.3 -0.1		0.85±0.2			
CK2125		1.25±0.2	1.25±0.2	0.5±0.3		
(0805)	$(0.079^{+0.012}_{-0.004})$	(0.049±0.008)	(0.033±0.008)	(0.020±0.012)		
			(0.049±0.008)			

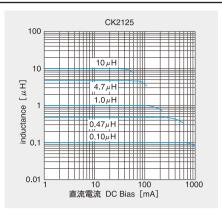
Unit: mm (inch)

概略バリエーション AVAILABLE INDUCTANCE RANGE

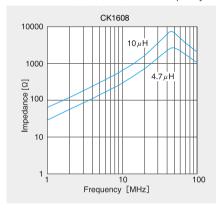
	Type	CK1608	Imax	CK2125	Imax
Range			[mA]		[mA]
	0.10			R10M	500
	0.15			R15M	500
	0.22			R22M	400
	0.33			R33M	400
	0.47			R47M	400
inductance	0.68			R68M	300
[μ H]	1.0			1R0M	220
Lμ.13	1.5			1R5M	170
	2.2			2R2M	150
	3.3			3R3M	130
	4.7	4R7M	60	4R7M	120
	6.8			6R8M	70
	10.0	100M	50	100M	60

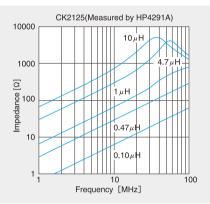
アイテム一覧 PART NUMBERS

CK1608 -

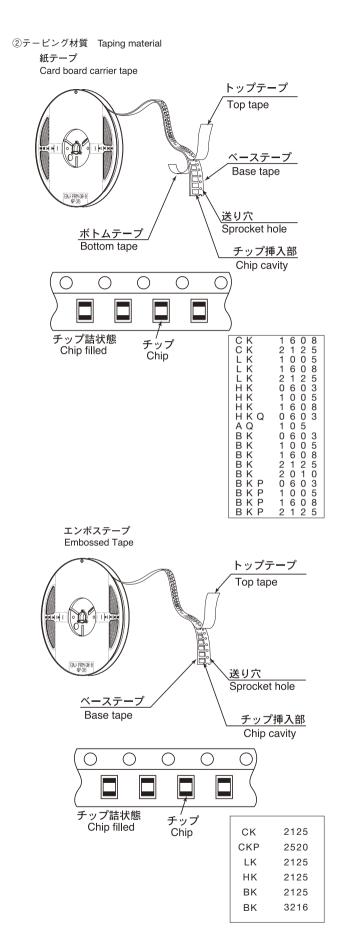

形 名 Ordering code	EHS (Environmental Hazardous Substances)	インダクタンス	インダクタンス 許容差 Inductance tolerance	Q (min.)	自己共振周波数 Self resonant frequency [MHz] (min.)	直流抵抗 DC Resistance (Ω)(±30%)	定格電流 Rate current 〔mA〕 (max.)	測定周波数 Measuring frequency 〔MHz〕	厚さ Thickness (mm) (inch)
CK 1608 4R7M	RoHS	4.7	±20%	20	25	0.45	60	4	0.8±0.15
CK 1608 100M	RoHS	10.0	±20 %	20	17	0.85	50	2	(0.031 ± 0.006)

CK2125 —

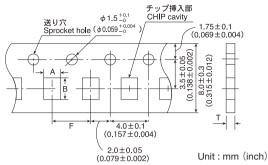

0112123										
形 名 Ordering code		EHS (Environmental Hazardous Substances)		インダクタンス 許容差 Inductance tolerance	Q (min.)	自己共振周波数 Self resonant frequency [MHz] (min.)	直流抵抗 DC Resistance 〔Ω〕(max.)	定格電流 Rate current 〔mA〕 (max.)	測定周波数 Measuring frequency 〔MHz〕	厚さ Thickness 〔mm〕 (inch)
CK 2125 R10M		RoHS	0.10		15	235	0.16	500	25	
CK 2125 R15M		RoHS	0.15		15	200	0.20	500	25	0.85 ± 0.2
CK 2125 R22M		RoHS	0.22		15	170	0.23	400	25	(0.033 ± 0.008)
CK 2125 R33M		RoHS	0.33		15	145	0.28	400	25	
CK 2125 R47M		RoHS	0.47		15	125	0.32	400	25	1.25 ± 0.2
CK 2125 R68M		RoHS	0.68	±20%	15	105	0.45	300	25	(0.049 ± 0.008)
CK 2125 1R0M		RoHS	1.0		20	75	0.26	220	10	0.85 ± 0.2
CK 2125 1R5M		RoHS	1.5		20	60	0.28	170	10	(0.033 ± 0.008)
CK 2125 2R2M		RoHS	2.2		20	50	0.35	150	10	(0.033 ± 0.006)
CK 2125 3R3M		RoHS	3.3		20	41	0.43	130	10	
CK 2125 4R7M		RoHS	4.7]	20	35	0.48	120	10	1.25 ± 0.2
CK 2125 6R8M		RoHS	6.8		20	29	0.52	70	4	(0.049 ± 0.008)
CK 2125 100M	·	RoHS	10.0		20	24	0.65	60	2	


直流重畳特性例 DC Bias characteristics -

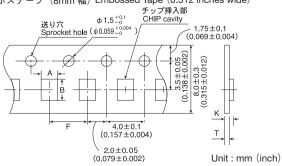
インピーダンス周波数特性例 Z vs Frequency characteristics



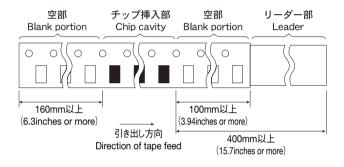
Please read the "Notice for TAIYO YUDEN products" before using this catalog.


①最小受注単位数 Minimum Quantity ■テーピング梱包 Tape & Reel Packaging

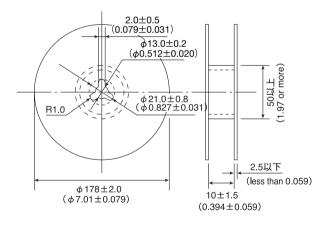
形式	製品厚み Thickness		效量 [pcs] rd Quantity		
Туре	[mm] (inch)	紙テープ Paper Tape	エンボステープ Embossed Tape		
CK1608(0603)	0.8 (0.031)	4000	_		
CK2125(0805)	0.85 (0.033)	4000	_		
	1.25 (0.049) 0.9	_	2000		
CKP2520 (1008)	(0.035)	_	3000		
LK1005(0402)	(0.043) 0.5	10000	2000		
LK1608(0603)	(0.020) 0.8	4000	_		
	(0.031) 0.85	4000	_		
LK2125 (0805)	(0.033) 1.25 (0.049)	-	2000		
HK0603 (0201)	0.3 (0.012)	15000	_		
HK1005(0402)	0.5 (0.020)	10000	_		
HK1608(0603)	0.8 (0.031)	4000	_		
HK2125(0805)	0.85 (0.033)	_	4000		
	1.0 (0.039)	_	3000		
HKQ0603S(0201)	0.3 (0.012)	15000	_		
AQ105(0402)	0.5 (0.020)	10000	-		
BK0603(0201)	0.3 (0.012)	15000	_		
BK1005(0402)	0.5 (0.020)	10000	_		
BK1608 (0603)	0.8 (0.031)	4000	_		
BK2125(0805)	0.85 (0.033)	4000	_		
	1.25 (0.049)	_	2000		
BK2010(0804)	0.45 (0.018)	4000	_		
BK3216 (1206)	0.8 (0.031)	_	4000		
BKP0603 (0201)	0.3 (0.012)	15000	_		
BKP1005(0402)	0.5 (0.020)	10000	_		
BKP1608(0603)	0.8 (0.031)	4000	_		
BKP2125 (0805)	0.85 (0.033)	4000	_		


③テーピング寸法 Taping Dimensions

・紙テープ (8mm幅) Paper tape (0.315 inches wide)

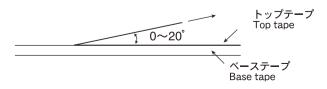

	製品厚み	チップ	挿入部	挿入ピッチ	テープ厚み
形式	Thickness		cavity	Insertion	Tape Thickness
Type	(mm)	Onp	Juvity	Pitch	Tupe Thiothicos
	(inch)	Α	В	F	T
CK1608 (0603)	0.8	1.0±0.2	1.8±0.2	4.0±0.1	1.1ma x
	(0.031)	(0.039 ± 0.008)	(0.071±0.008)	(0.157±0.004)	(0.043max)
CK2125 (0805)	0.85	1.5±0.2	2.3±0.2	4.0±0.1	1.1ma x
	(0.033)	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	(0.043max)
LK1005(0402)	0.5	0.65±0.1	1.15±0.1	2.0±0.05	0.8max
	(0.020)	(0.026±0.004)	(0.045±0.004)	(0.079±0.002)	(0.031max)
LK1608(0603)	0.8	1.0±0.2	1.8±0.2	4.0±0.1	1.1ma x
	(0.031)	(0.039±0.008)	(0.071±0.008)	(0.157±0.004)	(0.043max)
LK2125(0805)	0.85	1.5±0.2	2.3±0.2	4.0±0.1	1.1ma x
	(0.033)	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	(0.043max)
HK0603(0201)	0.3	0.40±0.06	0.70 ± 0.06	2.0±0.05	0.45max
111(0003(0201)	(0.012)	(0.016±0.002)	(0.028±0.002)	(0.079±0.002)	(0.018max)
HK1005 (0402)	0.5	0.65±0.1	1.15±0.1	2.0±0.05	0.8max
111(1003(0402)	(0.020)	(0.026±0.004)	(0.045±0.004)	(0.079±0.002)	(0.031max)
HK1608 (0603)	0.8	1.0±0.2	1.8±0.2	4.0±0.1	1.1ma x
	(0.031)	(0.039±0.008)	(0.071 ± 0.008)	(0.157±0.004)	(0.043max)
HKQ0603S(0201)	0.3	0.40±0.06	0.70 ± 0.06	2.0±0.05	0.45max
HNQ00033(0201)	(0.012)	(0.016±0.002)	(0.028 ± 0.002)	(0.079±0.002)	(0.018max)
AQ105(0402)	0.5	0.75±0.1	1.15±0.1	2.0±0.05	0.8max
AQ105(0402)	(0.020)	(0.030±0.004)	(0.045±0.004)	(0.079±0.002)	(0.031max)
BK0603(0201)	0.3	0.40±0.06	0.70±0.06	2.0±0.05	0.45max
DKU003(0201)	(0.012)	(0.016±0.002)	(0.028 ± 0.002)	(0.079±0.002)	(0.018max)
BK1005(0402)	0.5	0.65±0.1	1.15±0.1	2.0±0.05	0.8max
DK1003(0402)	(0.020)	(0.026±0.004)	(0.045±0.004)	(0.079±0.002)	(0.031max)
BK1608(0603)	0.8	1.0±0.2	1.8±0.2	4.0±0.1	1.1ma x
DK1000(0003)	(0.031)	(0.039±0.008)	(0.071 ± 0.008)	(0.157±0.004)	(0.043max)
BK2125(0805)	0.85	1.5±0.2	2.3±0.2	4.0±0.1	1.1ma x
BN2123(0003)	(0.033)	(0.059±0.008)	(0.091 ± 0.008)	(0.157±0.004)	(0.043max)
BK2010(0804)	0.45	1.2±0.1	2.17±0.1	4.0±0.1	0.8max
DN2010(0004)	(0.018)	(0.047±0.004)	(0.085±0.004)	(0.157±0.004)	(0.031max)
DI/D0000(0004)	0.3	0.40±0.06	0.70±0.06	2.0±0.05	0.45max
BKP0603 (0201)	(0.012)	(0.016±0.002)	(0.028 ± 0.002)	(0.079±0.002)	(0.018max)
DKD400E (0.400)	0.5	0.65±0.1	1.15±0.1	2.0±0.05	0.8max
BKP1005(0402)	(0.020)	(0.026±0.004)	(0.045±0.004)	(0.079±0.002)	(0.031max)
DKD4600 (0000)	0.8	1.0±0.2	1.8±0.2	4.0±0.1	1.1ma x
BKP1608 (0603)	(0.031)	(0.039±0.008)	(0.071±0.008)	(0.157±0.004)	(0.043max)
DIVDO40E (000E)	0.85	1.5±0.2	2.3±0.2	4.0±0.1	1.1ma x
BKP2125 (0805)	(0.033)	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	(0.043max)

・エンボステープ(8mm 幅)Embossed Tape(0.312 inches wide)



形 式 Type	製品厚み Thickness 〔mm〕		挿入部 cavity	挿入ピッチ Insertion Pitch	テープ厚み Tape Thickness			
	(inch)	Α	В	F	K	Т		
CK2125 (0805)	1.25	1.5±0.2	2.3±0.2	4.0±0.1	2.0	0.3		
	(0.049)	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	(0.079)	(0.012)		
	0.9				1.4			
CKP2520(1008)	(0.035)	2.3±0.1	2.8±0.1	4.0±0.1	(0.055)	0.3		
	1.1	(0.091±0.004)	(0.110±0.004)	(0.157±0.004)	1.7	(0.012)		
	(0.043)				(0.067)			
LK2125(0805)	1.25	1.5±0.2	2.3±0.2	4.0±0.1	2.0	0.3		
LN2123(0003)	(0.049)	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	(0.079)	(0.012)		
	0.85				1.5			
HK2125 (0805)	(0.033)	1.5±0.2	2.3±0.2	4.0±0.1	(0.059)	0.3		
11K2123 (0003)	1.0	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	2.0	(0.012)		
	(0.039)				(0.079)			
BK2125(0805)	1.25	1.5±0.2	2.3±0.2	4.0±0.1	2.0	0.3		
DNZ 123 (U0U3)	(0.049)	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	(0.079)	(0.012)		
BK3216(1206)	0.8	1.9±0.1	3.5±0.1	4.0±0.1	1.4	0.3		
DN3210(1200)	(0.031)	(0.075±0.004)	(0.138±0.004)	(0.157±0.004)	(0.055)	(0.012)		

④リーダー部・空部 LEADER AND BLANK PORTION



⑤リール寸法 Reel Size

⑥トップテープ強度 Top tape strength

トップテープの剥離力は、下図矢印方向にて0.1~0.7Nとなります。 The top tape requires a peel-off force of 0.1~0.7N in the direction of the arrow as illustrated below.

											Specif	ied Val	ue										
Item	BK0603	BK1005	BK1608	BK2125		RAY BK3216	BKP0603	BKP1005	BKP1608	BKP2125	CK1608	CK2125	CKP2520	LK1005	LK1608	LK2125	HK0603	HK1005	HK1608	HK2125	HKQ0603S	AQ105	Test Methods and Remarks
1. Operating Temperature Range			-55~-	-125°C				-55~	+85°C				-40~	+85°C			-55~	+125°C	-40~	+85°C	-55~	+125°C	
2. Storage Temperature Range			-55~-	⊦125°C				-55~	+85℃				-40~	+85°C			-55~	+125℃	-40~	+85°C	-55~	+125℃	
3. Rated Current	100~ 500mA DC	150~ 1000mA D C	150~ 1500mA D C	200~ 1200mA D C	100mA DC	100~ 200mA DC	1.0A DC	1.0A DC	1.0~ 3.0A DC	2.0~ 4.0A DC	50~ 60mA DC	60~ 500mA DC	1.1~ 1.4 DC	10~ 25mA DC	1~ 50mA DC	5~ 300mA DC	60~ 470mA DC	110~ 300mA DC	150~ 300mA DC	300mA DC	130~ 600mA DC	280~ 710mA DC	
4. Impedance	10~ 600Ω ±25%	10~ 1000Ω ±25%	22~ 2500Ω ±25%	15~ 2500Ω ±25%	5~ 600Ω ±25%	68~ 1000Ω ±25%	22~ 33Ω ±25%	120Ω ±25%	33~ 390Ω ±25%	33~ 220Ω ±25%													BK0603 Series: BKP0603 Series: Measuring frequency:100±1MHz Measuring equipment:HP4291A Measuring jig:16193A BK1005 Series: BKP1005 Series: Measuring frequency:100±1MHz Measuring equipment:HP4291A Measuring ig:16192A, 16193A
																							BK1608, 2125 Series: BKP1608, 2125 Series: Measuring frequency:100±1MHz Measuring equipment: HP4291A, HP4195A Measuring jig:16092A or 16192A (HW) BK2010, 3216 Series: Measuring frequency:100±1MHz Measuring equipment: HP4291A, HP4195A Measuring jig:16192A
5. Impedance											4.7~ 10.0μH :±20%	0.1~ 10.0μH :±20%	1.0~ 4.7μH :±20%		0.047~ 33.0μH :±20% 0.10~ 12.0μH :±10% 0 0.12~ 2.2μH :±30%	0.047~ 33.0μH :±20% 0.10~ 12.0μH :±10% 0 0.12~ 22.μH :±30%		1.0~ 6.2nH :±0.3nH 6.8~ 270nH :±5%	1.0∼ 5.6nH :±0.3nH 6.8∼ 470nH :±5%	1.0∼ 5.6nH :±0.3nH 6.8∼ 470nH :±5%	0.6~ 6.2nH :±0.3nH 6.8~ 22nH :±5%	1.0~ 6.2nH :±0.3nH 6.8~ 15nH :±5%	CK Series: Measuring frequency: 2 to 4MHz (CK1608) Measuring frequency: 2 to 25MHz (CK2125) Measuring frequency: 10 to 25MHz (CK2125) Measuring frequency: 10 to 25MHz (LK1005) Measuring frequency: 10 to 25MHz (LK1005) Measuring frequency: 10 to 50MHz (LK1008) Measuring frequency: 0.4 to 50MHz (LK1008) Measuring equipment, jig: HP4194 + 16085B + 16092A (or its equivalent) HP4195 + 41951 + 16092A (or its equivalent) HP4294 + 16192A HP4294 + 16192A HP4294 + 16192A (LK1005) HP4285A + 42841A + 42842C + 42851 - 61100 (CKP2520) Measuring current: ImA rms (0.047 to 4.7 µH) 0.1mA rms (5.6 to 33 µH) HK, AQ Series: Measuring frequency: 100MHz (HK0603 + HK1005 + AQ105) Measuring frequency: 50/100MHz (HK1608 + HK2125) Measuring requipment, jig: Measuring requipment, jig: HP4291A + 16197A (HK00603 - AQ105) HP4291A + 16197A (HK00603S) HP4291A 16197A (HK00603S)

^{*} Definition of rated current: In the CK and BK Series, the rated current is the value of current at which the temperature of the element is increased within 20°C.

In the BK Series P type and CK Series P type, the rated current is the value of current at which the temperature of the element is increased within 40°C. In the LK,HK,HKQ,and AQ Series, the rated current is either the DC value at which the internal L value is decreased within 5% with the application of DC bias, or the value of current at which the temperature of the element is increased within 20°C.

											Specifi	ied Valu	ie										
Item	BK0603	BK1005	BK1608	BK2125		RAY BK3216	- BKP0603	BKP1005	BKP1608		CK1608	CK2125	CKP2520	LK1005	LK1608	LK2125	HK0603	HK1005	HK1608	HK2125	HKQ0603S	AQ105	Test Methods and Remarks
6. Q											20 min.	15~20 min.		10~20 min.	10~35 min.	15~50 min.	4~5 min.	8 min.	8~12 min.	10~18 min.	10~13 min.	8 min.	CK Series: Measuring frequency: 2 to 4MHz (CK1608) Measuring frequency: 2 to 25MHz (CK2125) LK Series: Measuring frequency: 10 to 25MHz (LK1005) Measuring frequency: 1 to 50MHz (LK1608) Measuring frequency: 0.4 to 50MHz (LK2125)
					_	_							_										Measuring equipment, ij c. 14 to Jowinz (LK2125) Measuring equipment, ij c. 14 to Jowinz (LK2125) Measuring equipment, ij c. 14 to Jowinz (LK2125) Measuring equipment (14 to Jowens 14 to
																							HK, HKO, AQ Series : Measuring frequency : 100MHz (HK0603 · HK1005 · AQ105) Measuring frequency : 50100MHz (HK1606 · HK2125) Measuring frequency : 500MHz (HKQ0603S) Measuring equipment, jig : - HP4291A+16197A (HK0603 · AQ105) - HP4291A+16193A (HK1005) - E4991A + 16197A (HKQ6603S) - HP4291A+16092A+ in-house made jig (HK1608 · HK2125)
7. DC Resistance	0.07~ 1.50Ω max.	0.05~ 0.80Ω max.	0.05~ 1.10Ω max.	0.05~ 0.75Ω max.	0.10~ 0.90Ω max.	0.15~ 0.80Ω max.	0.065~ 0.070Ω max.	0.140Ω max.	0.025~ 0.140Ω max.	0.020~ 0.050Ω max.	0.45~ 0.85Ω (±30%)	0.16~ 0.65Ω max.	0.08~ 0.15 max.	0.7~ 1.70Ω max.	0.2~ 2.2Ω max.	0.1~ 1.1Ω max.	0.11~ 3.74Ω max.	0.08~ 4.8Ω max.	0.05~ 2.6Ω max.	0.10~ 1.5Ω max.		0.07~ 0.45Ω max.	Measuring equipment: VOAC-7412 (made by Iwasaki Tsushinki) VOAC-7512 (made by Iwasaki Tsushinki)
8. Self Resonance Frequency (SRF)					_	_			,		17~ 25MHz min.	24~ 235MHz min.		40~ 180MHz min.	9~ 260MHz min.	13~ 320MHz min.	900~ 10000MHz min.	400~ 10000MHz min.	300~ 10000MHz min.	200~ 4000MHz min.	1900~ 10000MHz min.	2300~ 10000MHz min.	LK Series: Measuring equipment: HP4195A Measuring jig: 41951+16092A (or its equivalent) HK, HKO, AQ Series: Measuring equipment: HP8719C
9. Temperature Characteristic													_	_				tance c ±10%	hange	:			HF87530 (HK2125) HK, HKQ, AQ Series: Temperature range: -30 to +85°C Reference temperature: +20°C
10. Resistance to Flexure of Substrate	No me	echanic	al dam	age.																			Warp : 2mm Testing board : glass epoxy-resin substrate Thickness : 0.8mm Board R-230 Warp Deviation: 1/45 45 45 [Unit: mm]

										Specifi	ed Valu	ıe										
Item	BK0603	BK1005	BK1608	BK2125	ARRAY BK2010 BK32		BKP1005	BKP1608	BKP2125	CK1608	CK2125	CKP2520	LK1005	LK1608	LK2125	HK0603	HK1005	HK1608	HK2125	HKQ0603S	AQ105	Test Methods and Remarks
11. Solderability	At leas	st 75% (of term	inal ele	ctrode is c	overed b	y new s	older.		At leas	t 75%	of term	nal ele	ctrode i	s cove	red by r	new sol	der.				Solder temperature : 230±5°C
																						Duration: 4±1 sec.
12. Resistance to	Appea	rance	: No si	gnificar	nt abnorma	lity.				No mecl	nanical d	lamage.	No	No mech	nanical	No me	chanic	al dam	age.			Solder temperature : 260±5°C
Soldering	Imped	ance cl	nange	: With	in ±30%					Remaini	ng termi	nal	mechanical	damage	е.	Remair	ning tern	ninal ele	ctrode	: 70%	min.	Duration: 10±0.5 sec.
										electrod	e: 70%	6 min.	damage.	Remain	ing							Preheating temperature: 150 to 180°C
													Remaining	termina	ıl	Induct	ance cl	hange				Preheating time: 3 min.
										Inductar	nce chan	ige	terminal	electro	de :	Within	±5%					Flux: Immersion into methanol solution with
										R10~4R	7: Within	±10%	electrode	70% m	iin.							colophony for 3 to 5 sec.
										6R8~10): Within	±15%	: 70% min.	Inducta	ınce							Recovery: 2 to 3 hrs of recovery under
										CKP252	0:Within	±30%	Inductance	change								the standard condition after the test.
													change	47N~4	R7:							(See Note 1)
													Within	Within∃	±10%							
													±15%	5R6~3	30:							
														Within∃	±15%							
13. Thermal Shock	Appea	rance	: No si	gnificar	nt abnorma	lity.				No		No	No me	chanica	al	No me	chanic	al dam	age.			Conditions for 1 cycle
	Imped	ance cl	nange	: With	in ±30%					mecha	ınical	mechanical	damag	je.		Induct	ance cl	hange	: With	in ±10	1%	Step 1: Minimum operating temperature
										damag	je.	damage.	Induct	ance		Qchan	ige : V	Vithin :	£20%			+0 -3 ℃ 30±3 min.
										Induct	ance	Induc-	chang	e :								Step 2 : Room temperature 2 to 3 min.
										change		tance		±10%								Step 3 : Maximum operating temperature
										Within ±		change:	Qchan	ge :								+0 °C 30±3 min.
										Qchan		Within	Withir	±30%	•							Step 4: Room temperature 2 to 3 min.
										Within ±	30%	±30%										Number of cycles: 5
																						Recovery: 2 to 3 hrs of recovery under the
																						standard condition after the test. (See Note 1)

(Note 1) When there are questions concerning mesurement result; measurement shall be made after 48 ± 2 hrs of recovery under the standard condition.

										Specified Valu	ie										
Item					I AD	RAY															Test Methods and Remarks
item	BK0603	BK1005	BK16	608 BK2125	\vdash	BKP06	03 BKP1005	BKP1608	BKP2125	CK1608 CK2125	CKP2520	LK1005	LK1608	LK2125	HK0603	HK1005	HK1608	HK2125	HKQ0603S	AQ105	rest wethous and nemarks
14 Down Host	Annon	ranaa	· No	significan		BK3216				No	Me	No me	ohoni	No	No mo	hania	l dome				BBK Series:
 Damp Heat (Steady state) 				signilican ge : Within		-				No mechanical	No mechanical	cal da		No mechanical	No med Inducta				+10%		Temperature: 40±2°C
	Impeda	ance ci	iang	je · witiiiii	±30 /	,				damage.	damage.	Cai uai	nage.	damage.	Q chan				± 10 %		Humidity: 90 to 95%RH
										damage.	oanago.	Induct	ance	uumagu.	Q OHAH	gc · wi		20 70			Duration: 500 +24 hrs
										Inductance	Inductance	chang		Inductance							Recovery: 2 to 3 hrs of recovery under the
										change:	change :	Within		change:							standard condition after the removal from test
										Within ±20%	Within	±10%		Within							chamber. (See Note 1)
											±30%			±20%							LK, CK, CKP, HK, HKQ, AQ Series:
										Q change:		Q char	nge:	Q change:							Temperature: 40±2°C (LK, CK, CKPSeries)
										Within ±30%		Within	-	Within							:60±2°C (HK, HKQ, AQ Series)
												±30%		±30%							Humidity: 90 to 95%RH
																					Duration: 500±12 hrs
																					Recovery: 2 to 3 hrs of recovery under the
																					standard condition after the removal from test
																					chamber. (See Note 1)
15. Loading under Damp Heat	Appear	rance :	No	significan	t abno	rmality.				No	No	No	No	No	No med	chanica	al dama	age.			BK Series:
Danip neat	Impeda	ance ch	nang	ge: Within	±30%					mechanical	mechanical	mechanical	mechanical	mechanical	Inducta	ance ch	ange:	Within	±10%		Temperature: 40±2°C
										damage.	damage.	damage.	damage.	damage.	Q chan	ge : Wi	thin ±2	20%			Humidity: 90 to 95%RH
																					Duration: 500 $^{+24}_{-0}$ hrs
										Inductance	Induc-	Induc-	Induc-	Induc-							Recovery: 2 to 3 hrs of recovery under the
										change:	tance	tance	tance	tance							standard condition after the removal from test
										Within ±20%	change:	change:	change:	change:							chamber. (See Note 1)
											Within	Within	0.047 to	Within							LK, CK, CKP, HK, HKQ, AQ Series:
										Q change: Within ±30%	±30%	±10%	12.0 µH:	±20%							Temperature: 40±2°C (LK, CK, CKPSeries)
										Within ±30%		Q	Within ±10%	Q							: 60±2°C (HK, HKQ, AQ Series)
												change:	±10% 15.0 to	change:							Humidity: 90 to 95%RH
												Within	33.0μH:	Within							Duration: 500±12 hrs Recovery: 2 to 3 hrs of recovery under the
												±30%	Within	±30%							standard condition after the removal from test
													±15%								chamber. (See Note 1)
																					chamber. (Geo Note 1)
													Q								
													change:								
													Within								
													Within ±30%								
16. Loading at High	Appear	rance	: No	significan	t abno	rmality.				No	No	No		No	No med			-			BK Series:
16. Loading at High Temperature				significan ge : Within						mechanical	mechanical	No mechanical	±30%	No mechanical	Inducta	ance ch	ange:	Within	±10%		Temperature:125±3℃
													±30% No			ance ch	ange:	Within	±10%		Temperature: 125±3°C Applied current: Rated current
										mechanical damage.	mechanical damage.	mechanical damage.	±30% No mechanical damage.	mechanical damage.	Inducta	ance ch	ange:	Within	±10%		Temperature:125±3℃
										mechanical damage. Inductance	mechanical damage.	mechanical damage.	±30% No mechanical damage.	mechanical damage. Induc-	Inducta	ance ch	ange:	Within	±10%		Temperature: 125±3°C Applied current: Rated current
										mechanical damage. Inductance change:	mechanical damage. Induc- tance	mechanical damage. Induc- tance	±30% No mechanical damage. Inductance	mechanical damage. Induc- tance	Inducta	ance ch	ange:	Within	±10%		Temperature: 125±3°C Applied current: Rated current Duration: 500 ⁺²⁴ / ₋₀ hrs
										mechanical damage. Inductance	mechanical damage. Induc- tance change:	mechanical damage. Induc- tance change:	±30% No mechanical damage. Inductance change:	mechanical damage. Induc- tance change:	Inducta	ance ch	ange:	Within	±10%		Temperature: 125±3°C Applied current: Rated current Duration: 500 +22 hrs Recovery: 2 to 3 hrs of recovery under the
										mechanical damage. Inductance change: Within ±20%	mechanical damage. Induc- tance change:	methanical damage. Induc- tance change:	±30% No mechanical damage. Inductance change: 0.047 to	mechanical damage. Induc- tance change:	Inducta	ance ch	ange:	Within	±10%		Temperature: 125 \pm 3°C Applied current: Rated current Duration: 500^{+24}_{-0} hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test
										mechanical damage. Inductance change: Within ±20% Q change:	mechanical damage. Induc- tance change:	mechanical damage. Induc- tance change:	±30% No mechanical damage. Inductance change: 0.047 to 12.0 µH:	mechanical damage. Induc- tance change:	Inducta	ance ch	ange:	Within	±10%		Temperature: 125±3°C Applied current: Rated current Duration: 500 +24 / hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note 1) LK, CK, CKP, HK, HKQ, AQ Series, BK Series P type:
										mechanical damage. Inductance change: Within ±20%	mechanical damage. Induc- tance change:	mechanical damage. Inductance change: Within ±10%	±30% No mechanical damage. Inductance change: 0.047 to 12.0 µH: Within	mechanical damage. Inductance change: Within ±20%	Inducta	ance ch	ange:	Within	±10%		Temperature: 125±3°C Applied current: Rated current Duration: 500 +24 / hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note 1) LK, CK, CKP, HK, HKQ, AQ Series, BK Series P type: Temperature: 85±2°C (LK, CK, CKPSeries)
										mechanical damage. Inductance change: Within ±20% Q change:	mechanical damage. Induc- tance change:	mechanical damage. Inductance change: Within ±10%	±30% No mechanical damage. Inductance change: 0.047 to 12.0 µH: Within ±10%	mechanical damage. Inductance change: Within ±20%	Inducta	ance ch	ange:	Within	±10%		$\label{eq:continuous} Temperature: 125\pm3^{\circ}C \\ Applied current: Rated current \\ Duration: 500 ^{+24}_{-0} \text{ hrs} \\ Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber, (See Note 1) \\ LK, CK, CKP, HK, HKQ, AQ Series, BK Series P type: \\ Temperature: 85\pm2^{\circ}C (LK, CK, CKPSeries) \\ : 85\pm3^{\circ}C (BK Series P type) \\ \end{cases}$
										mechanical damage. Inductance change: Within ±20% Q change:	mechanical damage. Induc- tance change:	mechanical damage. Inductance change: Within ±10%	±30% No mechanical damage. Inductance change: 0.047 to 12.0 µH: Within	mechanical damage. Inductance change: Within ±20%	Inducta	ance ch	ange:	Within	±10%		$\label{eq:continuous} Temperature: 125\pm3^{\circ}C $$ Applied current: Rated current $$ Duration: 500^{+24}_{-0}$ hrs $$ Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber, (See Note 1) $$ LK, CK, CKP, HK, HKQ, AQ Series, BK Series P type: $$ Temperature: 85\pm2^{\circ}C (LK, CK, CKPSeries): 85\pm3^{\circ}C (BK Series P type): 85\pm2^{\circ}C (HK1608, 2125) $$$
										mechanical damage. Inductance change: Within ±20% Q change:	mechanical damage. Induc- tance change:	mechanical damage. Inductance change: Within ±10% Q change:	±30% No mechanical damage. Inductance change: 0.047 to 12.0 µH: Within ±10% 15.0 to	mechanical damage. Inductance change: Within ±20% Q change:	Inducta	ance ch	ange:	Within	±10%		Temperature: 125±3°C Applied current: Rated current Duration: 500 +24 / hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note 1) LK, CK, CKP, HK, HKQ, AQ Series, BK Series P type: Temperature: 85±2°C (LK, CK, CKPSeries): 85±3°C (BK Series P type): 85±2°C (HK1608, 2125): 85±2°C (HK1005, AQ105 operating)
										mechanical damage. Inductance change: Within ±20% Q change:	mechanical damage. Induc- tance change:	mechanical damage. Inductance change: Within ±10% Q change: Within	$\pm 30\%$ No mechanical damage. Inductance change: 0.047 to $12.0\mu\text{H}$: Within $\pm 10\%$ 15.0 to $33.0\mu\text{H}$:	mechanical damage. Inductance change: Within ±20% Q change: Within	Inducta	ance ch	ange:	Within	±10%		Temperature: 125±3°C Applied current: Rated current Duration: 500 +24 / hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note 1) LK, CK, CKP, HK, HKQ, AQ Series, BK Series P type: Temperature: 85±2°C (LK, CK, CKPSeries) :85±3°C (BK Series P type) :85±2°C (HK1608, 2125) :85±2°C (HK1005, AQ105 operating temperature range -55 to +85°C)
										mechanical damage. Inductance change: Within ±20% Q change:	mechanical damage. Induc- tance change:	mechanical damage. Inductance change: Within ±10% Q change: Within	$\begin{array}{l} \pm 30\% \\ \text{No} \\ \text{mechanical} \\ \text{damage.} \\ \\ \text{Inductance} \\ \text{change:} \\ \text{0.047 to} \\ \text{12.0}\mu\text{H:} \\ \text{Within} \\ \pm 10\% \\ \text{15.0 to} \\ \text{33.0}\mu\text{H:} \\ \text{Within} \\ \end{array}$	mechanical damage. Inductance change: Within ±20% Q change: Within	Inducta	ance ch	ange:	Within	±10%		Temperature: 125±3°C Applied current: Rated current Duration: 500 ⁺²⁴ ₋₀ hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note 1) LK, CK, CKP, HK, HKQ, AQ Series, BK Series P type: Temperature: 85±2°C (LK, CK , CKPSeries) :85±3°C (BK Series P type) :85±2°C (HK1005, AQ105 operating temperature range -55 to +85°C) :125±2°C (HK0603, HK1005, HKQ0603S.
										mechanical damage. Inductance change: Within ±20% Q change:	mechanical damage. Induc- tance change:	mechanical damage. Inductance change: Within ±10% Q change: Within	$\begin{array}{l} \pm 30\% \\ \text{No} \\ \text{mechanical} \\ \text{damage.} \\ \\ \text{Inductance} \\ \text{change:} \\ \text{0.047 to} \\ \text{12.0}\mu\text{H:} \\ \text{Within} \\ \pm 10\% \\ \text{15.0 to} \\ \text{33.0}\mu\text{H:} \\ \text{Within} \\ \end{array}$	mechanical damage. Inductance change: Within ±20% Q change: Within	Inducta	ance ch	ange:	Within	±10%		Temperature: 125±3°C Applied current: Rated current Duration: 500 ⁺²⁴ ₋₀ hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note 1) LK, CK, CKP, HK, HKQ, AQ Series, BK Series P type: Temperature: 85±2°C (LK, CK, CKPSeries) :85±3°C (BK Series P type) :85±2°C (HK1608, 2125) :85±2°C (HK1005, AQ105 operating temperature range -55 to +85°C) :125±2°C (HK0603, HK1005, HKQ0603S, AQ105 operating temperature range -55 to +155°C)
										mechanical damage. Inductance change: Within ±20% Q change:	mechanical damage. Induc- tance change:	mechanical damage. Inductance change: Within ±10% Q change: Within	$\begin{array}{l} \pm 30\% \\ \text{No} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	mechanical damage. Inductance change: Within ±20% Q change: Within	Inducta	ance ch	ange:	Within	±10%		Temperature: 125±3°C Applied current: Rated current Duration: 500 + 24 of hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note 1) LK, CK, CKP, HK, HKQ, AQ Series, BK Series: P type: Temperature: 85±2°C (LK, CK, CKPSeries) :85±3°C (BK Series P type) :85±2°C (HK1005, AQ105 operating temperature range -55 to +45°C) :125±2°C (HK0603, HK1005, HK0063S, AQ105 operating temperature range -55 to +125°C) Applied current: Rated current
										mechanical damage. Inductance change: Within ±20% Q change:	mechanical damage. Induc- tance change:	mechanical damage. Inductance change: Within ±10% Q change: Within	$\begin{array}{l} \pm 30\% \\ \text{No} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	mechanical damage. Inductance change: Within ±20% Q change: Within	Inducta	ance ch	ange:	Within	±10%		Temperature: 125±3°C Applied current: Rated current Duration: 500 ⁺²⁴ ₋₀ hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note 1) LK, CK, CKP, HK, HKQ, AQ Series, BK Series P type: Temperature: 85±2°C (LK, CK, CKPSeries) :85±3°C (BK Series P type) :85±2°C (HK1608, 2125) :85±2°C (HK1005, AQ105 operating temperature range -55 to +85°C) :125±2°C (HK0603, HK1005, HKQ0603S, AQ105 operating temperature range -55 to +155°C)

Note on standard condition: "standard condition" referred to herein is defined as follows:

5 to 35°C of temperature, 45 to 85% relative humidity, and 86 to 106kPa of air pressure.

When there are questions concerning measurement results:

In order to provide correlation data, the test shall be conducted under condition of $20\pm2^{\circ}C$ of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure. Unless otherwise specified, all the tests are conducted under the "standard condition."

(Note 1)

measurement shall be made after 48 \pm 2 hrs of recovery under the standard condition.

Stages	Precautions	Technical considerations
. Circuit Design	 ◆Verification of operating environment, electrical rating and performance 1. A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications. As such, any inductors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications. ◆Operating Current (Verification of Rated current) 1. The operating current for inductors must always be lower than their rated values. 2. Do not apply current in excess of the rated value because the inductance may be reduced due to the magnetic saturation effect. 	
2. PCB Design	 ◆Pattern configurations (Design of Land-patterns) When inductors are mounted on a PCB, the size of land patterns and the amount of solder used (size of fillet) can directly affect inductor performance. Therefore, the following items must be carefully considered in the design of solder land patterns: (1) The amount of solder applied can affect the ability of chips to withstand mechanical stresses which may lead to breaking or cracking. Therefore, when designing land-patterns it is necessary to consider the appropriate size and configuration of the solder pads which in turn determines the amount of solder necessary to form the fillets. (2) When more than one part is jointly soldered onto the same land or pad, the pad must be designed so that each component's soldering point is separated by solder-resist. (3) The larger size of land patterns and amount of solder, the smaller Q value after mounting on PCB. It makes higher the Q value to design land patterns 	1. The following diagrams and tables show some examples of recommended patterns to prevent excessive solder amounts (larger fillets which extend above the component end terminations). Examples of improper pattern designs are also shown. (1) Recommended land dimensions for a typical chip inductor land patterns for PCBs Land pattern Chip inductor W Recommended land dimensions for wave-soldering (unit: mm) Type 1608 2125 3216 2.0 3.2 W 0.8 1.25 1.6 A 0.8~1.0 1.0~1.4 1.8~2.5 B 0.5~0.8 0.8~1.5 0.8~1.7 C 0.6~0.8 0.9~1.2 1.2~1.6
	smaller than terminal electrode of chips.	Recommended land dimensions for reflow-soldering (unit: mm)
		Type 0603 1005 105 1608 2125 3216 2520
		<u>ω</u> L 0.6 1.0 1.0 1.6 2.0 3.2 2.5 <u>ω</u> W 0.3 0.5 0.6 0.8 1.25 1.6 2.0
		VV 0.0 0.0 0.0 1.20 1.0 2.0
		A 0.20~0.30 0.45~0.55 0.50~0.55 0.6~0.8 0.8~1.2 1.8~2.5 1.0~1. B 0.20~0.30 0.40~0.50 0.30~0.40 0.6~0.8 0.8~1.2 0.6~1.5 0.6~1.
		C 0.25~0.40 0.45~0.55 0.60~0.70 0.6~0.8 0.9~1.6 1.2~2.0 1.8~2.
		Excess solder can affect the ability of chips to withstand mechanical stresses. Therefore, please take proper precautions when designing land-patterns. Recommended land dimension for Reflow-soldering (unit: mm) 3216 2010
		σ <u>ω</u> L 3.2 2.0
		\(\frac{\omega}{\omega} \) \(\lambda \) \)

		3216	2010
Size	L	3.2	2.0
ze	W	1.6	1.0
a	a	0.7~0.9	0.5~0.6
b)	0.8~1.0	0.5~0.6
С		0.4~0.5	0.2~0.3
d		0.8	0.5

Stages	Precautions		Technical consi	iderations			
2.PCB Design		(2) Example	es of good and bad solder	application			
			Not recommended	Recommended			
		Mixed mount- ing of SMD and leaded compo- nents	Lead wire of component	Solder-resist			
		C o m p o n e n t placement close to the chassis	Chassis Solder(for grounding)	Solder-resist			
		Hand-soldering of leaded components near mounted components	Lead wire of component- Soldering iron	Solder-resist Solder-resist			
		Horizontal com- ponent place- ment		Solderresist			
	◆Pattern configurations (Inductor layout on panelized [breakaway] PC boards) 1. After inductors have been mounted on the boards,	tors should		and bad inductor layout; SMD induc- ny possible mechanical stresses from			
	chips can be subjected to mechanical stresses in sub-	Item	Not recommended	Recommended			
	sequent manufacturing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering the reflow soldered boards etc.) For this reason, planning pattern configurations and the position of SMD inductors should be carefully	Deflection of the board		Position the component at a right angle to the direction of the mechanical stresses the are anticipated.			
	performed to minimize stress.	1-2. To layout the inductors for the breakaway PC board, it should be that the amount of mechanical stresses given will vary depending ductor layout. An example below should be counted for better des					
		Perforat	tion				
			Slit Magnitude of stree	B ss A>B = C>D>E			
		chanical stre The following stressful: pu	ess on the inductors can	eir perforations, the amount of me- vary according to the method used. order from least stressful to most g, and perforation. Thus, any ideal			

SMD inductor layout must also consider the PCB splitting procedure.

Stages	Precautions		Technical conside	rations
3.Considerations for automatic placement	 ◆Adjustment of mounting machine 1. Excessive impact load should not be imposed on the inductors when mounting onto the PC boards. 2. The maintenance and inspection of the mounter should be conducted periodically. 	on the inductor be considered (1) The lower limithe PC board (2) The pick-up p (3) To reduce the pick-up nozzle	ors, causing damage. To avoid before lowering the pick-up nit of the pick-up nozzle should after correcting for deflection pressure should be adjusted by a mount of deflection of the e, supporting pins or back-up llowing diagrams show some	be adjusted to the surface level of
			Improper method	Proper method
		Single-sided mounting	chipping or cracking	supporting pins or back-up pins
		Double-sided mounting	chipping	supporting pins- or back-up pins
		cause chipping pact on the ir the alignmen	ng or cracking of the induct	tment of the nozzle height can tors because of mechanical im- monitoring of the width between n, and maintenance, inspection iducted periodically.
	◆Selection of Adhesives 1. Mounting inductors with adhesives in preliminary assembly, before the soldering stage, may lead to degraded inductor characteristics unless the following factors are appropriately checked; the size of land patterns, type of adhesive, amount	ence betwee inductors ma Moreover, to versely affect be noted in th	n the shrinkage percentage ay result in stresses on the o little or too much adhesiv t component placement, so the application of adhesives.	sulation resistance. The differ- of the adhesive and that of the inductors and lead to cracking. e applied to the board may ad- the following precautions should
	applied, hardening temperature and hardening period. Therefore, it is imperative to consult the manufacturer of the adhesives on proper usage and amounts of adhesive to use.	a. The adhesive the mountin b. The adhesive c. The adhesive d. The adhesive e. The adhesive f. The adhesive g. The adhesive	g & solder process. should have sufficient stren should have good coating a should be used during its p should harden rapidly must not be contaminated. should have excellent insula	and thickness consistency. rescribed shelf life.

⚠当社カタログをご使用の際には「当社製品に関するお断り」を必ずお読みください。

Stages	Precaution	Technical considerations
3.Considerations for automatic placement		When using adhesives to mount inductors on a PCB, inappropriate amounts of adhesive on the board may adversely affect component placement. Too little adhesive may cause the inductors to fall off the board during the solder process. Too much adhesive may cause defective soldering due excessive flow of adhesive on to the land or solder pad.
		[Recommended conditions]
		Figure 0805 case sizes as examples
		a 0.3mm min
		b 100 ~120 μm
		c Area with no adhesive
		Amount of adhesives After inductors are bonded
4.Soldering	◆Selection of Flux 1. Since flux may have a significant effect on the performance of inductors, it is necessary to verify the following conditions prior to use; (1) Flux used should be with less than or equal to 0.1 wt% (Chlorine conversion method) of halogenated content. Flux having a strong acidity content should not be applied. (2) When soldering inductors on the board, the amount of flux applied should be controlled at the optimum level. (3) When using water-soluble flux, special care should be taken to properly clean the boards.	 1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate the flux, or highly acidic flux is used, an excessive amount of residue after soldering may lead to corrosion of the terminal electrodes or degradation of insulation resistance on the surface of the Inductor. 1-2. Flux is used to increase solderability in flow soldering, but if too much is applied, a large amount of flux gas may be emitted and may detrimentally affect solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system. 1-3. Since the residue of water-soluble flux is easily dissolved by water content in the air, the residue on the surface of Inductor in high humidity conditions may cause a degradation of insulation resistance and therefore affect the reliability of the components. The cleaning methods and the capability of the machines used should also be considered carefully when selecting water-soluble flux.
	◆Soldering Temperature, time, amount of solder, etc. are specified in accordance with the following recommended conditions.	1-1. Preheating when soldering Heating: Chip inductor components should be preheated to within 100 to 130°C of the soldering. Cooling: The temperature difference between the components and cleaning process should not be greater than 100 °C. Chip inductors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling. Therefore, the soldering process must be conducted with a great care so as to prevent malfunction of the components due to excessive thermal shock.

Stages	Precautions	Technical considerations
4.Soldering	◆And please contact us about peak temperature when you use lead-free paste.	Recommended conditions for soldering [Reflow soldering] Temperature profile Temperature (C) (Pb free soldering) Temperature (C) (Pb free soldering) Temperature (C) (Pb free soldering) (Gradual footing) (Gradua
		2. Because excessive dwell times can detrimentally affect solderability, soldering duration should be kept as close to recommended times as possible.
		[Wave soldering] Temperature profile Temperature (°C) (Pb free soldering) Temperature (°C) 300 Peak 260°C max
		Caution 1. Make sure the inductors are preheated sufficiently. 2. The temperature difference between the inductor and melted solder should not be greater than 100 to 130°C 3. Cooling after soldering should be as gradual as possible. 4. Wave soldering must not be applied to the inductors designated as for reflow soldering only.
		[Hand soldering] Temperature profile Temperature (°C) (Pb free soldering) 400 Temperature (°C) (Pb free soldering) 300 300 400 400 400 400 400 40
		**The soldering iron should not directly touch the components. **Assured to be soldering iron for 1 time. Note: The above profiles are the maximum allowable soldering condition, therefore these profiles are not always recommended. Caution 1. Use a 20W soldering iron with a maximum tip diameter of 1.0 mm. 2. The soldering iron should not directly touch the inductor.
5.Cleaning	◆Cleaning conditions 1. When cleaning the PC board after the Inductors are all mounted, select the appropriate cleaning solution according to the type of flux used and purpose of the cleaning (e.g. to remove soldering flux or other materials from the production process.)	The use of inappropriate solutions can cause foreign substances such as flux residue to adhere to the inductor, resulting in a degradation of the inductor's electrical properties (especially insulation resistance).

Stages	Precautions	Technical considerations
5.Cleaning	Cleaning conditions should be determined after verifying, through a test run, that the cleaning process does not affect the inductor's characteristics.	2. Inappropriate cleaning conditions (insufficient or excessive cleaning) may detrimentally affect the performance of the inductors. (1) Excessive cleaning In the case of ultrasonic cleaning, too much power output can cause excessive vibration of the PC board which may lead to the cracking of the inductor or the soldered portion, or decrease the terminal electrodes' strength. Thus the following conditions should be carefully checked; Ultrasonic output Below 20 w/& Ultrasonic frequency Below 40 kHz Ultrasonic washing period 5 min. or less
6. Post cleaning processes	 ◆Application of resin coatings, moldings, etc. to the PCB and components. 1. With some type of resins a decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the inductor's performance. 2. When a resin's hardening temperature is higher than the inductor's operating temperature, the stresses generated by the excess heat may lead to inductor damage or destruction. 3. Stress caused by a resin's temperature generated expansion and contraction may damage inductors. The use of such resins, molding materials etc. is not recommended. 	
7. Handling	 ◆Breakaway PC boards (splitting along perforations) 1. When splitting the PC board after mounting inductors and other components, care is required so as not to give any stresses of deflection or twisting to the board. 2. Board separation should not be done manually, but by using the appropriate devices. ◆General handling precautions 1. Always wear static control bands to protect against ESD. 2. Keep the inductors away from all magnets and magnetic objects. 3. Use non-magnetic tweezers when handling inductors. 4. Any devices used with the inductors (soldering irons, measuring instruments) should be properly grounded. 5. Keep bare hands and metal products (i.e., metal desk) away from chip electrodes or conductive areas that lead to chip electrodes. 6. Keep inductors away from items that generate magnetic fields such as speakers or coils. ◆Mechanical considerations 1. Be careful not to subject the inductors to excessive mechanical shocks. (1) If inductors are dropped on the floor or a hard surface they should not be used. (2) When handling the mounted boards, be careful that the mounted components do not come in contact with or bump against other boards or components. 	

PRECAUTIONS 7/7

Stages	Precautions	Technical considerations
8. Storage conditions	◆Storage 1. To maintain the solderability of terminal electrodes and to keep the packaging material in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. Recommended conditions Ambient temperature Below 40 °C Humidity Below 70% RH The ambient temperature must be kept below 30 °C. Even under ideal storage conditions inductor electrode solderability decreases as time passes, so inductors should be used within 6 months from the time of delivery. *The packaging material should be kept where no chlorine or sulfur exists in the air.	If the parts are stocked in a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place. For this reason, components should be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the inductors