CBT3257A

Quad 1-of-2 multiplexer/demultiplexer Rev. 03 — 4 July 2008

Product data sheet

General description 1.

The CBT3257A is a quad 1-of-2 high-speed TTL-compatible multiplexer/demultiplexer. The low ON resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise.

Output enable (\overline{OE}) and select-control (S) inputs select the appropriate nB1 and nB2 outputs for the nA input data.

The CBT3257A is characterized for operation from -40 °C to +85 °C.

2. **Features**

- \blacksquare 5 Ω switch connection between two ports
- TTL-compatible input levels
- Minimal propagation delay through the switch
- Latch-up protection exceeds 500 mA per JEDEC standard JESD78 class II level A
- ESD protection:
 - HBM JESD22-A114E exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101C exceeds 1000 V
- Multiple package options
- Specified from –40 °C to +85 °C

Ordering information 3.

Table 1. **Ordering information**

Type number	Temperature range	Package		
		Name	Description	Version
CBT3257AD	–40 °C to +85 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1
CBT3257ADB	–40 °C to +85 °C	SSOP16	plastic shrink small outline package; 16 leads; body width 5.3 mm	SOT338-1

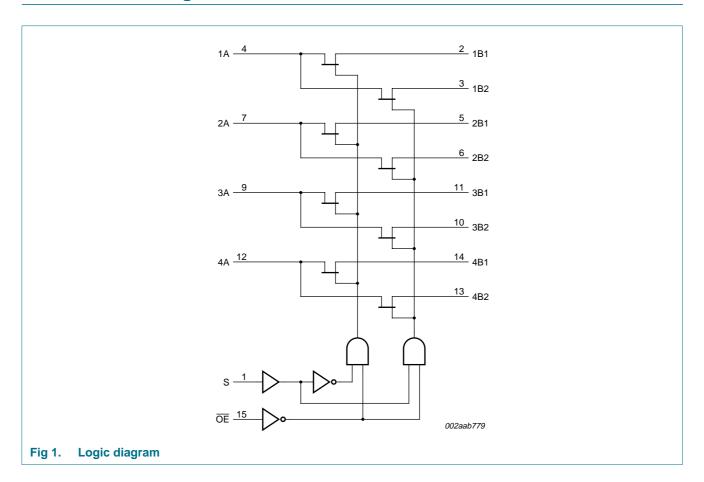
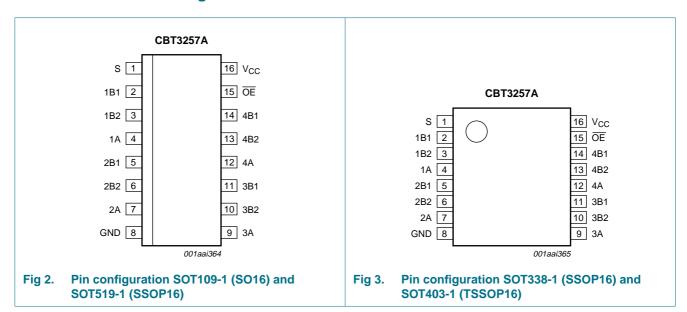
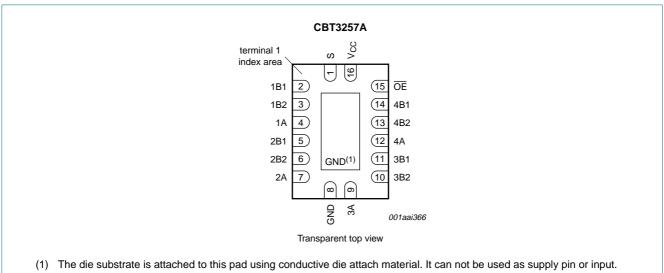

Quad 1-of-2 multiplexer/demultiplexer

 Table 1.
 Ordering information ...continued

Type number	Temperature range	Package						
		Name	Description	Version				
CBT3257ADS	–40 °C to +85 °C	SSOP16[1]	plastic shrink small outline package; 16 leads; body width 3.9 mm; lead pitch 0.635 mm	SOT519-1				
CBT3257APW	–40 °C to +85 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1				
CBT3257ABQ	–40 °C to +85 °C	DHVQFN16	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body $2.5\times3.5\times0.85$ mm	SOT763-1				


^[1] Also known as QSOP16.


4. Functional diagram

Pinning information

5.1 Pinning

Pin configuration SOT763-1 (DHVQFN16) Fig 4.

Quad 1-of-2 multiplexer/demultiplexer

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
S	1	select control input
1B1, 2B1, 3B1, 4B1,	2, 5, 11, 14	B1 outputs/inputs
1B2, 2B2, 3B2, 4B2	3, 6, 10, 13	B2 outputs/inputs
1A, 2A, 3A, 4A	4, 7, 9, 12	A inputs/outputs
GND	8	ground (0 V)
ŌĒ	15	output enable (active LOW)
V _{CC}	16	positive supply voltage

6. Functional description

Table 3. Function selection

 $H = HIGH \ voltage \ level; \ L = LOW \ voltage \ level; \ X = Don't \ care.$

Inputs		Switch
OE	s	
L	L	nA to nB1
L	Н	nA to nB2
Н	X	switch off

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7.0	V
VI	input voltage		<u>[1]</u> –0.5	+7.0	V
I _{CC}	supply current	continuous current through each V_{CC} or GND pin	-	128	mA
I_{IK}	input clamping current	$V_I < 0 V$	-50	_	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$			
		SO16 package	[2]	500	mW
		SSOP16 package	[3] _	500	mW
		TSSOP16 package	[3] _	500	mW
		DHVQFN16 package	<u>[4]</u> _	500	mW
Р	power dissipation		-	100	mW

^[1] The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

^[2] For SO16 package: P_{tot} derates linearly with 8 mW/K above 70 °C.

^[3] For SSOP16 and TSSOP16 package: P_{tot} derates linearly with 5.5 mW/K above 70 °C.

^[4] For DHVQFN16 package: P_{tot} derates linearly with 4.5 mW/K above 70 °C.

8. Recommended operating conditions

Table 5. Operating conditions

All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		4.5	5.5	V
V_{IH}	HIGH-level input voltage		2.0	-	V
V_{IL}	LOW-level input voltage		-	8.0	V
T _{amb}	ambient temperature	operating in free-air	-40	+85	°C

9. Static characteristics

Table 6. Static characteristics

 $T_{amb} = -40 \,^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$.

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
V_{IK}	input clamping voltage	$V_{CC} = 4.5 \text{ V}; I_I = -18 \text{ mA}$	-	-	-1.2	V
V_{pass}	pass voltage	$V_I = V_{CC} = 5.0 \text{ V}; I_O = -100 \mu\text{A}$	3.4	3.6	3.9	V
I _I	input leakage current	$V_{CC} = 5.5 \text{ V}; V_{I} = \text{GND or } 5.5 \text{ V}$	-	-	±1	μΑ
I _{CC}	supply current	V_{CC} = 5.5 V; I_O = 0 mA; V_I = V_{CC} or GND	-	-	3	μΑ
ΔI_{CC}	additional supply current	per input; V_{CC} = 5.5 V; one input at 3.4 V, other inputs at V_{CC} or GND	[2] -	-	2.5	mA
Cı	input capacitance	control pins; $V_I = 3 \text{ V or } 0 \text{ V}$	-	3.3	-	pF
C _{io(off)}	off-state input/output capacitance	A port; $V_O = 3 \text{ V or } 0 \text{ V}$; $\overline{OE} = V_{CC}$	-	9.9	-	pF
		B port; $V_O = 3 \text{ V or } 0 \text{ V}$; $\overline{OE} = V_{CC}$	-	6.4	-	pF
R _{ON}	ON resistance	V _{CC} = 4.5 V	[3]			
		$V_1 = 0 \ V; \ I_1 = 64 \ mA$	-	5	7	Ω
		$V_{I} = 0 V; I_{I} = 30 mA$	-	5	7	Ω
		$V_I = 2.4 \text{ V}; I_I = 15 \text{ mA}$	-	10	15	Ω

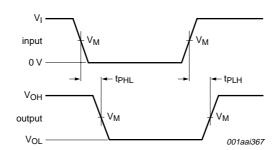
^[1] All typical values are measured at V_{CC} = 5 V; T_{amb} = 25 °C.

^[2] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

^[3] Measured by the voltage drop between the A and the B terminals at the indicated current through the switch. ON resistance is determined by the lowest voltage of the two (A or B) terminals.

Quad 1-of-2 multiplexer/demultiplexer

10. Dynamic characteristics


Table 7. Dynamic characteristics

 $T_{amb} = -40 \,^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$; $V_{CC} = 4.5 \,^{\circ}\text{V}$ to 5.5 V; for test circuit see Figure 7.

Symbol	Parameter	Conditions	Min	Max	Unit
t _{pd}	propagation delay	nA to nBn or nBn to nA; see Figure 5	[1][2]	0.25	ns
		S to nA or nBn; see Figure 5	[<u>1][2]</u> 1.6	5.0	ns
t _{en}	enable time	OE to nA or nBn; see Figure 6	<u>[2]</u> 1.8	5.1	ns
		S to nA or nBn; see Figure 6	<u>[2]</u> 1.6	5.2	ns
t _{dis}	disable time	OE to nA or nBn; see Figure 6	[2] 2.2	5.5	ns
		S to nA or nBn; see Figure 6	<u>[2]</u> 1.0	5.0	ns

^[1] This parameter is warranted but not production tested. The propagation delay is based on the RC time constant of the typical ON resistance of the switch and a load capacitance, when driven by an ideal voltage source (zero output impedance).

11. AC waveforms

Measurement points are given in Table 8.

V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Fig 5. The input (nA; nBn) to output (nBn; nA) or input (S) to output (nBn; nA) propagation delay times

^[2] t_{PLH} and t_{PHL} are the same as t_{pd} . t_{PZL} and t_{PZH} are the same as t_{en} . t_{PLZ} and t_{PHZ} are the same as t_{dis} .

Quad 1-of-2 multiplexer/demultiplexer

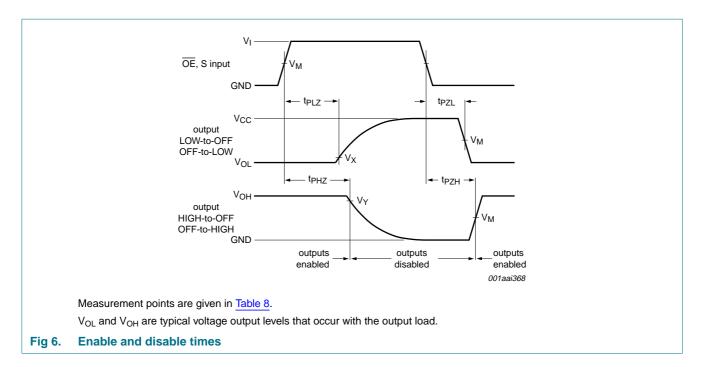
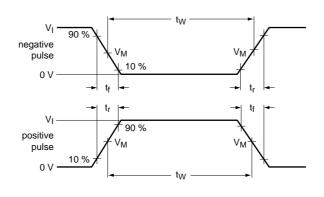
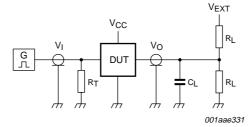




Table 8. Measurement points

Supply voltage	Input		Output				
V _{CC}	V _I	V _M	V _M	V _X	V _Y		
4.5 V to 5.5 V	GND to 3.0 V	1.5 V	1.5 V	V _{OL} + 0.3 V	$V_{OH} - 0.3 V$		

12. Test information

Test data is given in Table 9.

Definitions for test circuit:

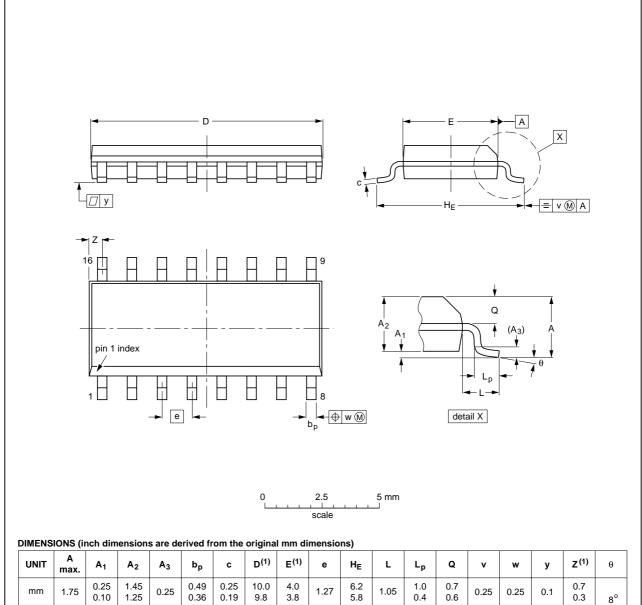
R_I = Load resistance.

C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to the output impedance Z_0 of the pulse generator.

 V_{EXT} = External voltage for measuring switching times.

Fig 7. Test circuit for measuring switching times


Table 9. Test data

Supply voltage	Input		Load		V _{EXT}			
V _{CC}	V _I t _r , t _f		CL	R _L	t _{PLH} , t _{PHL}	t _{PLZ} , t _{PZL}	t _{PHZ} , t _{PZH}	
4.5 V to 5.5 V	GND to 3.0 V	≤ 2.5 ns	50 pF	500 Ω	open	7.0 V	open	

13. Package outline

SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	ø	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	10.0 9.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075	0.39 0.38	0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016	0.028 0.020	0.01	0.01	0.004	0.028 0.012	0°

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

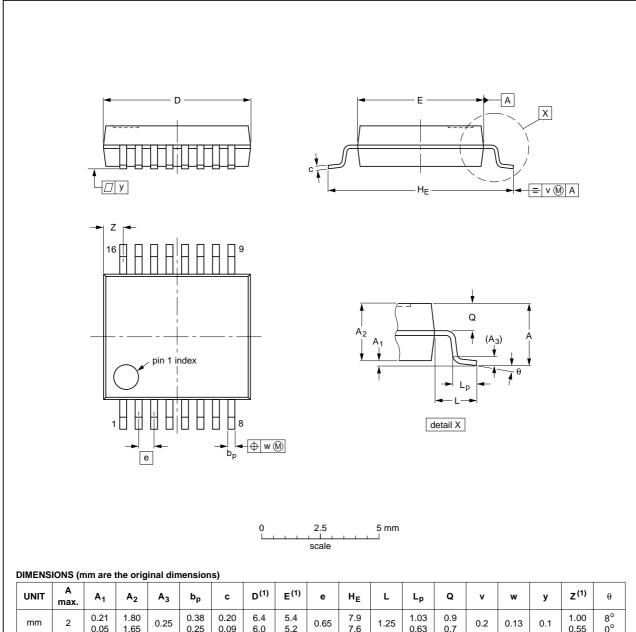

OUTLINE		REFER	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT109-1	076E07	MS-012			99-12-27 03-02-19

Fig 8. Package outline SOT109-1 (SO16)

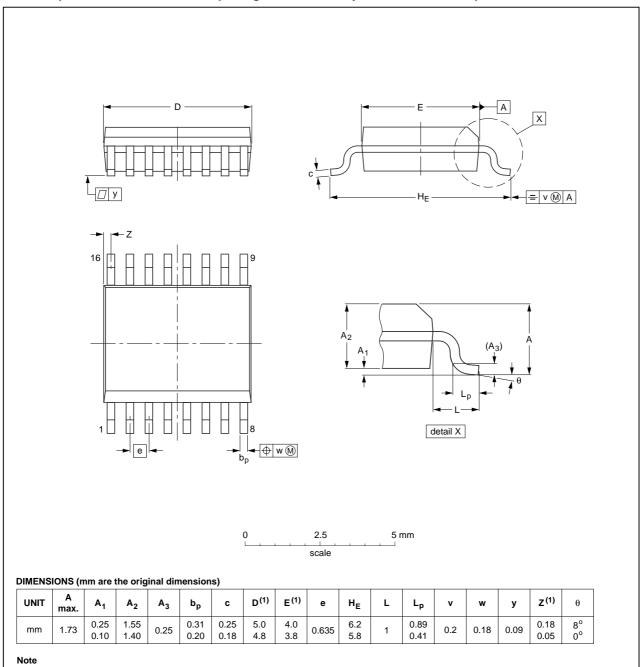
CBT3257A_3 © NXP B.V. 2008. All rights reserved.

SSOP16: plastic shrink small outline package; 16 leads; body width 5.3 mm

SOT338-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	C	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	6.4 6.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.00 0.55	8° 0°

Note


1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

			EUROPEAN	ISSUE DATE	
IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
	MO-150			99-12-27 03-02-19	
	IEC			IEC JEDEC JEHA	

Fig 9. Package outline SOT338-1 (SSOP16)

CBT3257A_3 © NXP B.V. 2008. All rights reserved.

SSOP16: plastic shrink small outline package; 16 leads; body width 3.9 mm; lead pitch 0.635 mm SOT519-1

1. Plastic or metal protrusions of 0.2 mm maximum per side are not included.

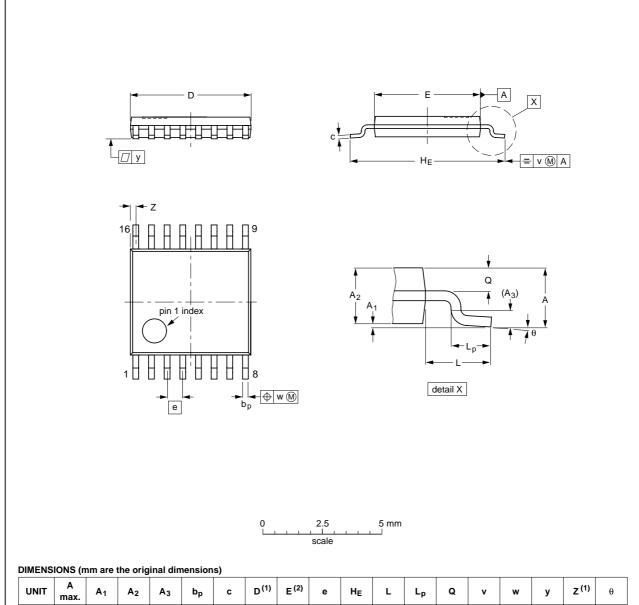

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT519-1					-99-05-04- 03-02-18	

Fig 10. Package outline SOT519-1 (SSOP16)

CBT3257A_3 © NXP B.V. 2008. All rights reserved.

TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm

SOT403-1

 						-,												
UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.40 0.06	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT403-1		MO-153			99-12-27 03-02-18	

Fig 11. Package outline SOT403-1 (TSSOP16)

CBT3257A_3 © NXP B.V. 2008. All rights reserved. DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 x 3.5 x 0.85 mm SOT763-1

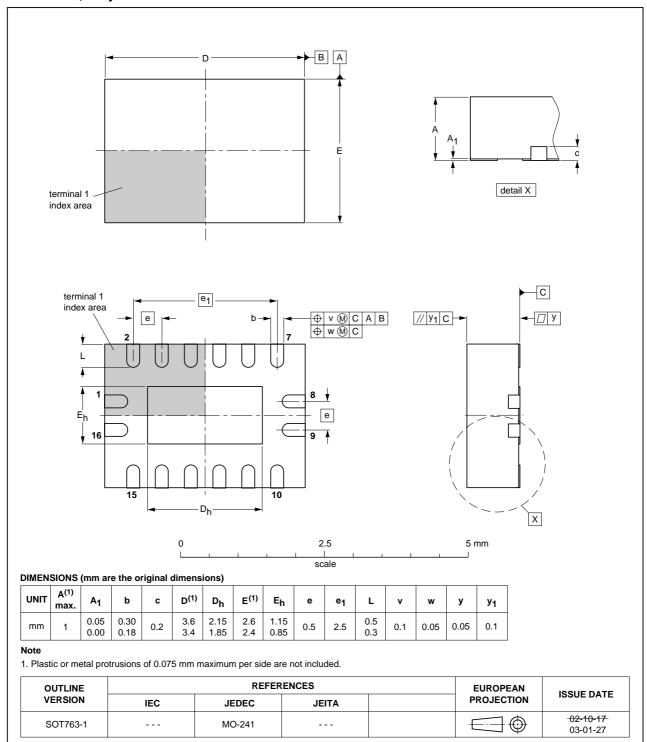


Fig 12. Package outline SOT763-1 (DHVQFN16)

Quad 1-of-2 multiplexer/demultiplexer

14. Abbreviations

Table 10. Abbreviations

Acronym	Description
CDM	Charged Device Model
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

15. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
CBT3257A_3	20080704	Product data sheet	-	CBT3257A_2
Modifications:	DHVQFN16 outline"	package added to Section	3 "Ordering information" a	and Section 13 "Package
CBT3257A_2	20070704	Product data sheet	-	CBT3257A_1
CBT3257A_1	20051027	Product data sheet	-	-

Quad 1-of-2 multiplexer/demultiplexer

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

16.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

© NXP B.V. 2008. All rights reserved.

Quad 1-of-2 multiplexer/demultiplexer

18. Contents

1	General description 1
2	Features
3	Ordering information
4	Functional diagram 2
5	Pinning information 3
5.1	Pinning
5.2	Pin description 4
6	Functional description 4
7	Limiting values 4
8	Recommended operating conditions 5
9	Static characteristics 5
10	Dynamic characteristics 6
11	AC waveforms 6
12	Test information 8
13	Package outline 9
14	Abbreviations
15	Revision history
16	Legal information
16.1	Data sheet status
16.2	Definitions
16.3	Disclaimers
16.4	Trademarks15
17	Contact information
12	Contents 16

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

