

Power Management Switch IC Series for PCs and Digital Consumer Product

1ch Large Current Output **USB High Side Switch ICs**

BD2061AFJ, BD2065AFJ

Description

Single channel high side switch IC for USB port is a high side switch having over current protection used in power supply line of universal serial bus (USB).

N-channel power MOSFET of low on resistance and low supply current are realized in this IC.

And, over current detection circuit, thermal shutdown circuit, under voltage lockout and soft start circuit are built in.

Features

- 1) Low on resistance 80mΩ Nch MOSFET Switch.
- 2) Continuous current load 1.0A
- 3) Control input logic

Active-Low: BD2061AFJ Active-High: BD2065AFJ

- 4) Soft start circuit
- 5) Over current detection
- 6) Thermal shutdown
- 7) Under voltage lockout
- 8) Open drain error flag output
- 9) Reverse-current protection when power switch off
- 10) Power supply voltage range 2.7V~5.5V
- 11) TTL Enable input
- 12) 1.2ms typical rise time
- 13) 10µA max standby current
- 14) Operating temperature range -40°C~85°C

USB hub in consumer appliances, Car accessory, PC, PC peripheral equipment, and so forth

Lineup

Parameter	BD2061AFJ	BD2065AFJ
Continuous current load (A)	1.0	1.0
Output current at short (A)	1.5	1.5
Control input logic	Low	High

Absolute Maximum Ratings

Parameter	Symbol	Limits	Unit
Supply voltage	Vin	-0.3 to 6.0	٧
Enable voltage	VEN, V/EN	-0.3 to 6.0	٧
/OC voltage	V/oc	-0.3 to 6.0	V
/OC current	IS/oc	10	mA
OUT voltage	Vout	-0.3 to 6.0	V
Storage temperature	Тѕтс	-55 to 150	°C
Power dissipation	PD	560 ^{*1}	mW

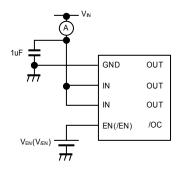
^{*1} In the case of exceeding Ta = 25° C, 4.48mW should be reduced per 1° C.

Operating conditions

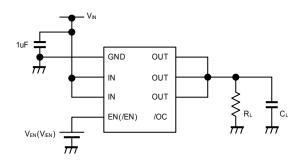
Parameter	Symbol	Limits	Unit
Operating voltage	VIN	2.7 to 5.5	V
Operating temperature	Topr	-40 to 85	°C
Continuous output current	llo	0 to 1.0	А

^{*} This chip is not designed to protect itself against radioactive rays.

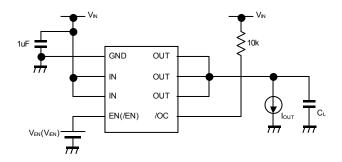
Electrical characteristics

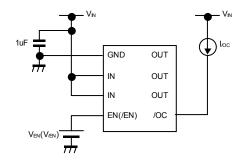

 \bigcirc BD2061AFJ (Unless otherwise specified, Vin = 5.0V, Ta = 25°C)

		Limits				
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Operating Current	IDD	-	90	120	μA	V/EN = 0V, OUT = OPEN
Standby Current	ISTB	-	0.01	1	μA	V/EN = 5V, OUT = OPEN
	V/EN	2.0	-	-	V	High input
/EN input voltage	\/	-	-	0.8	V	Low input
	V/EN	-	-	0.4	V	Low input 2.7V≤ VIN ≤4.5V
/EN input current	I/EN	-1.0	0.01	1.0	μA	V/EN = 0V or V/EN = 5V
/OC output LOW voltage	V/oc	-	-	0.5	V	I/oc = 5mA
/OC output leak current	IL/oc	-	0.01	1	μA	V/oc = 5V
/OC delay time	TD _{/OC}	-	2.5	8	ms	
ON resistance	Ron	-	80	100	mΩ	IOUT = 1.0A
Output current at short	Isc	1.1	1.5	1.9	Α	VIN = 5V, VOUT = 0V, CL = 100μF (RMS)
Output rise time	Ton1	-	1.2	10	ms	
Output turn on time	Ton2	-	1.5	20	ms	RL = 10Ω , CL = OPEN
Output fall time	Toff1	-	1	20	μs	
Output turn off time	TOFF2	-	3	40	μs	
10/4 0 (0 1 - 1 1	VTUVH	2.1	2.3	2.5	V	Increasing VIN
UVLO threshold	VTUVL	2.0	2.2	2.4	V	Decreasing VIN


 \bigcirc BD2065AFJ (Unless otherwise specified, V_{IN} = 5.0V, Ta = 25°C)

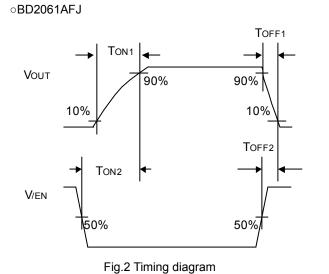
Parameter	Cumphal	Limits		1.1:4	O so ditti a r	
	Symbol	Min.	Тур.	Max.	Unit	Condition
Operating Current	I _{DD}	-	90	120	μΑ	VEN = 5V, OUT = OPEN
Standby Current	I _{STB}	-	0.01	1	μΑ	VEN = 0V, OUT = OPEN
	V _{EN}	2.0	-	-	V	High input
EN input voltage		-	-	0.8	V	Low input
	V _{EN}	-	-	0.4	V	Low input 2.7V≤ VIN ≤4.5V
EN input current	I _{EN}	-1.0	0.01	1.0	μΑ	VEN = 0V or VEN = 5V
/OC output LOW voltage	V _{/OC}	-	-	0.5	V	I/oc = 5mA
/OC output leak current	IL _{/OC}	-	0.01	1	μA	V/oc = 5V
/OC delay time	TD _{/OC}	-	2.5	8	ms	
ON resistance	R _{ON}	-	80	100	mΩ	IOUT = 1.0A
Output current at short	I _{SC}	1.1	1.5	1.9	Α	Vin = 5V, Vout = 0V, CL = 100µF (RMS)
Output rise time	T _{ON1}	-	1.2	10	ms	
Output turn on time	T _{ON2}	-	1.5	20	ms	$RL = 10\Omega$, $CL = OPEN$
Output fall time	T _{OFF1}	-	1	20	μs	
Output turn off time	T _{OFF2}	-	3	40	μs	
UVLO Threshold	V _{TUVH}	2.1	2.3	2.5	V	Increasing VIN
OVEO Triresnoia	V _{TUVL}	2.0	2.2	2.4	V	Decreasing VIN


Measurement circuit


Operating current

EN, /EN input voltage, Output rise, fall time

ON resistance, Over current detection

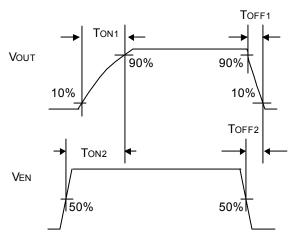
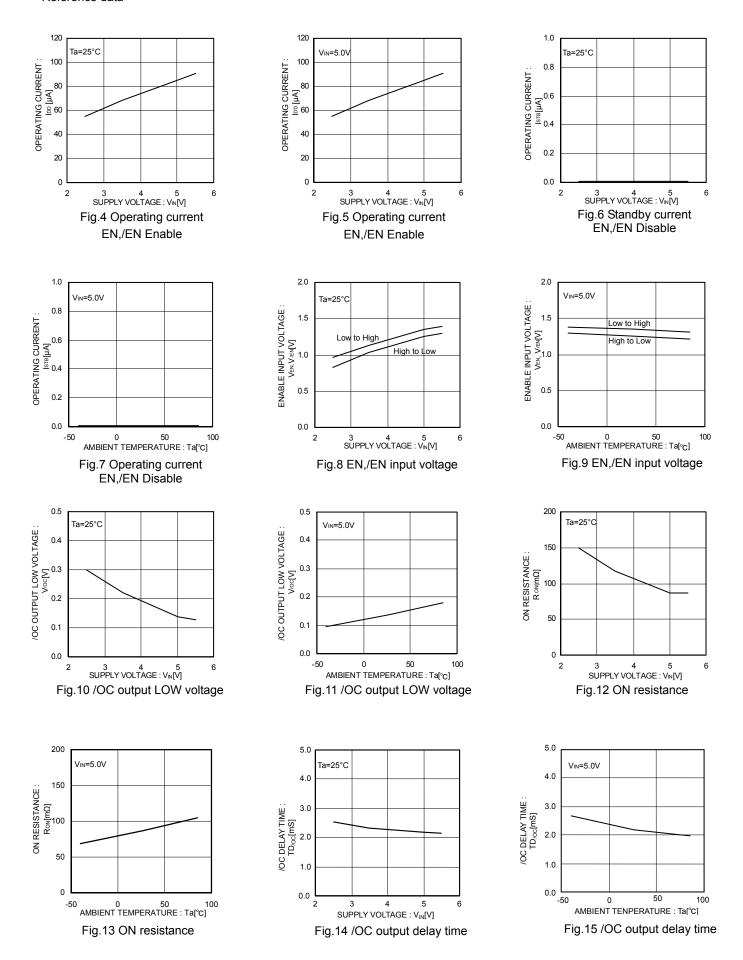
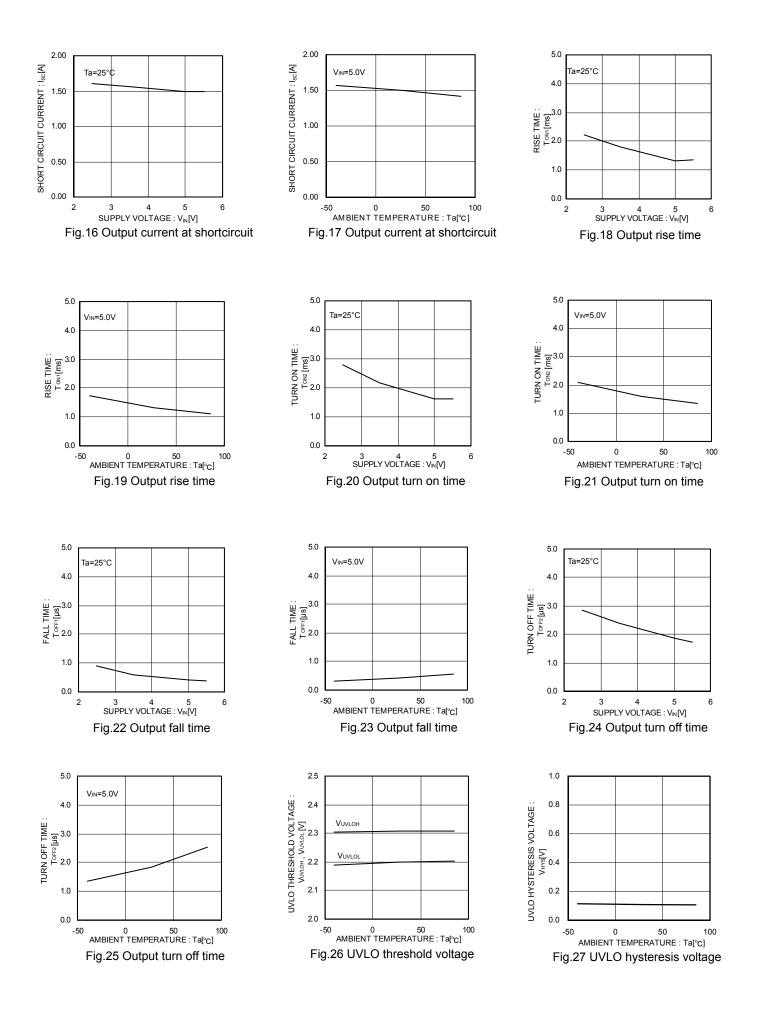


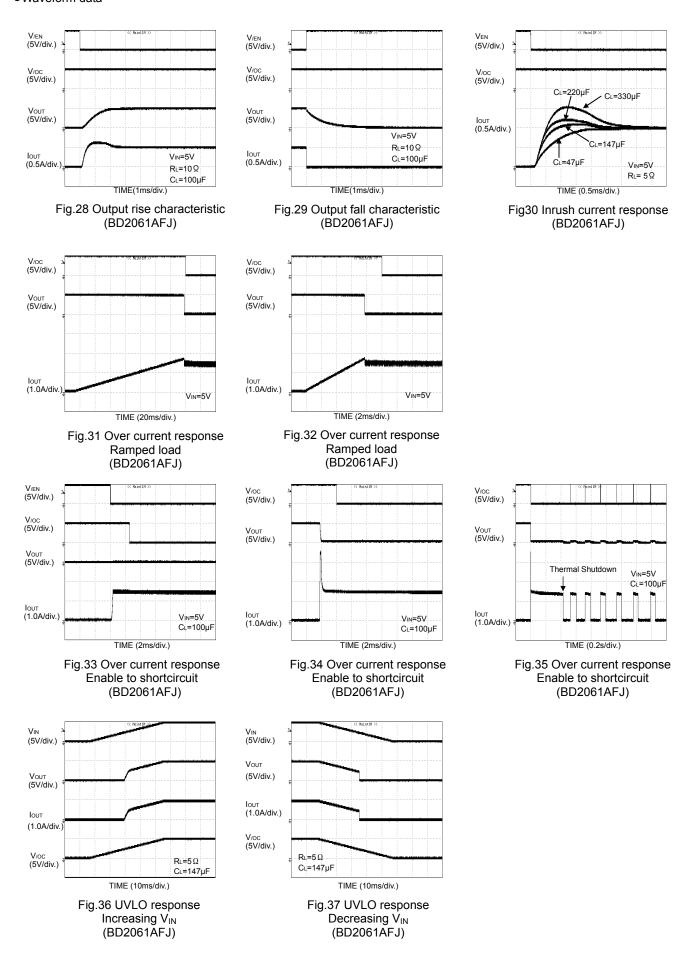
/OC output LOW voltage

Fig.1 Measurement circuit

∘BD2065AFJ

●Timing diagram


Fig.3 Timing diagram

Reference data

Waveform data

Regarding the output rise/fall and over current detection characteristics of BD2065AFJ, refer to the characteristic of BD2061AFJ.

• Block diagram

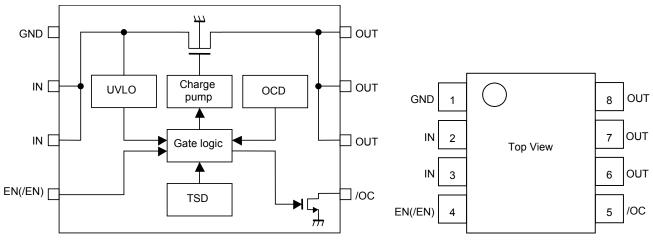


Fig.38 Block diagram

Fig.39 Pin Configuration

●Pin description

⊚BD2061AFJ

Pin No.	Symbol	1/0	Pin function		
FIII NO.		170			
1	GND	l	Ground.		
			Power supply input.		
2, 3	IN		Input terminal to the power switch and power supply input terminal of the		
2, 3	IIN	'	internal circuit.		
			At use, connect each pin outside.		
			Enable input.		
4	4 /EN I	I	Power switch on at Low level.		
			High level input > 2.0V, Low level input < 0.8V.		
			Error flag output.		
5	/OC	0	Low at over current, thermal shutdown.		
			Open drain output.		
6 7 9	OUT	0	Power switch output.		
0, 7, 8	6, 7, 8 OUT O		At use, connect each pin outside.		

⊚BD2065AFJ

Pin No.	Symbol	1/0	Pin function	
1	GND	I	Ground.	
2, 3	IN	I	Power supply input. Input terminal to the power switch and power supply input terminal of the internal circuit. At use, connect each pin outside.	
4	EN	I	Enable input. Power switch on at High level. High level input > 2.0V, Low level input < 0.8V	
5	/OC	0	Error flag output. Low at over current, thermal shutdown. Open drain output.	
6, 7, 8	OUT	0	Power switch output. At use, connect each pin outside.	

●I/O circuit

Symbol	Pin No	Equivalent circuit
EN(/EN)	4	
/OC	5	
OUT	6,7,8	

Functional description

1. Switch operation

IN terminal and OUT terminal are connected to the drain and the source of switch MOSFET respectively. And the IN terminal is used also as power source input to internal control circuit.

When the switch is turned on from EN/EN control input, IN terminal and OUT terminal are connected by a $80m\Omega$ switch. In on status, the switch is bidirectional. Therefore, when the potential of OUT terminal is higher than that of IN terminal, current flows from OUT terminal to IN terminal.

Since a parasitic diode between the drain and the source of switch MOSFET is canceled, in the off status, it is possible to prevent current from flowing reversely from OUT to IN.

2. Thermal shutdown circuit (TSD)

If over current would continue, the temperature of the IC would increase drastically. If the junction temperature were beyond 140°C (typ.) in the condition of over current detection, thermal shutdown circuit operates and makes power switch turn off and outputs error flag (/OC). Then, when the junction temperature decreases lower than 120°C (typ.), power switch is turned on and error flag (/OC) is cancelled. Unless the fact of the increasing chips temperature is removed or the output of power switch is turned off, this operation repeats.

The thermal shutdown circuit operates when the switch is on (EN,/EN signal is active).

3. Over current detection (OCD)

The over current detection circuit limits current (I_{SC}) and outputs error flag (/OC) when current flowing in each switch MOSFET exceeds a specified value. There are three types of response against over current. The over current detection circuit works when the switch is on (EN,/EN signal is active).

3-1. When the switch is turned on while the output is in shortcircuit status

When the switch is turned on while the output is in shortcircuit status or so, the switch gets in current limit status soon.

3-2. When the output shortcircuits while the switch is on

When the output shortcircuits or large capacity is connected while the switch is on, very large current flows until the over current limit circuit reacts. When the current detection, limit circuit works, current limitation is carried out.

3-3. When the output current increases gradually

When the output current increases gradually, current limitation does not work until the output current exceeds the over current detection value. When it exceeds the detection value, current limitation is carried out.

4. Under voltage lockout (UVLO)

UVLO circuit prevents the switch from turning on until the VIN exceeds 2.3V(Typ.). If the VIN drops below 2.2V(Typ.) while the switch turns on, then UVLO shuts off the power switch. UVLO has hysteresis of a 100mV(Typ). Under voltage lockout circuit works when the switch is on (EN,/EN signal is active).

5. Error flag (/OC) output

Error flag output is N-MOS open drain output. At detection of over current, thermal shutdown, low level is output.

Over current detection has delay filter. This delay filter prevents instantaneous current detection such as inrush current at switch on, hot plug from being informed to outside.

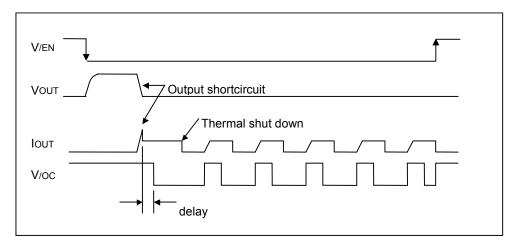


Fig.40 Over current detection, thermal shutdown timing (BD2061AFJ)

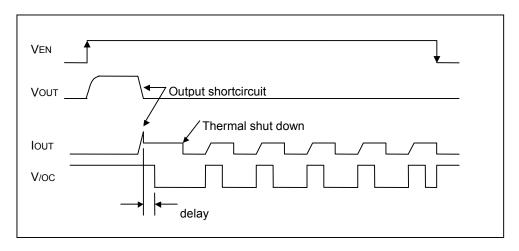


Fig.41 Over current detection, thermal shutdown timing (BD2065AFJ)

Typical application circuit

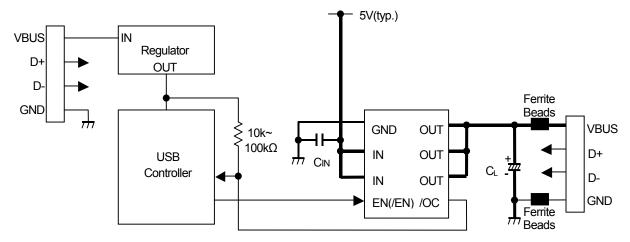


Fig.42 Typical application circuit

Application information

When excessive current flows owing to output shortcircuit or so, ringing occurs by inductance of power source line to IC, and may cause bad influences upon IC actions. In order to avoid this case, connect a bypath capacitor by IN terminal and GND terminal of IC. $1\mu F$ or higher is recommended.

Pull up /OC output by resistance $10k\Omega \sim 100k\Omega$.

Set up value which satisfies the application as CL and Ferrite Beads.

This system connection diagram doesn't guarantee operating as the application.

The external circuit constant and so on is changed and it uses, in which there are adequate margins by taking into account external parts or dispersion of IC including not only static characteristics but also transient characteristics.

Power dissipation character

(SOP-J8)

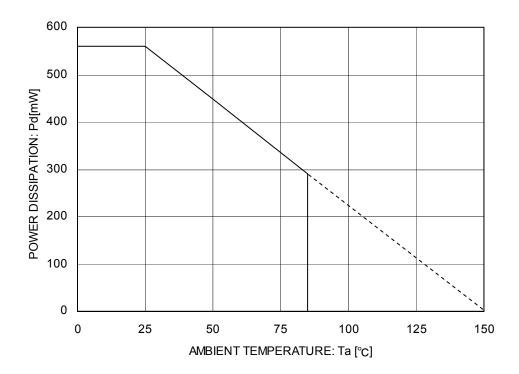


Fig.43 Power dissipation curve (Pd-Ta Curve)

Cautions on use

(1) Absolute Maximum Ratings

An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety measures including the use of fuses, etc.

(2) Operating conditions

These conditions represent a range within which characteristics can be provided approximately as expected. The electrical characteristics are guaranteed under the conditions of each parameter.

(3) Reverse connection of power supply connector

The reverse connection of power supply connector can break down ICs. Take protective measures against the breakdown due to the reverse connection, such as mounting an external diode between the power supply and the IC's power supply terminal.

(4) Power supply line

Design PCB pattern to provide low impedance for the wiring between the power supply and the GND lines. In this regard, for the digital block power supply and the analog block power supply, even though these power supplies has the same level of potential, separate the power supply pattern for the digital block from that for the analog block, thus suppressing the diffraction of digital noises to the analog block power supply resulting from impedance common to the wiring patterns. For the GND line, give consideration to design the patterns in a similar manner.

Furthermore, for all power supply terminals to ICs, mount a capacitor between the power supply and the GND terminal. At the same time, in order to use an electrolytic capacitor, thoroughly check to be sure the characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low temperature, thus determining the constant.

(5) GND voltage

Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure no terminals are at a potential lower than the GND voltage including an actual electric transient.

(6) Short circuit between terminals and erroneous mounting

In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between terminals or between the terminal and the power supply or the GND terminal, the ICs can break down.

(7) Operation in strong electromagnetic field

Be noted that using ICs in the strong electromagnetic field can malfunction them.

(8) Inspection with set PCB

On the inspection with the set PCB, if a capacitor is connected to a low-impedance IC terminal, the IC can suffer stress. Therefore, be sure to discharge from the set PCB by each process. Furthermore, in order to mount or dismount the set PCB to/from the jig for the inspection process, be sure to turn OFF the power supply and then mount the set PCB to the jig. After the completion of the inspection, be sure to turn OFF the power supply and then dismount it from the jig. In addition, for protection against static electricity, establish a ground for the assembly process and pay thorough attention to the transportation and the storage of the set PCB.

(9) Input terminals

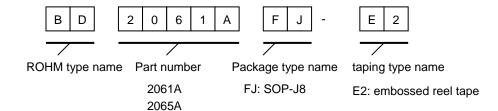
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the input terminal. Therefore, pay thorough attention not to handle the input terminals, such as to apply to the input terminals a voltage lower than the GND respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input terminals when no power supply voltage is applied, apply to the input terminals a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics.

(10) Ground wiring pattern

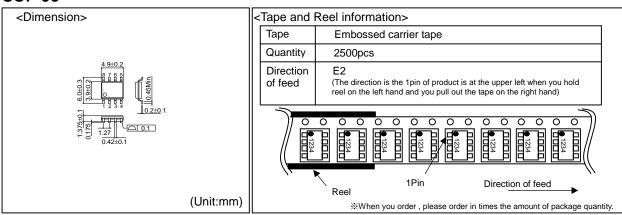
If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of the small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of external parts as well.

(11) External capacitor

In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.


(12) Thermal shutdown circuit (TSD)

When junction temperatures become detected temperatures or higher, the thermal shutdown circuit operates and turns a switch OFF. The thermal shutdown circuit, which is aimed at isolating the LSI from thermal runaway as much as possible, is not aimed at the protection or guarantee of the LSI. Therefore, do not continuously use the LSI with this circuit operating or use the LSI assuming its operation.


(13) Thermal design

Perform thermal design in which there are adequate margins by taking into account the power dissipation (Pd) in actual states of use

Order type name selection

SOP-J8

- The contents described herein are correct as of October, 2008
- The contents described herein are subject to change without notice. For updates of the latest information, please contact and confirm with ROHM CO.,LTD.
- Any part of this application note must not be duplicated or copied without our permission.
 Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding
- Any data, including, but not limited to application circuit diagrams and information, described herein, are intended only as illustrations of such devices and not as the specifications for such devices, BOHM, CO., LTD, disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD, is granted to any such buyer.
- The products described herein utilize silicon as the main material.
 The products described herein are not designed to be X ray proof.

The products listed in this catalog are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Excellence in Electronics

ROHM CO., LTD.

21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto TFL:+81-75-311-2121 FAX:+81-75-315-0172

URL http://www.rohm.com Published by KTC LSI Development Headquarters LSI Business Pomotion Group Contact us for further information about the products. San Diego Atlanta Boston Chicago Denver Detroit Nashville Düsseldorf Stuttgart France United Kinador Oulu Barcelona Hungary Poland Russia Seoul Masan Beijing

TEL: +1-858-625-3630 FAX: +1-858-625-3670 FAX: +1-858-625-3670 FAX: +1-770-754-0691 FAX: +1-928-438-7164 FAX: +1-847-368-1008 FAX: +1-469-362-7973 FAX: +1-303-708-0858 TEL: +1-770-754-5972 TEL: +1-978-371-0382 TEL: +1-978-371-0382 TEL: +1-847-368-1006 TEL: +1-469-287-5366 TEL: +1-303-708-0908 TEL: +1-248-348-9920 FAX: +1-248-348-9942 FAX: +1-615-620-6702 TEL: +1-615-620-6700 TEL: +1-013-020-0700 TEL: +52-33-3123-2001 TEL: +49-2154-9210 TEL: +49-8999-216168 TEL: +49-711-7272-370 FAX: +15-13-320-07-02 FAX: +52-33-3123-2002 FAX: +49-2154-921400 FAX: +49-8999-216176 FAX: +49-711-7272-3720 TEL: +33-1-5697-3060 FAX: +33-1-5697-3080 TEL: +44-1-908-306700 FAX: +44-1-908-235788 TEL: +44-1-908-30700 TEL: +45-3694-4739 TEL: +358-9725-54491 TEL: +358-2-7332234 TEL: +358-8-5372930 FAX: +45-3694-4789 FAX: +45-3694-4769 FAX: +358-9-7255-4499 FAX: +358-2-7332237 FAX: +358-8-5372931 FAX: +34-9375-24410 TEL: +34-9375-24320 TEL: +36-1-4719338 FAX: +36-1-4719339 TEL: +48-22-5757213 FAX: +48-22-5757001 TEL: +7-495-739-41-74 FAX: +7-495-739-41-74 TEL: +82-8-182-700 FAX: +82-9-8182-715
TEL: +82-55-240-6234 FAX: +82-55-240-6236
TEL: +86-411-8230-8537
TEL: +86-10-8525-2483 FAX: +86-10-8525-2489

Tianjin TEL: +86-22-23029181 FAX: +86-22-23029183 FAX: +86-22-23029183 FAX: +86-21-6247-2066 FAX: +86-571-87658071 FAX: +86-25-8689-0393 FAX: +86-574-87654208 FAX:+86-532-5779-653 Shanghai Hangzhou Nanjing Ningbo TEL: +86-21-6279-2727 TEL: +86-21-6279-2727 TEL: +86-571-87658072 TEL: +86-25-8689-0015 TEL: +86-574-87654201 Qingdao TEL: +86-532-5779-312 TEL: +86-512-6807-1300 FAX: +86-512-6807-2300 TEL: +86-510-82702693 FAX: +86-510-82702992 Suzhou Wuxi Shenzher TEL: +86-510-92702693 FAX: +86-510-92702992 FEL: +86-75-8307-3003 TEL: +86-769-8393-3320 FAX: +86-769-8398-4140 TEL: +86-591-8801-8698 FAX: +86-753-825-9695 TEL: +86-752-205-1054 FAX: +86-752-205-1059 Dongguan Guangzhou Huizhou TEL: +86-592-238-5705 FAX: +86-592-239-8380 Zhuha TEL: +86-756-3232-480 FAX: +86-756-3232-460 Hong Kong Taipei Kaohsiung TEL: +862-7-740-6262
TEL: +886-2-2500-6956
TEL: +886-7-237-0881
TEL: +65-6332-2322 FAX: +86-7-30-3232-4400 FAX: +852-2-375-8971 FAX: +886-2-2503-2869 FAX: +886-7-238-7332 FAX: +65-6332-5662 Singapore Philippines TEL: +63-2-807-6872 FAX: +63-2-809-1422 FAX: +66-2-256-6334 Thailand TEL: +66-2-254-4890 FAX: +60-2-236-6334 FAX: +60-3-7958-8377 FAX: +60-4-2286452 FAX: +81-75-365-1228 FAX: +81-45-476-2295 Kuala Lumpu TEL: +60-3-7958-8355 TEL: +60-4-2286453 TEL: +81-75-365-1218 TEL: +81-45-476-2290

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM CO.,LTD.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products are not designed to be radiation tolerant.

While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Thank you for your accessing to ROHM product informations.

More detail product informations and catalogs are available, please contact your nearest sales office.

ROHM Customer Support System

THE AMERICAS / EUROPE / ASIA / JAPAN

www.rohm.com

Contact us : webmaster@rohm.co.jp

Copyright © 2009 ROHM CO.,LTD.

ROHM Co., Ltd. 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan

TEL:+81-75-311-2121 FAX:+81-75-315-0172

