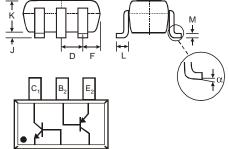


COMPLEMENTARY PAIR SMALL SIGNAL SURFACE MOUNT TRANSISTOR

Features

- **Epitaxial Die Construction**
- Two Internally Isolated NPN/PNP Transistors in one package
- Ultra-Small Surface Mount Package
- Lead Free/RoHS Compliant (Note 2)
- Qualified to AEC-Q101 Standards for High Reliability
- "Green" Device (Note 3 and 4)

В



All Dimensions in mm

SOT-363

Mechanical Data

- Case: SOT-363
- Case Material: Molded Plastic. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020C
- Terminals: Solderable per MIL-STD-202, Method 208
- Lead Free Plating (Matte Tin Finish annealed over Alloy 42 leadframe).
- Terminal Connections: See Diagram Marking Information: K7P, See Page 4
- Ordering Information: See Page 4
- Weight: 0.006 grams (approximate)

Maximum Ratings, NPN Section	@T _A = 25°C unless otherwise specified
------------------------------	---

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	50	V
Collector-Emitter Voltage	V _{CEO}	45	V
Emitter-Base Voltage	V _{EBO}	6.0	V
Collector Current	Ic	100	mA
Peak Collector Current	I _{CM}	200	mA
Peak Emitter Current	I _{EM}	200	mA

Maximum Ratings, PNP Section @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	-50	V
Collector-Emitter Voltage	V _{CEO}	-45	V
Emitter-Base Voltage	V _{EBO}	-5.0	V
Collector Current	Ic	-100	mA
Peak Collector Current	I _{CM}	-200	mA
Peak Emitter Current	I _{EM}	-200	mA

Thermal Characteristics

Characteristic	Symbol	Value	Unit
Power Dissipation (Note 1) @ T _A = 25°C Total Device	P _d	200	mW
Thermal Resistance, Junction to Ambient (Note 1) @ T _A = 25°C	$R_{ hetaJA}$	625	°C/W
Operating and Storage Temperature Range	T _j , T _{STG}	-65 to +150	°C

Notes: Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch; pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.

- No purposefully added lead.
- Diodes Inc.'s "Green" policy can be found on our website at http://www.diodes.com/products/lead_free/index.php.
- Product manufactured with Date Code UO (week 40, 2007) and newer are built with Green Molding Compound. Product manufactured prior to Date Code UO are built with Non-Green Molding Compound and may contain Halogens or Sb2O3 Fire Retardants

Electrical Characteristics, NPN Section @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition	
Collector-Base Breakdown Voltage	(Note 5)	V(BR)CBO	50	_	_	V	$I_C = 10\mu A, I_B = 0$
Collector-Emitter Breakdown Voltage	(Note 5)	V(BR)CEO	45	_	_	V	$I_C = 10 \text{mA}, I_B = 0$
Emitter-Base Breakdown Voltage	(Note 5)	V(BR)EBO	6	_	_	V	$I_E = 1\mu A, I_C = 0$
DC Current Gain	(Note 5)	h _{FE}	200	290	450	_	$V_{CE} = 5.0V, I_{C} = 2.0mA$
Collector-Emitter Saturation Voltage	(Note 5)	V _{CE(SAT)}	_	90 200	250 600	mV	$I_C = 10$ mA, $I_B = 0.5$ mA $I_C = 100$ mA, $I_B = 5.0$ mA
Base-Emitter Saturation Voltage	(Note 5)	V _{BE(SAT)}	_	700 900	_	mV	$I_C = 10 \text{mA}, I_B = 0.5 \text{mA}$ $I_C = 100 \text{mA}, I_B = 5.0 \text{mA}$
Base-Emitter Voltage	(Note 5)	V _{BE(ON)}	580 —	660 —	700 720	mV	$V_{CE} = 5.0V, I_{C} = 2.0mA$ $V_{CE} = 5.0V, I_{C} = 10mA$
Collector-Cutoff Current (Note 5)		I _{CBO}	_	-	15 5.0	nΑ μΑ	V _{CB} = 30V V _{CB} = 30V, T _A = 150°C
Gain Bandwidth Product		f _T	100	300	_	MHz	V _{CE} = 5.0V, I _C = 10mA, f = 100MHz
Collector-Base Capacitance		C _{CBO}	_	3.5	6.0	pF	V _{CB} = 10V, f = 1.0MHz
Noise Figure		NF	_	2.0	10	dB	$V_{CE} = 5V, I_{C} = 200\mu A, R_{G} = 2.0k\Omega,$ $f = 1.0kHz, \Delta f = 200Hz$

Electrical Characteristics, PNP Section @T_A = 25°C unless otherwise specified

Characteristic			Min	Тур	Max	Unit	Test Condition
Collector-Base Breakdown Voltage	(Note 5)	V(BR)CBO	-50	_	_	V	$I_C = -10\mu A, I_B = 0$
Collector-Emitter Breakdown Voltage	(Note 5)	V(BR)CEO	-45	_	_	V	$I_C = -10 \text{mA}, I_B = 0$
Emitter-Base Breakdown Voltage	(Note 5)	V(BR)EBO	-5	_	_	V	$I_E = -1 \mu A, I_C = 0$
DC Current Gain	(Note 5)	h _{FE}	220	290	475	_	$V_{CE} = -5.0V, I_{C} = -2.0mA$
Collector-Emitter Saturation Voltage (Note 5)		V _{CE(SAT)}	_	-75 -250	-300 -650	mV	$I_C = -10$ mA, $I_B = -0.5$ mA $I_C = -100$ mA, $I_B = -5.0$ mA
Base-Emitter Saturation Voltage	(Note 5)	V _{BE(SAT)}	_	-700 -850	 -950	mV	$I_C = -10$ mA, $I_B = -0.5$ mA $I_C = -100$ mA, $I_B = -5.0$ mA
Base-Emitter Voltage	(Note 5)	V _{BE(ON)}	-600 —	-650 —	-750 -820	mV	$V_{CE} = -5.0V$, $I_{C} = -2.0mA$ $V_{CE} = -5.0V$, $I_{C} = -10mA$
Collector-Cutoff Current (Note 5)		I _{CBO}	_		-15 -4.0	nΑ μΑ	V _{CB} = -30V V _{CB} = -30V, T _A = 150°C
Gain Bandwidth Product		f _T	100	200	_	MHz	V _{CE} = -5.0V, I _C = -10mA, f = 100MHz
Collector-Base Capacitance		Ссво	_	3	4.5	pF	V _{CB} = -10V, f = 1.0MHz
Noise Figure		NF			10	dB	$V_{CE} = -5V, I_{C} = -200\mu A, R_{G} = 2.0k\Omega,$ $f = 1.0kHz, \Delta f = 200Hz$

Notes: 5. Short duration pulse test used to minimize self-heating effect.

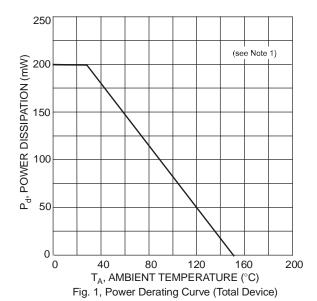
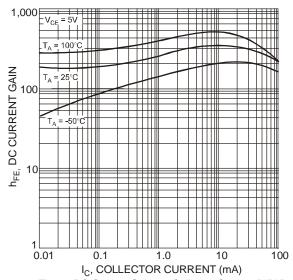
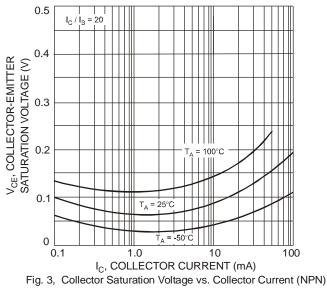
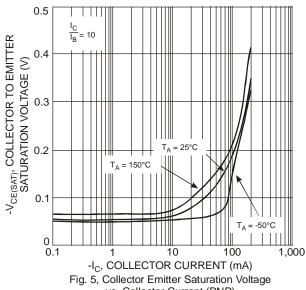





Fig. 2, DC Current Gain vs. Collector Current (NPN)

vs. Collector Current (PNP)

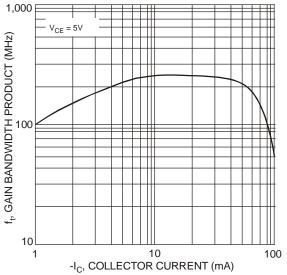
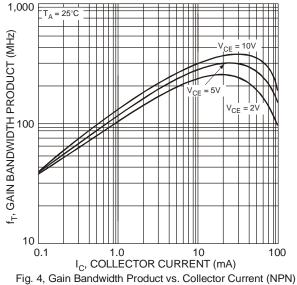



Fig. 7, Gain Bandwidth Product vs. Collector Current (PNP)

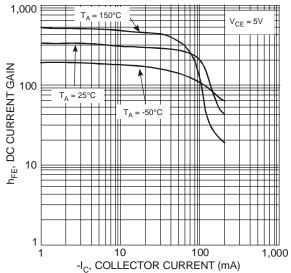
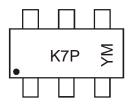


Fig. 6, DC Current Gain vs. Collector Current (PNP)



Ordering Information (Note 6)

Device	Packaging	Shipping
BC847PN-7-F	SOT-363	3000/Tape & Reel

6. For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information

K7P = Product Type Marking Code YM = Date Code Marking Y = Year ex: T = 2006 M = Month ex: 9 = September

Date Code Key

Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Code	М	N	Р	R	S	Т	U	V	W	Х	Υ	Z
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
•		•	_			_	-	•	_			,

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.