

Synthesized In-Circuit LCR/ESR Meter

model

	885, 886
TEST SIGNAL	
Frequency	100Hz, 120Hz, 1kHz, 10kHz, 100KHz(model 886 only)
Frequency Accuracy	±0.1%
Level	1Vrms, 0.25Vrms, 0.05Vrms, 1Vdc (for DCR)
level Accuracy	±5%
Output Impedance	100Ω, ±5%

Measurement Range

1KHz

10KHz

100KHz

(7)	Frequency	Max.	Min.	Best Resolution			
	DCR	20ΜΩ	0.1Ω	0.001			
Impedance	100Hz	$20 M\Omega$	0.1Ω	0.001			
ga	120Hz	$20 M\Omega$	0.1Ω	0.001			
ě	1KHz	$20M\Omega$	0.1Ω	0.001			
E	10KHz	$20M\Omega$	0.1Ω	0.001			
	100KHz	$20M\Omega$	0.1Ω	0.001			
(C)	Frequency	Max.	Min.	Best Resolution			
Capacitance	100Hz	15.92m <i>f</i>	79.57pf	0.001			
ita	120Hz	13.26m <i>f</i>	66.31p <i>f</i>	0.001			
Sac	1KHz	1592µ <i>f</i>	7.957p <i>f</i>	0.001			
Sal	10KHz	159.2µ <i>f</i>	0.795p <i>f</i>	0.001			
	100KHz	15.92µ <i>f</i>	0.795p <i>f</i>	0.001			
<u>::</u>	Frequency	Max.	Min.	Best Resolution			
nce (100Hz	9999H	159.2µH	0.001			
2	120Hz	9999H	132.6uH	0.001			

GENERAL Operating Temperature 32° to 104°F (0° to 40°C) -4° to 158°F (-20° to 70°C) Storage Temperature Relative Humidity up to 85% Battery Type Ni-MH or Alkaline (2 x AA size) Constant current 150mA approximately Battery Charge Battery Operating Life 2.5 hours typical 110VAC/60Hz AC Operation Low Power Warning Dimensions (LxWxH) 6.9 x 3.4 x 1.9" (175 x 86 x 48mm) Weight 1.1 lbs (470g)

15.92µH

1.592µH

0.159µH

3183H

318.3H

31.83H

20ΜΩ	10MΩ	1MΩ	100kΩ	10Ω	1Ω
$\sim 10 M\Omega$	$\sim 1 M\Omega$	~100kΩ	~10Ω	~1Ω	~0.1Ω
2% ±1	1% ±1				
		0.5% ±1	0.2% ±1	$0.5\% \pm 1$	1% ±1
5%±1	2%±1				
NA	5%±1	2%±1	$0.4\% \pm 1$	2%±1	5%±1
	~10MΩ 2% ±1 5%±1	~ 10 Μ Ω ~ 1 Μ Ω ~ 1 Μ Ω ~ 1 $\sim $	$\sim 10MΩ$ $\sim 1MΩ$ $\sim 100kΩ$ $2\% \pm 1$ $1\% \pm 1$ $0.5\% \pm 1$ $5\% \pm 1$ $2\% \pm 1$	$\sim 10 M \Omega$ $\sim 1 M \Omega$ $\sim 100 k \Omega$ $\sim 10 \Omega$ $2\% \pm 1$ $1\% \pm 1$ $0.5\% \pm 1$ $0.2\% \pm 1$ $\sim 10 \Omega$	$\sim 10M\Omega$ $\sim 1M\Omega$ $\sim 100k\Omega$ $\sim 10\Omega$ $\sim 1\Omega$ ~ 100 ~ 10 $\sim $

Accessories

Two Year Warranty

0.001

0.001

0.001

SUPPLIED:	Instruction Manual, SMD Probe,			
	Rechargeable B	Battery, AC Adapter		
OPTIONAL:	TL-885B	4-wire test leads		
	TL-08C	4-wire Kelvin test leads		
	LC-29B	Carrying Case		
		Rechargeable E OPTIONAL: TL-885B TL-08C		

SMD Probe (included)

Models 885 and 886

Synthesized In-Circuit LCR/ESR Meter

The Model 885 and 886 Synthesized In-Circuit LCR/ESR Meters are the first handheld meter of this type on the market, with a wide range of test frequencies up to 10 kHz for model 885 and 100KHz for model 886 many measurement parameters including Z, L, C, DCR, ESR, D, Q, and Ø as well. The 885 and 886 are designed for both component evaluation on the production line and fundamental impedance testing for bench-top applications. With a built-in direct test fixture, you can test the lead components very easily. The optional 4-wire test clip can give a convenient connection to larger components and assemblies with the accuracy of 4-wire testing. The LCR meters offer fast, reliable, and versatile testing at low cost, making the 885 and 886 the most advanced handheld LCR meters available on the market today.

Features

- Measurement parameters: Z, L, C, DCR, ESR, D, Q, and Ø
- Test conditions: 100Hz, 120Hz, 1kHz, 10kHz, 100KHz(model 886 only), 1Vrms, 0.25Vrms, 0.05Vrms
- 0.5% basic accuracy
- Dual LCD display
- SMD Surface Mount Tweezer Probe included
- Very quick response, user friendly
- Fully auto/manual selection
- **DC** resistance measurement
- Rechargeable battery / AC powered
- Infrared RS-232 interface capability

Software Features:

- Go-No Go testing (component sorting)
- Remote bin (component grading)
- Remote operation

