PCD C Compiler
Reference Manual
June 2008

This manual documents software version 4.
Review the readme.txt file in the product directory for changes made since this version.

Copyright © 1994, 2008 Custom Computer Services, Inc.

All rights reserved worldwide. No part of this work may be reproduced or copied in any form or by
any means- electronic, graphic, or mechanical, including photocopying, recording, taping, or
information retrieval systems without prior permission.

Table Of Contents

Technical Support
(DT E=Tod o] = P U PPRRR
File Formats
Invoking the Command Line COMPILEr ... 3
PCW Overview
Program Syntax

Overall Structure

COMIMEBNT. ..ttt ettt e et eeaeaeeas

Trigraph Sequences................

Multiple Project Files

Multiple Compilation Units

Example
Statements
Statements
TP OO PP PP T P PP PP PUPOPRTON

Expressions
Eq oL L=ET=Y (o o PP UTRTOPPPPPRRO
(O] o1=T =10] £ TP PPPPPPRPPPR
operator precedence...............

Reference Parameters
Variable Argument Lists..........
Default Parameters..................
Overloaded Functions

Data Definitionscccccvvvvvvvennnns

Basic and Special types

DeclarationS........cccvvvvvvvvvvvennnnns

Non-RAM Data Definitions

Using Program Memory for Data

Function Definition
Functional Overviews

PCD C Compiler Reference Manual April 2008

Analog Comparator.................
CANBUS....ceeiiiiiiiis
Configuration Memory
Data Eepromccccceevvvvvvnnnnnns

(O o { O PP TPV PPPPPSPPPT PPN

General Purpose I/0
N D UT A U ettt e
INTEINAL OSCIIALON ...iiiiitee ettt e e e e et e e e e e et be e e e e e eanes
Interrupts
[T 01 = PR PPPRRRRN
Output CoOmMPAre/PWM OVEIVIEWuuiiiiiieeaiiiiiiiiea e e et e e e e e e et e e e e e e aanebeeeeeaaaaaaneeeeas
Motor Control PWM
Program Eeprom

Timers
VOItagE REFEIENCE ...t
WDT or Watch Dog Timer

Pre-ProCesSOr DIFECIIVESooiviiiiiiiiieeeee ettt e et e e e e e aaaeaees

Vi

PRE-PROCESSOR..... .ot

DEVICE
#ERROR ..o
#EXPORT (options)
CFILE e,
__FILENAME___.ooooviieien.
#FILL_ROM
H#FUSES ...

#IF exp #ELSE #ELIF #ENDIF ... e
#IFDEF #IFNDEF #ELSE #ELIF #ENDIF

Table Of Contents

#IGNORE_WARNINGS
#IMPORT (options)
#INCLUDE

#UNDEF
FUSE DELAY oottt
FUSE FAST 1O ..
#USE FIXED_IO.........c.ceec..

#USE 12C ...

#USE RS232......

#USE RTOS...
H#USE SPI .

HUSE STANDARD_TO ..ottt
FZERO_RAM ..ot
#WARNING

ADS()i
adc_done() adc_done2()...
ASSErt() vovvriieeiiiee e
atof() atofd8() atof64()...uuvveveeeiiiiiriieneenn.
atoi() atol() atoi32() atoi48() atoi64()....
bit_clear()
bit_first()
bit_last()
o A=Y= { () RSP ERRTR
LT A (] (O TP TSP PUP PO PPPPPIN

Vil

PCD C Compiler Reference Manual April 2008

viii

DroWNOUL_ENADIE() coiiiiiiiiiie e 158
Lo 1Y=T= T (o] o1 () TP USSP PPRT 159
[oF= 1| [Yol (5 PRSP PPPPPTRPI 160
(o= () IO PSR PUPPPPPPPI 160
(ol LT T T a1 C=T o AU T o LA I USRS PUPPRPRRR 161
(o] d o oF=1Le] (4 [e Yo 1) ISP PRRR S 162
CIC_INTE(MOTE) ettt ettt e et 162
EIAY _CYCIES () ettt 163
(o 1 E= Y 1111 () P USSP PPRPTRO 164
(o 1= E= Y 1 (O PSSO PPRPRRO 165
iSADIE _INTEITUPLIS() ceeiiiititiiiee ettt et e e e et e e e e e 166
DIV) TAIV() ettt 167
(o 0P S = LU= () IR PUPPUPURRN 168
(o T S = U (USRI 168
ENADIE_INTEITUPEIS) ottt 169
123 q o1) P T TP P TP TP TP PR OPPPPPTIN 170
L I L S =Te Lo 1=T (0 I USSP PPPPPPPIN 171
LTz =Y (0 TSP PPPR S POPPPRIN 171
Lo To] £ (0 O OO PPPPR T PPPPPPIN 172
L1001 T 1 G TP O OO PPPP R PPPPPPPPRIN 172
L E=T=T (PR PURTTSUPPR 173
L= o1 (O TP EPPRR PSPPSR 173
(o o= Vo1 (U1 =T P PSP PP PO PPPRPPN 174
get_MOLOT_PWIM_EVENT() ertiiiiiiiieiiiii ettt ettt e et e 174
(o[A AL a0 1=1 0t (O PSSO PPRPRRP 175
(o[A A L101=1 000V () TP PPUPPPPPRRRIN 175
(oL A A A ST () I TP PPRRPO 176
getc() getch() getCha() FOEIC() .o uvrrmrieeaeiiiiiei e 177
(o TS10=] 01V () RSP ERRT 178
(oS]) I (e 1251 () USSP 180
(o Fol o Jr=To [0 [{=T 1= () T PP PP PP UPPTRPPPRPPI 181
T2C_IST_STALE(1) tuvveeeattit etttk 181
(22l o Lo 1 (0 TSSO PPPTRR 182
O =T To [(O SO PPUP SRR 183
(Lo ST Fo YT To [L () T PP PP PPPPPRRPPIN 184
[P - 1 | () ISR PU PP PPRTR 184
(o= (0] o] () TP S P PPPPPT 185
(2o T 1 =T PSS PPURP 186
LY o101 { () RSP RRRTR 187
LYoV LS €= L= () P PP U PP PP PP PPPRPTTI 188
LT o0 D (O I T PSP TP P T PUP PO PPPPPTN 189
INTEITUPT _ACTIVE() tiiriiiiiiiiiiit et e et e e e e s e e e e e s e st a e e e e e e s ensanees 190
isalnum(char) isalpha(char) isdigit(char) islower(char) isspace(char) isupper(char)

isxdigit(char) iscntrl(x) isgraph(x) isprint(X) iISPUNCL(X) ..eeeeeririmmmrerieeiiiiiiiieiee e 190
(RS2 U 4o 10 o Lo | () I PP TS PPPPPPPRPPN 192
Lo T () USRS 193
K TE() ettt 194
[ADEI_BAAIESS () -eeieiiiiiieiitit e 195

Table Of Contents

[T o =Y (O USSP PPPPPRPRP 195
(Lo 1=2tq o1 () USSP RRPRP 196
o To | PP SPPU PP PPP PRI 196
o To i 0 () TR RPPTPI 197
(oY oo 1201 o1 PRSPPI 197
A= T) TP PP 198
[AFo L= T (P TP TP PP U PP OPPPPPIN 198
[AFo 1= 2 () PP PP U PP PUPP T OPPPPPIN 199
L0 F= 11 Lo ot () IR RSP PPPPRTR 200
MEMCPY() MEMMIOVE() rrriiiiieeiiiiiiiiit e e e ee sttt e e e e e s e e e e e e s etb e e e e e e s s aaa s e eeeaeseasasrbeees 200
11T 0T = () PSR PU PP PPPTR 201
LYoo 1 { TP RRPR 202
10101 TSP UPUT SRR 202
OffSEtOf() OFfSELOTDIT() cureeeeieeeeiee e 203
(o TU 4 UL A q () T T PP PUPPPOPPPPPPIN 204
OUEPUE_DIT() ettt ettt e ettt e e e e nnees 205
(o UL d 010N e [4 AVZ=T () TSRO PPPUPPPPPRRRIN 206
(o014 010N A { (o X= L () PSP UPOPPRPPRRIN 206
(TN Ld o 10N A a1] 1T (O IO UU TS PPPPPPPPPPIN 207
(o UL 4 o1 UL A (o 1V G PP U TSP PPUPPPPPPPIN 208
(oW L q 010N A (oo [] L= RSP PRRR R 209
(0114 (o] (O RSP ERRT 209
POFE_X_PUITUPS () teeiutiieeitie ettt ettt e e 210
PPOW () P () tetteinttte ettt etttk e ettt e ekttt e et ettt et e an 211
PMP_AdAreSS(AUUIESS) uvuviiiiiee ittt e e e e e e e e e s e st e e e e e e e s snrreees 211
pmp_output_full() pmp_input_full() pmp_overflow()cccooverieeiiiiiiiiiee e 212
o]0 =T 1o 1 TP T RS PPPPPPPPPPRN 213
PrINTF() FPIINTI() et e e 214
psp_output_full() psp_input_full() pSp_oVverflow()ccccooiiirieaieeeeeeeie 216
[0 1S] I =T= o () I USSP USRI 217
OS] A L1 =T T PP O PP PUP PP OPPPPP 217
PULC() PULCHAN() FPULC() eeeeeiiiiieietii et 218
PUES () FPUES() toitieiiii i e ettt e e ettt e e e e e e st a e e e e e s st b e eaeeeeeenneees 219
(o [T o 1= S X o 101 o 1 £ (0 F PR SOPPUPPPPRRPIN 219
(o LTI =) A oL o U o L () T PP TSP PPPPPPPPRPIN 220
(o] = LU] () PSP TUPPRPRP 220
[0 1Yo o () I U PRSP PPPPPI 221
L= g Yo [USSP ERRT 222
[g=T=To JF-To [od (B I =Y- To - To [o02 (O I OO PROT R 222
read_configuration_MEMOTY (). .o uuii ittt 224
(LT (o I =T=T o] £01 111 (O T PP PP PP PP PPPRPTPI 224
read_Program_MEMOTY () e iiiieteeeeeaiiiier e e e e e e st eeaeeessetarraeeeeessassarraeaeaeseassssreees 225
FEAA_TOM _MEMIOTY () eeiitttiiiiteeeeeeitt ettt e e e e ettt e e e e e e st e e e e e e se bbb e e eeeeesanassreaeeeeessnnsseeees 225
L2221 [T o] () PRSP PRPT 226
LT o] o LU IO TS TTPPPPPP 227
1] = U o= LU L=< TR USRS PUPPRRPRN 227
1] = L AV L () USSP USRI 228
(o) €= LU I =] 1 () T PSSP PP PUP PR OPPPPTN 229

PCD C Compiler Reference Manual April 2008

[gol -\ A= 4101 14 () I PRSP PPPT 229
LR U=V 1 T =TT PSSP PRRR TSP 230
FEC_@IAIIMN_WITEE()ertetieeiiiitit ettt ettt e e e ettt e e e e e st e e e e e e e e nnnees 231
(o A=T=To I () TSP PPPPPT 231
(Y 1 (=T (U PPRRT 232
LR COETE: UV UL (USRS 232
FEOS_ISADIE() 1ttt 233
FEOS_BNADTE() et 233
FEOS_MST_ POI() ertiiiiiieeiii et e e e e e e e e e e e st a e e e e e anaes 234
FEOS_MST _TEAU () wrreeieeiiiiiiiiit e ettt e e e e et e e e e e s e e e e e e s et e e e e e e s e sasbbeaeeeeeessnsseeees 234
OO R 1o TET =T o Lo I (O T PP PP TSP PPUPPRPPPIN 235
[RCO R0 XYL o U1 () I PP PPPPPPPPPPN 235
LR CO R T U 11 () TSP SRR 236
LR CO RIS To o F= L () USSP ERRT 236
RO T] =1] () PP U PP PPPP R PPPPPTTIN 237
FEOS_TEIMINMATE() +eeeeieiiiieiiiit ettt e ekt e et e e naneeas 237
RGO ET T 1 (3 TP USSP PPPRR 238
RO FT A =1 (o [I PRSP PPPPPRR 238
set_adc_channel() set_adc_channel2()ccoueieiiiiiiiiiiiii e 239
SEE_ COMPAIE_TIME() eeeiieiiiiiiiii ettt ettt et e e e e et e e e e e e e aeeeeeeeaanes 240
SEt_MOTON_PWIM_EVENT() 1utuiiieiieee ittt e e e e ettt e e e e e e ettt ee e e e e e s nnebe e e e e e e e e annranneeaaeaeannes 241
Y= A oAV T e 1V 1Y () PR RU TS OPPUPRRRT 242
SEL_POWET_PWM_AULY () eernterieiiiiie ettt ettt 243
Set_POWEI_PWM_OVEITIAE() teiiiirieeiiiiieeiiei ettt 243
Y= A o101 U] o PP PPPPROTSOPPPPRPR 244
Y= L L= () TP PP RS PPPPPPPRRR 244
Y= A] 14 T=] 074 Y/ () P TP PPPPPPRPRPIN 245
1= R T (D TP OO PP PPPP R OPPPPPPPRRTN 246
Y= U= T] o L=T=To I TSP OPRPPRRR 247
LSY=1 T 0] o X () IR PPRTUUPPUPRRN 248
setup_adc(mode) setup_adC2(MOUE)oveiiiiiiiiiiiieeiee et 249
setup_adc(mode) setup_adC2(MOUE)oveiiiiiiiiiiiieeiee et 250
setup_adc_ports() Setup_adC_POrtS2() cooveiirriiieeeeiiiiiiiiie e e e e e e 251
Y100 | o or= o) (U1 £=T () PO PRSP PP PPPRRRRPIN 252
YT | o edoT 1] o F=T =T () T PP PPP T TSPPPPPPPRTN 252
SELUP_COMPATATOT() +eeeieeiiuitiiieiee et e ettt e e e e e tbe et e e e e e e bbb et e e e e e e abb e e e e e e e e e s ansbbneeaeeeeaann 253
YT | J o] (o] (110 L 1) TP PPP T OPPPPPPPTTN 254
(Y= (U | J e o 4 - ST PUPPPPRRTN 255
SELUP_TOW _VOIE _AEEECT(). ueeiieeeieei ittt e e e e et e e e e e e e e 255
SETUP_IMOTOT_PWITIH() cettiieiiiite ettt ettt ettt e e et 256
SEtUP_MOLOT_PWIM_AULY()errreiirieeaiiiiieeiie ettt 257
SELUP_MOTOT_UNIE() trrerieeiiiiiiiietee e e e ettt e e e e e sttt e e e e e s et e e e e e e e e st e e e aaeeessnbaneaaeeeesaanes 258
SEEUP_OSCHTATOT()errrriiiiieiiiiiiiii ettt e e e et e e e e e et a e e e e e e e anrees 259
setup_pmp(option,addreSS_MASK)uueiiiiiiiiiiiiei e 261
SEEUP_POWET _PWITH() tetteeiiuiiitiet e e e e e ettt e e e ettt e e e e e ettt e e e e e e sbb b e et e e e e e e ansbbneeeeeeeaannn 262
SEtUP_POWET_PWIM_PINS () ueeeerieeeiaiiiieiie e e e e ettt ee e e e e e ettt e e e e e e e e annbeereaeeeeasnnaeneeaaaaeaannn 263
setup_psp(option,addresSS_MasK)oooiii i 264
L= UL oo =TT () TP P PP PP PPPPRN 265

Table Of Contents

LY=1 00] I (o1 () PP PP PPPPPPPPRPTN 265
Y= 00 | o A (- L= T 11 () I PP PU PO OPPPPPPRTN 266
SELUP_SPI() SELUP _SPIZ() suvuvreeeeeeiiaiittiei e e e ettt e et e e e e e et e e e e e et e e e e e e e anee 267
YT | T 4[] 0 () P PP PP TPPPPPPPPPRN 268
(Y= (0 | U= U () PO EPPP R TSRPPRPRTRN 269
Y= 0 | Y =] 1 () P EPPP R TPUPPRPRTRN 270
L= U] TV | G P OO PPPTTPUPPPPPPRPN 271
] AL L 1 € I PP P PSPPI UPRTPPTI 271
1L LA Ao 2L PP PPP R PPPPPPPRPTN 272
sin() cos() tan() asin() acos() atan() sinh() cosh() tanh() atan2().........ccccccveeeeeennns 273
Y L=T=T o1 () PO PPRTTOPPPPPN 275
spi_data_is_in() SPi_data iS_TN2() .uueeieeeiiiiiiiiieee e 276
SPI_read () SPI_TAUZ(1) «oiiiueiieeiee ettt ettt ettt e e e e e et e e e e e e e eaaaeeaana 276
SPI_WEITE() SPI_WEITEZ2([) ueutteeeeeeeeeiittt et e e e ettt e e e e e e ettt e e e e e e e e et e e e e e e e e annneneeaaaeeaanns 277
S XTI () ettt ettt 278
ST () ettt 279
LYo 1 () TP PSP PPP RS PPPPPPRIN 279
LY = Lo o 1 PSSP PPPRSTPPPPPPRN 280
STANDARD STRING FUNCTIONS().euttteiureeirieaiiiesiiiesieee sttt 281

memchr() memcmp() strcat() strchr() strcmp() strcoll() strcspn() stricmp() strlen()

striwr()) strncat() strncmp() strncpy() strpbrk() strrchr() strspn() strstr() strxfrm()281

SEFCPY () SEFCOPY () ceeereeeeeaiiiitet e e e e e ettt e e e ettt e e e e e ettt e e e e e e e e nnate e e e e e e e e nnereeeeaaeaannnees 282
Strtod () Strtof() STHEOTAB() .umeei et 283

1 (0] () IO PSP PP PP PPPPO 284

1S (s (o 1 [I PSP PP SPPPPPRIN 285

[(s (o 1011 PP PPRSPPPPPPPN 286

53 11TE= o () IR PPPP O PPPPPPPRN 287

(o] (o) T QR (oYU T oY o<1 (O T TP PP TOPPPPPPPRTN 288
write_configuration_MemMOTY () .oee oottt e e e e e e e e e anees 289
LR =TT o1 (o] 1 T () PR SOPPPPRRRT 290
WEItE€_Program_IMEMOTY () «oeeeeiiereee it et e sttt e ettt et et e et e et e e e e e b e e e 291
Standard C INCIUAE FIlESooiiiiiii e 293
BTN N e 293
FIO@EN e e 293
LM TS e 294
[OCAIE.N . e 295
1= AT 0] o N o PP PO PPPTRPPP 295
SEAA T N s 295
5] o [T TN o PP P R PPR PP 296
STAIID N et 296
EFTOT MESSAUES ...ttt e e e e e e 297
COMPIIEr ErTOr MESSAGES . .uuuviiiiiee ettt e e ettt e e e ettt e e e e e e st e e e e e e eatb e e e e e e e e sasbnees 297
Compiler Warning MESSAGESuuuviiiieeiiiiiiiiet e e e e ettt e e e e s st a e e e e e e st e e e e e s s snaaaaeaaeeesanes 311
Compiler Warning MESSAUESccoiiiuiiiiiiiee ettt et e e e a e e e 311
COMMON QUESTIONS AND ANSWERS ...ttt 315
How are type conversions handled?eeeiiiiiii e 315
How can a constant data table be placed in ROM? ..o 317
How can | use two or more RS-232 ports on one PIC®?cccccovviiiiiiieiiiniiieeeee e 318

Xi

PCD C Compiler Reference Manual April 2008

How do 1 do a printf t0 @ STFHNG? .oveeiiiiiii e 319
How do I directly read/write to internal registers? 319
How do | get getc() to timeout after a specified time? 320
How do | make a pointer to a function?cccccoiiiiiiiiiiiiiiiieeee 320
How do | write variables to EEPROM that are not aword? 321
How does one map a variable to an 1/O POrt? ... 321
How does the compiler determine TRUE and FALSE on expressions?........cccccevuee. 323
How does the PIC® CONNECE T0 @ PC? ..iiiiiiiiiiiiiieeeie e 324
How does the PIC® connect to an 12C device?
How much time do math operations take?cccviiiiieiiiiiiiiii e 326
What can be done about an OUT OF RAM E€ITOI?....uiiiiiiiiiiiiiieaeeei e 327
What is an easy way for two or more PICs® to communicate?
What is the format of floating point NUMDErs? ... 328
Why does the .LST file look out of Order? ... 330
Why is the RS-232 not working right?......... 331
EXAMPLE PROGRAMSccooiiiiieiieeiiiesiee 333

EXAMPLE PROGRAMS
SOFTWARE LICENSE AGREEMENT 345
SOFTWARE LICENSE AGREEMENTcoiiiiiiiii e 345

Xii

OVERVIEW

ol
Lo

C Compiler

PCD

PCD is a C Compiler for Microchip's 24hit opcode family of microcontrollers, which include the
dsPIC30, dsPIC33 and PIC24 families. The compiler is specifically designed to meet the unique
needs of the dsPIC® microcontroller. This allows developers to quickly design applications
software in a more readable, high-level language.

The compiler can efficiently implement normal C constructs, input/output operations, and bit
twiddling operations. All normal C data types are supported along with special built in functions to
perform common functions in the MPU with ease.

Extended constructs like bit arrays, multiple address space handling and effective implementation
of constant data in Rom make code generation very effective.

Technical Support

Compiler, software, and driver updates are available to download at:
http://www.ccsinfo.com/download

Compilers come with 30 or 60 days of download rights with the initial purchase. One year
maintenance plans may be purchased for access to updates as released.

The intent of new releases is to provide up-to-date support with greater ease of use and minimal, if
any, transition difficulty.

To ensure any problem that may occur is corrected quickly and diligently, it is recommended to
send an email to "x-text-underline: normal; support@ccsinfo.com or use the Technical Support
Wizard in PCW. Include the version of the compiler, an outline of the problem and attach any files
with the email request. CCS strives to answer technical support timely and thoroughly.

Technical Support is available by phone during business hours for urgent needs or if email
responses are not adequate. Please call 262-522-6500 x32.

PCD C Compiler Reference Manual April 2008

Directories

. __|
The compiler will search the following directories for Include files.

. Directories listed on the command line
° Directories specified in the .PJT file
. The same directory as the source file

By default, the compiler files are put in C:\Program Files\PICC and the example programs and all
Include files are in C:\Program Files\PICC\EXAMPLES.

The compiler itself is a DLL file. The DLL files are in a DLL directory by default in C:\Program
Files\PICC\DLL. Old compiler versions may be kept by renaming this directory.

Compiler Version 4 and above can tolerate two compilers of different versions in the same
directory. Install an older version (4.xx) and rename the devices4.dat file to devices4X.dat where
Xis B for PCB, M is for PCM, and H is for PCH. Install the newer compiler and do the same
rename of the devices4.dat file.

File Formats

. __|
.C This is the source file containing user C source code.

.H These are standard or custom header files used to define pins, register, register bits,
functions and preprocessor directives.

PIT This is the project file which contains information related to the project.

.LST This is the listing file which shows each C source line and the associated assembly code
generated for that line.

The elements in the .LST file may be selected in PCW under Options>Project
Options>File Formats

Match code -Includes the HEX opcode for each instruction
SFR names -Instead of an address a name is used. For example instead of
044 is will show CORCON
Symbols -Shows variable names instead of addresses
Interpret -Adds a pseudo code interpretation to the right of assembly
instruction to help understand the operation.
For example:
LSR W4,#8,W5 : W5=W4>>8

.SYM

.STA

.TRE

.HEX

.COF

.COD

.RTF

.RVF

.DGR

.ESYM

.OSYM

Overview
This is the symbol map which shows each register location and what program variables
are stored in each location.

The statistics file shows the RAM, ROM, and STACK usage. It provides information on
the source codes structural and textual complexities using Halstead and McCabe
metrics.

The tree file shows the call tree. It details each function and what functions it calls along
with the ROM and RAM usage for each function.

The compiler generates standard HEX files that are compatible with all programmers.
This is a binary containing machine code and debugging information.
This is a binary file containing debug information.

The output of the Documentation Generator is exported in a Rich Text File format which
can be viewed using the RTF editor or wordpad.

The Rich View Format is used by the RTF Editor within the IDE to view the Rich Text
File.

The .DGR file is the output of the flowchart maker.

This file is generated for the IDE users. The file contains Identifiers and Comment
information. This data can be used for automatic documentation generation and for the
IDE helpers.

This file is generated when the compiler is set to export a relocatable object file. This file
is a .sym file for just the one unit.

Invoking the Command Line Compiler

. __|
The command line compiler is invoked with the following command:

CCsC [options] [cFilename]
Valid options:
+FB Select PCB (12 bit) -D Do not create debug file
+FM Select PCM (14 bit) +DS Standard .COD format debug file
+FH Select PCH (PIC18XXX) +DM .MAP format debug file

PCD C Compiler Reference Manual April 2008

+YX
+FS
+ES
+T
+A
+EW
+EA

+FD

Optimization level x (0-9) +DC Expanded .COD format debug file
Select SXC (SX) +EO Old error file format
Standard error file -T Do not generate a tree file
Create call tree (.TRE) -A Do not create stats file (.STA)
Create stats file (.STA) -EW Suppress warnings (use with +EA)
Show warning messages -E Only show first error
Show all error messages and +DF Enables the output of a
all warnings OFF debug file.

Select PCD

(dsPIC30/dsPIC33/PIC24)

The xxx in the following are optional. If included it sets the file extension:

+LNXXX
+L Sxxx
+LOXXX
+LYXXX
-L

+P
+PXxx
+PN
+PE

+Z
+DF
l+=".."

+ICD
HXXX="yyy"

Normal list file +0O8xxX 8-bit Intel HEX output file
MPASM format list file +OWXXX 16-bit Intel HEX output file
Old MPASM list file +OBxxxX Binary output file
Symbolic list file -O Do not create object file

Do not create list file

Keep compile status window up after compile

Keep status window up for xx seconds after compile
Keep status window up only if there are no errors
Keep status window up only if there are errors

Keep scratch files on disk after compile
COFF Debug file
Same as |="..." Except the path list is appended to the current list

Set include directory search path, for example:
I="c:\picc\examples;c:\picc\myincludes"

If no I= appears on the command line the .PJT file will be used to supply the
include file paths.

Close compile window after compile is complete
Generate a symbol file (.SYM)

Do not create symbol file

Create a project file (.PJT)

Do not create PJT file

Compile for use with an ICD

Set a global #define for id xxx with a value of yyy, example:
#debug="true"

Overview

+Gxxx="yyy" Same as #xxx="yyy"

+? Brings up a help file

-? Same as +?

+STDOUT Outputs errors to STDOUT (for use with third party editors)
+SETUP Install CCSC into MPLAB (no compile is done)

+V Show compiler version (no compile is done)

+Q Show all valid devices in database (no compile is done)

A / character may be used in place of a + character. The default options are as follows:
+FM +ES +J +DC +Y9 -T -A +M +LNIst +O8hex -P -Z

If @filename appears on the CCSC command line, command line options will be read from the
specified file. Parameters may appear on multiple lines in the file.

If the file CCSC.INI exists in the same directory as CCSC.EXE, then command line parameters are
read from that file before they are processed on the command line.

Examples:
CCSC +FM C:\PICSTUFF\TEST.C
CCSC +FM +P +T TEST.C

PCD C Compiler Reference Manual April 2008

PCW Overview

Beginning in version 4. XXX of PCW, the menus and toolbars are set-up in specially organized
Ribbons. Each Ribbon relates to a specific type of activity an is only shown when selected. CCS
has included a "User Toolbar" Ribbon that allows the user to customize the Ribbon for individual
needs.

File Menu
Click on this icon for the following items:

0

New Creates a new File

Open Opens a file to the editor. Includes options for Source, Project, Output, RTF, Flow
Chart, Hex or Text. Ctrl+O is the shortcut.

Close Closes the file currently open for editing. Note, that while a file is open in PCW for
editing, no other program may access the file. Shift+F11 is the shortcut.

Close All Closes all files open in the PCW.

Save Saves the file currently selected for editing. Crtl+S is the shortcut.

Save As Prompts for a file name to save the currently selected file.

Save All All open files are saved.

Encrypt Creates an encrypted include file. The standard compiler #include directive will

accept files with this extension and decrypt them when read. This allows include files
to be distributed without releasing the source code.

Print Prints the currently selected file.

Recent The right-side of the menu has a Recent Files list for commonly used files.
Files

Exit The bottom of the menu has an icon to terminate PCW.

Overview

Project Menu Ribbon

@' Ficiect | Bt Sowdh Opbom Corpin Tiew Tools Dibeg Doomewt UsoTociBar iﬂ"
!_'\-':|Jn| -::;\lj: a;-_i-'::“n;w-':r!m ":',5':1;"
Feqm-t Sqrern

Project Open an existing project (.PJT) file as specified and the main source file is loaded.

PIC This command is a fast way to start a new project. It will bring up a screen with fill-in-

Wizard the-blanks to create a new project. When items such as RS232 1/0, i2C, timers,
interrupts, A/D options, drivers and pin name are specified by the user, the Wizard
will select required pins and pins that may have combined use. After all selections
are made, the initial .c and .h files are created with #defines, #includes and
initialization commands required for the project.

Create Create a new project with the ability to add/remove source files, include files, global
defines and specify output files.

Open All Open all files in a project so that all include files become known for compilation.

Files

Close Close all files associated with project.

Project

Find Ability to search all files for specific text string.

Text in

Project

PCD C Compiler Reference Manual April 2008

Edit Menu Ribbon

R o i e o o i i i @
oL Tl S S S
M
Undo Undoes the last deletion
Redo Re-does the last undo
Cut Moves the selected text from the file to the clipboard.
Copy Copies the selected text to the clipboard.
Paste Applies the clipboard contents to the cursor location.

Unindent Selected area of code will not be indented.
Selection

Indent Selected area of code will be properly indented.
Selection

Select All Highlighting of all text.

Copy Copies the contents of a file to the cursor location.

from File

Past to Applies the selected text to a file.

File

Macros Macros for recording, saving and loading keystrokes and mouse-strokes.

Overview

Search Menu Ribbon

m' Pigject Ede | Sunh | Opbom Compile Wiew Too Debug Doomest UserTociBar

el] 5| iy Do P F
mprsins = -
L e e e - * 1Bt Lk Tegqle Goby
Zagech Exdraia
Find Locate text in file.

Find Text Searches all files in project for specific text string.
in Project

Find Next Locates the next occurrence of the text selected in the file.
Word at
Cursor

Goto Line Cursor will move to the user specified line number.

Toggle Set/Remove bookmark (0-9) at the cursor location.
Bookmark

Goto Move cursor to the specified bookmark (0-9).
Bookmark

PCD C Compiler Reference Manual April 2008

Options Menu Ribbon

@' Picject Bt Sowdh | Opbom | Compin Tiew Tools Dibegy Doomest UsorTociBar

EJ Fropec Opficer Et:wﬁmm-_ A Tk '“'-:ruam.m- -

e Rvees [Elwe Daewnun | (@ (Ee ot
fpdacme

Project Add/remove files, include files, global defines and output files.
Options
Editor Allows user to define the set-up of editor properties for Windows options.
Properties
Tools Window display of User Defined Tools and options to add and apply.
Software Ability for user to select which software to update, frequency to remind
Updates Properties user and where to archive files.
Properties
Printer Set the printer port and paper and other properties for printing.
Setup
Toolbar Customize the toolbar properties to add/remove icons and keyboard commands.
Setup
File Customize the settings for files according to software being used.

Associations

10

Overview

Compile Menu Ribbon

@' Picject Edf Sodh Opbow | Corpinl Tiew Tools Dibegy Doomest UsoTociBar *ﬂ 7
e PMAEE 4 = = — = —’
L'I ﬁ caskapFat I"g‘ z &.i " (= k= * £ c
Campic -2 i Deing T ByrbalFp. O Iree Hatata
Carpla Targel O Varw Crdpud Pilee
Compile Compiles the current project in status bar using the current compiler.
Build Compiles one or more files within a project.

Compiler Pull-down menu to choose the compiler needed.

Lookup Choose a device and the compiler needed will automatically be selected.

Part

Program Lists the options of CCS ICD or Mach X programmers and will connect to SIOW
Chip program.

Debug Allows for input of .hex and will output .asm for debugging.

C/ASM Opens listing file in read-only mode. Will show each C source line code and the
List associated assembly code generated.

Symbol Opens the symbol file in read-only mode. Symbol map shows each register location
Map and what program variable are saved in each location.

Call Tree Opens the tree file in read-only mode. The call tree shows each function and what

functions it calls along with the ROM and RAM usage for each.

Statistics Opens the statistics file in read-only mode. The statistics file shows each function,
the ROM and RAM usage by file, segment and name.

Debug Opens the debug file in read-only mode. The listing file shows each C source line
File code and the associated assembly code generated.

11

PCD C Compiler Reference Manual April 2008

View Menu Ribbon

(D' Picject Bt Sowdh Opbom Compil | Vies| Tools Dibegy Doomest UsoTociBar *ﬂ"

o B 5 Osan Eesans | 5 | o

e e el G B e | 5 |

“Wirdzen
Valid This displays a list of valid interrupts used with the #INT_keyword for the chip used
Interrupts in the current project. The interrupts for other chips can be viewed using the drop
down menu.

Valid This displays a list of valid FUSE used with the #FUSES directive associated with
Fuses the chip used in the current project. The fuses for other chips can be viewed using

the drop down menu.

Data This tool is used to view the Manufacturer data sheets for all the Microchip parts
Sheets supported by the compiler.

Part This allows user to view the errata database to see what errata is associated with a
Errata part and if the compiler has compensated for the problem.

Special This displays the special function registers associated with the part.

Registers

New Edit This will open a new edit window which can be tiled to view files side by side.
Window

Dock Selecting this checkbox will dock the editor window into the IDE.

Editor

Window

Project When this checkbox is selected, the Project files slide out tab is displayed. This will
Files allow quicker access to all the project source files and output files.

Project Selecting this checkbox displays the Project slide out tab. The Project slide out tab
List displays all the recent project files.

Output Selecting this checkbox will enable the display of warning and error messages

generated by the compiler.

Identifier Selecting this checkbox displays the Identifier slide out tab. It allows quick access to
List project identifiers like functions, types, variables and defines.

12

Overview

Tools Menu Ribbon

(D' Picject Edt Sowch Opbom Compile Wiew | Teols| Dibug Doomest UserTociBar *ﬂ ki
& 5 £ 1 T 3

Al s Fan Wav Lae ey TAOR ko
Etvre e :EE!-\.I'\CI!-’ Efetergias I.I:r":;!- Eal = Iﬁm w\.:h

Device Editor

Device
Selector

File Compare

Numeric
Converter

Serial Port
Monitor

Disassembler

Convert Data
toC

Extract
Calibration

MACH X

ICD

mawly DA

This tool is used to edit the device database used by the compiler to control
compilations. The user can edit the chip memory, interrupts, fuses and other
peripheral settings for all the supported devices.

This tool uses the device database to allow for parametric selection of devices.
The tool displays all eligible devices based on the selection criteria.

This utility is used to compare two files. Source or text files can be compared line
by line and list files can be compared by ignoring the RAM/ROM addresses to
make the comparisons more meaningful.

This utility can be used to convert data between different formats. The user can
simultaneously view data in various formats like binary, hex, IEEE, signed and
unsigned.

This tool is an easy way of connecting a PIC to a serial port. Data can be viewed
in ASCII or hex format. An entire hex file can be transmitted to the PIC which is
useful for bootloading application.

This tool will take an input hex file and output an ASM.

This utility will input data from a text file and generate code is form of a #ROM or
CONST statement.

This tool will input a hex file and extract the calibration data to a C include file.
This feature is useful for saving calibration data stored at top of program memory
from certain PIC chips.

This will call the Mach-X.exe program and will download the hex file for the
current project onto the chip.

This will call the ICD.exe program and will download the hex file for the current
project onto the chip.

13

PCD C Compiler Reference Manual April 2008

Debug Menu Ribbon

(D' Picject Edft Somdh Opbom Compin Tiew Tools | Debog| Doomest UsorTociBar *ﬂ 7
: ; N I =]
'ﬁ! E L-*;%H.n % '.-'v?vl:l-r' Bt crdr E:I. # hm?‘m-‘
Dabogge Sorbied Wi
Enable Enables the debugger. Opens the debugger window, downloads the code and on-

Debugger chip debugger and resets the target into the debugger.

Reset This will reset the target into the debugger.
Single Executes one source code line at a time. A single line of C source code or ASM
Step code is executed depending on whether the source code or the list file tab in the

editor is active.
Step Over This steps over the target code. It is useful for stepping over function calls.

Run to Runs the target code to the cursor. Place the cursor at the desired location in the
Cursor code and click on this button to execute the code till that address.

Snapshot This allows users to record various debugging information. Debug information like
watches, ram values, data eeprom values, rom values , peripheral status can be
conveniently logged. This log can be saved, printed, overwritten or appended.

Run This tool allows the IDE's integrated debugger to execute a C-style script. The
Script functions and variable of the program can be accesses and the debugger creates a
report of the results.

Debug This drop down menu allows viewing of a particular debug tab. Click on the tab
Windows name in the drop down list which you want to view and it will bring up that tab in the
debugger window.

14

Overview

Document Menu Ribbon

ﬂ}' Pioject Bt Sowdh Opbom Compin Tiew Tools Debug | Doorrest| Unir TookBar
B o= A - | E
B See m s 1T ¥ Rt Qualee Dirsseds Pt difla
Dioourmss Somll Thuch Privk
Format This utility formats the source file for indenting, color syntax highlighting, and other
Source formatting options.
Generate This will call the document generator program which uses a user generated

Document template in .RTF format to merge with comment from the source code to produce
an output file in .RTF format as source code documentation.

RTF Editor ~ Open the RTF editor program which is a fully featured RTF editor to make
integration of documentation into your project easier.

Flow Chart Opens a flow chart program for quick and easy charting. This tool can be used to
generate simple graphics including schematics.

Quotes Performs a spell check on all the words within quotes.
Comments Performs a spell check on all the comments in your source code.

Print all Print all the files of the current project.
Files

15

PCD C Compiler Reference Manual April 2008

Help Menu

Click on this icon for the following items:

Contents

Index

Keyword at
Cursor

Debugger
Help

Editor

Data Types
Operators
Statements

Preprocessor
Commands

Built-in
Functions

Technical
Support

Check for
Software
Updates

Internet

About

16

Help File table of contents
Help File index

Index search in Help File for the keyword at the cursor location. Press F1 to use
this feature.

Help File specific to debugger functionality.

Lists the Editor Keys available for use in PCW. Shft+F12 will also call this
function help file page for quick review.

Specific Help File page for basic data types.
Specific Help File page for table of operators that may be used in PCW.
Specific Help File page for table of commonly used statements.

Specific Help File page for listing of commonly used preprocessor commands.

Specific Help File page for listing of commonly used built-in functions provided by
the compiler.

Technical Support wizard to directly contact Technical Support via email and the
ability to attach files.

Automatically invokes Download Manager to view local and current versions of
software.

Direct links to specific CCS website pages for additional information.

Shows the version of compiler(s) and IDE installed.

PROGRAM SYNTAX

ol
Lo

C Compiler

Overall Structure

A program is made up of the following four elements in a file:
Comment
Pre-Processor Directive
Data Definition
Function Definition

Every C program must contain a main function which is the starting point of the program execution.
The program can be split into multiple functions according to the their purpose and the functions
could be called from main or the subfunctions. In a large project functions can also be placed in
different C files or header files that can be included in the main C file to group the related functions
by their category. CCS C also requires to include the appropriate device file using #include
directive to include the device specific functionality. There are also some preprocessor directives
like #fuses to specify the fuses for the chip and #use delay to specify the clock speed. The
functions contain the data declarations,definitions,statements and expressions. The compiler also
provides a large number of standard C libraries as well as other device drivers that can be included
and used in the programs. CCS also provides a large number of built-in functions to access the
various peripherals included in the PIC microcontroller.

Comment

Comments — Standard Comments
A comment may appear anywhere within a file except within a quoted string. Characters between /*
and */ are ignored. Characters after a // up to the end of the line are ignored.

Comments for Documentation Generator-

The compiler recognizes comments in the source code based on certain markups. The compiler
recognizes these special types of comments that can be later exported for use in the
documentation generator. The documentation generator utility uses a user selectable template to
export these comments and create a formatted output document in Rich Text File Format. This
utility is only available in the IDE version of the compiler. The source code markups are as follows.

Global Comments — These are named comments that appear at the top of your source code. The
comment names are case sensitive and they must match the case used in the documentation
template.

PCD C Compiler Reference Manual April 2008

For example:
/I*PURPOSE This program implements a Bootloader.
/*AUTHOR John Doe

A''/l' followed by an * will tell the compiler that the keyword which follows it will be the named
comment. The actual comment that follows it will be exported as a paragraph to the documentation
generator.
Multiple line comments can be specified by adding a : after the *, so the compiler will not
concatenate the comments that follow. For example:
/**:CHANGES
05/16/06 Added PWM loop
05/27.06 Fixed Flashing problem
*/

Variable Comments — A variable comment is a comment that appears immediately after a variable
declaration. For example:

int seconds; // Number of seconds since last entry

long day, // Current day of the month

int month, /* Current Month */

long year; // Year

Function Comments — A function comment is a comment that appears just before a function
declaration. For example:

/I The following function initializes outputs

void function_foo()

{

init_outputs();

Function Named Comments — The named comments can be used for functions in a similar manner
to the Global Comments. These comments appear before the function, and the names are
exported as-is to the documentation generator.

For example:

/I*PURPOSE This function displays data in BCD format

void display_BCD(byte n)

display_routine();

18

Program Syntax

Trigraph Sequences

. __|
The compiler accepts three character sequences instead of some special characters not available
on all keyboards as follows:

Sequence Same as
??=
?22(
7?2/
??)
??
?7<
??!
27>
??-

|l ~— " >— —— 3

Multiple Project Files

When there are multiple files in a project they can all be included using the #include in the main file
or the subfiles to use the automatic linker included in the compiler. All the header files, standard
libraries and driver files can be included using this method to automatically link them.

For example: if you have main.c, x.c, x.h, y.c,y.h and z.c and z.h files in your project, you can say
in:

main.c #include <device | #include <x.c> #include <y.c> #include <z.c>
header file>

X.C #include <x.h>

y.C #include <y.h>

z.c #include <z.h>

In this example there are 8 files and one compilation unit. Main.c is the only file compiled.

Note that the #module directive can be used in any include file to limit the visibility of the symbol in
that file.

To separately compile your files see the section "multiple compilation units".

19

PCD C Compiler Reference Manual April 2008

Multiple Compilation Units

Traditionally the CCS C compilers used only one compilation unit and multiple files were
implemented with #include files. When using multiple compilation units care must be given that
preprocessor commands that control the compilation are compatible across all units. Itis
recommended directives such as #fuses, #use and the device header file all be put in an include
file included by all units. When a unit is compiled it will output a relocatable object file (.0) and
symbol file (.osym).

For a detailed example see MCV.zip in the examples directory.

The following is an overview of a multiple compilation unit example:

main.c Primary file for the first compilation unit

filter.c Primary file for the second compilation unit

report.c Primary file for the third compilation unit

project.h Include file with project wide definitions, should be included by all units

filter.h External definitions for filter, should be included by all units that use the filter unit
report.h External definitions for report, should be included by all units that use report
build.bat Batch file that compiles and links all units

build.bat Batch file that recompiles files needing compiling and links

project.pjt Used by build.bat to list project units

main filter report
#include®s: #include®s: #include®"s:

project.h project.h project.h

filter.h report.h

report.h Public Definitions:

Public Definitions: report_line_number

Definitions: clear_data() report_data_line()

main() program Ffilter_data() report_error()
Uses: Uses:

clear_data(Q) report_error()

filter_data()

report_data_line()

report_line_number

4

Each unit: project.hex (final load image)
*.0 (relocatable object) project.Ist (C and ASM listing)
*.err (error file) project.sym (project symbols)
*.0sym (unit symbols) project.cof (debugger file)

20

Notes

Program Syntax

By default, variables declared at the unit level (outside a function) are visible to all other
units. To make a variable private to the unit use the keyword static. Notice report.c
defines the varable report_line_number. If the definition were changed to look as the
following line, then there would be a link time error since main.c attempts to use the
variable.

static long report_line_number;

This same rule applies to functions. Use static to make a function local to the unit.

Should two units have a function, or unit level variable with the same name, an error is
generated unless one of the following is true:

e The identifier is qualified with static.

e The argument list is different and two instances of the function can co-exist in
the project in accordance with the normal overload rules.

e The contents of the functions are absolutely identical. In this case the CCS
linker simply deletes the duplicate function.

The standard C libraries (like stdlib.h) are supplied with source code in the .h file.
Because of the above rule, these files may be #include'd in multiple units without taking
up extra ROM and with no need to include these in the link command since they are not
units.

#define's are never exported to other units. If a #define needs to be shared between units
put them in an include file that is #include'd by both units. Project wide defines in our
example could go into prject.h

It is best to have an include file like project.h that all units #include. This file should define
the chip, speed, fuses and any other compiler settings that should be the same for all
units in the project.

In this example project a #USE RS232 is in the project.h file. This creates an RS232
library in each unit. The linker is able to determine the libraries are the same and the
duplicates removed in the final link.

Each unit has it own error file (like filter.err). When the compilations are done in a batch
file it may be useful to terminate the batch run on the first error. The +CC command line
option will cause the compiler to return a windows error code if the compilation fails. This
can be tested in the batch file like this:

"c:\program files\picc\ccsc"+FM +CC +EXPORT report.c
if not errorlevel 1 goto abort

goto end

:abort

echo COMPILE ERROR
:end

21

PCD C Compiler Reference Manual April 2008

Example

Here is a sample program with explanation using CCS C to read adc samples over rs232:
L11777777771777777777/77777777777/7//////7777777///7/77/
/// This program displays the min and max of 30, ///
/// comments that explains what the program does, ///

/// and A/D samples over the RS-232 interface. ///
L1111777777777777777///7777/777777///////77/7777////7/777
#iT defined(__PCM_) // preprocessor directive that
chooses the compiler
#include <16F877.h> // preprocessor directive that
selects the chip PIC16F877
#Ffuses HS,NOWDT,NOPROTECT ,NOLVP // preprocessor directive that
defines fuses for the chip
#use delay(clock=20000000) // preprocessor directive that

specifies the clock speed

#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7) // preprocessor directive that
includes the rs232 libraries

#elif defined(__PCH_) // same as above but for the
PCH compiler and PIC18F452

#include <18F452._h>

#fuses HS,NOWDT,NOPROTECT,NOLVP

#use delay(clock=20000000)

#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7)

#endif
void main() { // main function
int i, value, min, max; // local variable declaration
printf('Sampling:"); // printf function included in
the RS232 library
setup_port_a(ALL_ANALOG); // A/D setup functions- built-
in
setup_adc(ADC_CLOCK_INTERNAL); // A/D setup functions- built-
in
set_adc_channel(0); // A/D setup functions- built-
in
do { // do while statement
min=255; // expression
max=0;
for(i=0; 1<=30; ++i) { // for statement
delay _ms(100); // delay built-in function
call
value = Read_ADCQ); // A/D read functions- built-
in
if(value<min) // if statement
min=value;
if(value>max) // if statement

max=value;
1]]
printfC\n\rMin: %2X Max: %2X\n\r'',min,max);

} while (TRUE);
}

22

STATEMENTS

ol
Lo

C Compiler

Statements

STATEMENT

if (expr) stmt; [else stmt;]

while (expr) stmt; c(O1=0)
do stmt while (expr);
0):
for (exprl;expr2;expr3) stmt; ;H+D)
r\n”’,1);

switch (expr) {
case cexpr: stmt; //one or more case intfF(“cmd 07);
[default:stmt]

ntf(““cmd 17);

intf(“bad cmd);

return [expr];

goto label;

label: stmt;

break;

continue;

expr;

)

Zero or more

Note: Itemsin[] are optional

PCD C Compiler Reference Manual April 2008

if-else
The if-else statement is used to make decisions.
The syntax is :
if (expr)
stmt-1;
[else
stmt-2;]
The expression is evaluated; if it is true stmt-1 is done. If it is false then stmt-2 is done.

else-if
This is used to make multi-way decisions.
The syntax is
if (expr)
stmt;
[else if (expr)
stmt;]
[else
stmt;]
The expression's are evaluated in order; if any expression is true, the statement associated with it
is executed and it terminates the chain. If none of the conditions are satisfied the last else part is
executed.

Example:

if (x==25)
x=1;

else
X=X+1;

Also See: Statements

24

Statements

while

While is used as a loop/iteration statement.
The syntax is
while (expr)
statement
The expression is evaluated and the statement is executed until it becomes false in which case the
execution continues after the statement.

Example:
while (get_rtcc()!=0)
putc("n”);

Also See: Statements

do

Statement: do stmt while (expr);

Example:

do {
putc(c=getc());

} while (c!=0);

Also See: Statements , While

do-while

It differs from While and For loop in that the termination condition is checked at the bottom of the
loop rather than at the top and so the body of the loop is always executed at least once.
The syntax is
do
statement
while (expr);
The statement is executed; the expr is evaluated. If true, the same is repeated and when it
becomes false the loop terminates.

Also See: Statements , While

25

PCD C Compiler Reference Manual April 2008

for

For is also used as a loop/iteration statement.
The syntax is
for (exprl,expr2;expr3)
statement
The expressions are loop control statements. exprl is the initialization, expr2 is the termination
check and expr3 is re-initialization. Any of them can be omitted.

Example:
for (i=1;i<=10;++i)
printfC'%u\r\n",i);

Also See: Statements

switch

Switch is also a special multi-way decision maker.
The syntax is
switch (expr) {
case constl: stmt sequence;
break;

[default:stmt]
}
This tests whether the expression matches one of the constant values and branches accordingly.
If none of the cases are satisfied the default case is executed. The break causes an immediate exit,
otherwise control falls through to the next case.

Example:
switch (cmd) {
case O:printf(*'cmd 0™);

break;
case l:printf("cmd 1™);
break;
default:printf("'bad cmd™);
break; }

Also See: Statements

26

Statements

return

Statement: return [expr];

A return statement allows an immediate exit from a switch or a loop or function and also returns a
value.

The syntax is

return(expr);

Example:
return (5);

Also See: Statements

goto

Statement: goto label;
The goto statement cause an unconditional branch to the label.
The syntax is
goto label;
A label has the same form as a variable name, and is followed by a colon. The goto's are used
sparingly, if at all.

Example:
goto loop;

Also See: Statements

label

|
Statement: label: stmt;

Example:
loop: i++;

Also See: Statements

27

PCD C Compiler Reference Manual April 2008

break

Statement: break;
The break statement is used to exit out of a control loop. It provides an early exit from while, for ,do
and switch.
The syntax is
break;
It causes the innermost enclosing loop(or switch) to be exited immediately.

Example:
break;

Also See: Statements

continue

Statement: continue;

The continue statement causes the next iteration of the enclosing loop(While, For, Do) to begin.
The syntax is

continue;

It causes the test part to be executed immediately in case of do and while and the control passes
the re-initialization step in case of for.

Example:
continue;

Also See: Statements

expr
. __|
Statement: expr;

Example:
i=1;

Also See: Statements

28

Statements

. __|]
Statement: ;

Example:

Also See: Statements

stmt

. __|
Statement: {[stmt]}

Zero or more semi colon separated
Example:
{a=1;

b=1;}

Also See: Statements

29

EXPRESSIONS

ol
Lo

C Compiler

Expressions

Constants:

123

0123

0x123

0b010010

"

010

"\XA5’

I\Cl

"abcdef"

Identifiers:

ABCDE Up to 32 characters beginning with a non-numeric. Valid characters are
A-Z, 0-9 and _ (underscore).

ID[X] Single Subscript

ID[X][X] Multiple Subscripts

ID.ID Structure or union reference

ID->ID Structure or union reference

Operators
. __|

+ Addition Operator

+= Addition assignment operator, x+=y, is the same as x=x+y

&= Bitwise and assignment operator, x&=y, is the same as x=x&y

& Address operator

& Bitwise and operator

= Bitwise exclusive or assignment operator, x"=y, is the same as x=x"y

A Bitwise exclusive or operator

PCD C Compiler Reference Manual April 2008

Bitwise inclusive or assignment operator, xl=y, is the same as x=xly

Bitwise inclusive or operator

?: Conditional Expression operator

-- Decrement

/= Division assignment operator, x/=y, is the same as x=x/y

/ Division operator

== Equality

> Greater than operator

>= Greater than or equal to operator

++ Increment

* Indirection operator

1= Inequality

<<= Left shift assignment operator, x<<=y, is the same as x=x<<y
< Less than operator

<< Left Shift operator

<= Less than or equal to operator

&& Logical AND operator

! Logical negation operator

Il Logical OR operator

%= Modules assignment operator x%=y, is the same as x=x%y
% Modules operator

= Multiplication assignment operator, x=y, is the same as x=x*y
* Multiplication operator

~ One's complement operator

>>= Right shift assignment, x>>=y, is the same as x=x>>y

>> Right shift operator

-> Structure Pointer operation

-= Subtraction assignment operator

- Subtraction operator

sizeof Determines size in bytes of operand

32

operator precedence

Expressions

IN DESCENDING PIN DESCENDING PRECEDENCE

(expr)

lexpr ~expr ++expr expr++ - -expr expr - -
(type)expr *expr &value sizeof(type)
exprexpr expr/expr expryoexpr

expr+expr expr-expr

expr<<expr expr>>expr

expr<expr expr<=expr expr=expr expr>=expr
expr==expr exprl=expr

expr&expr

expriexpr

expr | expr

expr&& expr

expr || expr

expr ? expr:

expr

Ivalue = expr Ivalue+=expr Ivalue-=expr

Ivalue*=expr Ivalue/=expr Ivalue%=expr

Ivalue>>=expr

Ivalue<<=expr

Ivalue&=expr

Ivalue™=expr

Ivalue|=expr

expr, expr

(Operators on the same line are equal in precedence)

33

PCD C Compiler Reference Manual April 2008

Reference Parameters

The compiler has limited support for reference parameters. This increases the readability of code
and the efficiency of some inline procedures. The following two procedures are the same. The one
with reference parameters will be implemented with greater efficiency when it is inline.

funct_a(int*x, int*y){
/*Traditional*/
if(*x1=5)
*y=*x+3;

¥
funct_a(&a,&b);

funct_b(intéx, int&y){
/*Reference params*/
if(x1=5)
y=Xx+3;
¥

funct_b(a,b);

Variable Argument Lists

The compiler supports a variable number of parameters. This works like the ANSI requirements
except that it does not require at least one fixed parameter as ANSI does. The function can be
passed any number of variables and any data types. The access functions are VA_START,
VA_ARG, and VA_END. To view the number of arguments passed, the NARGS function can be
used.

/*

stdarg.h holds the macros and va_list data type needed for variable
number of parameters.

*/

#include <stdarg.h>

A function with variable number of parameters requires two things. First, it requires the ellipsis (...),
which must be the last parameter of the function. The ellipsis represents the variable argument list.
Second, it requires one more variable before the ellipsis (...). Usually you will use this variable as a
method for determining how many variables have been pushed onto the ellipsis.

34

Expressions

Here is a function that calculates and returns the sum of all variables:
int Sum(int count, ...)
{
//a pointer to the argument list
va_list al;
int x, sum=0;
//start the argument list
//count is the first variable before the ellipsis
va_start(al, count);
while(count--) {
//get an int from the list
x = var_arg(al, int);
sum += X;

//stop using the list

va_end(al);
return(sum);

Some examples of using this new function:
x=Sum(5, 10, 20, 30, 40, 50);
y=Sum(3, a, b, c);

Default Parameters

Default parameters allows a function to have default values if nothing is passed to it when called.

int mygetc(char *c, int n=100){
}

This function waits n milliseconds for a character over RS232. If a character is received, it saves it
to the pointer ¢ and returns TRUE. If there was a timeout it returns FALSE.

//gets a char, waits 100ms for timeout
mygetc(&c);

//gets a char, waits 200ms for a timeout
mygetc(&c, 200);

35

PCD C Compiler Reference Manual April 2008

Overloaded Functions

Overloaded functions allow the user to have multiple functions with the same name, but they must
accept different parameters. The return types must remain the same.

Here is an example of function overloading: Two functions have the same name but differ in the
types of parameters. The compiler determines which data type is being passed as a parameter and
calls the proper function.

This function finds the square root of a long integer variable.

long FindSquareRoot(long n){
}

This function finds the square root of a float variable.

float FindSquareRoot(float n){
}

FindSquareRoot is now called. If variable is of long type, it will call the first FindSquareRoot()
example. If variable is of float type, it will call the second FindSquareRoot() example.

result=FindSquareRoot(variable);

36

DATA DEFINITIONS

ol
Lo

C Compiler

Basic and Special types

This section describes what the basic data types and specifiers are and how variables can be
declared using those types. In C all the variables should be declared before they are used. They
can be defined inside a function (local) or outside all functions (global). This will affect the visibility
and life of the variables.

Basic Types
Range
Type- . Unsigned Signed Digits
e Size
Specifier
intl 1 bit number Oto1l N/A 1/2
int8 8 bit number 0to 255 -128 to 127 2-3
intl6 16 bit number 0 to 65535 -32768 to 32767 4-5
int32 32 bit number 0 to 4294967295 -2147483648 to 2147483647 | 9-10
int48 48 bit number Oto -140737488355328 to 14-15
281474976710655 140737488355327
int64 64 bit number N/A -9223372036854775808 to | 18-19
9223372036854775807
float32 32 bit float -1.5x 10" to 3.4 x10* 7-8
float48 48 bit float -2.9x10% to 1.7 x 10® 11-12
(higher precision)

float64 64 bit float -5.0 x 10** to 1.7 x 10**® 15-16

PCD C Compiler Reference Manual April 2008

C Standard Type | Default Type
short int8

char unsigned int8
int intl6

long int32

long long int64

float float32
double float64

Note: All types, except char, by default are signed; however, may be preceded by unsigned or
signed (Except int64 may only be signed). Short and long may have the keyword INT following
them with no effect. Also see #TYPE to change the default size.

INT1 is a special type used to generate very efficient code for bit operations and 1/0. Arrays of bits
(INT1 or SHORT) in RAM are now supported. Pointers to bits are not permitted. The device
header files contain defines for BYTE as an int8 and BOOLEAN as an intl.

Integers are stored in little endian format. The LSB is in the lowest address. Float formats are
described in common questions.

Type-Qualifier

static

auto

extern

register

_fixed(n)

unsigned
signed

volatile

const

void

38

Variable is globally active and initialized to 0. Only accessible from this compilation
unit.

Variable exists only while the procedure is active. This is the default and AUTO need
not be used.

External variable used with multiple compilation units. No storage is allocated. Is
used to make otherwise out of scope data accessible. there must be a non-extern
definition at the global level in some compilation unit.
If possible a CPU register instead of a RAM location.

Creates a fixed point decimal number where n is how many decimal places to
implement.

Data is always positive.
Data can be negative or positive. This is the default data type if not specified.

Tells the compiler optimizer that this variable can be changed at any point during
execution.

Data is read-only. Depending on compiler configuration, this qualifier may just make
the data read-only -AND/OR- it may place the data into program memory to save
space.

Built-in basic type. Type void is used for declaring main programs and subroutines.

Data Definitions

Special types

Enum enumeration type: creates a list of integer constants.

enum [id] {[id[=cexpr]]}

One or more comma separated

The id after ENUM is created as a type large enough to the largest constant in the list. The ids in
the list are each created as a constant. By default the first id is set to zero and they increment by
one. If a =cexpr follows an id that id will have the value of the constant expression and the
following list will increment by one.

For example:
enum colors{red, green=2,blue}; // red will be 0, green will be 2 and
blue will be 3

Struct structuretype: creates a collection of one or more variables, possibly of different types,
grouped together as a single unit.

struct[*] [id] { type-qualifier [*]id [bits]; 1} [id]

One or more, Zero
semi-colon or more
separated

For example:
struct data_record {
int a [2];
int b : 2; /*2 bits */
int c : 3; /*3 bits*/
int d;
}data_var; // data_record is a structure
type
//data _var is a variable

39

PCD C Compiler Reference Manual April 2008

Union union type: holds objects of different types and sizes, with the compiler keeping track of
size and alignment requirements. They provide a way to manipulate different kinds of data in a

single area of storage.

union[*] [id] { type-qualifier [*]id [bitsl; }[id]

One or more, Zero
semi-colon or more
separated

For example:

union u_tab {

int ival;

long lval;

float fval;

}; // u_tag is a union type that can hold

a float

If typedef is used with any of the basic or special types it creates a new type name that can be
used in declarations. The identifier does not allocate space but rather may be used as a type
specifier in other data definitions.

typedef [type-qualifier] [type-specifier] [declarator];
For example:
typedef int mybyte; // mybyte can be used in declaration to
specify the int type
typedef short mybit; // mybyte can be used in declaration to
specify the int type
typedef enum {red, green=2,blue}colors; //colors can be

used to declare variables of
//this enum type

_ ADDRESS__: A predefined symbol __ADDRESS__ may be used to indicate a type that must
hold a program memory address.

For example:
ADDRESS __ testa = 0x1000 //will allocate 16 bits for testa and

initialize to 0x1000

40

Data Definitions

Declarations

A declaration specifies a type qualifier and a type specifier, and is followed by a list of one or more
variables of that type.
For e.g.:
int a,b,c,d;
mybit e,T;
mybyte g[3]1[2];
char *h;
colors j;
struct data_record data[10];
static int i;
extern long j;

Variables can also be declared along with the definitions of the special types.

For eg:
enum colors{red, green=2,blue}i,j.k; // colors is the enum type and
i,J,.k are variables of that type

Non-RAM Data Definitions

CCS C compiler also provides a custom qualifier addressmod which can be used to define a
memory region that can be RAM, program eeprom, data eeprom or external memory. Addressmod
replaces the older typemod (with a different syntax).

The usage is :

addressmod (name,read_function,write_function,start_address,end_address);

Where the read_function and write_function should be blank for RAM, or for other memory should
be the following prototype:

// read procedure for reading n bytes from the memory starting at location

addr
void read_function(int32 addr,int8 *ram, int nbytes){

}

//write procedure for writing n bytes to the memory starting at location addr

void write_function(int32 addr,int8 *ram, int nbytes){
}

41

PCD C Compiler Reference Manual April 2008

Example:
void DataEE_Read(int32 addr, int8 * ram, int bytes) {
int i;
for(i=0; i<=bytes; i++,ram++,addr++)
*ram=read_eeprom(addr) ;

}
void DataEE _Write(int32 addr, int8 * ram, int bytes) {
int i;
for(i=0; i<=bytes; i++,ram++,addr++)
write_eeprom(addr,*ram);

}
addressmod (DataEE,Data_EE_read,DataEE_write,5,0xff;
// would define a region called DataEE between
// 0x5 and OxFf in the chip data EEprom.
void main (void)
{
int DataEE test;
int x,y;
x=12;
test=x; // writes x to the Data EEPROM
y=test; // Reads the Data EEPROM

Note: If the area is defined in RAM then read and write functions are not required, the variables
assigned in the memory region defined by the addressmod can be treated as a regular variable in
all valid expressions. Any structure or data type can be used with an addressmod. Pointers can
also be made to an addressmod data type. The #type directive can be used to make this memory
region as default for variable allocations.

The syntax is :

#type default=addressmodname // all the variable declarations that
// follow will use this memory region

#type default= // goes back to the default mode

For example:

Type default=emi //emi is the addressmod name defined

char buffer[8192];
#include <memoryhog.h>
#type default=

42

Data Definitions

Using Program Memory for Data

CCS C Compiler provides a few different ways to use program memory for data. The different ways
are discussed below:

Constant Data:

The CONST qualifier will place the variables into program memory. If the keyword CONST is used
before the identifier, the identifier is treated as a constant. Constants should be initialized and may
not be changed at run-time. This is an easy way to create lookup tables.

The ROM Qualifier puts data in program memory with 3 bytes per instruction space. The address
used for ROM data is not a physical address but rather a true byte address. The & operator can be
used on ROM variables however the address is logical not physical.
The syntax is:
const type id[cexpr] = {value}
For example:
Placing data into ROM
const int table[16]={0,1,2...15}
Placing a string into ROM
const char cstring[6]={"hello"}
Creating pointers to constants
const char *cptr;
cptr = string;

The #org preprocessor can be used to place the constant to specified address blocks.
For example:
The constant ID will be at 1C00.
#ORG O0x1C00, Ox1COF
CONST CHAR ID[10]= {'123456789"};
Note: Some extra code will precede the 123456789.

The function label_address can be used to get the address of the constant. The constant variable
can be accessed in the code. This is a great way of storing constant data in large programs.
Variable length constant strings can be stored into program memory.

A special method allows the use of pointers to ROM. This method does not contain extra code at
the start of the structure as does constant..

For example:
char rom commands[] = {“put]get|status]|shutdown™};

The compiler allows a non-standard C feature to implement a constant array of variable length
strings.
The syntax is:
const char id[n] [*] = { "string", "string" ...};

43

PCD C Compiler Reference Manual April 2008

Where n is optional and id is the table identifier.

For example:
const char colors[] [*] = {"Red", "Green'", "Blue"};

#ROM directive:
Another method is to use #rom to assign data to program memory.

The syntax is:
#rom address = {data, data, .. , data}
For example:
Places 1,2,3,4 to ROM addresses starting at 0x1000
#rom 0x1000 = {1, 2, 3, 4}
Places null terminated string in ROM
#rom 0x1000={"hello"}
This method can only be used to initialize the program memory.

Built-in-Functions:
The compiler also provides built-in functions to place data in program memory, they are:

e write_program_memory(address, dataptr, count);
- Writes count bytes of data from dataptr to address in program memory.
- Every fourth byte of data will not be written, fill with 0x00.

Please refer to the help of these functions to get more details on their usage and limitations
regarding erase procedures. These functions can be used only on chips that allow writes to
program memory. The compiler uses the flash memory erase and write routines to implement the
functionality.

The data placed in program memory using the methods listed above can be read from width the
following functions:
e read_program_memory((address, dataptr, count)
- Reads count bytes from program memory at address to RAM at dataptr. Every
fourth byte of data is read as 0x00
e read_rom_memory((address, dataptr, count)
- Reads count bytes from program memory at the logical address to RAM at
dataptr.

These functions can be used only on chips that allow reads from program memory. The compiler
uses the flash memory read routines to implement the functionality.

44

Data Definitions

Function Definition

The format of a function definition is as follows:

[qualifier] id ([type-specifier id]) { [stmt] }

L] 3 3

Optional See Below Zero or more comma separated. Zero or more Semi-colon
See Data Types separated. See Statements.

The qualifiers for a function are as follows:
e VOID
o type-specifier
e #separate
o #inline
e #int_..

When one of the above are used and the function has a prototype (forward declaration of the
function before it is defined) you must include the qualifier on both the prototype and function
definition.

A (non-standard) feature has been added to the compiler to help get around the problems created
by the fact that pointers cannot be created to constant strings. A function that has one CHAR
parameter will accept a constant string where it is called. The compiler will generate a loop that will
call the function once for each character in the string.

Example:
void lcd_putc(char c) {

}
lcd_putc ("'Hi There.™);

45

FUNCTIONAL OVERVIEWS

Vol
Lo

12C

C Compiler

12C™ is a popular two-wire communication protocol developed by Phillips. Many PIC
microcontrollers support hardware-based 12C™. CCS offers support for the hardware-based 12C™
and a software-based master I2C™ device. (For more information on the hardware-based 12C
module, please consult the datasheet for you target device; not all PICs support [2C™.)

Relevant Functions:
i2c_start()
i2c_write(data)
i2c_read()

i2c_stop()

i2c_poll()

Relevant Preprocessor:
#use i2c

Relevant Interrupts:
#INT_SSP
#INT_BUSCOL
#INT_I2C
#INT_BUSCOL2
#INT_SSP2
#INT_mi2c
#INT_si2c

Relevant Include Files:
None, all functions built-in

Relevant getenv()
Parameters:

12C_SLAVE
12C_MASTER

Issues a start command when in the 12C master mode.

Sends a single byte over the 12C interface.

Reads a byte over the 12C interface.

Issues a stop command when in the I12C master mode.

Returns a TRUE if the hardware has received a byte in the buffer.

Configures the compiler to support 12C™ to your specifications.

12C or SPI activity

Bus Collision

12C Interrupt (Only on 14000)

Bus Collision (Only supported on some PIC18's)

12C or SPI activity (Only supported on some PIC18's)
Interrupts on activity from the master 12C module
Interrupts on activity form the slave 12C module

Returns a 1 if the device has 12C slave H/W
Returns a 1 if the device has a I12C master H/W

PCD C Compiler Reference Manual April 2008

Example Code:

#define Device_SDA
PIN_C3

#define Device_SLC
PIN_C4

#use i2c(master,
sda=Device_SDA,
scl=Device_SCL)

BYTE data;
i2c_start();
i2c_write(data);
i2c_stop();

ADC

/I Pin defines

/I Configure Device as Master

/I Data to be transmitted

/' lssues a start command when in the I12C master mode.
/I Sends a single byte over the 12C interface.

/llssues a stop command when in the 12C master mode.

These options let the user configure and use the analog to digital converter module. They are only
available on devices with the ADC hardware. The options for the functions and directives vary
depending on the chip and are listed in the device header file. On some devices there are two
independent ADC modules, for these chips the second module is configured using secondary ADC

setup functions (Ex. setup_ADC2).

Relevant Functions:

setup _adc(mode)

setup_adc_ports(value)
set_adc_channel(channel)

read_adc(mode)

ADC_done()

setup_ADC2(mode)
setup_ADC_ports2(ports, reference)

set_ADC_channel2(channel)
read_ADC2(mode)

48

Sets up the a/d mode like off, the adc clock etc.

Sets the available adc pins to be analog or digital.
Specifies the channel to be use for the a/d call.

Starts the conversion and reads the value. The mode can
also control the functionality.

Returns 1 if the ADC module has finished its conversion.

Sets up the ADC2 module, for example the ADC clock
and ADC sample time.

Sets the available ADC2 pins to be analog or digital, and
sets the voltage reference for ADC2.

Specifies the channel to use for the ADC2 input.

Starts the sample and conversion sequence and reads
the value. The mode can also control the functionality.

ADC_done()

Relevant Preprocessor:
#DEVICE ADC=xx

Relevant Interrupts :
INT_AD
INT_ADOF

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
ADC_CHANNELS
ADC_RESOLUTION

Example Code:
#DEVICE ADC=10

long value;
setup_adc(ADC_CLOCK_INTERNAL);
setup_adc_ports(ALL_ANALOG);
set_adc_channel(0);

delay_us(10);

value=read_adc();

read_adc(ADC_START_ONLY);
value=read_adc(ADC_READ_ONLY);

Functional Overviews

Returns 1 if the ADC module has finished its conversion

Configures the read_adc return size. For example, using
a PIC with a 10 bit A/D you can use 8 or 10 for xx- 8 will
return the most significant byte, 10 will return the full A/D
reading of 10 hits.

Interrupt fires when a/d conversion is complete
Interrupt fires when a/d conversion has timed out

Number of A/D channels
Number of bits returned by read_adc

/lenables the a/d module

/land sets the clock to internal adc clock

/Isets all the adc pins to analog

/lthe next read_adc call will read channel O

/la small delay is required after setting the channel
/land before read

/Istarts the conversion and reads the result

/land store it in value

/lonly starts the conversion

/Ireads the result of the last conversion and store it in
value. Assuming the device hat a 10bit ADC module,
value will range between 0-3FF. If #DEVICE ADC=8 had
been used instead the result will yield O-FF. If #DEVICE
ADC=16 had been used instead the result will yield 0-
FFCO

49

PCD C Compiler Reference Manual April 2008

Analog Comparator

. __|
These functions sets up the analog comparator module. Only available in some devices.

Relevant Functions:
setup _comparator(mode)

Relevant Preprocessor:
None

Relevant Interrupts:
INT_COMP

Relevant Include Files:

Relevant getenv() parameters:
COMP

Example Code:
setup_comparator(A4_A5_NC_NC);
if(C10UT)

output_low(PIN_DO);

else

output_high(PIN_D1);

CAN Bus

Enables and sets the analog comparator module. The
options vary depending on the chip, please refer to the
header file for details.

Interrupt fires on comparator detect. Some chips have
more than one comparator unit, and hence more
interrupts.

None, all functions built-in

Returns 1 if the device has comparator

These functions allow easy access to the Controller Area Network (CAN) features included with the
MCP2515 CAN interface chip and the PIC18 MCU. These functions will only work with the
MCP2515 CAN interface chip and PIC microcontroller units containing either a CAN or an ECAN
module. Some functions are only available for the ECAN module and are specified by the work
ECAN at the end of the description. The listed interrupts are no available to the MCP2515 interface

chip.

50

Relevant Functions:
can_init(void);

can_set_baud(void);

can_set_mode
(CAN_OP_MODE mode);

can_set_functional_mode
(CAN_FUN_OP_MODE mode);

can_set_id(int* addr, int32 id, intl ext);

can_get_id(int * addr, intl ext);

can_putd
(int32 id, int * data, int len,
int priority, intl ext, intl rtr);

can_getd
(int32 & id, int * data, int & len,
struct rx_stat & stat);

can_enable_rtr(PROG_BUFFER b);

can_disable_rtr(PROG_BUFFER b);

can_load_rtr
(PROG_BUFFER b, int * data, int len);

can_enable_filter(long filter);

can_disable_filter(long filter);

can_associate_filter_to_buffer
(CAN_FILTER_ASSOCIATION_BUFF
ERS buffer,
CAN_FILTER_ASSOCIATION filter);

Functional Overviews

Initializes the CAN module to 125k baud and clears all
the filters and masks so that all messages can be
received from any ID.

Initializes the baud rate of the CAN bus to 125kHz. Itis
called inside the can_init() function so there is no need to
call it.

Allows the mode of the CAN module to be changed to
configuration mode, listen mode, loop back mode,
disabled mode, or normal mode.

Allows the functional mode of ECAN modules to be
changed to legacy mode, enhanced legacy mode, or first
in firstout (fifo) mode. ECAN

Can be used to set the filter and mask ID's to the value
specified by addr. It is also used to set the ID of the
message to be sent.

Returns the ID of a received message.

Constructs a CAN packet using the given arguments and
places it in one of the available transmit buffers.

Retrieves a received message from one of the CAN
buffers and stores the relevant data in the referenced
function parameters.

Enables the automatic response feature which
automatically sends a user created packet when a
specified ID is received. ECAN

Disables the automatic response feature. ECAN

Creates and loads the packet that will automatically
transmitted when the triggering ID is received. ECAN

Enables one of the extra filters included in the ECAN
module. ECAN
Disables one of the extra filters included in the ECAN
module. ECAN

Used to associate a filter to a specific buffer. This allows

only specific buffers to be filtered and is available in the
ECAN module. ECAN

51

PCD C Compiler Reference Manual April 2008

can_associate_filter_to_mask

(CAN_MASK_FILTER_ASSOCIATE
mask, CAN_FILTER_ASSOCIATION

filter);

can_fifo_getd(int32 & id,int * data,

int &len,struct rx_stat & stat);

Relevant Preprocessor:
None

Relevant Interrupts:
#int_canirx

#int_canwake
#int_canerr
#int_cantx0
#int_cantx1
#int_cantx2
#int_canrx0

#int_canrx1

Relevant Include Files:
can-mcp2510.c
can-18xxx8.c
can-18F4580.c

Relevant getenv() Parameters:
none

Example Code:

can_init();
can_putd(0x300,data,8,3, TRUE,
FALSE);

can_getd(ID,data,len,stat);

52

Used to associate a mask to a specific buffer. This
allows only specific buffer to have this mask applied.
This feature is available in the ECAN module. ECAN

Retrieves the next buffer in the fifo buffer. Only available
in the ECON module while operating in fifo mode. ECAN

This interrupt is triggered when an invalid packet is
received on the CAN.

This interrupt is triggered when the PIC is woken up by
activity on the CAN.

This interrupt is triggered when there is an error in the
CAN module.

This interrupt is triggered when transmission from buffer
0 has completed.

This interrupt is triggered when transmission from buffer
1 has completed.

This interrupt is triggered when transmission from buffer
2 has completed.

This interrupt is triggered when a message is received in
buffer 0.

This interrupt is triggered when a message is received in
buffer 1.

Drivers for the MCP2510 and MCP2515 interface chips
Drivers for the built in CAN module
Drivers for the build in ECAN module

[l initializes the CAN bus
Il places a message on the CAN buss with

//'1D = 0x300 and eight bytes of data pointed to by

// “data”, the TRUE creates an extended ID, the

/I FALSE creates

/I retrieves a message from the CAN bus storing the

//' 1D in the ID variable, the data at the array pointed to by
// “data’, the number of data bytes in len, and statistics

/[about the data in the stat structure.

Functional Overviews

Configuration Memory

On all dsPIC30, dsPIC33 and PIC24s the configuration memory is readable and writeable. The
configuration memory contains the configuration bits for things such as the oscillator mode,
watchdog timer enable, etc. These configuration bits are set by the CCS C compiler usually
through a #fuse. CCS provides an API that allows these bits to be changed in run-time.

Relevant Functions:

write_configuration_memory Writes n bytes to configuration from ramPtr, no erase needed
(ramPtr, n);

or

write_configuration_memory Write n bytes to configuration memory, starting at offset, from
(offset, ramPtr, n); ramPtr */

read_configuration_memory Read n bytes of configuration memory, save to ramPtr
(ramPtr, n);

Relevant Preprocessor:
The initial value of the
configuration memory is set
through a #fuse

Relevant Interrupts :
None

Relevant Include Files:
None, all functions built-in

Relevant getenv()
parameters:

None

Example Code:
int16 data = 0x0C32;

write_configuration_memory //writes 2 bytes to the configuration memory
(&data, 2);

53

PCD C Compiler Reference Manual April 2008

Data Eeprom

The data eeprom memory is readable and writable in some chips. These options lets the user read
and write to the data eeprom memory. These functions are only available in flash chips.

Relevant Functions:

(8 bit or 16 bit depending on
the device)

read eeprom(address)

write _eeprom(address, value)
read_eeprom(address, [N])

read_eeprom(address,
[variable])
read_eeprom(address,
pointer, N)
write_eeprom(address, value)
write_eeprom(address,
pointer, N)

Relevant Preprocessor:
#ROM address={list}

Relevant Interrupts:
INT_EEPROM

Relevant Include Files:
None, all functions built-in

Relevant getenv()
parameters:
DATA_EEPROM

Example Code:

#ROM
0x007FFC00={1,2,3,4,5}

write_eeprom(0x10, 0x1337);
value=read_eeprom(0x0);

54

Reads the data EEPROM memory location

Erases and writes value to data EEPROM location address.
Reads N bytes of data EEPROM starting at memory location
address. The maximum return size is int64.

Reads from EEPROM to fill variable starting at address

Reads N bytes, starting at address, to pointer
Writes value to EEPROM address

Writes N bytes to address from pointer

Can also be used to put data EEPROM memory data into the hex
file.

Interrupt fires when EEPROM write is complete

Size of data EEPROM memory.

/I Inserts this data into the hex file

/l The data EEPROM address differs between PICs
/I Please refer to the device editor for device specific values.

/I Writes 0x1337 to data EEPROM location 10.
/I Reads data EEPROM location 10 returns 0x1337.

Functional Overviews

CRC

The programmable Cyclic Redundancy Check (CRC) in the PIC24F is a software configurable CRC
checksum generator. (Other members of the PCD family do not have this peripheral at the time of
writing this manual). The checksum is a unique number associated with a message or a block of
data containing several bytes. The built-in CRC module has the following features:

- Programmabile bit length for the CRC generator polynomial. (up to 16 bit length)
- Programmable CRC generator polynomial.

- Interrupt output.

- 8-deep, 16-bit or 16-deep, 8-bit FIFO for data input.

Relevant Functions:

setup_crc (polynomial) This will setup the CRC polynomial.
crc_init (data) Sets the initial value used by the CRC module.
crc_calc (data) Returns the calculated CRC value.

Relevant Preprocessor:
None

Relevant Interrupts :
#INT_CRC On completion of CRC calculation.

Relevant Include Files:

None, all functions built-
in

Relevant getenv()
parameters:
None

Example Code:

Int16 data[8];

int16 result;

setup_adc(15, 3, 1); /I CRC Polynomial is X16 + X15 + X3 + X1+ 1 or Polynomial = 8005h
crc_init(OXFEEE); Starts the CRC accumulator out at OXFEEE

Result = Calculate the CRC

crc_calc(&data[0], 8);

55

PCD C Compiler Reference Manual April 2008

DMA

The Direct Memory Access (DMA) controller facilitates the transfer of data between the CPU and
its peripherals without the CPU's assistance. The transfer takes place between peripheral data
registers and data space RAM. The module has 8 channels and since each channel is
unidirectional, two channels must be allocated to read and write to a peripheral. Each DMA channel
can move a black of up to 1024 data elements after it generates an interrupt to the CPU to indicate
that the lock is available for processing. Some of the key features of the DMA module are:

- Eight DMA Channels.
- Byte or word transfers.

- CPU interrupt after half or full block transfer complete.
- One-Shot or Auto-Repeat block transfer modes.
- Ping-Pong Mode (automatic switch between two DSPRAM start addresses after each

block transfer is complete).

Relevant Functions:
setup_dma(channel, peripheral,mode)
dma_start(channel, mode,address)
dma_status(channel)

Relevant Preprocessor:
None

Relevant Interrupts :
#INT_DMAX
Relevant Include Files:

None, all functions built-in

Relevant getenv() parameters:
None

Example Code:
setup_dma(1,DMA_IN_SPI1,DMA_BYTE);

dma_start(1, DMA_CONTINOUS]|

DMA_PING_PONG, 0x2000);

56

Configures the DMA module to copy data from the
specified peripheral to RAM allocated for the DMA
channel.

Starts the DMA transfer for the specified channel in the
specified mode of operation.

This function will return the status of the specified channel
in the DMA module.

Interrupt on channel X after DMA block or half block
transfer.

Setup channel 1 of the DMA module to read the SPI1
channel in byte mode.

Start the DMA channel with the DMA RAM address of
0x2000

Functional Overviews

General Purpose I/0O
. __|

These options let the user configure and use the 1/O pins on the device. These functions will affect

the pins that are listed in the device header file.

Relevant Functions:
output_high(pin)
output_low(pin)
output_float(pin)

output_x(value)
output_bit(pin,value)
input(pin)
input_state(pin)

set_tris_x(value)

Relevant Preprocessor:
#use standard_io
(port)

#use fast_io
(port)

#use fixed_io
(port_outputs=;in,pin?)
Relevant Interrupts:
None

Relevant Include Files:
None, all functions built-in

Sets the given pin to high state.

Sets the given pin to the ground state.

Sets the specified pin to the output mode. This will allow the pin to
float high to represent a high on an open collector type of
connection.

Outputs an entire byte to the port.

Outputs the specified value (0,1) to the specified 1/O pin.

The function returns the state of the indicated pin.

This function reads the level of a pin without changing the direction
of the pin as INPUT() does.

Sets the value of the I/O port direction register. A '1' is an input and
'0" is for output.

This compiler will use this directive be default and it will
automatically inserts code for the direction register whenever an 1/O
function like output_high() or input() is used.

This directive will configure the 1/0O port to use the fast method of
performing 1/0O. The user will be responsible for setting the port
direction register using the set_tris_x() function.

This directive set particular pins to be used an input or output, and
the compiler will perform this setup every time this pin is used.

Relevant getenv() parameters:

PIN:pb
Example Code:
#use fast_io(b)

Int8 Tris_value= OxOF;
intl Pin_value;

set_tris_b(Tris_value);

output_high(PIN_B7);
IF(input(PIN_BO)){

output_high(PIN_B7)
3

Returns a 1 if bit b on port p is on this part

//Sets B0:B3 as input and B4:B7 as output
//Set the pin B7 to High

//Read the value on pin BO, set B7 to low if pin BO is
high

57

PCD C Compiler Reference Manual April 2008

Input Capture

These functions allow for the configuration of the input capture module. The timer source for the

input capture operation can be set to either Timer 2 or Timer 3. In capture mode the value of the

selected timer is copied to the ICXBUF register when an input event occurs and interrupts can be
configured to fire as needed.

Relevant Functions:

setup_capture(x,
mode)

get_capture(x, wait)

Relevant
Preprocessor:
None

Relevant Interrupts:

INT_ICx

Relevant Include
Files:

None, all functions
built-in.

Relevant getenv()
parameters:
None

Example Code:

Sets the operation mode of the input capture module x

Reads the capture event time from the ICxBUF result register. If wait is
true, program flow waits until a new result is present. Otherwise the
oldest value in the buffer is returned.

Interrupt fires on capture event as configured

setup_timer3(TMR_INTERNAL | TMR_DIV_BY_8);
setup_capture(2, CAPTURE_FE | CAPTURE_TIMER3);

while(TRUE) {
timerValue

get_capture(2, TRUE);

printf(“A module 2 capture event occurred at: %LU”, timerValue;

}

58

Functional Overviews

Internal Oscillator

. __|
Two internal oscillators are present in PCD compatible chips, a fast RC and slow RC oscillator
circuit. In many cases (consult your target datasheet or family data sheet for target specifics) the
fast RC oscillator may be connected to a PLL system, allowing a broad range of frequencies to be
selected. The Watchdog timer is derived from the slow internal oscillator.

Relevant Functions:

setup_oscillator() Explicitly configures the oscillator.
Relevant Preprocessor: Specifies the values loaded in the device configuration memory.
#fuses May be used to setup the oscillator configuration.

Relevant Interrupts:
#int_oscfail Interrupts on oscillator failure

Relevant Include Files:
None, all functions built-in

Relevant getenv()

parameters:
CLOCK Returns the clock speed specified by #use delay()
FUSE_SETxxxx Returns 1 if the fuse xxxx is set.

Example Code:
None

Interrupts

. __|
The following functions allow for the control of the interrupt subsystem of the microcontroller. With
these functions, interrupts can be enable, disabled, and cleared. With the preprocessor directives,
a default function can be called for any interrupt that does not have an associated isr, and a global
function can replace the compiler generated interrupt dispatcher.

Relevant Functions:

disable_interrupts() Disables the specified interrupt.
enable_interrupts() Enables the specified interrupt.
ext_int_edge() Enables the edge on which the edge interrupt should trigger. This

can be either rising or falling edge.

clear_interrupt This function will the specified interrupt flag. This can be used if a
global isr is used, or to prevent an interrupt from being serviced.

59

PCD C Compiler Reference Manual April 2008

Relevant Preprocessor:
#device high_ints=

#int_xxx fast

#int_level=x
#int_fast

Relevant Interrupts:
#int_default

#int_global

#int_xxx

Relevant Include Files:

Relevant getenv()
Parameters:

none

Example Code:
#int_timer0
void timerQinterrupt()

enable_interrupts(TIMERO);
disable_interrtups(TIMERO);

clear_interrupt(TIMERO);

60

This directive tells the compiler to generate code for high priority
interrupts.

This directive tells the compiler that the specified interrupt should be
treated as a high priority interrupt.

X is an int 0-7, that selects the interrupt priority level

This directive makes use of shadow registers for fast register save.
This directive can only be used in one ISR

This directive specifies that the following function should be called if
an interrupt is triggered but no routine is associated with that
interrupt.

This directive specifies that the following function should be called
whenever an interrupt is triggered. This function will replace the
compiler generated interrupt dispatcher.

This directive specifies that the following function should be called
whenever the xxx interrupt is triggered. If the compiler generated
interrupt dispatcher is used, the compiler will take care of clearing
the interrupt flag bits.

none, all functions built in.

I #int_timer associates the following function with the
I interrupt service routine that should be called

// enables the timer0 interrupt

/I disables the timer0 interrupt

/I clears the timerO interrupt flag

Functional Overviews

Linker

. __|
The linker allows allows multiple files to be compiled into multiple objects (.o files) and finally linked
together to form a final .hex file. The linker can be used from inside the PCW IDE, through the
MPLAB IDE and from the command line.

CCS provides an example that demonstrates the use of the linker in the mcu.zip files present in the
Examples folder. The files in this project are as follows:

main.c Primary file for the first compilation unit
filter.c Primary file for the second compilation
report.c Primary file for the third compilation unit
project.h Include file with project wide definitions
filter.h External definitions for filter, should be
report.h External definitions for report, should be
buildall.bat Batch file that compiles and links all units
build.bat Batch file that recompiles files needing

project.pjt Used by build.bat to list project units
See MCU Documentation.pdf for detailed information on these files.

Each unit will produce a .o (relocatable object) file, which gets linked together to form the final load
image (project.hex)

Building the project from the command line:

1. Move the project files into a directory.

2. Edit the Buildall.bat file and make sure the path to CCSC.EXE is correct.
3. From a DOS prompt set the default directory to the project directory.

4. Enter: BUILDALL

"c:\program files\picc\ccsc" +FM +EXPORT report.c

"c:\program files\picc\ccsc" +FM +EXPORT filter.c

"c:\program files\picc\ccsc" +FM +EXPORT main.c

"c:\program files\picc\ccsc" +FM LINK="project.hex=report.o,filter.o,main.o"

Automatically building by recompiling needed files:
1. The required lines in the project.pjt file are:
[Units]
Count=3
1=filter.o
2=report.o
3=main.o
Link=1
2. From a DOS prompt set the default directory to the project directory.
3. Enter: BUILD

61

PCD C Compiler Reference Manual April 2008

Note that after a project is linked if no .pjt file exists the linker will create one that may be used with
the BUILD= option in the future.

"c:\program files\picc\ccsc" +FM BUILD=project.pjt

Replacing the linker command line with a linker script:
1. Create a file named project.c with the following lines:
#import(report.o)
#import(filter.o)
#import(main.o)
2. Compile each unit (report, filter, main).
3. Compile project.c

Using the IDE to work with multiple compilation units:

@ Project Edit Saarch 3 Caompile Wiew Tools Dedbug Document UserToolbsr

L_J Pfc-jmg_ntmm @EﬂlmrMnemﬂ - Toulbay smp

; & Inols |[JSpectctouser [[]Colapse Wenu !EE'“E

J.." Fil]
& AsSeiamn
=

[@)e (&)

: A [eeiceropiog: as
% = & pesctpt 5
ki i3 5“1'::' ! Target: PICIEFETRA s [Etutishe Complation Unks
=
p j [k Separ abeby
fiterc 44
b projecth Files Sorcsfles: | % add | [= Pemovs]
g’ 16FETTA R repoct .o
o regorih e Zilcer.a
3 = repor | ‘Ig main. o
il Inchude Files.
16FTTAR -
= ey
e 2
progect b ol Dafine
1GFETTA R
regoit h g
ferh [
ddibh | =i | :
slgdeth L4 0 Output Files Froject Flename C\Peogram Fle\PICC Progscts\mair pt El
singh 2
ypas m 1 Mskin thee metlings thes dhebiandt for meres prsiescts F

S e e

The above screen is from OPTIONS > PROJECT OPTIONS after loading the project.pjt file. If
the file does not exist create the project manually and make screen like the above.

The pane to the left is the FILES slide out that is available from VIEW > PROJECT FILES.
Right click on a unit name (like filter) select COMPILE to compile just that unit.
Click on the build icon (third from the right) to rebuild and link the whole project.

This pane is helpful in managing each unit in the project. Review the right click options for the full

range of options.

62

Functional Overviews

Usmg MPLAB IDE to work with Multiple Compilation Units
Create a new project by selecting “Project -> New” from the toolbar. Follow the dialog boxes to
specify the project name and project path.
Make sure MPLAB is configured for the proper chip, as the CCS C compiler uses this selection
to determine which compiler to use (PCB, PCM, PCH, PCD, etc). The chip can be selected using
“Configure -> Select Device” from the MPLAB toolbar.

| = 3 mcu.mcp
= [suurie Files
ran.c
repork.c
(L Header Files
&3 Object Files
[Other Files

(] Fies | % Swmbodls

Add source files by either a.) right clicking on 'Source Files' in the MPLAB Project window or b.)
selecting “Project -> Add New File to Project..” from the MPLAB toolbar.

Performing a Make (hotkey is F10) or Build All will compile the source files separately, and link the
.o files in the final step. Make only compiles files that have changed, Build All will delete all
intermediate files first and then compile all files regardless if they have changed since last build.
An individual unit can be compiled by right clicking on the file in the MPLAB Project window and
choosing 'Compile.' This will not re-link the project when it is done compiling this unit.

An already compiled .o file can be added to the project, and will be linked during the Make/Build
process.

If there is only one source in the project, it will be compiled and linked in one phase (no .o file will
be created).

Many project build options (such as output directory, include directories, output files generated,
etc) can be changed by selecting "Project -> Build Options* from the MPLAB toolbar.

If the compile fails with an error that says something like “Target chip not supported” or “Compiler
not found” make sure that

a.) you have the proper PIC selected (use “Configure -> Select Device” from the MPLAB toolbar),
b.) the CCS C Toolsuite has been selected for this project (use “Project -> Set Language Toolsuite”
from the MPLAB toolbar) and

c.) the path for CCSC.EXE is configured correctly for your installation of the CCS C Compiler (use
“Project -> Set Language Tool Locations” on the MPLAB toolbar)

63

PCD C Compiler Reference Manual April 2008

Notes

64

By default variables declared at the unit level (outside a function) are visible to all other units.
To make a variable private to the unit use the keyword static. Notice report.c defines the
variable report_line_number. If the definition were changed to look as the following line then
there would be a link time error since main.c attempts to use the variable.

static long report_line_number;

This same rule applies to functions. Use static to make a function local to the unit.

Should two units have a function or unit level variable with the same name an error is
generated unless one of the following is true:

The identifier is qualified with static.

The argument list is different and two instances of the function can co-exist in the
project in accordance with the normal overload rules.

The contents of the functions are absolutely identical. In this case the CCS linker
simply deletes the duplicate function.

The standard C libraries (like stdlib.h) are supplied with source code in the .h file. Because of
the above rule these files may be #include'd in multiple units without taking up extra ROM
and with no need to include these in the link command since they are not units.
#define's are never exported to other units. If a #define needs to be shared between units put
them in an include file that is #include'd by both units. Project wide defines in our example
could go into project.h.
It is best to have an include file like project.h that all units #include. This file should define the
chip, speed, fuses and any other compiler settings that should be the same for all units in the
project.
In this example project a #USE RS232 is in the project.h file. This creates an RS232 library in
each unit. The linker is able to determine the libraries are the same and the duplicates
removed in the final link.
Each unit has its own error file (like filter.err). When the compilations are done in a batch file it
may be useful to terminate the batch run on the first error. The +CC command line option will
cause the compiler to return a windows error code if the compilation fails. This can be tested
in the batch file like this:

"c:\program Ffiles\picc\ccsc" +FM +CC +EXPORT report.c

if not errorlevel 1 goto abort ...

goto end

zabort

echo COMPILE ERROR

zend

Functional Overviews

Output Compare/PWM Overview

The following functions are used to configure the output compare module. The output compare has
three modes of functioning. Single compare, dual compare, and PWM. In single compare the
output compare module simply compares the value of the OCxR register to the value of the timer
and triggers a corresponding output event on match. In dual compare mode, the pin is set high on
OCxR match and then placed low on an OCxRS match. This can be set to either occur once or
repeatedly. In PWM mode the selected timer sets the period and the OCxRS register sets the duty
cycle. Once the OC module is placed in PWM mode the OCxR register becomes read only so the
value needs to be set before placing the output compare module in PWM mode. For all three
modes of operation, the selected timer can either be Timer 2 or Timer 3.

Relevant Functions:
setup_comparex (X, mode) Sets the mode of the output compare / PWM module x

set_comparex_time (X, Sets the OCR and optionally OCRS register values of module x.
ocr, [ocrs])
set_pwm_duty (x, value) Sets the PWM duty cycle of module x to the specified value

Relevant Preprocessor:
None

Relevant Interrupts:
INT_OCx Interrupt fires after a compare event has occurred

Relevant Include Files:
None, all functions built-in.

Relevant getenv() parameters:
None

Example Code:
// Outputs a 1 second pulse on the 0C2 PIN
// using dual compare mode on a PIC
// with an instruction clock of (20Mhz/4)

intlé OCR_2 = // Start pulse when timer is at 0x1000
0x1000;

intlé OCRS_2 = // End pulse after 0x04C4B timer counts (0x1000 +
0x5C4B; 0x04C4B

// (1 sec)/[(4/20000000)*256] = 0x04C4B

// 256 = timer prescaler value (set in code below)
set_compare_time(2, OCR_2, OCRS_2);
setup_compare(2, COMPARE_SINGLE_PULSE | COMPARE_TIMER3);

setup_timer3(TMR_INTERNAL | TMR_DIV_BY_256);

65

PCD C Compiler Reference Manual April 2008

Motor Control PWM

. __|
These options lets the user configure the Motor Control Pulse Width Modulator (MCPWM) module.
The MCPWM is used to generate a periodic pulse waveform which is useful is motor control and
power control applications. The options for these functions vary depending on the chip and are
listed in the device header file.

Relevant Functions:

setup_motor_pwm(pwm,options, Configures the motor control PWM module.
timebase);

setup_motor_pwm_duty(pwm,unit,time) Configures the motor control PWM unit duty.
set_motor_pwm_event(pwm,time) Configures the PWM event on the motor control unit.
setup_motor_unit(pwm,unit,options, Configures the motor control PWM unit.
active_deadtime, inactive_deadtime);

get_motor pmw_event(pwm); Returns the PWM event on the motor control unit.

Relevant Preprocessor:
None

Relevant Interrupts :
#INT_PWM PWM Timebase Interrupt

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
None

Example Code:
/I Sets up the motor PWM module
setup_motor_pwm(1,MPWM_FREE_RUN | MPWM_SYNC_OVERRIDES, timebase);

/I Sets the PWM1, Unit A duty cycle value to Ox55
setup_motor_pmw_duty(1,0,0x55);

//Set the motor PWM event

set_motor_pmw_event(pwm,time);

set_power_pwmO_duty(duty_cycle)); I/ Sets the duty cycle of the PWM 0,1 in
//[Complementary mode

66

Program Eeprom

Functional Overviews

The flash program memory is readable and writable in some chips and is just readable in some.
These options lets the user read and write to the flash program memory. These functions are only

available in flash chips.

Relevant Functions:

read_program_eeprom
(address)

write_program_eeprom
(address, value)

erase_program_eeprom
(address)

write_program_memory
address,dataptr,count)

read program_memory
(address,dataptr,count)

write_rom_memory
(address, dataptr, count)

read_rom_memory
(address, dataptr, count)

Relevant Preprocessor:
#ROM address={list}

#DEVICE(WRITE_EEPROM=ASYNC)

Relevant Interrupts:
INT_EEPROM

Relevant Include Files:
None, all functions built-in

Reads the program memory
location(16 bit or 32 bit depending on
the device).

Writes value to program memory
location address.

Erases FLASH_ERASE_SIZE bytes in
program memory.

Writes count bytes to program
memory from dataptr to address.
When address is a mutiple of
FLASH_ERASE_SIZE an erase is
also performed.

Read count bytes from program
memory at address to dataptr.

Writes count bytes to program
memory from address (32 bits)

Read count bytes to program memory
from address (32 bits)

Can be used to put program memory
data into the hex file.

Can be used with #DEVICE to prevent
the write function from hanging. When
this is used make sure the eeprom is
not written both inside and outside the
ISR.

Interrupt fires when eeprom write is
complete.

67

PCD C Compiler Reference Manual April 2008

Relevant getenv() parameters
PROGRAM_MEMORY
READ_PROGRAM

FLASH_WRITE_SIZE
FLASH_ERASE_SIZE

Example Code:
#ROM 0x300={1,2,3,4}

erase_program_eeprom(0x00000300) ;

write_program_eeprom(0x00000300,0x123456) ;
value=read_program_eeprom(0x00000300) ;

write_program_memory(0x00000300,data,12);

read_program_memory(0x00000300,value,12);

Size of program memory

Returns 1 if program memory can be
read

Smallest number of bytes written in
flash

Smallest number of bytes erased in
flash

// Inserts this data into the
hex file.

// Erases 32 instruction
locations starting at 0x0300
// Writes 0x123456 to 0x0300
// Reads 0x0300 returns
0x123456

// Erases 32 instructions
starting

// at 0x0300 (multiple of
erase block)

// Writes 12 bytes from data
to 0x0300

//reads 12 bytes to value from
0x0300

For chips where getenv(“FLASH_ERASE_SIZE") > getenv(“FLASH_WRITE_SIZE")

WRITE_PROGRAM_EEPROM

WRITE_PROGRAM_MEMORY

WRITE_ROM_MEMORY

ERASE_PROGRAM_EEPROM

- Writes 3 bytes, does not erase (use
ERASE_PROGRAM_EEPROM)

- Writes any number of bytes, will
erase a block whenever the first
(lowest) byte in a block is written to. If
the first address is not the start of a
block that block is not erased

- While writing, every fourth byte will
be ignored. Fill ignored bytes with
0x00. This is due to the 32 bit
addressing and 24 bit instruction
length on the PCD devices.

- Writes any number of bytes, will
erase a block whenever the first
(lowest) byte in a block is written to. If
the first address is not the start of a
block that block is not erased.

- Erases a block of size
FLASH_ERASE_SIZE. The lowest
address bits are not used.

For chips where getenv(“FLASH_ERASE_SIZE") = get(“FLASH_WRITE_SIZE")

68

WRITE_PROGRAM_EEPROM
WRITE_PROGRAM_MEMORY

WRITE_ROM_MEMORY

ERASE_PROGRAM_EEPROM

QE]

Functional Overviews

- Writes 3 bytes, no erase is needed.
- Writes any numbers of bytes, bytes
outside the range of the write block
are not changed. No erase is needed.
- While writing, every fourth byte will
be ignored. Fill ignored bytes with
0x00. This is due to the 32 bit
addressing and 24 bit instruction
length on the PCD devices.

- Writes any numbers of bytes, bytes
outside the range of the write block
are not changed. No erase is needed.
- Erase a block of size
FLASH_ERASE_SIZE. The lowest
address bits are not used.

The Quadrature Encoder Interface (QEI) module provides the interface to incremental encoders for

obtaining mechanical positional data.

Relevant Functions:
setup_gei(options, filter,maxcount)
qei_status()

gei_set count(value);

gei_get count();

Relevant Preprocessor:
None

Relevant Interrupts :
#INT_QEI

Relevant Include Files:

None, all functions built-in

Relevant getenv() parameters:

None

Example Code:

intl6 Value;

setup_qei(QEI_MODE_X2 |
QEI_TIMER_INTERNAL,
QEI_FILTER_DIV_2,QEI_FORWARD);

Value = gei_get_count();

Configures the QEI module.

Returns the status of the QUI module.

Write a 16-bit value to the position counter.

Reads the current 16-bit value of the position counter.

Interrupt on rollover or underflow of the position counter.

Setup the QEI module

Read the count.

69

PCD C Compiler Reference Manual April 2008

PMP

The Parallel Master Port(PMP) is a parallel 8-bit /0O module specifically designed to communicate
with a wide variety of parallel devices. Key features of the PMP module are:

- 8 Data lines

- Up to 16 Programmable Address Lines

- Up to 2 Chip Select Lines

- Programmable Strobe option

- Address Auto-Increment/Auto-Decrement

- Programmable Address/Data Multiplexing

- Programmable Polarity on Control Signals
- Legacy Parallel Slave(PSP) Support

- Enhanced Parallel Slave Port Support

- Programmable Wait States

Relevant Functions:

setup_pmp
(options,address_mask)

setup_psp
(options,address_mask)

pmp_write (data)
psp_write(address,data)/
psp_write(data)
pmp_read ()

psp_read (address)/
psp_read()

pmp_address (address);

pmp_overflow ();
pmp_input_full ();
psp_input_full ();
pmp_output full ();

psp_output full ();
Relevant Preprocessor:

None

Relevant Interrupts :
#INT_PMP

Relevant Include Files:
None, all functions built-in

Relevant getenv()
parameters:
None

70

This will setup the PMP module for various mode and specifies
which address lines to be used.

This will setup the PSP module for various mode and specifies
which address lines to be used.

Write the data byte to the next buffer location.

This will write a byte of data to the next buffer location or will write
a byte to the specified buffer location.

Reads a byte of data.

psp_read() will read a byte of data from the next buffer location
and psp_read (address) will read the buffer location address.

Configures the address register of the PMP module with the
destination address during Master mode operation.

This will return the status of the output buffer underflow bit.
This will return the status of the input buffers.

This will return the status of the input buffers.

This will return the status of the output buffers.

This will return the status of the output buffers.

Interrupt on read or write strobe

Example Code:

setup_pmp(PAR_ENABLE |
PAR_MASTER_MODE_1 |
PAR_STOP_IN_IDLE,0x00FF
)i

If (pmp_output_full ())

{
pmp_write(next_byte);

}

RS2321/0

Functional Overviews

Sets up Master mode with address lines PMAQ:PMA7

These functions and directives can be used for setting up and using RS232 1/O functionality.

Relevant Functions:

GETC() or GETCH
GETCHAR or FGETC

GETS() or FGETS

PUTC or PUTCHAR or
FPUTC

PUTS or FPUTS

PRINTF or FPRINTF

SETUP_UART
(baud,[stream])

or
SETUP_UART SPEED(
baud,[stream])

Gets a character on the receive pin(from the specified stream in
case of fgetc, stdin by default). Use KBHIT to check if the
character is available.

Gets a string on the receive pin(from the specified stream
in case of fgets, STDIN by default). Use GETC to receive each
character until return is encountered.

Puts a character over the transmit pin(on the specified stream in
the case of FPUTC, stdout by default)

Puts a string over the transmit pin(on the specified stream in the
case of FPUTC, stdout by default). Uses putc to send each
character.

Prints the formatted string(on the specified stream in the case of
FPRINTF, stdout by default). Refer to the printf help for details on
format string.

Return true when a character is received in the buffer in case of
hardware RS232 or when the first bit is sent on the RCV pin in
case of software RS232. Useful for polling without waiting in getc.

Used to change the baud rate of the hardware UART at run-time.
Specifying stream is optional. Refer to the help for more advanced
options.

71

PCD C Compiler Reference Manual April 2008

ASSERT(condition) Checks the condition and if false prints the file name and line to
STDERR. Will not generate code if #define NODEBUG is used.

PERROR(message) Prints the message and the last system error to STDERR.

Relevant Preprocessor:

#use rs232(options) This directive tells the compiler the baud rate and other options like
transmit, receive and enable pins. Please refer to the #use rs232
help for more advanced options. More than one RS232 statements
can be used to specify different streams. If stream is not specified
the function will use the
last #use rs232.

Relevant Interrupts:
INT_RDA Interrupt fires when the receive data available
INT_TBE Interrupt fires when the transmit data empty

Some chips have more than one hardware uart, and hence more interrupts.

Relevant Include Files:
None, all functions built-in

Relevant getenv()
parameters:

UART — Returns the number of UARTS on this PIC

AUART — Returns true if this UART is an advanced UART

UART_RX — Returns the receive pin for the first UART on this PIC (see PIN_XX)
UART_TX — Returns the transmit pin for the first UART on this PIC

UART2_RX — Returns the receive pin for the second UART on this PIC
UART2_TX — Returns the transmit pin for the second UART on this PIC

Example Code:
/* configure and enable uart, use first hardware UART on PIC */
#use rs232(uartl, baud=9600)

/* print a string */
printf(“enter a character™);

/* get a character */

it (kbhit(Q)) //wait until a character has been received
c = getcQ; //read character from UART

72

Functional Overviews

RTCC

The Real Time Clock and Calendar (RTCC) module is intended for applications where accurate
time must be maintained for extended periods of time with minimum or no intervention from the
CPU. The key features of the module are:

- Time: Hour, Minute and Seconds.

- 24-hour format (Military Time)

- Calendar: Weekday, Date, Month and Year.

- Alarm Configurable.

- Requirements: External 32.768 kHz Clock Crystal.

Relevant Functions:

setup_rtc (options, This will setup the RTCC module for operation and also allows for
calibration); calibration setup.

rtc_write(time_t datetime) Writes the date and time to the RTCC module.

rtc_read(time_t datetime) Reads the current value of Time and Date from the RTCC module.
setup_rtc_alarm(options, Configures the alarm of the RTCC module.

mask, repeat);

rtc_alarm_write(time_t Writes the date and time to the alarm in the RTCC module.
datetime);

rtc_alarm_read(time_t Reads the date and time to the alarm in the RTCC module.
datetime);

Relevant Preprocessor:

None

Relevant Interrupts :
#INT_RTC Interrupt on Alarm Event or half alarm frequency.

Relevant Include Files:
None, all functions built-in

Relevant getenv()
parameters:
None

Example Code:

setup_rtc(RTC_ENABLE | Enable RTCC module with seconds clock and no calibration.
RTC_OUTPUT_SECONDS,

0x00);

rtc_write(datetime); Write the value of Date and Time to the RTC module
rtc_read(datetime); Reads the value to a structure time_t.

73

PCD C Compiler Reference Manual April 2008

RTOS

These functions control the operation of the CCS Real Time Operating System (RTOS). This
operating system is cooperatively multitasking and allows for tasks to be scheduled to run at
specified time intervals. Because the RTOS does not use interrupts, the user must be careful to
make use of the rtos_yield() function in every task so that no one task is allowed to run forever.

Relevant Functions:
rtos_run

rtos_terminate()

rtos _enable(task

rtos_disable(task)

rnos_ms oll

rtos_msg_read

rtos_msqg_send(task,byte)

rtos_yield()

rtos_signal(sem

rtos_wait(sem

rtos_await(expre

74

Begins the operation of the RTOS. All task management
tasks are implemented by this function.

This function terminates the operation of the RTOS and
returns operation to the original program. Works as a
return from the rtos_run()function.

Enables one of the RTOS tasks. Once a task is enabled,
the rtos_run() function will call the task when its time
occurs. The parameter to this function is the name of task
to be enabled.

Disables one of the RTOS tasks. Once a task is disabled,
the rtos_run() function will not call this task until it is
enabled using rtos_enable(). The parameter to this
function is the name of the task to be disabled.

Returns true if there is data in the task's message queue.

Returns the next byte of data contained in the task's
message queue.

Sends a byte of data to the specified task. The data is
placed in the receiving task's message queue.

Called with in one of the RTOS tasks and returns control
of the program to the rtos_run() function. All tasks should
call this function when finished.

Increments a semaphore which is used to broadcast the
availability of a limited resource.

Waits for the resource associated with the semaphore to
become available and then decrements to semaphore to
claim the resource.

Will wait for the given expression to evaluate to true
before allowing the task to continue.

Functional Overviews

rtos_overrun(task) Will return true if the given task over ran its alloted time.

rtos_stats(task,stat) Returns the specified statistic about the specified task.
The statistics include the minimum and maximum times
for the task to run and the total time the task has spent
running.

Relevant Preprocessor:
#use rtos(options) This directive is used to specify several different RTOS attributes including the
timer to use, the minor cycle time and whether or not statistics should be enabled.

#task(options) This directive tells the compiler that the following function is to be an RTOS task.

#task specifies the rate at which the task should be called, the maximum time the task shall be
allowed to run, and how large it's queue should be.

Relevant Interrupts:
none

Relevant Include Files:
none all functions are built in

Relevant getenv() Parameters:
none

Example Code:
#USE RTOS(timer=0,minor_cycle=20ms) // RTOS will use timer zero, minor cycle will be 20ms

int sem;

#TASK(rate=1s,max=20ms,queue=5) // Task will run at a rate of once per second

void task_name(); /[with a maximum running time of 20ms and
/l a 5 byte queue
rtos_run(); // begins the RTOS
rtos_terminate(); /[ends the RTOS
rtos_enable(task_name); /I enables the previously declared task.
rtos_disable(task_name); /I disables the previously declared task
rtos_msg_send(task_name,5); Il places the value 5 in task_names queue.
rtos_yield(); /l yields control to the RTOS
rtos_sigal(sem); /I signals that the resource represented by sem is
available.

75

PCD C Compiler Reference Manual April 2008

SPI

SPI™ is a fluid standard for 3 or 4 wire, full duplex communications named by Motorola. Most PIC
devices support most common SPI™ modes. CCS provides a support library for taking advantage
of both hardware and software based SPI™ functionality. For software support, see #use spi.

Relevant Functions:

setup_spi(mode) Configure the hardware SPI to the specified mode. The mode
setup_spi2 configures setup_spi2(mode) thing such as master or slave mode, clock

speed and clock/data trigger configuration.

Note: for devices with dual SPI interfaces a second function, setup_spi2(), is provided to configure
the second interface.

spi_data is_in() Returns TRUE if the SPI receive buffer has a byte of data.
spi_data_is_in2()

spi_write(value) Transmits the value over the SPI interface. This will cause the data to
spi_write2(value) be clocked out on the SDO pin.

spi_read(value) Performs an SPI transaction, where the value is clocked out on the
spi_read2(value) SDO pin and data clocked in on the SDI pin is returned. If you just want

to clock in data then you can use spi_read() without a parameter.

Relevant

Preprocessor:

None

Relevant Interrupts:

#int_sspA Transaction (read or write) has completed on the indicated peripheral.
#int_ssp2

#int_spil Interrupts on activity from the first SPI module
#int_spi2 Interrupts on activity from the second SPI module

Relevant Include Files:
None, all functions built-in to the compiler.

Relevant getenv() Parameters:
SPI Returns TRUE if the device has an SPI peripheral

Example Code:
/lconfigure the device to be a master, data transmitted on H-to-L clock transition
setup_spi(SPI_MASTER | SPI_H_TO_L | SPI_CLK_DIV_16);

spi_write(0x80); /hwrite Ox80 to SPI device
value=spi_read(); /lread a value from the SPI device
value=spi_read(0x80); /Iwrite 0x80 to SPI device the same time you are reading a value.

76

Functional Overviews

Timers

The 16-bit DSC and MCU families implement 16 bit timers. Many of these timers may be
concatenated into a hybrid 32 bit timer. Also, one timer may be configured to use a low power
32.768 kHz oscillator which may be used as a real time clock source.

Timerl is a 16 bit timer. It is the only timer that may not be concatenated into a hybrid 32 bit timer.
However, it alone may use a synchronous external clock. This feature may be used with a low
power 32.768 kHz oscillator to create a real-time clock source.

Timers 2 through 9 are 16 bit timers. They may use external clock sources only asynchronously
and they may not act as low power real time clock sources. They may however be concatenated
into 32 bit timers. This is done by configuring an even numbered timer (timer 2, 4, 6 or 8) as the
least significant word, and the corresponding odd numbered timer (timer 3, 5, 7 or 9, respectively)
as the most significant word of the new 32 bit timer.

Timer interrupts will occur when the timer overflows. Overflow will happen when the timer
surpasses its period, which by default is OXFFFF. The period value may be changed when using
setup_timerX.

Relevant Functions:

setup_timerX Configures the timer peripheral. X may be any valid timer for the
target device. Consult the target datasheet or use getenv to find the
valid timers.

get_timerX Retrieves the current 16 bit value of the timer.

get_timerXY Gets the 32 bit value of the concatenated timers X and Y (where XY
may only be 23, 45, 67, 89)

set_timerX Sets the value of timerX

set_timerxXY Sets the 32 bit value of the concatenated timers X and Y (where XY

may only be 23, 45, 67, 89)

Relevant Preprocessor:

None

Relevant Interrupts:

#int_timerX Interrupts on timer overflow (period match). X is any valid timer
number.

*When using a 32-bit timer, the odd numbered timer-interrupt of the hybrid timer must be used. (i.e.
when using 32-bit Timer23, #int_timer3)

Relevant Include Files:
None, all functions built-in

Relevant getenv()
parameters:

TIMERX Returns 1 if the device has the timer peripheral X. X may be 1 - 9

77

PCD C Compiler Reference Manual April 2008

Example Code:

/* Setup timerl as an external real time clock that increments every 16 clock
cycles */

setup_timer1(T1_EXTERNAL_RTC | T2_DIV_BY 16);

/* Setup timer2 as a timer that increments on every instruction cycle and has
a period of 0x0100 */

setup_timer2(TMR_INTERNAL, 0x0100);

byte value = 0x00;

value = //retrieve the current value of timer2
get_timer2();

Voltage Reference

These functions configure the voltage reference module. These are available only in the supported
chips.

Relevant Functions:

setup vref(mode| value) Enables and sets up the internal voltage reference value.
the chip, please refer to the header file for details.

Relevant Preprocessor:

None

Relevant Interrupts:

None

Relevant Include Files:

None, all functions built-in

Relevant getenv() parameters:

VREF Returns 1 if the device has VREF

Example Code:
For eg:
For PIC12F675
#INT_COMP //comparator interrupt handler
void isr() {
safe_conditions=FALSE;
printf("WARNING!! Voltage level is above 3.6 V. \r\n");

}
setup_comparator(A1l_VR_OUT_ON_A2); // sets two comparators(Al and VR and A2 as the
output)
setup_vref(VREF_HIGH|15); /Isets 3.6(vdd *value/32 +vdd/4) if vdd is 5.0V
enable_interrupts(INT_COMP); /lenables the comparator interrupt
enable_interrupts(GLOBAL); /llenables global interrupts

78

Functional Overviews

WDT or Watch Dog Timer

. __|
Different chips provide different options to enable/disable or configure the WDT.
Relevant Functions:

setup_wdt Enables/disables the wdt or sets the prescalar.
restart wdt Restarts the wdt, if wdt is enables this must be periodically called

to prevent a timeout reset.

For PCB/PCM chips it is enabled/disabled using WDT or NOWDT fuses whereas on PCH device it
is done using the setup_wdt function.

The timeout time for PCB/PCM chips are set using the setup_wdt function and on PCH using fuses
like WDT16, WDT256 etc.

RESTART_WDT when specified in #use delay , #use 12c and #use RS232 statements like this
#use delay(clock=20000000, restart_wdt) will cause the wdt to restart if it times out during the delay
or I2C_READ or GETC.

Relevant Preprocessor:
#fuses WDT/NOWDT Enabled/Disables wdt in PCB/PCM devices
#fuses WDT16 Sets ups the timeout time in PCH devices

Relevant Interrupts:
None
Relevant Include Files:
None, all functions built-in
Relevant getenv() parameters:
None
Example Code:
For eg:
For PIC16F877
#fuses wdt
setup_wdt(WDT_2304MS);
while(true){
restart_wdt();
perform_activity();
}
For PIC18F452
#fuse WDT1
setup_wdt(WDT_ON);
while(true){
restart_wdt();
perform_activity();

}

Some of the PCB chips are share the WDT prescalar bits with timerO so the WDT prescalar
constants can be used with setup_counters or setup_timer0 or setup_wdt functions.

PRE-PROCESSOR DIRECTIVES

ol
Lo

C Compiler

PRE-PROCESSOR

Pre-processor directives all begin with a # and are followed by a specific command. Syntax is
dependent on the command. Many commands do not allow other syntactical elements on the
remainder of the line. A table of commands and a description is listed on the previous page.

Several of the pre-processor directives are extensions to standard C. C provides a pre-processor
directive that compilers will accept and ignore or act upon the following data. This implementation
will allow any pre-processor directives to begin with #PRAGMA. To be compatible with other
compilers, this may be used before non-standard features.

Examples:

Both of the following are valid
#INLINE

#PRAGMA INLINE

#IE #DEFINE #LIST
#IFDEF #UNDEF #NOLIST
#IENDEF #INCLUDE #PRAGMA
Standard C #ELSE #WARNING #ERROR
#ELIF
#ENDIF
#INLINE #INT XXX
. #SEPARATE #INT DEFAULT
Function - E—
#RECURSIVE

Qualifier

80

Pre-Defined
Identifier

Device
Specification

Built-in
Libraries

Memory
Control

Compiler
Control

RTOS

DATE
DEVICE
FILE

#DEVICE chip

#FUSES options
#SERIALIZE

#PIN SELECT

#USE DELAY
#USE FAST 10
#USE SPI

#ASM
#ENDASM
#BIT

#BYTE
#WORD

#CASE

#IGNORE WARNINGS

#IMPORT

#TASK

Pre-Processor Directives

LINE PCD
FILENAME
TIME

#D
#HEXCOMMENT

#USE FIXED 10 #USE RS232

#USE 12C #USE STANDARD 10
#FILL ROM #ROM
#LOCATE #TYPE
#ORG #ZERO RAM
#RESERVE #BANKX

#BANKY
#OPT #MODULE
#EXPORT #BUILD
#USE RTOS

81

PCD C Compiler Reference Manual April 2008

#ASM
#ENDASM

Syntax:

Elements:

Purpose:

Examples:

Example Files:

Also See:

82

#asm
or
#asm ASIS
code
#endasm

code is a list of assembly language instructions

The lines between the #ASM and #ENDASM are treated as assembly code to be
inserted. These may be used anywhere an expression is allowed. The syntax
is described on the following page. Function return values are sent in WO for 16-
bit, and WO, w1l for 32 bit. Be aware that any C code after the #ENDASM
and before the end of the function may corrupt the value.

If the second form is used with ASIS then the compiler will not do any optimization
on the assembly. The assembly code is used as-is.

int find_parity(int data){

int count;
#asm

MOV #0x08, WO
MOV WO, count
CLR WO

loop:

XOR.B data,WO
RRC data,WO
DEC count,F
BRA Nz, loop
MOV #0x01,WO0
ADD count,F
MOV count, WO
MOV WO, RETURN_
#endasm

}

ex_glint.c

None

Pre-Processor Directives

ADD Wa,Wb,Wd Wd = Wa+Wb

ADD f,w WO = f+Wd

ADD lita0,wd wd = litl0+wd

ADD Wa,lit5,wd wd = lit5+Wa

ADD f,F f=f+Wd

ADD acc Acc = AccA+AccB

ADD wd {lit4},acc Acc = Acc+(Wa shifted slit4)
ADD.B lit10,wd wd = litl0+Wd (byte)
ADD.B fF f = f+wd (byte)

ADD.B Wa,Wb,Wd Wd = Wa+Wb (byte)
ADD.B Wa,lit5,Wd wd = lit5+Wa (byte)
ADD.B fw WO = f+Wd (byte)
ADDC f,wW wd = f+Wa+C

ADDC litao,wd wd = litl0+Wd+C
ADDC Wa,lit5,Wwd wd = lit5+Wa+C

ADDC f,F wd = f+Wa+C

ADDC Wa,Whb,Wd Wd = Wa+Wb+C
ADDC.B [lit10,wd Wd = litl0+Wd+C (byte)
ADDC.B |Wa,Wh,wd wd = Wa+Wb+C (byte)
ADDC.B |Wa,lits,wd wd = lit5+Wa+C (byte)
ADDC.B [fW wd = f+Wa+C (byte)
ADDC.B |[fF wd = f+Wa+C (byte)
AND Wa,Wb,wd Wd = Wa.& Wb

AND litao,wd Wd = 1it10.&.Wd

AND f,w WO =f.&Wa

AND f,F f=f.&Wa

AND Wa,lit5,wd Wd = lit5.& Wa

AND.B f,w WO = f.& Wa (byte)
AND.B Wa,Wb,Wd Wd = Wa.& Wb (byte)
AND.B lit10,wd Wd = 1it10.&.Wd (byte)

83

PCD C Compiler Reference Manual April 2008

AND.B fF f = f.&.Wa (byte)

AND.B Wa,lit5,wd Wd = lit5.&.Wa (byte)

ASR f,W WO =f>>1 arithmetic

ASR f,F f=f>>1 arithmetic

ASR Wa,Wd Wd =Wa>>1 arithmetic

ASR Wa,lit4,Wd Wd = Wa >> lit4 arithmetic
ASR Wa,Wb,Wd Wd = Wa >> Wb arithmetic
ASR.B f,F f=f>>1 arithmetic (byte)
ASR.B fW WO =f>>1 arithmetic (byte)
ASR.B Wa,wd Wd =Wa>>1 arithmetic (byte)
BCLR f,.B f.bit=0

BCLR wd,B Wa.bit =0

BCLR.B |wd,B Wa.bit = 0 (byte)

BRA a Branch unconditionally

BRA wd Branch PC+Wa

BRA BZ a Branch if Zero

BRA C a Branch if Carry (no borrow)
BRAGE |a Branch if greater than or equal
BRA GEU |a Branch if unsigned greater than or equal
BRAGT |a Branch if greater than

BRA GTU |a Branch if unsigned greater than
BRA LE a Branch if less than or equal
BRALEU |a Branch if unsigned less than or equal
BRALT a Branch if less than

BRALTU |a Branch if unsigned less than
BRA N a Branch if negative

BRANC |a Branch if not carry (Borrow)
BRANN |a Branch if not negative

BRA NOV |a Branch if not Overflow

BRA Nz a Branch if not Zero

84

Pre-Processor Directives

BRAOA |a Branch if Accumulator A overflow
BRAOB |a Branch if Accumulator B overflow
BRAOV |a Branch if Overflow

BRASA |a Branch if Accumulator A Saturate
BRA SB a Branch if Accumulator B Saturate
BRA Z a Branch if Zero

BREAK ICD Break

BSET wd,B Wa.bit = 1

BSET f,.B f.bit=1

BSET.B |wd,B Wa.bit = 1 (byte)

BSW.C Wa,Wd WaWb=C

BSW.Z Wa,wd WaWb =2

BTG wd,B Wa.bit = ~Wa.bit

BTG f,B f.bit = ~f.bit

BTG.B wd,B Wa.bit = ~Wa.bit (byte)

BTSC f,B Skip if f.bit =0

BTSC Wd,B Skip if Wa.bit4 =0

BTSS f,B Skip if f.bit =1

BTSS Wd,B Skip if Wa.bit = 1

BTST f,.B Z =f.bit

BTST.C Wa,wd C =Wa.Wb

BTST.C wd,B C = Wa.bit

BTST.Z wd,B Z = Wa.bit

BTST.Z Wa,Wd Z =Wa.Wb

BTSTS f,.B Z =f.bit; f.bit=1

BTSTS.C |Wd,B C = Wa.bit; Wa.bit =1

BTSTS.Z |wd,B Z = Wa.bit; Wa.bit =1

CALL a Call subroutine

CALL wd Call [Wa]

CLR f,F f=0

85

PCD C Compiler Reference Manual April 2008

CLR acc,da,dc,pi Acc = 0; prefetch=0

CLR f,w W0 =0

CLR wd Wwd=0

CLR.B f,W WO = 0 (byte)

CLR.B wd wd = 0 (byte)

CLR.B fF f=0 (byte)

CLRWDT Clear WDT

COM f,F f=~f

COM f,w WO = ~f

COM Wa,Wd wd = ~Wa

COMB [fw WO = ~f (byte)

COM.B |Wa,wd wd = ~Wa (byte)

COM.B f,F f=~f (byte)

CP W, f Status set for f - WO

CP Wa,Wd Status set for Wb — Wa

CP Wd,lit5 Status set for Wa — lit5

CP.B W, f Status set for f - WO (byte)
CP.B Wa,Wd Status set for Wb — Wa (byte)
CP.B wd,lits Status set for Wa — lit5 (byte)
CPO wd Status set for Wa -0

CPO W, f Status set for f— 0

CPO.B wd Status set for Wa — 0 (byte)
CPO.B W, f Status set for f — 0 (byte)

CPB wd,lit5 Status set for Wa — lit5 — C
CPB Wa,wd Status set for Wb —Wa - C
CPB W, f Status set for f— WO - C
CPB.B Wa,Wd Status set for Wb — Wa — C (byte)
CPB.B wd,lits Status set for Wa — lit5 — C (byte)
CPB.B W, f Status set for f — WO - C (byte)
CPSEQ Wa,Wd Skip if Wa = Wb

86

Pre-Processor Directives

CPSEQ.B |Wa,wd Skip if Wa = Wb (byte)

CPSGT Wa,Wd Skip if Wa > Wb

CPSGT.B |Wa,wd Skip if Wa > Wb (byte)

CPSLT Wa,Wd Skip if Wa < Wb

CPSLT.B |Wa,wd Skip if Wa < Wb (byte)

CPSNE Wa,Wd Skip if Wa = Wb

CPSNE.B |Wa,Wd Skip if Wa = Wb (byte)

DAW.B wd Wa = decimal adjust Wa

DEC Wa,Wd Wwd=Wa-1

DEC f,w Wo=f-1

DEC f,F f=f-1

DEC.B f,F f=f-1 (byte)

DEC.B fW WO = f— 1 (byte)

DEC.B Wa,Wd Wd = Wa — 1 (byte)

DEC2 Wa,Wd Wd=Wa-2

DEC2 f,w WOo=f-2

DEC2 f,F f=f-2

DEC2.B Wa,Wd wWd =Wa -2 (byte)

DEC2.B [fW WO =f - 2 (byte)

DEC2.B |f,F f=f-2 (byte)

DISI liti4 Disable Interrupts lit14 cycles

DIV.S Wa,wd Signed 16/16-bit integer divide
DIV.SD Wa,Wd Signed 16/16-bit integer divide (dword)
DIV.U Wa,Wd UnSigned 16/16-bit integer divide
DIV.UD Wa,Wd UnSigned 16/16-bit integer divide (dword)
DIVF Wa,Wd Signed 16/16-bit fractional divide
DO litl4,a Do block lit14 times

DO Wd,a Do block Wa times

ED Wd*Wd,acc,da,db Euclidean Distance (No Accumulate)
EDAC Wd*Wd,acc,da,db Euclidean Distance

87

PCD C Compiler Reference Manual April 2008

EXCH Wa,Wd Swap Wa and Wb

FBCL Wa,Wd Find bit change from left (Msb) side
FEX ICD Execute

FF1L Wa,Wd Find first one from left (Msb) side
FF1R Wa,Wd Find first one from right (Lsb) side
GOTO a GoTo

GOTO wd GoTo [Wa]

INC f,w Wo=f+1

INC Wa,Wd Wd=Wa+1

INC f,F f=f+1

INC.B Wa,Wd wd = Wa + 1 (byte)

INC.B fF f=f+1 (byte)

INC.B fw WO = f + 1 (byte)

INC2 f,W WOo=f+2

INC2 Wa,Wd Wd=Wa + 2

INC2 f,F f=f+2

INC2.B f,wW WO =f + 2 (byte)

INC2.B f,F f=f+2 (byte)

INC2.B Wa,Wd Wd = Wa + 2 (byte)

IOR lit10,wWd Wd = 1it10 | wd

IOR f,F f=f|Wa

IOR fwW WO =f| Wa

IOR Wa,lit5,wd Wd = Wa.|.lits

IOR Wa,Wb,Wd Wd =Wa.|.Wb

IOR.B Wa,Wb,Wd wd = Wa.|.Wb (byte)

IOR.B f,w WO =f | Wa (byte)

IOR.B lit10,Wd Wd = lit10 | Wd (byte)

IOR.B Wa,lit5,Wd wd = Wa.|.lit5 (byte)

IOR.B f,F f=f| Wa (byte)

LAC wd {lit4},acc Acc = Wa shifted slit4

88

Pre-Processor Directives

LNK lit14 Allocate Stack Frame
LSR f,w Wo=f>>1

LSR Wa,lit4,wd Wd = Wa >> lit4

LSR Wa,Wd Wd=Wa>>1

LSR f,F f=f>>1

LSR Wa,Wb,wd Wd = Wb >>Wa

LSR.B f W WO = f >> 1 (byte)
LSR.B fF f=f>> 1 (byte)

LSR.B Wa,Wd Wd = Wa >> 1 (byte)
MAC Wd*Wd,acc,da,dc Acc = Acc + Wa * Wa; {prefetch}
MAC Wd*Wc,acc,da,dc, Acc = Acc + Wa * Whb; {{[W13] = Acc}; {prefetch}
MOV W, f f=Wa

MOV f,wW WO =f

MOV f,F f=f

MOV wd,? F=Wa

MOV Walit, wd wd = [Wa +Slit10]

MOV ?,wd wd = f

MOV lit16,Wd Wd = lit16

MOV Wa,wd Wwd = Wa

MOV Wa,Wd-+lit [wd + SIit10] = Wa
MOV.B lit8,wd Wd = 1it8 (byte)

MOV.B W, f f = Wa (byte)

MOV.B f,w WO =f (byte)

MOV.B f,F f=f (byte)

MOV.B Wa-+lit,wd Wd = [Wa +Slit10] (byte)
MOV.B Wa,Wd+lit [wd + Slit10] = Wa (byte)
MOV.B Wa,Wd Wd = Wa (byte)

MOV.D Wa,Wd Wwd:wd+1 = Wa:Wa+1
MOV.D Wa,Wd wd:wd+1 = Wa:Wa+1
MOVSAC |acc,da,dc,pi Move ?to ? and ? To ?

89

PCD C Compiler Reference Manual April 2008

MPY Wd*Wec,acc,da,dc Acc = Wa*Wb

MPY Wd*Wd,acc,da,dc Square to Acc

MPY.N Wd*Woc,acc,da,dc Acc = -(Wa*Wh)

MSC Wd*Wec,acc,da,dc, Acc = Acc — Wa*Wb

MUL W, f W3:W2 =f*Wa

MUL.B w,f W3:W2 = f * Wa (byte)

MUL.SS |Wa,Wd {Wd+1,wWd}= sign(Wa) * sign(Wb)
MUL.SU |Wa,Wd {Wd+1,wd} = sign(Wa) * unsign(Wb)
MUL.SU |Wa,lit5,wd {Wd+1,Wd}= sign(Wa) * unsign(lit5)
MUL.US |Wa,Wd {Wd+1,wWd} = unsign(Wa) * sign(Wb)
MUL.UU |Wa,Wd {Wd+1,wd} = unsign(Wa) * unsign(Whb)
MUL.UU |Wa,lit5,wd {Wd+1,wWd} = unsign(Wa) * unsign(lit5)
NEG f,F f=-f

NEG f,W WO =-f

NEG Wa,Wd wd=-Wa+1

NEG acc Acc = -Acc

NEG.B Wa,wd Wd = -Wa + 1 (byte)

NEG.B f,F f=-f (byte)

NEG.B f,w WO = - f (byte)

NOP No Operation

NOPR No Operation

POP wd POP TOS to Wd

POP f POP TOS to f

POP.D wd Double POP from TOS to Wd:Wd + 1
POP.S POP shadow registers

PUSH f PUSH fto TOS

PUSH wd Push Wa to TOS

PUSH.D |Wd PUSH double Wa:Wa + 1 to TOS
PUSH.S PUSH shadow registers

PWRSAV |litl Enter Power-saving mode litl

90

Pre-Processor Directives

RCALL a Call (relative)

RCALL wd Call Wa

REPEAT |[lit14 Repeat next instruction (lit14 + 1) times
REPEAT |wd Repeat next instruction (Wa + 1) times
RESET Reset

RETFIE Return from interrupt enable

RETLW lit10,Wd Return; Wa = [it10

RETLW.B |lit10,wd Return; Wa = [it10 (byte)

RETURN Return

RLC Wa,Wd Wd = rotate left through Carry Wa

RLC f,F f = rotate left through Carry f

RLC f,wW WO = rotate left through Carry f

RLC.B f,F f = rotate left through Carry f (byte)
RLC.B f,wW WO = rotate left through Carry f (byte)
RLC.B Wa,Wd Wd = rotate left through Carry Wa (byte)
RLNC Wa,Wd Wd = rotate left (no Carry) Wa

RLNC f,F f = rotate left (no Carry) f

RLNC f,W WO = rotate left (no Carry) f

RLNC.B f,w WO = rotate left (no Carry) f (byte)
RLNC.B Wa,Wd Wd = rotate left (no Carry) Wa (byte)
RLNC.B f,F f = rotate left (no Carry) f (byte)

RRC f,F f = rotate right through Carry f

RRC Wa,Wd Wd = rotate right through Carry Wa
RRC f,W WO = rotate right through Carry f
RRC.B f,w WO = rotate right through Carry f (byte)
RRC.B f,F f = rotate right through Carry f (byte)
RRC.B Wa,Wd Wd = rotate right through Carry Wa (byte)
RRNC f,F f = rotate right (no Carry) f

RRNC f,w WO = rotate right (no Carry) f

RRNC Wa,Wd Wd = rotate right (no Carry) Wa

91

PCD C Compiler Reference Manual April 2008

RRNC.B |fF f = rotate right (no Carry) f (byte)
RRNC.B |Wa,Wd Wd = rotate right (no Carry) Wa (byte)
RRNC.B |f,W WO = rotate right (no Carry) f (byte)
SAC acc,{lit4},wd Wd = Acc slit 4

SAC.R acc {lit4},wd Wd = Acc slit 4 with rounding
SE Wa,Wd Wd = sign-extended Wa

SETM wd Wd = OXFFFF

SETM f,F WO = OxFFFF

SETM.B |wd Wd = OXFFFF (byte)

SETM.B [f,wW WO = OXFFFF (byte)

SETM.B |f,F WO = OXFFFF (byte)

SFTAC acc,wd Arithmetic shift Acc by (Wa)
SFTAC acc,lits Arithmetic shift Acc by Slit6

SL f,wW WOo=f<<1

SL Wa,Wb,wWd Wd = Wa << Wb

SL Wa,lit4,Wd Wd = Wa << lit4

SL Wa,wd Wd=Wa=<<1

SL f,F f=f<<1

SL.B f,wW WO =f << 1 (byte)

SL.B Wa,Wd Wd = Wa << 1 (byte)

SL.B f,F f=f<<1 (byte)

SSTEP ICD Single Step

SUB f,F f=f-WO0

SUB f,w W0 =f-WO0

SUB Wa,Wb,Wd Wd =Wa-Wb

SUB Wa,lit5,wd Wd = Wa - lits

SuUB acc Acc = AccA — AccB

SUB lit10,wd wd = Wd - lit10

SUB.B Wa,lit5,Wd wd = Wa - lit5 (byte)

SUB.B lit10,wd wd = Wd — it10 (byte)

92

Pre-Processor Directives

SUB.B fW WO = f— WO (byte)
SUB.B Wa,Wb,wWd Wd = Wa — Wb (byte)
SUB.B f,F f=f— WO (byte)

SUBB f,w Wo=f-W0-C

SUBB Wa,Wb,wWd Wd=Wa-Wb-C

SUBB f,F f=f-W0-C

SUBB Wa,lit5,wd Wd=Wa-lit5-C

SUBB lita0,wd Wd =Wd - it10 - C
SUBB.B |lit10,wd wd = Wd - lit10 — C (byte)
SUBB.B |Wa,Wb,wd Wd =Wa—-Wb—C (byte)
SUBB.B |f,F f=f— WO — C (byte)
SUBB.B |Wa,lit5,wd Wwd = Wa - lit5 - C (byte)
SUBB.B |f,W WO = f— WO — C (byte)
SUBBR Wa,lit5,wd wd=lit5—-Wa-C
SUBBR f,w WO=W0-f-C

SUBBR f,F f=wo-f-C

SUBBR Wa,Wb,wd Wwd=Wa-Wb-C
SUBBR.B |f,F f=W0-f—C (byte)
SUBBR.B |[f,W WO =WO0 —f—C (byte)
SUBBR.B |Wa,Wb,wd Wd =Wa-Whb-C (byte)
SUBBR.B |Wa,lit5,wWd wd = lits - Wa - C (byte)
SUBR Wa,lit5,wd wd = lit5 — Wb

SUBR f,F f=wW0-f

SUBR Wa,Wb,Wd Wd =Wa - Wb

SUBR f,w W0 =WO0 —f

SUBR.B |Wa,Wb,wd wd = Wa — Wb (byte)
SUBR.B |fF f=W0—f (byte)
SUBR.B |Wa,lit5,wd Wd = 1it5 — Wb (byte)
SUBR.B |f,W WO =WO0-f (byte)
SWAP wd Wa = byte or nibble swap Wa

93

PCD C Compiler Reference Manual April 2008

SWAP.B (wd Wa = byte or nibble swap Wa (byte)
TBLRDH |Wa,Wd Wd = ROM[Wa] for odd ROM
TBLRDH.B |Wa,wd Wd = ROM[Wa] for odd ROM (byte)
TBLRDL |Wa,wd Wd = ROM[Wa] for even ROM
TBLRDL.B |Wa,wd Wd = ROM[Wa] for even ROM (byte)
TBLWTH |Wa,wd ROM[Wa] = Wd for odd ROM
TBLWTH.B|Wa,Wd ROM[Wa] = Wd for odd ROM (byte)
TBLWTL |Wa,wd ROM[Wa] = Wd for even ROM
TBLWTL.B |Wa,wd ROM[Wa] = Wd for even ROM (byte)
ULNK Deallocate Stack Frame

URUN ICD Run

XOR Wa,Wb,wd wd =Wa " Wb

XOR f,F f=f~WO0

XOR f,wW W0 =f~WO0

XOR Wa,lit5,wd wd =Wa " lits

XOR lit 0,wd wd =Wd * 1it10

XOR.B lit10,wd Wd = Wd 7 1it10 (byte)

XOR.B fw WO = f 2~ WO (byte)

XOR.B Wa,lit5,Wd Wd = Wa 7 lit5 (byte)

XOR.B Wa,Wb,Wd Wd = Wa ~ Wb (byte)

XOR.B f,F f=f2 WO (byte)

ZE Wa,Wd wd = Wa & FF

94

#BANKX

Pre-Processor Directives

Syntax:
Elements:

Purpose:

Examples:

Example Files:

Also See:

#BANKY

#BANKX
None

Tells the compiler to assign the data for the next variable, array, or structure
into Bank X.

#bankx

struct {

int r_w;

int c _d;

long unused : 2;

long data : 4;

} a port;

// The data for a_port will be forced into memory bank Xx.

None

None

Syntax:
Elements:

Purpose:

Examples:

Example Files:

Also See:

#BANKY
None

Tells the compiler to assign the data for the next variable, array, or structure
into Bank Y.

#banky

struct {

int r_w;

int c d;

long unused : 2;

long data : 4;

} a _port;

// The data for a _port will be forced into memory bank y.

None

None

95

PCD C Compiler Reference Manual April 2008

#BIT

Syntax:

Elements:

Purpose:

Examples:

Example Files:
Also See:

#BUILD

#bit id = x.y

id is a valid C identifier,
X is a constant or a C variable,
y is a constant 0-7.

A new C variable (one bit) is created and is placed in memory at byte x and bit
y. This is useful to gain access in C directly to a bit in the processors special
function register map. It may also be used to easily access a bit of a standard
C variable.

#bit T1IF = 0x84.3

TOIF = 0; // Clear Timer O interrupt flag
int result;

#bit result_odd = result.0O

if (result_odd)

ex_glint.c
#byte, #reserve, #locate, #word

Syntax:

Elements:

96

#build(segment = address)

#build(segment = address, segment = address)
#build(segment = start:end)

#build(segment = start: end, segment = start: end)
#build(nosleep)

#build(ALT_INTERRUPT)

segment is one of the following memory segments which may be assigned a
location: RESET, INTERRUPT, or STACK

address is a ROM location memory address. Start and end are used to specify
a range in memory to be used. Start is the first ROM location and end is the
last ROM location to be used.

Purpose:

Examples:

Example Files:

Also See:

Pre-Processor Directives

RESET will move the compiler's reset vector to the specified location.
INTERRUPT will move the compiler's interrupt service routine to the specified
location. This just changes the location the compiler puts it's reset and ISR, it
doesn't change the actual vector of the PIC. If you specify a range that is larger
than actually needed, the extra space will not be used and prevented from use
by the compiler.

STACK configures the range (start and end locations) used for the stack, if not
specified the compiler uses the last 256 bytes.

ALT_INTERRUPT will move the compiler's interrupt service routine to the
alternate location, and configure the PIC to use the alternate location.

Nosleep is used to prevent the compiler from inserting a sleep at the end of
main()

When linking multiple compilation units, this directive must appear exactly the
same in each compilation unit.

These directives are commonly used in bootloaders, where the reset and
interrupt needs to be moved to make space for the bootloading application.

/* assign the location where the compiler will
place the reset and interrupt vectors */
#bui ld(reset=0x200, interrupt=0x208)

/* assign the location and fix the size of the segments
used by the compiler for the reset and interrupt vectors */
#bui ld(reset=0x200:0x207, interrupt=0x208:0x2ff)

/* assign stack space of 512 bytes */
#bui ld(stack=0x1E00:O0x1FFF)

None

#locate, #reserve, #rom, #org

97

PCD C Compiler Reference Manual April 2008

#BYTE

. __|]
Syntax: #byte id = x

Elements: id is a valid C identifier,

x is a C variable or a constant

Purpose: If the id is already known as a C variable then this will locate the variable at
address x. In this case the variable type does not change from the original
definition. If the id is not known a new C variable is created and placed at
address x with the type int (8 bit)

Warning: In both cases memory at x is not exclusive to this variable. Other

variables may be located at the same location. In fact when x is a variable,
then id and x share the same memory location.

Examples: #byte status_resgister = 0x42
#byte b_port = 0x02C8

struct {
short int r_w;
short int c_d;

int data : 6; } E _port;
#byte a_port = Ox2DA

a port.c_d = 1;
Example Files: ex_glint.c

Also See: #bit, #locate, #reserve, #word

98

#CASE

Pre-Processor Directives

Syntax:
Elements:
Purpose:

Examples:

Example Files:

Also See:

DATE

#case
None

Will cause the compiler to be case sensitive. By default the compiler is case
insensitive. When linking multiple compilation units, this directive must appear
exactly the same in each compilation unit.

Warning: Not all the CCS example programs, headers and drivers have been
tested with case sensitivity turned on.

#case
int STATUS;

void func(Q {
int status;

STATUS = status; // Copy local status to
//global
}

ex_cust.c

None

Syntax:

Elements:
Purpose:

Examples:

Example Files:
Also See:

__DATE__

None

This pre-processor identifier is replaced at compile time with the date of the
compile in the form: "31-JAN-03"

printf(*'Software was compiled on ™);
printf(__DATE_);

None
None

99

PCD C Compiler Reference Manual April 2008

#DEFINE

Syntax:

Elements:

Purpose:

Examples:

Example Files:

Also See:

100

#define id text
or
#define id(x,y...) text

id is a preprocessor identifier, text is any text, x,y and so on are local
preprocessor identifiers, and in this form there may be one or more identifiers
separated by commas.

Used to provide a simple string replacement of the ID with the given text from
this point of the program and on.

In the second form (a C macro) the local identifiers are matched up with similar
identifiers in the text and they are replaced with text passed to the macro where
it is used.

If the text contains a string of the form #idx then the result upon evaluation will
be the parameter id concatenated with the string x.

If the text contains a string of the form #idx#idy then parameter idx is
concatenated with parameter idy forming a new identifier.

#define BITS 8
a=a+BITS; //same as a=a+8;

#define hi(x) (x<<4)
a=hi(a); //same as a=(a<<4);

ex_stwt.c, ex_macro.c

#undef, #ifdef, #ifndef

Pre-Processor Directives

#DEVICE
|

Syntax: #device chip options
#device Compilation mode selection

Elements: Chip Options-

chip is the name of a specific processor (like: dsPIC33FJ64GP306), To get a
current list of supported devices:

START | RUN | CCSC +Q

Options are qualifiers to the standard operation of the device. Valid options are:

ADC=x Where x is the number of bits read_adc() should
return
ICD=TRUE Generates code compatible with Microchips ICD

debugging hardware.

WRITE_EEPROM=ASYNC Prevents WRITE_EEPROM from hanging while
writing is taking place. When used, do not write
to EEPROM from both ISR and outside ISR.

HIGH_INTS=TRUE Use this option for high/low priority interrupts on
the PIC®18.

%f=. No 0 before a decimal pint on %f numbers less
than 1.

OVERLOAD=KEYWORD Overloading of functions is now supported.
Requires the use of the keywaord for
overloading.

OVERLOAD=AUTO Default mode for overloading.

PASS_STRINGS=IN_RAM A new way to pass constant strings to a function
by first copying the string to RAM and then
passing a pointer to RAM to the function.

CONST=READ_ONLY Uses the ANSI keyword CONST definition,
making CONST variables read only, rather than
located in program memory.

CONST=ROM Uses the CCS compiler traditional keyword
CONST definition, making CONST variables
located in program memory. This is the default
mode.

Both chip and options are optional, so multiple #device lines may be used to fully
define the device. Be warned that a #device with a chip identifier, will clear all
previous #device and #fuse settings.

101

PCD C Compiler Reference Manual April 2008

Purpose:

Examples:

Example
Files:

Also See:

102

Compilation mode selection-

The #device directive supports compilation mode selection. The valid keywords are

CCS2, CCS3, CCS4 and ANSI. The default mode is CCS4. For the CCS4 and ANSI
mode, the compiler uses the default fuse settings NOLVP, PUT for chips with these

fuses. The NOWDT fuse is default if no call is made to restart_wdt().

CCs4 This is the default compilation mode.

ANSI Default data type is SIGNED all other modes default is
UNSIGNED. Compilation is case sensitive, all other modes are
case insensitive.

CCs2 varl6 = NegConst8 is compiled as: varl6 = NegConst8 & 0xff (no
CCS3 sign extension). The overload keyword is required.

CCs2 The default #device ADC is set to the resolution of the part, all
only other modes default to 8.

onebit = eightbits is compiled as onebit = (eightbits != 0)
All other modes compile as: onebit = (eightbits & 1)

Chip Options -Defines the target processor. Every program must have exactly one
#device with a chip. When linking multiple compilation units, this directive must
appear exactly the same in each compilation unit.

Compilation mode selection - The compilation mode selection allows existing
code to be compiled without encountering errors created by compiler compliance.
As CCS discovers discrepancies in the way expressions are evaluated according to
ANSI, the change will generally be made only to the ANSI mode and the next major
CCS release.

Chip Options-

#device DSPIC33FJ64GP306

#device PI1C24FJ64GA002 1CD=TRUE

#device ADC=10

#device ICD=TRUE ADC=10

Float Options-

#device %f=.

printf(C"'%f",.5); //will print .5, without the directive it will
print 0.5

Compilation mode selection-
#device CCS2

None

None

DEVICE

Pre-Processor Directives

Syntax:
Elements:

Purpose:

Examples:

Example Files:

Also See:

#ERROR

__ DEVICE__
None

This pre-processor identifier is defined by the compiler with the base number of
the current device (from a #device). The base number is usually the number
after the C in the part number. For example the PIC16C622 has a base
number of 622.

#if _ _device_ ==71
SETUP_ADC_PORTS(ALL_DIGITAL);
#endif

None

#device

Syntax:

Elements:

Purpose:

Examples:

Example Files:

Also See:

#error text
#error / warning text
#error / information text

text is optional and may be any text

Forces the compiler to generate an error at the location this directive appears
in the file. The text may include macros that will be expanded for the display.
This may be used to see the macro expansion. The command may also be
used to alert the user to an invalid compile time situation.

#if BUFFER_SIZE>16
#error Buffer size is too large
#endif

#error Macro test:

min(x,y)
ex_psp.c

#warning

103

PCD C Compiler Reference Manual April 2008

#EXPORT (options)

Syntax:

Elements:

Purpose:

104

#EXPORT (options)

FILE=filname

The filename which will be generated upon compile. If not given, the filname wil
be the name of the file you are compiling, with a .0 or .hex extension (depending
on output format).

ONLY=symbol+symbol+.....+symbol

Only the listed symbols will be visible to modules that import or link this
relocatable object file. If neither ONLY or EXCEPT is used, all symbols are
exported.

EXCEPT=symbol+symbol+.....+symbol

All symbols except the listed symbols will be visible to modules that import or lin
this relocatable object file. If neither ONLY or EXCEPT is used, all symbols are
exported.

RELOCATABLE
CCS relocatable object file format. Must be imported or linked before loading int
a PIC. This is the default format when the #EXPORT is used.

HEX
Intel HEX file format. Ready to be loaded into a PIC. This is the default format
when no #EXPORT is used.

RANGE=start:stop
Only addresses in this range are included in the hex file.

OFFSET=address
Hex file address starts at this address (0 by default)

ODD
Only odd bytes place in hex file.

EVEN
Only even bytes placed in hex file.

This directive will tell the compiler to either generate a relocatable object file or
a stand-alone HEX binary. A relocatable object file must be linked into your
application, while a stand-alone HEX binary can be programmed directly into
the PIC.

The command line compiler and the PCW IDE Project Manager can also be
used to compile/link/build modules and/or projects.

Multiple #EXPORT directives may be used to generate multiple hex files. this
may be used for 8722 like devices with external memory.

Examples:

Example Files:

See Also:

__FILE__

Pre-Processor Directives

#EXPORT(RELOCATABLE, ONLY=TimerTask)

void TimerFuncl(void) { /* some code */ }
void TimerFunc2(void) { /* some code */ }
void TimerFunc3(void) { /* some code */ }
void TimerTask(void)

{
TimerFuncl();
TimerFunc2();
TimerFunc3(Q):

3

/*

This source will be compiled into a relocatable object, but
the object this is being linked to can only see TimerTask()
*/

None

#IMPORT, #MODULE, Invoking the Command Line Compiler, Linker Overview

Syntax:
Elements:

Purpose:

Examples:

Example Files:

__FILE__
None

The pre-processor identifier is replaced at compile time with the file path and
the filename of the file being compiled.

iT(index>MAX_ENTRIES)
printf("'Too many entries, source file: "
__FILE__ "™ at line " __LINE__ "\r\n");

assert.h

105

PCD C Compiler Reference Manual April 2008

__FILENAME__

Syntax:
Elements:

Purpose:

Examples:

Example Files:

Also See:

#FILL_ROM

__FILENAME__
None

The pre-processor identifier is replaced at compile time with the filename of the
file being compiled.

if(index>MAX_ENTRIES)
printf("'Too many entries, source file: "
__ FILENAME__ " at line "™ __LINE__ '"\r\n");

None

line

Syntax:
Elements:

Purpose:

Examples:

Example Files:

Also See:

106

#fill_rom value
value is a constant 16-bit value

This directive specifies the data to be used to fill unused ROM locations. When
linking multiple compilation units, this directive must appear exactly the same in
each compilation unit.

#Fill_rom Ox36

None

#rom

Pre-Processor Directives

#FUSES

. __|
Syntax: #fuse options

Elements: options vary depending on the device. A list of all valid options has been put

at the top of each devices .h file in a comment for reference. The PCW device
edit utility can modify a particular devices fuses. The PCW pull down menu
VIEW | Valid fuses will show all fuses with their descriptions.

Some common options are:

e LP, XT, HS, RC

WDT, NOWDT

PROTECT, NOPROTECT

PUT, NOPUT (Power Up Timer)
BROWNOUT, NOBROWNOUT

Purpose: This directive defines what fuses should be set in the part when it is
programmed. This directive does not affect the compilation; however, the
information is put in the output files. If the fuses need to be in Parallax format,
add a PAR option. SWAP has the special function of swapping (from the
Microchip standard) the high and low BYTES of non-program data in the Hex
file. This is required for some device programmers.

Some processors allow different levels for certain fuses. To access these
levels, assign a value to the fuse.

When linking multiple compilation units be aware this directive applies to the
final object file. Later files in the import list may reverse settings in previous

files.
Examples: #fuses HS,NOWDT
Example Files: None
Also See: None

107

PCD C Compiler Reference Manual April 2008

#HEXCOMMENT

. __|

Syntax: #HEXCOMMENT text comment for the top of the hex file
#HEXCOMMENT\ text comment for the end of the hex file

Elements: None

Purpose: Puts a comment in the hex file
Some programmers (MPLAB in particular) do not like comments at the top of
the hex file.

Examples: #HEXCOMMENT Version 3.1 — requires 20MHz crystal

Example Files: None

Also See: None

#ID

. __|

Syntax: #ID number 32
#ID number, number, number, number
#ID "filename"

#ID CHECKSUM

Elements: Number32 is a 32 bit number, number is a 8 bit number, filename is any valid
PC filename and checksum is a keyword.

Purpose: This directive defines the ID word to be programmed into the part. This
directive does not affect the compilation but the information is put in the output
file.

The first syntax will take a 32-bit number and put one byte in each of the four
ID bytes in the traditional manner. The second syntax specifies the exact
value to be used in each of the four ID bytes.

When a filename is specified the ID is read from the file. The format must be
simple text with a CR/LF at the end. The keyword CHECKSUM indicates the
device checksum should be saved as the ID.

Examples: #i1d 0x12345678
#id 0x12, 0x34, 0x45, 0x67
#id “serial .num”

#id CHECKSUM

Example Files: ex_cust.c

Also See: None

108

H#IF exp
HELSE
HELIF

#ENDIF

Pre-Processor Directives

Syntax:

Elements:

Purpose:

Examples:

Example
Files:

Also See:

#if expr
code

#elif expr //Optional, any number may be used
code

#else //Optiona
code

#endif

expr is an expression with constants, standard operators and/or preprocessor
identifiers. Code is any standard ¢ source code.

The pre-processor evaluates the constant expression and if it is non-zero will
process the lines up to the optional #ELSE or the #ENDIF.

Note: you may NOT use C variables in the #IF. Only preprocessor identifiers
created via #define can be used.

The preprocessor expression DEFINED(id) may be used to return 1 if the id is
defined and O if it is not.

== and != operators now accept a constant string as both operands. This allows
for compile time comparisons and can be used with GETENV() when it returns a
string result.

#if MAX_VALUE > 255
long value;
#else
int value;
#endif
#if getenv(“DEVICE”)=="PIC16F877”
//do something special for the PIC16F877
#endif

ex_extee.c

#ifdef, #ifndef, getenv()

109

PCD C Compiler Reference Manual April 2008

#IFDEF
#IFNDEF
#ELSE
#ELIF
#ENDIF
. __|
Syntax: #ifdef id
code
#elif
code
#else
code
#endif
#ifndef id
code
#elif
code
#else
code
#endif
Elements: id is a preprocessor identifier, code is valid C source code.
Purpose: This directive acts much like the #IF except that the preprocessor simply

checks to see if the specified ID is known to the preprocessor (created with a
#DEFINE). #IFDEF checks to see if defined and #IFNDEF checks to see if it is
not defined

Examples: #define debug // Comment line out for no debug

#ifdef DEBUG
printf('debug point a™);

#endif
Example Files: ex_sqgw.c
Also See: #if

110

Pre-Processor Directives

#IGNORE_WARNINGS

Syntax:

Elements:

Purpose:

Examples:

Example Files:

Also See:

#IMPORT (options)

#ignore_warnings ALL
#IGNORE_WARNINGS NONE
#IGNORE_WARNINGS warnings

warnings is one or more warning numbers separated by commas
This function will suppress warning messages from the compiler. ALL indicates
no warning will be generated. NONE indicates all warnings will be generated.

If numbers are listed then those warnings are suppressed.

#ignore_warnings 203
while(TRUE) {
#ignore_warnings NONE

None

Warning messages

Syntax:

Elements:

#Import (options)

FILE=filname
The filename of the object you want to link with this compilation.

ONLY=symbol+symbol+.....+symbol
Only the listed symbols will imported from the specified relocatable object file.
If neither ONLY or EXCEPT is used, all symbols are imported.

EXCEPT=symbol+symbol+.....+symbol
The listed symbols will not be imported from the specified relocatable object
file. If neither ONLY or EXCEPT is used, all symbols are imported.

RELOCATABLE
CCS relocatable object file format. This is the default format when the
#IMPORT is used.

COFF

COFF file format from MPASM, C18 or C30.
HEX

Imported data is straight hex data.

111

PCD C Compiler Reference Manual April 2008

Purpose:

Examples:

Example Files:
See Also:

#INCLUDE

RANGE=start:stop
Only addresses in this range are read from the hex file.

LOCATION=id
The identifier is made a constant with the start address of the imported data.

SIZE=id
The identifier is made a constant with the size of the imported data.

This directive will tell the compiler to include (link) a relocatable object with this
unit during compilation. Normally all global symbols from the specified file will
be linked, but the EXCEPT and ONLY options can prevent certain symbols
from being linked.

The command line compiler and the PCW IDE Project Manager can also be
used to compile/link/build modules and/or projects.

#IMPORT(FILE=timer.o, ONLY=TimerTask)
void main(void)

while(TRUE)
TimerTask(Q);
by
/*
timer.o is linked with this compilation, but only TimerTask()
is visible in scope from this object.
*/

None
#EXPORT, #MODULE, Invoking the Command Line Compiler, Linker Overview

Syntax:

Elements:

112

#include <filename>
or
#include "filename"

filename is a valid PC filename. It may include normal drive and path
information. A file with the extension ".encrypted” is a valid PC file. The
standard compiler #include directive will accept files with this extension and
decrypt them as they are read. This allows include files to be distributed
without releasing the source code.

Purpose:

Examples:

Example Files:

Also See:

#INLINE

Pre-Processor Directives

Text from the specified file is used at this point of the compilation. If a full path
is not specified the compiler will use the list of directories specified for the
project to search for the file. If the filename is in " then the directory with the
main source file is searched first. If the filename is in <> then the directory with
the main source file is searched last.

#include <16C54._.H>

#include <C:\INCLUDES\COMLIB\MYRS232.C>
ex_sqw.c

None

Syntax:
Elements:

Purpose:

Examples:

Example Files:

Also See:

#inline
None

Tells the compiler that the function immediately following the directive is to be
implemented INLINE. This will cause a duplicate copy of the code to be
placed everywhere the function is called. This is useful to save stack space
and to increase speed. Without this directive the compiler will decide when it is
best to make procedures INLINE.

#inline
swapbyte(int &a, int &b) {
int t;
t=a;
a=b;
b=t;
}
ex_cust.c
#separate

113

PCD C Compiler Reference Manual April 2008

#INT_xxX

Syntax:

114

#INT_AC1
#INT_AC2
#INT_AC3
#INT_AC4
#INT_AD
#INT_AD2
#INT_ADC?2
#INT_ADCPO
#INT_ADCP1
#INT_ADCP2
#INT_ADCP3
#INT_ADCP4
#INT_ADCP5

#INT_ADDRERR

#INT_CAN1
#INT_CAN1E

#INT_CAN1RX
#INT_CAN1TX

#INT_CAN2
#INT_CANZE

#INT_CAN2RX
#INT_CAN2TX

#INT_CNI
#INT_COMP
#INT_CRC
#INT_DCI
#INT_DCIE
#INT_DMAO
#INT_DMA1
#INT_DMA2
#INT_DMA3
#INT_DMA4
#INT_DMAS5
#INT_DMAG
#INT_DMA7

Analog comparator 1 output change
Analog comparator 2 output change
Analog comparator 3 output change
Analog comparator 4 output change
Analog to digital conversion complete
ADCL1 conversion complete
Analog to digital conversion complete
ADC pair 0 conversion complete
ADC pair 1 conversion complete
ADC pair 2 conversion complete
ADC pair 3 conversion complete
ADC pair 4 conversion complete
ADC pair 5 conversion complete
Address error trap

CAN 1 Combined Interrupt Request
CAN 1 Event

CAN 1 Receive Buffer Ready

CAN 1 Transmit Data Request
CAN 2 Combined Interrupt Request
CAN 2 Event

CAN 2 Receive Buffer Ready

CAN 2 Transmit Data Request
Input change natification interrupt
Comparator event

Cyclic redundancy check generator
DCI transfer done

DCE error

DMA channel 0 transfer complete
DMA channel 1 transfer complete
DMA channel 2 transfer complete
DMA channel 3 transfer complete
DMA channel 4 transfer complete
DMA channel 5 transfer complete
DMA channel 6 transfer complete
DMA channel 7 transfer complete

Pre-Processor Directives

#INT_DMAERR DMAC error trap
#INT_EEPROM Write complete

#INT_EXT External interrupt
#INT_EXT1 External interrupt #1
#INT_EXT2 External interrupt #2
#INT_EXT3 External interrupt #3
#INT_EXT4 External interrupt #4
#INT_FAULTA PWM Fault A
#INT_FAULTB PWM Fault B
#INT_IC1 Input Capture #1
#INT_IC2 Input Capture #2
#INT_IC3 Input Capture #3
#INT_IC4 Input Capture #4
#INT_IC5 Input Capture #5
#INT_IC6 Input Capture #6
#INT_IC7 Input Capture #7
#INT_IC8 Input Capture #8

#INT_LOWVOLT Low voltage detected
#INT_MATHERR Arithmetic error trap

#INT_MI2C Master 12C activity

#INT_MI2C1 Masterl I2C activity

#INT_MI2C2 Master2 12C activity

#INT_NVM Non-volatile memory write complete
#INT_OC1 Output Compare #1

#INT_OC2 Output Compare #2

#INT_OC3 Output Compare #3

#INT_OC4 Output Compare #4

#INT_OC5 Output Compare #5

#INT_OC6 Output Compare #6

#INT_OC7 Output Compare #7

#INT_OCS8 Output Compare #8

#INT_OSC_FAIL System oscillator failed

#INT_PMP Parallel master port

#INT_PWM PWM period match

#INT_PWM1 PWM generator 1 time based interrupt
#INT_PWM2 PWM generator 2 time based interrupt
#INT_PWM3 PWM generator 3 time based interrupt

115

PCD C Compiler Reference Manual April 2008

Elements:

Purpose:

116

#INT_PWM4 PWM generator 4 time based interrupt
#INT_PWMP PWM 1 period match
#INT_PWMP2 PWM 2 period match

#INT_PWMSEM

#INT_QEI QEI position counter compare
#INT_RDA RS232 receive data available
#INT_RDA2 RS232 receive data available in buffer 2
#INT_RTC Real - Time Clock/Calendar
#INT_SI2C Slave I12C activity
#INT_SI2C1 Slavel 12C activity
#INT_SI2C2 Slave2 12C activity
#INT_SPI1 SPI1 Transfer Done
#INT_SPI1E SPI1E Transfer Done
#INT_SPI2 SPI2 Transfer Done
#INT_SPI2E SPI2 Error

#INT_SPIE SPI Error

#INT_TBE RS232 transmit buffer empty
#INT_TBE2 RS232 transmit buffer 2 empty
#INT_TIMER1 Timer 1 overflow
#INT_TIMER2 Timer 2 overflow
#INT_TIMER3 Timer 3 overflow
#INT_TIMER4 Timer 4 overflow
#INT_TIMERS Timer 5 overflow
#INT_TIMERG6 Timer 6 overflow
#INT_TIMER7Y Timer 7 overflow
#INT_TIMERS Timer 8 overflow
#INT_TIMER9 Timer 9 overflow
#INT_UARTI1E UART1 error

#INT_UARTZ2E UART2 error

PWM special event trigger

NoCear, LEVEL=n, HIGH, FAST

These directives specify the following function is an interrupt function. Interrupt
functions may not have any parameters. Not all directives may be used with all
parts. See the devices .h file for all valid interrupts for the part or in PCW use the
pull down VIEW | Valid Ints

Examples:

Example
Files:
Also See:

Pre-Processor Directives

The MPU will jump to the function when the interrupt is detected. The compiler will
generate code to save and restore the machine state, and will clear the interrupt
flag. To prevent the flag from being cleared add NOCLEAR after the #INT_Xxxxx.
The application program must call ENABLE_INTERRUPTS(INT_xxxx) to initially
activate the interrupt.

An interrupt marked FAST uses the shadow feature to save registers. Only one
interrupt may be marked fast.

Level=n specifies the level of the interrupt.

Enable_interrupts specifies the levels that are enabled. The default is level 0 and
level 7 is never disabled. High is the same as level = 7.

A summary of the different kinds of dsPIC/PIC24 interrupts:
HINT _Xxxx
Normal (low priority) interrupt. Compiler saves/restores key registers.
This interrupt will not interrupt any interrupt in progress.
#INT_xxxx FAST

Compiler does a FAST save/restore of key registers.
Only one is allowed in a program.
#INT_xxxx Level=3

Interrupt is enabled when levels 3 and below are enabled.

#INT_GLOBAL
Compiler generates no interrupt code. User function is located
at address 8 for user interrupt handling.

#int_ad
adc_handler() {
adc_active=FALSE;

}

#int_timerl noclear
isrQ {

N .-

None

enable_interrupts(), disable_interrupts(), #int_default,

117

PCD C Compiler Reference Manual April 2008

#INT_DEFAULT

Syntax: #int_default
Elements: None
Purpose: The following function will be called if the dsPIC® triggers an interrupt and a

#INT_xxx hadler has not been defined for the interrupt.

Examples: #int_default
default_isrQ {
printf("'Unexplained interrupt\r\n');

Example Files: None

Also See: #INT _XxxX,

__LINE__

. __|
Syntax: __line__

Elements: None

Purpose: The pre-processor identifier is replaced at compile time with line number of the

file being compiled.

Examples: if(index>MAX_ENTRIES)
printf(""Too many entries, source file: "
__FILE__ ™ at line " __LINE__ "\r\n™);
Example Files: assert.h
Also See: file

118

#LIST

Pre-Processor Directives

Syntax:
Elements:

Purpose:

Examples:

Example Files:

Also See:

#LOCATE

#list
None

#List begins inserting or resumes inserting source lines into the .LST file after a
#NOLIST.

#NOLIST // Don"t clutter up the list file
#include <cdriver.h>
#LIST

16c74.h

#nolist

Syntax:

Elements:

Purpose:

Examples:

Example Files:

Also See:

#locate id=x

id is a C variable,
X is a constant memory address

#LOCATE works like #BYTE however in addition it prevents C from using the
area.

A special form of this directive may be used to locate all A functions local
variables starting at a fixed location.
Use: #locate Auto = address

This directive will place the indirected C variable at the requested address.

// This will locate the float variable at 50-53
// and C will not use this memory for other

// variables automatically located.

float Xx;

#locate x=0x800

ex_glint.c

#byte, #bit, #reserve, #word

119

PCD C Compiler Reference Manual April 2008

#MODULE

Syntax:
Elements:

Purpose:

Examples:

Example Files:

See Also:

120

#MODULE
None

All global symbols created from the #MODULE to the end of the file will only be
visible within that same block of code (and files #included within that block).
This may be used to limit the scope of global variables and functions within
include files. This directive also applies to pre-processor #defines.

Note: The extern and static data qualifiers can also be used to denote scope of
variables and functions as in the standard C methodology. #MODULE does
add some benefits in that pre-processor #defines can be given scope, which
cannot normally be done in standard C methodology.

int GetCount(void);
void SetCount(int newCount);
#MODULE
int g_count;
#define G_COUNT_MAX 100
int GetCount(void) {return(g_count);}
void SetCount(int newCount) {

if (newCount>G_COUNT_MAX)

newCount=G_COUNT_MAX;

g_count=newCount;
by
/*
the functions GetCount() and SetCount() have global scope, but
the variable g_count and the #define G_COUNT_MAX only has
scope to this file.
*/

None

#EXPORT, Invoking the Command Line Compiler, Linker Overview

#NOLIST

Pre-Processor Directives

Syntax:
Elements:
Purpose:

Examples:

Example Files:

Also See:

#OPT

#nolist
None
Stops inserting source lines into the .LST file (until a #LIST)

#NOLIST // Don"t clutter up the list file
#include <cdriver.h>
#LIST

16c74.h

#LIST

Syntax:
Elements:

Purpose:

Examples:
Example Files:

Also See:

#OPT n
All dsPIC30/dsPIC33/PIC24 Devices: n is the optimization level 0-9

The optimization level is set with this directive. This setting applies to the entire
program and may appear anywhere in the file. The default is 9 for full
optimization. Levels 10 and 11 are for extended optimization. It may be used
to reduce optimization below default if it is suspected that an optimization is
causing a flaw in the code.

#opt 5
None

None

121

PCD C Compiler Reference Manual April 2008

#ORG

Syntax:

Elements:

Purpose:

122

#org start, end
or
#org segment
or
#org start, end {}
or
#org start, end auto=0
#ORG start,end DEFAULT
or
#0ORG DEFAULT

start is the first ROM location (word address) to use, end is the last ROM
location, segment is the start ROM location from a previous #org

This directive will fix the following function or constant declaration into a
specific ROM area. End may be omitted if a segment was previously defined if
you only want to add another function to the segment.

Follow the ORG with a {} to only reserve the area with nothing inserted by the
compiler.

The RAM for a ORG'ed function may be reset to low memory so the local
variables and scratch variables are placed in low memory. This should only be
used if the ORG'ed function will not return to the caller. The RAM used will
overlap the RAM of the main program. Add a AUTO=0 at the end of the #ORG
line.

If the keyword DEFAULT is used then this address range is used for all
functions user and compiler generated from this point in the file until a #ORG
DEFAULT is encountered (no address range). If a compiler function is called
from the generated code while DEFAULT is in effect the compiler generates a
new version of the function within the specified address range.

When linking multiple compilation units be aware this directive applies to the
final object file. Itis an error if any #org overlaps between files unless the #org
matches exactly.

Examples:

Example Files:

Also See:

PCD

#0ORG Ox1EOO0, Ox1FFF

MyFunc() {
//This function located at 1EO0

}

#ORG Ox1EQO0
Anotherfunc(Q{
// This will be somewhere 1E00-1F00

}

#0RG 0x800, 0x820 {}
//Nothing will be at 800-820

#ORG 0x1C00, Ox1COF

CHAR CONST ID[10}= {""123456789"};
//This ID will be at 1C00

//Note some extra code will
//proceed the 123456789

#0ORG Ox1F00, Ox1FFO
Void loader OQ{

}

loader.c

#ROM

Pre-Processor Directives

Syntax:
Elements:

Purpose:

Examples:

Example
Files:

Also See:

PCD__

None

The PCD compiler defines this pre-processor identifier. It may be used to
determine if the PCD compiler is doing the compilation.

#ifdef __pcd
#device dsPIC33FJ256MC710

#e

ndif

ex_sqw.c

None

123

PCD C Compiler Reference Manual April 2008

#PIN_SELECT

. __|

Syntax: #pin_select function=pin_xx

Elements: function is the Microchip defined pin function name, such as: UIRX (UART1
receive), INT1 (external interrupt 1), T2CK (timer 2 clock), IC1 (input capture 1),

OC1 (output capture 1) For a full list of valid pin function names, refer the datasheet
for your target PIC microcontroller.

NULL NULL

C10UT Comparator 1 Output
C20UT Comparator 2 Output
UlTXx UART1 Transmit

U1RTS UART1 Request To Send
U2TX UART2 Transmit

U2RTS UART2 Request to Send
SDO1 SPI1 Data Output

SCK10UT SPI1 Clock Output
SS10UT SPI1 Slave Select Output
SDO2 SPI2 Data Output
SCK20UT SPI2 Clock Output
SS20UT SPI2 Slave Select Output

OC1 Output Compare 1
OoC2 Output Compare 2
OC3 Output Compare 3
OC4 Output Compare 4
OC5 Output Compare 5
INT1 External Interrupt 1
INT2 External Interrupt 2
T2CK Timer2 External Clock
T3CK Timer3 External Clock
TACK Timer4 External Clock
T5CK Timer5 External Clock
IC1 Input Capture 1

IC2 Input Capture 2

IC3 Input Capture 3

IC4 Input Capture 4

IC5 Input Capture 5
OCFA Output Compare Fault A

124

Purpose:

Examples:

Example
Files:
Also See:

#PRAGMA

OCFB
U1RX
U1CTS
U2RX
U2CTS
SDI1
SCK1IN
SSI1IN
SDI2
SCK2IN
SS2IN

Output Compare Fault B
UART1 Receive
UART1 Clear to Send
UART2 Receive
UART2 Clear to Send
SPI1 Data Input

SPI1 Clock Input

SPI1 Slave Select Input
SPI2 Data Input

SPI2 Clock Input

SPI2 Slave Select Input

Pre-Processor Directives

pin_xx is the CCS provided pin definition. For example: PIN_C7, PIN_BO, PIN_D3,

etc.

On PICs that contain Peripheral Pin Select (PPS), this allows the programmer to
define which pin a peripheral is mapped to.

#pin_select ULTX=PIN_C6
#pin_select ULRX=PIN_C7
#pin_select INT1=PIN_BO

None

None

Syntax:
Elements:

Purpose:

Examples:

Example Files:

Also See:

#pragma cmd

cmd is any valid preprocessor directive.

This directive is used to maintain compatibility between C compilers. This
compiler will accept this directive before any other pre-processor command. In

no case does this compiler require this directive.

#pragma device PIC16C54

ex_cust.c

None

125

PCD C Compiler Reference Manual April 2008

#RESERVE

Syntax:

Elements:

Purpose:

Examples:

Example Files:

Also See:

#RECURSIVE

#reserve address
or

#reserve address, address, address
or

#reserve start:end

address is a RAM address, start is the first address and end is the last
address

This directive allows RAM locations to be reserved from use by the compiler.
#RESERVE must appear after the #DEVICE otherwise it will have no effect.

When linking multiple compilation units be aware this directive applies to the
final object file.

#DEVICE dsPI1C30F2010
#RESERVE 0x800:0x80B3

ex_cust.c

#org

Syntax:

Elements:
Purpose:

Examples:

Example Files:

Also See:

126

#recursive

None

Tells the compiler that the procedure immediately following the directive will be
recursive.

#recursive
int factorial(int num) {
if (hum <= 1)
return 1;
return num * factorial (num-1);
by

None
None

#ROM

Pre-Processor Directives

Syntax:

Elements:

Purpose:

Examples:

Example Files:

Also See:

#rom address = {list}
#rom int8 address = {list}
#rom char address = {list}

address is a ROM word address, list is a list of words separated by commas

Allows the insertion of data into the .HEX file. In particular, this may be used to
program the '84 data EEPROM, as shown in the following example.

Note that if the #ROM address is inside the program memory space, the
directive creates a segment for the data, resulting in an error if a #ORG is over
the same area. The #ROM data will also be counted as used program memory
space.

The int8 option indicates each item is 8 bits, the default is 16 bits.
The char option treats each item as 7 bits packing 2 chars into every pcm 14-
bit word.

When linking multiple compilation units be aware this directive applies to the
final object file.

#rom Ox7FFC00-{1,2,3,4,5,6,7,8}

None
#org

127

PCD C Compiler Reference Manual April 2008

#SEPARATE

Syntax:

Elements:

Purpose:

Examples:

Example Files:

Also See:

128

#separate options

options is optional, and are:

STDCALL — Use the standard Microchip calling method, used in C30. WO-W7
is used for function parameters, rest of the working registers are not touched,
remaining function parameters are pushed onto the stack.

ARG=Wx:Wy — Use the working registers Wx to Wy to hold function
parameters. Any remaining function parameters are pushed onto the stack.

DND=Wx:WYy — Function will not change Wx to Wy working registers.

AVOID=Wx:Wy — Function will not use Wx to Wy working registers for function
parameters.

NO RETURN - Prevents the compiler generated return at the end of a function.
You cannot use STDCALL with the ARG, DND or AVOID parameters.

If you do not specify one of these options, the compiler will determine the best
configuration, and will usually not use the stack for function parameters (usually
scratch space is allocated for parameters).

Tells the compiler that the procedure IMMEDIATELY following the directive is
to be implemented SEPARATELY. This is useful to prevent the compiler from
automatically making a procedure INLINE. This will save ROM space but it
does use more stack space. The compiler will make all procedures marked
SEPARATE, separate, as requested, even if there is not enough stack space to
execute.

#separate ARG=WO:W7 AVOID=W8:W15 DND=W8:W15
swapbyte (int *a, int *b) {
int t;
:*a;
*a=*b;
*b=t;
}

ex_cust.c

#inline

#SERIALIZE

Pre-Processor Directives

Syntax:

Elements:

Purpose:

#serialize(id=xxx, next="x" | file="filename.txt" " | listfile="filename.txt",
"prompt="text", log="filename.txt") -

Or-#serialize(dataee=x, binary=x, next="x" | file="filename.txt" |
listfile="filename.txt", prompt="text", log="filename.txt")

id=xxx - Specify a C CONST identifier, may be int8, int16, int32 or char array

Use in place of id parameter, when storing serial number to EEPROM:
dataee=x - The address x is the start address in the data EEPROM.
binary=x - The integer x is the number of bytes to be written to address
specified. -or-

string=x - The integer x is the number of bytes to be written to address
specified.

Use only one of the next three options:

file="filename.txt" - The file x is used to read the initial serial number from,
and this file is updated by the ICD programmer. It is assumed this is a one line
file with the serial number. The programmer will increment the serial number.

listfile="filename.txt" - The file x is used to read the initial serial number from,
and this file is updated by the ICD programmer. It is assumed this is a file one
serial number per line. The programmer will read the first line then delete that
line from the file.

next="x" - The serial number X is used for the first load, then the hex file is
updated to increment x by one.

Other optional parameters:

prompt="text" - If specified the user will be prompted for a serial number on
each load. If used with one of the above three options then the default value
the user may use is picked according to the above rules.

log=xxx - A file may optionally be specified to keep a log of the date, time, hex
file name and serial number each time the part is programmed. If no id=xxx is
specified then this may be used as a simple log of all loads of the hex file.

Assists in making serial numbers easier to implement when working with CCS
ICD units. Comments are inserted into the hex file that the ICD software
interprets.

129

PCD C Compiler Reference Manual April 2008

Examples: //Prompt user for serial number to be placed
//at address of serialNumA
//Default serial number = 200int8 const serialNumA=100;
#serialize(id=serialNumA,next="200",prompt="Enter the serial
number'")

//Adds serial number log in seriallog.txt
#serialize(id=serialNumA,next="200",prompt="Enter the serial
number™, log="seriallog.txt")

//Retrieves serial number from serials.txt
#serialize(id=serialNumA, listfile="serials.txt")

//Place serial number at EEPROM address O, reserving 1 byte
#serialize(dataee=0,binary=1,next=""45",prompt="Put in Serial
number')

//Place string serial number at EEPROM address 0, reserving 2

bytes
#serialize(dataee=0, string=2,next="AB",prompt="Put in Serial
number*")

Example Files: None

Also See: None

#TASK

(The RTOS is only included with the PCW and PCWH packages.)

Each RTOS task is specified as a function that has no parameters and no return. The #task
directive is needed just before each RTOS task to enable the compiler to tell which functions are
RTOS tasks. An RTOS task cannot be called directly like a regular function can.

Syntax: #task (options)
Elements: options are separated by comma and may be:
rate=time

Where time is a number followed by s, ms, us, or ns. This specifies how often
the task will execute.

max=time
Where time is a number followed by s, ms, us, or ns. This specifies the
budgeted time for this task.

gqueue=bytes

Specifies how many bytes to allocate for this task's incoming messages. The
default value is 0.

130

Purpose:

Examples:

Also See:

_ TIME _

Pre-Processor Directives

This directive tells the compiler that the following function is an RTOS task.

The rate option is used to specify how often the task should execute. This must
be a multiple of the minor_cycle option if one is specified in the #use rtos
directive.

The max option is used to specify how much processor time a task will use in
one execution of the task. The time specified in max must be equal to or less
than the time specified in the minor_cycle option of the #use rtos directive
before the project will compile successfully. The compiler does not have a way
to enforce this limit on processor time, so a programmer must be careful with
how much processor time a task uses for execution. This option does not need
to be specified.

The queue option is used to specify the number of bytes to be reserved or the
task to receive messages from other tasks or functions. The default queue
value is 0.

#task(rate=1s, max=20ms, queue=5)

#use rtos

Syntax:
Elements:

Purpose:

Examples:

Example Files:

Also See:

__TIME__
None

This pre-processor identifier is replaced at compile time with the time of the
compile in the form: "hh:mm:ss"

printf("'Software was compiled on ');

printf(_TIME_);
None

None

131

PCD C Compiler Reference Manual April 2008

#TYPE
|

Syntax: #type standard-type=size
#type default=area
#type unsigned
#type signed
#type char=signed
#type char=unsigned
#type ARG=Wx:Wy
#type DND=Wx:Wy
#type AVOID=Wx:Wy
#type RECURSIVE
#type CLASSIC

Elements: standard-type is one of the C keywords short, int, long, float, or double
size is 1,8,16, 48, or 64
area is a memory region defined before the #TYPE using the addressmod
directive

Wx:Wy is a range of working registers (example: W0, W1, W15, etc)

Purpose: By default the compiler treats SHORT as 8 bits, INT as 16 bits, and LONG as
32 bits. The traditional C convention is to have INT defined as the most
efficient size for the target processor. This is why it is 16 bits on the
dsPIC/PIC24®. In order to help with code compatibility a #TYPE directive may
be used to allow these types to be changed. #TYPE can redefine these
keywords.

Note that the commas are optional. Be warned CCS example programs and
include files may not work right if you use #TYPE in your program.

Classic will set the type sizes to be compatible with CCS PIC programs.
This directive may also be used to change the default RAM area used for
variable storage. This is done by specifying default=area where area is a
addressmod address space.

When linking multiple compilation units be aware this directive only applies to
the current compilation unit.

The #TYPE directive allows the keywords UNSIGNED and SIGNED to set the
default data type.

132

Examples:

Example Files:

Also See:

Pre-Processor Directives

The ARG parameter tells the compiler that all functions can use those working
registers to receive parameters. The DND parameters tells the compiler that all
functions should not change those working registers (not use them for scratch
space). The AVOID parameter tells the compiler to not use those working
registers for passing variables to functions. If you are using recursive
functions, then it will use the stack for passing variables when there is not
enough working registers to hold variables; if you are not using recursive
functions, the compiler will allocate scratch space for holding variables if there
is not enough working registers. #seperate can be used to set these
parameters on an individual basis.

The RECURSIVE option tells the compiler that ALL functions can be recursive.
#recursive can also be used to assign this status on an individual basis.

#TYPE SHORT=1, INT=8, LONG=16, FLOAT=48
#TYPE default=area
addressmod (user_ram_block, 0x100, Ox1FF);

#type default=user_ram block // all variable declarations
// in this area will be in
// 0x100-0x1FF

#type default= // restores memory allocation
// back to normal

#TYPE SIGNED

#TYPE RECURSIVE
#TYPE ARG=WO:W7
#TYPE AVOID=W8:W15
#TYPE DND=W8:W15

void mainQ

int variablel; // variablel can only take values from -128 to
127

}
ex_cust.c

None

133

PCD C Compiler Reference Manual April 2008

#UNDEF

Syntax:
Elements:

Purpose:

Examples:

Example Files:

Also See:

#USE DELAY

#undef id
id is a pre-processor id defined via #define

The specified pre-processor ID will no longer have meaning to the pre-
processor.

#if MAXSI1ZE<100
#undef MAXSIZE
#define MAXSIZE 100
#endif

None

#define

Syntax:

Elements:

134

#use delay (clock=speed)

#use delay (clock=speed, restart_wdt)
#use delay (clock=speed, type)

#use delay (clock=speed, type=speed)
#use delay (type=speed)

speed is a constant 1-100000000 (1 hz to 100 mhz). This number can
contains commas. This number also supports the following denominations: M,
MHZ, K, KHZ

type defines what kind of clock you are using, and the following values are
valid: oscillator, osc (same as oscillator), crystal, xtal (same as crystal),
internal, int (same as internal) or rc. The compiler will automatically set the
oscillator configuration bits based upon your defined type. If you specified
internal, the compiler will also automatically set the internal oscillator to the
defined speed.

restart_wdt will restart the watchdog timer on every delay_us() and delay_ms()
use.

Purpose:

Examples:

Example Files:

Also See:

Pre-Processor Directives

Tells the compiler the speed of the processor and enables the use of the built-
in functions: delay_ms() and delay_us(). Will also set the proper configuration
bits, and if needed configure the internal oscillator. Speed is in cycles per
second. An optional restart_WDT may be used to cause the compiler to restart
the WDT while delaying. When linking multiple compilation units, this directive
must appear in any unit that needs timing configured (delay_ms(), delay_us(),
UART, SPI).

In multiple clock speed applications, this directive may be used more than
once. Any timing routines (delay_ms(), delay_us, UART, SPI) that need timing
information will use the last defined #use delay(). For initialization purposes,
the compiler will initialize the configuration bits and internal oscillator based
upon the first #use delay().

//set timing config to 32KHz, restart watchdog timer
//on delay us() and delay ms(Q)
#use delay (clock=32000, RESTART_WDT)

//the following 4 examples all configure the timing library
//to use a 20Mhz clock, where the source is an oscillator.

#use delay (clock=20000000) //user must manually
set HS config bit

#use delay (clock=20,000,000) //user must manually
set HS config bit

#use delay(clock=20M) //user must manually
set HS config bit

#use delay(clock=20M, oscillator) //compiler will set HS
config bit

#use delay(oscillator=20M) //compiler will set HS
config bit

//application is using a 10Mhz oscillator, but using the 4x
PLL

//to upscale it to 40Mhz. Compiler will set H4 config bit.
#use delay(clock=40M, oscillator=10M)

//application will use the internal oscillator at 8MHz.
//compiler will set INTOSC 10 config bit, and set the internal
//oscillator to 8MHz.

#use delay(internal=8M)

ex_sqw.c

delay_ms(), delay_us()

135

PCD C Compiler Reference Manual April 2008

#USE FAST_IO

Syntax:
Elements:

Purpose:

Examples:

Example
Files:

Also See:

#use fast_io (port)
portisA,B,C,D,E, F, G, H,Jor ALL

Affects how the compiler will generate code for input and output instructions that
follow. This directive takes effect until another #use xxxx_lO directive is
encountered. The fast method of doing I/O will cause the compiler to perform 1/O
without programming of the direction register. The compiler's default operation is
the opposite of this command, the direction 1/0O will be set/cleared on each I/0
operation. The user must ensure the direction register is set correctly via
set_tris_X(). When linking multiple compilation units be aware this directive only
applies to the current compilation unit.

#use fast_io(A)
ex_cust.c

#use fixed io, #use standard io, set tris X() , General Purpose |/O

#USE FIXED_IO

Syntax:
Elements:

Purpose:

Examples:
Example

Files:
Also See:

136

#use fixed_io (port_outputs=pin, pin?)
port is A-G, pin is one of the pin constants defined in the devices .h file.

This directive affects how the compiler will generate code for input and output
instructions that follow. This directive takes effect until another #use xxx_IO
directive is encountered. The fixed method of doing 1/0 will cause the compiler to
generate code to make an I/O pin either input or output every time it is used. The
pins are programmed according to the information in this directive (not the
operations actually performed). This saves a byte of RAM used in standard 1/O.
When linking multiple compilation units be aware this directive only applies to the
current compilation unit.

#use fixed_io(a_outputs=PIN_A2, PIN_A3)
None

#use fast _io, #use standard_io, General Purpose I/O

Pre-Processor Directives

#USE 12C

Syntax: #use i2c (options)
Elements: Options are separated by commas and may be:
MASTER Sets to the master mode
MULTI_MASTER Set the multi_master mode
SLAVE Set the slave mode
SCL=pin Specifies the SCL pin (pin is a bit address)
SDA=pin Specifies the SDA pin
ADDRESS=nn Specifies the slave mode address
FAST Use the fast [2C specification.
FAST=nnnnnn Sets the speed to nnnnnn hz
SLOW Use the slow I2C specification
RESTART_WDT Restart the WDT while waiting in 12C_READ
FORCE_HW Use hardware 12C functions.
FORCE_SW Use software 12C functions.
NOFLOAT_HIGH Does not allow signals to float high, signals are driven
from low to high
SMBUS Bus used is not 12C bus, but very similar
STREAM=id Associates a stream identifier with this 12C port. The
identifier may then be used in functions like i2c_read or
i2c_write.
NO_STRETCH Do not allow clock streaching
MASK=nn Set an address mask for parts that support it
12C1 Instead of SCL= and SDA= this sets the pins to the first
module
12C2 Instead of SCL= and SDA= this sets the pins to the
second module
Purpose: The 12C library contains functions to implement an 12C bus. The #USE 12C remains

in effect for the 12C_START, 12C_STOP, 12C_READ, 12C_WRITE and 12C_POLL
functions until another USE 12C is encountered. Software functions are generated
unless the FORCE_HW is specified. The SLAVE mode should only be used with
the built-in SSP. The functions created with this directive are exported when using
multiple compilation units. To access the correct function use the stream identifier.

137

PCD C Compiler Reference Manual April 2008

Examples: #use 12C(master, sda=PIN_BO, scl=PIN_B1)

#use 12C(slave,sda=PIN_C4,scl=PIN_C3
address=0xa0, FORCE_HW)

#use 12C(master, scl=PIN_BO, sda=PIN_B1, fast=450000)
//sets the target speed to 450 KBSP

Example ex_extee.c with 16¢c74.h

Files:

Also See: i2c_read(), i2c_write()

#USE RS232

. __|
Syntax: #use rs232 (options)

Elements: Options are separated by commas and may be:

STREAM=id Associates a stream identifier with this RS232 port.
The identifier may then be used in functions like
fputc.

BAUD=x Set baud rate to x

XMIT=pin Set transmit pin

RCV=pin Set receive pin

FORCE_SW Will generate software serial 1/0 routines even when
the UART pins are specified.

BRGH10K Allow bad baud rates on chips that have baud rate
problems.

ENABLE=pin The specified pin will be high during transmit. This
may be used to enable 485 transmit.

DEBUGGER Indicates this stream is used to send/receive data
though a CCS ICD unit. The default pin used in B3,
use XMIT= and RCV= to change the pin used. Both
should be the same pin.

RESTART_WDT Will cause GETC() to clear the WDT as it waits for a

character.

138

INVERT

PARITY=X
BITS =X

FLOAT_HIGH

ERRORS

SAMPLE_EARLY

RETURN=pin

MULTI_MASTER

LONG_DATA

DISABLE_INTS

STOP=X

Pre-Processor Directives

Invert the polarity of the serial pins (normally not
needed when level converter, such as the MAX232).
May not be used with the internal UART.

Where xis N, E, or O.
Where x is 5-9 (5-7 may not be used with the SCI).

The line is not driven high. This is used for open
collector outputs. Bit 6 in RS232_ERRORS is set if
the pin is not high at the end of the bit time.

Used to cause the compiler to keep receive errors in
the variable RS232_ERRORS and to reset errors
when they occur.

A getc() normally samples data in the middle of a bit
time. This option causes the sample to be at the
start of a bit time. May not be used with the UART.

For FLOAT_HIGH and MULTI_MASTER this is the
pin used to read the signal back. The default for
FLOAT_HIGH is the XMIT pin and for
MULTI_MASTER the RCV pin.

Uses the RETURN pin to determine if another
master on the bus is transmitting at the same time.

If a collision is detected bit 6 is set in
RS232_ERRORS and all future PUTC's are ignored
until bit 6 is cleared. The signal is checked at the
start and end of a bit time. May not be used with the
UART.

Makes getc() return an int16 and putc accept an
intl6. This is for 9 bit data formats.

Will cause interrupts to be disabled when the routines
get or put a character. This prevents character
distortion for software implemented I/O and prevents
interaction between 1/O in interrupt handlers and the
main program when using the UART.

To set the number of stop bits (default is 1). This wo
both UART and non-UART ports.

139

PCD C Compiler Reference Manual April 2008

Purpose:

140

TIMEOUT=X To set the time getc() waits for a byte in
milliseconds. If no character comes in within this
time the RS232_ERRORS is set to 0 as well as the
return value form getc(). This works for both UART
and non-UART ports.

SYNC_SLAVE Makes the RS232 line a synchronous slave, making
the receive pin a clock in, and the data pin the data
in/out.

SYNC_MASTER Makes the RS232 line a synchronous master,

making the receive pin a clock out, and the data pin
the data in/out.

SYNC_MATER_CONT Makes the RS232 line a synchronous master mode
in continuous receive mode. The receive pin is set
as a clock out, and the data pin is set as the data
in/out.

UART1 Sets the XMIT= and RCV= to the chips first
hardware UART.

UART1A Uses alternate UART pins

UART2 Sets the XMIT=and RCV= to the chips second
hardware UART.

UART2A Uses alternate UART pins

This directive tells the compiler the baud rate and pins used for serial I/0. This
directive takes effect until another RS232 directive is encountered. The #USE
DELAY directive must appear before this directive can be used. This directive
enables use of built-in functions such as GETC, PUTC, and PRINTF. The functions
created with this directive are exported when using multiple compilation units. To
access the correct function use the stream identifier.

When using parts with built-in UART and the UART pins are specified, the SCI will
be used. If a baud rate cannot be achieved within 3% of the desired value using the
current clock rate, an error will be generated. The definition of the RS232_ERRORS
is as follows:

No UART:
e Bit 7 is 9th bit for 9 bit data mode (get and put).
¢ Bit 6 set to one indicates a put failed in float high mode.

With a UART:

Pre-Processor Directives

e Used only by get:
e Copy of RCSTA register except:
e Bit 0 is used to indicate a parity error.

Warning:

The PIC UART will shut down on overflow (3 characters received by the hardware
with a GETC() call). The "ERRORS" option prevents the shutdown by detecting the
condition and resetting the UART.

Examples: #use rs232(baud=9600, xmit=PIN_A2,rcv=PIN_A3)

Example ex_cust.c

Files:

Also See: getc(), putc(), printf(), setup_uart(), RS2332 I/O overview
#USE RTOS

. __|
(The RTOS is only included with the PCW and PCWH packages.)

The CCS Real Time Operating System (RTOS) allows a PIC micro controller to run regularly
scheduled tasks without the need for interrupts. This is accomplished by a function (RTOS_RUN())
that acts as a dispatcher. When a task is scheduled to run, the dispatch function gives control of
the processor to that task. When the task is done executing or does not need the processor
anymore, control of the processor is returned to the dispatch function which then will give control of
the processor to the next task that is scheduled to execute at the appropriate time. This process is
called cooperative multi-tasking.

Syntax: #use rtos (options)
Elements: options are separated by comma and may be:
timer=X Where x is 0-4 specifying the timer used by the
RTOS.
minor_cycle=time Where time is a number followed by s, ms, us, ns.
This is the longest time any task will run. Each
task's execution rate must be a multiple of this
time. The compiler can calculate this if it is not
specified.
statistics Maintain min, max, and total time used by each
ask.

141

PCD C Compiler Reference Manual April 2008

Purpose:

Examples:

Also See:

#USE SPI

This directive tells the compiler which timer on the PIC to use for
monitoring and when to grant control to a task. Changes to the specified timer's
prescaler will effect the rate at which tasks are executed.

This directive can also be used to specify the longest time that a task will ever take to
execute with the minor_cycle option. This simply forces all task execution rates to be
a multiple of the minor_cycle before the project will compile successfully. If the this
option is not specified the

compiler will use a minor_cycle value that is the smallest possible

factor of the execution rates of the RTOS tasks.

If the statistics option is specified then the compiler will keep track of

the minimum processor time taken by one execution of each task, the maximum
processor time taken by one execution of each task, and the total processor time
used by each task.

When linking multiple compilation units, this directive must appear exactly the same
in each compilation unit.

#use rtos(timer=0, minor_cycle=20ms)

#task

Syntax:

Elements:

142

#use spi (options)

Options are separated by commas and may be:

MASTER Set the device as the master.

SLAVE Set the device as the slave.

BAUD=n Target bits per second, default is as fast as
possible.

CLOCK_HIGH=n High time of clock in us (not needed of BAUD= is
used).

CLOCK_LOW=n Low time of clock in us (not needed of BAUD= is
used).

DI=pin Optional pin for incoming data.

DO=pin Optional pin for outgoing data.

CLK=pin Clock pin.

MODE=n The mode to put the SPI bus.

ENABLE=pin Optional pin to be active during data transfer.

LOAD=pin Optional pin to be pulsed active after data is
transferred.

Purpose:

Examples:

Example
Files:
Also See:

Pre-Processor Directives

DIAGNOSTIC=pin Optional pin to the set high when data is sampled.
SAMPLE_RISE Sample on rising edge.

SAMPLE_FALL Sample on falling edge (default).

BITS=n Max number of bits in a transfer.
SAMPLE_COUNT=n Number of samples to take (uses majority vote).
LOAD_ACTIVE=n Active state for LOAD pin (0, 1).
ENABLE_ACTIVE=n Active state for ENABLE pin (0, 1).

IDLE=n Inactive state for CLK pin (0, 1).
ENABLE_DELAY=n Time in us to delay after ENABLE is activated.
LSB_FIRST LSB is sent first.

MSB_FIRST MSB is sent first.

STREAM=id Specify a stream name for this protocol.

SPI1 Use the hardware pins for SPI Port 1

SPI2 Use the hardware pins for SPI Port 2

The SPI library contains functions to implement an SPI bus. After setting all of the
proper parameters in #use spi, the spi_xfer() function can be used to both transfer
and receive data on the SPI bus.

The SPI1 and SPI2 options will use the SPI hardware onboard the PIC. The most
common pins present on hardware SPI are: DI, DO, and CLK. These pins don’t
need to be assigned values through the options; the compiler will automatically
assign hardware-specific values to these pins. Consult your PIC’s data sheet as to
where the pins for hardware SPI are. If hardware SPI is not used, then software SPI
will be used. Software SPI is much slower than hardware SPI, but software SPI can
use any pins to transfer and receive data other than just the pins tied to the PIC’s
hardware SPI pins.

The MODE option is more or less a quick way to specify how the stream is going to
sample data. MODE=0 sets IDLE=0 and SAMPLE_RISE. MODE=1 sets IDLE=0
and SAMPLE_FALL. MODE=2 sets IDLE=1 and SAMPLE_FALL. MODE=3 sets
IDLE=1 and SAMPLE_RISE. There are only these 4 MODEs.

SPI cannot use the same pins for DI and DO. If needed, specify two streams: one to
send data and another to receive data.

#use spi(DI=PIN_B1, DO=PIN_BO, CLK=PIN_B2, ENABLE=PIN__B4,
BITS=16)
// uses software SPI

#use spi(FORCE_HW, BITS=16, stream=SPI_STREAM)
// uses hardware SPl and gives this stream the name SPI_STREAM

None

spi_xfer()

143

PCD C Compiler Reference Manual April 2008

#USE STANDARD_IO

Syntax:
Elements:

Purpose:

Examples:
Example Files:

Also See:

#ZERO_RAM

#USE STANDARD_|O (port)
portis A, B, C, D, E, F, G, H, J or ALL

This directive affects how the compiler will generate code for input and output
instructions that follow. This directive takes effect until another #use xxx_io
directive is encountered. The standard method of doing I/O will cause the
compiler to generate code to make an I/O pin either input or output every time it
is used. On the 5X processors this requires one byte of RAM for every port set
to standard I/O.

Standard_io is the default I/O method for all ports.

When linking multiple compilation units be aware this directive only applies to
the current compilation unit.

#use standard_io(A)
ex_cust.c

#use fast _io, #use fixed io , General Purpose I/O

Syntax:
Elements:

Purpose:

Examples:

Example Files:

Also See:

144

#zero_ram
None

This directive zero's out all of the internal registers that may be used to hold
variables before program execution begins.

#zero_ram
void main() {

}

ex_cust.c

None

#WARNING

Pre-Processor Directives

Syntax:
Elements:
Purpose:

Examples:

Example Files:
Also See:

#WORD

#warning text
text is optional and may be any text

Forces the compiler to generate a warning at the location this directive appears
in the file. The text may include macros that will be expanded for the display.
This may be used to see the macro expansion. The command may also be
used to alert the user to an invalid compile time situation.

#i1f BUFFER_SIZE < 32
#warning Buffer Overflow may occur
#endif

ex_psp.c
#error

Syntax:
Elements:

Purpose:

Examples:

Example Files:
Also See:

#word id = x
id is a valid C identifier,

X is a C variable or a constant

If the id is already known as a C variable then this will locate the variable at
address x. In this case the variable type does not change from the original
definition. If the id is not known a new C variable is created and placed at
address x with the type int16

Warning: In both cases memory at x is not exclusive to this variable. Other
variables may be located at the same location. In fact when x is a variable,
then id and x share the same memory location.

#word data = 0x0860

struct {

short C;

short Z;

short 0OV;

short N;

short RA;

short 1PLO;

short 1PL1;

short 1PL2;

int upperByte : 8;
} status_register;
#word status_register = 0x42

short zero = status_register.Z;
None
#bit, #byte, #locate, #reserve

145

BUILT-IN-FUNCTIONS

Vol
Lo

C Compiler

BUILT-IN-FUNCTIONS

The CCS compiler provides a lot of built-in functions to access and use the pic microcontroller's
peripherals. This makes it very easy for the users to configure and use the peripherals without
going into in depth details of the registers associated with the functionality. The functions
categorized by the peripherals associated with them are listed on the next page. Click on the
function name to get a complete description and parameter and return value descriptions.

assert() getch() utc

fgetc() getchar() putchar()

fgets() gets() uts
RS232 1O fprintf() kbhit() setup uart()

fputc() perror() set_uart speed()

fputs() printf()

etc

setup _spi() spi_data is_in() spi_read() spi_write()
SPI TWO setup spi2() spi_data is_in2() spi_read2() spi_write2()
WIRE I/0 spi_xfer()

get tris x() input x() output float() output low()
DISCRETE I/O input output x() output high() output toggle()
input_state() output bit() output drive() port_x_pullups()

set_pullup() set tris x()

i2c_isr_state() i2c_slaveaddr() i2c_write()
12C 1/0 i2c_poll i2c_start() i2c_stop()
i2c read()

146

Built-in-Functions

clear_interrupt() goto _address() setup _oscillator()
PROCESSOR disable interrupts() interrupt active() slee
CONTROLS enable interrupts() label address() brownout enable()
ext int edge() reset cpu()
getenv() restart cause()
bit clear() bit last() mul shift right()
bit _set() make8() rotate left() swap()
BIT/BYTE bit test() makel6() rotate right()
MANIPULATION bit_first() make32() shift_left()
abs() cosh() labs() pwr()
acos() div() Idexp() sin()
asin() exp() Idiv() sinh()
STANDARD atan() fabs log() sgrt
C MATH atan2() floor() 10g10() tan()
ceil() fmod() modf() tanh
cos frexp() pow()
VOLTAGE setup low volt detect() setup _vref()
REF/ setup _comparator()
COMPARE
adc_done() set_adc channel() read adc()
adc_done2() set_adc_channel2() read adc2()
A/D
CONVERSION setup adc() setup adc _ports
setup adc2() setup adc ports2()

147

PCD C Compiler Reference Manual April 2008

atof() islower(char) strcmp() strrehr()
atoi() isprint(x) strecoll() strspn()
atol ispunct(x) strepy() strstr()
isalnum() isspace(char) strespn() strtod()
STANDARD C isalpha(char) isupper(char) strlen() strtok()
g#ﬁﬁé isamoung() isxdigit(char) striwr() strtol()
iscntrl(x) itoa strncat() strtoul()
isdigit(char) sprintf() strncmp() strxfrm()
isgraph(x) strcat() strncpy() tolower()
strerror() strpbrk() sricmp() toupper
strehr()
get timerx() set timerx() setup wdt ()
TIMERS get timerxy() set tim?rxyg)
restart wdt() setup timerx ()
calloc() memcmp() offsetofbit()
free() memcpy() realloc()
STANDARD longjmp() memmove() setjimp()
C MEMORY malloc() memset()
memchr() offsetof()
set_pwm_duty() set_compare time()
setup_motor_unit() setup compare()
setup_motor pwm() get_motor pwm_event()
CAPTURE/CO setup capture() setup motor pwm duty()
MPARE/PWM get capture() set_motor pwm event()

148

Built-in-Functions

read eeprom() write configuration _memory()
NON- read configuration memory() write eeprom()
VOLATILE read rom_memory() write program_memory()

MEMORY read program _memory()

STANDARD C bsearch() rand() srand() gsort()
SPECIAL

delay cycles() delay ms() delay us
DELAYS delay us()
rtos _await rtos msq send() rtos terminate
rtos disable() rtos _overrun rtos wait
rtos _enable() rtos run() rtos vield()
rtos_ms oll rtos signal
rtos_msg _read() rtos stats
TBD
dma status() dma_ start() setup dma()
gei _get count gei _set count gei_status
setup gei
TBD

149

PCD C Compiler Reference Manual April 2008

rtc_alarm read() rtc_alarm write() setup rtc_alarm()
rtc_read rtc_write setup rtc
crc_calc(mode) crc_init(mode) setup _crc(mode)
pmp address(address) pmp input full() pmp_ output full()
pmp overflow() pmp read() pmp write()
Parallel Port psp_input full() psp_output full() psp overflow()
psp read() psp_write()
setup pmp(option setup_psp(option, address_mask)

address _mask)

150

abs()

Built-in-Functions

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

Also See:

adc_done()
adc_done2()

value = abs(x)

X is any integer or float type.

Same type as the parameter.

Computes the absolute value of a number.
All devices

#include <stdlib.h>

signed int target,actual;

error = abs(target-actual);

None

labs()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

value = adc_done();
value = adc_done2();

None

A short int. TRUE if the A/D converter is done with conversion, FALSE if it is
still busy.

Can be polled to determine if the A/D has valid data.
Only available on devices with built in analog to digital converters

None

151

PCD C Compiler Reference Manual April 2008

Examples: intl6 value;
setup_adc_ports(sANO|sAN1, VSS VDD);
setup_adc(ADC_CLOCK_DIV_4]|ADC_TAD_MUL_8);
set_adc_channel (0);
read_adc(ADC_START_ONLY);

intl done = adc_done();
while(ldone) {

done = adc_done();
H

value = read_adc();
printf(“A/C value = %LX\n\r”, value);

H
Example Files: None
Also See: setup_adc(), set_adc_channel(), setup_adc_ports(), read adc(), adc overview

assert()

Syntax: assert (condition);

Parameters: condition is any relational expression

Returns: Nothing

Function: This function tests the condition and if FALSE will generate an error message

on STDERR (by default the first USE RS232 in the program). The error
message will include the file and line of the assert(). No code is generated for
the assert() if you #define NODEBUG. In this way you may include asserts in
your code for testing and quickly eliminate them from the final program.

Availability: All devices
Requires: assert.h and #use rs232
Examples: assert(number_of_entries<TABLE_SIZE);

// If number_of _entries is >= TABLE_SIZE then
// the following is output at the RS232:
// Assertion failed, file myfile.c, line 56

Example Files: None
Also See: #use rs232, RS232 I/O overview

152

Built-in-Functions

atof()
atof48()
atofé4()
. __|
Syntax: result = atof (string)
or
result = atof48(string)
or

result=atof64(string)

Parameters: string is a pointer to a null terminated string of characters.
Returns: Result is a floating point number in single, extended or double precision format
Function: Converts the string passed to the function into a floating point representation.

If the result cannot be represented, the behavior is undefined.

Availability: All devices

Requires: #include <stdlib.h>

Examples: char string [10];
float Xx;

strcpy (string, '123.456");
X = atof(string);
// x is now 123.456

Example Files: ex_tank.c

Also See: atoi(), atol(), atoi32(), printf()

153

PCD C Compiler Reference Manual April 2008

atoi()
atol()
atoi32()
atoi48()
atoi64()
. __|
Syntax: ivalue = atoi(string)
or
Ivalue = atol(string)
or
i32value = atoi32(string)
or
i48value=atoi48(string)
or

i64value=atoi64(string)

Parameters: string is a pointer to a null terminated string of characters.

Returns: ivalue is an 8 bit int.
Ivalue is a 16 bit int.
i32value is a 32 bit int.
48value is a 48 bit int.
i64value is a 64 bit int.

Function: Converts the string passed to the function into an int representation. Accepts
both decimal and hexadecimal argument. If the result cannot be represented,
the behavior is undefined.

Availability: All devices

Requires: #include <stdlib.h>

Examples: char string[10];
int x;

strcpy(string, 123");
x = atoi(string);
// x is now 123

Example Files: input.c

Also See: printf()

154

bit_clear()

Built-in-Functions

Syntax:

Parameters:

Returns:
Function:

Availability:

Requires:
Examples:

Example Files:

Also See:

bit_first()

bit_clear(var, bit)

var may be a any bit variable (any Ivalue)
bit is a number 0-63 representing a bit number, 0 is the least significant bit.

undefined

Simply clears the specified bit in the given variable. The least significant bit is
0. This function is the similar to: var &= ~(1<<bit);

All devices
Nothing
int x;
X=5;

bit_clear(x,2);
// x is now 1

€ex_patg.c

bit_set(), bit_test()

Syntax:
Parameters:
Returns:

Function:

Availability:

Requires:
Examples:

Example Files:
Also See:

N = bit_first (value, var)

value is a 0 to 1 to be shifted in
var is a 16 bit integer.
An 8 bit integer

This function sets N to the 0 based position of the first occurrence of value. The
search starts from the right or least significant bit.

30F/33F/24-bit devices

Nothing

Intl6é var = 0x0033;

Int8 N = 0;

// N =

N = bit_first (0, var);

None

shift_right(), shift_left(), rotate_right(), rotate_left()

155

PCD C Compiler Reference Manual April 2008

bit_last()

Syntax:

Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

156

N = bit_last (value, var)
N = bit_last(var)

value is a 0 to 1 to search for
var is a 16 bit integer.
An 8-bit integer

The first function will find the first occurrence of value in the var starting with the
most significant bit.

The second function will note the most significant bit of var and then search for
the first different bit.

Both functions return a 0 based result.

30F/33F/24-bit devices

Nothing

//Bit pattern
//11101110 11111111
Intl6 var = OXEEFF;
Int8 N = 0;

//N is assigned 12

N = bit_last (0, var);
//N is assigned 12

N = bit_last(var);

None

shift_right(), shift _left(), rotate right(), rotate left()

Built-in-Functions

bit_set()

. __|
Syntax: bit_set(var, bit)

Parameters: var may be any variable (any Ivalue)

bit is a number 0-63 representing a bit number, 0 is the least significant bit.

Returns: Undefined
Function: Sets the specified bit in the given variable. The least significant bit is 0. This
function is the similar to: var |= (1<<bit);

Availability: All devices

Requires: Nothing

Examples: int x;
X=5;

bit_set(x,3);
// X is now 13

Example Files: ex_patqg.c

Also See: bit_clear(), bit_test()

157

PCD C Compiler Reference Manual April 2008

bit_test()

Syntax:
Parameters:

Returns:
Function:

Availability:
Requires:
Examples:

Example Files:
Also See:

value = bit_test (var, bit)

var may be a any bit variable (any Ivalue)
bit is a number 0-63 representing a bit number, 0 is the least significant bit.

Oorl

Tests the specified bit in the given variable. The least significant bit is 0.
This function is much more efficient than, but otherwise similar to: ((var &
(1<<bit)) '= 0)

All devices
Nothing

iT(bit_test(x,3) || 'bit_test (x,1)){
//either bit 3 is 1 or bit 1 is 0
}

if(datal=0)

for(i=31;!bit_test(data, i);i--) ;
// 1 now has the most significant bit in data
// that is set to a 1

ex_patg.c
bit_clear(), bit_set()

brownout_enable()

Syntax:
Parameters:

Returns:
Function:

Availability:

Requires:
Examples:

Example Files:
Also See:

158

brownout_enable (value)
value — TRUE or FALSE

undefined

Enable or disable the software controlled brownout. Brownout will cause the
PIC to reset if the power voltage goes below a specific set-point.

This function is only available on PICs with a software controlled brownout.
This may also require a specific configuration bit/fuse to be set for the brownout
to be software controlled.

Nothing
brownout_enable(TRUE);

None
restart_cause()

bsearch()

Built-in-Functions

Syntax:

Parameters:

Returns:

Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

ip = bsearch
(&key, base, num, width, compare)

key: Object to search for

base: Pointer to array of search data

num: Number of elements in search data

width: Width of elements in search data

compare: Function that compares two elements in search data

bsearch returns a pointer to an occurrence of key in the array pointed to by
base. If key is not found, the function returns NULL. If the array is not in order
or contains duplicate records with identical keys, the result is unpredictable.

Performs a binary search of a sorted array
All devices
#include <stdlib.h>

int nums[5]={1,2,3,4,5};
int compar(const void *argl,const void *arg2);

void main() {
int *ip, key;
key = 3;
ip = bsearch(&ey, nums, 5, sizeof(int), compar);

}

int compar(const void *argl,const void *arg2) {
if (* (int *) argl < (* (int *) arg2) return -1
else if (* (int *) argl == (* (int *) arg2) return O
else return 1;

}

None

gsort()

159

PCD C Compiler Reference Manual April 2008

calloc()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

Also See:

ceil()

ptr=calloc(nmem, size)

nmem is an integer representing the number of member objects, and size is
the number of bytes to be allocated for each one of them.

A pointer to the allocated memory, if any. Returns null otherwise.

The calloc function allocates space for an array of nmem objects whose size is
specified by size. The space is initialized to all bits zero.

All devices
#include <stdlibom.h>

int * iptr;

iptr=calloc(5,10);

// iptr will point to a block of memory of
// 50 bytes all initialized to O.

None

realloc(), free(), malloc()

Syntax:

Parameters:

Returns:

Function:

Availability:

160

result = ceil (value)
value is any float type
A float with precision equal to value

Computes the smallest integer value greater than the argument. CEIL(12.67)
is 13.00.

All devices

Built-in-Functions

Requires: #include <math.h>

Examples: // Calculate cost based on weight rounded
// up to the next pound

cost = ceil(weight) * DollarsPerPound;
Example Files: None

Also See: floor

clear_interrupt()

Syntax: clear_interrupt(level)

Parameters: level - a constant defined in the devices.h file

Returns: undefined

Function: Clears the interrupt flag for the given level. This function is designed for use

with a specific interrupt, thus eliminating the GLOBAL level as a possible
parameter. Some chips that have interrupt on change for individual pins allow
the pin to be specified like INT_RA1.

Availability: All devices

Requires: Nothing

Examples: clear_interrupt(int_timerl);
Example Files: None

Also See: enable_interrupts(), #INT, Interrupts overview

161

PCD C Compiler Reference Manual April 2008

crc_calc(mode)

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

crc_init(mode)

Result = crc_calc (data);
Result = crc_calc8(data);
Result = crc_calc(ptr, len);
Result = crc_calc8(ptr, len);

data- This is 1 word that needs to be processed when the crc_calc() is used
and 1 byte when the crc_calc8() is used.

ptr- is a pointer to one or more bytes/words of data

len- Process len words for crc_calc() or len bytes for crc_calc8() function call
Returns the result of the final CRC calculation.

This will process one data byte/word or len bytes/words of data using the CRC
engine.

Only the devices with built in CRC module.
Nothing

intlé data[8];
Result = crc_calc(data,8); // Starts the CRC accumulator out
at 0

None

setup_crc(); crc_init()

Syntax:

Parameters:

Returns:

Function:

Availability:

162

crc_init (data);

data - This will setup the initial value used by write CRC shift register. Most
commonly, this register is set to 0x0000 for start of a new CRC calculation.

undefined

Configures the CRCWDAT register with the initial value used for CRC
calculations.

Only the devices with built in CRC module.

Built-in-Functions

Requires: Nothing
Examples: crc_init (); // Starts the CRC accumulator out at O

crc_init(OxFEEE); // Starts the CRC accumulator out at OxXFEEE
Example Files: None

Also See: setup_crc(); crc_calc(); crc_calc8();

delay_cycles()

Syntax: delay_cycles (count)

Parameters: count - a constant 1-255

Returns: undefined

Function: Creates code to perform a delay of the specified number of instruction clocks

(1-255). An instruction clock is equal to four oscillator clocks.

The delay time may be longer than requested if an interrupt is serviced during
the delay. The time spent in the ISR does not count toward the delay time.

Availability: All devices
Requires: Nothing
Examples: delay_cycles(1); // Same as a NOP

delay_cycles(25); // At 20 mhz a 5us delay
Example Files: ex_cust.c

Also See: delay us(), delay ms()

163

PCD C Compiler Reference Manual April 2008

delay_ms()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

164

delay_ms (time)

time - a variable 0-65535(int16) or a constant 0-65535

Note: Previous compiler versions ignored the upper byte of an int16, now the
upper byte affects the time.

undefined

This function will create code to perform a delay of the specified length. Time
is specified in milliseconds. This function works by executing a precise number
of instructions to cause the requested delay. It does not use any timers. If
interrupts are enabled the time spent in an interrupt routine is not counted
toward the time.

The delay time may be longer than requested if an interrupt is serviced during
the delay. The time spent in the ISR does not count toward the delay time.

All devices
#use delay
#use delay (clock=20000000)

delay_ms(2);

void delay_seconds(int n) {
for (;n'=0; n- -)
delay_ms(1000);

ex_sqw.c

delay _us(), delay_cycles(), #use delay

delay_us()

Built-in-Functions

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

delay_us (time)

time - a variable 0-65535(int16) or a constant 0-65535

Note: Previous compiler versions ignored the upper byte of an int16, now the
upper byte affects the time.

undefined

Creates code to perform a delay of the specified length. Time is specified in
microseconds. Shorter delays will be INLINE code and longer delays and
variable delays are calls to a function. This function works by executing a
precise number of instructions to cause the requested delay. It does not use
any timers. If interrupts are enabled the time spent in an interrupt routine is not
counted toward the time.

The delay time may be longer than requested if an interrupt is serviced during
the delay. The time spent in the ISR does not count toward the delay time.

All devices

#use delay

#use delay(clock=20000000)

do {
output_high(PIN_BO);
delay_us(duty);
output_low(PIN_BO);
delay_us(period-duty);
} while(TRUE);

ex_sqw.c

delay_ms(), delay_cycles(), #use delay

165

PCD C Compiler Reference Manual April 2008

disable_interrupts()
. __|

Syntax: disable_interrupts (name)
disable_interrupts (INTR_XX)
disable_interrupts (expression)

Parameters: name - a constant defined in the devices .h file

INTR_XX — Allows user selectable interrupt options like INTR_NORMAL,
INTR_ALTERNATE, INTR_LEVEL

expression — A non-constant expression
Returns: undefined

When INTR_LEVELX is used as a parameter, this function will return the
previous level.

Function: Name - Disables the interrupt for the given name . Valid specific names are the
same as are used in #INT_xxx and are listed in the devices .h file. Note that it
is not necessary to disable interrupts inside an interrupt service routine since
interrupts are automatically disabled.

INTR_GLOBAL — Disables all interrupts that can be disabled
INTR_NESTING - Disallows an interrupt from interrupting another
INTR_NORMAL — Use normal vectors for the ISR
INTR_ALTERNATE — Use alternate vectors for the ISR

INTR_LEVELO .. INTR_LEVEL7 — Disables interrupts at this level and below,
enables interrupts above this level

INTR_CN_PIN | PIN_xx — Disables a CN pin interrupts

expression — Disables interrupts during evaluation of the expression.

Availability: All dsPIC and PIC24 devices
Requires: Should have a #int_xxxx, constants are defined in the devices .h file.
Examples: disable_interrupts(INT_RDA); // RS232 OFF

disable_interrupts(memcpy(bufferl,buffer2,10)) ;
enable_interrupts(ADC_DONE) ;
enable_interrupts(RB_CHANGE);

// these enable the interrupts

Example Files: None
Also See: enable_interrupts(), #int_xxxx, Interrupts overview

166

div()
div()

Built-in-Functions

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

idiv=div(num, denom)
Idiv =ldiv(Inum, Idenom)

num and denom are signed integers.

num is the numerator and denom is the denominator.

Inum and Idenom are signed longs, signed int32, int48 or int64
Inum is the numerator and Idenom is the denominator.

idiv is a structure of type div_t and lidiv is a structure of type Idiv_t. The div
function returns a structure of type div_t, comprising of both the quotient and
the remainder. The Idiv function returns a structure of type Idiv_t, comprising of
both the quotient and the remainder.

The div and Idiv function computes the quotient and remainder of the division of
the numerator by the denominator. If the division is inexact, the resulting
quotient is the integer or long of lesser magnitude that is the nearest to the
algebraic quotient. If the result cannot be represented, the behavior is
undefined; otherwise quot*denom(ldenom)+rem shall equal num(Inum).

All devices.

#include <STDLIB.H>
div_t idiv;
Idiv_t lidiv;

idiv=div(3,2);
//idiv will contain quot=1 and rem=1

lidiv=1div(300,250);
//1idiv will contain quot=1 and rem=50

None

None

167

PCD C Compiler Reference Manual April 2008

dma_status()

Syntax:
Parameters:

Returns:

Function:
Availability:

Requires:
Examples:

Example Files:
Also See:

dma_start()

Value = dma_status(channel);
Channel — The channel whose status is to be queried.

Returns a 8-bit int. Possible return values are :
DMA_IN_ERROR 0x01

DMA OUT_ERROR 0x02

DMA B _SELECT 0x04

This function will return the status of the specified channel in the DMA module.
Devices that have the DMA module.

Nothing

Int8 value;

value = dma_status(3); // This will return the status of
channel 3 of the DMA module.

None
setup_dma(), dma_start().

Syntax:

Parameters:

Returns:
Function:
Availability:

Requires:
Examples:
Example Files:

Also See:

168

dma_start(channel, mode,address);

Channel- The channel used in the DMA transfer
mode - The mode used for the DMA transfer.
address- The start RAM address used within the DMA RAM bank.

void
Starts the DMA transfer for the specified channel in the specified mode of
operation.

Devices that have the DMA module.

Nothing

ma_start(2, DMA_CONTINOUS | DMA_PING_PONG, 0x20000);

// This will setup the DMA channel 2 for ping-pong mode with
RAM address of 0x2000.

None

setup_dma(), dma_status()

Built-in-Functions

enable_interrupts)
. __|

Syntax: enable_interrupts (name)
enable_interrupts (INTR_XX)

Parameters: name- a constant defined in the devices .h file

INTR_XX — Allows user selectable interrupt options like INTR_NORMAL,
INTR_ALTERNATE, INTR_LEVEL

Returns: undefined

Function: Name -Enables the interrupt for the given name . Valid specific names are the
same as are used in #INT_xxx and are listed in the devices .h file.

INTR_GLOBAL — Enables all interrupt levels (same as INTR_LEVELDO)
INTR_NESTING — Enables one interrupt to interrupt another
INTR_NORMAL — Use normal vectors for the ISR

INTR_ALTERNATE — Use alternate vectors for the ISR

INTR_LEVELO .. INTR_LEVEL7 — Enables interrupts at this level and above,
interrupts at lower levels are disabled

INTR_CN_PIN | PIN_xx — Enables a CN pin interrupts

Availability: All dsPIC and PIC24 devices
Requires: Should have a #int_xxxx, Constants are defined in the devices .h file.
Examples: enable_interrupts(INT_TIMERO);

enable_interrupts(INT_TIMER1);
enable_interrupts(INTR_CN_PIN|Pin_BO);

Example Files: None

Also See: disable enterrupts(), #int_xxxx, Interrupts overview

169

PCD C Compiler Reference Manual April 2008

exp()

Syntax:
Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

170

result = exp (value)
value is any float type
A float with a precision equal to value

Computes the exponential function of the argument. This is e to the power of
value where e is the base of natural logarithms. exp(1) is 2.7182818.

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in the errno
variable. The user can check the errno to see if an error has occurred and print
the error using the perror function.

Range error occur in the following case:
e exp: when the argument is too large

All devices
#include <math.h>

// Calculate x to the power of y
x_power_y = exp(y * log(x));

None

pow(), log(), log10()

Built-in-Functions

ext_int_edge()

. __|]
Syntax: ext_int_edge (source, edge)

Parameters: source is a constant 0,1 or 2 for the PIC18XXX and 0 otherwise. Source is

optional and defaults to 0.
edge is a constant H_TO_L or L_TO_H representing "high to low" and "low to

high"
Returns: Undefined
Function: Determines when the external interrupt is acted upon. The edge may be

L TO_Hor H_TO_L to specify the rising or falling edge.

Availability: Only devices with interrupts (PCM and PCH)
Requires: Constants are in the devices .h file
Examples: ext_int_edge(2, L_TO H); // Set up PIC18 EXT2

ext_int_edge(H_.TO L); // Sets up EXT

Example Files: ex_wakup.c

Also See: #INT_EXT, enable_interrupts(), disable_interrupts(), Interrupts overview
fabs()
I
Syntax: result=fabs (value)

Parameters: value is any float type

Returns: result is a float with precision to value

Function: The fabs function computes the absolute value of a float

Availability: All devices.

Requires: #include <math.h>

Examples: double result;

result=fabs(-40.0)
// result is 40.0

Example Files: None

Also See: abs(), labs()

171

PCD C Compiler Reference Manual April 2008

floor()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

result = floor (value)

value is any float type

result is a float with precision equal to value

Computes the greatest integer value not greater than the argument. Floor
(12.67) is 12.00.

All devices.
#include <math.h>

// Find the fractional part of a value

frac = value - floor(value);

Example Files: None

Also See: ceil()

fmod()

Syntax: result= fmod (vall, val2)

Parameters: vall is any float type
val2 is any float type

Returns: result is a float with precision equal to input parameters vall and val2

Function: Returns the floating point remainder of vall/val2. Returns the value vall -
i*val2 for some integer “i” such that, if val2 is nonzero, the result has the same
sign as vall and magnitude less than the magnitude of val2.

Availability: All devices.

Requires: #include <math.h>

Examples: float result;

Example Files:
Also See:

172

result=fmod(3,2);
// result is 1

None
None

free()

Built-in-Functions

Syntax:
Parameters:

Returns:
Function:

Availability:
Requires:

Examples:

Example Files:
Also See:

frexp()

free(ptr)
ptr is a pointer earlier returned by the calloc, malloc or realloc.

No value

The free function causes the space pointed to by the ptr to be deallocated, that
is made available for further allocation. If ptr is a null pointer, no action occurs.
If the ptr does not match a pointer earlier returned by the calloc, malloc or
realloc, or if the space has been deallocated by a call to free or realloc function,
the behavior is undefined.

All devices.
#include <stdlibm.h>
int * iptr;
iptr=malloc(10);

free(iptr)
// iptr will be deallocated

None
realloc(), malloc(), calloc()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:
Examples:

Example Files:
Also See:

result=frexp (value, & exp);

value is any float type
exp is a signed int.

result is a float with precision equal to value

The frexp function breaks a floating point number into a normalized fraction and
an integral power of 2. It stores the integer in the signed int object exp. The
result is in the interval [1/2,1) or zero, such that value is result times 2 raised to
power exp. If value is zero then both parts are zero.

All devices.

#include <math.h>

float result;

signed int exp;

result=Ffrexp(.5,&exp);

// result is .5 and exp is O

None

Idexp(), exp(), lod(), 10g10(), modf()

173

PCD C Compiler Reference Manual April 2008

get_capture()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:
Examples:

Example Files:
Also See:

value = get_capture(x, wait)

x defines which input capture result buffer module to read from
wait signifies if the compiler should read the oldest result in the buffer or the
next result to enter the buffer

A 16-bit timer value.

If wait is true, the the current capture values in the result buffer are cleared, an
the next result to be sent to the buffer is returned. If wait is false, the default
setting, the first value currently in the buffer is returned. However, the buffer will
only hold four results while waiting for them to be read, so if read isn't being
called for every capture event, when wait is false, the buffer will fill with old
capture values and any new results will be lost.

Only available on devices with Input Capture modules
None
setup_timer3(TMR_INTERNAL | TMR_DIV_BY 8);
setup_capture(2, CAPTURE_FE | CAPTURE_TIMER3);
while(TRUE) {
timerValue = get_capture(2, TRUE);
printf(“Capture 2 occurred at: %LU”, timerValue);

None
setup_capture(), setup _compare(), Input Capture Overview

get_motor_pwm_event()
. __|

Syntax:

Parameters:

Returns:
Function:
Availability:

Requires:
Examples:
Example Files:
Also See:

174

Datal6 = get_motor_pmw_event(pwm);

pwm- Defines the pwm module used.
time- The event time for the PWM unit.

16 bits of data
Returns the PWM event on the motor control unit.
Devices that have the motor control PWM unit.

None
Datal6é = get_motor_pmw_event(l);
None

setup_motor pwm() , setup_motor_unit() , set_motor pwm_event() ,
setup_motor_pwm_duty();

get_timerx()

Built-in-Functions

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

Also See:

get_timerxy()

value=get_timerl1()
value=get_timer2()
value=get_timer3()
value=get_timer4()
value=get_timer5()
value=get_timer6()
value=get_timer7()
value=get_timer8()
value=get_timer9()

None

The current value of the timer as an int16
Retrieves the value of the timer, specified by X (which may be 1-9)
This function is available on all devices that have a valid timerX.

Nothing

if(get_timer2() % OxAO == HALF_WAVE_PERIOD)
output_toggle(PIN_BO);

ex_stwt.c

Timer Overview, setup_timerX(), get_timerXY(), set_timerX(), set_timerXY()

Syntax:

Parameters:

Returns:

Function:

Availability:

value=get_timer23()
value=get_timer45()
value=get_timer67()
value=get_timer89()

Void
The current value of the 32 bit timer as an int32

Retrieves the 32 bhit value of the timers X and Y, specified by XY (which may be
23, 45, 67 and 89)

This function is available on all devices that have a valid 32 bit enabled timers.

Timers2& 3,4 &5,6 &7 and 8 & 9 may be used. The target device must have
one of these timer sets. The target timers must be enabled as 32 bit.

175

PCD C Compiler Reference Manual April 2008

Requires:

Examples:

Example Files:

Also See:

get_tris_x()

Nothing

if(get_timer23() > TRIGGER_TIME)
ExecuteEvent();

ex_stwt.c

Timer Overview, setup _timerX(), get_timerXY(), set_timerX(), set_timerXY()

Syntax:

Parameters:
Returns:
Function:

Availability:
Requires:
Examples:

Example Files:
Also See:

176

value = get_tris_A();
value = get_tris_B();
value = get_tris_C();
value = get_tris_D();
value = get_tris_E();
value = get_tris_F();
value = get_tris_G();
value = get_tris_H();
value = get_tris_J();

value = get_tris_K()

None
Byte, the value of TRIS register
Returns the value of the TRIS register of port A, B, C, D, E, F, G, H, J, or K.

All devices.
Nothing
tris_a = GET_TRIS AQ;

None
input(), output_low(), output_high()

getc()
getch()

getcha()
fgetc()

Built-in-Functions

Syntax:

Parameters:
Returns:
Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

value = getc()

value = fgetc(stream)
value=getch()
value=getchar()

stream is a stream identifier (a constant byte)
An 8 bit character

This function waits for a character to come in over the RS232 RCV pin and
returns the character. If you do not want to hang forever waiting for an
incoming character use kbhit() to test for a character available. If a built-in
USART is used the hardware can buffer 3 characters otherwise GETC must be
active while the character is being received by the PIC®.

If fgetc() is used then the specified stream is used where getc() defaults to
STDIN (the last USE RS232).

All devices
#use rs232

printf(*'Continue (Y,N)?'");
do {

answer=getch();
Jwhile(answer!="Y" && answer!="N");

#use rs232(baud=9600,xmit=pin_c6,
rcv=pin_c7,stream=HOSTPC)
#use rs232(baud=1200,xmit=pin_bl,
rcv=pin_b0,stream=GPS)
#use rs232(baud=9600,xmit=pin_b3,
stream=DEBUG)

while(TRUE) {
c=fgetc(GPS);

fputc(c,HOSTPC);
if(c==13)
fprintf(DEBUG, ""Got a CR\r\n");
}
ex_stwt.c

putc(), kbhit(), printf(), #use rs232, input.c, RS232 I/O overview

177

PCD C Compiler Reference Manual April 2008

getenv()

Syntax:
Parameters:
Returns:
Function:

178

value = getenv (cstring);

cstring is a constant string with a recognized keyword
A constant number, a constant string or O

This function obtains information about the execution environment. The following
are recognized keywords. This function returns a constant 0 if the keyword is not

understood.
FUSE_ SET:fffff
FUSE_VALID:fffff
ID
DEVICE

CLOCK

ICD

VERSION
VERSION_STRING
PROGRAM_MEMORY

STACK

SCRATCH
DATA_EEPROM
READ_PROGRAM
PIN:pb
ADC_CHANNELS
ADC_RESOLUTION

ICD
SPI

USB

CAN
12C_SLAVE
I2C_MASTER
PSP

COMP
VREF

LCD

fffff Returns 1 if fuse fffff is enabled
fffff Returns 1 if fuse fffff is valid
Returns the device ID (set by #ID)

Returns the device name string (like
"PIC16C74")

Returns the MPU FOSC

Returns 1 if the ICD=TRUE Mode is active
Returns the compiler version as a float
Returns the compiler version as a string

Returns the size of memory for code (in
words)

Returns the stack size

Returns the start of the compiler scratch area
Returns the number of bytes of data EEPROM
Returns a 1 if the code memory can be read
Returns a 1 if bit b on port p is on this part
Returns the number of A/D channels

Returns the number of bits returned from
READ_ADC()

Returns a 1 if this is being compiled for a ICD
Returns a 1 if the device has SPI

Returns a 1 if the device has USB

Returns a 1 if the device has CAN

Returns a 1 if the device has 12C slave H/W
Returns a 1 if the device has I12C master H/W
Returns a 1 if the device has PSP

Returns a 1 if the device has a comparator

Returns a 1 if the device has a voltage
reference

Returns a 1 if the device has direct LCD H/W

Availability:

Requires:
Examples:

Example
Files:

Also See:

UART

AUART

CCPx

TIMERX
FLASH_WRITE_SIZE

FLASH_ERASE_SIZE
BYTES_PER_ADDRESS

BITS_PER_INSTRUCTION

Built-in-Functions

Returns the number of H/W UARTSs

Returns 1 if the device has an ADV UART
Returns a 1 if the device has CCP number x
Returns a 1 if the device has TIMER number x

Smallest number of bytes that can be written
to FLASH

Smallest number of bytes that can be erased
in FLASH

Returns the number of bytes at an address
location

Returns the size of an instruction in bits

RAM Returns the number of RAM bytes available
for your device.

Returns the address of the specified special
file register. The output format can be used
with the preprocessor command #byte. name
must match SFR denomination of your target
PIC (example: STATUS, INTCON, TXREG,
RCREG, etc)

Returns the bit address of the specified
special file register bit. The output format will
be in “address:bit”, which can be used with the
preprocessor command #byte. name must
match SFR.bit denomination of your target
PIC (example: C, Z, GIE, TMROIF, etc)

Returns 1 if PB is a valid I/0 PIN (like A2)

SFR:name

BIT:name

PIN:PB

All devices
Nothing

#IF getenv("'VERSION')<3.050
#ERROR Compiler version too old
#ENDIF

for(i=0; i<getenv("'DATA_EEPROM™); i++)
write_eeprom(i,0);

#IF getenv(*'FUSE_VALI1D:BROWNOUT")
#FUSE BROWNOUT
HENDIF

#byte status_reg=GETENV(*“SFR:STATUS™)

#bit carry_flag=GETENV(“BIT:C”)
None

None

179

PCD C Compiler Reference Manual April 2008

gets()
fgets()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

180

gets (string)
value = fgets (string, stream)

string is a pointer to an array of characters. Stream is a stream identifier (a
constant byte)

undefined

Reads characters (using GETC()) into the string until a RETURN (value 13) is
encountered. The string is terminated with a 0. Note that INPUT.C has a more
versatile GET_STRING function.

If fgets() is used then the specified stream is used where gets() defaults to
STDIN (the last USE RS232).

All devices
#use rs232

char string[30];
printf("'Password: ");
gets(string);

if(strcmp(string, password))
printf("'0OK™);

None

getc(), get_string in input.c

goto_address()

Built-in-Functions

Syntax:

Parameters:

Returns:
Function:

Availability:

Requires:
Examples:

Example Files:

Also See:

i2c_isr_state()

goto_address(location);
location is a ROM address, 16 or 32 bit int.

Nothing

This function jumps to the address specified by location. Jumps outside of the
current function should be done only with great caution. This is not a normally
used function except in very special situations.

All devices
Nothing

#define LOAD_REQUEST PIN_B1
#define LOADER Ox1f00

iF(input(LOAD_REQUEST))
goto_address(LOADER) ;

setjmp.h

label _address()

Syntax:

Parameters:

Returns:

Function:

Availability:

state = i2c_isr_state();
state = i2c_isr_state(stream);

stream (optional) - specify the stream as defined in a #use i2c

state is an 8 bit int

0 - Address match received with R/W bit clear

1-0x7F - Master has written data; i2c_read() will immediately return the data
0x80 - Address match received with R/W bit set; respond with i2c_write()
0x81-0xFF - Transmission completed and acknowledged; respond with
i2c_write()

Returns the state of I2C communications in 12C slave mode after an SSP
interrupt. The return value increments with each byte received or sent.

Devices with i2c hardware

181

PCD C Compiler Reference Manual April 2008

Requires:

Examples:

Example Files:

Also See:

i2c_poll()

#use i2c

#INT_SSP
void i2c_isrQ {
state = i2c_isr_state();
if(state >= 0x80)
i2c_write(send_buffer[state - 0x80]);
else if(state > 0)
rcv_buffer[state - 1] = i2c_read();
3

ex_slave.c

i2c_write, i2c_read, #usei2c

Syntax:

Parameters:
Returns:

Function:

Availability:

Requires:
Examples:

Example Files:

Also See:

182

i2c_poll()
i2c_poll(stream)

stream (optional)- specify the stream defined in #USE 12C
1 (TRUE) or 0 (FALSE)

The 12C_POLL() function should only be used when the built-in SSP is used.
This function returns TRUE if the hardware has a received byte in the buffer.
When a TRUE is returned, a call to 12C_READ() will immediately return the
byte that was received.

Devices with built in 12C

#use i2c

i2c_start(); // Start condition
i2c_write(0Oxcl); // Device address/Read
count=0;

while(count!=4) {

while(1i2c_poll(Q)) :

buffer[count++]= i2c_read(); //Read Next
}
i2c_stop(Q); // Stop condition

ex_slave.c

i2c_start, i2c_write, i2c_stop ,i2c overview

12C_read()

Built-in-Functions

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

data = i2c_read();
data = i2c_read(ack);
data = i2c_read(stream, ack);

ack -Optional, defaults to 1.

0 indicates do not ack.

1 indicates to ack.

stream - specify the stream defined in #USE 12C

data - 8 hit int

Reads a byte over the 12C interface. In master mode this function will generate
the clock and in slave mode it will wait for the clock. There is no timeout for the
slave, use 12C_POLL to prevent a lockup. Use RESTART_WDT in the #USE
12C to strobe the watch-dog timer in the slave mode while waiting.

Devices with built in 12C
#use i2c

i2c_start();
i2c_write(0xal);
datal = i2c_read();
data2 = i12c_read();
i2c_stop(Q);

ex_extee.c with 2416.c

i2c_start, i2c_write, i2c_stop, i2c_poll, i2c overview

183

PCD C Compiler Reference Manual April 2008

i2c_slaveaddr()

Syntax:

Parameters:

Returns:
Function:

Availability:

Requires:

Examples:

Example Files:

Also See:

i2c_start()

I12C_SlaveAddr(addr);
I2C_SlaveAddr(stream, addr);

addr = 8 bit device address
stream(optional) - specifies the stream used in #USE 12C

nothing
This functions sets the address for the 12C interface in slave mode.

Devices with built in 12C
#use i2c

i2c_SlaveAddr(0x08);
i2c_SlaveAddr(i2cStreaml, 0x08);

ex_slave.c

i2c_start, i2c_write, i2c_stop, i2c_poll, #use i2c , i2c overview

Syntax:

Parameters:

Returns:
Function:

Availability:

184

i2c_start()
i2c_start(stream)
i2c_start(stream, restart)

stream: specify the stream defined in #USE 12C

restart: 2 — new restart is forced instead of start

1 — normal start is performed

0 (or not specified) — restart is done only if the compiler last encountered a
[2C_START and no I2C_STOP

undefined

Issues a start condition when in the 12C master mode. After the start condition
the clock is held low until 2C_WRITE() is called. If another [2C_start is called
in the same function before an i2c_stop is called, then a special restart
condition is issued. Note that specific 12C protocol depends on the slave
device. The I2C_START function will now accept an optional parameter. If 1
the compiler assumes the bus is in the stopped state. If 2 the compiler treats
this I2C_START as a restart. If no parameter is passed a 2 is used only if the
compiler compiled a 12C_START last with no 12C_STOP since.

All devices.

Requires:

Examples:

Example Files:

Also See:

i2c_stop()

#use i2c

i2c_start();
i2c_write(0xa0);
i2c_write(address);
i2c_start();
i2c_write(0xal);
data=i12c_read(0);
i2c_stop(Q;

ex_extee.c with 2416.c

Built-in-Functions

// Device address

// Data to device

// Restart

// to change data direction
// Now read from slave

i2c_write, i2c_stop, i2c_poll, i2c overview

Syntax:

Parameters:
Returns:
Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

i2c_stop()
i2c_stop(stream)

stream: (optional) specify stream defined in #USE 12C

undefined

Issues a stop condition when in the [2C master mode.

All devices.

#use i2c

i2c_start(); // Start condition
i2c_write(0xa0); // Device address
i2c_write(5); // Device command
i2c_write(12); // Device data
i2c_stopQ); // Stop condition

ex_extee.c with 2416.c

i2c_start, i2c_write, i2c_read, i2c_poll, #use i2c , i2c overview

185

PCD C Compiler Reference Manual April 2008

i2c_write()
. __|

Syntax: i2c_write (data)
i2c_write (stream, data)

Parameters: data is an 8 bit int
stream - specify the stream defined in #USE [2C

Returns: This function returns the ACK Bit.
0 means ACK, 1 means NO ACK, 2 means there was a collision if in
Multi_Master Mode.

Function: Sends a single byte over the 12C interface. In master mode this function will
generate a clock with the data and in slave mode it will wait for the clock from
the master. No automatic timeout is provided in this function. This function
returns the ACK bit. The LSB of the first write after a start determines the
direction of data transfer (0 is master to slave). Note that specific 12C protocol
depends on the slave device.

Availability: All devices.
Requires: #use i2c
Examples: long cmd;

i2c_start(); // Start condition
i2c_write(0Oxa0);// Device address
i2c_write(cmd);// Low byte of command
i2c_write(cmd>>8);// High byte of command

i2c_stop(Q); // Stop condition
Example Files: ex_extee.c with 2416.c
Also See: i2c_start(), i2c_stop, i2c_read, i2c_poll, #use i2c, i2c overview

186

input()

Built-in-Functions

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

Also See:

value = input (pin)

Pin to read. Pins are defined in the devices .h file. The actual value is a bit
address. For example, port a (byte 0x2C2) bit 3 would have a value of
0x2C2*8+3 or 5651. This is defined as follows: #define PIN_A3 5651.

The PIN could also be a variable. The variable must have a value equal to one
of the constants (like PIN_A1) to work properly. The tristate register is updated
unless the FAST_I0 mode is set on port A. note that doing I/0 with a variable
instead of a constant will take much longer time.

0 (or FALSE) if the pin is low,
1 (or TRUE) if the pin is high

This function returns the state of the indicated pin. The method of I/O is
dependent on the last USE *_10 directive. By default with standard I/O before
the input is done the data direction is set to input.

All devices.
Pin constants are defined in the devices .h file

while (Tinput(PIN_B1));
// waits for Bl to go high

if(input(PIN_AO))
printf("'A0 is now high\r\n");

intl6 i=PIN_B1;

while(1i);
//waits for Bl to go high

ex_pulse.c

input_x(), output low(), output high(), #use fixed io, #use fast io, #use
standard_io, General Purpose |/O

187

PCD C Compiler Reference Manual April 2008

input_state()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

188

value = input_state(pin)

pin to read. Pins are defined in the devices .h file. The actual value is a bit
address. For example, port a (byte 0x2C2) bit 3 would have a value of
0x2C2*8+3 or 5651. This is defined as follows: #define PIN_A3 5651.

Bit specifying whether pin is high or low. A 1 indicates the pin is high and a 0
indicates it is low.

This function reads the level of a pin without changing the direction of the pin as
INPUT() does.

All devices.

Nothing

level = input_state(pin_A3);
printf('level: %d",level);

None

input(), set_tris_x(), output low(), output high(), General Purpose 1/O

Built-in-Functions

input_x()

Syntax: value = input_a()
value = input_b()
value = input_c()
value = input_d()
value = input_e()
value = input_f()
value = input_g()
value = input_h()
value = input_j()
value = input_k()

Parameters: None
Returns: An 16 bit int representing the port input data.
Function: Inputs an entire word from a port. The direction register is changed in

accordance with the last specified #USE *_|O directive. By default with
standard 1/O before the input is done the data direction is set to input.

Availability: All devices.

Requires: Nothing

Examples: data = input_bQ);

Example Files: ex_psp.c

Also See: input(), output x(), #use fixed io, #use fast io, #use standard_io

189

PCD C Compiler Reference Manual April 2008

interrupt_active()

Syntax:
Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

isalnum(char)
isalpha(char)
isdigit(char)
islower(char)
isspace(char)
isupper(char)

interrupt_active (interrupt)
Interrupt — constant specifying the interrupt
Boolean value

The function checks the interrupt flag of the specified interrupt and returns true
in case the flag is set.

Device with interrupts (PCM and PCH)
Should have a #int_xxxx, Constants are defined in the devices .h file.

interrupt_active(INT_TIMERO);
interrupt_active(INT_TIMER1);

None
disable_enterrupts(), #INT, Interrupts overview

isxdigit(char)
iscntrl(x)
isgraph(x)
isprint(x)
ispunct(x)

Syntax:

Parameters:

190

value = isalnum(datac)
value = isalpha(datac)
value = isdigit(datac)
value = islower(datac)
value = isspace(datac)
value = isupper(datac)
value = isxdigit(datac)
value = iscntrl(datac)
value = isgraph(datac)
value = isprint(datac)
value = punct(datac)

datac is a 8 bit character

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:

Also See:

Built-in-Functions

0 (or FALSE) if datac dose not match the criteria, 1 (or TRUE) if datac does

match the criteria.

Tests a character to see if it meets specific criteria as follows:

isalnum(x)
isalpha(x)
isdigit(x)
islower(x)
isupper(x)
isspace(x)
isxdigit(x)
iscntrl(x)
isgraph(x)
isprint(x)
ispunct(x)

All devices.

#include <ctype.h>

char i1d[20];

Xis 0.9, 'A'..'Z', or'a'..'z'
Xis'A'..'Z'or'a'..'z

Xis'0'..'9"

Xis'a'..'z'

Xis'A..'Z

Xis a space

Xis'0..'9', 'A"..'F', or 'a’..'f

X is less than a space

X is greater than a space

X is greater than or equal to a space
X is greater than a space and not a letter or number

if(isalpha(id[0])) {

valid_id=TRUE;

for(i=1;i<strlen(id);i++)
valid_id=valid_id && isalnum(id[i]);

} else

valid_id=FALSE;

ex_str.c

isamoung()

191

PCD C Compiler Reference Manual April 2008

isamoung()

Syntax:

Parameters:

Returns:

Function:
Availability:

Requires:
Examples:

Example Files:

Also See:

192

result =isamoung (value, cstring)

value is a character
cstring is a constant string

0 (or FALSE) if value is not in cstring
1 (or TRUE) if value is in cstring

Returns TRUE if a character is one of the characters in a constant string.
All devices.

Nothing
char x="x";
i%i isamoung(X,

"'0123456789ABCDEFGH I JKLMNOPQRSTUVWXYZ™))
printf("'The character is valid™);

ctype.h

isalnum(), isalpha(), isdiqit(), isspace(), islower(), isupper(), isxdigit()

itoa()

Built-in-Functions

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

string = itoa(i32value, i8base, string)
string = itoa(i48value, i8base, string)
string = itoa(i64value, i8base, string)

i32value is a 32 bit int

i48value is a 48 bit int

i64value is a 64 bit int

i8base is a 8 bit int

string is a pointer to a null terminated string of characters

string is a pointer to a null terminated string of characters

Converts the signed int32, int48, or a int64 to a string according to the provided
base and returns the converted value if any. If the result cannot be
represented, the function will return O.

All devices

#include <stdlib.h>

int32 x=1234;
char string[5];

itoa(x,10, string);
// string is now “1234”

None

None

193

PCD C Compiler Reference Manual April 2008

kbhit()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

194

value = kbhit()
value = kbhit (stream)

stream is the stream id assigned to an available RS232 port. If the stream
parameter is not included, the function uses the primary stream used by getc().

0 (or FALSE) if getc() will need to wait for a character to come in, 1 (or TRUE) if
a character is ready for getc()

If the RS232 is under software control this function returns TRUE if the start bit
of a character is being sent on the RS232 RCV pin. If the RS232 is hardware
this function returns TRUE if a character has been received and is waiting in
the hardware buffer for getc() to read. This function may be used to poll for
data without stopping and waiting for the data to appear. Note that in the case
of software RS232 this function should be called at least 10 times the bit rate to
ensure incoming data is not lost.

All devices.
#use rs232

char timed_getc() {
long timeout;

timeout_error=FALSE;
timeout=0;
while(Tkbhit()&&(++timeout<50000)) // 1/2
// second
delay_us(10);
if(kbhit(Q)
return(getc());
else {
timeout_error=TRUE;
return(0);
}
}

ex_tgetc.c

getc(), #USE RS232, RS232 1/O overview

Built-in-Functions

label_address()

Syntax: value = label_address(label);

Parameters: label is a C label anywhere in the function

Returns: A 16 bit int in PCB,PCM and a 32 bit int for PCH

Function: This function obtains the address in ROM of the next instruction after the label.

This is not a normally used function except in very special situations.

Availability: All devices.
Requires: Nothing
Examples: start:
a = (b+c)<<2;
end:

printf("'1t takes %lu ROM locations.\r\n",
label_address(end)-label_address(start));

Example Files: setjmp.h

Also See: goto_address()

labs()

Syntax: result = labs (value)

Parameters: value is a 16, 32, 48 or 64 bit signed long int

Returns: A signed long int of type value

Function: Computes the absolute value of a long integer.
Availability: All devices.

Requires: #include <stdlib.h>

Examples: if(labs(target_value - actual_value) > 500)

printf("Error is over 500 points\r\n");

Example Files: None
Also See: abs()

195

PCD C Compiler Reference Manual April 2008

Idexp()

Syntax:
Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:
Also See:

log()

result= Idexp (value, exp);

value is floatany float type
exp is a signed int.

result is a float with value result times 2 raised to power exp.
result will have a precision equal to value

The Idexp function multiplies a floating-point number by an integral power of 2.

All devices.
#include <math.h>

float result;
result=1dexp(.5,0);
// result is .5

None
frexp(), exp(), log(), log10(), modf()

Syntax:
Parameters:

Returns:

Function:

Availability:
Requires:
Examples:

Example Files:
Also See:

196

result = log (value)
value is any float type

A float with precision equal to value

Computes the natural logarithm of the float x. If the argument is less than or
equal to zero or too large, the behavior is undefined.

Note on error handling:

"errno.h" is included then the domain and range errors are stored in the errno
variable. The user can check the errno to see if an error has occurred and print
the error using the perror function.

Domain error occurs in the following cases:
¢ log: when the argument is negative

All devices
#include <math.h>
Inx = log(x);

None
10910(), exp(), pow()

Built-in-Functions

log10()

. __|

Syntax: result = log10 (value)

Parameters: value is any float type

Returns: A float with precision equal to value

Function: Computes the base-ten logarithm of the float x. If the argument is less than or
equal to zero or too large, the behavior is undefined.

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in the errno
variable. The user can check the errno to see if an error has occurred and print
the error using the perror function.

Domain error occurs in the following cases:

¢ l0og10: when the argument is negative

Availability: All devices

Requires: #include <math.h>

Examples: db = logl0(read_adc()*(5.0/255))*10;

Example Files: None

Also See: log(), exp(), pow()

longjmp()

Syntax: longjmp (env, val)

Parameters: env: The data object that will be restored by this function
val: The value that the function setjmp will return. If val is O then the function
setjmp will return 1 instead.

Returns: After longjmp is completed, program execution continues as if the
corresponding invocation of the setjmp function had just returned the value
specified by val.

Function: Performs the non-local transfer of control.

Availability: All devices

Requires: #include <setjmp.h>

Examples: longjmp(mpbuf, 1);

Example Files:

Also See:

None

setjimp()
197

PCD C Compiler Reference Manual April 2008

make8()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:
Examples:

Example Files:
Also See:

makel6()

i8 = MAKES8(var, offset)

var is a 16 or 32 bit integer.
offset is a byte offset of 0,1,2 or 3.

An 8 bit integer

Extracts the byte at offset from var. Same as: i8 = (((var >> (offset*8)) & 0xff)
except it is done with a single byte move.

All devices

Nothing

int32 x;

int y;

y = make8(x,3); // Gets MSB of x

None
makel16(), make32()

Syntax:
Parameters:
Returns:

Function:

Availability:
Requires:
Examples:

Example Files:
Also See:

198

i16 = MAKE16(varhigh, varlow)
varhigh and varlow are 8 bit integers.
A 16 bit integer

Makes a 16 bit number out of two 8 bit numbers. If either parameter is 16 or 32
bits only the Isb is used. Same as: i16 =
(int16)(varhigh&O0xff)*0x100+(varlow&0xff) except it is done with two byte
moves.

All devices

Nothing

long x;
int hi,lo;

x = makel6(hi,lo0);

[tc1298.c
make8(), make32()

make32()

Built-in-Functions

Syntax:
Parameters:
Returns:

Function:

Availability:
Requires:
Examples:

Example Files:

Also See:

i32 = MAKE32(varl, var2, var3, var4)
varl-4 are a 8 or 16 bit integers. var2-4 are optional.
A 32 bit integer

Makes a 32 bit number out of any combination of 8 and 16 bit numbers. Note
that the number of parameters may be 1 to 4. The msb is first. If the total bits
provided is less than 32 then zeros are added at the msb.

All devices
Nothing

int32 x;
int y;
long z;

x = make32(1,2,3,4); // x is 0x01020304

y=0x12;
z=0x4321;

x = make32(y,z); // x is 0x00124321

x = make32(y,y,z); // x is 0x12124321

ex_fregc.c
make8(), makel6()

199

PCD C Compiler Reference Manual April 2008

malloc()

Syntax:
Parameters:
Returns:
Function:
Availability:
Requires:

Examples:

Example Files:
Also See:

memcpy()
memmove()

ptr=malloc(size)
size is an integer representing the number of byes to be allocated.
A pointer to the allocated memory, if any. Returns null otherwise.

The malloc function allocates space for an object whose size is specified by
size and whose value is indeterminate.

All devices
#include <stdlibm.h>

int * iptr;
iptr=malloc(10);
// iptr will point to a block of memory of 10 bytes.

None
realloc(), free(), calloc()

Syntax:

Parameters:

Returns:
Function:

200

memcpy (destination, source, n)
memmove(destination, source, n)

destination is a pointer to the destination memory, source is a pointer to the
source memory, n is the number of bytes to transfer

undefined

Copies n bytes from source to destination in RAM. Be aware that array names
are pointers where other variable names and structure names are not (and
therefore need a & before them).

Memmove performs a safe copy (overlapping objects doesn't cause a
problem). Copying takes place as if the n characters from the source are first
copied into a temporary array of n characters that doesn't overlap the
destination and source objects. Then the n characters from the temporary array
are copied to destination.

Availability:
Requires:
Examples:

Example Files:
Also See:

memset()

Built-in-Functions

All devices

Nothing

memcpy(&structA, &structB, sizeof (structAh));
memcpy(arrayA,arrayB,sizeof (arrayA));
memcpy(&structA, &databyte, 1);

char a[20]="hello";
memmove(a,a+2,5);
// a is now "110"MEMMOVEQ)

None
strcpy(), memset()

Syntax:
Parameters:

Returns:
Function:

Availability:
Requires:
Examples:

Example Files:
Also See:

memset (destination, value, n)
destination is a pointer to memory, value is a 8 bit int, n is a 16 bit int.

undefined

Sets n number of bytes, starting at destination, to value. Be aware that array
names are pointers where other variable names and structure names are not
(and therefore need a & before them).

All devices

Nothing

memset(arrayA, 0, sizeof(arrayA));
memset(arrayB, "?", sizeof(arrayB));
memset(&structA, OxFF, sizeof(structA));

None

memcpy()

201

PCD C Compiler Reference Manual April 2008

modf()

Syntax:
Parameters:

Returns:
Function:

Availability:
Requires:
Examples:

Example Files:
Also See:

_mul()

result= modf (value, & integral)

value is any float type
integral is any float type

result is a float with precision equal to value

The modf function breaks the argument value into integral and fractional parts,
each of which has the same sign as the argument. It stores the integral part as
a float in the object integral.

All devices
#include <math.h>

float48 result, integral;
result=modf(123.987,&integral);
// result is .987 and integral is 123.0000

None
None

Syntax:
Parameters:
Returns:

Function:

Availability:
Requires:
Examples:

Example Files:

Also See:

202

prod=_mul(vall, val2);
vall and val2 are both 8-bit, 16-bit, or 48-bit integers

vall val2 prod
8 8 16
16* 16 32
32* 32 64

48* 48 64**

* or less
** large numbers will overflow with wrong results

Performs an optimized multiplication. By accepting a different type than it
returns, this function avoids the overhead of converting the parameters to a
larger type.

All devices

Nothing

int a=50, b=100;

long int c;

c = _mul(a, b); //c holds 5000

None
None

offsetof()
offsetofbit()

Built-in-Functions

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

value = offsetof(stype, field);
value = offsetofbit(stype, field);

stype is a structure type name.
Field is a field from the above structure

An 8 bit byte

These functions return an offset into a structure for the indicated field. offsetof
returns the offset in bytes and offsetofbit returns the offset in bits.

All devices
#include <stddef.h>

struct time_structure {
int hour, min, sec;
int zone : 4;
intl daylight_savings;

x = offsetof(time_structure, sec);
/7 x will be 2
x = offsetofbit(time_structure, sec);
// x will be 16
x = offsetof (time_structure,
daylight_savings);
// x will be 3
x = offsetofbit(time_structure,
daylight_savings);
/7 x will be 28

None

None

203

PCD C Compiler Reference Manual April 2008

output_x()

Syntax:

Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

204

output_a (value)
output_b (value)
output_c (value)
output_d (value)
output_e (value)
output_f (value)

output_g (value)
output_h (value)
output_j (value)

output_k (value)

value is a 16 bit int
undefined

Output an entire word to a port. The direction register is changed in accordance
with the last specified #USE *_1O directive.

All devices, however not all devices have all ports (A-E)
Nothing
OUTPUT_B(0xf0);

ex_patg.c

input(), output_low(), output_high(), output_float(), output_bit(), #use fixed_io,
#use fast_io, #use standard io, General Purpose 1/0O

output_bit()

Built-in-Functions

Syntax:

Parameters:

Returns:
Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

output_bit (pin, value)

Pins are defined in the devices .h file. The actual number is a bit address. For
example, port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or 5651.
This is defined as follows: #define PIN_A3 5651. The PIN could also be a
variable. The variable must have a value equal to one of the constants (like
PIN_A1) to work properly. The tristate register is updated unless the FAST_10
mode is set on port A. Note that doing I/0 with a variable instead of a constant
will take much longer time. Valueisa 1 oraO.

undefined

Outputs the specified value (0 or 1) to the specified I/O pin. The method of
setting the direction register is determined by the last #USE *_IO
directive.

All devices.
Pin constants are defined in the devices .h file

output_bit(PIN_BO, 0);
// Same as output_low(pin_B0);

output_bit(PIN_BO, input(PIN_B1));
// Make pin BO the same as Bl

output_bit(PIN_BO,
shift_left(&data, 1, input(PIN_B1)));
// Output the MSB of data to
// BO and at the same time
// shift Bl into the LSB of data

intl6é i=PIN_BO;
ouput_bit(i,shift_left(&data,l, input(PIN_B1)));
//same as above example, but

//uses a variable instead of a constant

ex_extee.c with 9356.c

input(), output_low(), output high(), output float(), output x(), #use fixed io,
#use fast _io, #use standard_io, General Purpose I/O

205

PCD C Compiler Reference Manual April 2008

output_drive()

Syntax:
Parameters:

Returns:
Function:

Availability:
Requires:

Examples:

Example Files:
Also See:

output_float()

output_drive(pin)

Pins are defined in the devices .h file. The actual value is a bit address. For
example, port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or 5651.
This is defined as follows: #define PIN_A3 5651.

undefined
Sets the specified pin to the output mode.

All devices.
Pin constants are defined in the devices.h file.

output_drive(pin_A0); // sets pin_AO to output its value
output_bit(pin_BO, input(pin_A0)) // makes BO the same as AO

None
input(), output low(), output _high(), output_bit(), output x(), output_float()

Syntax:

Parameters:

Returns:
Function:

Availability:
Requires:

Examples:

Example Files:
Also See:

206

output_float (pin)

Pins are defined in the devices .h file. The actual value is a bit address. For
example, port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or 5651.
This is defined as follows: #define PIN_A3 5651. The PIN could also be a
variable to identify the pin. The variable must have a value equal to one of the
constants (like PIN_A1) to work properly. Note that doing /0 with a variable
instead of a constant will take much longer time.

undefined

Sets the specified pin to the input mode. This will allow the pin to float high to
represent a high on an open collector type of connection.

All devices.
Pin constants are defined in the devices .h file
if((data & 0x80)==0)
output_low(pin_A0);
else
output_float(pin_A0);
None

input(), output_low(), output high(), output_bit(), output_x(), output_drive(),
#use fixed io, #use fast io, #use standard_io, General Purpose 1/O

Built-in-Functions

output_high()
. __|

Syntax: output_high (pin)

Parameters: Pin to write to. Pins are defined in the devices .h file. The actual value is a bit
address. For example, port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3
or 5651. This is defined as follows: #define PIN_A3 5651. The PIN could also be
a variable. The variable must have a value equal to one of the constants (like
PIN_A1) to work properly. The tristate register is updated unless the FAST_10
mode is set on port A. Note that doing I/0 with a variable instead of a constant will
take much longer time.

Returns: undefined

Function: Sets a given pin to the high state. The method of I/0 used is dependent on the
last USE *_|O directive.

Availability: All devices.
Requires: Pin constants are defined in the devices .h file
Examples: output_high(PIN_A0);

output_low(PIN_Al);

Example ex_sgw.c
Files:
Also See: input(), output_low(), output_float(), output_bit(), output x(), #use fixed_io, #use

fast_io, #use standard _io, General Purpose 1/O

207

PCD C Compiler Reference Manual April 2008

output_low()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

208

output_low (pin)

Pins are defined in the devices .h file. The actual value is a bit address. For
example, port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or 5651.
This is defined as follows: #define PIN_A3 5651. The PIN could also be a
variable. The variable must have a value equal to one of the constants (like
PIN_A1) to work properly. The tristate register is updated unless the FAST_I0
mode is set on port A. Note that doing I/0 with a variable instead of a constant
will take much longer time.

undefined

Sets a given pin to the ground state. The method of I/O used is dependent on
the last USE *_IO directive.

All devices.
Pin constants are defined in the devices .h file

output_low(PIN_AO0);

INt16i=PIN_A1l;
output_low(PIN_A1l);

ex_sqw.c

input(), output_high(), output_float(), output bit(), output x(), #use fixed io,
#use fast _io, #use standard io, General Purpose |/O

Built-in-Functions

output_toggle()

. __|]
Syntax: output_toggle(pin)

Parameters: Pins are defined in the devices .h file. The actual value is a bit address. For

example, port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or 5651.
This is defined as follows: #define PIN_A3 5651.

Returns: Undefined

Function: Toggles the high/low state of the specified pin.
Availability: All devices.

Requires: Pin constants are defined in the devices .h file

Examples: output_toggle(PIN_B4);

Example Files: None

Also See: Input(), output high(), output low(), output bit(), output_x()
perror()

Syntax: perror(string);

Parameters: string is a constant string or array of characters (null terminated).

Returns: Nothing

Function: This function prints out to STDERR the supplied string and a description of the

last system error (usually a math error).

Availability: All devices.
Requires: #use rs232, #include <errno.h>
Examples: X = sin(y);

if(errno!=0)
perror("'‘Problem in find_area™);

Example Files: None
Also See: RS232 I/O overview

209

PCD C Compiler Reference Manual April 2008

port_x_pullups ()
. __|

Syntax: port_a_pullups (value)
port_b_pullups (value)
port_d_pullups (value)
port_e_pullups (value)
port_j_pullups (value)
port_x_pullups (upmask)
port_x_pullups (upmask, downmask)

Parameters: value is TRUE or FALSE on most parts, some parts that allow pullups to be
specified on individual pins permit an 8 bit int here, one bit for each port pin.
upmask for ports that permit pullups to be specified on a pin basis. This mask
indicates what pins should have pullups activated. A 1 indicates the pullups is
on.
downmask for ports that permit pulldowns to be specified on a pin basis. This
mask indicates what pins should have pulldowns activated. A 1 indicates the
pulldowns is on.

Returns: undefined

Function: Sets the input pullups. TRUE will activate, and a FALSE will deactivate.

Availability: Only 14 and 16 bit devices (PCM and PCH). (Note: use SETUP_COUNTERS
on PCB parts).

Requires: Nothing

Examples: port_a_pullups(FALSE);

Example Files: ex_lcdkb.c, kbd.c

Also See: input(), input_x(), output float()

210

pow()
pwr()

Built-in-Functions

Syntax:

Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example Files:
Also See:

f= pow (x,y)
f=pwr (x.y)

x and y are any float type
A float with precision equal to function parameters x and y.

Calculates X to the Y power.

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in the errno
variable. The user can check the errno to see if an error has occurred and print
the error using the perror function.

Range error occurs in the following case:
e pow: when the argument X is negative

All Devices
#include <math.h>

area = pow (size,3.0);

None
None

pmp_address(address)

Syntax:

Parameters:

Returns:
Function:

pmp_address (address);

address- The address which is a 16 bit destination address value. This will
setup the address register on the PMP module and is only used in Master
mode.

undefined

Configures the address register of the PMP module with the destination
address during Master mode operation. The address can be either 14, 15 or 16
bits based on the multiplexing used for the Chip Select Lines 1 and 2.

211

PCD C Compiler Reference Manual April 2008

Availability: Only the devices with a built in Parallel Port module.

Requires: Nothing.

Examples: pmp_address(0x2100); // Sets up Address register to 0x2100
Example Files: None

Also See: setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(),

pmp_write(), psp_output full(), psp_input_full(), psp_overflow(),
pmp_output full(), pmp_input_full(),pmp_overflow(). See header file for device
selected.

pmp_output_full()
pmp_input_full()
pmp_overflow()

Syntax: result = pmp_output_full()
result = pmp_input_full()
result = pmp_overflow()

Parameters: None
Returns: A 0 (FALSE) or 1 (TRUE)
Function: These functions check the Parallel Port for the indicated conditions and return

TRUE or FALSE.

Availability: This function is only available on devices with Parallel Port hardware on chips.
Requires: Nothing.
Examples: while (pmp_output_full(Q)) ;

pmp_data = command;
while("pmp_input_full()) ;
if (pmp_overflow())
error = TRUE;
else
data = pmp_data;

Example Files: None
Also See: setup_pmp(), pmp_write(), pmp_read()

212

pmp_read()

Built-in-Functions

Syntax:

Parameters:
Returns:

Function:
Availability:

Requires:
Examples:

Example Files:

Also See:

pmp_write()

Result = pmp_read ();

None
A byte of data.

pmp_read() will read a byte of data from the next buffer location.
Only the devices with a built in Parallel Port module.

Nothing.
Result = pmp_read(); // Reads next byte of data

None

setup _pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(),
pmp_write(), psp_output_full(), psp_input_full(), psp_overflow(),
pmp_output_full(), pmp_input_full(),pmp_overflow().

See header file for device selected.

Syntax:
Parameters:

Returns:
Function:

Availability:

Requires:
Examples:

Example Files:

Also See:

pmp_write (data);
data- The byte of data to be written.

Undefined.
This will write a byte of data to the next buffer location.

Only the devices with a built in Parallel Port module.
Nothing.

pmp_write(data);
location.

// Write the data byte to the next buffer

None

setup _pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(),
pmp_write(), psp_output_full(), psp_input_full(), psp_overflow(),

pmp_output full(), pmp_input_full(),pmp_overflow(). See header file for device
selected.

213

PCD C Compiler Reference Manual April 2008

printf()
fprintf()
I
Syntax: printf (string)
or
printf (cstring, values...)
or

printf (fname, cstring, values...)
fprintf (stream, cstring, values...)

Parameters: String is a constant string or an array of characters null terminated. Values is a
list of variables separated by commas, fname is a function name to be used for
outputting (default is putc is none is specified). Stream is a stream identifier (a
constant byte)

Returns: undefined

Function: Outputs a string of characters to either the standard RS-232 pins (first two forms)
or to a specified function. Formatting is in accordance with the string argument.
When variables are used this string must be a constant. The % character is used
within the string to indicate a variable value is to be formatted and output. Longs
in the printf may be 16 or 32 bit. A %% will output a single %. Formatting rules for
the % follows.

If fprintf() is used then the specified stream is used where printf() defaults to
STDOUT (the last USE RS232).

Format:

The format takes the generic form %nt. n is optional and may be 1-9 to specify
how many characters are to be outputted, or 01-09 to indicate leading zeros, or
1.1 to 9.9 for floating point and %w output. t is the type and may be one of the

following:
c Character
S String or character
u Unsigned int
d Signed int
Lu Long unsigned int
Ld Long signed int
X Hex int (lower case)
Hex int (upper case)
Lx Hex long int (lower case)
LX Hex long int (upper case)
f Float with truncated decimal
g Float with rounded decimal
e Float in exponential format

214

Availability:

Requires:

Examples:

Example
Files:

Also See:

Built-in-Functions

w Unsigned int with decimal place inserted. Specify two numbers for n.
The first is a total field width. The second is the desired number of

decimal places.

Example formats:
Specifier
%03u
%u
%2u
%5
%d
%X
%X
%4X
%3.1w

Value=0x12
018

18

18

18

18

12

12

0012

1.8

* Result is undefined - Assume garbage.

All Devices

#use rs232 (unless fname is used)

byte x,y,z;

printf(""HiThere');
printf("'RTCCValue=>%2x\n\r",get_rtcc());

printf('%2u %X %4X\n\r'',x,y,z);
printf(LCD_PUTC, "n=%u',n);

ex_admm.c , ex_lcdkb.c

Value=0xfe
254

254

*

254

-2

fe

FE

00OFE

25.4

atoi(), puts(), putc(), getc() (for a stream example), RS232 1/0O overview

215

PCD C Compiler Reference Manual April 2008

psp_output_full()
psp_input_full()
psp_overflow()

Syntax: result = psp_output_full()
result = psp_input_full()
result = psp_overflow()

Parameters: None
Returns: A 0 (FALSE) or 1 (TRUE)
Function: These functions check the Parallel Slave Port (PSP) for the indicated

conditions and return TRUE or FALSE.

Availability: This function is only available on devices with PSP hardware on chips.
Requires: Nothing
Examples: while (psp_output_full()) ;

psp_data = command;
while(Ypsp_input_full(Q)) ;
if (psp_overflow())
error = TRUE;
else
data = psp_data;

Example Files: ex_psp.c

Also See: setup_psp(), PSP overview

216

psp_read()

Built-in-Functions

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:
Examples:

Example Files:

Also See:

psp_write()

Result = psp_read ();
Result = psp_read (address);

address- The address of the buffer location that needs to be read. If address is
not specified, use the function psp_read() which will read the next buffer
location.

A byte of data.

psp_read() will read a byte of data from the next buffer location and psp_read (
address) will read the buffer location address.

Only the devices with a built in Parallel Port module.

Nothing.

Result = psp_read(); // Reads next byte of data
Result = psp_read(3); // Reads the buffer location 3
None

setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(),
pmp_write(), psp_output full(), psp_input_full(), psp_overflow(),
pmp_output full(), pmp_input_full(),pmp_overflow().

See header file for device selected.

Syntax:

Parameters:

Returns:

Function:

Availability:

psp_write (data);
psp_write(address, data);

address-The buffer location that needs to be written to
data- The byte of data to be written

Undefined.

This will write a byte of data to the next buffer location or will write a byte to the
specified buffer location.

Only the devices with a built in Parallel Port module.

217

PCD C Compiler Reference Manual April 2008

Requires:
Examples:
Example Files:

Also See:

putc()
putchar()

fputc()

Nothing.
psp_write(data); // Write the data byte to the next buffer
location.

None

setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(),

pmp_write(), psp_output_full(), psp_input_full(), psp_overflow(),

pmp_output full(), pmp_input_full(),pmp_overflow().

See header file for device selected.

Syntax:

Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

218

putc (cdata)
putchar (cdata)
fputc(cdata, stream)

cdata is a 8 bit character. Stream is a stream identifier (a constant byte)
undefined

This function sends a character over the RS232 XMIT pin. A #USE RS232
must appear before this call to determine the baud rate and pin used. The
#USE RS232 remains in effect until another is encountered in the file.

If fputc() is used then the specified stream is used where putc() defaults to
STDOUT (the last USE RS232).

All devices

#use rs232

putc("*");

for(i=0; i<10; i++)
putc(buffer[i]);

putc(13);

ex_tgetc.c

getc(), printf(), #USE RS232, RS232 1/O overview

Built-in-Functions

puts()
fputs()

Syntax: puts (string).
fputs (string, stream)

Parameters: string is a constant string or a character array (null-terminated). Stream is a
stream identifier (a constant byte)

Returns: undefined

Function: Sends each character in the string out the RS232 pin using PUTC(). After the
string is sent a RETURN (13) and LINE-FEED (10) are sent. In general printf()
is more useful than puts().

If fputs() is used then the specified stream is used where puts() defaults to
STDOUT (the last USE RS232)

Availability: All devices

Requires: #use rs232

Examples: puts(" ——————————- ")
puts(" | HI1 1 ");
puts(" —---—-—————- ");

Example Files: None

Also See: printf(), gets(), RS232 I/O overview

gei_get_count()

Syntax: Value = gei_get_count();

Parameters: value- The 16-bit value of the position counter.
Returns: void

Function: Reads the current 16-bit value of the position counter.
Availability: Devices that have the QEI module.

Requires: Nothing.

Examples: Value = gei_get_counter();

Example Files: None

Also See: setup gei() , gei_set count() , gei_status().

219

PCD C Compiler Reference Manual April 2008

gei_set_count()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

Also See:

gei_status()

gei_set_count(value);

value- The 16-bit value of the position counter.
void

Write a 16-bit value to the position counter.
Devices that have the QEI module.

Nothing.

gei_set_counter(value);

None

setup _qgei() , gei_get count() , gei_status().

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

Also See:

220

status = gei_status();

status- The status of the QEI module
void

Returns the status of the QUI module.
Devices that have the QEI module.
Nothing.

status = qei_status();

None

setup_gei() , gei_set_count() , gei_get _count().

gsort()

Built-in-Functions

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

gsort (base, num, width, compare)

base: Pointer to array of sort data

num: Number of elements

width: Width of elements

compare: Function that compares two elements

None

Performs the shell-metzner sort (not the quick sort algorithm). The contents of
the array are sorted into ascending order according to a comparison function
pointed to by compare.

All devices
#include <stdlib.h>

int nums[5]={ 2,3,1,5,4};
int compar(void *argl,void *arg2);

void main() {

gsort (nums, 5, sizeof(int), compar);

int compar(void *argl,void *arg2) {
if (* (int *) argl < (* (int *) arg2) return -1
else if (* (int *) argl == (* (int *) arg2) return O
else return 1;

¥
ex_gsort.c

bsearch()

221

PCD C Compiler Reference Manual April 2008

rand()

Syntax:
Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

read_adc()
read_adc2()

re=rand()
None
A pseudo-random integer.

The rand function returns a sequence of pseudo-random integers in the range
of 0 to RAND_MAX.

All devices
#include <STDLIB.H>

int I;
I=rand();

None

srand()

Syntax:

Parameters:

Returns:

Function:

222

value = read_adc ([mode])
value = read_adc2 ([mode])

mode is an optional parameter. If used the values may be:
ADC_START_AND_READ (continually takes readings, this is the default)
ADC_START_ONLY (starts the conversion and returns)
ADC_READ_ONLY (reads last conversion result)

Either a 8 or 16 bit int depending on #DEVICE ADC= directive.

This function will read the digital value from the analog to digital converter. Calls to
setup_adc(), setup_adc_ports() and set_adc_channel() should be made
sometime before this function is called. The range of the return value depends on
number of bits in the chips A/D converter and the setting in the #DEVICE ADC=
directive as follows:

Availability:

Requires:

Examples:

Example
Files:

Also See:

Built-in-Functions

#DEVICE 10 bit 12 bit
ADC=8 00-FF 00-FF
ADC=10 0-3FF 0-3FF
ADC=11 X X
ADC=12 0-FFC O0-FFF
ADC=16 0-FFCO 0-FFFO

Note: x is not defined

Only available on devices with built in analog to digital converters.

Pin constants are defined in the devices .h file.

intl6é value;
setup_adc_ports(sANO|sAN1, VSS VDD);
setup_adc(ADC_CLOCK_DIV_4]|ADC_TAD_MUL_8);

while (TRUE)

}

set_adc_channel (0);
value = read_adc();
printf(“Pin ANO A/C value = %LX\n\r”, value);

delay_ms(5000);

set_adc_channel(1);
read_adc(ADC_START_ONLY);

value = read_adc(ADC_READ_ONLY);
printf(""Pin AN1 A/D value = %LX\n\r", value);

ex_admm.c,

setup adc(), set_adc_channel(), setup_adc_ports(), #DEVICE, ADC overview

223

PCD C Compiler Reference Manual April 2008

read_configuration_memory()
. __|

Syntax: read_configuration_memory(ramPtr, n)
Parameters: ramPtr is the destination pointer for the read results
count is an 8 bit integer

Returns: undefined

Function: Reads n bytes of configuration memory and saves the values to ramPtr.

Availability: All

Requires: Nothing

Examples: int data[6];
read_configuration_memory(data,b6);

Example Files: None

Also See: write_configuration_memory(), read program_memory(), Configuration Memory
Overview

read_eeprom()
. __|

Syntax: value = read_eeprom (address, [N])
read_eeprom(address, variable)
read_eeprom(address, pointer, N)

Parameters: address is an (8 bit or 16 bit depending on the part) int
N specifies the number of EEPROM bytes to read
variable a specified location to store EEPROM read results
pointer is a pointer to location to store EEPROM read results

Returns: An 16 bit int

Function: By default the function reads a word from EEPROM at the specified address.
The number of bytes to read can optionally be defined by argument N. If a
variable is used as an argument, then EEPROM is read and the results are
placed in the variable until the variable data size is full. Finally, if a pointer is
used as an argument, then n bytes of EEPROM at the given address are read
to the pointer.

Availability: This command is only for parts with built-in EEPROMS
Requires: Nothing
Examples: #define LAST _VOLUME 10
volume = read EEPROM (LAST_VOLUME);
Example Files: None
Also See: write_eeprom(), data eeprom overview

224

Built-in-Functions

read_program_memory()

Syntax:
Parameters:

Returns:
Function:

Availability:
Requires:

Examples:

Example Files:
Also See:

READ_PROGRAM_MEMORY (address, dataptr, count);

address is 32 bits . The least significant bit should always be 0 in PCM.
dataptr is a pointer to one or more bytes.

count is a 16 bit integer

undefined

Reads count bytes from program memory at address to RAM at dataptr.
BDue to the 24 bit program instruction size on the PCD devices, every fourth
byte will be read as 0x00

Only devices that allow reads from program memory.

Nothing
char buffer[64];
read_external_memory(0x40000, buffer, 64);

None

write program memory (), External memory overview, Program eeprom
overview

read_rom_memory()

Syntax:

Parameters:

Returns:
Function:

Availability:
Requires:

Examples:

Example Files:
Also See:

READ_ROM_MEMORY (address, dataptr, count);

address is 32 bits. The least significant bit should always be O.
dataptr is a pointer to one or more bytes.
count is a 16 bit integer

undefined

Reads count bytes from program memory at address to dataptr. Due to the 24
bit program instruction size on the PCD devices, three bytes are read from each
address location.

Only devices that allow reads from program memory.

Nothing
char buffer[64];
read_program_memory(0x40000, buffer, 64);

None
write_program_eeprom(), write_eeprom(), read_eeprom() Program eeprom
overview

225

PCD C Compiler Reference Manual April 2008

realloc()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

226

realloc (ptr, size)

ptr is a null pointer or a pointer previously returned by calloc or malloc or
realloc function, size is an integer representing the number of byes to be
allocated.

A pointer to the possibly moved allocated memory, if any. Returns null
otherwise.

The realloc function changes the size of the object pointed to by the ptr to the
size specified by the size. The contents of the object shall be unchanged up to
the lesser of new and old sizes. If the new size is larger, the value of the newly
allocated space is indeterminate. If ptr is a null pointer, the realloc function
behaves like malloc function for the specified size. If the ptr does not match a
pointer earlier returned by the calloc, malloc or realloc, or if the space has been
deallocated by a call to free or realloc function, the behavior is undefined. If the
space cannot be allocated, the object pointed to by ptr is unchanged. If size is
zero and the ptr is not a null pointer, the object is to be freed.

All devices
#include <stdlibm.h>
int * iptr;

iptr=malloc(10);
realloc(iptr,20)

// iptr will point to a block of memory of 20 bytes, if
available.

None

malloc(), free(), calloc()

reset_cpu()

Built-in-Functions

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:
Examples:

Example Files:

Also See:

restart_cause()

reset_cpu()

None
This function never returns

This is a general purpose device reset. It will jump to location 0 on PCB and
PCM parts and also reset the registers to power-up state on the PIC18XXX.

All devices

Nothing

if(checksum!=0)
reset_cpu(Q);

None
None

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

Also See:

value = restart_cause()

None

A value indicating the cause of the last processor reset. The actual values are
device dependent. See the device .h file for specific values for a specific
device. Some example values are: RESTART_POWER_UP,
RESTART_BROWNOUT, RESTART_WDT and RESTART_MCLR

Returns the cause of the last processor reset.

In order for the result to be accurate, it should be called immediately in main().

All devices
Constants are defined in the devices .h file.

switch (restart_cause()) {

case RESTART_BROWNOUT:

case RESTART_WDT:

case RESTART_MCLR:
handle_error();

}

ex_wdt.c
restart wdt(), reset _cpu()

227

PCD C Compiler Reference Manual April 2008

restart_wdt()

Syntax:
Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

228

restart_wdt()
None
undefined

Restarts the watchdog timer. If the watchdog timer is enabled, this must be
called periodically to prevent the processor from resetting.

The watchdog timer is used to cause a hardware reset if the software appears
to be stuck.

The timer must be enabled, the timeout time set and software must periodically
restart the timer. These are done differently on the PCB/PCM and PCH parts
as follows:

PCB/PCM PCH

Enable/Disable #fuses setup_wdt()
Timeout time setup_wdt() #fuses
restart restart_wdt() restart_wdt()
All devices
#fuses
#Ffuses WDT // PCB/PCM example

// See setup_wdt for a PIC18 example
mainQ) {

setup_wdt(WDT_2304MS) ;
while (TRUE) {
restart_wdt();
perform_activity(Q);
¥
}

ex_wdt.c

#fuses, setup wdt(), WDT or Watch Dog Timer overview

rotate_left()

Built-in-Functions

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

Also See:

rotate_right()

rotate_left (address, bytes)

address is a pointer to memory, bytes is a count of the number of bytes to
work with.

undefined

Rotates a bit through an array or structure. The address may be an array
identifier or an address to a byte or structure (such as &data). Bit O of the
lowest BYTE in RAM is considered the LSB.

All devices

Nothing

X = 0x86;
rotate_left(&x, 1);
// x is now 0xOd

None

rotate right(), shift_left(), shift_right()

Syntax:

Parameters:

Returns:

Function:

Availability:

rotate_right (address, bytes)

address is a pointer to memory, bytes is a count of the number of bytes to
work with.

undefined

Rotates a bit through an array or structure. The address may be an array
identifier or an address to a byte or structure (such as &data). Bit O of the
lowest BYTE in RAM is considered the LSB.

All devices

229

PCD C Compiler Reference Manual April 2008

Requires:

Examples:

Example Files:

Also See:

rtc_alarm_read

Nothing

struct {
int cell_1
int cell_2
int cell_3
int cell_4 : 4; } cells;
rotate_right(&cells, 2);
rotate_right(&cells, 2);
rotate_right(&cells, 2);
rotate_right(&cells, 2);
// cell_1->4, 2->1, 3->2 and 4-> 3

4
4
4

None

rotate left(), shift_left(), shift_right()

Syntax:

Parameters:

Returns:
Function:
Availability:
Requires:
Examples:
Example Files:

Also See:

230

rtc_alarm_read(time_t datetime);

datetime- A structure that will contain the values to be written to the alarm in
the RTCC module.

Structure used in read and write functions are defined in the device header file.
void

Reads the date and time from the alarm in the RTCC module to datetime.
Devices that have the RTCC module.

Nothing.

rtc_alarm_read(datetime);

None

ric_read() , rtc_alarm read() , rtc_alarm_write() , setup _rtc_alarm() , rtc_write(),

setup_rtc()

rtc_alarm_write()

Built-in-Functions

Syntax:

Parameters:

Returns:
Function:

Availability:

Requires:
Examples:

rtc_alarm_write(time_t datetime);

datetime- A structure that will contain the values to be written to the alarm in
the RTCC module.

Structure used in read and write functions are defined in the device header file.
void

Writes the date and time to the alarm in the RTCC module as specified in the
structure time_t.

Devices that have the RTCC module.

Nothing.
rtc_alarm_write(datetime);

Example Files: None

Also See: ric_read() , rtc_alarm read() , rtc_alarm_write() , setup _rtc_alarm() , rtc_write(),
setup_rtc()

rtc_read()

Syntax: rtc_read(time_t datetime);

Parameters: datetime- A structure that will contain the values returned by the RTCC
module.
Structure used in read and write functions are defined in the device header file.

Returns: void

Function: Reads the current value of Time and Date from the RTCC module and stores it
in a structure time_t.

Availability: Devices that have the RTCC module.

Requires: Nothing.

Examples: rtc_read(datetime);

Example Files:
Also See:

None
ric_read() , rtc_alarm read() , rtc_alarm_write() , setup _rtc_alarm() , rtc_write(),

setup_rtc()

231

PCD C Compiler Reference Manual April 2008

rtc_write()

Syntax:

Parameters:

Returns:
Function:

Availability:

Requires:
Examples:

Example Files:

Also See:

rtos_await()

rtc_write(time_t datetime);

datetime- A structure that will contain the values to be written to the RTCC
module.

Structure used in read and write functions are defined in the device header file.
void

Writes the date and time to the RTCC module as specified in the structure
time_t.

Devices that have the RTCC module.

Nothing.
rtc_write(datetime);

None

rtc_read() , rtc_alarm read() , rtc_alarm_ write() , setup_rtc_alarm() , rtc_write(),
setup_rtc

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:

Parameters:

Returns:
Function:

Availability:

Requires:
Examples:

Also See:

232

rtos_await (expre)

expre is a logical expression.

None

This function can only be used in an RTOS task. This function waits for expre
to be true before continuing execution of the rest of the code of the RTOS task.
This function allows other tasks to execute while the task waits for expre to be
true.

All devices
#use rtos

rtos_await(kbhit());

None

rtos_disable()

Built-in-Functions

. __|
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:
Examples:

Also See:

rtos_enable()

rtos_disable (task)
task is the identifier of a function that is being used as an RTOS task.
None

This function disables a task which causes the task to not execute until enabled
by RTOS_ENABLE. All tasks are enabled by default.

All devices
#use rtos
rtos_disable(toggle_green)

rtos enable

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:
Examples:

Also See:

rtos_enable (task)
task is the identifier of a function that is being used as an RTOS task.
None

This function enables a task to execute at it's specified rate. All tasks are enabled
by default.

All devices
#use rtos

rtos_enable(toggle_green);

rtos disable()

233

PCD C Compiler Reference Manual April 2008

rtos_msg_poll()

. __|
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:
Examples:

Also See:

rtos_msg_read()

i = rtos_msg_poll()
None
An integer that specifies how many messages are in the queue.

This function can only be used inside an RTOS task. This function returns the
number of messages that are in the queue for the task that the
RTOS_MSG_POLL function is used in.

All devices
#use rtos
if(rtos_msg_poll1())

rtos msg send(), rtos msq read()

. __|
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Also See:

234

b = rtos_msg_read()

None

A byte that is a message for the task.

This function can only be used inside an RTOS task. This function reads
in the next (message) of the queue for the task that the
RTOS_MSG_READ function is used in.

All devices

#use rtos

if(rtos_msg_poll()) {
b = rtos_msg_read();

rtos msg poll(), rtos msg send()

Built-in-Functions

rtos_msg_send()

. __|
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:

Parameters:

Returns:
Function:

Availability:

Requires:

Examples:

Also See:

rtos_overrun()

rtos_msg_send(task, byte)

task is the identifier of a function that is being used as an RTOS task
byte is the byte to send to task as a message.

None
This function can be used anytime after RTOS_RUN() has been called.
This function sends a byte long message (byte) to the task identified by
task.

All devices
#use rtos

if(kbhitQ)
{

rtos_msg_send(echo, getc());
}

rtos_ msg _poll(), rtos msg read()

. __|
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:
Examples:

Also See:

rtos_overrun([task])

task is an optional parameter that is the identifier of a function that is being used
as an RTOS task

A 0 (FALSE) or 1 (TRUE)
This function returns TRUE if the specified task took more time to execute than it
was allocated. If no task was specified, then it returns TRUE if any task ran over
it's alloted execution time.

All devices
#use rtos(statistics)

rtos_overrun()

None

235

PCD C Compiler Reference Manual April 2008

rtos_run()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:

Parameters:

Returns:
Function:

Availability:

Requires:
Examples:

Also See:

rtos_signal()

rtos_run()

None
None
This function begins the execution of all enabled RTOS tasks. (All tasks

are enabled by default.) This function controls the execution of the RTOS
tasks at the allocated rate for each task. This function will return only when
RTOS_TERMINATE() is called.

All devices

#USE RTOS

rtos_run(Q)

rtos terminate()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:

Parameters:

Returns:
Function:

Availability:

Requires:
Examples:
Also See:

236

rtos_signal (sem)

sem is a global variable that represents the current availability of a shared
system resource (a semaphore).

None

This function can only be used by an RTOS task. This function increments sem to
let waiting tasks know that a shared resource is available for use.

All devices

#use rtos

rtos_signal (uart_use)

rtos wait

Built-in-Functions

rtos_stats()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_stats(task,stat)
Parameters: task is the identifier of a function that is being used as an RTOS task.
stat is one of the following:
rtos_min_time — minimum processor time needed for one execution of
the specified task
rtos_max_time — maximum processor time needed for one
execution of the specified task
rtos_total_time — total processor time used by a task
Returns: An int32 representing the us for the specified stat for the specified task.
Function: This function returns a specified stat for a specified task.
Availability: All devices
Requires: #use rtos(statistics)
Examples: rtos_stats(echo, rtos_total_time)
Also See: None

rtos_terminate()

. __|
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_terminate()

Parameters: None

Returns: None

Function: This function ends the execution of all RTOS tasks. The execution of the

program will continue with the first line of code after the RTOS_RUN()
call in the program. (This function causes RTOS_RUN() to return.)

Availability: All devices
Requires: #use rtos
Examples: rtos_terminate()
Also See: rtos run

237

PCD C Compiler Reference Manual April 2008

rtos_wait()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:
Parameters:

Returns:
Function:

Availability:
Requires:

Examples:

Also See:

rtos_yield()

rtos_wait (sem)
sem is a global variable that represents the current availability of a shared
system resource (a semaphore).

None

This function can only be used by an RTOS task. This function waits for sem to
be greater than 0 (shared resource is available), then decrements sem to claim
usage of the shared resource and continues the execution of the rest of the code
the RTOS task. This function allows other tasks to execute while the task waits
for the shared resource to be available.

All devices
#use rtos

rtos_wait(uart_use)

rtos signal

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:
Parameters:
Returns:
Function:

Availability:
Requires:
Examples:

Also See:

238

rtos_yield()

None

None

This function can only be used in an RTOS task. This function stops the
execution of the current task and returns control of the processor to
RTOS_RUN. When the next task executes, it will start it's execution on
the line of code after the RTOS_YIELD.

All devices
#use rtos
void yield(void)

printf(“Yielding...\r\n”);

rtos_yield(Q);
printf(“Executing code after yield\r\n”);

None

Built-in-Functions

set_adc_channel()
set_adc_channel2()

Syntax: set_adc_channel (chan)
set_adc_channel2(chan)

Parameters: chan is the channel number to select. Channel numbers start at 0 and are
labeled in the data sheet ANO, AN1

Returns: undefined

Function: Specifies the channel to use for the next READ_ADC call. Be aware that you
must wait a short time after changing the channel before you can get a valid
read. The time varies depending on the impedance of the input source. In
general 10us is good for most applications. You need not change the channel
before every read if the channel does not change.

Availability: Only available on devices with built in analog to digital converters
Requires: Nothing
Examples: set_adc_channel (2);

value = read_adc();
Example Files: ex_admm.c

Also See: read_adc(), setup_adc(), setup_adc_ports(), ADC overview

239

PCD C Compiler Reference Manual April 2008

set_compare_time()

Syntax: set_compare_time(x, ocr, [ocrs])

Parameters: x is 1-8 and defines which output compare module to set time for
ocr is the compare time for the primary compare register.
ocrs is the optional compare time for the secondary register. Used for dual
compare mode.

Returns: None

Function: This function sets the compare value for the output compare module. If the
output compare module is to perform only a single compare than the ocrs
register is not used. If the output compare module is using double compare to
generate an output pulse, then ocr signifies the start of the pulse and ocrs
defines the pulse termination time.

Availability: Only available on devices with output compare modules.
Requires: Nothing
Examples: // Pin OC1 will be set when timer 2 is equal to O0xFO00O0

setup_timer2(TMR_INTERNAL | TIMER DIV_BY_8);
set_compare_time(l, 0xF000);
setup_compare(l, COMPARE_SET_ON_MATCH | COMPARE_TIMER2):

Example Files: None
Also See: get capture(), setup_compare(), ouput compare / PWM Overview

240

Built-in-Functions

set_motor_pwm_event()

Syntax:

Parameters:

Returns:
Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

set_motor_pmw_event(pwm,time);

pwm- Defines the pwm module used.
time- The value in the special event comparator register used for scheduling
other events.

void

Configures the PWM event on the motor control unit.
Devices that have the motor control PWM unit.
None

set_motor_pmw_event(pwm,time);

None

get_motor pwm _count(), setup_motor pwm() , setup_motor_unit() ,
setup_motor pwm_duty();

241

PCD C Compiler Reference Manual April 2008

set_pwm_duty()
. __|

Syntax: set_pwm_duty(x, value)

Parameters: x is 1-8 and defines the output compare module to set duty for
value is a 16 bit constant or variable specifying the duty of the module

Returns: None

Function: Writes the 16-bit value to the PWM to set the duty. The duty is set by defining
the amount of the timer period that is to be high. The duty cycle can be
calculated as follows:

value = duty * (PRx + 1)
Where PRx is the period register value of the timer being used for output
compare and duty is the percent of the period that is to remain high. By default
PRx = 65535.
The PWM period can be found as follows:

period = [(Prx) + 1] * Tcy * (TMRx Prescale)
Where Tcy is the instruction clock of the PIC [for dsPIC30 Tcy = 2/(Extern Clock
), for PIC24 and dsPIC33 Tcy = 4/(Extern Clock)] and TMRx Prescale is any

prescaler value given to the timer being used for output compare, done using
setup_timerx().

Availability: Only available on devices with Output Compare modules
Requires: None
Examples: // For a 20 MHz clock

// on a chip with an instruction clock of 20MHz/4 and
// timer prescaler set to 16 with default PRx
// The following sets the duty to 50%.

intl6é duty;
duty = 32768: // = 0.5 * 65536

setup_timer3(TMR_INTERNAL);

set_pwm_duty(2, duty);
setup_compare(2, COMPARE_PWM);

Example Files: ex_pwm.c
Also See: get capture(), setup_compare(), output Compare / PWM Overview

242

Built-in-Functions

set_power_pwm_duty()

Syntax:
Parameters:

Returns:
Function:

Availability:

Requires:
Examples:

Example Files:
Also See:

set_power_pwmX_duty(duty)
Xis 0, 2, 4, or 6
Duty is an integer between 0 and 16383.

undefined

Stores the value of duty into the appropriate PDCXL/H register. This duty value
is the amount of time that the PWM output is in the active state.

All devices equipped with PWM.

None
set_power_pwmO_duty(4000);

None
setup_power_pwm(), setup_power_pwm_pins(),set_power_pwm_override()

set_power_pwm_override()

Syntax:
Parameters:

Returns:
Function:

Availability:

Requires:
Examples:

Example Files:
Also See:

set_power_pwm_override(pwm, override, value)
pwm is a constant between 0 and 7

Override is true or false

ValueisOor 1

undefined

pwm selects which module will be affected. Override determines whether the
output is to be determined by the OVDCONS register or the PDC registers.
When override is false, the PDC registers determine the output. When override
is true, the output is determined by the value stored in OVDCONS. When
value is a 1, the PWM pin will be driven to its active state on the next duty
cycle. If value is 0, the pin will be inactive.

All devices equipped with PWM.

None

set_power_pwm_override(l, true, 1); //PWM1 will be overridden
to active state

set_power_pwm_override(l, false, 0); //PMW1 will not be
overidden

None
setup _power pwm(), setup_power pwm_pins(),set_power pwmX duty()

243

PCD C Compiler Reference Manual April 2008

set_pullup

Syntax:

Parameters:

Returns:
Function:

Availability:
Requires:

Examples:

Example Files:
Also See:

set_timerx()

set_Pullups(state [, pin])

Pins are defined in the devices .h file. The actual number is a bit address. For
example, port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or 5651.
This is defined as follows: #define PIN_A3 5651. The pin could also be a
variable that has a value equal to one of the predefined pin constants. Note if
no pin is provided in the function call, then all of the pins are set to the passed
in state.

State is either true or false.

undefined

Sets the pin's pull up state to the passed in state value. If no pin is included in
the function call, then all valid pins are set to the passed in state.

All devices.
Pin constants are defined in the devices .h file.

set_pullups(true, PIN_BO);
//Sets pin BO"s pull up state to true

set_pullups(false);
//Sets all pin"s pull up state to false

None
None

Syntax:

Parameters:
Returns:
Function:
Availability:
Requires:
Examples:

Example Files:
Also See:

244

set_timerX(value)

A 16 bit integer, specifiying the new value of the timer. (int16)
void

Allows the user to set the value of the timer.

This function is available on all devices that have a valid timerX.
Nothing

iT(EventOccured())
set_timer2(0);//reset the timer.

None
Timer Overview, setup_timerX(), get _timerXY(), set_timerX(), set_timerXY()

set_timerxy()

Built-in-Functions

Syntax:
Parameters:
Returns:

Function:

Availability:

Requires:
Examples:

Example Files:

Also See:

set_timerXY(value)
A 32 bit integer, specifiying the new value of the timer. (int32)

void
Retrieves the 32 bit value of the timers X and Y, specified by XY (which may be
23, 45, 67 and 89)

This function is available on all devices that have a valid 32 bit enabled timers.
Timers2& 3,4 &5,6 &7 and 8 & 9 may be used. The target device must have
one of these timer sets. The target timers must be enabled as 32 bit.

Nothing
if(get_timer4d5() == THRESHOLD)
set_timer(THRESHOLD + 0x1000);//skip those timer values

None
Timer Overview, setup_timerX(), get_timerXY/(), set_timerX(), set_timerXY()

245

PCD C Compiler Reference Manual April 2008

set_tris_x()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:
Examples:

Example Files:

Also See:

246

set_tris_a (value)
set_tris_b (value)
set_tris_c (value)
set_tris_d (value)
set_tris_e (value)
set_tris_f (value)

set_tris_g (value)
set_tris_h (value)
set_tris_j (value)

set_tris_k (value)

value is an 8 bit int with each bit representing a bit of the 1/O port.

Undefined

These functions allow the I/O port direction (TRI-State) registers to be set. This
must be used with FAST_1O and when I/O ports are accessed as memory such
as when a #BYTE directive is used to access an I/O port. Using the default
standard 1/O the built in functions set the I/O direction automatically.

Each bit in the value represents one pin. A 1 indicates the pin is input and a 0
indicates it is output.

All devices (however not all devices have all I/0 ports)

Nothing

SET_TRIS_B(OxOF);
// B7,B6,B5,B4 are outputs
// B3,B2,B1,B0O are inputs

Icd.c

#USE FAST |0, #USE FIXED_ IO, #USE STANDARD_IO, General Purpose
110

Built-in-Functions

set_uart_speed()
. __|

Syntax: set_uart_speed (baud, [stream, clock])

Parameters: baud is a constant 100-115200 representing the number of bits per second.
stream is an optional stream identifier.
clock is an optional parameter to indicate what the current clock is if it is
different from the #use delay value

Returns: undefined

Function: Changes the baud rate of the built-in hardware RS232 serial port at run-time.
Availability: This function is only available on devices with a built in UART.

Requires: #use rs232

Examples: // Set baud rate based on setting

// of pins BO and Bl

switch(input bQ) & 3) {

case 0 : set_uart_speed(2400); break;
case 1 : set_uart_speed(4800); break;
case 2 : set_uart_speed(9600); break;
case 3 : set _uart_speed(19200); break;
}
Example Files: loader.c
Also See: #USE RS232, putc(), getc(), RS232 I/O overview, setup uart

247

PCD C Compiler Reference Manual April 2008

setjmp()

Syntax:
Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

Also See:

248

result = setjmp (env)

env: The data object that will receive the current environment

If the return is from a direct invocation, this function returns O.

If the return is from a call to the longjmp function, the setjmp function returns a
nonzero value and it's the same value passed to the longjmp function.

Stores information on the current calling context in a data object of type
jmp_buf and which marks where you want control to pass on a corresponding
longjmp call.

All devices

#include <setjmp.h>

result = setjmp(mpbuf);

None

longimp()

Built-in-Functions

setup_adc(mode)
setup_adc2(mode)

Syntax: setup_adc (mode);
setup_adc2(mode);
Parameters: mode- Analog to digital mode. The valid options vary depending on the
device. See the devices .h file for all options. Some typical options include:
e ADC_OFF

e ADC_CLOCK_INTERNAL

e ADC_CLOCK_DIV_32

e ADC_CLOCK_INTERNAL — The ADC will use an internal clock

e ADC_CLOCK_DIV_32 — The ADC will use the external clock scaled
down by 32

e ADC_TAD_MUL_16 — The ADC sample time will be 16 times the
ADC conversion time

Returns: undefined

Function: Configures the ADC clock speed and the ADC sample time. The ADC
converters have a maximum speed of operation, so ADC clock needs to be
scaled accordingly. In addition, the sample time can be set by using a bitwise
OR to concatenate the constant to the argument.

Availability: Only the devices with built in analog to digital converter.
Requires: Constants are defined in the devices .h file.
Examples: setup_adc_ports(ALL_ANALOG);

setup_adc(ADC_CLOCK_INTERNAL);
set_adc_channel(0);

value = read_adc();

setup_adc(ADC_OFF);

Example Files: ex_admm.c

Also See: setup _adc_ports(), set_adc_channel(), read_adc(), #device , ADC overview,
see header file for device selected

249

PCD C Compiler Reference Manual April 2008

setup_adc(mode)
setup_adc2(mode)

Syntax: setup_adc (mode);
setup_adc2(mode);
Parameters: mode- Analog to digital mode. The valid options vary depending on the
device. See the devices .h file for all options. Some typical options include:
e ADC_OFF

e ADC_CLOCK_INTERNAL

e ADC_CLOCK_DIV_32

e ADC_CLOCK_INTERNAL — The ADC will use an internal clock

e ADC CLOCK _DIV_32 — The ADC will use the external clock scaled
down by 32

e ADC_TAD_MUL_16 — The ADC sample time will be 16 times the
ADC conversion time

Returns: undefined

Function: Configures the ADC clock speed and the ADC sample time. The ADC
converters have a maximum speed of operation, so ADC clock needs to be
scaled accordingly. In addition, the sample time can be set by using a bitwise
OR to concatenate the constant to the argument.

Availability: Only the devices with built in analog to digital converter.
Requires: Constants are defined in the devices .h file.
Examples: setup_adc_ports(ALL_ANALOG);

setup_adc(ADC_CLOCK_INTERNAL);
set_adc_channel(0);

value = read_adc();

setup_adc(ADC_OFF);

Example Files: ex_admm.c

Also See: setup _adc_ports(), set_adc_channel(), read_adc(), #device , ADC overview,
see header file for device selected

250

Built-in-Functions

setup_adc_ports()
setup_adc_ports2()

Syntax: setup_adc_ports (value)
setup_adc_ports (ports, [reference])

Parameters: value - a constant defined in the devices .h file
ports is a constant specifying the ADC pins to use
reference is an optional constant specifying the ADC reference voltages to
use. By default the reference voltages are Vss and Vdd.

Returns: undefined

Function: Sets up the ADC pins to be analog, digital, or a combination and the voltage
reference to use when computing the ADC value. The allowed analog pin
combinations vary depending on the chip and are defined by using the bitwise
OR to concatenate selected pins together. Check the device include file for a
complete list of available pins and reference voltage settings. The constants
ALL_ANALOG and NO_ANALOGS are valid for all chips. Some other example
pin definitions are:

e ANALOG_RA3_REF- All analog and RA3 is the reference

e RAO_RA1_RA3 ANALOG- Just RAO, RA1 and RA3 are analog

¢ SAN1 | SAN2 — AN1 and AN2 are analog, remaining pins are digital
¢ SANO | SAN3 — ANO and AN3 are analog, remaining pins are digital

Availability: Only available on devices with built in analog to digital converters
Requires: Constants are defined in the devices .h file.
Examples: // Set all ADC pins to analog mode

setup_adc_ports(ALL_ANALOG) ;

// Pins ANO, AN1 and AN3 are analog and all other pins
// are digital.

setup_adc_ports(sANO|sAN1|sAN3);

// Pins ANO and AN1 are analog. The VrefL pin

// and Vdd are used for voltage references
setup_adc_ports(sANO|sAN1, VREF_VDD);

Example Files: ex_admm.c

Also See: setup_adc(), read_adc(), set_adc_channel() , ADC overview

251

PCD C Compiler Reference Manual April 2008

setup_capture()
. __|

Syntax: setup_capture(x, mode)
Parameters: x is 1-8 and defines which input capture module is being configured
mode is defined by the constants in the devices .h file

Returns: None
Function: This function specifies how the input capture module is going to function based
on the value of mode. The device specific options are listed in the device .h file.

Availability: Only available on devices with Input Capture modules
Requires: None
Examples: setup_timer3(TMR_INTERNAL | TMR_DIV_BY_8);

setup_capture(2, CAPTURE_FE | CAPTURE_TIMER3);
while(TRUE) {
timerValue = get_capture(2, TRUE);
printf(“Capture 2 occurred at: %LU”, timerValue);

Example Files: None
Also See: get_capture(), setup_compare(), Input Capture Overview

setup_compare()
. __|

Syntax: setup_compare(x, mode)
Parameters: mode is defined by the constants in the devices .h file
x is 1-8 and specifies which OC pin to use.

Returns: None

Function: This function specifies how the output compare module is going to function
based on the value of mode. The device specific options are listed in the device
.hfile.

Availability: Only available on devices with output compare modules.

Requires: None

Examples: // Pin OC1 will be set when timer 2 is equal to OxFOO0O

setup_timer2(TMR_INTERNAL | TIMER_DIV_BY_16);
set_compare_time(1l, OxFO000);
setup_compare(l, COMPARE_SET_ON_MATCH | COMPARE_TIMER2);

Example Files: None

Also See: set_compare_time(), set pwm_duty(), setup capture(), Output Compare /
PWM Overview

252

Built-in-Functions

setup_comparator()

Syntax:

Parameters:

Returns:
Function:

Availability:
Requires

Examples:

Example Files:

Also See:

setup_comparator (mode)

mode is a bit-field comprised of the following constants:
NC_NC_NC_NC
A4_A5 _NC_NC
A4 _VR_NC_NC
A5_VR_NC_NC
NC_NC_A2_A3
NC_NC_A2_VR
NC_NC_A3_VR
A4_A5 A2 A3
A4_VR_A2_VR
A5_VR_A3_VR
C1_INVERT
C2_INVERT
C1_OUTPUT
C2_OUTPUT

void
Configures the voltage comparator.

The voltage comparator allows you to compare two voltages and find the
greater of them. The configuration constants for this function specify the
sources for the comparator in the order C1- C1+, C2-, C2+. The constants
may be or’ed together if the NC’s do not overlap; A4_A5 NC_NC |
NC_NC_A3 VR s valid, however, A4_A5 NC_NC | A4_VR_NC_NC may
produce unexpected results. The results of the comparator module are stored
in C1OUT and C20UT, respectively. Cx_INVERT will invert the results of the
comparator and Cx_OUTPUT will output the results to the comparator output

pin.

Some devices, consult your target datasheet.

Constants are defined in the devices .h file.
setup_comparator(A4_A5 NC_NC);//use Cl, not C2

None
Analog Comparator overview

253

PCD C Compiler Reference Manual April 2008

setup_crc(mode)
. __|

Syntax: setup_crc(polynomial)

Parameters: polynomial - This will setup actual polynomial in the CRCXOR register. The
function will set the bits that are passed separated by a comma and will clear
the other bits. Bit 0 and 16 are allowed, but ignored. for all options. Some
typical options include:

setup_crc (15, 10, 1);
- setup_crc(8, 5, 1);

Returns: undefined

Function: Configures the CRCXOR register with the polynomial
Availability: Only the devices with built in CRC module

Requires: Nothing

Examples: setup_crc (12, 5);

// CRC Polynomial is X16 + X12 + X5 + 1 or Polynomial = 1020h

setup_adc(15, 3, 1);
// CRC Polynomial is X16 + X15 + X3 + X1+ 1 or Polynomial =

8005h
Example Files: ex_admm.c
Also See: crc_init(); crc_calc(); crc_calc8()

254

setup_dma

Built-in-Functions

Syntax:
Parameters:

Returns:
Function:

Availability:
Requires

Examples:

Example Files:
Also See

setup_dma(channel, peripheral,mode);

Channel- The channel used in the DMA transfer
peripheral - The peripheral that the DMA wishes to talk to.
mode- This will specify the mode used in the DMA transfer

void
Configures the DMA module to copy data from the specified peripheral to
RAM allocated for the DMA channel.

Devices that have the DMA module.

Nothing

setup_dma(2, DMA_IN_SPI1, DMA BYTE);

// This will setup the DMA channel 1 to talk to SPI1 input
buffer.

None

dma_start(), dma_status()

setup_low_volt_detect()

Syntax:
Parameters:

Returns:
Function:

Availability:

Requires
Examples:

setup_low_volt_detect(mode)

mode may be one of the constants defined in the devices .h file. LVD_LVDIN,
LVD_45, LVD_42,LVD_40, LVD_38, LVD_36, LVD_35, LVvD_33, LVD_30,
LvD_28, LVD_27,LVD_25, LVD_23, LVD_21,LVD_19

One of the following may be or’ed(via |) with the above if high voltage detect is also
available in the device

LVD_TRIGGER_BELOW, LVD_TRIGGER_ABOVE

undefined

This function controls the high/low voltage detect module in the device. The mode
constants specifies the voltage trip point and a direction of change from that
point(available only if high voltage detect module is included in the device). If the
device experiences a change past the trip point in the specified direction the
interrupt flag is set and if the interrupt is enabled the execution branches to the
interrupt service routine.

This function is only available with devices that have the high/low voltage detect
module.

Constants are defined in the devices.h file.
setup_low_volt_detect(LVD_TRIGGER_BELOW | LVD_36);

This would trigger the interrupt when the voltage is below 3.6 volts

255

PCD C Compiler Reference Manual April 2008

setup_motor_pwm()
. __|

Syntax: setup_motor_pwm(pwm,options, timebase);
setup_motor_pwm(pwm,options,prescale,postscale,timebase)

Parameters: Pwm- Defines the pwm module used.

Options- The mode of the power PWM module. See the devices .h file for all
options

timebase- This parameter sets up the PWM time base pre-scale and post-
scale.

prescale- This will select the PWM timebase prescale setting

postscale- This will select the PWM timebase postscale setting

Returns: void

Function: Configures the motor control PWM module

Availability: Devices that have the motor control PWM unit.

Requires: None

Examples: setup_motor_pwm(1,MPWM_FREE_RUN | MPWM_SYNC_OVERRIDES,
timebase);

Example Files: None

Also See: get_motor_pwm_count(), set_ motor pwm_event(), setup _motor_unit() ,

setup_motor pwm_duty();

256

Built-in-Functions

setup_motor_pwm_duty()

Syntax:

Parameters:

Returns:
Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

setup_motor_pmw_duty(pwm,unit,time);
pwm- Defines the pwm module used.

Unit- This will select Unit A or Unit B

time- The value set in the duty cycle register.
void

Configures the motor control PWM unit duty.
Devices that have the motor control PWM unit.
None

setup_motor_pmw_duty(1,0,0x55); // Sets the PWM1 Unit a duty
cycle value

None

get_motor_ pwm_count(), set_ motor pwm_event(), setup _motor_unit() ,
setup_motor pwm()

257

PCD C Compiler Reference Manual April 2008

setup_motor_unit()
. __|

Syntax: setup_motor_unit(pwm,unit,options, active_deadtime, inactive_deadtime);
Parameters: pwm- Defines the pwm module used
Unit- This will select Unit A or Unit B

options- The mode of the power PWM module. See the devices .h file for all
options

active_deadtime- Set the active deadtime for the unit

inactive_deadtime- Set the inactive deadtime for the unit

Returns: void

Function: Configures the motor control PWM unit.

Availability: Devices that have the motor control PWM unit

Requires: None

Examples: setup_motor_unit(pwm,unit,MPWM_INDEPENDENT | MPWM_FORCE_L 1,
active_deadtime, inactive_deadtime);

Example Files: None

Also See: get motor pwm_count(), set motor pwm_event(), setup_motor pwm_duty(),

setup_motor pwm()

258

setup_oscillator()

Built-in-Functions

Syntax:

Parameters:

setup_oscillator(mode, finetune)

Mode is a bit-field comprised of the following constants (not all chips support
every mode):

30F:

e ECIOPLL4, ECIOPLLS, ECIOPLL16: External Clock with an applied PLL

e FRCPLL4, FRCPLL8, FRCPLL16: Faster Internal RC with an applied PLL
o XTPLL4, XTPLL8, XTPLL16: An external XT clock speed with an applied PLL
o HS2PLL4, HS2PLL8, HS2PLL16 A HS crystal divided by 2 with an applied
PLL

e HS3PLL4 , HS3PLL8, HS3PLL16 A HS crystal divided by 3 with an applied
PLL

e ECIO Uses one clock pin for an External Clock and uses the other as an I/O
pin

e XT: Uses an external oscillator within the XT range (4MHz — 10 MHz).

e HS: Uses an external oscillator within the HS range (10 MHz — 25 MHz).

e EC: Uses an external clock

e ERC: Uses an RC clock

e ERCIO: Uses an External Clock, the other OSC pin is now an I/O

e XTL: Uses an external oscillator within the XTL range (200 kHz — 4 MHz)
e LP: Uses an external oscillator on the SOSCI/O pins

e FRC: Uses the Fast internal RC Clock

e LPRC: Uses the Low power (slow) internal RC Clock

33F & 24HJ, 24F:

¢ DOZE_DIV_1, DOZE_DIV_2, DOZE_DIV_4, DOZE_DIV_8, DOZE_DIV_16,
DOZE_DIV_32, DOZE_DIV_64, DOZE_DIV_128: Allows you to specify the
ratio between CPU clock speed and peripheral speed

e DOZE_RESUME_ON_INTERRUPT, DOZE_ENABLE, DOZE_DISABLE:
Allows you to disable/enable Doze mode

e FRC, FRCPLL, PRIMARY, PRIMARYPLL, SECONDARY, LPRC,
FRC_DIV_16: Specifies the oscillator configuration to be used

e OSC_32KHZ , OSC_125KHZ, OSC_250KHZ, OSC_500KHZ, OSC_1MHZ,
OSC_2MHZ, OSC_4MHZ, OSC_8MHZ, OSC_FRC: Configures the system
clock to one of the following speeds. All of these constants use the fast internal
oscillator to produce a clock. OSC_FRC uses the fast internal oscillator in an
un-tuned state, producing a system clock of approximately 7.37 MHz

259

PCD C Compiler Reference Manual April 2008

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

260

e FRC_DIV_1, FRC_DIV_2, FRC_DIV_4, FRC_DIV_8, FRC_DIV_16,
FRC_DIV_32, FRC_DIV_64, FRC_DIV_128: Divides the fast internal oscillator,
which has been tuned to 8.0097 MHz.PreDiv, PLLDIV and PostDiv are set by
default and are used only with PLL options. These options do not need to be
specified if you do not need them. PreDiv may be 1 to 31, PLLDIV may be 2 to
513 and PostDiv may be one of the following constants:- PLL_DIV_2-
PLL_DIV_4-PLL_DIV_8

Please consult your data sheet for more information on the PLL System.
None

Configures the oscillator with preset internal and external source configurations.
If the device fuses are set and #use delay() is specified, the compiler will
configure the oscillator. Use this function for explicit configuration or
programming dynamic clock switches. Please consult your target data sheets
for valid configurations, especially when using the PLL multiplier, as many
frequency range restrictions are specified.

This function is available on all devices with an OSCCON register.

The configuration constants are defined in the device’s header file.
setup_oscillator(O0SC_2MHZ);

None

setup_wdt(), Internal oscillator overview

Built-in-Functions

setup_pmp(option,address_mask)

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:
Also See:

setup_pmp (options,address_mask);

Options- The mode of the Parallel master port. This allows to set the Master
port mode, read-write strobe options and other functionality of the PMPort
module. See the devices .h file for all options. Some typical options include:

- PAR_ENABLE
- PAR_CONTINUE_IN_IDLE
PAR_INTR_ON_RW - Interrupt on read write
PAR_INC_ADDR - Increment address by 1 every read/write cycle
PAR_MASTER_MODE_1 — Master mode 1
PAR_WAITE4 — 4 Tcy Wait for data hold after strobe

address_mask- This allows the user to setup the address enable register with
a 16 bit value. This value determines which address lines are active from the
available 16 address lines PMAO : PMA15

Undefined.

Configures various options in the PMP module. The options are present in the
device.h file and they are used to setup the module. The PMP module is highly
configurable and this function allows users to setup configurations like the
Master mode, Interrupt options, address increment/decrement options, Address
enable bits and various strobe and delay options.

Only the devices with a built in Parallel Port module.
Constants are defined in the devices .h file.

setup_pmp(PAR_ENABLE |PAR_MASTER_MODE_1 |
PAR_STOP_IN_IDLE,OXO0FF);
// Sets up Master mode with address lines PMAO:PMA7

None

setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(),
pmp_write(), psp_output_full(), psp_input_full(), psp_overflow(),
pmp_output full(), pmp_input_full(),pmp_overflow().

See header file for device selected.

261

PCD C Compiler Reference Manual April 2008

setup_power_pwm()

Syntax:

Parameters:

Returns:

262

setup_power_pwm(modes, postscale, time_base, period, compare,
compare_postscale, dead_time)

modes values may be up to one from each group of the following:
PWM_CLOCK_DIV_4, PWM_CLOCK_DIV_16,
PWM_CLOCK_DIV_64, PWM_CLOCK_DIV_128

PWM_OFF, PWM_FREE_RUN, PWM_SINGLE_SHOT,
PWM_UP_DOWN, PWM_UP_DOWN_INT

PWM_OVERRIDE_SYNC
PWM_UP_TRIGGER,

PWM_DOWN_TRIGGER
PWM_UPDATE_DISABLE, PWM_UPDATE_ENABLE

PWM_DEAD_CLOCK_DIV_2,
PWM_DEAD_CLOCK_DIV_4,
PWM_DEAD_CLOCK_DIV_8,
PWM_DEAD_CLOCK_DIV_16

postscale is an integer between 1 and 16. This value sets the PWM time base
output postscale.

time_base is an integer between 0 and 65535. This is the initial value of the
PWM base

period is an integer between 0 and 4095. The PWM time base is incremented
until it reaches this number.

compare is an integer between 0 and 255. This is the value that the PWM time
base is compared to, to determine if a special event should be triggered.

compare_postscale is an integer between 1 and 16. This postscaler affects
compare, the special events trigger.

dead_time is an integer between 0 and 63. This value specifies the length of
an off period that should be inserted between the going off of a pin and the
going on of it is a complementary pin.

Undefined

Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

Built-in-Functions

Initializes and configures the motor control Pulse Width Modulation (PWM)
module.

All devices equipped with PWM.

None

setup_power_pwm(PWM_CLOCK_DIV_4 | PWM_FREE_RUN |
PWM_DEAD_CLOCK_DIV_4,1,10000,1000,0,1,0);

None

set power pwm_override(), setup _power pwm_pins(),
set _power pwmX duty()

setup_power_pwm_pins()

Syntax:

Parameters:

Returns:
Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

setup_power_pwm_pins(module0,modulel,module2,module3)
For each module (two pins) specify:

PWM_OFF, PWM_ODD_ON, PWM_BOTH_ON,
PWM_COMPLEMENTARY

undefined

Configures the pins of the Pulse Width Modulation (PWM) device.
All devices equipped with a motor control PWM.

None

setup_power_pwm_pins(PWM_OFF, PWM_OFF, PWM_OFF,
PWM_OFF) ;

setup_power_pwm_pins(PWM_COMPLEMENTARY,
PWM_COMPLEMENTARY, PWM_OFF, PWM_OFF);

None

setup power pwm(), set power pwm_override(),set power pwmX_ duty()

263

PCD C Compiler Reference Manual April 2008

setup_psp(option,address_mask)

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:
Also See:

264

setup_psp (options,address_mask);
setup_psp(options);

Option- The mode of the Parallel slave port. This allows to set the slave port
mode, read-write strobe options and other functionality of the PMP module.
See the devices .h file for all options. Some typical options include:

- PAR_PSP_AUTO_INC

- PAR_CONTINUE_IN_IDLE
PAR_INTR_ON_RW - Interrupt on read write
PAR_INC_ADDR - Increment address by 1 every read/write cycle
PAR_WAITE4 — 4 Tcy Wait for data hold after strobe

address_mask- This allows the user to setup the address enable register with
a 16 bit value. This value determines which address lines are active from the
available 16 address lines PMAO : PMA15

Undefined.

Configures various options in the PMP module. The options are present in the
device.h file and they are used to setup the module. The PMP module is highly
configurable and this function allows users to setup configurations like the
Slave mode, Interrupt options, address increment/decrement options, Address
enable bits and various strobe and delay options.

Only the devices with a built in Parallel Port module.
Constants are defined in the devices .h file.

setup_psp(PAR_PSP_AUTO_INC | PAR_STOP_IN_IDLE,OxOO0FF);
// Sets up legacy slave mode with read and write buffers auto
increment

None

setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(),
pmp_write(), psp_output full(), psp_input_full(), psp_overflow(),
pmp_output full(), pmp_input_full(),pmp_overflow().

See header file for device selected.

setup_gei()

Built-in-Functions

Syntax:

Parameters:

Returns:
Function:

Availability:
Requires:

Examples:

Example Files:
Also See:

setup_rtc()

setup_qgei(options, filter,maxcount);

Options- The mode of the QEI module. See the devices .h file for all options

Some common options are:
- QEI_MODE_X2
- QEI_TIMER_GATED
- QEI_TIMER_DIV_BY_1

filter- This parameter is optional and the user can specify the digital filter clock
divisor.
maxcount- This will specify the value at which to reset the position counter.

Void
Configures the Quadrature Encoder Interface. Various settings like modes,
direction can be setup.

Devices that have the QEI module.

Nothing.

setup_qgei (QEI_MODE_X2|QEI_TIMER_INTERNAL,QEI_FILTER DIV_2,QEI_
FORWARD) ;

None
gei_set _count() , gei_get count() , gei_status().

Syntax:

Parameters:

Returns:

Function:

setup_rtc (options, calibration);
Options- The mode of the RTC module. See the devices .h file for all options

Calibration- This parameter is optional and the user can specify an 8 bit value
that will get written to the calibration configuration register.

Void

Configures the Real Time Clock and Calendar module on the PIC24 devices.
The module requires an external 32.768 kHz Clock Crystal for operation.

265

PCD C Compiler Reference Manual April 2008

Availability: Devices that have the RTCC module.
Requires: Nothing.
Examples: setup_rtc(RTC_ENABLE | RTC_OUTPUT_SECONDS, 0x00);
// Enable RTCC module with seconds clock and no calibration
Example Files: None
Also See: ric_read() , rtc_alarm read() , rtc_alarm_write() , setup _rtc_alarm() , rtc_write(),
setup_rtc()

setup_rtc_alarm()

Syntax: setup_rtc_alarm(options, mask, repeat);
Parameters: options- The mode of the RTC module. See the devices .h file for all options

mask- This parameter is optional and the user can specify the alarm mask bits
for the alarm configuration.

repeat- This will specify the number of times the alarm will repeat. It can have a
max value of 255.

Returns: void

Function: Configures the alarm of the RTCC module on the PIC24 devices. The mask
and repeat parameters are optional, and allow the use to configure the alarm
settings on the RTCC module.

Availability: Devices that have the RTCC module.

Requires: Nothing.

Examples: setup_rtc_alarm(RTC_ALARM_ENABLE, RTC_ALARM_HOUR, 3);

Example Files: None

Also See: rtc read() , rtc_alarm read() , rtc_alarm_write() , setup_rtc_alarm() ,_rtc_write(),
setup_rtc()

266

setup_spi()
setup_spi2()

Built-in-Functions

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:
Examples:
Example Files:

Also See:

setup_spi (mode)
setup_spi2 (mode)

mode may be:
o SPI_MASTER, SPI_SLAVE, SPI_SS DISABLED

o SPI_L_TO_H, SPI_H_TO_L

. SPI_CLK_DIV_4, SPI_CLK_DIV_16,

. SPI_CLK_DIV_64, SPI_CLK_T2

. Constants from each group may be or'ed together with |.
undefined

Configures the hardware SPI™ module.

e SPI_MASTER will configure the module as the bus master

e SPI_SLAVE will configure the module as a slave on the SPI™ bus

e SPI_SS DISABLED will turn off the slave select pin so the slave module
receives any transmission on the bus.

e SPI_x_to_y will specify the clock edge on which to sample and transmit data
e SPI_CLK_DIV_x will specify the divisor used to create the SCK clock from
system clock.

This function is only available on devices with SPI hardware.
Constants are defined in the devices .h file.
setup_spi(SP1_MASTER | SP1_L_TO H | SPI_DIV_BY_16);
ex_spi.c

spi_write(), spi_read(), spi_data is_in(), SPI overview

267

PCD C Compiler Reference Manual April 2008

setup_timerx()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

268

setup_timerX(mode)
setup_timerX(mode,period)

Mode is a bit-field comprised of the following configuration constants:
e TMR_DISABLED: Disables the timer operation.

e TMR_INTERNAL: Enables the timer operation using the system clock.
Without divisions, the timer will increment on every instruction cycle. On PCD,
this is half the oscillator frequency.

e TMR_EXTERNAL: Uses a clock source that is connected to the
SOSCI/SOSCO pins

e T1_EXTERNAL_SYNC: Uses a clock source that is connected to the
SOSCI/SOSCO pins. The timer will increment on the rising edge of the external
clock which is synchronized to the internal clock phases. This mode is available
only for Timer1.

e T1 EXTERNAL_RTC: Uses a low power clock source connected to the
SOSCI/SOSCO pins; suitable for use as a real time clock. If this mode is used,
the low power oscillator will be enabled by the setup_timer function. This mode
is available only for Timerl.

e TMR_DIV_BY_X: X is the number of input clock cycles to pass before the
timer is incremented. X may be 1, 16, 64 or 256.

e TMR_32_BIT: This configuration concatenates the timers into 32 bit mode.
This constant should be used with timers 2, 4, 6 and 8 only.

» Period is an optional 16 bit integer parameter that specifies the timer period.
The default value is OXFFFF.
Void

Sets up the timer specified by X (May be 1 — 9). X must be a valid timer on the
target device.

This function is available on all devices that have a valid timer X. Use getenv or
refer to the target datasheet to determine which timers are valid.

Configuration constants are defined in the device's header file.

Examples:

Example Files:
Also See:

setup_uart()

Built-in-Functions

/* setup a timer that increments every 64th instruction cycle
with an overflow period of 0xA010 */
setup_timer2(TMR_INTERNAL | TMR_DIV_BY_64, 0xA010);

/* Setup another timer as a 32-bit hybrid with a period of
OXFFFFFFFF and a interrupt that will be fired when that timer
overflows*/

setup_timer4(TMR_32_BIT); //use get_timer45() to get the timer
value

enable_interrupts(int_timer5);//use the odd number timer for
the interrupt

None
Timer Overview, setup_timerX(), get_timerXY(), set_timerX(), set_timerXY()

Syntax:

Parameters:

Returns:

Function:

setup_uart(baud, stream)
setup_uart(baud)

baud is a constant representing the number of bits per second. A one or zero
may also be passed to control the on/off status. Stream is an optional stream
identifier.

Chips with the advanced UART may also use the following constants:
UART_ADDRESS UART only accepts data with 9th bit=1
UART_DATA UART accepts all data

Chips with the EUART H/W may use the following constants:
UART_AUTODETECT Waits for 0x55 character and sets the UART baud rate
to match.

UART_AUTODETECT_NOWAIT Same as above function, except returns
before 0x55 is received. KBHIT() will be true when the match is made. A call
to GETC() will clear the character.

UART_WAKEUP_ON_RDA Wakes PIC up out of sleep when RCV goes from
high to low

undefined

Very similar to SET_UART_SPEED. If 1 is passed as a parameter, the UART

is turned on, and if 0 is passed, UART is turned off. If a BAUD rate is passed to
it, the UART is also turned on, if not already on.

269

PCD C Compiler Reference Manual April 2008

Availability: This function is only available on devices with a built in UART.
Requires: #use rs232
Examples: setup_uart(9600);
setup_uart(9600, rsOut);
Example Files: None
Also See: #USE RS232, putc(), getc(), RS232 1/O overview

setup_vref()
. __|

Syntax: setup_vref (mode)

Parameters: mode is a bit-field comprised of the following constants:
¢ VREF_DISABLED
e VREF_LOW (Vdd * value / 24)
e VREF_HIGH (Vdd * value / 32 + Vdd/4)
e VREF_ANALOG

Returns: undefined

Function: Configures the voltage reference circuit used by the voltage comparator.

The voltage reference circuit allows you to specify a reference voltage that the
comparator module may use. You may use the Vdd and Vss voltages as your
reference or you may specify VREF_ANALOG to use supplied Vdd and Vss.
Voltages may also be tuned to specific values in steps, 0 through 15. That
value must be or’ed to the configuration constants.

Availability: Some devices, consult your target datasheet.
Requires: Constants are defined in the devices .h file.
Examples: /* Use the 15th step on the course setting */

setup_vref(VREF_LOW | 14);
Example Files: None

Also See: Voltage Reference overview

270

setup_wdt()

Built-in-Functions

Syntax:

Parameters:

Returns:
Function:

Availability:
Requires:

Examples:
Example Files:

Also See:

shift_left()

setup_wdt (mode)

Mode is a bit-field comprised of the following constants:
e WDT_ON
e WDT_OFF

void

Configures the watchdog timer.

The watchdog timer is used to monitor the software. If the software does not
reset the watchdog timer before it overflows, the device is reset, preventing the
device from hanging until a manual reset is initiated. The watchdog timer is
derived from the slow internal timer.

All devices
#fuses, Constants are defined in the devices .h file.

setup_wdt(WDT_ON);
ex_wdt.c

Internal Oscillator Overview

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

shift_left (address, bytes, value)

address is a pointer to memory, bytes is a count of the number of bytes to
work with, value is a 0 to 1 to be shifted in.

0 or 1 for the bit shifted out

Shifts a bit into an array or structure. The address may be an array identifier or
an address to a structure (such as &data). Bit O of the lowest byte in RAM is
treated as the LSB.

All devices
Nothing

271

PCD C Compiler Reference Manual April 2008

Examples:

Example Files:
Also See:

shift_right()

byte buffer[3]:

for(i=0; i<=24; ++i){
// Wait for clock high
while (Yinput(PIN_A2));
shift_left(buffer,3, input(PIN_A3));
// Wait for clock low
while (input(PIN_A2));

// reads 24 bits from pin A3,each bit is read
// on a low to high on pin A2

ex_extee.c, 9356.c
shift_right(), rotate right(), rotate left(),

Syntax:
Parameters:

Returns:

Function:

Availability:
Requires:
Examples:

Example Files:
Also See:

272

shift_right (address, bytes, value)

address is a pointer to memory, bytes is a count of the number of bytes to
work with, value is a 0 to 1 to be shifted in.

0 or 1 for the bit shifted out

Shifts a bit into an array or structure. The address may be an array identifier or
an address to a structure (such as &data). Bit 0 of the lowest byte in RAM is
treated as the LSB.

All devices

Nothing

// reads 16 bits from pin Al, each bit is read
// on a low to high on pin A2

struct {
byte time;
byte command : 4;
byte source : 4;} msg;

for(i=0; i1<=16; ++i) {
while(Tinput(PIN_A2));
shift_right(&msg,3, input(PIN_Al));
while (input(PIN_A2)) ;}

// This shifts 8 bits out PIN_AO, LSB first.
for(i=0;i<8;++i)
output_bit(PIN_AO,shift_right(&data,1,0));

ex_extee.c, 9356.c
shift_left(), rotate_right(), rotate left(),

sin()
cos()
tan()
asin()
acos()

Built-in-Functions

atan()
sinh()
cosh()
tanh()
atan2()

Syntax:

Parameters:

Returns:

Function:

val = sin (rad)

val = cos (rad)

val = tan (rad)

rad = asin (val)

radl = acos (val)
rad = atan (val)
rad2=atan2(val, val)
result=sinh(value)
result=cosh(value)
result=tanh(value)

rad is any float type representing an angle in Radians -2pi to 2pi.
val is any float type with the range -1.0 to 1.0.
Value is any float type

rad is a float with a precision equal to val representing an angle in Radians -
pi/2 to pi/2

val is a float with a precision equal to rad within the range -1.0 to 1.0.

radl is a float with a precision equal to val representing an angle in Radians 0
to pi

rad2 is a float with a precision equal to val representing an angle in Radians -pi
to pi

Result is a float with a precision equal to value

These functions perform basic Trigonometric functions.

sin returns the sine value of the parameter (measured in radians)
cos returns the cosine value of the parameter (measured in radians)
tan returns the tangent value of the parameter (measured in radians)
asin returns the arc sine value in the range [-pi/2,+pi/2] radians

acos returns the arc cosine value in the range[0,pi] radians

atan returns the arc tangent value in the range [-pi/2,+pi/2] radians
atan2 returns the arc tangent of y/x in the range [-pi,+pi] radians

sinh returns the hyperbolic sine of x

cosh returns the hyperbolic cosine of x

tanh returns the hyperbolic tangent of x

273

PCD C Compiler Reference Manual April 2008

Availability:
Requires:

Examples:

Example Files:

Also See:

274

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in the errno
variable. The user can check the errno to see if an error has occurred and print
the error using the perror function.

Domain error occurs in the following cases:
asin: when the argument not in the range[-1,+1]
acos: when the argument not in the range[-1,+1]
atan2: when both arguments are zero

Range error occur in the following cases:

cosh: when the argument is too large
sinh: when the argument is too large

All devices
#include <math.h>

float phase;

// Output one sine wave

for(phase=0; phase<2*3.141596; phase+=0.01)
set_analog_voltage(sin(phase)+1l);

ex_tank.c

lod(), 10g10(), exp(), pow(), sart()

sleep()

Built-in-Functions

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

sleep(mode)

mode configures what sleep mode to enter, mode is optional. If mode is
SLEEP_IDLE, the PIC will stop executing code but the peripherals will still be
operational. If mode is SLEEP_FULL, the PIC will stop executing code and the
peripherals will stop being clocked, peripherals that do not need a clock or are
using an external clock will still be operational. SLEEP_FULL will reduce
power consumption the most. If no parameter is specified, SLEEP_FULL will
be used.

Undefined

Issues a SLEEP instruction. Details are device dependent. However, in
general the part will enter low power mode and halt program execution until
woken by specific external events. Depending on the cause of the wake up
execution may continue after the sleep instruction. The compiler inserts a
sleep() after the last statement in main().

All devices

Nothing

disable_interrupts(INT_GLOBAL);

enable_interrupt(INT_EXT);

clear_interrupt(Q);

sleep(SLEEP_FULL); //sleep until an INT_EXT interrupt
//after INT_EXT wake-up, will resume operation from this point

ex_wakup.c

reset cpu()

275

PCD C Compiler Reference Manual April 2008

spi_data_is_in()
spi_data_is_in2()

Syntax:

Parameters:
Returns:

Function:
Availability:

Requires:
Examples:

Example Files:
Also See:

spi_read()
spi_read2()

result = spi_data_is_in()
result = spi_data_is_in2()
None

0 (FALSE) or 1 (TRUE)

Returns TRUE if data has been received over the SPI.

This function is only available on devices with SPI hardware.
Nothing

(Ispi_data_is_in() && input(PIN_B2));

if(spi_data_is_in(Q))
data = spi_read();

None
spi_read(), spi_write(), SPI overview

Syntax:
Parameters:
Returns:

Function:

276

value = spi_read (data)
value = spi_read?2 (data)

data is optional and if included is an 8 bit int.
An 8 bit int

Return a value read by the SPI. If a value is passed to SPI_READ the data will
be clocked out and the data received will be returned. If no data is ready,
SPI_READ will wait for the data.

If this device is the master then either do a SPI_WRITE(data) followed by a
SPI_READ() or do a SPI_READ(data). These both do the same thing and will
generate a clock. If there is no data to send just do a SPI_READ(0) to get the
clock.

If this device is a slave then either call SPI_READ() to wait for the clock and
data or use SPI_DATA_IS_IN() to determine if data is ready.

Availability:
Requires:
Examples:
Example Files:

Also See:

spi_write()
spi_write2()

Built-in-Functions

This function is only available on devices with SPI hardware.
Nothing

in_data = spi_read(out_data);

ex_spi.c

spi_data_is_in(), spi_write(), SPI overview

Syntax:

Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

SPI_WRITE (value)
SPI_WRITE2 (value)

value is an 8 bit int
Nothing

Sends a byte out the SPI interface. This will cause 8 clocks to be generated.
This function will write the value out to the SPI. At the same time data is
clocked out data is clocked in and stored in a receive buffer. SPI_READ may
be used to read the buffer.

This function is only available on devices with SPI hardware.
Nothing

spi_write(data_out);
data_in = spi_read();

ex_spi.c

spi_read(), spi_data is_in(), SPI overview

277

PCD C Compiler Reference Manual April 2008

spi_xfer()

Syntax:

Parameters:

Returns:

Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

278

spi_xfer(data)

spi_xfer(stream, data)
spi_xfer(stream, data, bits)

result = spi_xfer(data)

result = spi_xfer(stream, data)
result = spi_xfer(stream, data, bits)

data is the variable or constant to transfer via SPI. The pin used to transfer
data is defined in the DO=pin option in #use spi. stream is the SPI stream to
use as defined in the STREAM=name option in #use spi. bits is how many bits
of data will be transferred.

The data read in from the SPI. The pin used to transfer result is defined in the
DI=pin option in #use spi.

Transfers data to and reads data from an SPI device.
All devices with SPI support.
#use spi

int i = 34;

spi_xfer(i);

// transfers the number 34 via SPI

int trans = 34, res;

res = spi_xfer(trans);

// transfers the number 34 via SPI

// also reads the number coming in from SPI

None

#USE SPI

sprintf()

Built-in-Functions

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:
Examples:

sprintf(string, cstring, values...);

bytes=sprintf(string, cstring, values...)

string is an array of characters.

cstring is a constant string or an array of characters null terminated. Values
are a list of variables separated by commas.

Bytes is the number of bytes written to string.

This function operates like printf except that the output is placed into the
specified string. The output string will be terminated with a null. No checking is
done to ensure the string is large enough for the data. See printf() for details
on formatting.

All devices.

Nothing

char mystring[20];
long mylong;

mylong=1234;
sprintf(mystring, "<%lu>",mylong);
// mystring now has:

// <1234>\0
Example Files: None
Also See: printf()
sqrt()
Syntax: result = sqrt (value)
Parameters: value is any float type
Returns: Returns a floating point value with a precision equal to value
Function: Computes the non-negative square root of the float value x. If the argument is

negative, the behavior is undefined.

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in the errno
variable. The user can check the errno to see if an error has occurred and print
the error using the perror function.

Domain error occurs in the following cases:
sqrt: when the argument is negative

279

PCD C Compiler Reference Manual April 2008

Availability: All devices.

Requires: #include <math.h>

Examples: distance = sqrt(pow((x1-x2),2)+pow((yl-y2),2));
Example Files: None

Also See: None

srand()

Syntax: srand(n)

Parameters: n is the seed for a new sequence of pseudo-random numbers to be returned by
subsequent calls to rand.

Returns: No value.

Function: The srand function uses the argument as a seed for a new sequence of
pseudo-random numbers to be returned by subsequent calls to rand. If srand is
then called with same seed value, the sequence of random numbers shall be
repeated. If rand is called before any call to srand have been made, the same
sequence shall be generated as when srand is first called with a seed value of

1.
Availability: All devices.
Requires: #include <STDLIB.H>
Examples: srand(10);
I=rand();
Example Files: None
Also See: rand()

280

STANDARD STRING FUNCTIONS()

memchr() strespn()
tri
memeimpy) Zrien()
strcat() striwr()
zggmé()) strncat()
strcoll() strncmp(())
strncpy

Built-in-Functions

strpbrk()
strrchr()
strspn()
strstr()
strxfrm()

Syntax: ptr=strcat (s1, $2)
ptr=strchr (s1, ¢)
ptr=strrchr (s1, c)
cresult=strcmp (s1, s2)

iresult=strncmp (s1, s2, n)

iresult=stricmp (s1, s2)
ptr=strncpy (s1, s2, n)
iresult=strcspn (s1, s2)
iresult=strspn (s1, s2)
iresult=strlen (s1)
ptr=striwr (s1)
ptr=strpbrk (s1, s2)
ptr=strstr (s1, s2)
ptr=strncat(s1,s2)
iresult=strcoll(s1,s2)

res=strxfrm(s1,s2,n)

iresult=memcmp(m1,m2,n)

ptr=memchr(m1,c,n)

Parameters:

Concatenate s2 onto s1

Find c in s1 and return &s1[i]

Same but search in reverse
Compare sl to s2

Compare sl to s2 (n bytes)
Compare and ignore case

Copy up to n characters s2->s1
Count of initial chars in s1 not in s2
Count of initial chars in s1 also in s2
Number of characters in s1

Convert string to lower case

Search sl for first char also in s2
Search for s2 in s1

Concatenates up to n bytes of s2 onto s1

Compares sl to s2, both interpreted as
appropriate to the current locale.

Transforms maximum of n characters of s2
and places them in s1, such that
strcmp(s1,s2) will give the same result as
strcoll(s1,s2)

Compare m1l to m2 (n bytes)

Find c in first n characters of m1 and return
&ml]i]

s1 and s2 are pointers to an array of characters (or the name of an array).

Note that s1 and s2 MAY NOT BE A CONSTANT (like "hi").

n is a count of the maximum number of character to operate on.

c is a 8 bit character

m1 and m2 are pointers to memory.

281

PCD C Compiler Reference Manual April 2008

Returns:

Function:
Availability:
Requires:

Examples:

Example Files:

ptr is a copy of the s1 pointer

iresult is an 8 bit int

result is -1 (less than), 0 (equal) or 1 (greater than)
res is an integer.

Functions are identified above.

All devices.

#include <string.h>

char stringl[10], string2[10];
strcpy(stringl,”hi ");
strcpy(string2,'there™);
strcat(stringl,string2);

printf('Length is %u\r\n", strlen(stringl));
// Will print 8

ex_str.c

Also See: strepy(), strtok()

strepy()

strcopy()

Syntax: strcpy (dest, src)
strcopy (dest, src)

Parameters: dest is a pointer to a RAM array of characters.
src may be either a pointer to a RAM array of characters or it may be a
constant string.

Returns: undefined

Function: Copies a constant or RAM string to a RAM string. Strings are terminated with a
0.

Availability: All devices.

Requires: Nothing

282

Examples:

Example Files:
Also See:

strtod()
strtof()
strtof48()

Built-in-Functions

char string[10], string2[10];

étrcpy (string, "Hi There™);
strcpy(string2,string);

ex_str.c
strxxxx()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:
Examples:

Example Files:

Also See:

result=strtod(nptr,& endptr)
result=strtof(nptr,& endptr)
result=strtof48(nptr,& endptr)

nptr and endptr are strings

strtod returns a double precision floating point number.

strtof returns a single precision floating point number.

strtof48 returns a extended precision floating point number.

returns the converted value in result, if any. If no conversion could be
performed, zero is returned.

The strtod function converts the initial portion of the string pointed to by nptr to
a float representation. The part of the string after conversion is stored in the
object pointed to endptr, provided that endptr is not a null pointer. If nptr is
empty or does not have the expected form, no conversion is performed and the
value of nptr is stored in the object pointed to by endptr, provided endptr is not
a null pointer.

All devices.
#include <stdlib.h>

double result;

char str[12]="123.45hello™;

char *ptr;

result=strtod(str,&ptr);

//result is 123.45 and ptr is "hello”

None

strtol(), strtoul()
283

PCD C Compiler Reference Manual April 2008

strtok()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:
Examples:

Example Files:
Also See:

284

ptr = strtok(s1, s2)

s1 and s2 are pointers to an array of characters (or the name of an array).
Note that s1 and s2 MAY NOT BE A CONSTANT (like "hi"). s1 may be 0 to
indicate a continue operation.

ptr points to a character in s1 oris 0

Finds next token in s1 delimited by a character from separator string s2 (which
can be different from call to call), and returns pointer to it.

First call starts at beginning of s1 searching for the first character NOT
contained in s2 and returns null if there is none are found.

If none are found, it is the start of first token (return value). Function then
searches from there for a character contained in s2.

If none are found, current token extends to the end of s1, and subsequent
searches for a token will return null.

If one is found, it is overwritten by "\0', which terminates current token.
Function saves pointer to following character from which next search will start.

Each subsequent call, with O as first argument, starts searching from the saved
pointer.

All devices.
#include <string.h>
char string[30], term[3], *ptr;

strcpy(string,‘‘one,two,three;");
strepy(term,™, ;™);

ptr = strtok(string, term);
while(ptr!=0) {

puts(ptr);
ptr = strtok(0, term);
}
// Prints:

one

two

three

ex_str.c

strxxxx(), strepy()

strtol()

Built-in-Functions

Syntax:
Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

result=strtol(nptr,& endptr, base)
nptr and endptr are strings and base is an integer

result is a signed long int.
returns the converted value in result , if any. If no conversion could be
performed, zero is returned.

The strtol function converts the initial portion of the string pointed to by nptr to a
signed long int representation in some radix determined by the value of base.
The part of the string after conversion is stored in the object pointed to endptr,
provided that endptr is not a null pointer. If nptr is empty or does not have the
expected form, no conversion is performed and the value of nptr is stored in the
object pointed to by endptr, provided endptr is not a null pointer.

All devices.
#include <stdlib.h>

signed long result;

char str[9]="123hello";

char *ptr;

result=strtol (str,&ptr,10);
//result is 123 and ptr is "hello”

None

strtod(), strtoul()

285

PCD C Compiler Reference Manual April 2008

strtoul()

Syntax:
Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

286

result=strtoul(nptr,& endptr, base)
nptr and endptr are strings and base is an integer

result is an unsigned long int.
returns the converted value in result , if any. If no conversion could be
performed, zero is returned.

The strtoul function converts the initial portion of the string pointed to by nptr to
a long int representation in some radix determined by the value of base. The
part of the string after conversion is stored in the object pointed to endptr,
provided that endptr is not a null pointer. If nptr is empty or does not have the
expected form, no conversion is performed and the value of nptr is stored in the
object pointed to by endptr, provided endptr is not a null pointer.

All devices.
STDLIB.H must be included

long result;

char str[9]="123hello";

char *ptr;

result=strtoul (str,&ptr,10);
//result is 123 and ptr is "hello”

None

strtol(), strtod()

Built-in-Functions

swap()

Syntax: swap (lvalue)
result = swap(lvalue)

Parameters: Ivalue is a byte variable

Returns: A byte

Function: Swaps the upper nibble with the lower nibble of the specified byte. This is the
same as:

byte = (byte << 4) | (byte >> 4);

Availability: All devices.

Requires: Nothing

Examples: x=0x45;
swap(x);

//x now is 0x54
int X = 0x42;
int result;

result = swap(x);
// result is 0x24;

Example Files: None

Also See: rotate_right(), rotate_left()

287

PCD C Compiler Reference Manual April 2008

tolower()
toupper()

Syntax:

Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

288

result = tolower (cvalue)
result = toupper (cvalue)

cvalue is a character
An 8 bit character

These functions change the case of letters in the alphabet.

TOLOWER(X) will return 'a"..'z' for X in 'A'..'Z" and all other characters are
unchanged. TOUPPER(X) will return 'A'..'Z' for X in 'a"..'z" and all other
characters are unchanged.

All devices.

Nothing

switch(toupper(getc())) {
case "R" : read cmd(); break;
case "W" : write_cmd(); break;
case "Q" : done=TRUE; break;

}

ex_str.c

None

Built-in-Functions

write_configuration_memory()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

write_configuration_memory (dataptr, count)

dataptr: pointer to one or more bytes
count: a 8 bit integer

undefined

Erases all fuses and writes count bytes from the dataptr to the configuration
memory.

All PIC18 flash devices
Nothing

int data[6];
write_configuration_memory(data,6)

None

WRITE PROGRAM_MEMORY, Configuration memory overview

289

PCD C Compiler Reference Manual April 2008

write_eeprom()
. __|

Syntax: write_eeprom (address, value)
write_eeprom (address, pointer, N)

Parameters: address is the 0 based starting location of the EEPROM write
N specifies the number of EEPROM bytes to write
value is a constant or variable to write to EEPROM
pointer is a pointer to location to data to be written to EEPROM

Returns: undefined

Function: This function will write the specified value to the given address of EEPROM. If
pointers are used than the function will write n bytes of data from the pointer to
EEPROM starting at the value of address.

Availability: This function is only available on devices with supporting hardware on chip.
Requires: Nothing
Examples: #define LAST VOLUME 10 // Location in EEPROM

volume++;

write_eeprom(LAST_VOLUME,volume);

Example Files: None
Also See: read_eeprom(), write_program_eeprom(),

read_program_eeprom(), data eeprom overview

290

Built-in-Functions

write_program_memory()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

write_program_memory(address, dataptr, count);

address is 32 bits.
dataptr is a pointer to one or more bytes
count is a 16 bit integer

undefined

Writes count bytes to program memory from dataptr to address. This function is
most effective when count is a multiple of FLASH_WRITE_SIZE. Whenever this
function is about to write to a location that is a multiple of FLASH_ERASE_SIZE
then an erase is performed on the whole block. Due to the 24 bit instruction
length on PCD parts, every fourth byte of data is ignored. Fill the ignored bytes
with 0x00.

See Program EEPROM Overview for more information on program memory
access

Only devices that allow writes to program memory.

Nothing

For(i=0x1000; i<=0x1fff;i++) {
value=read_adc();

write_program_memory(i, value, 2);
delay_ms(1000);

None

write_program_eeprom, erase_program_eeprom, Program eeprom overview

291

STANDARD C INCLUDE FILES

ol
Lo

errno.h

C Compiler

errno.h

EDOM
ERANGE
errno

float.h

Domain error value
Range error value
error value

float.h

FLT_RADIX: Radix of the exponent representation

FLT_MANT_DIG: Number of base digits in the floating point significant

FLT_DIG: Number of decimal digits, g, such that any floating point number with g
decimal digits can be rounded into a floating point number with p radix
b digits and back again without change to the q decimal digits.

FLT_MIN_EXP: Minimum negative integer such that FLT_RADIX raised to that power

FLT_MIN_10_EXP:
FLT_MAX_EXP:

FLT_MAX_10_EXP:

FLT_MAX:
FLT_EPSILON:

FLT_MIN:
DBL_MANT_DIG:
DBL_DIG:

DBL_MIN_EXP:

minus 1 is a normalized floating-point number.

Minimum negative integer such that 10 raised to that power is in the
range of normalized floating-point numbers.

Maximum negative integer such that FLT_RADIX raised to that power
minus 1 is a representable finite floating-point number.

Maximum negative integer such that 10 raised to that power is in the
range representable finite floating-point numbers.

Maximum representable finite floating point number.

The difference between 1 and the least value greater than 1 that is
representable in the given floating point type.

Minimum normalized positive floating point number.

Number of base digits in the double significant

Number of decimal digits, g, such that any double number with q
decimal digits can be rounded into a double number with p radix b
digits and back again without change to the q decimal digits.
Minimum negative integer such that FLT_RADIX raised to that power
minus 1 is a normalized double number.

293

PCD C Compiler Reference Manual April 2008

DBL_MIN_10_EXP:
DBL_MAX_EXP:
DBL_MAX_10_EXP:

DBL_MAX:
DBL_EPSILON:

DBL_MIN:
LDBL_MANT_DIG:
LDBL_DIG:
LDBL_MIN_EXP:
LDBL_MIN_10_EXP:

LDBL_MAX_EXP:

LDBL_MAX_10_EXP:

LDBL_MAX:
LDBL_EPSILON:

LDBL_MIN:

limits.h

Minimum negative integer such that 10 raised to that power is in the
range of normalized double numbers.

Maximum negative integer such that FLT_RADIX raised to that power
minus 1 is a representable finite double number.

Maximum negative integer such that 10 raised to that power is in the
range of representable finite double numbers.

Maximum representable finite floating point number.

The difference between 1 and the least value greater than 1 that is
representable in the given floating point type.

Minimum normalized positive double number.

Number of base digits in the floating point significant

Number of decimal digits, g, such that any floating point number with q
decimal digits can be rounded into a floating point number with p radix
b digits and back again without change to the q decimal digits.
Minimum negative integer such that FLT_RADIX raised to that power
minus 1 is a normalized floating-point number.

Minimum negative integer such that 10 raised to that power is in the
range of normalized floating-point numbers.

Maximum negative integer such that FLT_RADIX raised to that power
minus 1 is a representable finite floating-point number.

Maximum negative integer such that 10 raised to that power is in the
range of representable finite floating-point numbers.

Maximum representable finite floating point number.

The difference between 1 and the least value greater than 1 that is
representable in the given floating point type.

Minimum normalized positive floating point number.

limits.h

CHAR_BIT: Number of bits for the smallest object that is not a bit_field.
SCHAR_MIN: Minimum value for an object of type signed char
SCHAR_MAX: Maximum value for an object of type signed char
UCHAR_MAX: Maximum value for an object of type unsigned char
CHAR_MIN: Minimum value for an object of type char(unsigned)
CHAR_MAX: Maximum value for an object of type char(unsigned)
MB_LEN_MAX: Maximum number of bytes in a multibyte character.
SHRT_MIN: Minimum value for an object of type short int
SHRT_MAX: Maximum value for an object of type short int
USHRT_MAX: Maximum value for an object of type unsigned short int
INT_MIN: Minimum value for an object of type signed int

294

Standard C Include Files

INT_MAX: Maximum value for an object of type signed int
UINT_MAX: Maximum value for an object of type unsigned int
LONG_MIN: Minimum value for an object of type signed long int
LONG_MAX: Maximum value for an object of type signed long int

ULONG_MAX: Maximum value for an object of type unsigned long int

locale.h

locale.h
locale.h (Localization not supported)
Iconv localization structure
SETLOCALE() returns null
LOCALCONV() returns clocale

setjimp.h

setimp.h
jmp_buf: An array used by the following functions
setjmp: Marks a return point for the next longjmp

longjmp: Jumps to the last marked point

stddef.h

stddef.h
ptrdiff t: The basic type of a pointer
size t: The type of the sizeof operator (int)

wchar_t The type of the largest character set supported (char) (8 bits)
NULL A null pointer (0)

295

PCD C Compiler Reference Manual April 2008

stdio.h

stdio.h

stderr The standard error s stream (USE RS232 specified as stream or the first USE
RS232)

stdout The standard output stream (USE RS232 specified as stream last USE RS232)

stdin The standard input s stream (USE RS232 specified as stream last USE RS232)

stdlib.h

stdlib.h

div_t structure type that contains two signed integers(quot and rem).
Idiv_t structure type that contains two signed longs(quot and rem
EXIT_FAILURE returns 1

EXIT_SUCCESS returns 0

RAND_MAX-

MBCUR_MAX- 1

SYSTEM() Returns O(not supported)

Multibyte character Multibyte characters not supported

and string

functions:

MBLEN() Returns the length of the string.

MBTOWC() Returns 1.

WCTOMBY() Returns 1.

MBSTOWCS() Returns length of string.

WBSTOMBS() Returns length of string.

Stdlib.h functions included just for compliance with ANSI C.

296

ERROR MESSAGES

ol
Lo

C Compiler

Compiler Error Messages

#ENDIF with no corresponding #IF
Compiler found a #ENDIF directive without a corresponding #IF.

#ERROR

A #DEVICE required before this line
The compiler requires a #device before it encounters any statement or compiler directive that may
cause it to generate code. In general #defines may appear before a #device but not much more.

ADDRESSMOD function definition is incorrect

ADDRESSMOD range is invalid

A numeric expression must appear here
Some C expression (like 123, A or B+C) must appear at this spot in the code. Some expression
that will evaluate to a value.

Arrays of bits are not permitted
Arrays may not be of SHORT INT. Arrays of Records are permitted but the record size is always
rounded up to the next byte boundary.

Assignment invalid: value is READ ONLY

Attempt to create a pointer to a constant

Constant tables are implemented as functions. Pointers cannot be created to functions. For
example CHAR CONST MSG[9]={"HI THERE"}; is permitted, however you cannot use &MSG. You
can only reference MSG with subscripts such as MSGJi] and in some function calls such as Printf
and STRCPY.

Attributes used may only be applied to a function (INLINE or SEPARATE)
An attempt was made to apply #INLINE or #SEPARATE to something other than a function.

Bad ASM syntax

297

PCD C Compiler Reference Manual April 2008

Bad expression syntax
This is a generic error message. It covers all incorrect syntax.

Baud rate out of range

The compiler could not create code for the specified baud rate. If the internal UART is being used
the combination of the clock and the UART capabilities could not get a baud rate within 3% of the
requested value. If the built in UART is not being used then the clock will not permit the indicated
baud rate. For fast baud rates, a faster clock will be required.

BIT variable not permitted here
Addresses cannot be created to bits. For example &X is not permitted if X is a SHORT INT.

Branch out of range

Cannot change device type this far into the code
The #DEVICE is not permitted after code is generated that is device specific. Move the #DEVICE
to an area before code is generated.

Character constant constructed incorrectly
Generally this is due to too many characters within the single quotes. For example 'ab' is an error
as is '\nr'. The backslash is permitted provided the result is a single character such as "\010' or '\n'".

Constant out of the valid range
This will usually occur in inline assembly where a constant must be within a particular range and it
is not. For example BTFSC 3,9 would cause this error since the second operand must be from 0-8.

Data item too big

Define expansion is too large
A fully expanded DEFINE must be less than 255 characters. Check to be sure the DEFINE is not
recursively defined.

Define syntax error
This is usually caused by a missing or misplaced (or) within a define.

Demo period has expired
Please contact CCS to purchase a licensed copy.

www.ccsinfo.com/pricing

Different levels of indirection
This is caused by a INLINE function with a reference parameter being called with a parameter that
is not a variable. Usually calling with a constant causes this.

298

Error Messages

Divide by zero
An attempt was made to divide by zero at compile time using constants.

Duplicate case value
Two cases in a switch statement have the same value.

Duplicate DEFAULT statements
The DEFAULT statement within a SWITCH may only appear once in each SWITCH. This error
indicates a second DEFAULT was encountered.

Duplicate function
A function has already been defined with this name. Remember that the compiler is not case
sensitive unless a #CASE is used.

Duplicate Interrupt Procedure
Only one function may be attached to each interrupt level. For example the #INT_RB may only
appear once in each program.

Duplicate USE
Some USE libraries may only be invoked once since they apply to the entire program such as
#USE DELAY. These may not be changed throughout the program.

Element is not a member
A field of a record identified by the compiler is not actually in the record. Check the identifier
spelling.

ELSE with no corresponding IF
Compiler found an ELSE statement without a corresponding IF. Make sure the ELSE statement
always match with the previous IF statement.

End of file while within define definition
The end of the source file was encountered while still expanding a define. Check for a missing).

End of source file reached without closing comment */ symbol

The end of the source file has been reached and a comment (started with /*) is still in effect. The */
is missing.

type are INT and CHAR.

299

PCD C Compiler Reference Manual April 2008

Expect ;

Expect }

Expect CASE

Expect comma

Expect WHILE
Expecting *

Expecting :

Expecting <

Expecting =

Expecting >

Expecting a (

Expecting a, or)
Expecting a, or }
Expecting a .

Expecting a; or,
Expecting a; or {
Expecting a close paren
Expecting a declaration
Expecting a structure/union
Expecting a variable
Expecting an =
Expecting a]

Expecting a {

Expecting an array
Expecting an identifier
Expecting function name

Expecting an opcode mnemonic
This must be a Microchip mnemonic such as MOVLW or BTFSC.

Expecting LVALUE such as a variable name or * expression
This error will occur when a constant is used where a variable should be. For example 4=5; will
give this error.

Expecting a basic type
Examples of a basic type are INT and CHAR.

Expression must be a constant or simple variable

The indicated expression must evaluate to a constant at compile time. For example 5*3+1 is
permitted but 5*x+1 where X is a INT is not permitted. If X were a DEFINE that had a constant
value then it is permitted.

300

Error Messages

Expression must evaluate to a constant

The indicated expression must evaluate to a constant at compile time. For example 5*3+1 is
permitted but 5*x+1 where X is a INT is not permitted. If X were a DEFINE that had a constant
value then it is permitted.

Expression too complex
This expression has generated too much code for the compiler to handle for a single expression.
This is very rare but if it happens, break the expression up into smaller parts.

Too many assembly lines are being generated for a single C statement. Contact CCS to increase
the internal limits.

EXTERNal symbol not found

EXTERNal symbol type mis-match

Extra characters on preprocessor command line
Characters are appearing after a preprocessor directive that do not apply to that directive.
Preprocessor commands own the entire line unlike the normal C syntax. For example the

following is an error:
#PRAGMA DEVICE <PIC16C74> main() { int x; x=1;}

File cannot be opened
Check the filename and the current path. The file could not be opened.

File cannot be opened for write

The operating system would not allow the compiler to create one of the output files. Make sure the
file is not marked READ ONLY and that the compiler process has write privileges to the directory
and file.

Filename must start with " or <

The correct syntax of a #include is one of the following two formats:
#include 'filename.ext"

#include <filename.ext>

This error indicates neither a " or < was found after #include.

Filename must terminate with " or; msg:""'
The filename specified in a #include must terminate with a " if it starts with a . It must terminate
with a > if it starts with a <.

Floating-point numbers not supported for this operation
A floating-point number is not permitted in the operation near the error. For example, ++F where F
is a float is not allowed.

301

PCD C Compiler Reference Manual April 2008

Function definition different from previous definition

This is a mis-match between a function prototype and a function definition. Be sure that if a
#INLINE or #SEPARATE are used that they appear for both the prototype and definition. These
directives are treated much like a type specifier.

Function used but not defined
The indicated function had a prototype but was never defined in the program.

Identifier is already used in this scope
An attempt was made to define a new identifier that has already been defined.

lllegal C character in input file
A bad character is in the source file. Try deleting the line and re-typing it.

Import error

Improper use of a function identifier
Function identifiers may only be used to call a function. An attempt was made to otherwise
reference a function. A function identifier should have a (after it.

Incorrectly constructed label

This may be an improperly terminated expression followed by a label. For example:
X=5+

MPLAB:

Initialization of unions is not permitted
Structures can be initialized with an initial value but UNIONS cannot be.

Internal compiler limit reached
The program is using too much of something. An internal compiler limit was reached. Contact
CCS and the limit may be able to be expanded.

Internal Error - Contact CCS

This error indicates the compiler detected an internal inconsistency. This is not an error with the
source code; although, something in the source code has triggered the internal error. This problem
can usually be quickly corrected by sending the source files to CCS so the problem can be re-
created and corrected.

In the meantime if the error was on a particular line, look for another way to perform the same
operation. The error was probably caused by the syntax of the identified statement. If the error
was the last line of the code, the problem was in linking. Look at the call tree for something out of
the ordinary.

302

Error Messages

Interrupt handler uses too much stack
Too many stack locations are being used by an interrupt handler.

Invalid conversion from LONG INT to INT
In this case, a LONG INT cannot be converted to an INT. You can type cast the LONG INT to

perform a truncation. For example:
I = INT(LD);

Invalid interrupt directive

Invalid parameters to built in function
Built-in shift and rotate functions (such as SHIFT_LEFT) require an expression that evaluates to a
constant to specify the number of bytes.

Invalid Pre-Processor directive

The compiler does not know the preprocessor directive. This is the identifier in one of the following
two places:

HXXXXX

H#PRAGMA XXXXX

Invalid ORG range

The end address must be greater than or equal to the start address. The range may not overlap
another range. The range may not include locations 0-3. If only one address is specified it must
match the start address of a previous #org.

Invalid overload function
Invalid type conversion
Label not permitted here

Library in USE not found
The identifier after the USE is not one of the pre-defined libraries for the compiler. Check the
spelling.

Linker Error: "%s" already defined in "%s"
Linker Error: ("%s'

Linker Error: Canont allocate memory for the section "%s" in the module "%s", because it
overlaps with other sections.

Linker Error: Cannot find unique match for symbol "%s"

303

PCD C Compiler Reference Manual April 2008

Linker Error: Cannot open file "%s"
Linker Error: COFF file "%s" is corrupt; recompile module.

Linker Error: Not enough memory in the target to reallocate the section "%s" in the module
"Ops"

Linker Error: Section "%s" is found in the modules "%s" and "%s" with different section
types.

Linker Error: Unknown error, contact CCS support.
Linker Error: Unresolved external symbol "%s" inside the module "%s".
Linker option no compatible with prior options.

Linker Warning: Section "%s" in module "%s" is declared as shared but there is no shared
memory in the target chip. The shared flag is ignored.

Linker option not compatible with prior options
Conflicting linker options are specified. For example using both the EXCEPT= and ONLY= options
in the same directive is not legal.

LVALUE required
This error will occur when a constant is used where a variable should be. For example 4=5; will
give this error.

Macro identifier requires parameters

A #DEFINE identifier is being used but no parameters were specified, as required. For example:
#define min(x,y) ((X<y)?x:y)

When called MIN must have a (--,--) after it such as:

r=min(value, 6);

Macro is defined recursively
A C macro has been defined in such a way as to cause a recursive call to itself.

Missing #ENDIF
A #IF was found without a corresponding #ENDIF.

304

Error Messages

Missing or invalid .CRG file

The user registration file(s) are not part of the download software. In order for the software to run
the files must be in the same directory as the .EXE files. These files are on the original diskette,
CD ROM or e-mail in a non-compressed format. You need only copy them to the .EXE directory.
There is one .REG file for each compiler (PCB.REG, PCM.REG and PCH.REG).

More info:

Must have a #USE DELAY before this #USE

Must have a #USE DELAY before a #USE RS232
The RS232 library uses the DELAY library. You must have a #USE DELAY before you can do a
#USE RS232.

No errors
The program has successfully compiled and all requested output files have been created.

No MAIN() function found
All programs are required to have one function with the name main().

No overload function matches

No valid assignment made to function pointer

Not enough RAM for all variables

The program requires more RAM than is available. The symbol map shows variables allocated.
The call tree shows the RAM used by each function. Additional RAM usage can be obtained by
breaking larger functions into smaller ones and splitting the RAM between them.

For example, a function A may perform a series of operations and have 20 local variables declared.
Upon analysis, it may be determined that there are two main parts to the calculations and many
variables are not shared between the parts. A function B may be defined with 7 local variables and
a function C may be defined with 7 local variables. Function A now calls B and C and combines
the results and now may only need 6 variables. The savings are accomplished because B and C
are not executing at the same time and the same real memory locations will be used for their 6
variables (just not at the same time). The compiler will allocate only 13 locations for the group of
functions A, B, C where 20 were required before to perform the same operation.

Number of bits is out of range

For a count of bits, such as in a structure definition, this must be 1-8. For a bit number
specification, such as in the #BIT, the number must be 0-7.

Only integers are supported for this operation

Option invalid

305

PCD C Compiler Reference Manual April 2008

Out of ROM, A segment or the program is too large

A function and all of the INLINE functions it calls must fit into one segment (a hardware code page).
For example, on the PIC16 chip a code page is 512 instructions. If a program has only one
function and that function is 600 instructions long, you will get this error even though the chip has
plenty of ROM left. The function needs to be split into at least two smaller functions. Even after
this is done, this error may occur since the new function may be only called once and the linker
might automatically INLINE it. This is easily determined by reviewing the call tree. If this error is
caused by too many functions being automatically INLINED by the linker, simply add a
#SEPARATE before a function to force the function to be SEPARATE. Separate functions can be
allocated on any page that has room. The best way to understand the cause of this error is to
review the call tree.

Parameters must be located in RAM

Parameters not permitted
An identifier that is not a function or preprocessor macro can not have a ' (' after it.

Pointers to bits are not permitted
Addresses cannot be created to bits. For example, &X is not permitted if X is a SHORT INT.

Previous identifier must be a pointer
A -> may only be used after a pointer to a structure. It cannot be used on a structure itself or other
kind of variable.

Printf format type is invalid
An unknown character is after the % in a printf. Check the printf reference for valid formats.

Printf format (%) invalid
A bad format combination was used. For example, %lc.

Printf variable count (%) does not match actual count
The number of % format indicators in the printf does not match the actual number of variables that
follow. Remember in order to print a single %, you must use %%.

Recursion not permitted
The linker will not allow recursive function calls. A function may not call itself and it may not call
any other function that will eventually re-call it.

Recursively defined structures not permitted
A structure may not contain an instance of itself.

Reference arrays are not permitted
A reference parameter may not refer to an array.

306

Error Messages

Return not allowed in void function
A return statement may not have a value if the function is void.

RTOS call only allowed inside task functions

Selected part does not have ICD debug capability

STDOUT not defined (may be missing #RS 232)
An attempt was made to use a I/O function such as printf when no default I/O stream has been
established. Add a #USE RS232 to define a I/O stream.

Stream must be a constant in the valid range

1/0 functions like fputc, fgetc require a stream identifier that was defined in a #USE RS232. This
identifier must appear exactly as it does when it was defined. Be sure it has not been redefined with
a #define.

String too long

Structure field name required
A structure is being used in a place where a field of the structure must appear. Change to the form
s.f where s is the structure name and f is a field name.

Structures and UNIONS cannot be parameters (use * or &)
A structure may not be passed by value. Pass a pointer to the structure using &.

Subscript out of range
A subscript to a RAM array must be at least 1 and not more than 128 elements. Note that large
arrays might not fit in a bank. ROM arrays may not occupy more than 256 locations.

This linker function is not available in this compiler version.
Some linker functions are only available if the PCW or PCWH product is installed.

This type cannot be qualified with this qualifier
Check the qualifiers. Be sure to look on previous lines. An example of this error is:
VOID X;

Too many array subscripts
Arrays are limited to 5 dimensions.

Too many constant structures to fit into available space

Available space depends on the chip. Some chips only allow constant structures in certain places.
Look at the last calling tree to evaluate space usage. Constant structures will appear as functions
with a @CONST at the beginning of the name.

307

PCD C Compiler Reference Manual April 2008

Too many elements in an ENUM
A max of 256 elements are allowed in an ENUM.

Too many fast interrupt handlers have been defined
Too many fast interrupt handlers have been identified

Too many nested #INCLUDEs
No more than 10 include files may be open at a time.

Too many parameters
More parameters have been given to a function than the function was defined with.

Too many subscripts
More subscripts have been given to an array than the array was defined with.

Type is not defined
The specified type is used but not defined in the program. Check the spelling.

Type specification not valid for a function
This function has a type specifier that is not meaningful to a function.

Undefined identifier

Undefined label that was used in a GOTO
There was a GOTO LABEL but LABEL was never encountered within the required scope. A GOTO
cannot jump outside a function.

Unknown device type

A #DEVICE contained an unknown device. The center letters of a device are always C regardless
of the actual part in use. For example, use PIC16C74 not PIC16RC74. Be sure the correct
compiler is being used for the indicated device. See #DEVICE for more information.

Unknown keyword in #FUSES
Check the keyword spelling against the description under #FUSES.

Unknown linker keyword
The keyword used in a linker directive is not understood.

Unknown type
The specified type is used but not defined in the program. Check the spelling.

User aborted compilation

308

Error Messages

USE parameter invalid
One of the parameters to a USE library is not valid for the current environment.

USE parameter value is out of range
One of the values for a parameter to the USE library is not valid for the current environment.

Variable never used

Variable of this data type is never greater than this constant

309

COMPILER WARNING MESSAGES

ol
Lo

C Compiler

Compiler Warning Messages

#error/warning

Assignment inside relational expression
Although legal it is a common error to do something like if(a=b) when it was intended to do if(a==b).

Assignment to enum is not of the correct type.
This warning indicates there may be such atypo in this line:

Assignment to enum is not of the correct type
If a variable is declared as a ENUM it is best to assign to the variables only elements of the enum.

For example:
enum colors {RED,GREEN,BLUE} color;

color

= GREEN; // OK
color = 1; // Warning 209
color = (colors)1l; //0K

Code has no effect
The compiler can not discern any effect this source code could have on the generated code. Some
examples:

Condition always FALSE
This error when it has been determined at compile time that a relational expression will never be
true. For example:

int x;

if(x>>9)

311

PCD C Compiler Reference Manual April 2008

Condition always TRUE
This error when it has been determined at compile time that a relational expression will never be
false. For example:

#define PIN_Al 41

if(PINAL) /7 Intended was: if(input(PIN_A1))

Function not void and does not return a value

Functions that are declared as returning a value should have a return statement with a value to be
returned. Be aware that in C only functions declared VOID are not intended to return a value. If
nothing is specified as a function return value "int" is assumed.

Duplicate #define

The identifier in the #define has already been used in a previous #define. To redefine an identifier
use #UNDEF first. To prevent defines that may be included from multiple source do something
like:

#ifndef ID
#define ID text
#endif

Feature not supported

Function never called

Function not void and does not return a value.
Info:

Interrupt level changed

Interrupts disabled during call to prevent re-entrancy.
Linker Warning: "%s" already defined in object "%s"; second definition ignored.

Linker Warning: Address and size of section "%s" in module "%s" exceeds maximum range
for this processor. The section will be ignored.

Linker Warning: The module "%s" doesn't have a valid chip id. The module will be
considered for the target chip "%s".

Linker Warning: The target chip "%s" of the imported module "%s" doesn't match the target
chip "%s" of the source.

Linker Warning: Unsupported relocation type in module "%s".

Memory not available at requested location.

312

Compiler Warning Messages

Operator precedence rules may not be as intended, use() to clarify
Some combinations of operators are confusing to some programmers. This warning is issued for
expressions where adding() would help to clarify the meaning. For example:
if(x<<n+1)
would be more universally understood when expressed:
if(x << (n+1))

Option may be wrong

Structure passed by value
Structures are usually passed by reference to a function. This warning is generated if the structure
is being passed by value. This warning is not generated if the structure is less than 5 bytes. For
example:

void myfunct(mystruct sl) // Pass by value - Warning

myfunct(s2);

void myfunct(mystruct * sl) // Pass by reference - OK

myfunct(&s2);

void myfunct(mystruct & sl) // Pass by reference - OK

myfunct(s2);

Undefined identifier
The specified identifier is being used but has never been defined. Check the spelling.

Unprotected call in a #INT_GLOBAL

The interrupt function defined as #INT_GLOBAL is intended to be assembly language or very
simple C code. This error indicates the linker detected code that violated the standard memory
allocation scheme. This may be caused when a C function is called from a #INT_GLOBAL
interrupt handler.

Unreachable code
Code included in the program is never executed. For example:
if(n==5)
goto do5;
goto exit;
if(n==20) // No way to get to this line
return;

Unsigned variable is never less than zero
Unsigned variables are never less than 0. This warning indicates an attempt to check to see if an
unsigned variable is negative. For example the following will not work as intended:

int i;

for(i=10; i>=0; i--)

Variable assignment never used.

313

PCD C Compiler Reference Manual April 2008

Variable of this data type is never greater than this constant
A variable is being compared to a constant. The maximum value of the variable could never be

larger than the constant. For example the following could never be true:
int x; // 8 bits, 0-255
if (x>300)

Variable never used
A variable has been declared and never referenced in the code.

Variable used before assignment is made.

314

COMMON QUESTIONS AND ANSWERS

Vol
Lo

C Compiler

How are type conversions handled?

The compiler provides automatic type conversions when an assignment is performed. Some
information may be lost if the destination can not properly represent the source. For example:
int8var = intl6var; Causes the top byte of int16var to be lost.

Assigning a smaller signed expression to a larger signed variable will result in the sign being
maintained. For example, a signed 8 bit int that is -1 when assigned to a 16 bit signed variable is
still -1.

Signed numbers that are negative when assigned to a unsigned number will cause the 2's
complement value to be assigned. For example, assigning -1 to a int8 will result in the int8 being
255. In this case the sign bit is not extended (conversion to unsigned is done before conversion to
more bits). This means the -1 assigned to a 16 bit unsigned is still 255.

Likewise assigning a large unsigned number to a signed variable of the same size or smaller will
result in the value being distorted. For example, assigning 255 to a signed int8 will result in -1.

The above assignment rules also apply to parameters passed to functions.

When a binary operator has operands of differing types then the lower order operand is converted
(using the above rules) to the higher. The order is as follows:

° Float

Signed 32 bit
Unsigned 32 bit
Signed 16 bit
Unsigned 16 bit
Signed 8 bit
Unsigned 8 bit
1 bit

315

PCD C Compiler Reference Manual April 2008

The result is then the same as the operands. Each operator in an expression is evaluated
independently. For example:

i32 =16 - (i8 +i8)

The + operator is 8 bit, the result is converted to 16 bit after the addition and the - is 16 bit, that
result is converted to 32 bit and the assignment is done. Note that if i8 is 200 and i16 is 400 then
the result in i32 is 256. (200 plus 200 is 144 with a 8 bit +)

Explicit conversion may be done at any point with (type) inserted before the expression to be
converted. For example in the above the perhaps desired effect may be achieved by doing:

i32 = i16 - ((long)i8 + i8)

In this case the first i8 is converted to 16 bit, then the add is a 16 bit add and the second i8 is
forced to 16 bit.

A common C programming error is to do something like:
i16 = i8 * 100;

When the intent was:
i16 = (long) i8 * 100;

Remember that with unsigned ints (the default for this compiler) the values are never negative. For
example 2-4 is 254 (in 8 bit). This means the following is an endless loop since i is never less than
0:

inti;
for(i=100; i>=0; i--)

316

COMMON QUESTIONS AND ANSWERS

How can a constant data table be placed in ROM?

The compiler has support for placing any data structure into the device ROM as a constant read-
only element. Since the ROM and RAM data paths are separate, there are restrictions on how the
data is accessed. For example, to place a 10 element BYTE array in ROM use:

BYTE CONST TABLE [10]= {9,8,7,6,5,4,3,2,1,0};

and to access the table use:
X = TABLE [i];

OR

X = TABLE [5];

BUT NOT
ptr = &TABLE [i];

In this case, a pointer to the table cannot be constructed.

Similar constructs using CONST may be used with any data type including structures, longs and
floats.

The following are two methods provided:
1. Efficient access with "const".

2. Pointer friendly "ROM" Qualifier, for example:
ROM BYTE TABLE[10] = {9,8,7,6,5,4,3,2,1,0}
and to access the table use:
X = TABLE[i];
or
PTR = &TABLE[i];
and
X = *PTR;
//Be sure not to mix RAM and ROM pointers. They are not
interchangeable.

317

PCD C Compiler Reference Manual April 2008

How can | use two or more RS-232 ports on one PIC®?

The #USE RS232 (and I12C for that matter) is in effect for GETC, PUTC, PRINTF and KBHIT
functions encountered until another #USE RS232 is found.

The #USE RS232 is not an executable line. It works much like a #DEFINE.

The following is an example program to read from one RS-232 port (A) and echo the data to both
the first RS-232 port (A) and a second RS-232 port (B).

#USE RS232(BAUD=9600, XMIT=PIN_BO, RCV=PIN_B1)
void put_to a(char c) {
put(c);

char get_from_a() {
return(getcQ):; }
#USE RS232(BAUD=9600, XMIT=PIN_B2,RCV=PIN_B3)
void put_to b(char b) {
putc(c);

}
main() {
char c;
put_to_a('Online\n\r');
put_to_b('Online\n\r');
while(TRUE) {
c=get_from_a(Q);
put_to b(c);
put_to a(c);

}

The following will do the same thing but is more readable and is the recommended method:

#USE RS232(BAUD=9600, XMIT=PIN_BO, RCV=PIN_B1, STREAM=COM_A)
#USE RS232(BAUD=9600, XMIT=PIN_B2, RCV=PIN_B3, STREAM=COM_B)

main() {
char c;
FfprintF(COM_A,""Online\n\r");
FfprintF(COM_B,""Online\n\r");
while(TRUE) {
c = fgetc(COM_A);
fputc(c, COM_A);
fputc(c, COM_B);
}
}

318

COMMON QUESTIONS AND ANSWERS

How do | do a printf to a string?

The following is an example of how to direct the output of a printf to a string. We used the \f to
indicate the start of the string.

This example shows how to put a floating point number in a string.

mainQ) {
char string[20];
float T;
=12.345;
sprintf(string,'"\f%6.3f",f);

How do | directly read/write to internal registers?

A hardware register may be mapped to a C variable to allow direct read and write capability to the
register. The following is an example using the TIMERO register:

#BYTE timerl = 0x100

timerO= 128; //set timerO to 128

whille (timerl ! = 200); // wait for timerO to reach 200

Bits in registers may also be mapped as follows:
#BIT T1IF = 0x84.3

v-vhile (!'T1IF); //wait for timerO interrupt

Registers may be indirectly addressed as shown in the following example:
printf (“enter address:");

a = gethex O;

printf ("\r\n value is %x\r\n", *a);

The compiler has a large set of built-in functions that will allow one to perform the most common
tasks with C function calls. When possible, it is best to use the built-in functions rather than directly
write to registers. Register locations change between chips and some register operations require a
specific algorithm to be performed when a register value is changed. The compiler also takes into
account known chip errata in the implementation of the built-in functions. For example, it is better
to do set_tris_B(0); rather than *0x02C6=0;

319

PCD C Compiler Reference Manual April 2008

How do | get getc() to timeout after a specified time?

GETC will always wait for the character to become available. The trick is to not call getc() until a
character is ready. This can be determined with kbhit().

The following is an example of how to time out of waiting for an RS232 character.

Note that without a hardware UART the delay_us should be less than a tenth of a bit time (10 us at
9600 baud). With hardware you can make it up to 10 times the bit time. (1000 us at 9600 baud).
Use two counters if you need a timeout value larger than 65535.

short timeout_error;

char timed_getc() {
long timeout;

timeout_error=FALSE;

timeout=0;

while(Tkbhit&&(++timeout<50000)) // 1/2 second
delay_us(10);

if(kbhitQ))
return(getc());

else {
timeout_error=TRUE;
return(0);

}

}

How do | make a pointer to a function?

The compiler does not permit pointers to functions so that the compiler can know at compile time
the complete call tree. This is used to allocate memory for full RAM re-use. Functions that could
not be in execution at the same time will use the same RAM locations. In addition since there is no
data stack in the PIC®, function parameters are passed in a special way that requires knowledge at
compile time of what function is being called. Calling a function via a pointer will prevent knowing
both of these things at compile time. Users sometimes will want function pointers to create a state
machine. The following is an example of how to do this without pointers:

enum tasks {taskA, taskB, taskC};
run_task(tasks task_to_run) {
switch(task_to_run) {
case taskA : taskA_main(); break;
case taskB : taskB_main(); break;
case taskC : taskC _main(); break;

}

320

COMMON QUESTIONS AND ANSWERS

How do | write variables to EEPROM that are not a word?

The following is an example of how to read and write a floating point number from/to EEPROM.
The same concept may be used for structures, arrays or any other types.

e n is an offset into the EEPROM

WRITE_FLOAT-EEPROM(int16 n, float data) {
write_eeprom(n, data, sizeof(float));

float READ_FLOAT_EEPROM(int16 n) {
float data;
(int32)data = read_eeprom(n, sizeof(float));
return(data);

How does one map a variable to an I/O port?

Two methods are as follows:

#oyte PORTB = 0x02C8 //Just an example, check the
#define ALL_OUT O //DATA sheet for the correct
#define ALL_IN Oxff //address for your chip

mainQ) {

int i;

set_tris_b(ALL_OUT);
PORTB = 0;// Set all pins low

for(i=0;i1<=127;++1) // Quickly count from 0 to 127
PORTB=1i; // on the 1/0 port pin

set_tris_b(ALL_IN);

i = PORTB; // 1 now contains the portb value.

}

Remember when using the #BYTE, the created variable is treated like memory. You must maintain
the tri-state control registers yourself via the SET_TRIS_X function. Following is an example of
placing a structure on an 1/O port:

321

PCD C Compiler Reference Manual April 2008

struct port_b_layout

{int data : 4;

int rw - 1;
int cd - 1;
};

struct port_b_layout port_b;
#byte port_b = 0x02C8

struct port_b_layout
struct port_b_layout
struct port_b_layout
struct port_b_layout

const
const
const
const

INIT.1 = {0, 1,1
INIT 2 = {3, 1,1
INIT 3 = {0, 0,0

,0

FOR_SEND = {0,0

/7 All outpui

struct port_b_layout const FOR_READ = {15,0,0,};

main() {

int x;

set_tris_b((int)FOR_SEND);

// structure

port_b = INIT_1;
delay_us(25);

port_b = INIT_2;

is

// Data is an input

// The constant

// treated like
// a byte and
// is used to
// set the data
// direction

// These constant structures delay_us(25);

// are used to set all fields

port_b = INIT_3;
// command

set_tris_b((int)FOR_READ);

port_b.rw=0;

port_b.cd=1;

// on the port with a single

// Here the individual
// fTields are accessed

// independently.

X = port_b.data;

322

How does the compiler determine TRUE and FALSE on expressions?

COMMON QUESTIONS AND ANSWERS

When relational expressions are assigned to variables, the result is always O or 1.

For example:
bytevar = 5>0;
bytevar = 0>5;

//bytevar will be 1
//bytevar will be 0

The same is true when relational operators are used in expressions.

For example:
bytevar = (x>y)*4;
is the same as:

if(x>y)
bytevar=4;

else
bytevar=0;

SHORT INTs (bit variables) are treated the same as relational expressions. They evaluate to O or

1.

When expressions are converted to relational expressions or SHORT INTS, the result will be
FALSE (or 0) when the expression is 0, otherwise the result is TRUE (or 1).

For example:

bytevar = 54;
bitvar = bytevar;
if(bytevar)
bytevar = 0;
bitvar = bytevar;

//bitvar will be 1 (bytevar ! = 0)
//will be TRUE

//bitvar will be 0

323

PCD C Compiler Reference Manual April 2008

How does the PIC® connect to a PC?

A level converter should be used to convert the TTL (0-5V__ levels that the PIC® operates with to
the RS-232 voltages (+/- 3-12V) used by the PIC®. The following is a popular configuration using

the MAX232 chip as a level converter.

+ +
I—'j ' '
{ 1 16 2 4 14
3 6
___|__I 16 il
pc_ 5 e)
N A 1 2 (A3)
3 13 15 12 1(A2) 5
5 - -
L Any two /O
Pins may be
used here

324

COMMON QUESTIONS AND ANSWERS

How does the PIC® connect to an 12C device?

Two I/O lines are required for 12C. Both lines must have pullup registers. Often the 12C device will
have a H/W selectable address. The address set must match the address in S/W. The example

programs all assume the selectable address lines are grounded.

a & N

+
——
4 14
|+
18 Pin 16
<] P
k1 12 (B6)
1K+
{13 (B7)

i~ o

H—T

325

PCD C Compiler Reference Manual April 2008

How much time do math operations take?

Unsigned 8 bit operations are quite fast and floating point is very slow. If possible consider fixed
point instead of floating point. For example instead of "float cost_in_dollars;" do "long
cost_in_cents;". For trig formulas consider a lookup table instead of real time calculations (see
EX_SINE.C for an example). The following are some rough times on a 20 mhz, 24-bit PIC®. Note
times will vary depending on memory banks used.

20mhz dsPIC30

int8 intl6 int32 int48 int64 float32 float48 float64
[us] [us] [us] [us] [us] [us] [us] [us]
+ |08 |[08 |[14 |21 |26 | 30 | 35 | 70 |
|10 |[10 |18 | 27 | 35 | 28 | 28 | 70 |
* |11 |[10 |54 |12 |13 [17 | 21 | 35 |
/ | 47 |[55 | 102 | 200 | 550 || 95 | 175 | 280 |
exp0 |+ I+ Jl» Jl* J|* J[7BD [[TBD [TBD |
mo J[+ =~ [~ J[~ J- 780 |80 | TBD |
sing [~ [« =~ [~ [+ |t [780 |[1BD |

326

COMMON QUESTIONS AND ANSWERS

What can be done about an OUT OF RAM error?

The compiler makes every effort to optimize usage of RAM. Understanding the RAM allocation
can be a help in designing the program structure. The best re-use of RAM is accomplished when
local variables are used with lots of functions. RAM is re-used between functions not active at the
same time. See the NOT ENOUGH RAM error message in this manual for a more detailed
example.

RAM is also used for expression evaluation when the expression is complex. The more complex
the expression, the more scratch RAM locations the compiler will need to allocate to that
expression. The RAM allocated is reserved during the execution of the entire function but may be
re-used between expressions within the function. The total RAM required for a function is the sum
of the parameters, the local variables and the largest number of scratch locations required for any
expression within the function. The RAM required for a function is shown in the call tree after the
RAM=. The RAM stays used when the function calls another function and new RAM is allocated
for the new function. However when a function RETURNS the RAM may be re-used by another
function called by the parent. Sequential calls to functions each with their own local variables is
very efficient use of RAM as opposed to a large function with local variables declared for the entire
process at once.

Be sure to use SHORT INT (1 bit) variables whenever possible for flags and other boolean
variables. The compiler can pack eight such variables into one byte location. The compiler does
this automatically whenever you use SHORT INT. The code size and ROM size will be smaller.

Finally, consider an external memory device to hold data not required frequently. An external 8 pin
EEPROM or SRAM can be connected to the PIC® with just 2 wires and provide a great deal of
additional storage capability. The compiler package includes example drivers for these devices.
The primary drawback is a slower access time to read and write the data. The SRAM will have fast
read and write with memory being lost when power fails. The EEPROM will have a very long write
cycle, but can retain the data when power is lost.

327

PCD C Compiler Reference Manual April 2008

What is an easy way for two or more PICs® to communicate?

There are two example programs (EX_PBUSM.C and EX_PBUSR.C) that show how to use a
simple one-wire interface to transfer data between PICs®. Slower data can use pin BO and the EXT
interrupt. The built-in UART may be used for high speed transfers. An RS232 driver chip may be
used for long distance operations. The RS485 as well as the high speed UART require 2 pins and
minor software changes. The following are some hardware configurations.

What is the format of floating point numbers?

The CCS PCD compiler uses the IEEE format for all the floating point number operations. The
following floating point numbers are supported:

¢ 32 bit floating point numbers — Single Precision

¢ 48 bit floating point numbers — Extended Precision

¢ 64 bit floating point numbers — Double Precision

The format of these numbers is as follows:

32 bit floating point numbers — Single Precision
| sign | Exponent | Ex | Mantissa | Mantissa |
31 30 23 22 15

0

¢ 23 bit Mantissa (Bit 0 — Bit 22)
¢ 8 bit exponent (Bit 23 — bit 30)

¢ 1 sign bit (Bit 31)
Example Representation
Numbers Hex - 32 bit float
0 0000 0000
1 3F80 0000
-1 BF80 0000
10 4120 0000
100 42C8 0000
123.45 42F6 E666
123.45E20 | 6427 4E53
213.45E- 21B6 2E17
20

31 15 0

328

COMMON QUESTIONS AND ANSWERS

48 bit floating point numbers —Extended Precision
| Sign | Exponent | Mantissa | Mantissa | Mantissa
47 46 3938 3231 1615 0

e 1 Sign bit — (Bit 47)
¢ 8 bit Exponent (Bits 39 — 46)
¢ 39 bit Mantissa (Bit 0 — bit 39)

Example Representation Hex -
Numbers 64 bit float

1 3F80 | 0000 | 0000
-1 BF80 | 0000 | 0000
10 4120 | 0000 | 0000
100 42C8 | 0000 | 0000
123.45 42F6 | E666 | 6666
123.45E20 | 6427 | 4E52 | 9759
213.45E- 21B6 | 2E17 | 64FF
20

47 31 15 0

64 bit floating point numbers — Double Precision
| Sign | Exponent | Mantissa | Mantissa | Mantissa
63 62 5251 3231 1615 0

e 1 Sign bit — (Bit 47)
¢ 11 bit Exponent (Bits 52 — 62)
¢ 52 bit Mantissa (Bit 0 — bit 51)

Example Representation Hex - 64 bit float
Numbers

0 0000 0000 0000 0000
1 3FFO | 0000 0000 0000
-1 BFFO | 0000 0000 0000
10 4024 0000 0000 0000
100 4059 0000 0000 0000
123.45 405E | DCCC | CCCC | CcccC
123.45E20 | 4484 E9CA 52EB 182A
213.45E- 3C36 | C5C2 ECOF DBFD
20

63 a7 31 15 0

329

PCD C Compiler Reference Manual April 2008

Why does the .LST file look out of order?

The list file is produced to show the assembly code created for the C source code. Each C source
line has the corresponding assembly lines under it to show the compiler’s work. The following
three special cases make the .LST file look strange to the first time viewer. Understanding how the
compiler is working in these special cases will make the .LST file appear quite normal and very
useful.

1. Stray code near the top of the program is sometimes under what looks like a hon-executable
source line.

Some of the code generated by the compiler does not correspond to any particular source line.
The compiler will put this code either near the top of the program or sometimes under a #USE that
caused subroutines to be generated.

2. The addresses are out of order.

The compiler will create the .LST file in the order of the C source code. The linker has re-arranged
the code to properly fit the functions into the best code pages and the best half of a code page.
The resulting code is not in source order. Whenever the compiler has a discontinuity in the .LST
file, it will put a * line in the file. This is most often seen between functions and in places where
INLINE functions are called. In the case of an INLINE function, the addresses will continue in order
up where the source for the INLINE function is located.

3. The compiler has gone insane and generated the same instruction over and over.

For example:
........... A=0;
O3F CLRF 15
*
46:CLRF 15
051: CLRF 15
*
113: CLRF 15

This effect is seen when the function is an INLINE function and is called from more than one place.
In the above case, the A=0 line is in an INLINE function called in four places. Each place it is
called from gets a new copy of the code. Each instance of the code is shown along with the
original source line, and the result may look unusual until the addresses and the * are noticed.

330

COMMON QUESTIONS AND ANSWERS

Why is the RS-232 not working right?

1. The PIC® is Sending Garbage Characters.
A. Check the clock on the target for accuracy. Crystals are usually not a problem but RC
oscillators can cause trouble with RS-232. Make sure the #USE DELAY matches the actual
clock frequency.
B. Make sure the PC (or other host) has the correct baud and parity setting.
C. Check the level conversion. When using a driver/receiver chip, such as the MAX 232, do
not use INVERT when making direct connections with resistors and/or diodes. You
probably need the INVERT option in the #USE RS232.
D. Remember that PUTC(6) will send an ASCII 6 to the PC and this may not be a visible
character. PUTC('A") will output a visible character A.

2. The PIC® is Receiving Garbage Characters.

A. Check all of the above.

3. Nothing is Being Sent.

A. Make sure that the tri-state registers are correct. The mode (standard, fast, fixed) used
will be whatever the mode is when the #USE RS232 is encountered. Staying with the
default STANDARD mode is safest.

B. Use the following main() for testing:

mainQ) {
while(TRUE)

putc("U%);

Check the XMIT pin for activity with a logic probe, scope or whatever you can. If you can
look at it with a scope, check the bit time (it should be 1/BAUD). Check again after the level
converter.

331

PCD C Compiler Reference Manual April 2008

4. Nothing is being received.

First be sure the PIC® can send data. Use the following main() for testing:

main() {
printf('start");
while(TRUE)
putc(getcQ+1);
}

When connected to a PC typing A should show B echoed back.

If nothing is seen coming back (except the initial "Start"), check the RCV pin on the PIC®
with a logic probe. You should see a HIGH state and when a key is pressed at the PC, a
pulse to low. Trace back to find out where it is lost.

5. The PIC® is always receiving data via RS-232 even when none is being sent.

A. Check that the INVERT option in the USE RS232 is right for your level converter. If the
RCV pin is HIGH when no data is being sent, you should NOT use INVERT. If the pin is
low when no data is being sent, you need to use INVERT.

B. Check that the pin is stable at HIGH or LOW in accordance with A above when no data
is being sent.

C. When using PORT A with a device that supports the SETUP_ADC_PORTS function
make sure the port is set to digital inputs. This is not the default. The same is true for
devices with a comparator on PORT A.

6. Compiler reports INVALID BAUD RATE.

332

A. When using a software RS232 (no built-in UART), the clock cannot be really slow when
fast baud rates are used and cannot be really fast with slow baud rates. Experiment with
the clock/baud rate values to find your limits.

B. When using the built-in UART, the requested baud rate must be within 3% of a rate that
can be achieved for no error to occur. Some parts have internal bugs with BRGH set to 1
and the compiler will not use this unless you specify BRGH1OK in the #USE RS232
directive.

EXAMPLE PROGRAMS

ol
Lo

C Compiler

EXAMPLE PROGRAMS

A large number of example programs are included with the software. The following is a list of many
of the programs and some of the key programs are re-printed on the following pages. Most
programs will work with any chip by just changing the #INCLUDE line that includes the device
information. All of the following programs have wiring instructions at the beginning of the code in a
comment header. The SIOW.EXE program included in the program directory may be used to
demonstrate the example programs. This program will use a PC COM port to communicate with
the target.

Generic header files are included for the standard PIC® parts. These files are in the DEVICES
directory. The pins of the chip are defined in these files in the form PIN_B2. Itis recommended
that for a given project, the file is copied to a project header file and the PIN_xx defines be changed
to match the actual hardware. For example; LCDRW (matching the mnemonic on the schematic).
Use the generic include files by placing the following in your main .C file:

#include <16C74.H>

LIST OF COMPLETE EXAMPLE PROGRAMS (in the EXAMPLES directory)

EX_1920.C
Uses a Dallas DS1920 button to read temperature

EX_AD12.C
Shows how to use an external 12 bit A/D converter

EX_ADMM.C
A/D Conversion example showing min and max analog readings

EX_ADMM10.C
Similar to ex_admm.c, but this uses 10bit A/D readings.

EX_ADMM_STATS.C
Similar to ex_admm.c, but this uses also calculates the mean and standard deviation.

EX_BOOTLOAD.C

A stand-alone application that needs to be loaded by a bootloader (see ex_bootloader.c for a
bootloader).

333

PCD C Compiler Reference Manual April 2008

EX_BOOTLOADER.C
A bootloader, loads an application onto the PIC (see ex_bootload.c for an application).

EX_CAN.C
Receive and transmit CAN packets.

EX_CHECKSUM.C
Determines the checksum of the program memory, verifies it agains the checksum that was written
to the USER ID location of the PIC.

EX_COMP.C
Uses the analog comparator and voltage reference available on some PIC24s

EX_CRC.C
Calculates CRC on a message showing the fast and powerful bit operations

EX_CUST.C
Change the nature of the compiler using special preprocessor directives

EX_FIXED.C
Shows fixed point numbers

EX_DPOT.C
Controls an external digital POT

EX_DTMF.C
Generates DTMF tones

EX_ENCOD.C
Interfaces to an optical encoder to determine direction and speed

EX_EXPIO.C
Uses simple logic chips to add I/O ports to the PIC

EX_EXSIO.C
Shows how to use a multi-port external UART chip

EX_EXTEE.C
Reads and writes to an external EEPROM

EX_EXTDYNMEM.C
Uses addressmod to create a user defined storage space, where a new qualifier is created that
reads/writes to an extrenal RAM device.

EX_FAT.C
An example of reading and writing to a FAT file system on an MMC/SD card.

334

EXAMPLE PROGRAMS

EX_FLOAT.C
Shows how to use basic floating point

EX_FREQC.C
A 50 mhz frequency counter

EX_GLCD.C
Displays contents on a graphic LCD, includes shapes and text.

EX_GLINT.C
Shows how to define a custom global interrupt hander for fast interrupts

EX_HUMIDITY.C
How to read the humidity from a Humirel HT3223/HTF3223 Humidity module

EX_ICD.C
Shows a simple program for use with Microchips ICD debugger

EX_INPUTCAPTURE.C
Uses the PIC input capture module to measure a pulse width

EX_INTEE.C
Reads and writes to the PIC internal EEPROM

EX_LCDKB.C
Displays data to an LCD module and reads data for keypad

EX_LCDTH.C
Shows current, min and max temperature on an LCD

EX_LED.C
Drives a two digit 7 segment LED

EX_LOAD.C
Serial boot loader program

EX LOGGER.C
A simple temperature data logger, uses the flash program memory for saving data

EX_MACRO.C
Shows how powerful advanced macros can be in C

EX_MALLOC.C
An example of dynamic memory allocation using malloc().

EX_MCR.C
An example of reading magnetic card readers.

335

PCD C Compiler Reference Manual April 2008

EX_MMCSD.C
An example of using an MMC/SD media card as an external EEPROM. To use this card with a
FAT file system, see ex_fat.c

EX_MODBUS_MASTER.C
An example MODBUS application, this is a master and will talk to the ex_modbus_slave.c example.

EX_MODBUS_SLAVE.C
An example MODBUS application, this is a slave and will talk to the ex_modbus_master.c example.

EX_MOUSE.C
Shows how to implement a standard PC mouse on a PIC

EX_MXRAM.C
Shows how to use all the RAM on parts with problem memory allocation

EX_OUTPUTCOMPARE.C
Generates a precision pulse using the PIC output compare module.

EX_PATG.C
Generates 8 square waves of different frequencies

EX_PBUSM.C
Generic PIC to PIC message transfer program over one wire

EX_PBUSR.C
Implements a PIC to PIC shared RAM over one wire

EX_PBUTT.C
Shows how to use the B port change interrupt to detect pushbuttons

EX_PGEN.C
Generates pulses with period and duty switch selectable

EX_PLL.C
Interfaces to an external frequency synthesizer to tune a radio

EX_PSP.C
Uses the PIC PSP to implement a printer parallel to serial converter

EX_PULSE.C
Measures a pulse width using timer0

EX_PWM.C
Uses the PIC output compare module to generate a PWM pulse stream.

336

EXAMPLE PROGRAMS

EX_QSORT.C
An example of using the stdlib function gsort() to sort data. Pointers to functions is used by gsort()
so the user can specify their sort algorithm.

EX_REACT.C
Times the reaction time of a relay closing using the input capture module.

EX_RFID.C
An example of how to read the ID from a 125kHz RFID transponder tag.

EX_RMSDB.C
Calculates the RMS voltage and dB level of an AC signal

EX_RS485.C
An application that shows a multi-node communication protocol commonly found on RS-485
busses.

EX_RTC.C
Sets and reads an external Real Time Clock using RS232

EX_RTCLK.C
Sets and reads an external Real Time Clock using an LCD and keypad

EX_RTCTIMER.C
How to use the PIC's hardware timer as a real time clock.

EX_RTOS_DEMO_X.C
9 examples are provided that show how to use CCS's built-in RTOS (Real Time Operating
System).

EX_SINE.C
Generates a sine wave using a D/A converter

EX_SISR.C
Shows how to do RS232 serial interrupts

EX_STISR.C
Shows how to do RS232 transmit buffering with interrupts

EX_SLAVE.C
Simulates an 12C serial EEPROM showing the PIC slave mode

EX_SPEED.C
Calculates the speed of an external object like a model car

EX_SPI.C
Communicates with a serial EEPROM using the H/W SPI module

337

PCD C Compiler Reference Manual April 2008

EX_SPI_SLAVE.C
How to use the PIC's MSSP peripheral as a SPI slave. This example will talk to the ex_spi.c
example.

EX_SQW.C
Simple Square wave generator

EX_SRAM.C
Reads and writes to an external serial RAM

EX_STEP.C
Drives a stepper motor via RS232 commands and an analog input

EX_STR.C
Shows how to use basic C string handling functions

EX_STWT.C
A stop Watch program that shows how to user a timer interrupt

EX_SYNC_MASTER.C

EX_SYNC_SLAVE.C

An example of using the USART of the PIC in synchronous mode. The master and slave examples
talk to each other.

EX_TANK.C
Uses trig functions to calculate the liquid in a odd shaped tank

EX_TEMP.C
Displays (via RS232) the temperature from a digital sensor

EX_TGETC.C
Demonstrates how to timeout of waiting for RS232 data

EX_TONES.C
Shows how to generate tones by playing "Happy Birthday"

EX _TOUCH.C
Reads the serial number from a Dallas touch device

EX_USB_HID.C
Implements a USB HID device on the PIC16C765 or an external USB chip

EX_USB_SCOPE.C
Implements a USB bulk mode transfer for a simple oscilloscope on an external USB chip

338

EXAMPLE PROGRAMS

EX_USB_KBMOUSE.C

EX_USB_KBMOUSE2.C

Examples of how to implement 2 USB HID devices on the same device, by combining a mouse and
keyboard.

EX_USB_SERIAL.C
EX_USB_SERIAL2.C

Examples of using the CDC USB class to create a virtual COM port for backwards compatability
with legacy software.

EX_VOICE.C
Self learning text to voice program

EX_WAKUP.C
Shows how to put a chip into sleep mode and wake it up

EX_WDTDS.C
Shows how to use the dsPIC30/dsPIC33/PIC24 watchdog timer

EX_X10.C
Communicates with a TW523 unit to read and send power line X10 codes

EX_EXTA.C
The XTEA encryption cipher is used to create an encrypted link between two PICs.

LIST OF INCLUDE FILES (in the DRIVERS directory)

2401.C
Serial EEPROM functions

2402.C
Serial EEPROM functions

2404.C
Serial EEPROM functions

2408.C
Serial EEPROM functions

24128.C
Serial EEPROM functions

2416.C
Serial EEPROM functions

24256.C
Serial EEPROM functions

339

PCD C Compiler Reference Manual April 2008

2432.C
Serial EEPROM functions

2465.C
Serial EEPROM functions

25160.C
Serial EEPROM functions

25320.C
Serial EEPROM functions

25640.C
Serial EEPROM functions

25C080.C
Serial EEPROM functions

68HC68R1
C Serial RAM functions

68HC68R2.C
Serial RAM functions

74165.C
Expanded input functions

74595.C
Expanded output functions

9346.C
Serial EEPROM functions

9356.C
Serial EEPROM functions

9356SPI.C
Serial EEPROM functions (uses H/W SPI)

9366.C
Serial EEPROM functions

AD7705.C
A/D Converter functions

AD7715.C
A/D Converter functions

340

AD8400.C
Digital POT functions

ADS8320.C
A/D Converter functions

ASSERT.H
Standard C error reporting

AT25256.C
Serial EEPROM functions

AT29C1024.C
Flash drivers for an external memory chip

CRC.C
CRC calculation functions

CE51X.C
Functions to access the 12CE51x EEPROM

CE62X.C
Functions to access the 12CE62x EEPROM

CE67X.C
Functions to access the 12CE67x EEPROM

CTYPE.H
Definitions for various character handling functions

DS1302.C
Real time clock functions

DS1621.C
Temperature functions

DS1621M.C
Temperature functions for multiple DS1621 devices on the same bus

DS1631.C
Temperature functions

DS1624.C
Temperature functions

DS1868.C
Digital POT functions

EXAMPLE PROGRAMS

341

PCD C Compiler Reference Manual April 2008

ERRNO.H
Standard C error handling for math errors

FLOAT.H
Standard C float constants

FLOATEE.C
Functions to read/write floats to an EEPROM

INPUT.C
Functions to read strings and numbers via RS232

1ISD4003.C
Functions for the ISD4003 voice record/playback chip

KBD.C
Functions to read a keypad

LCD.C
LCD module functions

LIMITS.H
Standard C definitions for numeric limits

LMX2326.C
PLL functions

LOADER.C
A simple RS232 program loader

LOCALE.H
Standard C functions for local language support

LTC1298.C
12 Bit A/D converter functions

MATH.H
Various standard trig functions

MAX517.C
D/A converter functions

MCP3208.C
A/D converter functions

NJU6355.C
Real time clock functions

342

EXAMPLE PROGRAMS

PCF8570.C
Serial RAM functions

SC28L19X.C
Driver for the Phillips external UART (4 or 8 port)

SETIMP.H
Standard C functions for doing jumps outside functions

STDDEF.H
Standard C definitions

STDIO.H
Not much here - Provided for standard C compatibility

STDLIB.H
String to number functions

STDLIBM.H
Standard C memory management functions

STRING.H
Various standard string functions

TONES.C
Functions to generate tones

TOUCH.C
Functions to read/write to Dallas touch devices

USB.H
Standard USB request and token handler code

USBN960X.C
Functions to interface to Nationals USBN960x USB chips

USB.C
USB token and request handler code, Also includes usb_desc.h and usb.h

X10.C
Functions to read/write X10 codes

343

SOFTWARE LICENSE AGREEMENT

ol
Lo

C Compiler

SOFTWARE LICENSE AGREEMENT

By opening the software diskette package, you agree to abide by the following provisions. If you
choose not to agree with these provisions promptly return the unopened package for a refund.

1. License- Custom Computer Services ("CCS") grants you a license to use the software program
("Licensed Materials") on a single-user computer. Use of the Licensed Materials on a network
requires payment of additional fees.

2. Applications Software- Derivative programs you create using the Licensed Materials identified
as Applications Software, are not subject to this agreement.

3. Warranty- CCS warrants the media to be free from defects in material and workmanship and
that the software will substantially conform to the related documentation for a period of thirty (30)
days after the date of your purchase. CCS does not warrant that the Licensed Materials will be free
from error or will meet your specific requirements.

4. Limitations- CCS makes no warranty or condition, either expressed or implied, including but not
limited to any implied warranties of merchantability and fitness for a particular purpose, regarding
the Licensed Materials.

Neither CCS nor any applicable licensor will be liable for an incidental or consequential damages,
including but not limited to lost profits.

5. Transfers- Licensee agrees not to transfer or export the Licensed Materials to any country other
than it was originally shipped to by CCS.

The Licensed Materials are copyrighted

© 1994-2007 Custom Computer Services Incorporated
All Rights Reserved Worldwide

P.O. Box 2452

Brookfield, Wl 53008

345

