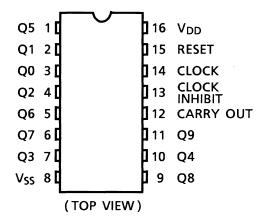
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC4017BP,TC4017BF

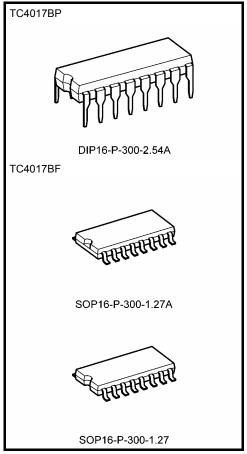

TC4017BP/TC4017BF Decade Counter/Divider

TC4017BP/BF is decimal Johnson counter consisting of 5 stage D-type flip-flop equipped with the decoder to convert the output to decimal

Depending on the number of count pulses fed to CLOCK or CLOCK INHIBIT one output among 10 output lines "Q0" through "Q9" becomes "H" level.

The counter advances its state at rising edge of CLOCK (CLOCK INHIBIT = "L") or falling edge of CLOCK INHIBIT (CLOCK = "H"). RESET input to "H" level resets the counter to Q0 = "H" and Q1 through Q9 = "L" regardless of CLOCK and CLOCK INHIBIT.

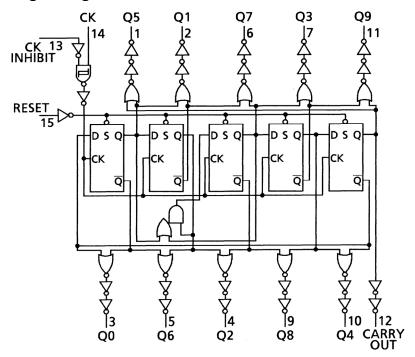
Pin Assignment

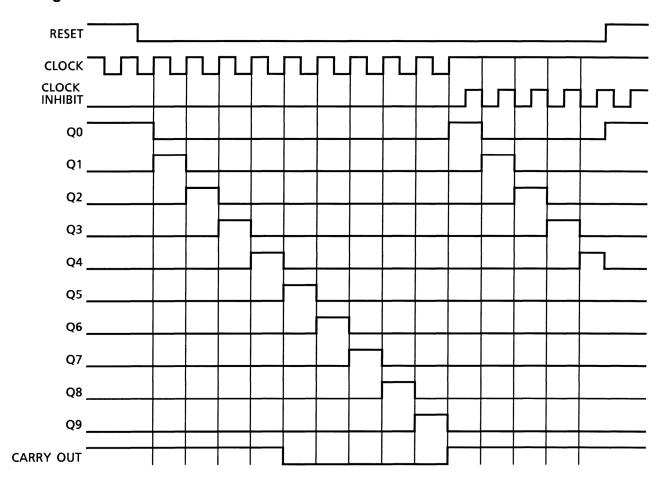

Truth Table

	Selected				
CLOCKA	CLOCK INHIBIT∆	RESET	Output		
*	*	Н	Q0		
*	Н	L	Qn (NC) Qn (NC) Qn + 1		
L	*	L			
	L	L			
\neg	L	L	Qn (NC)		
Н		L	Qn (NC)		
Н	\neg	L	Qn + 1		

Δ: Level change

*: Don't care


NC: No change carry out
$$\begin{cases} \text{"H"}.....Q0 \sim Q4 = \text{"H"} \\ \text{"L"}....Q5 \sim Q9 = \text{"H"} \end{cases}$$


Weight

DIP16-P-300-2.54A : 1.00 g (typ.) SOP16-P-300-1.27A : 0.18 g (typ.) SOP16-P-300-1.27 : 0.18 g (typ.)

Logic Diagram

Timing Chart

2

Absolute Maximum Ratings (Note)

Characteristics	Symbol	Rating	Unit
DC supply voltage	V_{DD}	V _{SS} - 0.5~V _{SS} + 20	V
Input voltage	V _{IN}	V _{SS} - 0.5~V _{DD} + 0.5	٧
Output voltage	V _{OUT}	V _{SS} - 0.5~V _{DD} + 0.5	٧
DC input current	I _{IN}	±10	mA
Power dissipation	P_{D}	300 (DIP)/180 (SOIC)	mW
Operating ambient temperature range	T _{opr}	-40~85	°C
Storage temperature range	T _{stg}	−65~150	°C

Note: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Recommended Operating Conditions (V_{SS} = 0 V) (Note)

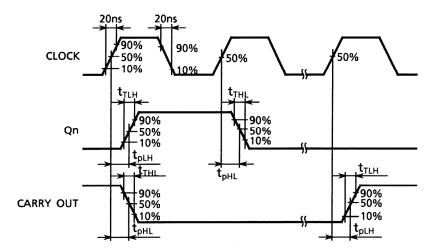
Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
DC supply voltage	V_{DD}	_	3	_	18	V
Input voltage	V _{IN}	_	0	_	V _{DD}	V

Note: The recommended operating conditions are required to ensure the normal operation of the device. Unused inputs must be tied to either VCC or GND.

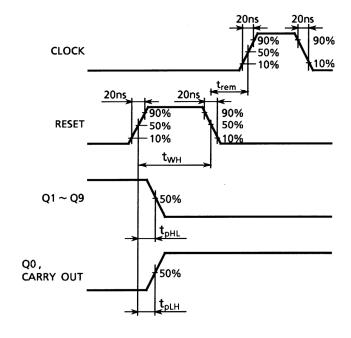
Static Electrical Characteristics ($V_{SS} = 0 V$)

Characteristics Symbol		Svm-	Test Condition		-40°C		25°C			85°C		11.7
				V _{DD} (V)	Min	Max	Min	Тур.	Max	Min	Max	Unit
				5	4.95	_	4.95	5.00	_	4.95	_	
High-level voltage	output	V _{OH}	$ I_{OUT} < 1 \mu A$ $V_{IN} = V_{SS}, V_{DD}$	10	9.95	_	9.95	10.00	_	9.95	_	V
			VIN - VSS, VDD	15	14.95	_	14.95	15.00	_	14.95	_	
			I _{OUT} < 1 μA	5	_	0.05	_	0.00	0.05	_	0.05	
Low-level voltage	output	V _{OL}	$V_{IN} = V_{SS}, V_{DD}$	10	_	0.05	_	0.00	0.05	_	0.05	V
_			VIIV — V35, VDD	15	_	0.05	_	0.00	0.05		0.05	
			V _{OH} = 4.6 V	5	-0.61	_	-0.51	-1.0	_	-0.42	_	
			V _{OH} = 2.5 V	5	-2.50	_	-2.10	-4.0	_	-1.70	_	mA
Output hig	gh current	IOH	V _{OH} = 9.5 V	10	-1.50	_	-1.30	-2.2	_	-1.10	_	
			V _{OH} = 13.5 V	15	-4.00	_	-3.40	-9.0	_	-2.80	_	
			$V_{IN} = V_{SS}, V_{DD}$									
		l _{OL}	V _{OL} = 0.4 V	5	0.61	_	0.51	1.5	_	0.42	_	mA
Output lov	v current		V _{OL} = 0.5 V	10	1.50	_	1.30	3.8	_	1.10	_	
Output lov	Vourient		V _{OL} = 1.5 V	15	4.00	_	3.40	15.0	_	2.80	_	
			$V_{IN} = V_{SS}, V_{DD}$									
		V _{IH}	V _{OUT} = 0.5 V, 4.5 V	5	3.5	_	3.5	2.75	_	3.5	_	٧
Input high	voltage		V _{OUT} = 1.0 V, 9.0 V	10	7.0	_	7.0	5.50	_	7.0	_	
inputnign	voitage	VIH	V _{OUT} = 1.5 V, 13.5 V	15	11.0	_	11.0	8.25	_	11.0	_	
			$ I_{OUT} < 1 \mu A$									
			V _{OUT} = 0.5 V, 4.5 V	5	_	1.5	_	2.25	1.5	_	1.5	V
Input low voltage	VIL	V _{OUT} = 1.0 V, 9.0 V	10	_	3.0	_	4.50	3.0	_	3.0		
input low voltage		VIL.	V _{OUT} = 1.5 V, 13.5 V	15	_	4.0	_	6.75	4.0	_	4.0	
			$ I_{OUT} < 1 \mu A$									
Input	"H" level	l _{IH}	V _{IH} = 18 V	18	_	0.1		10 ⁻⁵	0.1	_	1.0	μА
current	"L" level	I _Ι L	V _{IL} = 0 V	18	_	-0.1	_	-10 ⁻⁵	-0.1	_	-1.0	μΛ
			V V	5		5	_	0.005	5	_	150	
Quiescent current	Quiescent supply current		$V_{IN} = V_{SS}, V_{DD}$ (Note)	10	_	10	_	0.010	10	_	300	μА
			(140(e)	15		15	_	0.015	20	_	600	

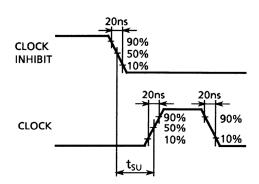
Note: All valid input combinations.


Dynamic Electrical Characteristics (Ta = 25°C, V_{SS} = 0 V, C_L = 50 pF)

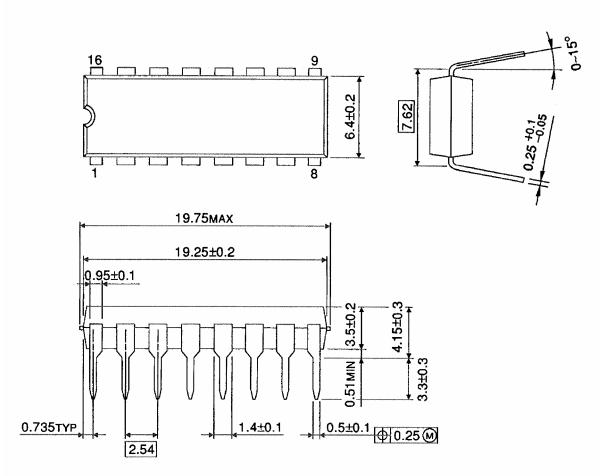
01 1 1 1		Test Condition	N.4:	_		Linit	
Characteristics	Symbol		V _{DD} (V)	Min	Тур.	Max	Unit
Output transition time			5	_	80	200	
Output transition time	t _{TLH}	_	10	_	50	100	ns
(low to high)			15	_	40	80	
Outrat transition time			5	_	80	200	
Output transition time	t _{THL}	_	10	_	50	100	ns
(high to low)			15	_	40	80	
Propagation dalay time			5	_	325	650	
Propagation delay time	t _{pLH}	_	10	_	135	270	ns
(CLOCK-Qn)	t _{pHL}		15	_	85	170	
Dronagation dalay time			5	_	280	600	
Propagation delay time	t _{pLH}	_	10	_	110	250	ns
(CLOCK-CARRY OUT)	t _{pHL}		15	_	75	160	
Propagation delay time			5	_	265	530	
RESET-Qn	t _{pLH}	_	10	_	115	230	ns
RESET-CARRY OUT	t _{pHL}		15	_	85	170	
	f _{CL}	_	5	2.5	6.0	_	
Max clock frequency			10	5.0	12.0	_	MHz
			15	6.7	13.5	_	
			5	_	85	200	
Min clock pulse width	t _W	_	10	_	40	90	ns
			15	_	35	60	
NAire modern consider			5	_	50	260	
Min pulse width	t _{WH}	_	10	_	20	110	ns
(RESET)			15	_	15	60	
May alack rise time	t _{rCL}	_	5	No limit			
Max clock rise time Max clock fall time			10				μS
Max Clock fall time	t _{fCL}		15				
Min out up time			5	_	30	230	
Min set-up time	tsu	_	10	_	15	100	ns
(CLOCK INHIBIT-CLOCK)			15	_	10	70	
Min removal time			5	_	-55	400	
	t _{rem}	_	10	_	-20	275	ns
(RESET-CLOCK)			15	_	-15	150	
Input capacitance	C _{IN}	_		_	5	7.5	pF


5 2006-06-01

Waveforms for Measurement of Dynamic Characteristics

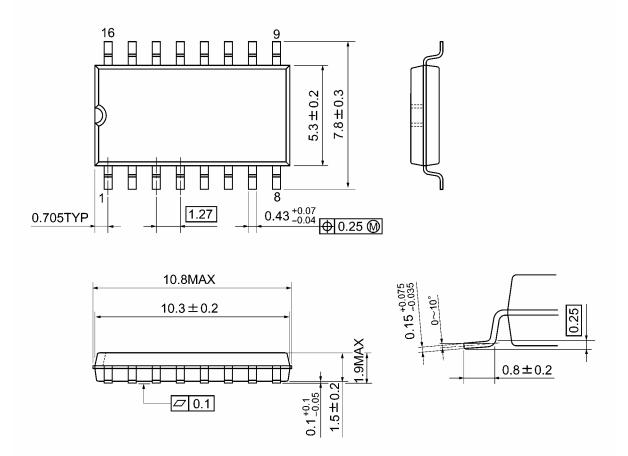

Waveform 1

Waveform 2

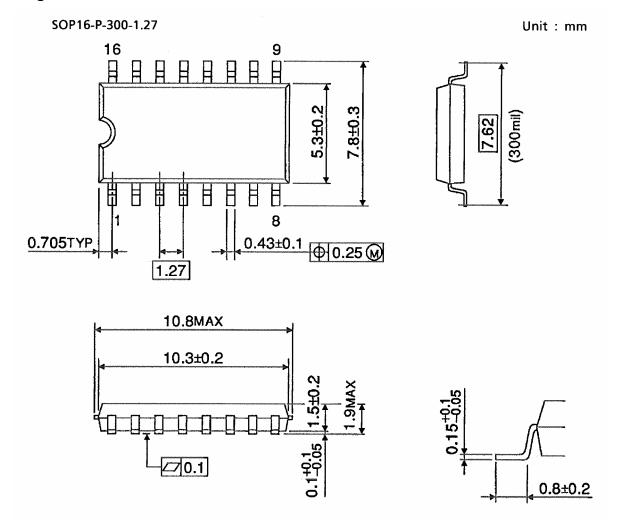


Waveform 3

Package Dimensions


DIP16-P-300-2.54A Unit: mm

Weight: 1.00 g (typ.)


Package Dimensions

SOP16-P-300-1.27A Unit: mm

Weight: 0.18 g (typ.)

Package Dimensions

Weight: 0.18 g (typ.)

Note: Lead (Pb)-Free Packages

DIP16-P-300-2.54A SOP16-P-300-1.27A

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patents or other rights of
 TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.

10