
 COP8™ MICROCONTROLLER

 COP8SAx Designer’s Guide

Literature Number 620894-001
January 1997

ii

REVISION RECORD

REVISION RELEASE
DATE SUMMARY OF CHANGES

-001 1/97 First Release

PREFACE

This manual is written with the intention to serve as a Designer’s Guide for those who
are considering to use a microcontroller from National’s COP8SAx family of devices.

Chapter 1, MICROCONTROLLER BASICS, reviews microcontroller basics, including
definitions, building blocks, operation, applications, and programming. Those who are al-
ready familiar with microcontrollers can skip this chapter.

Chapter 2, COP8SAx FAMILY, provides a detailed overview of the COP8SAx family of
devices. It describes the features, architecture, instruction set, and electrical character-
istics. For more detailed information, refer to the COP8 Feature Family User’s Manual.

Chapter 3, DEVELOPMENT TOOLS, describes the range of development tools that are
available for developing and testing application software that is run on the COP8SAx mi-
crocontroller.

Chapter 4, COP8SAx APPLICATION IDEAS, provides an overview of some design exam-
ples using the COP8SAx microcontroller. Within these examples, the users can find ap-
plication hints that may be useful in implementing a design.

The information contained in this manual is for reference only and is subject to change
without notice.

No part of this document may be reproduced in any form or by any means without the
prior written consent of National Semiconductor Corporation.

COP8, MICROWIRE/PLUS and WATCHDOG are trademarks of National Semiconductor Corporation.
iii

iv

CONTENTS
Chapter 1 MICROCONTROLLER BASICS
1.1 WHAT IS A MICROCONTROLLER? . 1-1

1.1.1 CPU . 1-1
1.1.2 Program Memory . 1-1
1.1.3 Data Memory . 1-1
1.1.4 Timing . 1-1
1.1.5 Inputs/Outputs . 1-1

1.2 WHAT DOES A MICROCONTROLLER REPLACE? 1-2
1.3 WHAT ARE MICROCONTROLLER APPLICATIONS? 1-3
1.4 WHAT IS THE DIFFERENCE BETWEEN A MICROCONTROLLER

AND A MICROPROCESSOR? . 1-6
1.5 WHAT IS THE ARCHITECTURE OF A MICROCONTROLLER. 1-6

1.5.1 Von Neumann Architecture . 1-6
1.5.2 Harvard Architecture . 1-7

1.6 HOW DOES A MICROCONTROLLER OPERATE? 1-7
1.7 DESCRIPTION OF MICROCONTROLLER BUILDING BLOCKS 1-9

1.7.1 Program Memory . 1-9
1.7.2 Data Memory . 1-10
1.7.3 Microcontroller CPU . 1-12
1.7.4 Timing . 1-15
1.7.5 Oscillator Circuits . 1-16
1.7.6 Instruction Set . 1-19
1.7.7 Programming . 1-20

Chapter 2 COP8SAx7 MICROCONTROLLER
2.1 INTRODUCTION . 2-1
2.2 KEY FEATURES . 2-1

2.2.1 CPU Features . 2-2
2.2.2 Peripheral Features . 2-3
2.2.3 I/O Features . 2-3
2.2.4 Fully Static CMOS Design . 2-3
2.2.5 Temperature Ranges . 2-3
2.2.6 Development Support . 2-3

2.3 BLOCK DIAGRAM. 2-4
2.4 ARCHITECTURE. 2-4
2.5 PACKAGING/PIN EFFICIENCY . 2-4
2.6 CONNECTION DIAGRAMS . 2-5

2.6.1 ORDERING INFORMATION . 2-7
2.7 PIN DESCRIPTIONS. 2-8
2.8 FUNCTIONAL DESCRIPTION. 2-11

2.8.1 CPU Registers . 2-11
2.8.2 Program Memory . 2-12
2.8.3 Data Memory . 2-12
2.8.4 ECON (EPROM Configuration) Register 2-13
2.8.5 User Storage Space In EPROM . 2-13
2.8.6 OTP Security . 2-14
 CONTENTS v

2.8.7 Reset . 2-15
2.8.8 Oscillator Circuits . 2-19
2.8.9 Control Registers . 2-21

2.9 TIMERS. 2-23
2.9.1 Timer T0 (IDLE Timer) . 2-23
2.9.2 Timer T1 . 2-23

2.10 TIMER CONTROL FLAGS . 2-27
2.11 POWER SAVING FEATURES . 2-28

2.11.1 HALT Mode . 2-28
2.11.2 IDLE Mode . 2-29

2.12 MULTI-INPUT WAKEUP . 2-31
2.13 INTERRUPTS. 2-33

2.13.1 Introduction . 2-33
2.13.2 Maskable Interrupts . 2-34
2.13.3 VIS Instruction . 2-36
2.13.4 Non-maskable Interrupt . 2-41
2.13.5 Port L Interrupts . 2-42
2.13.6 Interrupt Summary . 2-42

2.14 WATCHDOG/CLOCK MONITOR . 2-43
2.14.1 Clock Monitor . 2-44
2.14.2 WATCHDOG/Clock Monitor Operation 2-44
2.14.3 WATCHDOG and Clock Monitor Summary 2-45
2.14.4 Detection of Illegal Conditions . 2-46

2.15 MICROWIRE/PLUS . 2-47
2.15.1 MICROWIRE/PLUS Operation . 2-48

2.16 MEMORY MAP. 2-52
2.17 INSTRUCTION SET . 2-54

2.17.1 Introduction . 2-54
2.17.2 Instruction Features . 2-54
2.17.3 Addressing Modes . 2-54
2.17.4 Instruction Types . 2-60

2.18 DETAILED FUNCTIONAL DESCRIPTIONS OF INSTRUCTIONS . . 2-62
2.18.1 ADC— Add with Carry . 2-64
2.18.2 ADD — Add . 2-65
2.18.3 AND — And . 2-66
2.18.4 ANDSZ — And, Skip if Zero . 2-67
2.18.5 CLR — Clear Accumulator . 2-68
2.18.6 DCOR — Decimal Correct . 2-69
2.18.7 DEC — Decrement Accumulator . 2-70
2.18.8 DRSZ REG# — Decrement Register and Skip

if Result is Zero . 2-71
2.18.9 IFBIT — Test Bit . 2-72
2.18.10 IFBNE # — If B Pointer Not Equal . 2-73
2.18.11 IFC — Test if Carry . 2-74
2.18.12 IFEQ — Test if Equal . 2-75
2.18.13 IFGT — Test if Greater Than . 2-76
2.18.14 IFNC — Test If No Carry . 2-77
2.18.15 IFNE — Test If Not Equal . 2-78
2.18.16 INC — Increment Accumulator . 2-79
2.18.17 INTR — Interrupt (Software Trap) . 2-80
vi CONTENTS

2.18.18 JID — Jump Indirect . 2-81
2.18.19 JMP — Jump Absolute . 2-82
2.18.20 JMPL — Jump Absolute Long . 2-83
2.18.21 JP — Jump Relative . 2-84
2.18.22 JSR — Jump Subroutine . 2-85
2.18.23 JSRL — Jump Subroutine Long . 2-86
2.18.24 LAID — Load Accumulator Indirect 2-87
2.18.25 LD — Load Accumulator . 2-88
2.18.26 LD — Load B Pointer . 2-90
2.18.27 LD — Load Memory . 2-91
2.18.28 LD — Load Register . 2-92
2.18.29 NOP — No Operation . 2-93
2.18.30 OR — Or . 2-94
2.18.31 POP — Pop Stack . 2-95
2.18.32 PUSH — Push Stack . 2-96
2.18.33 RBIT — Reset Memory Bit . 2-97
2.18.34 RC — Reset Carry . 2-98
2.18.35 RET — Return from Subroutine . 2-99
2.18.36 RETI — Return from Interrupt . 2-100
2.18.37 RETSK — Return and Skip . 2-101
2.18.38 RLC — Rotate Accumulator Left Through Carry 2-102
2.18.39 RPND — Reset Pending . 2-103
2.18.40 RRC — Rotate Accumulator Right Through Carry 2-104
2.18.41 SBIT — Set Memory Bit . 2-105
2.18.42 SC — Set Carry . 2-106
2.18.43 SUBC — Subtract with Carry . 2-107
2.18.44 SWAP — Swap Nibbles of Accumulator 2-108
2.18.45 VIS — Vector Interrupt Select . 2-109
2.18.46 X — Exchange Memory with Accumulator 2-110
2.18.47 XOR — Exclusive Or . 2-112
2.18.48 Register and Symbol Definition . 2-113
2.18.49 Instruction Set Summary . 2-114
2.18.50 Instruction Execution Time . 2-115
2.18.51 Opcode Table . 2-117

2.19 PROGRAMMING EXAMPLES . 2-118
2.19.1 Clear RAM . 2-118
2.19.2 Binary/BCD Arithmetic Operations 2-118
2.19.3 Binary Multiplication . 2-121
2.19.4 Binary Division . 2-122

2.20 ELECTRICAL CHARACTERISTICS . 2-125
2.20.1 DC Electrical Characteristics (0˚C ≤ TA ≤ +70˚C unless

otherwise specified) . 2-125
2.20.2 AC Electrical Characteristics (0˚C ≤ TA ≤ +70˚C unless

otherwise specified) . 2-127
2.20.3 DC Electrical Characteristics (–40˚C ≤ TA ≤ +85˚C unless

otherwise specified) . 2-128
2.20.4 AC Electrical Characteristics (–40˚C ≤ TA ≤ +85˚C unless

otherwise specified) . 2-130
 CONTENTS vii

2.20.5 DC Electrical Characteristics (–40˚C ≤ TA ≤ +125˚C unless
otherwise specified) . 2-131

2.20.6 AC Electrical Characteristics (–40˚C ≤ TA ≤ +125˚C unless
otherwise specified) . 2-133

2.21 ESD/EMI CONSIDERATIONS . 2-134
2.22 INPUT PROTECTION . 2-134
2.23 ELECTROMAGNETIC INTERFERENCE (EMI)

CONSIDERATIONS. 2-136
2.23.1 Introduction . 2-136
2.23.2 Emission Predictions . 2-136
2.23.3 Board Layout . 2-137
2.23.4 Decoupling . 2-138
2.23.5 Output Series Resistance . 2-139
2.23.6 Oscillator Control . 2-139
2.23.7 Mechanical Shielding . 2-139

2.24 EMI REDUCTION ON THE COP8SAx7 . 2-140
2.24.1 Silicon Design Changes to Achieve Low EMI 2-141
2.24.2 Conclusion . 2-141

Chapter 3 DEVELOPMENT SUPPORT
3.1 SUMMARY . 3-1
3.2 iceMASTER (IM) IN-CIRCUIT EMULATION . 3-1
3.3 IceMASTER DEBUG MODULE (DM) . 3-3
3.4 IceMASTER EVALUATION PROGRAMMING UNIT (EPU) 3-5

3.4.1 Getting Started With the EPU . 3-7
3.5 COP8 ASSEMBLER/LINKER SOFTWARE DEVELOPMENT

TOOL KIT . 3-8
3.6 COP8 C COMPILER. 3-9
3.7 INDUSTRY WIDE OTP / EPROM PROGRAMMING SUPPORT 3-9
3.8 AVAILABLE LITERATURE . 3-11
3.9 DIAL-A-HELPER SERVICE . 3-11
3.10 DIAL-A-HELPER BBS VIA A STANDARD MODEM 3-12
3.11 NATIONAL SEMICONDUCTOR ON THE WORLDWIDE WEB 3-12
3.12 CUSTOMER RESPONSE CENTER . 3-12

Chapter 4 COP8SAx7 APPLICATION IDEAS
4.1 TESTING A REMOTE NORMALLY OPEN SWITCH FOR

CONNECTION . 4-2
4.2 MICROWIRE/PLUS INTERFACE . 4-4

4.2.1 MICROWIRE/PLUS Master/Slave Protocol 4-4
4.2.2 NM93C06-COP8SAx7 Interface . 4-5

4.3 TIMER APPLICATIONS . 4-10
4.4 TIMER PWM APPLICATIONS . 4-10

4.4.1 Rudimentary D-A Converter . 4-10
4.4.2 PWM Motor Control . 4-10
4.4.3 AC Motor TRIAC Control . 4-12
4.4.4 Timer Capture Example . 4-13
4.4.5 External Event Counter Example . 4-15

4.5 TRIAC CONTROL . 4-17
viii CONTENTS

4.6 EXTERNAL POWER WAKEUP CIRCUIT. 4-20
4.7 BATTERY-POWERED WEIGHT MEASUREMENT 4-22
4.8 ZERO CROSS DETECTION . 4-23
4.9 INDUSTRIAL TIMER . 4-24
4.10 COP8SAA7 ELECTRONIC KEY APPLICATIONS 4-26

4.10.1 Typical Applications . 4-27
4.10.2 Flexibility . 4-27
4.10.3 Low Cost . 4-27
4.10.4 Small Transmitter Size . 4-27
4.10.5 Low-Cost Version for Rolling Code . 4-27
4.10.6 Receiver Circuit . 4-27

4.11 COP8SAx7 DIRECT LED DISPLAY DRIVE APPLICATION. 4-29
4.11.1 Improved Brightness . 4-29

4.12 CORDLESS PHONE APPLICATION . 4-32
4.12.1 Typical Application Requirements . 4-33

4.13 COP8SAC7 BASED AUTOMATED SECURITY/MONITORING
APPLICATIONS . 4-35
4.13.1 Typical Application Requirements . 4-36

4.14 COP8SAC7 Keyboard Applications . 4-38
4.14.1 Typical Application Requirements . 4-39
4.14.2 Typical Applications . 4-40

4.15 COP8SAA7 CLOSED LOOP TEMPERATURE CONTROL
APPLICATIONS . 4-41
4.15.1 Primary System considerations: . 4-41
4.15.2 Typical Requirements for Motor Control Systems 4-42

4.16 AUTOMATIC WASHING MACHINE. 4-43
4.16.1 Reliability and Safety Features . 4-43
4.16.2 LED or LCD Display Units . 4-43
4.16.3 Zero Cross Detection . 4-43
4.16.4 Other I/O Functions . 4-43
4.16.5 External EEPROM Interface . 4-44
4.16.6 Software Considerations . 4-45

4.17 AIR CONDITIONER CONTROLLER . 4-47
4.17.1 Temperature Detection . 4-47
4.17.2 Keypad Scanning . 4-48
4.17.3 Over-Voltage and Under-Voltage Detection 4-48
4.17.4 Drive Circuits for Fan, Compressor and Buzzer 4-48

Appendix A PHYSICAL DIMENSIONS

Index
 CONTENTS ix

Figures
Figure 1-1 Microcontroller General Block Diagram. 1-2
Figure 1-2 Microcontroller Operation . 1-8
Figure 1-3 Program Memory Section . 1-9
Figure 1-4 Separate Data and Code Space . 1-11
Figure 1-5 Adding Two Numbers Using Accumulator Based Machine. 1-13
Figure 1-6 Adding Two Numbers Using Register Based Machine 1-14
Figure 1-7 Clock Generation . 1-16
Figure 1-8 External Oscillator. 1-16
Figure 1-9 R/C Oscillator . 1-16
Figure 1-10 Phase Shift Oscillator . 1-17
Figure 2-1 COP8SAx7 Block Diagram . 2-4
Figure 2-2 Connection Diagrams. 2-6
Figure 2-3 Part Numbering Scheme . 2-6
Figure 2-4 I/O Port Configurations . 2-9
Figure 2-5 I/O Port Configurations–Output Mode . 2-10
Figure 2-6 I/O Port Configurations–Input Mode . 2-11
Figure 2-7 Reset Logic . 2-15
Figure 2-8 Reset Circuit Using External Reset . 2-16
Figure 2-9 Dddesired Reset Response Time . 2-17
Figure 2-10 Reset Timing (Power-On Reset enabled) With VCC Tied to RESET . . 2-18
Figure 2-11 Reset Circuit Using Power-On Reset . 2-18
Figure 2-12 Crystal Oscillator . 2-19
Figure 2-13 External Oscillator. 2-20
Figure 2-14 R/C Oscillator . 2-21
Figure 2-15 Timer in PWM Mode . 2-24
Figure 2-16 Timer in External Event Counter Mode . 2-25
Figure 2-17 Timer in Input Capture Mode . 2-26
Figure 2-18 Wakeup From HALT . 2-29
Figure 2-19 Wakeup From IDLE. 2-30
Figure 2-20 Multi-Input Wake Up Logic. 2-31
Figure 2-21 Keyboard Scanning . 2-32
Figure 2-22 Interrupt Block Diagram . 2-34
Figure 2-23 VIS Operation. 2-38
Figure 2-24 VIS Flow Chart . 2-39
Figure 2-25 MICROWIRE/PLUS Application . 2-47
Figure 2-26 MICROWIRE/PLUS SPI Mode Interface Timing,

Normal SK Mode, SK Idle Phase being Low . 2-50
Figure 2-27 MICROWIRE/PLUS SPI Mode Interface Timing,

Alternate SK Mode, SK Idle Phase being Low. 2-50
Figure 2-28 MICROWIRE/PLUS SPI Mode Interface Timing,

Alternate SK Mode, SK Idle Phase being High 2-51
Figure 2-29 MICROWIRE/PLUS SPI Mode Interface Timing,

Normal SK Mode, SK Idle Phase being High. 2-51
Figure 2-30 MICROWIRE/PLUS Timing . 2-133
Figure 2-31 Ports L/C/G/F Input Protection (Except G6). 2-134
Figure 2-32 Diode Equivalent of Input Protection . 2-134
Figure 2-33 On-Chip ESD Detection/Protection Circuit . 2-135
Figure 2-34 EMI Improvements . 2-140
Figure 2-35 Block diagram of EMI Circuitry . 2-142
x CONTENTS

Figure 3-1 COP8 iceMASTER Environment . 3-2
Figure 3-2 COP8-DM Environment . 3-3
Figure 3-3 EPU-COP8 Tool Environment. 3-5
Figure 4-1 Test Circuit. 4-2
Figure 4-2 Flow Chart . 4-2
Figure 4-3 MICROWIRE/PLUS Sample Protocol Timing . 4-4
Figure 4-4 NM93C06-COP8SAx7 Interface . 4-5
Figure 4-5 Timer PWM Applications . 4-10
Figure 4-6 PWM Motor Control. 4-12
Figure 4-7 Timer Capture Application . 4-14
Figure 4-8 Power Wakeup Using An NPN Transistor . 4-20
Figure 4-9 Power Wakeup Using Diodes And Resistors . 4-21
Figure 4-10 Battery-powered Weight Measurement . 4-22
Figure 4-11 Industrial Timer Application. 4-24
Figure 4-12 Transmitter in Single Cell Operation . 4-26
Figure 4-13 Rolling Code IR Transmitter Using External EEPROM 4-28
Figure 4-14 Rolling Code IR/RF Transmitter Using One-Chip EEPROM 4-28
Figure 4-15 LED Direct Drive Using COP8SAx7. 4-29
Figure 4-16 LED Drive. 4-30
Figure 4-17 Four-Way Multiplexed Direct LED Drive. 4-31
Figure 4-18 Handset Block Diagram. 4-32
Figure 4-19 Base Block Diagram. 4-33
Figure 4-20 Example of a Security/Monitoring System . 4-35
Figure 4-21 Laptop/Notebook Keyboard Schematics . 4-38
Figure 4-22 Automotive Closed Loop Air Control . 4-42
Figure 4-23 Automatic Washing Machine Control Model Using COP8SAC7. 4-44
Figure 4-24 Main Program Flow . 4-45
Figure 4-25 Interrupt Routine Flow . 4-46
Figure 4-26 Block Diagram of Air Conditioning Control Module 4-47
Figure 4-27 Temperature Detection Circuit . 4-48
Figure 4-28 Keypad Scanning . 4-49
Figure 4-29 Over-Voltage and Under-Voltage Detection Circuit 4-49
Figure 4-30 Drives Circuits for Fan, Compressor and Buzzer. 4-50

Tables
Table 1-1 Microcontroller Features/Applications Matrix . 1-4
Table 2-1 Program/Data Memory Sizes. 2-12
Table 2-2 Oscillator Option . 2-19
Table 2-3 Crystal Oscillator Configuration, TA = 25˚C, VCC = 5V 2-19
Table 2-4 R/C Oscillator Configuration, -40˚C to +85˚C, VCC = 4.5V to 5.5V,

OSC Freq Variation of ± 35% . 2-20
Table 2-5 Interrupt Vector Table. 2-37
Table 2-6 WATCHDOG Service Register (WDSVR). 2-43
Table 2-7 WATCHDOG Service Window Select . 2-44
Table 2-8 WATCHDOG Service Actions . 2-45
Table 2-9 MICROWIRE/PLUS Master Mode Clock Select 2-48
Table 2-10 MICROWIRE/PLUS Mode Settings . 2-49
Table 2-11 MICROWIRE/PLUS Shift Clock Polarity and Sample/Shift Phase . . 2-50
Table 2-12 Electric Field Calculation Results. 2-137
 CONTENTS xi

xii CONTENTS

Chapter 1

MICROCONTROLLER BASICS

1.1 WHAT IS A MICROCONTROLLER?

Microcontroller is an highly integrated single-chip microcomputer. Some of the key
elements of a microcontroller include a CPU to process information, program memory to
store instructions, data memory to store information, system timing, and input/output
sections to communicate with the outside world.

1.1.1 CPU

Central Processing Unit (CPU) is the heart of a microcontroller where all of the
arithmetic and logical operations are performed. This is the calculator part of the
microcontroller. The CPU gets program instructions from the program memory.

1.1.2 Program Memory

Program Memory contains a set of CPU instructions organized into a particular sequence
to do a particular task. Program Memory is referred to as Read Only Memory (ROM) or
OTP/EPROM. OTP or “One-Time Programmable” can be programmed only once and the
program is stored permanently, even when the microcontroller power is turned off.
Program memory enables the microcontroller to immediately begin running its program
as soon as it is turned on.

1.1.3 Data Memory

A form of memory that can be both read and written is required for the program stack,
data storage, and program variables. This type of memory is commonly referred to as
Random Access Memory (RAM). Each memory location has a unique address which the
CPU uses to find the information it needs.

A typical microcontroller contains both ROM and RAM type memory.

1.1.4 Timing

Microcontrollers use a timing signal, called a clock, to provide a timing reference for
program execution, and to determine when data should be written to or read from
memory. It also provides timing for on-board peripherals.

1.1.5 Inputs/Outputs

Microcontrollers require interface sections to communicate with external circuitry. Input
ports allow data and status conditions to be read into the microcontroller while the
MICROCONTROLLER BASICS 1-1

output ports allow the microcontroller to affect external logic systems. The interfaces
between the microcontroller and the outside world vary with the application, and may
include display units, keypads, switches, sensors, relays, motors, and so on.

1.2 WHAT DOES A MICROCONTROLLER REPLACE?

A microcontroller can do the work of many different types of logic circuits. Discrete logic
circuits are permanently wired to perform the function they were designed to do. If the
design requirements are changed slightly, an entire printed circuit board or many boards
may have to be redesigned to accommodate the change. With a microcontroller
performing the logic functions, most changes can be made simply by reprogramming the
microcontroller. That is, the software (program) is changed rather than the hardware
(logic circuits). This makes the microcontroller a very attractive building block in any
digital system. With a microcontroller-based design, the designer can simply add a
feature set to the product with minimal software/hardware changes.

Microcontrollers can also be used to replace analog circuitry. Special interface circuits
can be used to enable a microcontroller to input and output analog signals.

There are also situations where the designer considers using an ASIC (Application-
Specific Integrated Circuit) as logic replacement for control applications.
Microcontrollers can efficiently be used as single-chip replacements in such applications
with significantly lower development cost and fast time to market.

One of the great benefits of the electronic revolution is that it brought intelligence, and
with it adaptability, to traditional electro-mechanical devices. By continuously gathering
information on the performance of the device, its operating environment, and other
factors, microcontroller intelligence can determine a new and proper strategy and then
command the surrounding device to react. The most important of these are the new

Figure 1-1 Microcontroller General Block Diagram

Program
Memory

CPU

Data
Memory

Timing

I/O
1-2 MICROCONTROLLER BASICS

intelligent applications which are adapted in real time to changing conditions, such as
the iron that senses when the cloth beneath it has reached the proper temperature and
moisture, or the vacuum cleaner that adjusts its speed and brush height automatically
to changes in carpet nap.

1.3 WHAT ARE MICROCONTROLLER APPLICATIONS?

Microcontrollers applications are more or less limited only by the user imagination. So
pervasive has been this technological revolution that we barely notice it anymore.
Microcontrollers now reside in our televisions, keyboards, modems, printers,
wristwatches, telephones, cars, household appliances, and every other part of home and
work life. The market for microcontrollers continues to expand rapidly, encompassing a
wide range of consumer, industrial, automotive, and telecommunications applications. In
fact, a typical home today contains over 35 microcontroller-based products — a figure that
some sources estimate could grow to almost 250 by the year 2000.

The emergence of new low cost microcontrollers offers a wealth of benefits for today's
consumer applications and represent an entirely new profit source for manufacturers. In
the past, the high cost of electronics limited the use of microcontrollers to "high tech"
applications such as televideo recorders, stereo systems, and high-end durable goods
such as washing machines. Today, the application base has broadened to include systems
such as coffee machines, irons, shavers, and cleaners, where the introduction of
electronics helps to provide product differentiation and allows the inclusion safety
features.
MICROCONTROLLER BASICS 1-3

Table 1-1 Microcontroller Features/Applications Matrix (Sheet 1 of 3)

Market Segment Applications Applications
Features/Functions

Microcontroller
Features Required

Consumer Children
Toys and
Games

Basketball/Baseball
Games

Children Electronic
Toys

Darts
Throws
Juke Box
Pinball
Laser Gun

Battery Driven
Replacing Discrete with

Low Cost
Driving

Piezo/Speaker/LEDs
Directly

Very Cost Sensitive

Very Low Price
Low Power Consumption
Wide Voltage Range
High-Current Outputs
Small Packages

Electronic
Audio Items

Audio Greeting Cards
Electronic Musical

Equipment

Battery Driven
Tone Generation
Low Power

Wide Voltage Range
Low Power Consumption
Efficient Table Lookup
Flexible Timer

Electronic
Appliances
and Tools

Small Appliances:
Irons
Coffee Makers
Digital Scales
Microwave Ovens
Cookers
Food Processors
Blenders

Low Cost Power Supply
Temp Measurement
Safety Features
Noise Immunity
Driving

LEDs/Relays/Heating
Elements

Brown Out Detection
On-Board Comparator
High-Current Outputs
Watchdog/Software

Interrupt
Schmitt Trigger Inputs
16-Bit PWM Timer

Household Appliances:
Oven Control
Dishwasher
Washing Machine/Dryer
Vacuum Cleaner
Electronic Heater
Electronic Home

Control (Doorbell,
Light Dimmer,
Climate)

Sewing Machine

Rely on Hard-Wire Relay
Circuits, Timers,
Counters, Mechanical
Sequence Controllers

Temp Control
Noise Immunity
Safety Features
Timing Control
Main Driven

Brown Out Detection
On-Board Comparator
On-Board A/D
Watchdog/Soft Interrupt
Schmitt Trigger Inputs
Flexible Timers
PWM Outputs
High-Current Outputs
Safety Features

Portable,
Handheld,
Battery
Powered

Scales
Multimeters (portable)
Electronic Key
Laptop/Notebook

Keyboard
Mouse
Garage Door Opener
TV/Electronic Remote

Control
Portable or Retail

Point-Of-Sale Device
Jogging Monitor
Smart Cards

Battery Driven
Minimal Power

Consumption
Low Voltage
Sensing
Measurement
Standby Mode
Flexible Package

Offerings
Small Physical Size

Low Voltage Operation
Low Power Consumption
Wide Voltage Range
Power Saving Modes
Multi-Input Wakeup
On-Board Comparator
Small Packages
1-4 MICROCONTROLLER BASICS

Personal Communications Cordless Phone
(base/handset)

Phone Dialer
Answering Machine
Feature Phone
PBX Card
CB Radios/Digital

Tuners
Cable Converter

Low Power
Timing
Serial Interfaces
Low Voltage
Tone Dialing
Battery Saving Functions
Small Physical Size

Low Current Drain
Low Voltage Operation
Standby Mode
UART
Serial Synchronous

Interface
16-Bit Timers
Schmitt Trigger Inputs
LED Direct Drive
Sufficient I/O in Small

Packages

Medical Monitors Thermometer
Pressure Monitors
Various Portable

Monitors

Battery Driven
Sensing/Measurement
Data Transmission
Low Power
Low Voltage

On-Board Comparator (low
cost A/D)

16-Bit Timer
Low Power Consumption
Low Voltage Operation

Medical
Equipment

Bed-side Pump/Timers
Ultrasonic Imaging

System
Analyzers (chemical,

data)
Electronic Microscopes

Monitoring Data
Data Transmission
Timing

Serial Interface
A/D
16-Bit Timers

Industrial Motion
Control

Motor Control
Power Tools

Motor Speed Control
Noisy Environment
Timing Control

Flexible PWM Timers
Schmitt Trigger Inputs
High-Current Outputs

Security/
Monitoring
System

Security Systems
Burglar Alarms
Remote Data

Monitoring Systems
Emergency Control

Systems
Security Switches

Data Transmission
Monitoring (scan inputs

from sensors)
Keypad Scan
Timing
Diagnostic
Data Monitoring
Drive Alarm Sounders
Interface to Phone

System
Standby Mode

UART
Flexible 16-Bit PWM

Timers
Flexible I/O
Single Stop A/D Capability
Power Saving Modes

(HALT, Multi-Input
wakeup)

Serial Synchronous
Interface

Misc. Switch Controls
(elevator, traffic,
power switches)

Sensing Control
Systems/Displays

Pressure Control
(scales)

Metering (utility,
monetary, industrial)

Lawn Sprinkler/Lawn
Mowers

Taxi Meter
Coin Controls
Industrial Timers
Temperature Meters
Gas Pump
Gas/Smoke Detectors

Timing/Counting
Sensing
Measurement

Generic Microcontroller

Table 1-1 Microcontroller Features/Applications Matrix (Sheet 2 of 3)

Market Segment Applications Applications
Features/Functions

Microcontroller
Features Required
MICROCONTROLLER BASICS 1-5

1.4 WHAT IS THE DIFFERENCE BETWEEN A MICROCONTROLLER AND A
MICROPROCESSOR?

The broad category of microcomputers is divide into two areas: microcontrollers and
microprocessors. This distinction is made because these are really two different types of
devices. Microcontrollers generally have a dual-bus architecture rather than the memory
mapped von Neumann architecture common in most microprocessors. For control
applications, microcontrollers are generally more memory efficient than microprocessors.
The microcontroller instruction set is quite different in nature than the microprocessor
instruction set. Microcontrollers are invariably single-chip devices and microprocessors
are, generally, multi-chip devices. Microcontrollers dominate the microcomputer
marketplace in terms of volume. To be sure, the division between microcontroller and
microprocessor is sometimes blurred but the distinction is real nonetheless.

1.5 WHAT IS THE ARCHITECTURE OF A MICROCONTROLLER

Microcontrollers have two types of architecture: Von Neumann or Harvard.

1.5.1 Von Neumann Architecture

The Von Neumann architecture was named after John Von Neumann, an early pioneer
in the computer field at Princeton. In this architecture, a CPU and memory are
interconnected by a common address bus and data bus. Positive aspects of this approach
include convenient access to tables stored in program memory (ROM or OTP/EPROM)
and a more orthogonal instruction set. The address bus is used to identify which memory
location is being accessed, while the data bus is used to transfer information either from
the CPU to the selected memory location or vice versa. Von Neumann was the first to
realize that his architecture model could have the memory serve as either program
memory or data memory. In earlier computers (both electronic and electromechanical),
the program store (often a program patchboard) had been completely separate from the
data store (often a bank of vacuum tubes or relays).

Automotive Radio/Tape Deck
Controls

Window, Seat, Mirror,
and Door Controls

Climate Controls
Headlight/Antenna
Power Steering
Anti Theft
Slave Controllers

Timing
Motion Control
Display Control
Soft Runaway/Trap

Recovery (safety
considerations)

EMI/Noise Immunity
Serial Interfaces
Standby Modes
Wide Temp Range

Flexible PWM Timers
Power Saving Modes
Multi-Input Wakeup
WATCHDOG Software

Trap
UART
CAN Interface
Special Features for

Dashboard
Control (counters, capture

modules, MUL/DIV)
Reduced EMI
Wide Temp Range

Table 1-1 Microcontroller Features/Applications Matrix (Sheet 3 of 3)

Market Segment Applications Applications
Features/Functions

Microcontroller
Features Required
1-6 MICROCONTROLLER BASICS

The single address bus of the Von Neumann architecture is used sequentially to access
instructions from program memory and then execute the instructions by retrieving data
from and/or storing data to the data memory. This means that an instruction fetch cannot
overlap a data access from memory.

The obvious advantage of a Von Neumann architecture is the single address bus and
single data bus linking memory with the CPU. A drawback is that code can be
inadvertently executed from data memory, opening up the possibility for undesired
operation due to corruption of the program counter or other registers.

1.5.2 Harvard Architecture

The Harvard architecture was named after the Harvard Mark 1 and the early
electromechanical computers developed at Harvard by Howard Aiken, another computer
pioneer. This architecture has separate program memory and data memory with a
separate address bus and data bus for each memory. One of the benefits of the Harvard
architecture is that the operation of the microcontroller can be controlled more easily in
the event of corrupted program counter. A modified (enhanced) Harvard architecture
allows accessing data tables from program memory. This is very important with modern
day microcomputers, since the program memory is usually ROM or OTP/EPROM) while
the data memory is RAM. Consequently, data tables usually need to be in program
memory so that they are not lost when the microcontroller is powered down.

The advantage of a modified Harvard architecture is that instruction fetch and memory
data transfers can be overlapped with a two stage pipeline, which means the next
instruction can be fetched from program memory while the current instruction is being
executed using data memory. A drawback is that special instructions are required to
access RAM and ROM (or OTP/EPROM) data values, making programming more
difficult.

1.6 HOW DOES A MICROCONTROLLER OPERATE?

The CPU can request information from memory (or read an input port) by calling it by
its memory address. The address with all its bits is stored in the CPU as binary number
in a temporary data latch type memory called a register. The outputs of the register are
sent over multiple wires (or single wire) to the microcontroller memory and peripherals.
The group of wires (parallel) or the single wire (serial) that carries the address is called
the address bus. The word “bus” refers to one or more wires that share a common path
to/from multiple places. The address register holds address bits. The number of address
bits depends on the microcontroller type.

Data is sent to the CPU over a data bus. The data bus is different from the address bus
in that the CPU uses it to read information from memory or peripherals and to write
information to memory or peripherals. Signals on the address bus originate only at the
CPU and are sent to the other blocks attached to the bus. Signals on the data bus can
either be inputs to the CPU or outputs from the CPU. The information on the data bus is
sent or received at the CPU by the data register. In other words, the data bus is bi-
directional and the address bus is uni-directional. The width of the address and the data
bus may also be different, depending on the microcontroller type and memory size.
MICROCONTROLLER BASICS 1-7

Figure 1-2 Microcontroller Operation

Address Bus

Data Bus

Program
Memory

Address Register

Data
Memory

CPU

I/O

Data Register
1-8 MICROCONTROLLER BASICS

1.7 DESCRIPTION OF MICROCONTROLLER BUILDING BLOCKS

1.7.1 Program Memory

Program memory contains the microcontroller program.

There are several types of program memory—ROM, OTP/EPROM, EEPROM.

Structure

The number of bits per address location and number of memory locations varies from one
microcontroller type or family to another (8/2/14/16 -bit by 0.5k, 1k, 2k, 4k, etc.).

Program Counter (PC)

The program counter is used by the CPU to address program memory locations that
contain the program instructions. Every time an opcode (binary representation of an
instruction) is fetched (read) from memory, the program counter in incremented
(advanced by one) so that it points to the next byte following the opcode (assuming 8-bit
memory organization, an assumption used throughout the rest of this document. Some
program instructions require more than one byte. In that case, the program counter
supplies the address, the second byte is fetched from memory, and the program counter
is incremented. Each time the CPU performs a fetch operation, the program counter is
incremented; thus, the program counter always points to the next byte in the program.
Therefore, after all bytes required for one complete instruction have been read, the
program counter points to the beginning of the next instruction to be executed. The
program counter size is base on the size of the program memory.

Figure 1-3 Program Memory Section

Internal Data Bus

Control
Logic Unit

PC

Program
Memory

Stack

IR
MICROCONTROLLER BASICS 1-9

Instruction Storage

Each byte in program memory contains an instruction like ADD or JMP, represented by
a code or opcode (example: 033 = ADD). Instructions are stored in the order to be
executed. For example:

These instructions (8-bit opcodes) might be stored at memory locations 00, 01, and 02. To
execute this code, the program counter (PC) is set to point to location 00 (the PC contains
address 00). The opcode stored at location 00 is read into an instruction register in the
control block. The control block decodes the opcode and executes the LD instruction. The
PC is incremented by one to point to the next instruction (the PC contains 01). Then the
fetch, decode, and execute steps are repeated.

1.7.2 Data Memory

Data memory is used to store and retrieve information. Typically, there are two types of
data memory that caan be used: RAM and/or EEPROM (electrically erasable memory).

Structure

1. Size

The data memory size varies from one microcontroller type or family to an-
other (4-bit/8-bit/16-bit by 16, 32, 64, 128 bytes, etc.)

2. Von Neumann Architecture

With Von Neumann architecture data and program memory share the same
memory space. If code is placed in a separate memory space in locations 0000
through 03FF, then data must reside in locations above 03FF.

3. Harvard Architecture

With Harvard architecture data and program memory have separate memory
spaces. Code may be placed in locations 0000 through 03FF and data may re-
side in locations 000 to 03F.

Data Storage

The data memory can contain intermediate result values from math operations
(add/sub), tables, flags, and system stack.

Pointer

A pointer contains an address which specifies a location in memory. A pointer "points" to
the location of some data. A data pointer is used to specify the location of a byte/word in

LD A,#00

INC A

JMP 00
1-10 MICROCONTROLLER BASICS

data memory. The data pointer (PTR) is loaded with the address of a byte of data in
memory. To access the byte of data, the pointer can be used instead of using the address
itself (LD A, [PTR]). This is particularly useful when consecutive locations are accessed.
The data pointer can be incremented automatically after each access instead of
specifying the address each time.

Stack

The stack is a section of memory used to store data and address values. Stacks operate
in a LIFO (last in first out) manner. A stack pointer is used to address the stack. The
stack pointer is a register used to keep the address of the last piece of data put on the
stack. Usually the stack pointer is initialized to an address in memory. As data is put on
the stack, the stack pointer moves up or down in memory. The microcontroller uses the
stack to store return addresses during subroutine calls and interrupts. Some
microcontrollers also store status information on the stack before responding to
interrupts. The application program can use the stack to store data temporarily,
especially data to be passed between subroutines. Not all stacks are user accessible.

Examples:

1. Stack operation as a result of executing Jump-to-Subroutine (JSR), or PUSH
instructions.

Figure 1-4 Separate Data and Code Space

Internal Data Bus

Memory
Address
Register

Data
Memory

CPU
Registers

Memory
Data

Register

A

MUX

MUX

ALU

Stack Pointer Empty

Empty

Empty Stack Pointer

Return Address Low

Return Address High

Empty

Before After

Stack Stack
MICROCONTROLLER BASICS 1-11

2. Stack operation as, a result of executing Return-from-Subroutine (RET) or
POP instructions.

1.7.3 Microcontroller CPU

The key function of a CPU is to perform instruction fetch/decode/execute.

Fetch The program counter (PC) addresses a location in program memory con-
taining an instruction. This instruction is latched into a special instruc-
tion register (IR). The PC is incremented to point to the next available
instruction.

Decode The instruction in the IR is decoded. The bits of the instruction relate to
specific actions. Each bit or group of bits is used to determine the appro-
priate control signals to activate in order to cause the execution of the
instruction.

Execute The control signals go out to all parts of the microcontroller, causing the
desired action to take place.

Arithmetic Logic Unit (ALU)

The arithmetic logic unit is a binary adder. It performs all the arithmetic and logic
functions in the microcontroller. The destination for all such operations is the
Accumulator (A). The two inputs to an operation are the accumulator and either an
immediate data as specified by an instruction or, more commonly, the contents of data
memory locations. The one-bit carry register (C register) sometimes is a third input to
the ALU.

Status/Control Registers

The status and control registers are special-purpose registers used to store the state of
the microcontroller. The control bits are manipulated by the user program to place the
microcontroller and its peripherals in particular states. The status bits are read by the
application program to inform microcontroller/user of the current state. Examples
include:

1. A carry bit, which indicates whether the last operation performed by the ALU
generated a carry.

2. Interrupt enable bit, which tells the microcontroller whether an interrupt is
enabled.

3. Interrupt pending bit, which tells the program whether a particular interrupt
occurred.

Stack Pointer

Stack PointerReturn Address Low

Return Address High

Empty

Before After

Stack Stack

Empty

Empty

Empty
1-12 MICROCONTROLLER BASICS

4. HALT bit, which tells microcontroller to stop all activities.

5. Timer run, which tells microcontroller to start the timer.

Accumulator vs Register

An accumulator-based microcontroller operates in a manner different from a register-
based microcontroller. The difference is due to the different ALU architectures. The most
common are:

1. Stack based: a no address machine

2. Accumulator based: a one-address machine

3. Register based: a two- or three-address machine

Another difference is due to the difference between the microcontroller architectures in
terms of where numbers must be located in order for them to be operated on by the ALU
of the microcontrollers.

Example: Adding two numbers

Adding two numbers in an accumulator-based machine requires that one of the numbers
be located in the accumulator and the other one in data memory. The result of the
addition is placed back in the accumulator.

A register-based machine does not require that any of the addends be in the accumulator.
Instead, the two numbers may be in registers in memory. The result may be specified to
be placed in one of the registers being used in the addition, a third register, or the
accumulator.

What's the difference? Is one method better than another?

Accumulator based machines require one of the operands to be located in the
Accumulator. Therefore, only one operand location must be specified in instructions.

Register based machines do not require the operands to be in a particular location.
Therefore, the location of both operands must be specified in instructions.

The decoding of register-based instructions and the fetching of operands generally
requires more time than would be required to execute an accumulator-based instruction.

Figure 1-5 Adding Two Numbers Using Accumulator Based Machine

Data
Memory

Memory Data
Register

ALU

Accumulator

Addend #2

Addend #1
MICROCONTROLLER BASICS 1-13

However, the accumulator-based machine requires operands to be moved into the
accumulator before instructions are executed. Which takes longer in the end? It depends
on how much faster an accumulator-based machine can execute an instruction than a
register-based machine.

Trade-off memory efficiency—An accumulator-based machine will generally have
shorter opcodes than a register-based machine.

Interrupts

Interrupt is an event which causes the microcontroller to stop executing code in its
normal sequence and instead respond to the occurrence of the event. The microcontroller
performs the following steps when an interrupt occurs:

1. Stops execution of the "next" instruction.

2. Disables additional interrupts.

3. Saves current status of the microcontroller.

4. Jumps to a special interrupt handling routine.

5. Returns from the special interrupt handling routine.

6. Restores state of the microcontroller

7. Enables interrupts

8. Executes the "next" instruction.

Figure 1-6 Adding Two Numbers Using Register Based Machine

Register 1

Addent #2

Addent #1

Register 2

Register 3

A

ALU
1-14 MICROCONTROLLER BASICS

Interrupt Types

1.7.4 Timing

The microcontroller uses the instruction cycle time as an internal timing reference. The
instruction cycle time is the amount of time it takes for an instruction to be fetched,
decoded, and executed. The instruction cycle time differs for various microcontrollers. It
also differs for various instructions. Microcontroller manufacturers specify a minimum
instruction cycle time. For example, for the COP8SAC7, the instruction cycle time tc =
1 µS. This means that the fastest instructions are executed in 1 µS with the
microcontroller operating at the maximum frequency. Slower instructions usually take
some multiple of the instruction cycle clock.

The instruction cycle time is usually a division of the input clock frequency to the
microcontroller. For example, divide by 10 is one possible factor. This means a 10 MHz
input clock must be provided to generate a 1 µS instruction cycle time (1 MHz instruction
cycle clock). The minimum instruction cycle time may be several instruction cycle clocks
or only one instruction cycle clock, depending on the microcontroller. Limiting factors on
instruction cycle time are:

1. Memory access time (memory speed)

2. Number of bytes per instruction

3. Width of data bus

4. Level of decoding required of instructions

5. Execution time

External Interrupt Interrupts which are generated by device/events
outside of the microcontroller. An external inter-
rupt can be latched or edge triggered.

Internal Interrupts Interrupts which are generated by hardware
within the microcontroller in response to certain
events, such as timer overflow or underflow.

Software Traps Interrupts caused by executing a particular
instruction. Such an instruction may be a special
instruction designed to cause a trap (INTR) or may
be the result of an error in executing a normal
instruction.

Maskable vs. Non-Maskable
Interrupts

Non-Maskable interrupts are those interrupts
which cannot be disabled by the software and
therefore cannot be ignored, such as the Reset and
Software Trap interrupts. Maskable interrupts, on
the other hand, may be disabled by the software,
such as timer overflow/underflow interrupts..
Enabling and disabling is generally accomplished
by setting/resetting an enable bit.
MICROCONTROLLER BASICS 1-15

1.7.5 Oscillator Circuits

Typically there are three types of clock oscillator options available: external oscillator,
R/C oscillator, or crystal oscillator.

External Oscillator

An external square wave clock source is generated outside and presented to the
microcontroller clock input pin. The clock source must meet the specified duty cycle, rise
and fall times, and input level.

R/C Oscillator

The R/C (resistor/capacitor) oscillator requires the use of external R/C components or R/C
integrated on-chip. The oscillator frequency is a function of the resistance and
capacitance values.

Crystal Oscillator

The phase shift oscillator referred to as the Pierce Oscillator has many desirable
characteristics. It provides a large output signal and drives the crystal at a low power
level. The low power level leads to low power dissipation, especially at higher frequencies.

Figure 1-7 Clock Generation

Figure 1-8 External Oscillator

Figure 1-9 R/C Oscillator

Clock Generator Divider

External Clock Circuitry

Instruction Cycle Frequency

Clock Input

Clock Input
VCC

R

C

or Clock input pin open for internal R/C
1-16 MICROCONTROLLER BASICS

The circuit has good short-term stability, good waveforms at the crystal, a frequency
which is independent of power supply and temperature changes, low cost and usable at
any frequency. As compared with other oscillator circuits, this circuit is not disturbed
very much by connecting a scope probe at any point in the circuit, because it is a stable
circuit and has low impedance. This makes it easier to monitor the circuit without any
major disturbance. The Pierce oscillator has one disadvantage. The amplifier used in the
circuit must have high gain to compensate for gain losses in the circuitry surrounding
the crystal.

Figure 1-10 shows the classic phase shift oscillator found not only on the COP8SAx7 but
on most other microcontroller circuits. It is the simplest oscillator in terms of component
complexity.

The Pierce is a series resonant circuit. For oscillation to occur, two criteria must be met:

1. The loop gain must be greater than one.

2. The phase shift around the loop must be 360˚

The amplifier (intergrated on-chip) provides the desired gain and the 180˚ phase shift.
The external C1 and C2 capacitors provide the additional 180˚ phase shift. The R1
resistor is used at lower frequencies (typically lower than 2.5 MHz) to introduce losses
around the loop and prevent the oscillator going into harmonic oscillation. The R2
resistor is used to bias the amplifier for better and quicker oscillator start-up.

Inputs/Outputs

Inputs and Outputs allow the microcontroller to communicate with external devices.

Inputs An outside device forces a microcontroller pin high or
low. The logic level is read by the microcontroller as a
single bit of incoming information.

Figure 1-10 Phase Shift Oscillator

AMPL.

CRYSTAL

GAIN A

LOSS

PHASE SHIFT
(180)

OUT

C1C2

R1

-+

R2
MICROCONTROLLER BASICS 1-17

Outputs Microcontroller forces one of its pins high or low. The
output voltage on the pin corresponds to a single bit of
information.

Latches Often used to store outgoing/incoming bits.

Ports A port is a group of pins used for sending or receiving in-
formation. A port may have all outputs, all inputs, or a
combination input/output pins. Some ports are bidirec-
tional. Port pins may be used together for parallel com-
munication or individually as control signals or serial
communication.

Memory Mapped I/O or Ports Each port (group of pins) is assigned an address as if it
were a register (byte of data) in memory. Writing to an
address assigned to a port causes the pins associated
with the addressed port to be forced high or low accord-
ing to the value written. If ports are not memory
mapped, special I/O instructions have to be used to ac-
cess them.

User-Configurable I/O User-configurable ports or I/O may be set by the user to
be inputs or outputs (some ports are fixed in hardware
to be inputs or outputs). A configuration or control reg-
ister is generally associated with a user-configurable
port. Setting or resetting the bits in this special register
configures the associated port pins the be inputs or out-
puts. Some user-configurable I/O ports only allow the
user to select pins of a particular port to be all inputs or
all outputs. Other devices allow the user to specify the
configuration of each individual pin of a port. Some
pins/ports have user selectable special functions.

Dedicated I/O Dedicated I/O pins can only be used for one particular
function. For example, the RESET pin can rarely be
used for anything other than resetting the device. Other
such pins might be the clock pin.
1-18 MICROCONTROLLER BASICS

1.7.6 Instruction Set

Each microcontroller has a set of instructions. The user can organize particular
instructions in a logical order to create a program. The microcontroller follows this
program to perform a given task. The contents of a microcontroller instruction set vary
with various microcontrollers.

Opcodes Numeric codes in the instructions that represent the actual operation to
be performed by the CPU are called operation codes (or opcodes for
short). An opcode is actually a group of bits which tell the microcontrol-
ler to perform a particular operation (a code word for a given operation).
For example; 64 might mean clear the accumulator.

Mnemonics Names assigned to particular operations are called mnemonics. Each
mnemonic is associated with a particular opcode. A user may specify a
mnemonic such as ADD rather than the opcode 84. The mnemonic is lat-
er translated into opcodes which the microcontroller can decode. Using
mnemonics makes writing code easier. For example, the mnemonics LD,
ADD, JP, CLRA represent the operation load, add, jump, and clear accu-
mulator, respectively.

Categories of Instructions

1. Arithmetic/logic/shift (ADD/AND/RRC)

2. Transfer of control (JP, JMP)

3. Memory reference (LD)

4. Bit manipulation (SBIT)

5. Stack control (PUSH)

6. Conditional/Test (IFEQ)

Opcode fields/Multiple Byte Opcodes‘

An opcode field is a group of bits within an opcode used to represent one specific part of
an instruction. Typically the bits in an opcode are broken into groups or fields. Most
instructions usually consist of at least two fields: opcode field and address field.

Addressing Modes

Implied The location/value of the operand(s) is specified
implicitly in the definition of the instruction.

Example: CLR A, SC

Immediate Data to be used as an operand is specified directly
in the instruction.

Example: LD A, #023 or AND A, #0FF
MICROCONTROLLER BASICS 1-19

Memory Direct The memory address of the operand(s) is speci-
fied in the instruction.

Example: LD A, 00

Register Indirect A register which contains the address of the oper-
and in memory is specified in the instruction.

Example: LD A, [B]

Post-Increment or Post-Decrement Similar to register indirect, a register containing
the address of the operand in memory is specified
in the instruction. However, the contents of the
register (the memory address) is automatically
incremented or decremented after the operand is
fetched from the specified location.

Example: LD A, [B+] or LD A, [B-]

Indexed Addressing Similar to register indirect except an index num-
ber is also specified in the instruction. This index
number/displacement is added to the contents of
a base register to form the actual address of the
operand. The base register may be either implied
in the instruction or given as an additional argu-
ment. This addressing mode is used to access en-
tries in a table. The base address represents the
starting location of the table in memory. The dis-
placement represents the distance between the
start of the table and the desired element in the
table.

Example: LD A, 12[B] or ADD A, 14[R0]

1.7.7 Programming

Routines/Subroutines

A routine is a segment of code which performs a specific function. A subroutine is a
segment of code which performs a specific part of function. A subroutine is usually called
by several different routines or called several times from a single routine.

Stack Manipulation

On some microcontrollers, the stack is assigned a particular segment of memory and the
microcontroller initializes the stack pointer to a specific address upon reset. This is
referred to as stack initializing by hardware. There are also cases where the stack pointer
is initialized the user program (software) at the beginning of the program to point to a
segment of available memory. The stack may be addressed by instructions such as PUSH
and POP. The PUSH instruction places a piece of data on the stack and increments or
1-20 MICROCONTROLLER BASICS

decrements the stack pointer. The POP instruction does the opposite; it removes a piece
of data from the stack and decrements or increments the stack pointer.

Interrupt Routines

There are two methods to get the interrupt routines:

1. Without a Vector Table

Polling—All interrupts cause an immediate jump to a single location in mem-
ory. The user program must poll all interrupt pending bits to determine the
cause of the interrupt. Once the cause is determined, the user program may
jump to an appropriate interrupt handling routine.

Preset Location—Each interrupt causes the microcontroller to jump to a dif-
ferent place in memory. The location is specified by the microcontroller de-
signer. The user program must store the interrupt handling routine at the
specified location.

2. With a Vector Table

A vector table is a list of start addresses for each of the program's interrupt
routines. This table is used by the microcontroller to determine where to jump
when a particular interrupt occurs.

Direct Jump—The microcontroller may automatically read the vector table
when an interrupt occurs and jump directly to the specified address.

VIS Instruction—The microcontroller may jump to a single location in mem-
ory for all interrupts. The user program may call a special instruction (VIS)
to cause the microcontroller to jump to the specified address.
MICROCONTROLLER BASICS 1-21

Context Switching

Saving and restoring of the microcontroller state during interrupts or when switching
between different tasks.

Example of an interrupt routine:

INTERRUPT;

PUSH A ; Save accumulator

PUSH CNTRL ; Save control register

PUSH PSW ; Save process status word

IFBIT 0, IPND ; If timer interrupt pending

JP TIMERINT ; then jump to timer interrupt

IFBIT 1, IPND ; If external interrupt pending

JP EXTERNALINT ; then jump to external interrupt

IFBIT 2, IPND ; If serial interrupt pending

JP SERIALINT ; then jump to serial interrupt

EXIT ; Exit from interrupt

LD IPND, #00 ; Clear pending bits

POP PSW ; Restore process status word

POP CNTRL ; restore control register

POP A ; Restore accumulator

RETI ; Return from interrupt
1-22 MICROCONTROLLER BASICS

Assembler

1. Assembler

The assembler is a software program that converts a source program into an
object file. In other words, it converts ASCII representation of instructions to
binary representation.

2. Assembler Inputs/Outputs

Source File - ASCII file containing a software program written in instruction
mnemonics (symbolic language).

Object File - "Executable" file containing instruction opcodes (machine lan-
guage).

Listing File - An ASCII file which lists each location in memory and the in-
struction opcode associated with it. It usually contains assembly error mes-
sages. This listing is useful for finding errors, determining size of code,
finding location of segments of code, and checking for proper assembling of in-
structions.

Symbol Table - Table of constants and symbols with their associated values.
It is useful for determining the locations of subroutines in the code.

3. Assembler Directives

An assembler directive is an instruction for the assembler in the source file.
Different assemblers have different sets of directives. Examples:

.CHIP Specifies the particular device for which the code is written

.END Specifies the end of the code

.=NUM Sets the location counter to NUM. The location counter is used
by the assembler to store the address of the memory location
where the current instruction is being stored. This directive
allows the user to specify a particular location for a given
segment of code.

.BYTE Tells the assembler to store the following 8-bit value in program
memory. Tells the assembler not to interpret it as an instruction.
This is useful for storing a table of data.
MICROCONTROLLER BASICS 1-23

Linker

1. Linker

The linker is a software program that combines separate object files produced
by the assembler into a single object file. The linker allows the user to create
separate code modules for different sections of code. It also allows the user to
create a library of functions which may be used in a number of different pro-
grams.

2. Linker Inputs/Outputs

Object File - Same as above but each object file contains only a section/module
of the entire program.

Load Map - Specifies how memory is allocated. A typical load map might con-
tain the following sections:

Range Definitions: Shows memory ranges with assigned names

Memory Order Map: Shows starting and ending ranges of each
contiguous block of memory

Memory Type Map: Shows how address space is allocated to different
types of memory

Total Memory Map: Shows allocation of all RAM and ROM/EPROM
combined

Section Table: Shows starting and ending address of each linked
module

Symbol Table: Same as section table

Cross-Reference Table: Similar to a symbol table, it lists all symbols
and tables with their associated values. In addition, it lists all the
locations where the symbol and tables are being used.

Compiler

1. Compiler

Translates programs written in high-level languages such as C into equiva-
lent assembly language programs. The high-level language is usually a mod-
ified high-level language which allows a combination of the standard high-
level language instructions and assembly language instructions. A compiler
increases ease of programming but decreases code efficiency.

2. Compiler Inputs/Outputs

High-level language Source File - A file containing microcontroller program
written in a modified high-level language.

Assembly Out File - A file containing assembly language source code pro-
duced from the high-level language source file.
1-24 MICROCONTROLLER BASICS

Simulator

A simulator is software program/model which acts like a hardware device. Code written
for the device is executed in the software model exactly as it would be executed in the
device. Key features of a simulator include:

1. Can execute object code

2. Can perform Single Step/Breakpoint/Go operations

3. Can display simulated internal device registers and allow them to be modi-
fied

4. Can display program and data memory contents and allow them to be modi-
fied

5. Requires no hardware

Hardware - Emulators

An emulator is a hardware model of a device with additional circuitry to allow the user
to perform special functions such as starting and stopping code execution. An emulator
can be used for examining code execution and code debugging. The hardware emulator is
plugged into the actual target system where the microcontroller device would normally
be plugged in. Thus, the emulator, tests both the internal operation of the microcontroller
and its I/O functions.

1. Can execute object code

2. Can display data and program memory contents and allow them to be modi-
fied

3. Can display internal registers and allow them to be modified

4. Can perform Single Step/Breakpoint/Go operations

5. Interfaces directly to external hardware

6. Can run code in real-time

7. Can trace code execution

8. Emulates AC and DC electrical characteristics
MICROCONTROLLER BASICS 1-25

Code Development Path

Following is the typical path for developing microcontroller programs:

EDITOR
ENTER PROGRAM

COMPILE PROGRAM

SIMULATE PROGRAM

EMULATE PROGRAM WITH
TARGET SYSTEM

ASSEMBLE PROGRAM

LINK PROGRAM
1-26 MICROCONTROLLER BASICS

Chapter 2

COP8SAx7 MICROCONTROLLER

2.1 INTRODUCTION

The COPSAx7 OTP microcontrollers are members of the COP8™ feature family using an
8-bit single chip core architecture. These devices are fabricated in National
Semiconductor’s high-density EPROM process, and offered in a variety of packages,
temperature ranges, and voltage ranges to satisfy a wide variety of applications.

Key features include an 8-bit memory-mapped architecture, a 16-bit timer/counter with
two associated 16-bit registers supporting three modes (Processor Independent PWM
generation, External Event counter, and Input Capture capabilities), two power saving
HALT/IDLE modes with a multi-sourced wakeup/interrupt capability, on-chip R/C
oscillator high-current outputs, user selectable options such as WATCHDOG™,
Oscillator configuration, and power-on reset.

2.2 KEY FEATURES

• Low cost 8-bit OTP (one-time programmable)microcontroller

• OTP program space with read/write protection

• Quiet design (low radiated emissions)

• Multi-Input wakeup pins with optional interrupts (4 to 8 pins)

• 8 bytes of user storage space in EPROM

• User selectable clock options

— Crystal/resonator oscillator

— Crystal/resonator oscillator with on-chip bias resistor

— External oscillator

— Internal R/C oscillator

• Internal power-on reset - user selectable

• WATCHDOG and clock monitor logic - user selectable

• Up to 12 high current outputs
COP8SAx7 MICROCONTROLLER 2-1

2.2.1 CPU Features

• Versatile, easy-to-use instruction set

• 1 µs instruction cycle time

• Eight multi-source vectored interrupts

— External Interrupt

— Idle Timer T0

— One Timer (with 2 Interrupts)

— MICROWIRE/PLUS Serial Interface

— Multi-Input Wake Up

— Software Trap

— Default VIS (default interrupt)

• 8-bit stack pointer SP (stack in RAM)

• Two 8-bit register indirect data memory pointers

• True bit manipulation

• Memory-mapped I/O

• BCD arithmetic instructions

Device EPROM RAM
Package and I/O

Package Types Number of I/O

COP8SAC7 4k 128 20 DIP/SO
28 DIP/SO
40 DIP
44 PLCC/PQFP

16
24
36
40

COP8SAB7 2k 128 20 DIP/SO
28 DIP/SO

16
24

COP8SAA7 1k 64 16 DIP/SO
20 DIP/SO
28 DIP/SO

12
16
24
2-2 COP8SAx7 MICROCONTROLLER

2.2.2 Peripheral Features

• Multi-Input Wakeup Logic

• One 16-bit timer with two 16-bit registers supporting:

— Processor Independent PWM mode

— External Event counter mode

— Input Capture mode

• Idle Timer

• MICROWIRE/PLUS™ Serial Interface (SPI Compatible)

2.2.3 I/O Features

• Software selectable I/O options

— TRI-STATE® output

— Push-pull output

— Weak pull up input

— High impedance input

• Schmitt trigger inputs on ports G and L

• Up to 12 high-current outputs

• Pin efficient (i.e. 40 pins in 44-pin package are devoted to useful I/O)

2.2.4 Fully Static CMOS Design

• Low current drain (typically < 4 µA)

• Single-supply operation: 2.7V to 5.5V

• Two power saving modes: HALT and IDLE

2.2.5 Temperature Ranges

0˚C to +70˚C, –40˚C to +85˚C, and –40˚C to +125˚C

2.2.6 Development Support

• Windowed packages for DIP and PLCC

• Real-time emulation and full program debug offered by MetaLink Development
System
COP8SAx7 MICROCONTROLLER 2-3

2.3 BLOCK DIAGRAM

2.4 ARCHITECTURE

The COPSAx7 family is based on a modified Harvard architecture, which allows data
tables to be accessed directly from program memory. This is very important with modern
microcontroller-based applications, since program memory is usually ROM or EPROM,
while data memory is usually RAM. Consequently data tables usually need to be
contained in ROM or EPROM, so they are not lost when the microcontroller is powered
down. In a modified Harvard architecture, instruction fetch and memory data transfers
can be overlapped with a two stage pipeline, which allows the next instruction to be
fetched from program memory while the current instruction is being executed using data
memory. This is not possible with a Von Neumann single-address bus architecture.

The COPSAx7 family supports a software stack scheme that allows the user to
incorporate many subroutine calls. This capability is important when using High Level
Languages. With a hardware stack, the user is limited to a small fixed number of stack
levels.

2.5 PACKAGING/PIN EFFICIENCY

Real estate and board configuration considerations demand maximum space and pin
efficiency, particularly given today's high integration and small product form factors.
Microcontroller users try to avoid using large packages to get the I/O needed. Large
packages take valuable board space and increases device cost, two trade-offs that
microcontroller designs can ill afford.

The COP8 family offers a wide range of packages and do not waste pins: up to 90.9% (or
40 pins in the 44 -pin package) are devoted to useful I/O.

Figure 2-1 COP8SAx7 Block Diagram

CLOCK

INTERRUPT

16 BIT
TIMER

T1

I/O PORTS

INSTR
DECODE

LOGIC

A
B
X

SP
PSW

ICNTRL

CPU REGISTERS

PC

ADDR
REG

MULTI
INPUT

WAKEUP

ALU

HALT
IDLE

WAKEUP
RESET

CNTRL

µC 8 BIT CORE
MODIFIED HARVARD

ARCHITECTURE

WATCH
DOG

IDLE
D F C LG

TIMER
T0

4k/2k/1k

OTP
EPROM

128/64
BYTES
RAM

ILLEGAL
COND

DETECT

BYTES

MICRO
WIRE/
PLUS
2-4 COP8SAx7 MICROCONTROLLER

2.6 CONNECTION DIAGRAMS

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

16-PIN
DIP/SO

Top View

G4/SO

G5/SK

G6/SI

G7/CKO

CKI

VCC

L0
L1

RESET

L3

L2

G0/INT

GND

G3/T1A

G2/T1B

G1/WD

1

2

3

4

5

6

7

8

9

10

20

19

18

17

16

15

14

13

12

11

RESET

L7

L6

L5

L4

G0/INT

GND

G3/T1A

G2/T1B

G1/WD

20-PIN
DIP/SO

G4/SO

G5/SK

G6/SI

G7/CKO

CKI

VCC

L0
L1

L2

L3

Top View

1

2

3

4

5

6

7

8

16

15

D3

D2

L5

L4

28-PIN

G1/WD

G0/INT

RESET

GND

G6/SI

G7/CKO

F0

F1

F2

F3

L0

L1

L2

L3

G3/T1A

G2/T1B

D1

D0

L7

L6

9

10

11

12

13

14

28

27

26

25

24

23

22

21

20

19

18

17

G4/SO

G5/SK

CKI

VCC

DIP/SO

Top View

1

2

3

4

5

7

8

9

10

11

12

13

14

6

C1

C0

G3/T1A

G2/T1B

RESET

GND

D7

D6

D5

D4

G6/SI

G7/CKO

CKI

Vcc

G4/SO

G5/SK

40-PIN
DIP

G1/WD

G0/INT

D3

D2

D1

D0

L7

L6

L5

L4

C2

C3

F4

F5

F6

F7

L0

L1

L2

L3

15

16

17

18

19

20

40

39

38

37
36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

F0

F1

F2

F3

Top View
COP8SAx7 MICROCONTROLLER 2-5

Figure 2-2 Connection Diagrams

Figure 2-3 Part Numbering Scheme

G
7/

C
K

O

G
6/

S
I

G
5/

S
K

G
4/

S
O

C
3

C
2

C
1

C
0

G
3/

T
IA

G
2/

T
IB

G
1/

W
D

CKI
VCC
F0

F2
F3
F4
F5
F6
F7
L0

G0/INT

GND
D7

D5
D4
D3
D2
D1
D0

RESET

L1 L2 L3 C
4

C
5

C
6

C
7 L4 L5 L6 L7

F1
44-PIN
PLCC

123456
7
8
9

10
11
12
13
14

16
15

17
18 19 20 2827262524232221

39
38
37
36
35
34
33
32
31
30
29

44 4342 41 40

D6

Top View

G
7/

C
K

O

G
6S

I

G
5/

S
K

G
4/

S
O

C
3

C
2

C
1

C
0

G
3/

T
IA

G
2/

T
IB

G
1/

W
D

CKI
VCC
F0

F2
F3
F4
F5
F6
F7
L0

G0/IN

GND
D7

D5
D4
D3
D2
D1
D0

RESE

L1 L2 L3 C
4

C
5

C
6

C
7 L4 L5 L6 L7

F1
44-PIN
PQFP

394041424344
1
2
3
4
5
6
7
8

10
9

11
12 13 14 2221201918171615

33
32
31
30
29
28
27
26
25
24
23

38 37 36 35 34

D6

Top View

COP8SAA716M9

No. of Pins

Package Type

M = SOIC
N = DIP
VEJ = 44 PQFP
Q = Windowed DIP
V = PLCC

J = Windowed Ceramic PLCC

16 20 28 40 44

Temperature

9 = 0˚C to +70˚C
8 = –40˚C to +85˚C
7 = –40˚C to 125˚C

Program Memory Size
A = 1k
B = 2k
C = 4k

Family Indicator

Feature Set Indicator
2-6 COP8SAx7 MICROCONTROLLER

2.6.1 ORDERING INFORMATION

1k EPROM 2k EPROM 4k EPROM 4k EPROM

Temperature Order Number

P
ac

k
ag

e

Order Number

P
ac

k
ag

e

Order Number

P
ac

k
ag

e

Windowed
 Device

Order Number

P
ac

k
ag

e

0˚C to +70˚C COP8SAA716M9 16M

COP8SAA720M9 20M COP8SAB720M9 20M COP8SAC720M9 20M

COP8SAA728M9 28M COP8SAB728M9 28M COP8SAC728M9 28M

COP8SAA716N9 16N

COP8SAA720N9 20N COP8SAB720N9 20N COP8SAC720N9 20N COP8SAC720Q9 20Q

COP8SAA728N9 28N COP8SAB728N9 28N COP8SAC728N9 28N COP8SAC728Q9 28Q

COP8SAC740N9 40N COP8SAC740Q9 40Q

COP8SAC744V9 44V COP8SAC744J9 44J

COP8SAC7VEJ9 44PQFP

–40˚C to +85˚C COP8SAA716M8 16M

COP8SAA720M8 20M COP8SAB720M8 20M COP8SAC720M8 20M

COP8SAA728M8 28M COP8SAB728M8 28M COP8SAC728M8 28M

COP8SAA716N8 16N

COP8SAA720N8 20N COP8SAB720N8 20N COP8SAC720N8 20N

COP8SAA728N8 28N COP8SAB728N8 28N COP8SAC728N8 28N

COP8SAC740N8 40N

COP8SAC744V8 44V

COP8SAC7VEJ8 44PQFP

–40˚C to +125˚C COP8SAC720M7 20M

COP8SAC728M7 28M

COP8SAC720N7 20N

COP8SAC728N7 28N

COP8SAC740N7 40N

COP8SAC744V7 44V

COP8SAC7VEJ7 44PQFP
COP8SAx7 MICROCONTROLLER 2-7

2.7 PIN DESCRIPTIONS

COPSAx7 I/O structure minimizes external component requirements. Software-
switchable I/O enables designers to reconfigure the microcontroller's I/O functions with
a single instruction. Each individual I/O pin can be independently configured as an
output pin low, an output high, an input with high impedance or an input with a weak
pull-up device. A typical example is the use of I/O pins as the keyboard matrix input lines.
The input lines can be programmed with internal weak pull-ups so that the input lines
read logic high when the keys are all up. With a key closure, the corresponding input line
will read a logic zero since the weak pull-up can easily be overdriven. When the key is
released, the internal weak pull-up will pull the input line back to logic high. This
flexibility eliminates the need for external pull-up resistors. The High current options are
available for driving LEDs, motors and speakers. This flexibility helps to ensure a
cleaner design, with less external components and lower costs. Below is the general
description of all available pins.

VCC and GND are the power supply pins. All VCC and GND pins must be connected.

CKI is the clock input. This can come from the Internal R/C oscillator, external, or a
crystal oscillator (in conjunction with CKO). See Oscillator Description section.

RESET is the master reset input. See Reset description section.

The device contains four bidirectional 8-bit I/O ports (C, G, L and F), where each
individual bit may be independently configured as an input (Schmitt trigger inputs on
ports L and G), output or TRI-STATE under program control. Three data memory
address locations are allocated for each of these I/O ports. Each I/O port has two
associated 8-bit memory mapped registers, the CONFIGURATION register and the
output DATA register. A memory mapped address is also reserved for the input pins of
each I/O port. (See the memory map for the various addresses associated with the I/O
ports.) Figure 2-4 shows the I/O port configurations. The DATA and CONFIGURATION
registers allow for each port bit to be individually configured under software control as
shown below:

Port L is an 8-bit I/O port. All L-pins have Schmitt triggers on the inputs.

Port L supports the Multi-Input Wake Up feature on all eight pins. The 16-pin device
does not have a full complement of Port L pins. The unavailable pins are not terminated.
A read operation these unterminated pins will return unpredictable values. To minimize
current drain, the unavailable pins must be programmed as outputs.

CONFIGURATION
Register

DATA
Register Port Set-Up

0 0 Hi-Z Input
(TRI-STATE Output)

0 1 Input with Weak Pull-Up

1 0 Push-Pull Zero Output

1 1 Push-Pull One Output
2-8 COP8SAx7 MICROCONTROLLER

Port G is an 8-bit port. Pin G0, G2-G5 are bi-directional I/O ports. Pin G6 is always a
general purpose Hi-Z input. All pins have Schmitt Triggers on their inputs. Pin G1
serves as the dedicated WDOUT WATCHDOG output with weak pullup if
WATCHDOG feature is selected by the ECON register. The pin is a general
purpose I/O if WATCHDOG feature is not selected. If WATCHDOG feature is
selected, bit 1 of the Port G configuration and data register does not have any effect on
Pin G1 setup. Pin G7 is either input or output depending on the oscillator option selected.
With the crystal oscillator option selected, G7 serves as the dedicated output pin for the CKO
clock output. With the internal R/C or the external oscillator option selected, G7 serves as a
general purpose Hi-Z input pin and is also used to bring the device out of HALT mode with a
low to high transition on G7. There are two registers associated with Port G, a data register
and a configuration register. Using these registers, each of the 5 I/O pins (G0, G2-G5) can be
individually configured under software control.

Since G6 is an input only pin and G7 is the dedicated CKO clock output pin (crystal clock
option) or general purpose input (R/C or external clock option), the associated bits in the
data and configuration registers for G6 and G7 are used for special purpose functions as
outlined below. Reading the G6 and G7 data bits will return zeros.

The device will be placed in the HALT mode by writing a “1” to bit 7 of the Port G Data
Register. Similarly the device will be placed in the IDLE mode by writing a “1” to bit 6 of
the Port G Data Register.

Writing a “1” to bit 6 of the Port G Configuration Register enables the MICROWIRE/
PLUS to operate with the alternate phase of the SK clock. The G7 configuration bit, if set
high, enables the clock start up delay after HALT when the R/C clock configuration is
used.

Figure 2-4 I/O Port Configurations

Config Reg. Data Reg.

G7 CLKDLY HALT

G6 Alternate SK IDLE

N

T

E

R

N

A

L

B

U

S

I PORT L, G, AND C, F

DATA
REGISTER

N

T

E

R

N

A

L

B

I PORT L, G, AND C, F

DATA
REGISTER

N

T

E

R

N

A

L

B

I PORT L, G, AND C, F

DATA
REGISTER

CONFIGURATION
REGISTER

VCC

U
S

Weak
Pullup
(Software
Selectable)

Port read into a RAM address location
COP8SAx7 MICROCONTROLLER 2-9

Port G has the following alternate features:

G0 INTR (External Interrupt Input)

G2 T1B (Timer T1 Capture Input)

G3 T1A (Timer T1 I/O)

G4 SO (MICROWIRE Serial Data Output)

G5 SK (MICROWIRE Serial Clock)

G6 SI (MICROWIRE Serial Data Input)

Port G has the following dedicated functions:

G1 WDOUT WATCHDOG and/or Clock Monitor if WATCHDOG enabled, other-
wise it is a general purpose I/O

G7 CKO Oscillator dedicated output or general purpose input

Port C is an 8-bit I/O port. The 40-pin device does not have a full complement of Port C
pins. The unavailable pins are not terminated. A read operation on these unterminated
pins will return unpredictable values. Only the COP8SAC7 device contains Port C. The
20/28 pin devices do not offer Port C. On these devices, the associated Port C Data and
Configuration registers should not be used.

Port F is an 8-bit I/O port. The 28--pin device does not have a full complement of Port F
pins. The unavailable pins are not terminated. A read operation on these unterminated
pins will return unpredictable values.

Port D is an 8-bit output port that is preset high when RESET goes low. The user can tie
two or more D port outputs (except D2) together in order to get a higher drive.

NOTE: Care must be exercised with the D2 pin operation. At RESET, the external
loads on this pin must ensure that the output voltages stay above 0.7 VCC
to prevent the chip from entering special modes. Also keep the external
loading on D2 to less than 1000 pF.

Figure 2-5 I/O Port Configurations–Output Mode

N

T

E

R

N

A

L

B

U

S

I

PORT L, G, AND C, F

DATA
REGISTER

CONFIGURATION
REGISTER

0 = Low
1 = High

1 = Output

Port read into a RAM address location
2-10 COP8SAx7 MICROCONTROLLER

2.8 FUNCTIONAL DESCRIPTION

The architecture of the device is a modified Harvard architecture. With the Harvard
architecture, the program memory EPROM is separated from the data store memory
(RAM). Both EPROM and RAM have their own separate addressing space with separate
address buses. The architecture, though based on the Harvard architecture, permits
transfer of data from EPROM to RAM.

2.8.1 CPU Registers

The CPU can do an 8-bit addition, subtraction, logical or shift operation in one
instruction (tc) cycle time.

There are six CPU registers:

A is the 8-bit Accumulator Register

PC is the 15-bit Program Counter Register

PU is the upper 7 bits of the program counter (PC)

PL is the lower 8 bits of the program counter (PC)

B is an 8-bit RAM address pointer, which can be optionally post auto incremented or
decremented.

X is an 8-bit alternate RAM address pointer, which can be optionally post auto
incremented or decremented.

SP is the 8-bit stack pointer, which points to the subroutine/interrupt stack (in RAM).
With reset the SP is initialized to RAM address 02F Hex (devices with 64 bytes of RAM),
or initialized to RAM address 06F Hex (devices with 128 bytes of RAM).

Figure 2-6 I/O Port Configurations–Input Mode

PORT L, G, AND C, F

DATA
REGISTER

PORT L, G, AND C, F

DATA
REGISTER

PORT L, G, AND C, F

DATA
REGISTER

CONFIGURATION
REGISTER

VCC

0 = Input

Weak
Pullup
(Software
Selectable)

Port read into a RAM address location

0 = Pullup disable
1 = Pullup enabled

N

T

E

R

N

A

L

B

U

S

I

N

T

E

R

N

A

L

B

I

N

T

E

R

N

A

L

B

I

U
S

COP8SAx7 MICROCONTROLLER 2-11

All the CPU registers are memory mapped with the exception of the Accumulator (A) and
the Program Counter (PC).

2.8.2 Program Memory

The program memory consists of 1024, 2048, or 4096 bytes of EPROM. Table 2-1 shows
the program memory sizes for the different devices. These bytes may hold program
instructions or constant data (data tables for the LAID instruction, jump vectors for the
JID instruction, and interrupt vectors for the VIS instruction). The program memory is
addressed by the 15-bit program counter (PC). All interrupts in the device vector to
program memory location 0FF Hex. The contents of the program memory read 00 Hex in
the erased state.

2.8.3 Data Memory

The data memory address space includes the on-chip RAM and data registers, the I/O
registers (Configuration, Data and Pin), the control registers, the MICROWIRE/PLUS
SIO shift register, and the various registers, and counters associated with the timers
(with the exception of the IDLE timer). Data memory is addressed directly by the
instruction or indirectly by the B, X and SP pointers.

The data memory consists of 64 or 128 bytes of RAM. Table 2-1 shows the data memory
sizes for the different devices. Fifteen bytes of RAM are mapped as “registers” at
addresses 0F0 to 0FE Hex. These registers can be loaded immediately, and also
decremented and tested with the DRSZ (decrement register and skip if zero) instruction.
The memory pointer registers X, SP and B are memory mapped into this space at address
locations 0FC to 0FE Hex respectively, with the other registers (except 0FF) being
available for general usage. Address location 0FF is reserved for future RAM expansion.
If compatibility with future devices (with more RAM) is not desired, this location can be
used as a general purpose RAM location.

The instruction set permits any bit in memory to be set, reset or tested. All I/O and
registers (except A and PC) are memory mapped; therefore, I/O bits and register bits can
be directly and individually set, reset and tested. The accumulator (A) bits can also be
directly and individually tested.

RAM contents are undefined upon power-up.

Table 2-1 Program/Data Memory Sizes

Device
Program
Memory
(Bytes)

Data Memory
(Bytes)

User Storage
(Bytes)

COP8SAA7 1024 64 8

COP8SAB7 2048 128 8

COP8SAC7 4096 128 8
2-12 COP8SAx7 MICROCONTROLLER

2.8.4 ECON (EPROM Configuration) Register

The ECON register is used to configure the user selectable clock, security, RAM size,
power-on reset, WATCHDOG, and HALT options. The register can be programmed and
read only in EPROM programming mode. Therefore, the register should be programmed
at the same time as the program memory. The contents of the ECON register shipped
from the factory read 00 Hex (windowed device) or 80 Hex (OTP device).

The format of the ECON register is as follows:

2.8.5 User Storage Space In EPROM

There are 8 bytes of user storage space in the EPROM that are not read protected by the
security bit in the ECON register. When the security bit in the ECON register is set, data
in User Storage Space is write-enabled, and read-enabled. This allows the user to read
and write this information while still protecting the main EPROM from tampering.

The 8 bytes of user storage space are outside the normal address range of the device, and
cannot be accessed by software. This allows for the storage of non-secure information.
Typical uses of this are serial numbers, date codes, copyright informations, software
version, or lot numbers.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

X POR SECURITY CKI 2 CKI 1 WATCDOG Reserved HALT

Bit 7 = x This is for factory test. The polarity is “Don’t Care.”
Bit 6 = 1 Power-on reset enabled.

= 0 Power-on reset disabled.
Bit 5 = 1 Security enabled. EPROM read and write are not allowed.

= 0 Security disabled. EPROM read and write are allowed.
Bits 4,3

= 0, 0 External CKI option selected.
G7 is available as a HALT restart and/or general purpose input. CKI is
clock input.

= 0,1 R/C oscillator option selected.
G7 is available as a HALT restart and/or general purpose input. CKI clock
input. Internal R/C components are supplied for maximum R/C frequency.

= 1,0 Crystal oscillator with on-chip crystal bias resister disabled. G7 (CKO) is
the clock generator output to crystal/resonator.

= 1, 1 Crystal oscillator with on-chip crystal bias resister enabled. G7 (CKO) is
the clock generator output to crystal/resonator.

Bit 2 = 1 WATCHDOG feature disabled. G1 is a general purpose I/O.
= 0 WATCHDOG feature enabled. G1 pin is WATCHDOG output with weak

pullup.
Bit 1 = Reserved
Bit 0 = 1 HALT mode disabled.

= 0 HALT mode enabled.
COP8SAx7 MICROCONTROLLER 2-13

To place information into this area, the user can place the following in the assembly file:

1. Place data in the 8-bytes of user storage space

Data is 1 2 3 4 5 6 7 8
.USER=0x01 0x02 0x03 m0x04 0x05 0x06 0x07 0x08

2. Place assembly date in 8-bytes of user storage space

Date is in format DD MM YY 00 HH MM SS (all information is
in Hex)
.USER=ASS_DATE

3. Place programming date in 8-bytes of user storage space

Date is in format DD MM YY 00 HH MM SS (all information is
in Hex)
.USER=PRG_DATE

4. To place data in both memory space (for example, 4F9-4FF) to be read out us-
ing the LAID instruction, and the user storage space

Data is 1 2 3 4 5 6 7 8
.=0x4F9
.BYTE 0x01 0x02 0x03 m0x04 0x05 0x06 0x07 0x08
.USER=0x01 0x02 0x03 m0x04 0x05 0x06 0x07 0x08

NOTE: Not all programmers support the PRG_Date option. Other serialization
schemes are currently being worked on with device programming manufac-
tures. Place contact your device programmer supplier or National for more
information.

2.8.6 OTP Security

The device has a security feature, when enabled, that prevents external reading of the
OTP program memory. The security bit in the ECON register determines, whether
security is enabled or disabled. If the security feature is disabled, the contents of the
internal EPROM may be read.

If the security feature is enabled, then any attempt to externally read the contents of the
EPROM will result in the value FF Hex being read from all program locations. In
addition, with the security feature enabled, the write operation to the EPROM program
memory and ECON register is inhibited. The ECON register is readable regardless of the
state of the security bit.

If security is being used, it is recommended that all other bits in the ECON register be
programmed first. Then the security bit can be programmed.
2-14 COP8SAx7 MICROCONTROLLER

2.8.7 Reset

The device is initialized when the RESET pin is pulled low or the On-chip Power-On
Reset is enabled.

The following occurs upon initialization:

Port L: TRISTATE

Port C: TRISTATE

Port G: TRISTATE

Port F: TRISTATE

Port D: HIGH

PC: CLEARED to 0000

PSW, CNTRL and ICNTRL registers: CLEARED

SIOR:

UNAFFECTED after RESET with power already applied

RANDOM after RESET at power-on

T1CNTRL: CLEARED

Accumulator, Timer 1:

RANDOM after RESET with crystal clock option (power already applied)

UNAFFECTED after RESET with R/C clock option (power already applied)

RANDOM after RESET at power-on

WKEN, WKEDG: CLEARED

WKPND: RANDOM

SP (Stack Pointer):

Initialized to RAM address 02F Hex (devices with 64 bytes of RAM), or ini-
tialized to RAM address 06F Hex (devices with 128 bytes of RAM).

Figure 2-7 Reset Logic

INTERNAL
RESET

EXTERNAL

POWER-ON

ECON
Bit 6

RESET

ON-CHIP
COP8SAx7 MICROCONTROLLER 2-15

B and X Pointers:

UNAFFECTED after RESET with power already applied

RANDOM after RESET at power-on

RAM:

UNAFFECTED after RESET with power already applied

RANDOM after RESET at power-on

WATCHDOG (if enabled):

The device comes out of reset with both the WATCHDOG logic and the Clock
Monitor detector armed, with the WATCHDOG service window bits set and
the Clock Monitor bit set. The WATCHDOG and Clock Monitor circuits are
inhibited during reset. The WATCHDOG service window bits being initial-
ized high default to the maximum WATCHDOG service window of 64k tC
clock cycles. The Clock Monitor bit being initialized high will cause a Clock
Monitor error following reset if the clock has not reached the minimum spec-
ified frequency at the termination of reset. A Clock Monitor error will cause
an active low error output on pin G1. This error output will continue until 16
tC–32 tC clock cycles following the clock frequency reaching the minimum
specified value, at which time the G1 output will go high.

External Reset

The RESET input when pulled low initializes the device. The RESET pin must be held
low for a minimum of one instruction cycle to guarantee a valid reset. During Power-Up
initialization, the user must ensure that the RESET pin is held low until the device is
within the specified VCC voltage. An R/C circuit on the RESET pin with a delay 5 times
(5x) greater than the power supply rise time or 15 µsec whichever is greater, is
recommended. Reset should also be wide enough to ensure crystal start-up upon Power-
Up.

RESET may also be used to cause an exit from the HALT mode.

With a slowly rising power supply, the device may start running before VCC is within the
guaranteed range. In this case, the user must provide an external RC network and a
diode shown in Figure 2-8.

Figure 2-8 Reset Circuit Using External Reset

VCC

RESET

GND

COP8

P
O
W
E
R

S
U
P
P
L
Y

R/C > 5 x Power Supply Rise Time or

DR

C

15 µs, whichever is greater
2-16 COP8SAx7 MICROCONTROLLER

The external RC network is there to hold the RESET pin below VIL until VCC reaches
at least VCC (min). The desired response is shown in Figure 2-9.

On-chip Power-On Reset

The on-chip reset circuit is selected by a bit in the ECON register. When enabled, the
device generates an internal reset as VCC rises to a voltage level above 2.0V. The on-chip
reset circuitry is able to detect both fast and slow rise times on VCC (VCC rise time
between 10 ns and 50 ms).

Under no circumstances should the RESET pin be allowed to float. If the on-chip Power-
On Reset feature is being used, RESET pin should be connected directly to VCC. The
output of the power-on reset detector will always preset the Idle timer to 0FFF(4096 tc).
At this time, the internal reset will be generated.

If the Power-On Reset feature is enabled, the internal reset will not be turned off until
the Idle timer underflows. The internal reset will perform the same functions as external
reset. The user is responsible for ensuring that VCC is at the minimum level for the
operating frequency within the 4096 tc. After the underflow, the logic is designed such
that no additional internal resets occur as long as VCC remains above 2.0V.

The contents of data registers and RAM are unknown following the on-chip reset.

Figure 2-9 Dddesired Reset Response Time

t

VCC (min)

VIL (R)

Volts

VCC

External
RESET

Timer
COP8SAx7 MICROCONTROLLER 2-17

Figure 2-10 Reset Timing (Power-On Reset enabled) With VCC Tied to RESET

Figure 2-11 Reset Circuit Using Power-On Reset

4096 tctmax = 50 ms
tmin = 10 ns

x

U
N

D
ET

ER
M

IN
ED

ACTIVE

NOT ACTIVE

VCC/RESET

x is the minimum
operating
voltage for the
frequency of
operation

On-Chip Reset

VCC

RESET

COP8
2-18 COP8SAx7 MICROCONTROLLER

2.8.8 Oscillator Circuits

There are four clock oscillator options available: Crystal Oscillator with or without on
chip bias resistor, R/C Oscillator with on-chip resistor and capacitor, and External
Oscillator. The oscillator feature is selected by programming the ECON register, which
is summarized in Table 2-2.

Crystal Oscillator

The Crystal Oscillator mode can be selected by programming ECON Bit 4 to 1. CKI is the
clock input while G7/CKO is the clock generator output to the crystal. An on-chip bias
resistor connected between CKI and CKO can be enabled by programming ECON Bit 3
to 1 with the crystal oscillator option selection. The value of the resistor is in the range
of 0.5 M to 2M (typically 1.0 M). Table 2-3 shows the component values required for
various standard crystal values. Resistor R2 is only used when the on-chip bias resistor
is disabled. Figure 2-12 shows the crystal oscillator connection diagram.

Table 2-2 Oscillator Option

ECON4 ECON3 Oscillator Option

0 0 External Oscillator

1 0 Crystal Oscillator without bias resistor

0 1 R/C Oscillator

1 1 Crystal Oscillator with bias resistor

Table 2-3 Crystal Oscillator Configuration, TA = 25˚C, VCC = 5V

R1 (k Ω) R2 (M Ω) C1 (pF) C2 (pF) CKI Freq
(MHz)

0 1 30 30 15

0 1 32 32 10

0 1 45 30–36 4

5.6 1 100 100-156 0.455

Figure 2-12 Crystal Oscillator

C2

R1

C1 C2

R1

C1

G
7/

C
K

O

C
K

I

WITH ON-CHIP BIAS RESISTOR WITHOUT ON-CHIP BIAS RESISTOR

G
7/

C
K

O

C
K

I

COP8SAx7 MICROCONTROLLER 2-19

External Oscillator

The External Oscillator mode can be selected by programming ECON Bit 3 to 0 and
ECON Bit 4 to 0. CKI can be driven by an external clock signal provided it meets the
specified duty cycle, rise and fall times, and input levels. G7/CKO is available as a
general purpose input G7 and/or Halt control. Figure 2-13 shows the external oscillator
connection diagram.

R/C Oscillator

The R/C Oscillator mode can be selected by programming ECON Bit 3 to 1 and ECON Bit
4 to 0. In R/C oscillation mode, CKI is left floating, while G7/CKO is available as a general
purpose input G7 and/or HALT control. The R/C controlled oscillator has on-chip resistor
and capacitor for maximum R/C oscillator frequency operation. The maximum frequency
is 5 MHz +/- 35% for VCC between 4.5V to 5.5V and temperature range of -40˚C to +85˚C.
For max frequency operation, the CKI pin should be left floating. For lower frequencies,
an external capacitor should be connected between CKI and GND. Table 2-4 shows the
oscillator frequency as a function of external capacitance on the CKI pin. Figure 2-14
shows the R/C oscillator configuration.

Figure 2-13 External Oscillator

Table 2-4 R/C Oscillator Configuration, -40˚C to +85˚C, VCC = 4.5V to 5.5V,
OSC Freq Variation of ± 35%

External Capacitor
(pF)

R/C OSC Freq
(MHz)

Instr. Cycle
(µSec)

0 5 2.0

9 4 2.5

52 2 5.0

150 1 10

TBD 32 KHz 312.5

EXTERNAL
CLOCK

INPUT/or
HALT

Restart

G
7/

C
K

O

C
K

I

2-20 COP8SAx7 MICROCONTROLLER

2.8.9 Control Registers

CNTRL Register (Address X'00EE)

The Timer1 (T1) and MICROWIRE/PLUS control register contains the following bits:

SL1 & SL0 Select the MICROWIRE/PLUS clock divide by (00 = 2, 01 = 4, 1x = 8)

IEDG External interrupt edge polarity select
(0 = Rising edge, 1 = Falling edge)

MSEL Selects G5 and G4 as MICROWIRE/PLUS signals SK and SO respectively

T1C0 Timer T1 Start/Stop control in timer modes 1 and 2.

T1 Underflow Interrupt Pending Flag in timer mode 3

T1C1 Timer T1 mode control bit

T1C2 Timer T1 mode control bit

T1C3 Timer T1 mode control bit

Figure 2-14 R/C Oscillator

T1C3 T1C2 T1C1 T1C0 MSEL IEDG SL1 SL0

Bit 7 Bit 0

C

INPUT/or
HALT

Restart

C
K

I

G
7/

C
K

O

INPUT/or
HALT

Restart

Open
(On-chip

R/C)

G
7/

C
K

O

C
K

I

For operation at lower than maximum
R/C oscillator frequence

For operation at maximum
R/C oscillator frequence
COP8SAx7 MICROCONTROLLER 2-21

PSW Register (Address X'00EF)

The PSW register contains the following select bits:

GIE Global interrupt enable (enables interrupts)

EXEN Enable external interrupt

BUSY MICROWIRE/PLUS busy shifting flag

EXPND External interrupt pending

T1ENA Timer T1 Interrupt Enable for Timer Underflow or T1A Input capture edge

T1PNDA Timer T1 Interrupt Pending Flag (Autoreload RA in mode 1, T1 Underflow
in Mode 2, T1A capture edge in mode 3)

C Carry Flag

HC Half Carry Flag

The Half-Carry flag is also affected by all the instructions that affect the Carry flag. The
SC (Set Carry) and R/C (Reset Carry) instructions will respectively set or clear both the
carry flags. In addition to the SC and R/C instructions, ADC, SUBC, RRC and RLC
instructions affect the Carry and Half Carry flags.

ICNTRL Register (Address X'00E8)

The ICNTRL register contains the following bits:

T1ENB Timer T1 Interrupt Enable for T1B Input capture edge

T1PNDB Timer T1 Interrupt Pending Flag for T1B capture edge

µWEN Enable MICROWIRE/PLUS interrupt

µWPND MICROWIRE/PLUS interrupt pending

T0EN Timer T0 Interrupt Enable (Bit 12 toggle)

T0PND Timer T0 Interrupt pending

LPEN L Port Interrupt Enable (Multi-Input Wakeup/Interrupt)

Bit 7 could be used as a general purpose status flag

HC C T1PNDA T1ENA EXPND BUSY EXEN GIE

Bit 7 Bit 0

Unused LPEN T0PND T0EN µWPND µWEN T1PNDB T1ENB

Bit 7 Bit 0
2-22 COP8SAx7 MICROCONTROLLER

2.9 TIMERS

The device contains a very versatile set of timers (T0, T1). Timer T1and associated
autoreload/capture registers power up containing random data.

2.9.1 Timer T0 (IDLE Timer)

The device supports applications that require maintaining real time and low power with
the IDLE mode. This IDLE mode support is furnished by the IDLE timer T0. The Timer
T0 runs continuously at the fixed rate of the instruction cycle clock, tC. The user cannot
read or write to the IDLE Timer T0, which is a count down timer.

The Timer T0 supports the following functions:

• Exit out of the Idle Mode (See Idle Mode description)

• WATCHDOG logic (See WATCHDOG description)

• Start up delay out of the HALT mode

• Timing the width of the internal power-on-reset

The IDLE Timer T0 can generate an interrupt when the twelfth bit toggles. This toggle
is latched into the T0PND pending flag, and will occur every 4 .096 ms at the maximum
clock frequency (tC = 1 µs). A control flag T0EN allows the interrupt from the twelfth bit
of Timer T0 to be enabled or disabled. Setting T0EN will enable the interrupt, while
resetting it will disable the interrupt.

2.9.2 Timer T1

One of the main functions of a microcontroller is to provide timing and counting
capability for real-time control tasks. The COP888 family offers a very versatile 16-bit
timer/counter structure, and two supporting 16-bit autoreload/capture registers (R1A
and R1B), optimized to reduce software burdens in real-time control applications. The
timer block has two pins associated with it, T1A and T1B. Pin T1A supports I/O required
by the timer block, while pin T1B is an input to the timer block.

The timer block has three operating modes: Processor Independent PWM mode, External
Event Counter mode, and Input Capture mode.

The control bits T1C3, T1C2, and T1C1 allow selection of the different modes of
operation.

Mode 1. Processor Independent PWM Mode

One of the timer's operating modes is the Processor Independent PWM mode. In this
mode, the timer generates a "Processor Independent" PWM signal because once the timer
is setup, no more action is required from the CPU which translates to less software
overhead and greater throughput. The user software services the timer block only when
the PWM parameters require updating. This capability is provided by the fact that the
timer has two separate 16 -bit reload registers. One of the reload registers contains the
"ON" timer while the other holds the "OFF" time. By contrast, a microcontroller that has
COP8SAx7 MICROCONTROLLER 2-23

only a single reload register requires an additional software to update the reload value
(alternate between the on-time/off-time).

The timer can generate the PWM output with the width and duty cycle controlled by the
values stored in the reload registers. The reload registers control the countdown values
and the reload values are automatically written into the timer when it counts down
through 0, generating interrupt on each reload. Under software control and with
minimal overhead, the PMW outputs are useful in controlling motors, triacs, the
intensity of displays, and in providing inputs for data acquisition and sine wave
generators.

In this mode, the timer T1 counts down at a fixed rate of tc. Upon every underflow the
timer is alternately reloaded with the contents of supporting registers, R1A and R1B.
The very first underflow of the timer causes the timer to reload from the register R1A.
Subsequent underflows cause the timer to be reloaded from the registers alternately
beginning with the register R1B.

The T1 Timer control bits, T1C3, T1C2 and T1C1 set up the timer for PWM mode
operation.

Figure 2-15 shows a block diagram of the timer in PWM mode.

The underflows can be programmed to toggle the T1A output pin. The underflows can
also be programmed to generate interrupts.

Underflows from the timer are alternately latched into two pending flags, T1PNDA and
T1PNDB. The user must reset these pending flags under software control. Two control
enable flags, T1ENA and T1ENB, allow the interrupts from the timer underflow to be
enabled or disabled. Setting the timer enable flag T1ENA will cause an interrupt when
a timer underflow causes the R1A register to be reloaded into the timer. Setting the timer
enable flag T1ENB will cause an interrupt when a timer underflow causes the R1B
register to be reloaded into the timer. Resetting the timer enable flags will disable the
associated interrupts.

Figure 2-15 Timer in PWM Mode

 RELOAD REGISTER

16 BIT TIMER/

16 BIT AUTO

T1A

IN
T

E
R

N
A

L
D

AT
A

 B
U

S

TIME 1

COUNTER

TIME 2

Pin G3

LATCH

tC

UNDERFLOW
INTERRUPTS

16 BIT AUTO

RELOAD REGISTER

TIMER
R1A

R1B

DATA
2-24 COP8SAx7 MICROCONTROLLER

Either or both of the timer underflow interrupts may be enabled. This gives the user the
flexibility of interrupting once per PWM period on either the rising or falling edge of the
PWM output. Alternatively, the user may choose to interrupt on both edges of the PWM
output.

Mode 2. External Event Counter Mode

This mode is quite similar to the processor independent PWM mode described above. The
main difference is that the timer, T1, is clocked by the input signal from the T1A pin. The
T1 timer control bits, T1C3, T1C2 and T1C1 allow the timer to be clocked either on a
positive or negative edge from the T1A pin. Underflows from the timer are latched into
the T1PNDA pending flag. Setting the T1ENA control flag will cause an interrupt when
the timer underflows.

In this mode the input pin T1B can be used as an independent positive edge sensitive
interrupt input if the T1ENB control flag is set. The occurrence of a positive edge on the
T1B input pin is latched into the T1PNDB flag.

Figure 2-16 shows a block diagram of the timer in External Event Counter mode.

NOTE: The PWM output is not available in this mode since the T1A pin is being
used as the counter input clock.

Mode 3. Input Capture Mode

The device can precisely measure external frequencies or time external events by placing
the timer block, T1, in the input capture mode.In this mode, the reload registers serve as
independent capture registers, capturing the contents of the timer when an external
event occurs (transition on the timer input pin). The capture registers can be read while
maintaining count, a feature that lets the user measure elapsed time and time between
events. By saving the timer value when the external event occurs, the time of the

Figure 2-16 Timer in External Event Counter Mode

 RELOAD REGISTER

16 BIT TIMER/

16 BIT AUTO

T1A

IN
T

E
R

N
A

L
D

AT
A

 B
U

S

ON TIME

COUNTER

OFF TIME

UNDERFLOW
INTERRUPTS

16 BIT AUTO

RELOAD REGISTER

TIMER

EDGE SELECTOR
LOGIC

EXT
CLK

TO INTERRUPT CONTROL

T1B
COP8SAx7 MICROCONTROLLER 2-25

external event is recorded. Most microcontrollers have a latency time because they
cannot determine the timer value when the external event occurs. The capture register
eliminates the latency time, thereby allowing the applications program to retrieve the
timer value stored in the capture register.

In this mode, the timer T1 is constantly running at the fixed tc rate. The two registers,
R1A and R1B, act as capture registers. Each register acts in conjunction with a pin. The
register R1A acts in conjunction with the T1A pin and the register R1B acts in
conjunction with the T1B pin.

The timer value gets copied over into the register when a trigger event occurs on its
corresponding pin. Control bits, T1C3, T1C2 and T1C1, allow the trigger events to be
specified either as a positive or a negative edge. The trigger condition for each input pin
can be specified independently.

The trigger conditions can also be programmed to generate interrupts. The occurrence of
the specified trigger condition on the T1A and T1B pins will be respectively latched into
the pending flags, T1PNDA and T1PNDB. The control flag T1ENA allows the interrupt
on T1A to be either enabled or disabled. Setting the T1ENA flag enables interrupts to be
generated when the selected trigger condition occurs on the T1A pin. Similarly, the flag
T1ENB controls the interrupts from the T1B pin.

Underflows from the timer can also be programmed to generate interrupts. Underflows
are latched into the timer T1C0 pending flag (the T1C0 control bit serves as the timer
underflow interrupt pending flag in the Input Capture mode). Consequently, the T1C0
control bit should be reset when entering the Input Capture mode. The timer underflow
interrupt is enabled with the T1ENA control flag. When a T1A interrupt occurs in the
Input Capture mode, the user must check both the T1PNDA and T1C0 pending flags in
order to determine whether a T1A input capture or a timer underflow (or both) caused
the interrupt.

Figure 2-17 shows a block diagram of the timer in Input Capture mode.

Figure 2-17 Timer in Input Capture Mode

16 BIT TIMER/

INPUTCAPTURE

T1A

IN
T

E
R

N
A

L
D

AT
A

 B
U

S

COUNTER

R1B

T1A
INTERRUPT

REGISTER

EDGE SELECTOR
LOGIC

INPUTCAPTURE

R1A
REGISTER

T1B

T1B
INTERRUPT
2-26 COP8SAx7 MICROCONTROLLER

2.10 TIMER CONTROL FLAGS

The control bits and their functions are summarized below.

T1C0 Timer Start/Stop control in Modes 1 and 2 (Processor Independent PWM
and External Event Counter), where 1 = Start, 0 = Stop
Timer Underflow Interrupt Pending Flag in Mode 3 (Input Capture)

T1PNDA Timer Interrupt Pending Flag

T1PNDB Timer Interrupt Pending Flag

T1ENA Timer Interrupt Enable Flag

T1ENB Timer Interrupt Enable Flag

1 = Timer Interrupt Enabled

0 = Timer Interrupt Disabled

T1C3 Timer mode control

T1C2 Timer mode control

T1C1 Timer mode control

The timer mode control bits (T1C3, T1C2 and T1C1) are detailed below:

T1C3 T1C2 T1C1 Timer Mode Interrupt A
Source

Interrupt B
Source

Timer
Counts On

0 0 0 MODE 2 (External Event
Counter)

Timer Under-
flow

Pos. T1B
Edge

T1A Pos.
Edge

0 0 1 MODE 2 (External Event
Counter)

Timer Under-
flow

Pos. T1B
Edge

T1A Neg.
Edge

1 0 1 MODE 1 (PWM) T1A Tog-
gle

Autoreload RA Autoreload
RB

tc

1 0 0 MODE 1 (PWM) No T1A
Toggle

Autoreload RA Autoreload
RB

tc

0 1 0 MODE 3 (Capture) Cap-
tures:
T1A Pos. Edge
T1B Pos. Edge

Pos. T1A Edge
or Timer
Underflow

Pos. T1B
Edge

tc

1 1 0 MODE 3 (Capture) Cap-
tures:
T1A Pos. Edge
T1B Neg. Edge

Pos. T1A Edge
or
Timer Under-
flow

Neg. T1B
Edge

tc

0 1 1 MODE 3 (Capture) Cap-
tures:
T1A Neg. Edge
T1B Pos. Edge

Neg. T1A Edge
or Timer
Underflow

Pos. T1B
Edge

tc

1 1 1 MODE 3 (Capture) Cap-
tures:
T1A Neg. Edge
T1B Neg. Edge

Neg. T1A Edge
or Timer
Underflow

Neg. T1B
Edge

tc
COP8SAx7 MICROCONTROLLER 2-27

2.11 POWER SAVING FEATURES

Today, the proliferation of battery-operated based applications has placed new demands
on designers to drive power consumption down. Battery- operated systems are not the
only type of applications demanding low power. The power budget constraints are also
imposed on those consumer/industrial applications where well regulated and expensive
power supply costs cannot be tolerated. Such applications rely on low cost and low power
supply voltage derived directly from the "mains" by using voltage rectifier and passive
components. Low power is demanded even in automotive applications, due to increased
vehicle electronics content. This is required to ease the burden from the car battery. Low
power 8-bit microcontrollers supply the smarts to control battery-operated, consumer/
industrial, and automotive applications.

The COPSAx7 devices offers system designers a variety of low-power consumption
features that enable them to meet the demanding requirements of today's increasing
range of low -power applications. These features include low voltage operation, low
current drain, and power saving features such as HALT, IDLE, and Multi-Input wakeup
(MIWU).

The devices offers the user two power save modes of operation: HALT and IDLE. In the
HALT mode, all microcontroller activities are stopped. In the IDLE mode, the on-board
oscillator circuitry and timer T0 are active but all other microcontroller activities are
stopped. In either mode, all on-board RAM, registers, I/O states, and timers (with the
exception of T0) are unaltered.

Clock Monitor if enabled can be active in both modes.

2.11.1 HALT Mode

The device can be placed in the HALT mode by writing a “1” to the HALT flag (G7 data
bit). All microcontroller activities, including the clock and timers, are stopped. The
WATCHDOG logic on the device is disabled during the HALT mode. However, the clock
monitor circuitry, if enabled, remains active and will cause the WATCHDOG output pin
(WDOUT) to go low. If the HALT mode is used and the user does not want to activate the
WDOUT pin, the Clock Monitor should be disabled after the device comes out of reset
(resetting the Clock Monitor control bit with the first write to the WDSVR register). In
the HALT mode, the power requirements of the device are minimal and the applied
voltage (VCC) may be decreased to Vr (Vr = 2.0V) without altering the state of the
machine.

The device supports three different ways of exiting the HALT mode. The first method of
exiting the HALT mode is with the Multi-Input Wakeup feature on Port L. The second
method is with a low to high transition on the CKO (G7) pin. This method precludes the
use of the crystal clock configuration (since CKO becomes a dedicated output), and so
may only be used with an R/C or external clock configuration. The third method of exiting
the HALT mode is by pulling the RESET pin low.

Since a crystal or ceramic resonator may be selected as the oscillator, the Wakeup signal
is not allowed to start the chip running immediately since crystal oscillators and ceramic
resonators have a delayed start up time to reach full amplitude and frequency stability.
The IDLE timer is used to generate a fixed delay to ensure that the oscillator has indeed
2-28 COP8SAx7 MICROCONTROLLER

stabilized before allowing instruction execution. In this case, upon detecting a valid
Wakeup signal, only the oscillator circuitry is enabled. The IDLE timer is loaded with a
value of 256 and is clocked with the tc instruction cycle clock. The tc clock is derived by
dividing the oscillator clock down by a factor of 10. The Schmitt trigger following the CKI
inverter on the chip ensures that the IDLE timer is clocked only when the oscillator has
a sufficiently large amplitude to meet the Schmitt trigger specifications. This Schmitt
trigger is not part of the oscillator closed loop. The start-up time-out from the IDLE timer
enables the clock signals to be routed to the rest of the chip.

If an R/C clock option is being used, the fixed delay is introduced optionally. A control bit,
CLKDLY, mapped as configuration bit G7, controls whether the delay is to be introduced
or not. The delay is included if CLKDLY is set, and excluded if CLKDLY is reset. The
CLKDLY bit is cleared on reset.

The device has two options associated with the HALT mode. The first option enables the
HALT mode feature, while the second option disables the HALT mode selected through
bit 0 of the ECON register. With the HALT mode enable option, the device will enter and
exit the HALT mode as described above. With the HALT disable option, the device cannot
be placed in the HALT mode (writing a “1” to the HALT flag will have no effect, the HALT
flag will remain “0”).

The WATCHDOG detector circuit is inhibited during the HALT mode. However, the clock
monitor circuit if enabled remains active during HALT mode in order to ensure a clock
monitor error if the device inadvertently enters the HALT mode as a result of a runaway
program or power glitch.

If the device is placed in the HALT mode, with the R/C oscillator selected, the clock input
pin (CKI) is forced to a logic high internally. With the crystal or external oscillator the
CKI pin is TRI-STATE.

2.11.2 IDLE Mode

The device is placed in the IDLE mode by writing a “1” to the IDLE flag (G6 data bit). In
this mode, all activities, except the associated on-board oscillator circuitry and the IDLE
Timer T0, are stopped.

Figure 2-18 Wakeup From HALT

256 tC

OSC:

PORT L CKO (G7)RESET

DEVICE IN HALT MODEDEVICE ACTIVE DEVICE ACTIVE

Active:

CLK-MON.

Unaltered:

RAM Reg’s

Function
Registers

Timers
Ports

RAM
COP8SAx7 MICROCONTROLLER 2-29

As with the HALT mode, the device can be returned to normal operation with a reset, or
with a Multi-Input Wakeup from the L Port. Alternately, the microcontroller resumes
normal operation from the IDLE mode when the twelfth bit (representing 4.096 ms at
internal clock frequency of 10 MHz, tC= 1 µs) of the IDLE Timer toggles.

This toggle condition of the twelfth bit of the IDLE Timer T0 is latched into the T0PND
pending flag.

The user has the option of being interrupted with a transition on the twelfth bit of the
IDLE Timer T0. The interrupt can be enabled or disabled via the T0EN control bit.
Setting the T0EN flag enables the interrupt and vice versa.

The user can enter the IDLE mode with the Timer T0 interrupt enabled. In this case,
when the T0PND bit gets set, the device will first execute the Timer T0 interrupt service
routine and then return to the instruction following the “Enter Idle Mode” instruction.

Alternatively, the user can enter the IDLE mode with the IDLE Timer T0 interrupt
disabled. In this case, the device will resume normal operation with the instruction
immediately following the “Enter IDLE Mode” instruction.

NOTE: It is necessary to program two NOP instructions following both the set
HALT mode and set IDLE mode instructions. These NOP instructions are
necessary to allow clock resynchronization following the HALT or IDLE
modes.

Figure 2-19 Wakeup From IDLE

DELAY

T0

PORT L RESET

DEVICE ACTIVE
(out of IDLE Mode)

DEVICE ACTIVE DEVICE IN IDLE MODE

Active:

. . .
SBIT 6, PORTGD
NOP
NOP

IDLE TIMER

CONTENTS

OSC:

bit 12
Idle

Timer

CLK-MON.t

Unaltered:

RAM Reg’s

Function
Registers

Timers
Ports

RAM
2-30 COP8SAx7 MICROCONTROLLER

2.12 MULTI-INPUT WAKEUP

The Multi-Input Wakeup feature is used to return (wakeup) the device from either the
HALT or IDLE modes. Alternately Multi-Input Wakeup/Interrupt feature may also be
used to generate up to 8 edge selectable external interrupts.

Figure 2-20 shows the Multi-Input Wakeup logic.

Multi-Input Wakeup (MIWU) enables designers to specify whichever of the controller’s 8
pins they want to be used to “wake up” the device to process instructions. This capability
is activated during a transition on the input pin — from low to high, or high to low —
which is recorded internally in the chip’s registers. Without multi-input wakeup, the
microcontroller would be required to keep its software and code running constantly
(Figure 2-21).

Figure 2-20 Multi-Input Wake Up Logic

INTERNAL DATA BUS

7 0

WKEN
CKI CK0

L0

L7

0

7

............................

OSC
CKT

IDLE
TIMER

R S

Q

CHIP CLOCKT0 INTERRUPT LOGIC

LPEN BIT IN
ICNTRL REG

IDLE HALT
RR

S

Q

S

QQ

STOP

WKEDG

0 = low going high ↑
1 = high going low ↓

WKPND
COP8SAx7 MICROCONTROLLER 2-31

MIMW typically reduces current consumption down to less than 4µA during quiescent states —
compared to 6 µA of current consumption if code remained running. In addition, MIWU
makes hardware design easier and more efficient by reducing component count,
obviating the need for glue logic.

In a laptop keyboard application, for example, the L port is used as the keyboard input
lines.

The microcontroller is in the HALT mode until a keystroke or data transmission -to-low
transition on one of the lines, compelling the device to exit the HALT mode. The keyboard
is than scanned to detect which key is pressed, and the appropriate key-code is sent to
the computer. When the scan is complete, the microcontroller is switched back to the
HALT mode (Figure 2-21).

With features such as Multi-Input Wake-up, HALT and IDLE, and low voltage and
current drain capabilities, National’s COP8SAx7 family of 8-bit microcontrollers is doing
its part to reduce power consumption. And with “current” trends pointing to an
environment where less is indeed more, that’s putting real power back in the hands of
today’s embedded control system design.

The Multi-Input Wakeup feature utilizes the L Port. The user selects which particular L
port bit (or combination of L Port bits) will cause the device to exit the HALT or IDLE
modes. The selection is done through the register WKEN. The register WKEN is an 8-bit
read/write register, which contains a control bit for every L port bit. Setting a particular
WKEN bit enables a Wakeup from the associated L port pin.

Figure 2-21 Keyboard Scanning

CONTINUOUS SCANNING

START

SCAN KEYBOARD

CHANGE?

KEY DECODING

KEY ENCODING

OUTPUT

MIWU, EVENT-DRIVEN
LOWEST POWER CONSUMPTION

START

HALT

MIWU
EXTERNAL EVENT

SCAN KEYBOARD

OUTPUT

KEY ENCODING

KEY DECODING
2-32 COP8SAx7 MICROCONTROLLER

The user can select whether the trigger condition on the selected L Port pin is going to be
either a positive edge (low to high transition) or a negative edge (high to low transition).
This selection is made via the register WKEDG, which is an 8-bit control register with a
bit assigned to each L Port pin. Setting the control bit will select the trigger condition to
be a negative edge on that particular L Port pin. Resetting the bit selects the trigger
condition to be a positive edge. Changing an edge select entails several steps in order to
avoid a Wakeup condition as a result of the edge change. First, the associated WKEN bit
should be reset, followed by the edge select change in WKEDG. Next, the associated
WKPND bit should be cleared, followed by the associated WKEN bit being re-enabled.

An example may serve to clarify this procedure. Suppose we wish to change the edge
select from positive (low going high) to negative (high going low) for L Port bit 5, where
bit 5 has previously been enabled for an input interrupt. The program would be as
follows:

RBIT 5, WKEN; Disable MIWU
SBIT 5, WKEDG; Change edge polarity
RBIT 5, WKPND; Reset pending flag
SBIT 5, WKEN; Enable MIWU

If the L port bits have been used as outputs and then changed to inputs with Multi-Input
Wakeup/Interrupt, a safety procedure should also be followed to avoid wakeup
conditions. After the selected L port bits have been changed from output to input but
before the associated WKEN bits are enabled, the associated edge select bits in WKEDG
should be set or reset for the desired edge selects, followed by the associated WKPND bits
being cleared.

This same procedure should be used following reset, since the L port inputs are left
floating as a result of reset.

The occurrence of the selected trigger condition for Multi-Input Wakeup is latched into a
pending register called WKPND. The respective bits of the WKPND register will be set
on the occurrence of the selected trigger edge on the corresponding Port L pin. The user
has the responsibility of clearing these pending flags. Since WKPND is a pending register
for the occurrence of selected wakeup conditions, the device will not enter the HALT
mode if any Wakeup bit is both enabled and pending. Consequently, the user must clear
the pending flags before attempting to enter the HALT mode.

WKEN and WKEDG are all read/write registers, and are cleared at reset. WKPND
register contains random value after reset.

2.13 INTERRUPTS

2.13.1 Introduction

The device supports eight vectored interrupts. Interrupt sources include Timer 1, Timer
T0, Port L Wakeup, Software Trap, MICROWIRE/PLUS, and External Input.
COP8SAx7 MICROCONTROLLER 2-33

All interrupts force a branch to location 00FF Hex in program memory. The VIS
instruction may be used to vector to the appropriate service routine from location 00FF
Hex.

The Software trap has the highest priority while the default VIS has the lowest priority.

Each of the six maskable inputs has a fixed arbitration ranking and vector.

Figure 2-22 shows the Interrupt block diagram.

2.13.2 Maskable Interrupts

All interrupts other than the Software Trap are maskable. Each maskable interrupt has
an associated enable bit and pending flag bit. The pending bit is set to 1 when the
interrupt condition occurs. The state of the interrupt enable bit, combined with the GIE
bit determines whether an active pending flag actually triggers an interrupt. All of the
maskable interrupt pending and enable bits are contained in mapped control registers,
and thus can be controlled by the software.

Figure 2-22 Interrupt Block Diagram

GIEINTERRUPT ENABLE

PENDING FLAGSOFTWARE TRAP

TIMER T1

EXTERNAL

MULTI-INPUT WAKE UP

MICROWIRE/PLUS

FUTURE PERIPHERAL

IDLE TIMER

INTERRUPT

P
E

N
D

IN
G

 F
LA

G

2-34 COP8SAx7 MICROCONTROLLER

A maskable interrupt condition triggers an interrupt under the following conditions:

1. The enable bit associated with that interrupt is set.

2. The GIE bit is set.

3. The device is not processing a non-maskable interrupt. (If a non-maskable in-
terrupt is being serviced, a maskable interrupt must wait until that service
routine is completed.)

An interrupt is triggered only when all of these conditions are met at the beginning of an
instruction. If different maskable interrupts meet these conditions simultaneously, the
highest-priority interrupt will be serviced first, and the other pending interrupts must
wait.

Upon Reset, all pending bits, individual enable bits, and the GIE bit are reset to zero.
Thus, a maskable interrupt condition cannot trigger an interrupt until the program
enables it by setting both the GIE bit and the individual enable bit. When enabling an
interrupt, the user should consider whether or not a previously activated (set) pending
bit should be acknowledged. If, at the time an interrupt is enabled, any previous
occurrences of the interrupt should be ignored, the associated pending bit must be reset
to zero prior to enabling the interrupt. Otherwise, the interrupt may be simply enabled;
if the pending bit is already set, it will immediately trigger an interrupt. A maskable
interrupt is active if its associated enable and pending bits are set.

An interrupt is an asynchronous event which may occur before, during, or after an
instruction cycle. Any interrupt which occurs during the execution of an instruction is not
acknowledged until the start of the next normally executed instruction is to be skipped,
the skip is performed before the pending interrupt is acknowledged.

At the start of interrupt acknowledgment, the following actions occur:

1. The GIE bit is automatically reset to zero, preventing any subsequent
maskable interrupt from interrupting the current service routine.This fea-
ture prevents one maskable interrupt from interrupting another one being
serviced.

2. The address of the instruction about to be executed is pushed onto the stack.

3. The program counter(PC) is loaded with 00FF Hex, causing a jump to that
program memory location.

The device requires seven instruction cycles to perform the actions listed above.

If the user wishes to allow nested interrupts, the interrupts service routine may set the
GIE bit to 1 by writing to the PSW register, and thus allow other maskable interrupts to
interrupt the current service routine. If nested interrupts are allowed, caution must be
exercised. The user must write the program in such a was as to prevent stack overflow,
loss of saved context information, and other unwanted conditions.

The interrupt service routine stored at location 00FF Hex should use the VIS instruction
to determine the cause of the interrupt, and jump to the interrupt handling routine
corresponding to the highest priority enabled and active interrupt. Alternately, the user
may choose to poll all interrupt pending and enable bits to determine the source(s) of the
COP8SAx7 MICROCONTROLLER 2-35

interrupt. If more than one interrupt is active, the user’s program must decide which
interrupt to service.

Within a specific interrupt service routine, the associated pending bit should be cleared.
This is typically done as early as possible in the service routine in order to avoid missing
the next occurrence of the same type of interrupt event. Thus, if the same event occurs a
second time, even while the first occurrence is still being serviced, the second occurrence
will be serviced immediately upon return from the current interrupt routine.

An interrupt service routine typically ends with an RETI instruction. This instruction set
the GIE bit back to 1, pops the address stored on the stack, and restores that address to
the program counter. Program execution then proceeds with the next instruction that
would have been executed had there been no interrupt. If there are any valid interrupts
pending, the highest-priority interrupt is serviced immediately upon return from the
previous interrupt.

2.13.3 VIS Instruction

The general interrupt service routine, which starts at address 00FF Hex, must be
capable of handling all types of interrupts. The VIS instruction, together with an
interrupt vector table, directs the device to the specific interrupt handling routine based
on the cause of the interrupt.

VIS is a single-byte instruction, typically used at the very beginning of the general
interrupt service routine at address 00FF Hex, or shortly after that point, just after the
code used for context switching. The VIS instruction determines which enabled and
pending interrupt has the highest priority, and causes an indirect jump to the address
corresponding to that interrupt source. The jump addresses (vectors) for all possible
interrupts sources are stored in a vector table.

The vector table may be as long as 32 bytes (maximum of 16 vectors) and resides at the
top of the 256-byte block containing the VIS instruction. However, if the VIS instruction
is at the very top of a 256-byte block (such as at 00FF Hex), the vector table resides at
the top of the next 256-byte block. Thus, if the VIS instruction is located somewhere
between 00FF and 01DF Hex (the usual case), the vector table is located between
addresses 01E0 and 01FF Hex. If the VIS instruction is located between 01FF and 02DF
Hex, then the vector table is located between addresses 02E0 and 02FF Hex, and so on.

Each vector is 15 bits long and points to the beginning of a specific interrupt service
routine somewhere in the 32-Kbyte memory space. Each vector occupies two bytes of the
vector table, with the higher-order byte at the lower address. The vectors are arranged
in order of interrupt priority. The vector of the maskable interrupt with the lowest rank
is located to 0yE0 (higher-order byte) and 0yE1 (lower-order byte). The next priority
interrupt is located at 0yE2 and 0yE3, and so forth in increasing rank. The Software Trap
has the highest rand and its vector is always located at 0yFE and 0yFF. The number of
interrupts which can become active defines the size of the table.

Table 2-5 shows the types of interrupts, the interrupt arbitration ranking, and the
locations of the corresponding vectors in the vector table.

The vector table should be filled by the user with the memory locations of the specific
interrupt service routines. For example, if the Software Trap routine is located at 0310
2-36 COP8SAx7 MICROCONTROLLER

te
Hex, then the vector location 0yFE and -0yFF should contain the data 03 and 10 Hex,
respectively. When a Software Trap interrupt occurs and the VIS instruction is executed,
the program jumps to the address specified in the vector table.

The interrupt sources in the vector table are listed in order of rank, from highest to
lowest priority. If two or more enabled and pending interrupts are detected at the same
time, the one with the highest priority is serviced first. Upon return from the interrupt
service routine, the next highest-level pending interrupt is serviced.

If the VIS instruction is executed, but no interrupts are enabled and pending, the lowest-
priority interrupt vector is used, and a jump is made to the corresponding address in the
vector table. This is an unusual occurrence, and probably the result of an error. It can
result from a change in the enable bits or pending flags prior to using the VIS instruction,
or from inadvertent execution of the VIS command outside of the context of an interrupt.
It is a good idea to make this vector point to the Software Trap interrupt service routine
or some other error handling routine. A normal RETI instruction should not be used in
any such routine because the stack might not contain a valid return address

Table 2-5 Interrupt Vector Table

ARBITRATION
 RANKING SOURCE DESCRIPTION

 VECTOR*
 ADDRESS

(Hi-Low Byte)

(1) Highest Software INTR Instruction 0yFE - 0yFF

(2) Reserved Future 0yFC - 0yFD

(3) External G0 0yFA - 0yFB

(4) Timer T0 Underflow 0yF8 - 0yF9

(5) Timer T1 T1A/Underflow 0yF6 - 0yF7

(6) Timer T1 T1B 0yF4 - 0yF5

(7) MICROWIRE/PLUS Busy Low 0yF2 - 0yF3

(8) Reserved Future 0yF0 - 0yF1

(9) Reserved Future 0yEE - 0yEF

(10) Reserved Future 0yEC - 0yED

(11) Reserved Future 0yEA - 0yEB

(12) Reserved Future 0yE8 - 0yE9

(13) Reserved Future 0yE6 - 0yE7

(14) Reserved Future 0yE4 - 0yE5

(15) Port L/Wakeup Port L Edge 0yE2 - 0yE3

(16) Lowest Default VIS Instruction
Execution without any inter-
rupts

0yE0 - 0yE1

*y is a variable which represents the VIS block. VIS and the vector table must be located in the same 256-by
block except if VIS is located at the last address of a block. In this case, the table must be in the next block.
COP8SAx7 MICROCONTROLLER 2-37

To ensure reliable operation, the user should always use the VIS instruction to determine
the source of an interrupt. Although it is possible to poll the pending bits to detect the
source of an interrupt, this practice is not recommended. The use of polling allows the
standard arbitration ranking to be altered, but the reliability of the interrupt system is
compromised. The polling routine must individually test the enable and pending bits of
each maskable interrupt. If a Software Trap interrupt should occur, it will be serviced
last, even though it should have the highest priority. Under certain conditions, a
Software Trap could be triggered but not serviced, resulting in an inadvertent “locking
out” of all maskable interrupts by the Software Trap pending flag. Problems such as this
can be avoided by using VIS instruction.

VIS Execution

When the VIS instruction is executed it activates the arbitration logic. The arbitration
logic generates an even number between E0 and FE (E0, E2, E4, E6 etc...) depending on
which active interrupt has the highest arbitration ranking at the time of the 1st cycle of
VIS is executed. For example, if the software trap interrupt is active, FE is generated. If
the external interrupt is active and the software trap interrupt is not, then FA is
generated and so forth. If the only active interrupt is software trap, than E0 is generated.
This number replaces the lower byte of the PC. The upper byte of the PC remains
unchanged. The new PC is therefore pointing to the vector of the active interrupt with
the highest arbitration ranking. This vector is read from program memory and placed
into the PC which is now pointed to the 1st instruction of the service routine of the active
interrupt with the highest arbitration ranking.

Figure 2-23 illustrates the different steps performed by the VIS instruction. Figure 2-24
shows a flowchart for the VIS instruction.

Figure 2-23 VIS Operation

after an interrupt
ABRITRATION LOGIC

(generates an even number
between E0 and FE)

VIS

Interrupt
Vector

STARTING
ADDRESS

INTERRUPT SERVICE
ROUTINE

PROGRAM MEMORY

Table

STARTING ADDRESS
HIGH LOW

INTERRUPT

BIT 7:0
HIGH
LOW

0FF

PC

PC
VIS

Vector table is
256 byte page
same as PC
2-38 COP8SAx7 MICROCONTROLLER

The non-maskable interrupt pending flag is cleared by the RPND (Reset Non-Maskable
Pending Bit) instruction (under certain conditions) and upon RESET.

Figure 2-24 VIS Flow Chart

VIS

STPND SET?

EXTERNAL
INTERRUPT

ACTIVE?

PORT L/
WAKEUP

INTERRUPT
ACTIVE?

JUMP TO VECTOR AT 0yE0/0yE1

END

JUMP TO VECTOR AT 0yFE/0yFF

JUMP TO VECTOR AT 0yFA/0yFB

JUMP TO VECTOR AT 0yE2/0yE3
COP8SAx7 MICROCONTROLLER 2-39

Programming Example: External Interrupt

PSW =00EF

CNTRL =00EE

RBIT 0,PORTGC

RBIT 0,PORTGD ; G0 pin configured Hi-Z

SBIT IEDG, CNTRL ; Ext interrupt polarity: falling edge

SBIT GIE, PSW ; Set the GIE bit

SBIT EXEN, PSW ; Enable the external interrupt

WAIT: JP WAIT ; Wait for external interrupt

.

.

.

.=0FF ; The interrupt causes a

VIS ; branch to address 0FF

; The VIS causes a branch to

; interrupt vector table

.

.

.

.=01FA ; Vector table (within 256 byte

.ADDRW SERVICE ; of VIS inst.) containing the ext

; interrupt service routine

.

.

.

SERVICE: ; Interrupt Service Routine

RBIT, EXPND, PSW ; Reset ext interrupt pend. bit

.

.

.

RET I ; Return, set the GIE bit
2-40 COP8SAx7 MICROCONTROLLER

2.13.4 Non-maskable Interrupt

Pending Flag

There is a pending flag bit associated with the non-maskable interrupt, called STPND.
This pending flag is not memory-mapped and cannot be accessed directly by the software.

The pending flag is reset to zero when a device Reset occurs. When the non-maskable
interrupt occurs, the associated pending bit is set to 1. The interrupt service routine
should contain an RPND instruction to reset the pending flag to zero. The RPND
instruction always resets the STPND flag

Software Trap

The Software Trap is a special kind of non-maskable interrupt which occurs when the
INTR instruction (used to acknowledge interrupts) is fetched from program memory and
placed in the instruction register. This can happen in a variety of ways, usually because
of an error condition. Some examples of causes are listed below.

If the program counter incorrectly points to a memory location beyond the available
program memory space, the non-existent or unused memory location returns zeros which
is interpreted as the INTR instruction.

If the stack is popped beyond the allowed limit (address 02F or 06F Hex), a Software Trap
is triggered.

A Software Trap can be triggered by a temporary hardware condition such as a brownout
or power supply glitch.

The Software Trap has the highest priority of all interrupts. When a Software Trap
occurs, the STPND bit is set. The GIE bit is not affected and the pending bit (not
accessible by the user) is used to inhibit other interrupts and to direct the program to the
ST service routine with the VIS instruction. Nothing can interrupt a Software Trap
service routine except for another Software Trap. The STPND can be reset only by the
RPND instruction or a chip Reset.

The Software Trap indicates an unusual or unknown error condition. Generally,
returning to normal execution at the point where the Software Trap occurred cannot be
done reliably. Therefore, the Software Trap service routine should re-initialize the stack
pointer and perform a recovery procedure that re-starts the software at some known
point, similar to a device Reset, but not necessarily performing all the same functions as
a device Reset. The routine must also execute the RPND instruction to reset the STPND
flag. Otherwise, all other interrupts will be locked out. To the extent possible, the
interrupt routine should record or indicate the context of the device so that the cause of
the Software Trap can be determined.

If the user wishes to return to normal execution from the point at which the Software
Trap was triggered, the user must first execute RPND, followed by RETSK rather tan
RETI or RET. This is because the return address stored on the stack is the address of the
INTR instruction that triggered the interrupt. The program must skip that instruction
in order to proceed with the next one. Otherwise, an infinite loop of Software Traps and
returns will occur.
COP8SAx7 MICROCONTROLLER 2-41

Programming a return to normal execution requires careful consideration. If the
Software Trap routine is interrupted by another Software Trap, the RPND instruction in
the service routine for the second Software Trap will reset the STPND flag; upon return
to the first Software Trap routine, the STPND flag will have the wrong state. This will
allow maskable interrupts to be acknowledged during the servicing of the first Software
Trap. To avoid problems such as this, the user program should contain the Software Trap
routine to perform a recovery procedure rather than a return to normal execution.

Under normal conditions, the STPND flag is reset by a RPND instruction in the Software
Trap service routine. If a programming error or hardware condition (brownout, power
supply glitch, etc.) sets the STPND flag without providing a way for it to be cleared, all
other interrupts will be locked out. To alleviate this condition, the user can use extra
RPND instructions in the main program and in the Watchdog service routine (if present).
There is no harm in executing extra RPND instructions in these parts of the program.

2.13.5 Port L Interrupts

Port L provides the user with an additional eight fully selectable, edge sensitive
interrupts which are all vectored into the same service subroutine.

The interrupt from Port L shares logic with the wake up circuitry. The register WKEN
allows interrupts from Port L to be individually enabled or disabled. The register
WKEDG specifies the trigger condition to be either a positive or a negative edge. Finally,
the register WKPND latches in the pending trigger conditions.

The GIE (Global Interrupt Enable) bit enables the interrupt function.

A control flag, LPEN, functions as a global interrupt enable for Port L interrupts. Setting
the LPEN flag will enable interrupts and vice versa. A separate global pending flag is not
needed since the register WKPND is adequate.

Since Port L is also used for waking the device out of the HALT or IDLE modes, the user
can elect to exit the HALT or IDLE modes either with or without the interrupt enabled.
If he elects to disable the interrupt, then the device will restart execution from the
instruction immediately following the instruction that placed the microcontroller in the
HALT or IDLE modes. In the other case, the device will first execute the interrupt service
routine and then revert to normal operation. (See HALT MODE for clock option wakeup
information.)

2.13.6 Interrupt Summary

The device uses the following types of interrupts, listed below in order of priority:

1. The Software Trap non-maskable interrupt, triggered by the INTR (00 op-
code) instruction. The Software Trap is acknowledged immediately. This in-
terrupt service routine can be interrupted only by another Software Trap.
The Software Trap should end with two RPND instructions followed by a re-
start procedure.

2. Maskable interrupts, triggered by an on-chip peripheral block or an external
device connected to the device. Under ordinary conditions, a maskable inter-
2-42 COP8SAx7 MICROCONTROLLER

rupt will not interrupt any other interrupt routine in progress. A maskable
interrupt routine in progress can be interrupted by the non-maskable inter-
rupt request. A maskable interrupt routine should end with an RETI instruc-
tion.

2.14 WATCHDOG/CLOCK MONITOR

The devices contain a user selectable WATCHDOG and clock monitor. The following
section is applicable only if WATCHDOG feature has been selected in the ECON register.
The WATCHDOG is designed to detect the user program getting stuck in infinite loops
resulting in loss of program control or “runaway” programs.

The WATCHDOG logic contains two separate service windows. While the user
programmable upper window selects the Watchdog service time, the lower widow
provides protection against an infinite program loop that contains the watchdog service
instruction.

The COPSAx7 devices provide the added feature of a software trap that provides
protection against stack overpops and addressing locations outside valid user program
space.

The Clock Monitor is used to detect the absence of a clock or a very slow clock below a
specified rate on the CKI pin.

The WATCHDOG consists of two independent logic blocks: WD UPPER and WD
LOWER. WD UPPER establishes the upper limit on the service window and WD
LOWER defines the lower limit of the service window.

Servicing the WATCHDOG consists of writing a specific value to a WATCHDOG Service
Register named WDSVR which is memory mapped in the RAM. This value is composed
of three fields, consisting of a 2-bit Window Select, a 5-bit Key Data field, and the 1-bit
Clock Monitor Select field. Table 2-6 shows the WDSVR register.

The lower limit of the service window is fixed at 256 instruction cycles. Bits 7 and 6 of the
WDSVR register allow the user to pick an upper limit of the service window.

Table 2-7 shows the four possible combinations of lower and upper limits for the
WATCHDOG service window. This flexibility in choosing the WATCHDOG service
window prevents any undue burden on the user software.

Bits 5, 4, 3, 2 and 1 of the WDSVR register represent the 5-bit Key Data field. The key
data is fixed at 01100. Bit 0 of the WDSVR Register is the Clock Monitor Select bit.

Table 2-6 WATCHDOG Service Register (WDSVR)

Window
Select Key Data Clock

Monitor

X X 0 1 1 0 0 Y

7 6 5 4 3 2 1 0
COP8SAx7 MICROCONTROLLER 2-43

2.14.1 Clock Monitor

The Clock Monitor aboard the device can be selected or deselected under program
control. The Clock Monitor is guaranteed not to reject the clock if the instruction cycle
clock (1/tc) is greater or equal to 10 kHz. This equates to a clock input rate on CKI of
greater or equal to 100 kHz.

2.14.2 WATCHDOG/Clock Monitor Operation

The WATCHDOG is enabled by bit 2 of the ECON register. When this ECON bit is 0, the
WATCHDOG is enabled and pin G1 becomes the WATCHDOG output with a weak
pullup.

The WATCHDOG and Clock Monitor are disabled during reset. The device comes out of
reset with the WATCHDOG armed, the WATCHDOG Window Select bits (bits 6, 7 of the
WDSVR Register) set, and the Clock Monitor bit (bit 0 of the WDSVR Register) enabled.
Thus, a Clock Monitor error will occur after coming out of reset, if the instruction cycle
clock frequency has not reached a minimum specified value, including the case where the
oscillator fails to start.

The WDSVR register can be written to only once after reset and the key data (bits 5
through 1 of the WDSVR Register) must match to be a valid write. This write to the
WDSVR register involves two irrevocable choices: (i) the selection of the WATCHDOG
service window (ii) enabling or disabling of the Clock Monitor. Hence, the first write to
WDSVR Register involves selecting or deselecting the Clock Monitor, select the
WATCHDOG service window and match the WATCHDOG key data. Subsequent writes
to the WDSVR register will compare the value being written by the user to the
WATCHDOG service window value and the key data (bits 7 through 1) in the WDSVR
Register. Table 2-8 shows the sequence of events that can occur.

The user must service the WATCHDOG at least once before the upper limit of the service
window expires. The WATCHDOG may not be serviced more than once in every lower
limit of the service window. The user may service the WATCHDOG as many times as
wished in the time period between the lower and upper limits of the service window. The
first write to the WDSVR Register is also counted as a WATCHDOG service.

The WATCHDOG has an output pin associated with it. This is the WDOUT pin, on pin
1 of the port G. WDOUT is active low. The WDOUT pin has a weak pullup in the inactive

Table 2-7 WATCHDOG Service Window Select

WDSVR
Bit 7

WDSVR
Bit 6

Service Window
(Lower-Upper Limits)

0 0 256–8k tc Cycles

0 1 256–16k tc Cycles

1 0 256–32k tc Cycles

1 1 256–64k tc Cycles
2-44 COP8SAx7 MICROCONTROLLER

state. Upon triggering the WATCHDOG, the logic will pull the WDOUT (G1) pin low for
an additional 16 tc–32 tc cycles after the signal level on WDOUT pin goes below the lower
Schmitt trigger threshold. After this delay, the device will stop forcing the WDOUT
output low.The WATCHDOG service window will restart when the WDOUT pin goes
high.

A WATCHDOG service while the WDOUT signal is active will be ignored. The state of
the WDOUT pin is not guaranteed on reset, but if it powers up low then the WATCHDOG
will time out and WDOUT will go high.

The Clock Monitor forces the G1 pin low upon detecting a clock frequency error. The
Clock Monitor error will continue until the clock frequency has reached the minimum
specified value, after which the G1 output will go high following 16 tc–32 tc clock cycles.
The Clock Monitor generates a continual Clock Monitor error if the oscillator fails to
start, or fails to reach the minimum specified frequency. The specification for the Clock
Monitor is as follows:

1/tc > 10 kHz—No clock rejection.

1/tc < 10 Hz—Guaranteed clock rejection.

2.14.3 WATCHDOG and Clock Monitor Summary

The following salient points regarding the WATCHDOG and CLOCK MONITOR should
be noted:

• Both the WATCHDOG and CLOCK MONITOR detector circuits are inhibited dur-
ing RESET.

• Following RESET, the WATCHDOG and CLOCK MONITOR are both enabled,
with the WATCHDOG having he maximum service window selected.

• The WATCHDOG service window and CLOCK MONITOR enable/disable option
can only be changed once, during the initial WATCHDOG service following RE-
SET.

• The initial WATCHDOG service must match the key data value in the WATCH-
DOG Service register WDSVR in order to avoid a WATCHDOG error.

• Subsequent WATCHDOG services must match all three data fields in WDSVR in
order to avoid WATCHDOG errors.

Table 2-8 WATCHDOG Service Actions

Key Data Window Data Clock
Monitor Action

Match Match Match Valid Service: Restart Service Window

Don't Care Mismatch Don't Care Error: Generate WATCHDOG Output

Mismatch Don't Care Don't Care Error: Generate WATCHDOG Output

Don't Care Don't Care Mismatch Error: Generate WATCHDOG Output
COP8SAx7 MICROCONTROLLER 2-45

• The correct key data value cannot be read from the WATCHDOG Service register
WDSVR. Any attempt to read this key data value of 01100 from WDSVR will read
as key data value of all 0's.

• The WATCHDOG detector circuit is inhibited during both the HALT and IDLE
modes.

• The CLOCK MONITOR detector circuit is active during both the HALT and IDLE
modes. Consequently, the device inadvertently entering the HALT mode will be de-
tected as a CLOCK MONITOR error (provided that the CLOCK MONITOR enable
option has been selected by the program).

• With the single-pin R/C oscillator option selected and the CLKDLY bit reset, the
WATCHDOG service window will resume following HALT mode from where it left
off before entering the HALT mode.

• With the crystal oscillator option selected, or with the single-pin R/C oscillator op-
tion selected and the CLKDLY bit set, the WATCHDOG service window will be set
to its selected value from WDSVR following HALT. Consequently, the WATCH-
DOG should not be serviced for at least 256 instruction cycles following HALT, but
must be serviced within the selected window to avoid a WATCHDOG error.

• The IDLE timer T0 is not initialized with external RESET.

• The user can sync in to the IDLE counter cycle with an IDLE counter (T0) inter-
rupt or by monitoring the T0PND flag. The T0PND flag is set whenever the twelfth
bit of the IDLE counter toggles (every 4096 instruction cycles). The user is respon-
sible for resetting the T0PND flag.

• A hardware WATCHDOG service occurs just as the device exits the IDLE mode.
Consequently, the WATCHDOG should not be serviced for at least 256 instruction
cycles following IDLE, but must be serviced within the selected window to avoid a
WATCHDOG error.

• Following RESET, the initial WATCHDOG service (where the service window and
the CLOCK MONITOR enable/disable must be selected) may be programmed any-
where within the maximum service window (65,536 instruction cycles) initialized
by RESET. Note that this initial WATCHDOG service may be programmed within
the initial 256 instruction cycles without causing a WATCHDOG error.

2.14.4 Detection of Illegal Conditions

The device can detect various illegal conditions resulting from coding errors, transient
noise, power supply voltage drops, runaway programs, etc.

Reading of undefined ROM gets zeros. The opcode for software interrupt is 00. If the
program fetches instructions from undefined ROM, this will force a software interrupt,
thus signaling that an illegal condition has occurred.

The subroutine stack grows down for each call (jump to subroutine), interrupt, or PUSH,
and grows up for each return or POP. The stack pointer is initialized to RAM location 06F
Hex during reset. Consequently, if there are more returns than calls, the stack pointer
will point to addresses 070 and 071 Hex (which are undefined RAM). Undefined RAM
2-46 COP8SAx7 MICROCONTROLLER

from addresses 070 to 07F (Segment 0), and all other segments (i.e., Segments 4... etc.)
is read as all 1's, which in turn will cause the program to return to address 7FFF Hex.
This is an undefined ROM location and the instruction fetched (all 0's) from this location
will generate a software interrupt signaling an illegal condition.

Thus, the chip can detect the following illegal conditions:

1. Executing from undefined ROM

2. Over “POP”ing the stack by having more returns than calls.

When the software interrupt occurs, the user can re-initialize the stack pointer and do a
recovery procedure before restarting (this recovery program is probably similar to that
following reset, but might not contain the same program initialization procedures). The
recovery program should reset the software interrupt pending bit using the RPND
instruction.

2.15 MICROWIRE/PLUS

MICROWIRE/PLUS is a serial SPI compatible synchronous communications interface.
The MICROWIRE/PLUS capability enables the device to interface with MICROWIRE/
PLUS or SPI peripherals (i.e. A/D converters, display drivers, EEPROMs etc.) and with
other microcontrollers which support the MICROWIRE/PLUS or SPI interface. It
consists of an 8-bit serial shift register (SIO) with serial data input (SI), serial data
output (SO) and serial shift clock (SK). Figure 2-25 shows a block diagram of the
MICROWIRE/PLUS logic.

The shift clock can be selected from either an internal source or an external source.
Operating the MICROWIRE/PLUS arrangement with the internal clock source is called
the Master mode of operation. Similarly, operating the MICROWIRE/PLUS
arrangement with an external shift clock is called the Slave mode of operation.

Figure 2-25 MICROWIRE/PLUS Application

COP8
(SLAVE)

CHIP SELECT LINES

I/O
LINES

COP8
(MASTER)

SI

SO

SK

8-BIT
A/D CON-
VERTER

EEPROM

VF/LED
DISPLAY
DRIVER

5

I/O
LINES

SO

SI

SK

D0 DISK D0 DISK DISK DISK

LCD
DISPLAY
DRIVER
COP8SAx7 MICROCONTROLLER 2-47

The CNTRL register is used to configure and control the MICROWIRE/PLUS mode. To
use the MICROWIRE/PLUS, the MSEL bit in the CNTRL register is set to one. In the
master mode, the SK clock rate is selected by the two bits, SL0 and SL1, in the CNTRL
register. Table 2-9 details the different clock rates that may be selected.

2.15.1 MICROWIRE/PLUS Operation

Setting the BUSY bit in the PSW register causes the MICROWIRE/PLUS to start
shifting the data. It gets reset when eight data bits have been shifted. The user may reset
the BUSY bit by software to allow less than 8 bits to shift. If enabled, an interrupt is
generated when eight data bits have been shifted. The device may enter the
MICROWIRE/PLUS mode either as a Master or as a Slave. Figure 2-25 shows how two
microcontroller devices and several peripherals may be interconnected using the
MICROWIRE/PLUS arrangements.

WARNING

The SIO register should only be loaded when the SK clock is in the idle phase. Loading
the SIO register while the SK clock is in the active phase, will result in undefined data
in the SIO register.

Setting the BUSY flag when the input SK clock is in the active phase while in the MI-
CROWIRE/PLUS is in the slave mode may cause the current SK clock for the SIO shift
register to be narrow. For safety, the BUSY flag should only be set when the input SK
clock is in the idle phase.

MICROWIRE/PLUS Master Mode Operation

In the MICROWIRE/PLUS Master mode of operation the shift clock (SK) is generated
internally. The MICROWIRE Master always initiates all data exchanges. The MSEL bit
in the CNTRL register must be set to enable the SO and SK functions onto the G Port.
The SO and SK pins must also be selected as outputs by setting appropriate bits in the
Port G configuration register. In the slave mode, the shift clock stops after 8 clock pulses.
Table 2-10 summarizes the bit settings required for Master mode of operation.

Table 2-9 MICROWIRE/PLUS Master Mode Clock Select

SL1 SL0 SK period

0 0 2 X tc

0 1 4 X tc

1 x 8 X tc

Where tc is the instruction cycle clock
2-48 COP8SAx7 MICROCONTROLLER

MICROWIRE/PLUS Slave Mode Operation

In the MICROWIRE/PLUS Slave mode of operation the SK clock is generated by an
external source. Setting the MSEL bit in the CNTRL register enables the SO and SK
functions onto the G Port. The SK pin must be selected as an input and the SO pin is
selected as an output pin by setting and resetting the appropriate bits in the Port G
configuration register. Table 2-10 summarizes the settings required to enter the Slave
mode of operation.

The user must set the BUSY flag immediately upon entering the Slave mode. This
ensures that all data bits sent by the Master is shifted properly. After eight clock pulses
the BUSY flag is clear, the shift clock is stopped, and the sequence may be repeated.

Alternate SK Phase Operation and SK Idle Polarity

The device allows either the normal SK clock or an alternate phase SK clock to shift data
in and out of the SIO register. In both the modes the SK idle polarity can be either high
or low. The polarity is selected by bit 5 of Port G data register. In the normal mode data
is shifted in on the rising edge of the SK clock and the data is shifted out on the falling
edge of the SK clock. The SIO register is shifted on each falling edge of the SK clock. In
the alternate SK phase operation, data is shifted in on the falling edge of the SK clock
and shifted out on the rising edge of the SK clock. Bit 6 of Port G configuration register
selects the SK edge.

A control flag, SKSEL, allows either the normal SK clock or the alternate SK clock to be
selected. Resetting SKSEL causes the MICROWIRE/PLUS logic to be clocked from the
normal SK signal. Setting the SKSEL flag selects the alternate SK clock. The SKSEL is
mapped into the G6 configuration bit. The SKSEL flag will power up in the reset
condition, selecting the normal SK signal.

Table 2-10 MICROWIRE/PLUS Mode Settings

This table assumes that the control flag MSEL is set.

G4 (SO)
Config. Bit

G5 (SK)
Config. Bit

G4
Fun.

G5
Fun. Operation

1 1 SO Int.
SK

MICROWIRE/PLUS
Master

0 1 TRI-STATE Int.
SK

MICROWIRE/PLUS
Master

1 0 SO Ext.
SK

MICROWIRE/PLUS
Slave

0 0 TRI-STATE Ext.
SK

MICROWIRE/PLUS
Slave
COP8SAx7 MICROCONTROLLER 2-49

Table 2-11 MICROWIRE/PLUS Shift Clock Polarity and Sample/Shift Phase

 SK
Phase

Port G
SO Clocked

out on: SI Sampled on: SK Idle
PhaseG6 (SKSEL)

Config. Bit
G5

Data Bit

Normal 0 0 SK Falling edge SK Rising edge Low

Alternate 1 0 SK Rising edge SK Falling edge Low

Alternate 0 1 SK Rising edge SK Falling edge High

Normal 1 1 SK Falling edge SK Rising edge High

Figure 2-26 MICROWIRE/PLUS SPI Mode Interface Timing, Normal SK Mode, SK Idle
Phase being Low

Figure 2-27 MICROWIRE/PLUS SPI Mode Interface Timing, Alternate SK Mode, SK
Idle Phase being Low

SK

SO

SI

Bit 7 Out
(MSB) Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

Bit 0
(LSB)

Bit 7 In
(MSB) Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

Bit 0
(LSB)

Bit 7 Out
(MSB)

Bit 7 In
(MSB)

SK

SO

SI

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1
Bit 0
(LSB)

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1
Bit 0
(LSB)

Bit 7
(MSB)

Bit 7
(MSB)
2-50 COP8SAx7 MICROCONTROLLER

Figure 2-28 MICROWIRE/PLUS SPI Mode Interface Timing, Alternate SK Mode, SK
Idle Phase being High

Figure 2-29 MICROWIRE/PLUS SPI Mode Interface Timing, Normal SK Mode, SK Idle
Phase being High

SK

SO

SI

Bit 7 Out
(MSB) Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

Bit 0
(LSB)

Bit 7 In
(MSB) Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

Bit 0
(LSB)

Bit 7 Out
(MSB)

Bit 7 In
(MSB)

SK

SO

SI

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1
Bit 0
(LSB)

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1
Bit 0
(LSB)

Bit 7
(MSB)

Bit 7
(MSB)
COP8SAx7 MICROCONTROLLER 2-51

2.16 MEMORY MAP

All RAM, ports and registers (except A and PC) are mapped into data memory address
space.

RAM
Select

Address
ADD
REG

Contents

64 On-chip RAM
Bytes. Selected by

ECON Register

00 to 2F On-chip RAM (48 Bytes)

30 to 7F Unused RAM (Reads as all ones)

128 On-chip RAM
Bytes.

00 to 6F On-chip RAM (112 Bytes)

70 to 7F Unused RAM (Reads as all ones)

94 Port F Data Register

95 Port F Configuration Register

96 Port F Input Pins (read only)

97 Reserved

C7 WATCHDOG Service Register
(Reg:WDSVR)

C8 MIWU Edge Select Register
(Reg:WKEDG)

C9 MIWU Enable Register (Reg:WKEN)

CA MIWU Pending Register
(Reg:WKPND)

CB to CF Reserved

D0 Port L Data Register

D1 Port L Configuration Register

D2 Port L Input Pins (Read Only)

D3 Reserved

D4 Port G Data Register

D5 Port G Configuration Register

D6 Port G Input Pins (Read Only)

D7 Reserved

D8 Port C Data Register

D9 Port C Configuration Register

DA Port C Input Pins (Read Only)
2-52 COP8SAx7 MICROCONTROLLER

DB Reserved

DC Port D

DD to DF Reserved

E0 to E5 Reserved

E6 Timer T1 Autoload Register T1RB
Lower Byte

E7 Timer T1 Autoload Register T1RB
Upper Byte

E8 ICNTRL Register

E9 MICROWIRE/PLUS Shift Register

EA Timer T1 Lower Byte

EB Timer T1 Upper Byte

EC Timer T1 Autoload Register T1RA
Lower Byte

ED Timer T1 Autoload Register T1RA
Upper Byte

EE CNTRL Control Register

EF PSW Register

F0 to FB On-Chip RAM Mapped as Registers

FC X Register

FD SP Register

FE B Register

FF Segment Register

Reading any undefined memory location in the address range of 0080H–00FFH will return undefined data.

RAM
Select

Address
ADD
REG

Contents
COP8SAx7 MICROCONTROLLER 2-53

2.17 INSTRUCTION SET

2.17.1 Introduction

This section defines the instruction set of the COPSAx7 Family members. It contains
information about the instruction set features, addressing modes and types.

2.17.2 Instruction Features

The strength of the instruction set is based on the following features:

• Mostly single-byte opcode instructions minimize program size.

• One instruction cycle for the majority of single-byte instructions to minimize pro-
gram execution time.

• Many single-byte, multiple function instructions such as DRSZ.

• Three memory mapped pointers: two for register indirect addressing, and one for
the software stack.

• Sixteen memory mapped registers that allow an optimized implementation of cer-
tain instructions.

• Ability to set, reset, and test any individual bit in data memory address space, in-
cluding the memory-mapped I/O ports and registers.

• Register-Indirect LOAD and EXCHANGE instructions with optional automatic
post-incrementing or decrementing of the register pointer. This allows for greater
efficiency (both in cycle time and program code) in loading, walking across and pro-
cessing fields in data memory.

• Unique instructions to optimize program size and throughput efficiency. Some of
these instructions are: DRSZ, IFBNE, DCOR, RETSK, VIS and RRC.

2.17.3 Addressing Modes

The instruction set offers a variety of methods for specifying memory addresses. Each
method is called an addressing mode. These modes are classified into two categories:
operand addressing modes and transfer-of-control addressing modes. Operand
addressing modes are the various methods of specifying an address for accessing (reading
or writing) data. Transfer-of-control addressing modes are used in conjunction with jump
instructions to control the execution sequence of the software program.

Operand Addressing Modes

The operand of an instruction specifies what memory location is to be affected by that
instruction. Several different operand addressing modes are available, allowing memory
locations to be specified in a variety of ways. An instruction can specify an address
directly by supplying the specific address, or indirectly by specifying a register pointer.
The contents of the register (or in some cases, two registers) point to the desired memory
2-54 COP8SAx7 MICROCONTROLLER

location. In the immediate mode, the data byte to be used is contained in the instruction
itself.

Each addressing mode has its own advantages and disadvantages with respect to
flexibility, execution speed, and program compactness. Not all modes are available with
all instructions. The Load (LD) instruction offers the largest number of addressing
modes.

The available addressing modes are:

• Direct

• Register B or X Indirect

• Register B or X Indirect with Post-Incrementing/Decrementing

• Immediate

• Immediate Short

• Indirect from Program Memory

The addressing modes are described below. Each description includes an example of an
assembly language instruction using the described addressing mode.

Direct. The memory address is specified directly as a byte in the instruction. In
assembly language, the direct address is written as a numerical value (or a label that has
been defined elsewhere in the program as a numerical value).

Register B or X Indirect. The memory address is specified by the contents of the B
Register or X register (pointer register). In assembly language, the notation [B] or [X]
specifies which register serves as the pointer.

Example: Load Accumulator Memory Direct

LD A,05

Reg/Data
Memory

Contents
Before

Contents
After

Accumulator XX Hex A6 Hex

Memory Location
0005 Hex

A6 Hex A6 Hex

Example: Exchange Memory with Accumulator, B Indirect

X A,[B]

Reg/Data
Memory

Contents
Before

Contents
After

Accumulator 01 Hex 87 Hex

Memory Location
0005 Hex

87 Hex 01 Hex

B Pointer 05 Hex 05 Hex
COP8SAx7 MICROCONTROLLER 2-55

Register B or X Indirect with Post-Incrementing/Decrementing. The relevant
memory address is specified by the contents of the B Register or X register (pointer
register). The pointer register is automatically incremented or decremented after
execution, allowing easy manipulation of memory blocks with software loops. In
assembly language, the notation [B+], [B-], [X+], or [X-] specifies which register serves as
the pointer, and whether the pointer is to be incremented or decremented.

Immediate. The data for the operation follows the instruction opcode in program
memory. In assembly language, the number sign character (#) indicates an immediate
operand.

Immediate Short. This is a special case of an immediate instruction. In the “Load B
immediate” instruction, the 4-bit immediate value in the instruction is loaded into the
lower nibble of the B register. The upper nibble of the B register is reset to 0000 binary.

Indirect from Program Memory. This is a special case of an indirect instruction that
allows access to data tables stored in program memory. In the “Load Accumulator
Indirect” (LAID) instruction, the upper and lower bytes of the Program Counter (PCU
and PCL) are used temporarily as a pointer to program memory. For purposes of
accessing program memory, the contents of the Accumulator and PCL are exchanged.
The data pointed to by the Program Counter is loaded into the Accumulator, and

Example: Exchange Memory with Accumulator, B Indirect with Post-Increment

X A,[B+]

Reg/Data
Memory

Contents
Before

Contents
After

Accumulator 03 Hex 62 Hex

Memory Location
0005 Hex

62 Hex 03 Hex

B Pointer 05 Hex 06 Hex

Example: Load Accumulator Immediate

LD A,#05

Reg/Data
Memory

Contents
Before

Contents
After

Accumulator XX Hex 05 Hex

Example: Load B Register Immediate Short

LD B,#7

Reg/Data
Memory

Contents
Before

Contents
After

B Pointer 12 Hex 07 Hex
2-56 COP8SAx7 MICROCONTROLLER

simultaneously, the original contents of PCL are restored so that the program can
resume normal execution.

Transfer-of-Control Addressing Modes

Program instructions are usually executed in sequential order. However, Jump
instructions can be used to change the normal execution sequence. Several transfer-of-
control addressing modes are available to specify jump addresses.

A change in program flow requires a non-incremental change in the Program Counter
contents. The Program Counter consists of two bytes, designated the upper byte (PCU)
and lower byte (PCL). The most significant bit of PCU is not used, leaving 15 bits to
address the program memory.

Different addressing modes are used to specify the new address for the Program Counter.
The choice of addressing mode depends primarily on the distance of the jump. Farther
jumps sometimes require more instruction bytes in order to completely specify the new
Program Counter contents.

The available transfer-of-control addressing modes are:

• Jump Relative

• Jump Absolute

• Jump Absolute Long

• Jump Indirect

The transfer-of-control addressing modes are described below. Each description includes
an example of a Jump instruction using a particular addressing mode, and the effect on
the Program Counter bytes of executing that instruction.

Example: Load Accumulator Indirect

LAID

Reg/Data
Memory

Contents
Before

Contents
After

PCU 04 Hex 04 Hex

PCL 35 Hex 36 Hex

Accumulator 1F Hex 25 Hex

Memory Location
041F Hex

25 Hex 25 Hex
COP8SAx7 MICROCONTROLLER 2-57

Jump Relative. In this 1-byte instruction, six bits of the instruction opcode specify the
distance of the jump from the current program memory location. The distance of the
jump can range from –31 to +32. A JP+1 instruction is not allowed. The programmer
should use a NOP instead.

Jump Absolute. In this 2-byte instruction, 12 bits of the instruction opcode specify the
new contents of the Program Counter. The upper three bits of the Program Counter
remain unchanged, restricting the new Program Counter address to the same 4-Kbyte
address space as the current instruction. (This restriction is relevant only in devices
using more than one 4-Kbyte program memory space.)

Jump Absolute Long. In this 3-byte instruction, 15 bits of the instruction opcode
specify the new contents of the Program Counter.

Example: Jump Relative

JP 0A

Reg Contents
Before

Contents
After

PCU 02 Hex 02 Hex

PCL 05 Hex 0F Hex

Example Jump Absolute

JMP 0125

Reg Contents
Before

Contents
After

PCU 0C Hex 01 Hex

PCL 77 Hex 25 Hex

Example: Jump Absolute Long

JMP 03625

Reg/Memory Contents
Before

Contents
After

PCU 42 Hex 36 Hex

PCL 36 Hex 25 Hex
2-58 COP8SAx7 MICROCONTROLLER

Jump Indirect. In this 1-byte instruction, the lower byte of the jump address is
obtained from a table stored in program memory, with the Accumulator serving as the
low order byte of a pointer into program memory. For purposes of accessing program
memory, the contents of the Accumulator are written to PCL (temporarily). The data
pointed to by the Program Counter (PCH/PCL) is loaded into PCL, while PCH remains
unchanged.

The VIS instruction is a special case of the Indirect Transfer of Control addressing mode,
where the double-byte vector associated with the interrupt is transferred from adjacent
addresses in program memory into the Program Counter in order to jump to the
associated interrupt service routine.

Example: Jump Indirect

JID

Reg/Memory Contents
Before

Contents
After

PCU 01 Hex 01 Hex

PCL C4 Hex 32 Hex

Accumulator 26 Hex 26 Hex

Memory
Location
0126 Hex

32 Hex 32 Hex
COP8SAx7 MICROCONTROLLER 2-59

2.17.4 Instruction Types

The instruction set contains a wide variety of instructions. The available instructions are
listed below, organized into related groups.

Some instructions test a condition and skip the next instruction if the condition is not
true. Skipped instructions are executed as no-operation (NOP) instructions.

Arithmetic Instructions

The arithmetic instructions perform binary arithmetic such as addition and subtraction,
with or without the Carry bit.

Add (ADD)

Add with Carry (ADC)

Subtract (SUB)

Subtract with Carry (SUBC)

Increment (INC)

Decrement (DEC)

Decimal Correct (DCOR)

Clear Accumulator (CLR)

Set Carry (SC)

Reset Carry (RC)

Transfer-of-Control Instructions

The transfer-of-control instructions change the usual sequential program flow by
altering the contents of the Program Counter. The Jump to Subroutine instructions save
the Program Counter contents on the stack before jumping; the Return instructions pop
the top of the stack back into the Program Counter.

Jump Relative (JP)

Jump Absolute (JMP)

Jump Absolute Long (JMPL)

Jump Indirect (JID)

Jump to Subroutine (JSR)

Jump to Subroutine Long (JSRL)

Return from Subroutine (RET)

Return from Subroutine and Skip (RETSK)

Return from Interrupt (RETI)
2-60 COP8SAx7 MICROCONTROLLER

Software Trap Interrupt (INTR)

Vector Interrupt Select (VIS)

Load and Exchange Instructions

The load and exchange instructions write byte values in registers or memory. The
addressing mode determines the source of the data.

Load (LD)

Load Accumulator Indirect (LAID)

Exchange (X)

Logical Instructions

The logical instructions perform the operations AND, OR, and XOR (Exclusive OR). Other
logical operations can be performed by combining these basic operations. For example,
complementing is accomplished by exclusive-ORing the Accumulator with FF Hex.

Logical AND (AND)

Logical OR (OR)

Exclusive OR (XOR)

Accumulator Bit Manipulation Instructions

The Accumulator bit manipulation instructions allow the user to shift the Accumulator
bits and to swap its two nibbles.

Rotate Right Through Carry (RRC)

Rotate Left Through Carry (RLC)

Swap Nibbles of Accumulator (SWAP)

Stack Control Instructions

Push Data onto Stack (PUSH)

Pop Data off of Stack (POP)

Memory Bit Manipulation Instructions

The memory bit manipulation instructions allow the user to set and reset individual bits
in memory.

Set Bit (SBIT)

Reset Bit (RBIT)

Reset Pending Bit (RPND)
COP8SAx7 MICROCONTROLLER 2-61

Conditional Instructions

The conditional instructions test a condition. If the condition is true, the next instruction
is executed in the normal manner; if the condition is false, the next instruction is skipped.

If Equal (IFEQ)

If Not Equal (IFNE)

If Greater Than (IFGT)

If Carry (IFC)

If Not Carry (IFNC)

If Bit (IFBIT)

If B Pointer Not Equal (IFBNE)

And Skip if Zero (ANDSZ)

Decrement Register and Skip if Zero (DRSZ)

No-Operation Instruction

The no-operation instruction does nothing, except to occupy space in the program
memory and time in execution.

No-Operation (NOP)

NOTE: The VIS is a special case of the Indirect Transfer of Control addressing
mode, where the double byte vector associated with the interrupt is trans-
ferred from adjacent addresses in the program memory into the program
counter (PC) in order to jump to the associated interrupt service routine.

2.18 DETAILED FUNCTIONAL DESCRIPTIONS OF INSTRUCTIONS

The instruction set contains 58 different instructions. Most of the arithmetic,
comparison, and data transfer (load, exchange) instructions operate with three different
addressing modes (register indirect with B pointer, memory direct, and immediate).
These various addressing modes increase the instruction total to 87. The detailed
instruction descriptions contain the following:

• Opcode mnemonic

• Instruction syntax with operand field descriptor

• Full instruction description

• Register level instruction description

• Number of instruction cycles (each cycle equal to one microsecond at full clock speed)

• Number of bytes (1, 2, or 3) in instruction

• Hexadecimal code for the instruction bytes
2-62 COP8SAx7 MICROCONTROLLER

The following abbreviations represent the nomenclature used in the detailed instruction
description and the COP8 cross-assembler:

A Accumulator.

B B Pointer, located in RAM register memory location 00FE.

[B] Contents of RAM data memory location indicated by B pointer.

[B+] Same as [B], except that B pointer is post-incremented.

[B-] Same as [B], except that B pointer is post-decremented.

C Carry flag, located in bit 6 of the PSW register at memory location 00EF Hex.

HC Half Carry flag, located in bit 7 of the PSW register at memory location 00EF
Hex.

MA 8-bit memory address for RAM data store memory.

MD Memory Direct, which may be represented by an implicit label (B, X, SP), a de-
fined label (TEMP, COUNTER, etc.), or a direct memory address (12, 0EF, 027,
etc., where a leading 0 indicates hexadecimal).

PC Program Counter (15 bits, with a program memory addressing range of 32768).

PCU Program Counter Upper, which contains the upper 7 bits of PC.

PCL Program Counter Lower, which contains the lower 8 bits of PC.

PSW Processor Status Word Register, found at memory location 00EF.

REG Selected Register (1 of 16) from the RAM data memory at addresses 00F0-00FF.

REG# # the of memory register to be used (# = 0-F hexadecimal).

symbol is used to indicate an immediate value, with a leading zero (0) indicat-
ing hexadecimal.

Examples:

#045 = immediate value of hexadecimal 45

#45 = immediate value of decimal 45

may also be used to indicate bit position, where # = 0-7

Example:

RBIT #, [B]

SP Stack Pointer, located in RAM register memory location 00FD.

X X pointer, located in RAM register memory location 00FC.

[X] Contents of RAM data memory location indicated by the X pointer.

[X+] Same as [X], except that the X pointer is post-incremented.

[X-] Same as [X], except that the X pointer is post-decremented.
COP8SAx7 MICROCONTROLLER 2-63

2.18.1 ADC— Add with Carry

Syntax: a)ADC A,[B]

b)ADC A,#

c)ADC A,MD

Description: The contents of

a) the data memory location referenced by the B pointer

b) the immediate value found in the second byte of the instruction

c) the data memory location referenced by the second byte of the in-
struction

are added to the contents of the accumulator, and the result is simulta-
neously incremented if the Carry flag is found previously set. The result
is placed back in the accumulator, and the Carry flag is either set or re-
set, depending on the presence or absence of a carry from the result.
Similarly, the Half Carry flag is either set or reset, depending on the
presence or absence of a carry from the low-order nibble.

Operation: A <- A + VALUE + C

C <- CARRY; HC <- HALF CARRY

Instruction Addressing Mode Instruction
Cycle Bytes Hex Op Code

ADC A,[B] Register Indirect (B
Pointer)

1 1 80

ADC A,# Immediate 2 2 90/Imm #

ADC A,MD Memory Direct 4 3 BD/MA/80
2-64 COP8SAx7 MICROCONTROLLER

2.18.2 ADD — Add

Syntax: a)ADD A,[B]

b)ADD A,MD

c)ADD A,#

Description: The contents of the data memory location referenced by

a) the B pointer

b) the address in the second byte of the instruction

c) the immediate value found in the second byte of the instruction

are added to the contents of the accumulator, and the result is placed
back in the accumulator. The Carry and Half Carry flags are not
changed.

Operation: A <- A + VALUE

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

ADD A,[B] Register Indirect (B Pointer) 1 1 84

ADD A,MD Memory Direct 4 3 BD/MA/84

ADD A,# Immediate 2 2 94/Imm.#
COP8SAx7 MICROCONTROLLER 2-65

2.18.3 AND — And

Syntax: a)AND A,[B]

b)AND A,#

c)AND A,MD

Description: An AND operation is performed on corresponding bits of the accumula-
tor and

a) the contents of the data memory location referenced by the B
pointer.

b) the immediate value found in the second byte of the instruction.

c) the contents of the data memory location referenced by the ad-
dress in the second byte of the instruction.

The result is placed back in the accumulator.

Operation: A <- A AND VALUE

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

AND A,[B] Register Indirect (B Pointer) 1 1 85

AND A,# Immediate 2 2 95/Imm.#

AND A,MD Memory Direct 4 3 BD/MA/85
2-66 COP8SAx7 MICROCONTROLLER

2.18.4 ANDSZ — And, Skip if Zero

Syntax: ANDSZ A,#

Description: An AND operation is performed on corresponding bits of the accumula-
tor and the immediate value found in the second byte of the instruction.
If the result is zero, the next instruction is skipped. The accumulator re-
mains unchanged. This instruction may be used in testing for the pres-
ence of any selected bits in the accumulator. The mask in the second byte
is used to select which bits are tested.

Operation: IF (A AND #) = 0, THEN SKIP NEXT INSTRUCTION

Instruction Addressing Mode Instruction
Cycle Bytes Hex Op Code

ANDSZ A,# Immediate 2 2 60/Imm.#
COP8SAx7 MICROCONTROLLER 2-67

2.18.5 CLR — Clear Accumulator

Syntax: CLR A

Description: The accumulator is cleared to all zeros.

Operation: A <- 0

Instruction Addressing Mode Instruction
Cycle Bytes Hex Op Code

CLR A Implicit 1 1 64
2-68 COP8SAx7 MICROCONTROLLER

2.18.6 DCOR — Decimal Correct

Syntax: DCOR A

Description: This instruction when used following an ADC (add with carry) or SUBC
(subtract with carry) instruction will decimal correct the result from the
binary addition or subtraction. Note that the ADC instruction must be
preceded with an ADD A, #066 (add hexadecimal 66) instruction for the
decimal addition correction. This instruction assumes that the two oper-
ands are in BCD (Binary Coded Decimal) format and produces the result
in the same BCD format. The Carry and Half Carry flags remain un-
changed.

Operation: A (BCD FORMAT) <- A (BINARY FORMAT)

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

DCOR A Implicit 1 1 66
COP8SAx7 MICROCONTROLLER 2-69

2.18.7 DEC — Decrement Accumulator

Syntax: DECA

Description: This instruction decrements the contents of the accumulator and places
the result back in the accumulator. The Carry and Half Carry flags re-
main unchanged.

Operation: A <- A - 1

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

DEC A Implicit 1 1 8B
2-70 COP8SAx7 MICROCONTROLLER

2.18.8 DRSZ REG# — Decrement Register and Skip if Result is Zero

Syntax: DRSZ REG#

Description: This instruction decrements the contents of the selected memory regis-
ter (selected by #, where # = 0 to F) and places the result back in the
same register. If the result is zero, the next instruction is skipped. This
instruction is useful where it is desired to repeat an instruction sequence
a given number of times. The desired number of times that the instruc-
tion sequence is to be executed is placed in a register, and a DRSZ in-
struction with that register is coded at the end of the sequence followed
by a JP (Jump Relative) instruction that branches back to the start of
the instruction sequence. The JP branch-back instruction is executed
each time around the instruction sequence loop until the register count
is decremented down to zero, at which time the JP instruction is skipped
as the program branches (skips) out of the loop.

Operation: REG <- REG - 1

IF (REG - 1) = 0,

THEN SKIP NEXT INSTRUCTION

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

DRSZ REG# Register Direct (Implicit) 3 1 C (REG#)
COP8SAx7 MICROCONTROLLER 2-71

2.18.9 IFBIT — Test Bit

Syntax: a)IFBIT #,[B]

b)IFBIT #,MD

c)IFBIT #,A

Description: The selected bit (# = 0 to 7, with 7 being the high-order bit) from

a) the memory location reference by the B pointer is tested.

b) the memory location referenced by the address in the second byte
of the instruction is tested.

c) the accumulator is tested.

If the selected bit is high (=1), then the next instruction is executed. Oth-
erwise, the next instruction is skipped.

Operation: IF BIT (#) SELECTED

IS EQUAL TO 0,

THEN SKIP NEXT INSTRUCTION

NOTE: The IFBIT #,A is a special subset of the more generalized ANDSZ instruc-
tion and shares the same opcode of 60. This instruction disassembles into
the ANDSZ instruction.

IFBIT 0,A equivalent to ANDSZ A,#1

IFBIT 1,A equivalent to ANDSZ A,#2

IFBIT 2,A equivalent to ANDSZ A,#4

IFBIT 3,A equivalent to ANDSZ A,#8

IFBIT 4,A equivalent to ANDSZ A,#16

IFBIT 5,A equivalent to ANDSZ A,#32

IFBIT 6,A equivalent to ANDSZ A,#64

IFBIT 7,A equivalent to ANDSZ A,#128

Instruction Address Mode Instruction
Cycle Bytes Hex Op Code

IFBIT #,[B] Register Indirect (B Pointer) 1 1 7#

IFBIT #,MD Memory Direct 4 3 BD/MA/7#

IFBIT #,A Immediate 2 2 60/2#
2-72 COP8SAx7 MICROCONTROLLER

2.18.10 IFBNE # — If B Pointer Not Equal

Syntax: IFBNE #

Description: If the low-order nibble of the B pointer is not equal to # (where # = 0 to
F), then the next instruction is executed. Otherwise, the next instruction
is skipped. This instruction is useful where the B pointer is walked
across a data field as part of a closed loop instruction sequence. The IF-
BNE instruction is coded at the end of the sequence followed by a JP
(Jump Relative) instruction that branches back to the start of the in-
struction sequence. The # coded with the IFBNE represents the next ad-
dress beyond the data field. The B pointer instruction with post-
increment or decrement of the pointer may be used in walking across the
data field in either direction. The instruction sequence branches back
and repeats until the low-order nibble of the B pointer is found equal to
the # (representing the next address beyond the data field), at which
time the JP instruction is skipped as the program branches (skips) out
of the loop.

Operation: IF B POINTER LOW-ORDER NIBBLE EQUALS #,

THEN SKIP NEXT INSTRUCTION

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

IFBNE # Implicit 1 1 4#
COP8SAx7 MICROCONTROLLER 2-73

2.18.11 IFC — Test if Carry

Syntax: IFC

Description: The next Instruction is executed if the Carry flag is found set. Otherwise,
the next instruction is skipped. The Carry flag is left unchanged.

Operation: IF NO CARRY (C = 0),

THEN SKIP NEXT INSTRUCTION

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

IFC Implicit 1 1 88
2-74 COP8SAx7 MICROCONTROLLER

2.18.12 IFEQ — Test if Equal

Syntax: a)IFEQ A,[B]

b)IFEQ A,#

c)IFEQ A,MD

d)IFEQ MD,#

a) The contents of the data memory location referenced by the B
pointer are compared for equality with the contents of the accu-
mulator.

b) The immediate value found in the second byte of the instruction
is compared for equality with the contents of the accumulator.

c) The contents of the data memory location referenced by the ad-
dress in the second byte of the instruction are compared for
equality with the contents of the accumulator.

d) The contents of the memory location referenced by the address in
the second byte of the instruction are compared for equality with
the immediate value found in the third byte of the instruction.

A successful equality comparison results in the execution of the next in-
struction. Otherwise, the next instruction is skipped.

Operation: IF CONTENTS OF SPECIFIED LOCATION ≠ VALUE

THEN SKIP NEXT INSTRUCTION

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

IFEQ A,[B] Register Indirect (B Pointer) 1 1 82

IFEQ A,# Immediate 2 2 92/Imm.#

IFEQ A,MD Memory Direct 4 3 BD/MA/82

IFEQ MD,# Memory Direct, Immediate 3 3 A9/MA/Imm.#
COP8SAx7 MICROCONTROLLER 2-75

2.18.13 IFGT — Test if Greater Than

Syntax: a)IFGT A,[B]

b)IFGT A,#

c)IFGT A,MD

Description: The contents of the accumulator are tested for being greater than

a) the contents of the data memory location referenced by the B
pointer.

b) the immediate value found in the second byte of the instruction.

c) the contents of the data memory location referenced by the ad-
dress in the second byte of the instruction.

A successful greater than test results in the execution of the next in-
struction. Otherwise, the next instruction is skipped.

Operation: IF A ≤ VALUE

THEN SKIP NEXT INSTRUCTION

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

IFGT A,[B] Register Indirect (B Pointer) 1 1 83

IFGT A,# Immediate 2 2 93/Imm.#

IFGT A,MD Memory Direct 4 3 BD/MA/83
2-76 COP8SAx7 MICROCONTROLLER

2.18.14 IFNC — Test If No Carry

Syntax: IFNC

Description: The next instruction is executed if the Carry flag is found reset. Other-
wise, the next instruction is skipped. The Carry flag is left unchanged.

Operation: IF CARRY (C=1),

THEN SKIP NEXT INSTRUCTION

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

IFNC Implicit 1 1 89
COP8SAx7 MICROCONTROLLER 2-77

2.18.15 IFNE — Test If Not Equal

Syntax: a)IFNE A,[B]

b)IFNE A,#

c)IFNE A,MD

Description: a) The contents of the data memory location referenced by the B
pointer are compared for inequality with the contents of the ac-
cumulator.

b) The immediate value found in the second byte of the instruction
is compared for inequality with the contents of the accumulator.

c) The contents of the data memory location referenced by the ad-
dress in the second bye of the instruction are compared for ine-
quality with the contents of the accumulator.

A successful inequality comparison results in the execution of the next
instruction; otherwise, the next instruction is skipped.

Operation: IF A = VALUE

THEN SKIP NEXT INSTRUCTION

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

IFNE A,[B] Register Indirect (B Pointer) 1 1 B9

IFNE A,# Immediate 2 2 99/Imm.#

IFNE A,MD Memory Direct 4 3 BD/MA/B9
2-78 COP8SAx7 MICROCONTROLLER

2.18.16 INC — Increment Accumulator

Syntax: INC A

Description: This instruction increments the contents of the accumulator and places
the result back in the accumulator. The Carry and Half Carry flags re-
main unchanged.

Operation: A <- A + 1

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

INC A Implicit 1 1 8A
COP8SAx7 MICROCONTROLLER 2-79

2.18.17 INTR — Interrupt (Software Trap)

Syntax: INTR

Description: This zero opcode software trap instruction first stores its return address
in the data memory software stack and then branches to program mem-
ory location 00FF. This memory location is the common switching point
for all COP888 interrupts, both hardware and software. The program
starting at memory location 00FF sorts out the priority of the various in-
terrupts and then vectors to the correct interrupt service routine.

In order to save the return address, the contents of PCL (Lower 8 bits of
PC) are transferred to the data memory location referenced by SP (Stack
Pointer). SP is then decremented. The contents of PCU (Upper 7 bits of
PC) are transferred to the new data memory location referenced by SP.
Then SP is again decremented to set up the software stack for the next
interrupt or subroutine.

The INTR instruction is not meant to be programmed explicitly, but
rather to be automatically invoked when certain error conditions occur.
The reading of undefined (non-existent) program memory produces all
zeros, which in turn invokes the INTR instruction. A similar software
trap can be set up if the subroutine Stack Pointer (SP) is initialized to
the data memory location at the top of user RAM space. Then if the soft-
ware stack is ever overpopped (more subroutine or interrupt returns
than calls), all ones will be returned from the undefined (non-existent)
RAM. This will cause the program to return to the program address
FFFF Hex, which in turn will read all zeros and once again invoke the
software trap INTR instruction.

Operation: [SP] <- PCL
[SP - 1] <- PCU
[SP - 2] : SET UP FOR NEXT STACK REFERENCE
PC <- 0FF

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

INTR Implicit 7 1 00
2-80 COP8SAx7 MICROCONTROLLER

2.18.18 JID — Jump Indirect

Syntax: JID

Description: The JID instruction uses the contents of the accumulator to point to an
indirect vector table of program addresses. The contents of the accumu-
lator are transferred to PCL (Lower 8 bits of PC), after which the data
accessed from the program memory location addressed by PC is trans-
ferred to PCL. The program then jumps to the program memory location
accessed by PC. It should be observed that PCU (Upper 7 bits of PC) is
never changed during the JID instruction, so that the Jump Indirect
must jump to a location in the current program memory page of 256 ad-
dresses. However, if the JID instruction is located at the last address of
the page, the PC counter will have already incremented over the page
boundary, and both accesses to program memory (vector table and the
new instruction) will be fetched from the next page of 256 bytes.

Operation: PCL <- A

PCL <- Program Memory (PCU,A)

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

JID Indirect 3 1 A5
COP8SAx7 MICROCONTROLLER 2-81

2.18.19 JMP — Jump Absolute

Syntax: JMP ADDR

Description: This instruction jumps to the programmed memory address. The value
found in the lower nibble (4 bits) of the first byte of the instruction is
transferred to the lower nibble of PCU (Upper 7 bits of PC), and then the
value found in the second byte of the instruction is transferred to PCL
(Lower 8 bits of PC). The program then jumps to the program memory
location accessed by PC.

The address range is 15 bits. The JMP instruction address contents is
only 12 bits. Resolution of the high 3 bits of the address is to the 4K
memory segment containing the low byte of the instruction. The fol-
lowing diagram illustrates:

If instruction byte 2 is in 4K segment 0, the jump address is in segment
0.

If instruction byte 2 is in 4K segment 1, the jump address is in segment
1.

Operation: PC11-8 <- HIADDR (HIGH NIBBLE OF SECOND BYTE OF INSTRUC-
TION, LOW NIBBLE OF FIRST BYTE OF INSTRUCTION)

PC7-0 <- LOADDR (SECOND BYTE OF INSTRUCTION)

Instruction Addressing
 Mode

Instruction
Cycles Bytes Hex Op Code

JMP ADDR Absolute 3 2 2HIADDR/LOADDR

0000

2x xx 2x xx

0xxx

0FFF 1FFF1000

1xxx

JMP SPANS TO NEXT SEGMENTJMP WITHIN SEGMENT
2-82 COP8SAx7 MICROCONTROLLER

2.18.20 JMPL — Jump Absolute Long

Syntax: JMPL ADDR

Description: The JMPL instruction allows branching to anywhere in the 32-Kbyte
program memory space. The values found in the second and third bytes
of the instruction are transferred to PCU (Upper 7 bits of PC) and PCL
(Lower 8 bits of PC) respectively. The program then jumps to the pro-
gram memory location accessed by PC.

Operation: PC14-8 <- HIADDR (SECOND BYTE OF INSTRUCTION)

PC7-0 <- LOADDR (THIRD BYTE OF INSTRUCTION)

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

JMPL ADDR Absolute 4 3 AC/HIADDR/
LOADDR
COP8SAx7 MICROCONTROLLER 2-83

2.18.21 JP — Jump Relative

Syntax: JP DISP

Description: The relative displacement value found in the instruction opcode (all 8
bits) is added to the Program Counter (PC). The normal PC incrementa-
tion is also performed. The displacement value allows a branch back
from 0 to 31 places (with the 0 representing an infinite closed loop
branch to itself) and a branch forward from 2 to 32 places. A branch for-
ward of 1 is not allowed, since this zero opcode conflicts with the INTR
software trap instruction.

Operation: PC <- PC + DISP + 1 (DISP ≠ 0)

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

JP DISP Relative 3 1 0, 1, E, F + DISP #
2-84 COP8SAx7 MICROCONTROLLER

2.18.22 JSR — Jump Subroutine

Syntax: JSR ADDR

Description: This instruction pushes the return address onto the software stack in
data memory and then jumps to the subroutine address. The contents of
PCL (Lower 8 bits of PC) are transferred to the data memory location
referenced by SP (Stack Pointer). SP is then decremented, followed by
the contents of PCU (Upper 7 bits of PC) being transferred to the new
data memory location referenced by SP. The return address has now
been saved on the software stack in data memory RAM. Then SP is again
decremented to set up the software stack reference for the next subrou-
tine.

The address range is 15 bits. The JSR instruction address contents is
only 12 bits. Resolution of the high 3 bits of the address is to the 4K
memory segment containing the high byte of the return address. A
JSR contained in the last 2 bytes of a 4K segment will jump to the next
segment. The following diagram illustrates:

If the return address is in 4K segment 0, the jump address is in segment 0.

If the return address is in 4K segment 1, the jump address is in segment 1.

Operation: [SP] <- PCL

[SP - 1] <- PCU

[SP - 2]: SET UP FOR NEXT STACK REFERENCE

PC11-8 <- HIADDR (HIGH NIBBLE OF RETURN ADDRESS, LOW
NIBBLE OF FIRST BYTE INSTRUCTION)

PC7-0 <- LOADDR (SECOND BYTE OF INSTRUCTION)

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

JSR ADDR Absolute 5 2 3HIADDR/LOADDR

0000

3x xx ... 3x xx

0xxx

0FFF 1FFF1000

1xxx

0FFE

RETURN TO NEXT SEGMENTRETURN WITHIN SEGMENT
COP8SAx7 MICROCONTROLLER 2-85

2.18.23 JSRL — Jump Subroutine Long

Syntax: JSRL ADDR

Description: The JSRL instruction allows the subroutine to be located anywhere in
the 32-Kbyte program memory space. The instruction pushes the return
address onto the software stack in data memory and then jumps to the
subroutine address.

The contents of PCL (Lower 8 bits of PC) are transferred to the data
memory location referenced by SP (Stack Pointer). SP is then decre-
mented, followed by the contents of PCU (Upper 7 bits of PC) being
transferred to the new data memory location referenced by SP. The re-
turn address is now saved on the software stack in data memory RAM.
Then SP is again decremented to set up the software stack reference for
the next subroutine.

Next, the values found in the second and third bytes of the instruction
are transferred to PCU and PCL respectively. The program then jumps
to the program memory location accessed by PC.

Operation: [SP] <- PCL

[SP - 1] <- PCU

[SP - 2]: SET UP FOR NEXT STACK REFERENCE

PC14-8 <- HIADDR (SECOND BYTE OF INSTRUCTION)

PC7-0 <- LOADDR (THIRD BYTE OF INSTRUCTION)

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

JSRL ADDR Absolute 5 3 AD/HIADDR/
LOADDR
2-86 COP8SAx7 MICROCONTROLLER

2.18.24 LAID — Load Accumulator Indirect

Address Mode: INDIRECT

Description: The LAID instruction uses the contents of the accumulator to point to a
fixed data table stored in program memory. The data table usually rep-
resents a translation matrix, such as the input from a keyboard or the
output to a display.

The contents of the accumulator are exchanged with the contents of PCL
(Lower 8 bits of PC). The data accessed from the program memory loca-
tion addressed by PC is then transferred to the accumulator. Simulta-
neously, the original contents of PCL are transferred back to PCL from
the accumulator. It should be observed that PCU (Upper 7 bits of PC) is
not changed during the LAID instruction, so that the load accumulator
indirect along with the associated fixed data table must both be located
in the current memory page of 256 bytes. However, if the LAID instruc-
tion is located at the last address of the page, the PC counter will have
already incremented over the page boundary resulting in the operand
being fetched from the next page. Consequently, in this instance, the
fixed data table must reside in the next page of 256 bytes in the program
memory.

Operation: A <- Program Memory (PCU, A)

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

LAID Indirect 3 1 A4
COP8SAx7 MICROCONTROLLER 2-87

2.18.25 LD — Load Accumulator

Syntax: a)LD A,[B]

b)LD A,[B+]

c)LD A,[B-]

d)LD A,#

e)LD A,MD

f)LD A,[X]

g)LD A,[X+]

h)LD A,[X-]

Description: a) The contents of the data memory location referenced by the B
pointer are loaded into the accumulator.

b) The contents of the data memory location referenced by the B
pointer are loaded into the accumulator, and then the B pointer
is post-incremented.

c) The contents of the data memory location referenced by the B
pointer are loaded into the accumulator, and then the B pointer
is post-decremented.

d) The immediate value found in the second byte of the instruction
is loaded into the accumulator.

e) The contents of the data memory location referenced by the ad-
dress in the second byte of the instruction are loaded into the ac-
cumulator.

f) The contents of the data memory location referenced by the X
pointer are loaded into the accumulator.

g) The contents of the data memory location referenced by the X
pointer are loaded into the accumulator, and then the X pointer
is post-incremented.

h) The contents of the data memory location referenced by the X
pointer are loaded into the accumulator, and then the X pointer
is post-decremented.
2-88 COP8SAx7 MICROCONTROLLER

Operation: A <- VALUE

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

LD A,[B] Register Indirect (B Pointer) 1 1 AE

LD A,[B+] Register Indirect With Post-
Incrementing B Pointer

2 1 AA

LD A,[B-] Register Indirect With Post-
Decrementing B Pointer

2 1 AB

LD A,# Immediate 2 2 98/Imm.#

LD A,MD Memory Direct 3 2 9D/MA

LD A,[X] Register Indirect (X Pointer) 3 1 BE

LD A,[X+] Register Indirect With Post-
Incrementing X Pointer

3 1 BA

LD A,[X-] Register Indirect With Post-
Decrementing X Pointer

3 1 BB
COP8SAx7 MICROCONTROLLER 2-89

2.18.26 LD — Load B Pointer

Syntax: a) LD B,# (# < 16)

b) LD B,# (# > 15)

Description: a) The one’s complement of the value found in the lower nibble (4
bits) of the instruction is transferred to the lower-nibble position
of the B pointer register, with the upper-nibble position being
cleared to all zeros.

b) The immediate value found in the second byte of the instruction
is transferred to the B pointer register.

Operation: a) B3-B0 <- # and B7-B4 <- 0

b) B <- #

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

LD B,# Short Immediate 1 1 5(15-#)

LD B,# Immediate 2 2 9F/Imm.#
2-90 COP8SAx7 MICROCONTROLLER

2.18.27 LD — Load Memory

Syntax: a)LD [B],#

b)LD [B+],#

c)LD [B-],#

d)LD MD,#

Description: a) The immediate value found in the second byte of the instruction
is loaded into the data memory location referenced by the B
pointer.

b) The immediate value found in the second byte of the instruction
is loaded into the data memory location referenced by the B
pointer, and then the B pointer is post-incremented.

c) The immediate value found in the second byte of the instruction
is loaded into the data memory location referenced by the B
pointer, and then the B pointer is post-decremented.

d) The immediate value found in the third byte of the instruction is
loaded into the data memory location referenced by the address
in the second byte of the instruction.

Operation: a)[B] <- #

b)[B] <- #; B <- B + 1

c)[B] <- #; B <- B - 1

d)MD <- #

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

LD [B],# Register Indirect/Immediate 2 2 9E/Imm.#

LD [B+],# Register Indirect With Post-
Incrementing/Immediate

2 2 9A/Imm.#

LD [B-],# Register Indirect With Post-
Decrementing/Immediate

2 2 9B/Imm.#

LD MD,# Memory Direct/Immediate 3 3 BC/MA/Imm.#
COP8SAx7 MICROCONTROLLER 2-91

2.18.28 LD — Load Register

Syntax: LD REG,#

Description: The immediate value found in the second byte of the instruction is load-
ed into the data memory register referenced by the low-order nibble of
the first byte of the instruction.

Operation: REG <- #

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

LD REG,# Implicit/Immediate 3 2 D(REG#)/
Imm.#
2-92 COP8SAx7 MICROCONTROLLER

2.18.29 NOP — No Operation

Syntax: NOP

Description: No operation is performed by this instruction, so the net result is a delay
of one instruction cycle time.

Operation: NO OPERATION

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

NOP Implicit 1 1 B8
COP8SAx7 MICROCONTROLLER 2-93

2.18.30 OR — Or

Syntax: a)OR A,[B]

b)OR A,#

c)OR A,MD

Description: An OR operation is performed on corresponding bits of the accumulator
with

a) the contents of the data memory location referenced by the B
pointer.

b) the immediate value found in the second byte of the instruction.

c) the contents of the data memory location referenced by the ad-
dress in the second byte of the instruction.

The result is placed back in the accumulator.

Operation: A <- A OR VALUE

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

OR A,[B] Register Indirect (B Pointer) 1 1 87

OR A,# Immediate 2 2 97/Imm.#

OR A,MD Memory Direct 4 3 BD/MA/87
2-94 COP8SAx7 MICROCONTROLLER

2.18.31 POP — Pop Stack

Syntax: POP A

Description: The Stack Pointer (SP) is incremented, and then the contents of the data
memory location referenced by the SP are transferred to the accumula-
tor.

Operation: SP <- SP + 1

A <- [SP]

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

POP Implicit 3 1 8C
COP8SAx7 MICROCONTROLLER 2-95

2.18.32 PUSH — Push Stack

Syntax: PUSH A

Description: The contents of the accumulator are transferred to the data memory lo-
cation referenced by the Stack Pointer (SP), and then the SP is decre-
mented.

Operation: [SP] <- A

SP <- SP - 1

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

PUSH Implicit 3 1 67
2-96 COP8SAx7 MICROCONTROLLER

2.18.33 RBIT — Reset Memory Bit

Syntax: a)RBIT #,[B]

b)RBIT #,MD

Description: The selected bit (# = 0 to 7, with 7 being the high-order bit) of the data
memory location referenced by the

a) B pointer is reset to 0.

b) address in the second byte of the instruction is reset to 0.

Operation: [Address:#] <- 0

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

RBIT #,[B] Register Indirect (B Pointer) 1 1 6(8 + #)

RBIT #,MD Memory Direct 4 3 BD/MA/6(8+#)
COP8SAx7 MICROCONTROLLER 2-97

2.18.34 RC — Reset Carry

Syntax: RC

Description: Both the Carry and Half Carry flags are reset to 0.

Operation: C <- 0

HC <- 0

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

RC Implicit 1 1 A0
2-98 COP8SAx7 MICROCONTROLLER

2.18.35 RET — Return from Subroutine

Syntax: RET

Description: The Stack Pointer (SP) is first incremented. The contents of the data
memory location referenced by SP are then transferred to PCU (Upper
7 bits of PC), after which SP is again incremented. Next, the contents of
the data memory location referenced by SP are transferred to PCL (Low-
er 8 bits of PC). The return address has now been retrieved from the soft-
ware stack in data memory RAM. The program now jumps to the
program memory location accessed by PC.

Operation: PCU <- [SP + 1]

PCL <- [SP + 2]

[SP + 2] : SET UP FOR NEXT STACK REFERENCE

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

RET Implicit 5 1 8E
COP8SAx7 MICROCONTROLLER 2-99

2.18.36 RETI — Return from Interrupt

Syntax: RETI

Description: The Stack Pointer (SP) is first incremented. The contents of the data
memory location referenced by SP are then transferred to PCU (Upper
7 bits of PC), and SP is again incremented. Next, the contents of the data
memory location referenced by SP are transferred to PCL (Lower 8 bits
of PC). The return address has now been retrieved from the software
stack in data memory RAM. The program now jumps to the program
memory location accessed by PC. The Global Interrupt Enable flag (GIE)
is set to 1.

Operation: PCU <- [SP + 1]

PCL <- [SP + 2]

[SP + 2] : SET UP FOR NEXT STACK REFERENCE

GIE <- 1

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

RETI Implicit 5 1 8F
2-100 COP8SAx7 MICROCONTROLLER

2.18.37 RETSK — Return and Skip

Syntax: RETSK

Description: The Stack Pointer (SP) is first incremented. The contents of the data
memory location referenced by SP are then transferred to PCU (Upper
7 bits of PC), and SP is again incremented. Next, the contents of the data
memory location referenced by SP are transferred to PCL (Lower 8 bits
of PC). The return address has now been retrieved from the software
stack in data memory RAM. The program now jumps to and then skips
the instruction in the program memory location accessed by PC.

Operation: PCU <- [SP + 1]

PCL <- [SP + 2]

[SP + 2] : SET UP FOR NEXT STACK REFERENCE

SKIP NEXT INSTRUCTION

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

RETSK Implicit 5 1 8D
COP8SAx7 MICROCONTROLLER 2-101

2.18.38 RLC — Rotate Accumulator Left Through Carry

Address Mode: RLC A

Description: The contents of the accumulator and Carry flag are rotated left one bit
position, with the Carry flag serving as a ninth bit position linking the
ends of the 8-bit accumulator. The previous carry is transferred to the
low-order bit position of the accumulator. The high-order accumulator
bit (A7) is transferred to the Carry flag. The A3 (high-order bit of the low-
order nibble) of the accumulator is transferred into the Half Carry flag
(HC) as well as into the A4 bit position.

Operation: C <- A7 <- A6 <- A5 <- A4 <- A3 <- A2 <- A1 <- A0 <- C

HC <- A3

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

RLC A Implicit 1 1 A8
2-102 COP8SAx7 MICROCONTROLLER

2.18.39 RPND — Reset Pending

Syntax: RPND

Description: The RPND instruction resets the Non-Maskable Interrupt Pending flag
(NMIPND) provided that the NMI interrupt has already been acknowl-
edged and the Software Trap Pending flag was not found set. Also,
RPND unconditionally resets the Software Trap Pending flag (STPND).

Operation: IF NMI interrupt acknowledged and STPND = 0

THEN NMPND <- 0 and STPND <- 0

ELSE STPND <- 0

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

RPND Implicit 1 1 B5
COP8SAx7 MICROCONTROLLER 2-103

2.18.40 RRC — Rotate Accumulator Right Through Carry

Address Mode: RRC A

Description: The contents of the accumulator and Carry flag are rotated right one bit
position, with the Carry flag serving as a ninth bit position linking the
ends of the 8-bit accumulator. The previous carry is transferred to the
high-order bit position of the accumulator. The low-order accumulator
bit (A0) is transferred to both the Carry flag and the Half Carry flag.

Operation: C -> A7 -> A6 -> A5 -> A4 -> A3 -> A2 -> A1 -> A0 -> C

A0 -> HC

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

RRC A Implicit 1 1 B0
2-104 COP8SAx7 MICROCONTROLLER

2.18.41 SBIT — Set Memory Bit

Syntax: a)SBIT #,[B]

b)SBIT #,MD

Description: The selected bit (# = 0 to 7, with 7 being the high-order bit) of the data
memory location referenced by the

a) B pointer is set to 1.

b) address in the second byte of the instruction is set to 1.

Operation: [Address:#] <- 1

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

SBIT #,[B] Register Indirect (B Pointer) 1 1 7(8 + #)

SBIT #,MD Memory Direct 4 3 BD/MA/7(8+#)
COP8SAx7 MICROCONTROLLER 2-105

2.18.42 SC — Set Carry

Syntax: SC

Description: Both the Carry and Half Carry flags are set to 1.

Operation: C <- 1

HC <- 1

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

SC Implicit 1 1 A1
2-106 COP8SAx7 MICROCONTROLLER

2.18.43 SUBC — Subtract with Carry

Syntax: a)SUBC A,[B]

b)SUBC A,#

c)SUBC A,MD

Description: a) The contents of the data memory location referenced by the B
pointer are subtracted from the contents of the accumulator, and
the result is simultaneously decremented if the Carry flag is
found previously reset.

b) The immediate value found in the second byte of the instruction
is subtracted from the contents of the accumulator, and the result
is simultaneously decremented if the Carry flag is found previ-
ously reset.

c) The contents of the data memory location referenced by the ad-
dress in the second byte of the instruction are subtracted from
the contents of the accumulator, and the result is simultaneously
decremented if the Carry flag is found previously reset.

The result is placed back in the accumulator, and the Carry flag is either
reset or set, depending on the presence or absence of a borrow from the
result. Similarly, the Half Carry flag is either reset or set, depending on
the presence or absence of a borrow from the low-order nibble.

This instruction is implemented by adding the one's complement of the
subtrahend to the accumulator and then incrementing the result. Con-
sequently, the borrow is the equivalent of the absence of carry and vice
versa. Similarly, the half carry is the equivalent of the absence of half
borrow and vice versa. A previous borrow (absence of previous carry) will
inhibit the incrementation of the result.

Operation: A <- A + VALUE + C

C <- ABSENCE OF BYTE BORROW

HC <- ABSENCE OF LOW NIBBLE HALF BORROW

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

SUBC A,[B] Register Indirect (B Pointer) 1 1 81

SUBC A,# Immediate 2 2 91/Imm.#

SUBC A,MD Memory Direct 4 3 BD/MA/81
COP8SAx7 MICROCONTROLLER 2-107

2.18.44 SWAP — Swap Nibbles of Accumulator

Syntax: SWAP A

Description: The upper and lower nibbles of the accumulator are exchanged.

Operation: A(7-4) <--> A(3 - 0)

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

SWAP A Implicit 1 1 65
2-108 COP8SAx7 MICROCONTROLLER

2.18.45 VIS — Vector Interrupt Select

Syntax: VIS

Description: The purpose of the VIS instruction is to vector to the interrupt service
routine for the interrupt with the highest priority and arbitration rank-
ing that is currently enabled and requesting. The VIS instruction expe-
dites this procedure of vectoring to the interrupt service routine.

All interrupts branch to program memory location 00FF Hex once an in-
terrupt is acknowledged. Thus, any desired context switching (such as
storing away the contents of the accumulator or B or X pointer) is nor-
mally programmed starting at location 00FF Hex, followed by the VIS
instruction. The VIS instruction can be programmed at memory location
00FF Hex if no context switching is desired.

The VIS instruction first jumps to a double-byte vector in a 32-byte in-
terrupt vector program memory table that is located at the top of a pro-
gram memory block from address xyE0 to xyFF Hex. Note that xy is the
block number (usually 01) where the VIS instruction is located (each
block of program memory contains 256 bytes). This double-byte vector is
transferred to PC (high-order byte first), and then the program jumps to
the associated interrupt service routine indicated by the vector. These
interrupt service routines can be anywhere in the 32-Kbyte program
memory space.

Should the VIS instruction be programmed at the top location of a mem-
ory block (such as address 00FF Hex), the associated 32-byte vector table
is resident at the top of the next higher block (locations 01E0 to 01FF
Hex with the VIS instruction at 00FF Hex).

Operation: PCL <- VA (Interrupt Arbitration Vector generated by hardware)

PCU <- Program Memory (PCU,VA)

PCL <- Program Memory (PCU,VA+1)

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

VIS Implicit 5 1 B4
COP8SAx7 MICROCONTROLLER 2-109

2.18.46 X — Exchange Memory with Accumulator

Syntax: a)X A,[B]

b)X A,[B+]

c)X A,[B-]

d)X A,MD

e)X A,[X]

f)X A,[X+]

g)X A,[X-]

Description: a) The contents of the data memory location referenced by the B
pointer are exchanged with the contents of the accumulator.

b) The contents of the data memory location referenced by the B
pointer are exchanged with the contents of the accumulator, and
then the B pointer is post-incremented.

c) The contents of the data memory location referenced by the B
pointer are exchanged with the contents of the accumulator, and
then the B pointer is post-decremented.

d) The contents of the data memory location referenced by the ad-
dress in the second byte of the instruction are exchanged with the
contents of the accumulator.

e) The contents of the data memory location referenced by the X
pointer are exchanged with the contents of the accumulator.

f) The contents of the data memory location referenced by the X
pointer are exchanged with the contents of the accumulator, and
then the X pointer is post-incremented.

g) The contents of the data memory location referenced by the X
pointer are exchanged with the contents of the accumulator, and
then the X pointer is post-decremented.
2-110 COP8SAx7 MICROCONTROLLER

Operation: a)A <-> [B]

b)A <-> B; B <- B + 1

c)A <-> B; B <- B - 1

d)A <-> MD

e)A <-> X

f)A <-> X; X <- X + 1

g)A <-> X; X <- X - 1

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

X A,[B] Register Indirect (B Pointer) 1 1 A6

X A,[B+] Register Indirect With Post-
Incrementing B Pointer

2 1 A2

X A,[B-] Register Indirect With Post-
Decrementing B Pointer

2 1 A3

X A,MD Memory Direct 3 2 9C/MA

X A,[X] Register Indirect (X Pointer) 3 1 B6

X A,[X+] Register Indirect With Post-
Incrementing X Pointer

3 1 B2

X A,[X-] Register Indirect With Post-
Decrementing X Pointer

3 1 B3
COP8SAx7 MICROCONTROLLER 2-111

2.18.47 XOR — Exclusive Or

Syntax: a)XOR A,[B]

b)XOR A,#

c)XOR A,MD

Description: An XOR (Exclusive OR) operation is performed on corresponding bits of
the accumulator with

a) the contents of the data memory location referenced by the B
pointer.

b) the immediate value found in the second byte of the instruction.

c) the contents of the data memory location referenced by the ad-
dress in the second byte of the instruction.

The result is placed back in the accumulator.

Operation: A <- A XOR VALUE

Instruction Addressing Mode Instruction
Cycles Bytes Hex Op Code

XOR A,[B] Register Indirect (B Pointer) 1 1 86

XOR A,# Immediate 2 2 96/Imm.#

XOR A,MD Memory Direct 4 3 BD/MA/86
2-112 COP8SAx7 MICROCONTROLLER

2.18.48 Register and Symbol Definition

The following abbreviations represent the nomenclature used in the instruction
description and the COP8 cross-assembler

Registers

A 8-Bit Accumulator Register

B 8-Bit Address Register

X 8-Bit Address Register

SP 8-Bit Stack Pointer Register

PC 15-Bit Program Counter Register

PU Upper 7 Bits of PC

PL Lower 8 Bits of PC

C 1 Bit of PSW Register for Carry

HC 1 Bit of PSW Register for Half Carry

GIE 1 Bit of PSW Register for Global Interrupt Enable

VU Interrupt Vector Upper Byte

VL Interrupt Vector Lower Byte

Symbols

[B] Memory Indirectly Addressed by B Register

[X] Memory Indirectly Addressed by X Register

MD Direct Addressed Memory

Mem Direct Addressed Memory or [B]

Meml Direct Addressed Memory or [B] or Immediate Data

Imm 8-Bit Immediate Data

Reg Register Memory: Addresses F0 to FF (Includes B, X and SP)

Bit Bit Number (0 to 7)

← Loaded with

↔ Exchanged with
COP8SAx7 MICROCONTROLLER 2-113

2.18.49 Instruction Set Summary
ADD A,Meml ADD A ← A + Meml

ADC A,Meml ADD with Carry A ← A + Meml + C, C ← Carry, HC ← Half Carry

SUBC A,Meml Subtract with Carry A ← A - MemI + C, C ← Carry, HC ← Half Carry

AND A,Meml Logical AND A ← A and Meml

ANDSZ A,Imm Logical AND Immed., Skip if Zero Skip next if (A and Imm) = 0

OR A,Meml Logical OR A ← A or Meml

XOR A,Meml Logical EXclusive OR A ← A xor Meml

IFEQ MD,Imm IF EQual Compare MD and Imm, Do next if MD = Imm

IFEQ A,Meml IF EQual Compare A and Meml, Do next if A = Meml

IFNE A,Meml IF Not Equal Compare A and Meml, Do next if A ≠ Meml

IFGT A,Meml IF Greater Than Compare A and Meml, Do next if A > Meml

IFBNE # If B Not Equal Do next if lower 4 bits of B ≠ Imm

DRSZ Reg Decrement Reg., Skip if Zero Reg ← Reg - 1, Skip if Reg = 0

SBIT #,Mem Set BIT 1 to bit, Mem (bit = 0 to 7 immediate)

RBIT #,Mem Reset BIT 0 to bit, Mem

IFBIT #,Mem IF BIT If bit #,A or Mem is true do next instruction

RPND Reset PeNDing Flag Reset Software Interrupt Pending Flag

X A,Mem EXchange A with Memory A ↔ Mem

X A,[X] EXchange A with Memory [X] A ↔ [X]

LD A,Meml LoaD A with Memory A ← Meml

LD A,[X] LoaD A with Memory [X] A ← [X]

LD B,Imm LoaD B with Immed. B ← Imm

LD Mem,Imm LoaD Memory Immed Mem ← Imm

LD Reg,Imm LoaD Register Memory Immed. Reg ← Imm

X A, [B ±] EXchange A with Memory [B] A ↔ [B], (B ← B ±1)

X A, [X±] EXchange A with Memory [X] A ↔ [X], (X ←X±1)

LD A, [B±] LoaD A with Memory [B] A ← [B], (B ← B ±1)

LD A, [X±] LoaD A with Memory [X] A ← [X], (X ← X±1)

LD [B±],Imm LoaD Memory [B] Immed. [B] ← Imm, (B ← B±1)

CLR A CLeaR A A ← 0

INC A INCrement A A ← A + 1

DEC A DECrement A A ← A - 1

LAID Load A InDirect from ROM A ← ROM (PU,A)

DCOR A Decimal CORrect A A ← BCD correction of A (follows ADC, SUBC)

RRC A Rotate A Right thru C C → A7 → ... → A0 → C

RLC A Rotate A Left thru C C ← A7 ←... ← A0 ← C, HC ← A0

SWAP A SWAP nibbles of A A7...A4 ↔ A3...A0

SC Set C C ← 1, HC ← 1

RC Reset C C ← 0, HC ← 0

IFC IF C IF C is true, do next instruction

IFNC IF Not C If C is not true, do next instruction

POP A POP the stack into A SP ← SP + 1, A ← [SP]

PUSH A PUSH A onto the stack [SP] ← A, SP ← SP - 1

VIS Vector to Interrupt Service Routine PU ← [VU], PL←[VL]

JMPL Addr. Jump absolute Long PC ← ii (ii = 15 bits, 0 to 32k)

JMP Addr. Jump absolute PC9...0 ← i (i = 12 bits)

JP Disp. Jump relative short PC ← PC + r (r is -31 to +32, except 1)

JSRL Addr. Jump SubRoutine Long [SP]←PL, [SP-1] ← PU,SP-2, PC ← ii

JSR Addr Jump SubRoutine [SP]←PL, [SP-1] ← PU,SP-2, PC9...0 ← i

JID Jump InDirect PL←ROM (PU,A)

RET RETurn from subroutine SP + 2, PL← [SP], PU← [SP-1]

RETSK RETurn and SKip SP + 2, PL← [SP],PU← [SP-1], skip next instruction

RETI RETurn from Interrupt SP + 2, PL ← [SP],PU← [SP-1],GIE←1

INTR Generate an Interrupt [SP]← PL, [SP-1]← PU, SP-2, PC← 0FF

NOP No OPeration PC← PC + 1
2-114 COP8SAx7 MICROCONTROLLER

2.18.50 Instruction Execution Time

Most instructions are single byte (with immediate addressing mode instructions taking
two bytes).

Most single byte instructions take one cycle time to execute.

Skipped instructions require x number of cycles to be skipped, where x equals the
number of bytes in the skipped instruction opcode.

See the BYTES and CYCLES per INSTRUCTION table for details.

Bytes and Cycles per Instruction

The following table shows the number of bytes and cycles for each instruction in the
format of byte/cycle.

Arithmetic and Logic Instructions

[B] Direct Immed.

ADD 1/1 3/4 2/2

ADC 1/1 3/4 2/2

SUBC 1/1 3/4 2/2

AND 1/1 3/4 2/2

OR 1/1 3/4 2/2

XOR 1/1 3/4 2/2

IFEQ 1/1 3/4 2/2

IFGT 1/1 3/4 2/2

IFBNE 1/1

DRSZ 1/3

SBIT 1/1 3/4

RBIT 1/1 3/4

IFBIT 1/1 3/4

RPND 1/1
COP8SAx7 MICROCONTROLLER 2-115

Memory Transfer Instructions

Instructions Using A & C Transfer of Control Instructions

CLRA 1/1 JMPL 3/4

INCA 1/1 JMP 2/3

DECA 1/1 JP 1/3

LAID 1/3 JSRL 3/5

DCORA 1/1 JSR 2/5

RRCA 1/1 JID 1/3

RLCA 1/1 VIS 1/5

SWAPA 1/1 RET 1/5

SC 1/1 RETSK 1/5

RC 1/1 RETI 1/5

IFC 1/1 INTR 1/7

IFNC 1/1 NOP 1/1

PUSHA 1/3

POPA 1/3

ANDSZ 2/2

Register
Indirect Direct Immed.

Register Indirect
Auto Incr & Decr

[B] [X] [B+, B-] [X+, X-]

X A,* 1/1 1/3 2/3 1/2 1/3

LD A,* 1/1 1/3 2/3 2/2 1/2 1/3

LD B,Imm 1/1 (If B < 16)

LD B,Imm 2/2 (If B > 15)

LD Mem,Imm 2/2 3/3 2/2

LD Reg,Imm 2/3

IFEQ MD,Imm 3/3

* => Memory location addressed by B or X or directly.
2-116 COP8SAx7 MICROCONTROLLER

2.18.51 Opcode Table

U
P

P
E

R
 N

IB
B

LE

F
E

D
C

B
A

9
8

7
6

5
4

3
2

1
0

JP
-1

5
JP

-3
1

LD
 0

F
0,

#i
D

R
S

Z
 0

F
0

R
R

C
A

R
C

A
D

C
 A

,#
i

A
D

C
 A

,[B
]

IF
B

IT
0,

[B
]

A
N

D
S

Z
A

,#
i

LD
 B

,#
0F

IF
B

N
E

 0
JS

R
x0

00
-x

0F
F

JM
P

x0
00

-x
0F

F
JP

+1
7

IN
T

R
0

LOWER NIBBLE

JP
-1

4
JP

-3
0

LD
 0

F
1,

#i
D

R
S

Z
 0

F
1

*
S

C
S

U
B

C
A

,#
i

S
U

B
C

 A
,[B

]
IF

B
IT

1,
[B

]
*

LD
 B

,#
0E

IF
B

N
E

 1
JS

R
x1

00
-x

1F
F

JM
P

x1
00

-x
1F

F
JP

+1
8

JP
 +

 2
1

JP
-1

3
JP

-2
9

LD
 0

F
2,

#i
D

R
S

Z
 0

F
2

X
 A

,[X
+]

X
 A

,[B
+]

IF
E

Q
 A

,#
i

IF
E

Q
 A

,[B
]

IF
B

IT
2,

[B
]

*
LD

 B
,#

0D
IF

B
N

E
 2

JS
R

x2
00

-x
2F

F
JM

P
x2

00
-x

2F
F

JP
+1

9
jp

 +
 3

2

JP
-1

2
JP

-2
8

LD
 0

F
3,

#i
D

R
S

Z
 0

F
3

X
 A

,[X
-]

X
 A

,[B
-]

IF
G

T
 A

,#
i

IF
G

T
 A

,[B
]

IF
B

IT
3,

[B
]

*
LD

 B
,#

0C
IF

B
N

E
 3

JS
R

x3
00

-x
3F

F
JM

P
x3

00
-x

3F
F

JP
+2

0
JP

 +
 4

3

JP
-1

1
JP

-2
7

LD
 0

F
4,

#i
D

R
S

Z
 0

F
4

V
IS

LA
ID

A
D

D
 A

,#
i

A
D

D
 A

,[B
]

IF
B

IT
4,

[B
]

C
LR

A
LD

 B
,#

0B
IF

B
N

E
 4

JS
R

x4
00

-x
4F

F
JM

P
x4

00
-x

4F
F

JP
+2

1
JP

 =
 5

4

JP
-1

0
JP

-2
6

LD
 0

F
5,

#i
D

R
S

Z
 0

F
5

R
P

N
D

JI
D

A
N

D
 A

,#
i

A
N

D
 A

,[B
]

IF
B

IT
5,

[B
]

S
W

A
PA

LD
 B

,#
0A

IF
B

N
E

 5
JS

R
x5

00
-x

5F
F

JM
P

x5
00

-x
5F

F
JP

+2
2

JP
 +

 6
5

JP
-9

JP
-2

5
LD

 0
F

6,
#i

D
R

S
Z

 0
F

6
X

 A
,[X

]
X

 A
,[B

]
X

O
R

 A
,#

i
X

O
R

 A
,[B

]
IF

B
IT

6,
[B

]
D

C
O

R
A

LD
 B

,#
09

IF
B

N
E

 6
JS

R
x6

00
-x

6F
F

JM
P

x6
00

-x
6F

F
JP

+2
3

JP
 +

 7
6

JP
-8

JP
-2

4
LD

 0
F

7,
#i

D
R

S
Z

 0
F

7
*

*
O

R
 A

,#
i

O
R

 A
,[B

]
IF

B
IT

7,
[B

]
P

U
S

H
A

LD
 B

,#
08

IF
B

N
E

 7
JS

R
x7

00
-x

7F
F

JM
P

x7
00

-x
7F

F
JP

+2
4

JP
 +

 8
7

JP
-7

JP
-2

3
LD

 0
F

8,
#i

D
R

S
Z

 0
F

8
N

O
P

R
LC

A
LD

 A
,#

i
IF

C
S

B
IT

0,
[B

]
R

B
IT

 0
,[B

]
LD

 B
,#

07
IF

B
N

E
 8

JS
R

x8
00

-x
8F

F
JM

P
x8

00
-x

8F
F

JP
+2

5
JP

 +
 9

8

JP
-6

JP
-2

2
LD

 0
F

9,
#i

D
R

S
Z

 0
F

9
IF

N
E

A
,[B

]
IF

E
Q

M
d,

#i
IF

N
E

A
,#

i
IF

N
C

S
B

IT
1,

[B
]

R
B

IT
 1

,[B
]

LD
 B

,#
06

IF
B

N
E

 9
JS

R
x9

00
-x

9F
F

JM
P

x9
00

-x
9F

F
JP

+2
6

JP
 +

 1
0

9

JP
-5

JP
-2

1
LD

 0
FA

,#
i

D
R

S
Z

 0
FA

LD
 A

,[X
+]

LD
A

,[B
+]

LD
 [B

+]
,#

i
IN

C
A

S
B

IT
2,

[B
]

R
B

IT
 2

,[B
]

LD
 B

,#
05

IF
B

N
E

 0
A

JS
R

xA
00

-x
A

F
F

JM
P

xA
00

-x
A

F
F

JP
+2

7
JP

 +
 1

1
A

JP
-4

JP
-2

0
LD

 0
F

B
,#

i
D

R
S

Z
 0

F
B

LD
 A

,[X
-]

LD
 A

,[B
-

]
LD

 [B
-],

#i
D

E
C

A
S

B
IT

3,
[B

]
R

B
IT

 3
,[B

]
LD

 B
,#

04
IF

B
N

E
 0

B
JS

R
xB

00
-x

B
F

F
JM

P
xB

00
-x

B
F

F
JP

+2
8

JP
 +

 1
2

B

JP
-3

JP
-1

9
LD

 0
F

C
,#

i
D

R
S

Z
 0

F
C

LD
 M

d,
#i

JM
P

L
X

 A
,M

d
P

O
PA

S
B

IT
4,

[B
]

R
B

IT
 4

,[B
]

LD
 B

,#
03

IF
B

N
E

 0
C

JS
R

xC
00

-x
C

F
F

JM
P

xC
00

-x
C

F
F

JP
+2

9
JP

 +
 1

3
C

JP
-2

JP
-1

8
LD

 0
F

D
,#

i
D

R
S

Z
 0

F
D

D
IR

JS
R

L
LD

 A
,M

d
R

E
T

S
K

S
B

IT
5,

[B
]

R
B

IT
 5

,[B
]

LD
 B

,#
02

IF
B

N
E

 0
D

JS
R

xD
00

-x
D

F
F

JM
P

xD
00

-x
D

F
F

JP
+3

0
JP

 +
 1

4
D

JP
-1

JP
-1

7
LD

 0
F

E
,#

i
D

R
S

Z
 0

F
E

LD
 A

,[X
]

LD
 A

,[B
]

LD
 [B

],#
i

R
E

T
S

B
IT

6,
[B

]
R

B
IT

 6
,[B

]
LD

 B
,#

01
IF

B
N

E
 0

E
JS

R
xE

00
-x

E
F

F
JM

P
xE

00
-x

E
F

F
JP

+3
1

JP
 +

 1
5

E

JP
-0

JP
-1

6
LD

 0
F

F,
#i

D
R

S
Z

 0
F

F
*

*
LD

 B
,#

i
R

E
T

I
S

B
IT

7,
[B

]
R

B
IT

 7
,[B

]
LD

 B
,#

00
IF

B
N

E
 0

F
JS

R
xF

00
-x

F
F

F
JM

P
xF

00
-x

F
F

F
JP

+3
2

JP
 +

 1
6

F

w
he

re
,

i i
s

th
e

im
m

ed
ia

te
 d

at
a

M
d

is
 a

 d
ire

ct
ly

 a
dd

re
ss

ed
 m

em
or

y
lo

ca
tio

n
*

is
 a

n
un

us
ed

 o
pc

od
e

T
he

 o
pc

od
e

60
 H

ex
 is

 a
ls

o
th

e
op

co
de

 fo
r

IF
B

IT
 #

i,A
COP8SAx7 MICROCONTROLLER 2-117

2.19 PROGRAMMING EXAMPLES

This section is intended to be an overview of programming examples. For more detailed
and varied programming examples, refer to the Microontroller COP8 Databook.

2.19.1 Clear RAM

The following program clears all RAM locations in the base segment except for the stack
pointer. The value of the argument to IFBNE may need to be adjusted, depending on the
size of RAM in specific family members.

PROGRAM TO CLEAR ALL RAM EXCEPT SP

2.19.2 Binary/BCD Arithmetic Operations

The arithmetic instructions include the Add (ADD), Add with Carry (ADC), Subtract
with Carry (SUBC), Increment (INC), Decrement (DEC), Decimal Correct (DCOR), Clear
Accumulator (CLR), Set Carry (SC), and Reset Carry (RC). The shift and rotate
instructions, which include the Rotate Right through Carry (RRC), the Rotate Left
through Carry (RLC), and the Swap accumulator nibbles (SWAP), may also be considered
arithmetic instruction variations. The RRC instruction is instrumental in writing a fast
multiply routine.

In subtraction, a borrow is represented by the absence of a Carry and vice versa.
Consequently, the Carry flag needs to be set (no borrow) before a subtraction, just as the
Carry flag is reset (no carry) before an addition. The ADD instruction does not use the
Carry flag as an input. It should also be noted that both the Carry and Half Carry flags
(Bits 6 and 7, respectively, of the PSW control register) are cleared with RESET and
remain unchanged with the ADD, INC, DEC, DCOR, CLR, and SWAP instructions. The
DCOR instruction uses both the Carry and Half Carry flags. The SC instruction sets both
the Carry and Half Carry flags, while the RC instruction resets both these flags.

The following program examples illustrate additions and subtractions of 4-byte data
fields in both binary and BCD (Binary Coded Decimal). The four bytes from data memory
locations 24 through 27 are added to or subtracted from the four bytes in data memory
locations 16 through 19. The results replace the data in memory locations 24 through 27.

These operations are performed both in binary and BCD. It should be noted that the BCD
preconditioning of adding (ADD) the hexadecimal value 66 is necessary only with the
BCD addition, not with the BCD subtraction. The binary coded decimal DCOR (Decimal
Correct) instruction uses both the Cary and Half Carry flags as inputs but does not
change the Carry and Half Carry flags. Also note that the #12 with the IFBNE

CLRAM: LD 0FC,#070 ;Define X-pointer as counter
LD B,#0 :Initialize B pointer

CLRAM2: LD [B+],#0 ;Load mem with 0 and incr B pointer
DRSZ 0FC ;Decrement counter
JP CLRAM2 ;Skip if lower half RAM is cleared
LD B,#0F0 ;Point B to upper half of RAM

CLRAM3: LD [B+],#0 ;Load upper RAM half with 0
IFBNE #0D ;until B points to 0FD (=SP)
JP CLRAM3 ;Skip if B=0FD
LD B,#0 ;Initialize B to 0
2-118 COP8SAx7 MICROCONTROLLER

instruction represents 28 minus 16, since the IFBNE operand is modulo 16 (remainder
when divided by 16).

BINARY ADDITION
LD X,#16 ;No leading zero indicates decimal
LD B,#24
RC

LOOP: LD A,[X+]
ADC A,[B]
X A,[B+]
IFBNE #12
JP LOOP
IFC
JP OVFLOW ;OverFLow if C

BINARY SUBTRACTION
LD X,#010 ;Leading zero indicates hex
LD B,#018
SC

LOOP: LD A,[X+]
SUBC A,[B]
X A,[B+]
IFBNE #12
JP LOOP
IFNC
JP NEGRSLT ;Neg. result if no C (No C = Borrow)

BCD ADDITION
LD X,#010 ;Leading zero indicates hex
LD B,#018
RC

LOOP: LD A,[X+]
ADD A,#066 ;Add hex 66
ADC A,[B]
DCOR A ;Decimal correct
X A,[B+]
IFBNE #12
JP LOOP
IFC
JP OVFLOW ;Overflow if C

BCD SUBTRACTION
LD X,#16 ;No leading zero indicates decimal
LD B,#24
SC

LOOP: LD A,[X+]
SUBC A,[B]
DCOR A ;Decimal correct
X A,[B+]
IFBNE #12
JP LOOP
IFNC
JP NEGRSLT ;Neg. result if no C (No C = Borrow)
COP8SAx7 MICROCONTROLLER 2-119

Note that the previous additions and subtractions are not “adding machine” type
arithmetic operations in that the result replaces the second operand rather that the first.
The following program examples illustrate “adding machine” type operations where the
result replaces the first operand. With subtraction, this entails the result replacing the
minuend rather that the subtrahend.

BINARY ADDITION
LD B,#16
LD X,#24
RC

LOOP: LD A,[X+]
ADC A,[B]
X A,[B+]
IFBNE #4
JP LOOP
IFC
JP OVFLOW ;Overflow if C

BINARY SUBTRACTION
LD B,#010
LD X,#018
SC

LOOP: LD A,[X+]
X A,[B]
SUBC A,[B]
X A,[B+]
IFBNE #4
JP LOOP
IFNC
JP NEGRSLT ;Neg. result if no C (No C = Borrow)

BCD ADDITION
LD B,#010
LD X,#018
RC

LOOP: LD A,[X+]
ADD A,#066
ADC A,[B]
DCOR A
X A,[B+]
IFBNE #4
JP LOOP
IFC
JP OVFLOW ;Overflow if C

BCD SUBTRACTION
LD B,#16
LD X,#24
SC

LOOP: LD A,[X+]
X A,[B]
SUBC A,[B]
DCOR A
X A,[B+]
IFBNE #4
JP LOOP
IFNC
JP NEGRSLT ;Neg. result if no C (No C = Borrow)
2-120 COP8SAx7 MICROCONTROLLER

The following hybrid arithmetic example adds five successive bytes of a data table in
program memory to a two-byte SUM, and then subtracts the SUM from a two-byte total
TOT. Assume that the table is located starting a program memory address 0401, while
SUM and TOT are at RAM data memory locations 1, 0 and 3, 2, respectively. The
program is encoded as a subroutine.

2.19.3 Binary Multiplication

The following program listing shows the code for a 16-by-16-bit binary multiply
subroutine. The multiplier starts in the lower 16 bits of the 32-bit result location. As the
multiplier is shifted out of the low end of the result location with the RRC instruction,
each multiplier bit is tested in the Carry flag. The multiplicand is conditionally added
(depending on the multiplier bit) into the high end of the result location, after which the
partial product is shifted down one bit position following the multiplier. Note that one
additional terminal shift cycle is necessary to align the result.

.SECT MATH,RAM
MATHMEM: .DSB4 ;CONSTANT DECLARATIONS

SUMLO = MATHMEM ;Sum lower byte storage location
SUMHI = MATHMEM+1 ;Sum upper byte storage location
TOTLO = MATHMEM+2 ;Total lower byte storage location
TOTHI = MATHMEM+3 ;Total upper byte storage location
.SECT CODE, ROM, ABS=0401

;ROM TABLE
.BYTE 102 ;Store 102
.BYTE 41 ;Store 41
.BYTE 31 ;Store 31
.BYTE 26 ;Store 26
.BYTE 5 ;Store 5

;PERFORM ADDITION AND SUBTRACTION
ARITH1: LD X,#5 ;Set up ROM table pointer

LD B,#SUMLO ;Set up sum pointer
LOOP: RC ;Reset carry flag

LD A,X ;Load ROM pointer into accumulator
LAID ;Read data from ROM
ADC A,[B] ;Add SUMLO to ROM value
X A,[B+] ;Store result in SUMLO, point to SUMHI
CLR A ;Clear accumulator
ADC A,[B] ;Add SUMHI and carry bit to the accumulator
X A,[B-] ;Store result in SUMHI, point to SUMLO
DRSZ X ;Decrement ROM pointer, If not equal to zero
JP LOOP ;then repeat the loop
SC ;else set the carry flag
LD B,#2 ;Load B pointer with 2 (point to TOTLO)

LUP: LD A,[X+] ;Load accumulator with subtrahend
X A,[B] ;Reverse operands for subtraction
SUBC A,[B] ;Subtract
X A,[B+] ;Increment minuend pointer
IFBNE #4 ;If B pointer not equal to 4
JP LUP ;then repeat the loop
RET ;else return
COP8SAx7 MICROCONTROLLER 2-121

2.19.4 Binary Division

The following program shows a subroutine for a 16-by-16-bit binary division. A 16-bit
quotient is generated along with a 16-bit remainder. The dividend is left shifted up into
an initially-cleared 16-bit test window where the divisor is test-subtracted. If the test
subtraction generates no high-order borrow, then the real subtraction is performed with
the result stored back in the test window. At the same time, a quotient bit (equal to 1) is
inserted into the low end of the dividend window to record that a real subtraction has
taken place. The entire dividend and test window is then shifted up (left shifted) one bit
position with the quotient following the dividend.

Note that the four left shifts (LD, ADC, X) in the LSHFT section of the program are
repeated as straight-line code rather than a loop in order to optimize throughput time.

MULTIPLY (16X16) SUBROUTINE
MULTIPLICAND IN [1,0] MULTIPLIER IN [3,2]
PRODUCT IN [5, 4, 3, 2]

.SECT MEMCNT, REG
CNTR: .DSB 1

.SECT CODE, ROM
MULT: LD CNTR,#17

LD B,#4
LD [B+],#0
LD [B],#0
LD X,#0
RC

MLOOP: LD A,[B]
RRC A
X A,[B-]
LD A,[B]
RRC A
X A,[B-]
LD A,[B]
RRC A
X A,[B-]
LD A,[B]
RRC A
X A,[B]
LD B,#5
IFNC
JP TEST
RC
LD B,#4
LD A,[X+]
ADC A,[B]
X A,[B+]
LD A,[X-]
ADC A,[B]
X A,[B]

TEST: DRSZ CNTR
JP MLOOP
RET
2-122 COP8SAx7 MICROCONTROLLER

With a division where the dividend is larger than the divisor (relative to the number of
bytes), an additional test step must be added. This test determines whether a high-order
carry is generated from the left shift of the dividend through the test window. When this
carry occurs, the program branches directly to the SUBT subtract routine. This carry can
occur only if the divisor contains a high-order bit. Moreover, the divisor must also be
larger than the shifted dividend when the shift has placed a high-order bit in the test
window. When this case occurs, the TSUBT test subtract shows the divisor to be larger
than the shifted dividend and no real subtraction occurs. Consequently, the high-order
bit of the shifted dividend is again left shifted and results in a high-order carry. This test
is illustrated in the following program for a 24-by-8-bit binary division.

DIVIDE (16 ÷16) SUBROUTINE
DIVIDEND IN [3,2]
DIVISOR IN [1,0]
QUOTIENT IN [3,2]
REMAINDER IN [5,4]

.SECT MEMCNT, REG
CNTR: .DSB 1

.SECT CODE, ROM
DIV: LD CNTR,#16

LD B,#5
LD [B-],#0
LD [B],#0
LD X,#4

LSHFT: RC
LD B,#2
LD A,[B]
ADC A,[B]
X A,[B+]
LD A,[B]
ADC A,[B]
X A,[B+]
LD A,[B]
ADC A,[B]
X A,[B+]
LD A,[B]
ADC A,[B]
X A,[B+]

TSUBT: SC
LD B,#0
LD A,[X+]
SUBC A,[B]
LD B,#1
LD A,[X-]
SUBC A,[B]
IFNC
JP TEST

SUBT: LD B,#0
LD A,[X]
SUBC A,[B]
X A,[X+]
LD B,#1
LD A,[X]
SUBC A,[B]
X A,[X-]
LD B,#2
SBIT 0,[B]

TEST: DRSZ CNTR
JMP LSHFT
RET
COP8SAx7 MICROCONTROLLER 2-123

Note that the four left shifts (LD, ADC, X) in the LSHFT section of the program are
repeated with the JP jump to LUP instruction in order to minimize program size.

DIVIDE (24 ÷8) SUBROUTINE
DIVIDEND IN [2,1,0]
DIVISOR IN [4]
QUOTIENT IN [2,1,0]
REMAINDER IN [3]

.SECT MEMCNT, REG
CNTR: .DSB 1

.SECT CODE, ROM
DIV: LD CNTR,#24

LD B,#3
LD [B],#0

LSHFT: RC
LD B,#0

LUP: LD A,[B]
ADC A,[B]
X A,[B+]
IFBNE #4
JP LUP
IFC
JP SUBT

TSUBT: SC
LD B,#3
LD A,[B+]
SUBC A,[B]
IFNC
JP TEST

SUBT: LD A,[B-]
X A,[B]
SUBC A,[B]
X A,[B]
LD B,#0
SBIT 0,[B]

TEST: DRSZ CNTR
JMP LSHFT
RET
2-124 COP8SAx7 MICROCONTROLLER

2.20 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National
Semiconductor Sales Office/Distributors for availability and specifications.

NOTE: Absolute maximum ratings indicate limits beyond which damage to the de-
vice may occur. DC and AC electrical specifications are not ensured when op-
erating the device at absolute maximum ratings.

2.20.1 DC Electrical Characteristics (0˚C ≤ TA ≤ +70˚C unless otherwise
specified)

Supply Voltage (VCC) 7V
Voltage at Any Pin –0.6V to VCC +0.6V
ESD Protection Level 2KV

(Human Body Model)
Total Current into VCC Pin (Source) 80 mA
Total Current out of GND Pin (Sink) 100 mA
Storage Temperature Range –65˚C to +140˚C

Parameter Conditions Min Typ Max Units

Operating Voltage
Power Supply Rise Time (On-Chip Power-on Reset
Selected)

2.7
10 ns

5.5
50 ms

V
V

Power Supply Ripple (Note 1) Peak-to-Peak 0.1 VCC V
Supply Current (Note 2)

CKI = 10 MHz VCC = 5.5V, tc = 1 µs 6 mA
CKI = 4 MHz VCC = 4.5V, tc = 2.5 µs 2.1 mA

HALT Current WATCHDOG Disable(Note 3) VCC = 5.5V, CKI = 0 MHz <4 8 µA
IDLE Current (Note 2)

CKI = 10 MHz VCC = 5.5V, tc = 1 µs 1.5 mA
CKI = 4 MHz VCC = 4.5V, tc = 2.5 µs 0.8 mA

Input Levels (VIH, VIL)
RESET

Logic High 0.8 VCC V
Logic Low 0.2 VCC V

CKI, All Other Inputs
Logic High 0.7 VCC V
Logic Low 0.2 VCC V

Value of the Internal Bias Resistor for the Crystal/
Resonator Oscillator

0.5 1.0 2.0 MΩ

CKI Resistance to VCC or GND when R/C oscillator is
selected

VCC = 5.5V 5 8 11 kΩ

Hi-Z Input Leakage (Same as TRI-STATE output) VCC = 5.5V –2 +2 µA
Input Pullup Current VCC = 5.5V, VIN = 0V –40 –250 µA
G and L Port Input Hysteresis 0.25 VCC V
Output Current Levels
D Outputs

Source VCC = 4.5V, VOH = 3.3V –0.4 mA
VCC = 2.7V, VOH = 1.8V –0.2 mA

Sink VCC = 4.5V, VOL = 1.0V 10 mA
VCC = 2.7V, VOL = 0.4V 2 mA

L Port
Source (Weak Pull-Up) VCC = 4.5V, VOH = 2.7V –10 –110 µA

VCC = 2.7V, VOH = 1.8V –2.5 –33 µA
COP8SAx7 MICROCONTROLLER 2-125

Source (Push-Pull Mode) VCC = 4.5V, VOH = 3.3V –0.4 mA
VCC = 2.7V, VOH = 1.8V –0.2 mA

Sink (L0-L3, Push-Pull Mode) VCC = 4.5V, VOL = 1.0V 10 mA
VCC = 2.7V, VOL = 0.4V 2 mA

Sink (L4-L7, Push-Pull Mode) VCC = 4.5V, VOL = 0.4V 1.6 mA
VCC = 2.7V, VOL = 0.4V 0.7 mA

All Others
Source (Weak Pull-Up Mode) VCC = 4.5V, VOH = 2.7V –10 –110 µA

VCC = 2.7V, VOH = 1.8V –2.5 –33 µA
Source (Push-Pull Mode) VCC= 4.5V, VOH = 3.3V –0.4 mA

VCC = 2.7V, VOH = 1.8V –0.2 mA
Sink (Push-Pull Mode) VCC = 4.5V, VOL = 0.4V 1.6 mA

VCC = 2.7V, VOL = 0.4V 0.7 mA
Allowable Sink Current per Pin (Note 6)

D Outputs and L0 to L3 15 mA
All others 3 mA

Maximum Input Current without Latchup (Note 4) ±200 mA
RAM Retention Voltage, Vr
VCC rise time from a VCC ≥ 2.0V

2.0
1.2

V
µs

Input Capacitance (Note 6) 7 pF
Load Capacitance on D2 (Note 6) 1000 pF

Parameter Conditions Min Typ Max Units
2-126 COP8SAx7 MICROCONTROLLER

2.20.2 AC Electrical Characteristics (0˚C ≤ TA ≤ +70˚C unless otherwise
specified)

Parameter Conditions Min Typ Max Units

Instruction Cycle Time (tc)
Crystal/Resonator, External 4.5V ≤ VCC ≤ 5.5V 1.0 DC µs

2.7V ≤ VCC < 4.5V 2.0 DC µs
Internal R/C Oscillator 4.5V ≤ VCC ≤ 5.5V 2.0 µs

2.7V ≤ VCC < 4.5V TBD µs
 R/C Oscillator Frequency Variation 4.5V ≤ VCC ≤ 5.5V ±35 %
(Note 6) 2.7V ≤ VCC < 4.5V TBD %

External CKI Clock Duty Cycle (Note 6) fr = Max 45 55 %
Rise Time (Note 6) fr = 10 MHz Ext Clock 12 ns
Fall Time (Note 6) fr = 10 MHz Ext Clock 8 ns

Inputs
tSETUP 4.5V ≤ VCC ≤ 5.5V 200 ns

2.7V ≤ VCC < 4.5V 500 ns
tHOLD 4.5V ≤ VCC ≤ 5.5V 60 ns

2.7V ≤ VCC < 4.5V 150 ns
Output Propagation Delay (Note 5) RL = 2.2k, CL = 100 pF

tPD1, tPD0

SO, SK 4.5V ≤ VCC ≤ 5.5V 0.7 µs
2.7V ≤ VCC < 4.5V 1.75 µs

All Others 4.5V ≤ VCC ≤ 5.5V 1.0 µs
2.7V ≤ VCC < 4.5V 2.5 µs

MICROWIRE Setup Time (tUWS) (Note 5) 20 ns
MICROWIRE Hold Time (tUWH) (Note 5) 56 ns
MICROWIRE Output Propagation Delay (tUPD) 220 ns
MICROWIRE Maximum Shift Clock

Master Mode
Slave Mode

500
1

kHz
MHz

Input Pulse Width (Note 6)
Interrupt Input High Time 1 tc
Interrupt Input Low Time 1 tc
Timer Input High Time 1 tc
Timer Input Low Time 1 tc

Reset Pulse Width 1 µs
tC = Instruction cycle time (Clock Input frequency divided by 10)
Note 1: Maximum rate of voltage change must be < 0.5 V/ms.
Note 2: Supply and IDLE currents are measured with CKI driven with a square wave Oscillator, CKO driven 180˚ out of phase with CKI,
inputs connected to VCC and outputs driven low but not connected to a load.
Note 3: The HALT mode will stop CKI from oscillating in the R/C and the Crystal configurations. In the R/C configuration, CKI is forced
high internally. In the crystal or external configuration, CKI is TRI-STATE. Measurement of IDD HALT is done with device neither sourcing
nor sinking current; with L, F, C, G0, and G2-G5 programmed as low outputs and not driving a load; all outputs programmed low and not
driving a load; all inputs tied to VCC; WATCHDOG and clock monitor disabled. Parameter refers to HALT mode entered via setting bit 7 of
the G Port data register.
Note 4: Pins G6 and RESET are designed with a high voltage input network. These pins allow input voltages > VCC and the pins will
have sink current to VCC when biased at voltages > VCC (the pins do not have source current when biased at a voltage below VCC). The
effective resistance to VCC is 750Ω (typical). These two pins will not latch up. The voltage at the pins must be limited to < 14 Volts.
WARNING: Voltages in excess of 14 volts will cause damage to the pins. This warning excludes ESD transients.
Note 5: The output propagation delay is referenced to the end of the instruction cycle where the output change occurs.
Note 6: Parameter characterized but not tested.
COP8SAx7 MICROCONTROLLER 2-127

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National
Semiconductor Sales Office/Distributors for availability and specifications.

NOTE: Absolute maximum ratings indicate limits beyond which damage to the de-
vice may occur. DC and AC electrical specifications are not ensured when op-
erating the device at absolute maximum ratings.

2.20.3 DC Electrical Characteristics (–40˚C ≤ TA ≤ +85˚C unless otherwise
specified)

Supply Voltage (VCC) 7V
Voltage at Any Pin –0.6V to VCC +0.6V
ESD Protection Level 2KV

(Human Body Model)
Total Current into VCC Pin (Source) 80 mA
Total Current out of GND Pin (Sink) 100 mA
Storage Temperature Range –65˚C to +140˚C

Parameter Conditions Min Typ Max Units

Operating Voltage
Power Supply Rise Time (On-Chip Power-on Reset
Selected)

2.7
10 ns

5.5
50 ms

V

Power Supply Ripple (Note 1) Peak-to-Peak 0.1 VCC V
Supply Current (Note 2)

CKI = 10 MHz VCC = 5.5V, tc = 1 µs 6.0 mA
HALT Current WATCHDOG Disable (Note 3) VCC = 5.5V, CKI = 0 MHz <4 10.0 µA
IDLE Current (Note 2)

CKI = 10 MHz VCC = 5.5V, tc = 1 µs 1.5 mA
Input Levels (VIH, VIL)
RESET

Logic High 0.8 VCC V
Logic Low 0.2 VCC V

CKI, All Other Inputs
Logic High 0.7 VCC V
Logic Low 0.2 VCC V

Value of the Internal Bias Resistor for the Crystal/
Resonator Oscillator

0.5 1.0 2.0 MΩ

CKI Resistance to VCC or GND when R/C oscillator
is selected

VCC = 5.5V 5 8 11 kΩ

Hi-Z Input Leakage (Same as TRI-STATE output) VCC = 5.5V –2 +2 µA
Input Pullup Current VCC = 5.5V, VIN = 0V –40 –250 µA
G and L Port Input Hysteresis 0.25 VCC V
Output Current Levels
D Outputs

Source VCC = 4.5V, VOH = 3.3V –0.4 mA
VCC = 2.7V, VOH = 1.8V –0.2 mA

Sink VCC = 4.5V, VOL = 1.0V 10 mA
VCC = 2.7V, VOL = 0.4V 2 mA

L Port
Source (Weak Pull-Up) VCC = 4.5V, VOH = 2.7V –10.0 –110 µA

VCC = 2.7V, VOH = 1.8V –2.5 –33 µA
Source (Push-Pull Mode) VCC = 4.5V, VOH = 3.3V –0.4 mA

VCC = 2.7V, VOH = 1.8V –0.2 mA
Sink (L0-L3, Push-Pull Mode) VCC = 4.5V, VOL = 1.0V 10.0 mA

VCC = 2.7V, VOL = 0.4V 2 mA
Sink (L4-L7, Push-Pull Mode) VCC = 4.5V, VOL = 0.4V 1.6 mA
2-128 COP8SAx7 MICROCONTROLLER

VCC = 2.7V, VOL = 0.4V 0.7 mA
All Others

Source (Weak Pull-Up Mode) VCC = 4.5V, VOH = 2.7V –10.0 –110 µA
VCC = 2.7V, VOH = 1.8V –2.5 –33 µA

Source (Push-Pull Mode) VCC= 4.5V, VOH = 3.3V –0.4 mA
VCC = 2.7V, VOH = 1.8V –0.2 mA

Sink (Push-Pull Mode) VCC = 4.5V, VOL = 0.4V 1.6 mA
VCC = 2.7V, VOL = 0.4V 0.7 mA

Allowable Sink Current per Pin (Note 6)
D Outputs and L0 to L3 15 mA
All others 3 mA

Maximum Input Current without Latchup (Note 4) ±200 mA
RAM Retention Voltage, Vr
VCC rise time from a VCC ≥ 2.0V

2.0
1.2

V
µs

Input Capacitance (Note 6) 7 pF
Load Capacitance on D2 (Note 6) 1000 pF

Parameter Conditions Min Typ Max Units
COP8SAx7 MICROCONTROLLER 2-129

2.20.4 AC Electrical Characteristics (–40˚C ≤ TA ≤ +85˚C unless otherwise
specified)

Parameter Conditions Min Typ Max Units

Instruction Cycle Time (tc)
Crystal/Resonator, External 4.5V ≤ VCC ≤ 5.5V 1.0 DC µs

2.7V ≤ VCC < 4.5V 2.0 DC µs
Internal R/C Oscillator 4.5V ≤ VCC ≤ 5.5V 2.0 µs

2.7V ≤ VCC < 4.5V TBD µs
 R/C Oscillator Frequency Variation 4.5V ≤ VCC ≤ 5.5V ±35 %
(Note 6) 2.7V ≤ VCC < 4.5V TBD %

External CKI Clock Duty Cycle (Note 6) fr = Max 45 55 %
Rise Time (Note 6) fr = 10 MHz Ext Clock 12 ns
Fall Time (Note 6) fr = 10 MHz Ext Clock 8 ns

Inputs
tSETUP 4.5V ≤ VCC ≤ 5.5V 200 ns

2.7V ≤ VCC < 4.5V 500 ns
tHOLD 4.5V ≤ VCC ≤ 5.5V 60 ns

2.7V ≤ VCC < 4.5V 150 ns
Output Propagation Delay (Note 5) RL = 2.2k, CL = 100 pF

tPD1, tPD0

SO, SK 4.5V ≤ VCC ≤ 5.5V 0.7 µs
2.7V ≤ VCC < 4.5V 1.75 µs

All Others 4.5V ≤ VCC ≤ 5.5V 1.0 µs
2.7V ≤ VCC < 4.5V 2.5 µs

MICROWIRE Setup Time (tUWS) (Note 5) 20 ns
MICROWIRE Hold Time (tUWH) (Note 5) 56 ns
MICROWIRE Output Propagation Delay (tUPD) 220 ns
MICROWIRE Maximum Shift Clock

Master Mode
Slave Mode

500
1

kHz
MHz

Input Pulse Width (Note 6)
Interrupt Input High Time 1 tc
Interrupt Input Low Time 1 tc
Timer 1,2, 3 Input High Time 1 tc
Timer 1,2, 3 Input Low Time 1 tc

Reset Pulse Width 1 µs
tC = Instruction cycle time (Clock Input frequency divided by 10)
Note 1: Maximum rate of voltage change must be < 0.5 V/ms.
Note 2: Supply and IDLE currents are measured with CKI driven with a square wave Oscillator, CKO driven 180˚ out of phase with CKI,
inputs connected to VCC and outputs driven low but not connected to a load.
Note 3: The HALT mode will stop CKI from oscillating in the R/C and the Crystal configurations. In the R/C configuration, CKI is forced
high internally. In the crystal or external configuration, CKI is TRI-STATE. Measurement of IDD HALT is done with device neither sourcing
nor sinking current; with L, F, C, G0, and G2-G5 programmed as low outputs and not driving a load; all outputs programmed low and not
driving a load; all inputs tied to VCC; clock monitor disabled. Parameter refers to HALT mode entered via setting bit 7 of the G Port data
register.
Note 4: Pins G6 and RESET are designed with a high voltage input network. These pins allow input voltages > VCC and the pins will
have sink current to VCC when biased at voltages > VCC (the pins do not have source current when biased at a voltage below VCC). The
effective resistance to VCC is 750Ω (typical). These two pins will not latch up. The voltage at the pins must be limited to < 14 Volts.
WARNING: Voltages in excess of 14 volts will cause damage to the pins. This warning excludes ESD transients.
Note 5: The output propagation delay is referenced to the end of the instruction cycle where the output change occurs.
Note 6: Parameter characterized but not tested.
2-130 COP8SAx7 MICROCONTROLLER

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National
Semiconductor Sales Office/Distributors for availability and specifications.

NOTE: Absolute maximum ratings indicate limits beyond which damage to the de-
vice may occur. DC and AC electrical specifications are not ensured when op-
erating the device at absolute maximum ratings.

2.20.5 DC Electrical Characteristics (–40˚C ≤ TA ≤ +125˚C unless otherwise
specified)

Supply Voltage (VCC) 7V
Voltage at Any Pin –0.6V to VCC +0.6V
ESD Protection Level 2KV (Human Body Model)
Total Current into VCC Pin (Source) 80 mA
Total Current out of GND Pin (Sink) 100 mA
Storage Temperature Range –65˚C to +140˚C

Parameter Conditions Min Typ Max
Uni
ts

Operating Voltage
Power Supply Rise Time (On-Chip Power-on Reset Selected)

4.5
10 ns

5.5
50 ms

V

Power Supply Ripple (Note 1) Peak-to-Peak 0.1 VCC V
Supply Current (Note 2)

CKI = 10 MHz VCC = 5.5V, tc = 1 µs 6.0 mA
HALT Current WATCHDOG Disable (Note 3) VCC = 5.5V, CKI = 0 MHz <10 30 µA
IDLE Current (Note 2)

CKI = 10 MHz VCC = 5.5V, tc = 1 µs 1.5 mA
Input Levels (VIH, VIL)

RESET

Logic High 0.8 VCC V
Logic Low 0.2 VCC V

CKI, All Other Inputs

Logic High 0.7 VCC V
Logic Low 0.2 VCC V

Value of the Internal Bias Resistor
for the Crystal/Resonator Oscillator

0.5 1.0 2.0 MΩ

CKI Resistance to VCC or GND when R/C oscillator is selected VCC = 5.5V 5 8 11 kΩ
Hi-Z Input Leakage (Same as TRI-STATE output) VCC = 5.5V –5 +5 µA
Input Pullup Current VCC = 5.5V, VIN = 0V –35 –400 µA
G and L Port Input Hysteresis 0.25 VCC V
Output Current Levels

D Outputs

Source VCC = 4.5V, VOH = 3.3V –0.4 mA
Sink VCC = 4.5V, VOL = 1.0V 9 mA

L Port

Source (Weak Pull-Up) VCC = 4.5V, VOH = 2.7V –9.0 –140 µA
Source (Push-Pull Mode) VCC = 4.5V, VOH = 3.3V –0.4 mA
Sink (L0-L3, Push-Pull Mode) VCC = 4.5V, VOL = 1.0V 9.0 mA
Sink (L4-L7, Push-Pull Mode) VCC = 4.5V, VOL = 0.4V 1.4 mA

All Others

Source (Weak Pull-Up Mode) VCC = 4.5V, VOH = 2.7V –9.0 –140 µA
Source (Push-Pull Mode) VCC= 4.5V, VOH = 3.3V –0.4 mA
Sink (Push-Pull Mode) VCC = 4.5V, VOL = 0.4V 1.4 mA
COP8SAx7 MICROCONTROLLER 2-131

Allowable Sink Current per Pin (Note 6)

D Outputs and L0 to L3 15 mA
All others 3 mA

Maximum Input Current without Latchup (Note 4) ±200 mA
RAM Retention Voltage, Vr
VCC rise time from a VCC ≥ 2.0V

2.0
1.2

V
µs

Input Capacitance (Note 6) 7 pF
Load Capacitance on D2 (Note 6) 1000 pF

Parameter Conditions Min Typ Max
Uni
ts
2-132 COP8SAx7 MICROCONTROLLER

2.20.6 AC Electrical Characteristics (–40˚C ≤ TA ≤ +125˚C unless otherwise
specified)

Parameter Conditions Min Typ Max Units

Instruction Cycle Time (tc)
Crystal/Resonator, External 4.5V ≤ VCC ≤ 5.5V 1.0 DC µs
Internal R/C Oscillator 4.5V ≤ VCC ≤ 5.5V 2.0 µs
 R/C Oscillator Frequency Variation 4.5V ≤ VCC ≤ 5.5V TBD %
(Note 6)

External CKI Clock Duty Cycle (Note 6) fr = Max 45 55 %
Rise Time (Note 6) fr = 10 MHz Ext Clock 12 ns
Fall Time (Note 6) fr = 10 MHz Ext Clock 8 ns

Inputs
tSETUP 4.5V ≤ VCC ≤ 5.5V 200 ns
tHOLD 4.5V ≤ VCC ≤ 5.5V 60 ns

Output Propagation Delay (Note 5) RL = 2.2k, CL = 100 pF
tPD1, tPD0

SO, SK 4.5V ≤ VCC ≤ 5.5V 0.7 µs
All Others 4.5V ≤ VCC ≤ 5.5V 1.0 µs

MICROWIRE Setup Time (tUWS) (Note 5) 20 ns
MICROWIRE Hold Time (tUWH) (Note 5) 56 ns
MICROWIRE Output Propagation Delay (tUPD) 220 ns
MICROWIRE Maximum Shift Clock

Master Mode
Slave Mode

500
1

kHz
MHz

Input Pulse Width (Note 6)
Interrupt Input High Time 1 tc
Interrupt Input Low Time 1 tc
Timer 1, 2, 3 Input High Time 1 tc
Timer 1, 2, 3 Input Low Time 1 tc

Reset Pulse Width 1 µs
tC = Instruction cycle time (Clock Input frequency divided by 10)
Note 1: Maximum rate of voltage change must be < 0.5 V/ms.
Note 2: Supply and IDLE currents are measured with CKI driven with a square wave Oscillator, CKO driven 180˚ out of phase with CKI,
inputs connected to VCC and outputs driven low but not connected to a load.
Note 3: The HALT mode will stop CKI from oscillating in the R/C and the Crystal configurations. In the R/C configuration, CKI is forced
high internally. In the crystal or external configuration, CKI is TRI-STATE. Measurement of IDD HALT is done with device neither sourcing
nor sinking current; with L, F, C, G0, and G2-G5 programmed as low outputs and not driving a load; all outputs programmed low and not
driving a load; all inputs tied to VCC; clock monitor disabled. Parameter refers to HALT mode entered via setting bit 7 of the G Port data
register.
Note 4: Pins G6 and RESET are designed with a high voltage input network. These pins allow input voltages > VCC and the pins will
have sink current to VCC when biased at voltages > VCC (the pins do not have source current when biased at a voltage below VCC). The
effective resistance to VCC is 750Ω (typical). These two pins will not latch up. The voltage at the pins must be limited to < 14 Volts.
WARNING: Voltages in excess of 14 volts will cause damage to the pins. This warning excludes ESD transients.
Note 5: The output propagation delay is referenced to the end of the instruction cycle where the output change occurs.
Note 6: Parameter characterized but not tested.

Figure 2-30 MICROWIRE/PLUS Timing

SI

SO

SK
tUWS tUWH

tUPD
COP8SAx7 MICROCONTROLLER 2-133

2.21 ESD/EMI CONSIDERATIONS

National’s patent ESD protection and EMI reduction circuits are implemented on device
to address ESD/EMI problems.

2.22 INPUT PROTECTION

The COP8SAx7 input pins have internal circuitry for protection from ESD. The internal
circuitry is shown in Figure 2-31.

The input protection circuitry is implemented with the P_channel transistors. The
equivalent diode circuit is shown in Figure 2-32.

Figure 2-31 Ports L/C/G/F Input Protection (Except G6)

Figure 2-32 Diode Equivalent of Input Protection

cop8_input_pro_ports

VCC VCC

P

N

cop8_input_pro_dio

VCC
2-134 COP8SAx7 MICROCONTROLLER

National’s patented Merrill Clamp ESD protection circuitry is implemented on device to
direct the current resulting from an ESD pulse on an input pin, onto the VCC and GND
bus. Figure 2-33 shows the on-chip detection/protection circuit. The circuitry is designed
to meet ESD protection goal of at least 2000 volts as measured using Human Body Model.

There are two Merrill Clamp blocks on each die. The Merrill Clamp block is used to help
protect the chip from ESD events. The Merrill Clamp senses a fast rise-time on the VCC
supply and shorts the VCC line to the GND with a transistor. A Merrill Resistor block is
used to drain off any charge on VCC between ESD events. The Merrill Resistor block
contains only a 4 MΩ resistor which is connected between the VCC supply line and the
GND return line.

Figure 2-33 On-Chip ESD Detection/Protection Circuit

DETECTOR

PROTECTION
DIODEINPUT

PROTECTION
DIODE

VCC

GND

4MΩ
COP8SAx7 MICROCONTROLLER 2-135

2.23 ELECTROMAGNETIC INTERFERENCE (EMI) CONSIDERATIONS

2.23.1 Introduction

CMOS has become the technology of choice for the processors used in many embedded
systems due to its capability for low standby power consumption. However, CMOS is
prone to high current transients on the power supply as the internal logic switches. These
transients can easily be the source of high-frequency emissions from the system. The
system designer should anticipate and minimize unwanted electromagnetic interference
(EMI).

2.23.2 Emission Predictions

“EMI in a typical electronic circuit is generated by a current flowing in a loop configured
within the circuit. These paths can be either VCC-to-GND loops or output-to-GND loops.
EMI generation is a function of several factors. Transmitted signal frequency, duty cycle,
edge rates, and output voltage swings are the major factors of the resultant EMI levels.”1

The formula for predicting the Electric Field emissions from such a loop is as follows:

where:

• |E|MAX is the maximum E-field in the plane of the loop in µV/m

• I is the current amplitude in milliamps

• A is the loop area in square cm

• λ is the wavelength at the frequency of interest in meters

• D is the observation distance in meters

• Freq is the frequency in MHz

• and the perimeter of the loop P << λ.

Applying this equation to a single standard output for a National Semiconductor
Microcontroller, and performing a Fourier analysis of the output switching at a frequency
of 20 MHz, yields the results shown in Table 2-12. These calculations assume a trace
length of 5 inches, a board thickness of 0.062 inches and a full ground plane. The load
capacitance is 100 pf.

Note that the assumption is made that the output is switching at 20 MHz, which is rarely
the case for a port output. There is noise, however, on the output at these frequencies due
to switching within the device. This is the noise which is coupled to the output through
VCC and GND. Another point to keep in mind is that rarely does one single output switch,

1. “FACT Advanced CMOS Logic Databook”, National Semiconductor, 1993

E MAX
1.32 10 3–× IA Freq()2

D
--- 1 λ

2πD

 2
+

 1 2/
×=
2-136 COP8SAx7 MICROCONTROLLER

but usually several at one time, thus adding the effective magnetic fields from all the
outputs which are switching.

Accurate analysis requires characterization of the noise present at the output due to VCC
or GND noise which is dependent on many factors, including internal peripherals in use,
execution code, and address of memory locations in use.

2.23.3 Board Layout

There are two primary techniques for reducing emissions from within the application.
This can be done either by reducing the noise or by controlling the antenna. Control of
the antenna is accomplished through careful PC board layout.

General

Standard good PC layout practices will go a long way toward reducing emissions. Traces
carrying large AC currents (such as signals with fast transition times, that drive large
loads) should be kept as short as possible. Traces that are sensitive to noise should be
surrounded by ground to the greatest extent possible. Ground and VCC traces should be
kept as short and wide as possible to reduce the supply impedance.

Ground Plane

One of the most effective ways to control emissions through board layout is with a ground
plane. The use of a plane can help by providing a return path for fast switching signals,
thus reducing loop size for both power and signals.

Table 2-12 Electric Field Calculation Results

Harmoni
c

(MHz)

Curren
t

(mA)

|E|Max
(µV/M)

|E|Max
(dBµV/

M)

20 37.56 8.3 18.4

40 3.66 0.3 -10.2

60 26.13 44.2 33.0

80 4.44 0.6 -4.4

100 16.82 80.2 38.1

120 4.71 2.0 6.0

140 11.21 104.0 40.4

160 4.86 5.8 15.2

180 7.82 127.4 42.1
COP8SAx7 MICROCONTROLLER 2-137

Multilayer Board

The best way to provide a ground plane is through the use of a multilayer printed circuit
board. The large area and the proximity of the VCC and GND planes provide additional
decoupling for the power, and provide effective return paths for both power and signals.

The problem with the use of a multilayer board, particularly in consumer related
industries, is cost. Due to the volumes involved, an addition of several dollars to the cost
of an item may be prohibitive.

2.23.4 Decoupling

Control of the emitted noise can be accomplished by several techniques, including
decoupling, reduced power supplies, and limitation of signal strength by the addition of
series resistance.

It is important to take the time to properly design the decoupling for CMOS processors.
Two decoupling techniques can and should be used to minimize both voltage and current
switching noise in the system.

Capacitive Decoupling

Capacitive decoupling is commonly used to control voltage noise on the VCC and GND
lines of the board, but if the decoupling is properly designed and is kept as close as
possible to the power pins of the device, it can also reduce the effective loop area and thus
the antenna efficiency. Capacitive decoupling can prevent high-frequency current
transients from being seen by the power supply.

One factor of capacitive decoupling which is often overlooked is the frequency response
of the capacitors. Each capacitor, dependent on value, lead length, and dielectric
material, possesses a series resonant frequency beyond which the device has inductive
characteristics. This inductance inhibits the capacitor from responding quickly to the
current needs of the processor and forces the current to use the longer path back to the
main power supply.

These inductive characteristics can be countered by the addition of extra capacitors of
different values in parallel with the original device. As the value of the capacitor
decreases (for capacitors of similar manufacture), the resonant frequency increases.

Placing multiple decoupling capacitors across the power pins of the processor can
effectively improve the high frequency performance of the decoupling network.
Capacitance values are normally selected which are separated by a decade. However, it
is best to check the specifications of the capacitors which are used.

Inductive Decoupling

Another very effective method of decoupling which is rarely used is inductive decoupling.
The proper placement of ferrite beads between the decoupling capacitors and the
processor can significantly reduce the current noise on the power pins.

The use of inductive decoupling, which will increase the series impedance of the power
supply, appears to be contradictory to the effect of capacitive decoupling. However, the
2-138 COP8SAx7 MICROCONTROLLER

purpose of inductive decoupling is to force nodes internal to the processor, which are not
switching, into providing the charge for the nodes which are switching.

Ferrite beads are very effective for this type of decoupling due to their lossy nature.
Rather than storing the energy and returning it to the circuit later, ferrites will dissipate
the energy as a resistor.

One should be aware of potential repercussions from the use of any type of series
isolation from the power supply. Due to the reduced VCC which may be present during
switching transients, interfacing to other devices in the system may be a problem. Since
the VCC should only be reduced for the duration of the switching transient, this should
only be a problem if the other devices have especially sensitive and fast-responding
inputs.

2.23.5 Output Series Resistance

The addition of resistance in series with outputs can have a significant effect on the
emissions caused by the switching of the outputs.

Outputs that drive large capacitive loads can have a lot of current flowing when they
switch. While the series resistance may slow the switching speed of the node and thus
affect the propagation delay, it can also have a large effect on emissions by reducing the
amplitude of the current spike that charges or discharges the load.

2.23.6 Oscillator Control

One very definite source of emissions is the system clock. The oscillator is intended to
switch at high speed and therefore will emit some noise. Keeping the circuit loop of the
oscillator as small as possible will help considerably.

Ceramic resonators are available with the capacitive load included in a single three
terminal package. The use of these devices and placing them right next to the processor
can reduce emissions as much as 10 dB.

RC oscillators are particularly troublesome for emissions due to the high transient
current when the processor turns on the N-channel device that discharges the capacitor.
The transistor is meant to be large and to turn on strongly in order to discharge the
capacitor as quickly as possible. This allows simple control over the frequency of
oscillation but causes difficulty for the designer of systems for EMI-sensitive
applications.

2.23.7 Mechanical Shielding

A last resort for controlling emissions is the addition of mechanical shielding. While
shielding can be effective and can be easier from an electrical design standpoint, the
implementation and installation of a proper electromagnetic shield can be excessively
costly and time consuming.

It is much better to design the system with the control of emissions in mind from the start
rather than to apply bandages when it is time to begin production.
COP8SAx7 MICROCONTROLLER 2-139

2.24 EMI REDUCTION ON THE COP8SAx7

The COP8SAx7 devices products incorporate circuity that guards against
electromagnetic interference — an increasing problem in today’s microcontroller board
designs. National’s patented EMI reduction technology offers low EMI emissive clock
circuitry, EMI-optimized pinouts, gradual turn-on output drivers (GTOs) and an on-chip
choke device to help circumvent many of the EMI issues influencing embedded control
designs. National has achieved 15-20 dB reduction in EMI transmissions when designs
have incorporated its patented EMI reducing circuitry (Figure 2-34).

Figure 2-34 EMI Improvements

0

5

10

15

20

25

30

35

40

45

50

100

dB
uV

Frequency (MHz)

0

5

10

15

20

25

30

35

40

45

50

100

dB
uV

Frequency (MHz)

COP8SAx7 Device Without EMI Improvements

COP8SAx7 Device With EMI Improvements
2-140 COP8SAx7 MICROCONTROLLER

2.24.1 Silicon Design Changes to Achieve Low EMI

National’s design goal was to reshape the IC pin current waveforms from their original
values. A second goal was to provide separate power and ground bus systems on-chip for
each of the following groups: Chip digital logic, Chip I/O buffers, and if present a chip A/
D converter (or other analog intensive sections).

Inspection of these goals demanded the need to divide the chip into separate areas: the
nucleus, the perimeter and the analog. Also the partitioning of the nucleus (containing
the digital logic functions) and the perimeter (containing digital I/O and oscillator
functions) allowed the use of an on-chip device to choke the nucleus’ current, thereby
wave shaping the current. The current choke, however, causes the nucleus VCC voltage
to dip by 0.5 to 1 Volt at each clock edge. These VCC voltage swings were confined to
within the chip’s nucleus where the circuitry (digital logic) is tolerant and no significant
radiation antennae exist.

On-chip level shifting circuitry was inserted as interface between the nucleus and the
perimeter. It allowed the nucleus to operate at a lower VCC than the perimeter.

Another challenge was to reduce EMI from the chip’s output drivers. CMOS output
drivers turn on fast, in about 1nS. This causes 2 problems. The first is called ‘shoot
through’ current which flows from DVCC to DGND when both the pull up and the pull
down drivers are on and the output load is small. The second is due to output current
magnitude increasing to maximum in about 1 nS when the output changes state. Both
problems were solved by using fast turn off, gradual turn on device drivers.

Figure 2-35 illustrates, in block diagram form, how the chip is partitioned for EMC. The
power/ground pads named DVCC (Driver VCC), LVCC (Logic VCC),VCC (a global VCC to
most of the chip), GND (a global GND to most of the chip) and DGND (driver ground) are
all available). To minimize package pin count, DVCC and LVCC is bonded to the same pin,
GND & DGND is also bonded to the same pin, and the VCC pad is not bonded.

2.24.2 Conclusion

While electromagnetic emissions can be a problem for the designer of any electronic
system, it is particularly troublesome in the design of high speed CMOS systems. With
knowledge of the primary sources of noise, and the ways to combat that noise, it is
possible to design and build systems which are electromagnetically quiet.

Very few references to specific values of capacitance, resistance, or inductance have been
made in this document. The reason for this is that a value which works well in one
application may not be effective in another. The best way to determine the values which
will work well for a particular application is by experimentation.
COP8SAx7 MICROCONTROLLER 2-141

Figure 2-35 Block diagram of EMI Circuitry

DVCC

LVCC

VCC

GND

DGND

Choke
Device

Clock
Oscillator

Chip Nucleus
Logic

Level
Shifting

Gradual
Turn On

Input
Buffer

CKI

CKO

OUTPUT

INPUT

VCC Pin

GND Pin
2-142 COP8SAx7 MICROCONTROLLER

Chapter 3

DEVELOPMENT SUPPORT

3.1 SUMMARY

• iceMASTER: IM-COP8/400 -- Full featured in-circuit emulation for all COP8 prod-
ucts. A full set of COP8 Basic and Feature Family device and package specific
probes are available.

• COP8 Debug Module: Moderate-cost in-circuit emulation and development pro-
gramming unit.

• COP8 Evaluation & Programming Unit: EPU-COP888GG -- low-cost in-circuit
simulation and development programming unit.

• Assembler: COP8-DEV-IBMA. A DOS installable cross development Assembler,
Linker, Librarian and Utility Software Development Tool Kit.

• C Compiler: COP8C. A DOS installable cross development Software Tool Kit.

• OTP/EPROM Programmer Support: Covering needs from engineering prototype,
pilot production, to full production environments.

• In-factory Programming Support: Covering high volume production OTP pro-
grammed devices.

3.2 iceMASTER (IM) IN-CIRCUIT EMULATION

The iceMASTER IM-COP8/400 is a full featured, PC based, in-circuit emulation tool
developed and marketed by MetaLink Corporation to support the whole COP8 family of
products. National and National authorized Distributors are resale vendors for these
products.

See Figure 3-1 for the COP8 iceMASTER configuration.

The iceMASTER IM-COP8/400 with its device specific COP8 Probe provides a rich
feature set for developing, testing, and maintaining the product:

• Real-time in-circuit emulation; full 2.7-5.5V operation range, full DC-10MHz
clock. Chip options are programmable or jumper selectable.

• Direct connection to application board by package-compatible socket or surface
mount assembly.

• Full 32K byte of loadable programming space that overlays (replaces) the on-chip
ROM or EPROM. On-chip RAM and I/O blocks are used directly or re-created on
the probe as necessary.
DEVELOPMENT SUPPORT 3-1

• Full 4k frame synchronous trace memory. Address, instruction, and eight unspec-
ified, circuit connectable trace lines. Display can be high-level language source
(e.g., C source), assembly, or mixed.

• A full 64k hardware configurable break, trace on, trace off, and pass count incre-
ment events.

• Tool set integrated interactive symbolic debugger — supports both assembler
(COFF) and C Compiler (.COD) linked object formats.

• Real time performance profiling analysis; selectable bucket definition.

• Watch windows, content updated automatically at each execution break.

• Instruction-by-instruction memory/register changes displayed in source window
when in single step operation.

• Single base unit and debugger software reconfigurable to support the entire COP8
family; only the probe personality needs to change. Debugger software is proces-
sor customized, and reconfigured from a master model file.

• Processor-specific symbolic display of registers and bit level assignments, config-
ured from master model file.

• Halt/Idle mode notification.

• On-line HELP.

• Includes a copy of COP8-DEV-IBMA assembler and linker SDK.

Figure 3-1 COP8 iceMASTER Environment
3-2 DEVELOPMENT SUPPORT

IM Order-Information

3.3 iceMASTER DEBUG MODULE (DM)

The iceMASTER Debug Module is a PC based, combination in-circuit emulation tool and
COP8 based OTP/EPROM programming tool developed and marketed by MetaLink
Corporation to support the whole COP8 family of products. National and National
authorized Distributors are resale vendors for these products.

See Figure 3-2 for the iceMASTER Debug Module configuration.

Base Unit

IM-COP8/400-1 iceMASTER base unit, 110V Power Supply

 IM-COP8/400-2 iceMASTER base unit, 220V Power Supply

iceMASTER Probe, COPSAx7

COP8SA-IM44V 44 PLCC, 2.7 – 5.5V

COP8SA-IM40N 40 DIP, 2.7 – 5.5V

COP8SA-IM28N 28 DIP, 2.7 – 5.5V

COP8SA-IM20N 20 DIP, 2.7 – 5.5V

COP8SA-IM16N 16 DIP, 2.7 – 5.5V

Optional Surface Mount Adapter Kits

MHW-COP8/44P-Q 44 PLCC to 44 PQFP SM Adapter

MHW-SOIC-28 28 DIP to 28 SOIC SM Adapter

MHW-SOIC-20 20 DIP to 20 SOIC SM Adapter

MHW-SOIC-16 16 DIP to 16 SOIC SM Adapter

e.g., Target package is 44P; order: IM-COP8/400-1, COP8SA-IM44V and
MHW-COP8/44V-P.

Figure 3-2 COP8-DM Environment
DEVELOPMENT SUPPORT 3-3

The iceMASTER Debug Module is a moderate-cost development tool. It has the
capability of in-circuit emulation for a specific COP8 microcontroller and in addition
serves as a programming tool for COP8 OTP and EPROM product families. It offers the
following features:

• Real-time in-circuit emulation; full operating voltage range operation, full DC-
10MHz clock.

• All processor I/O pins can be cabled to an application development board with
package-compatible cable to socket and surface mount assembly.

• Full 32 kbyte of loadable programming space that overlays (replaces) the on-chip
ROM or EPROM. On-chip RAM and I/O blocks are used directly or re-created as
necessary.

• 100 frames of synchronous trace memory. The display can be high-level language
source (C source), assembly, or mixed. The most recent history prior to a break is
available in the trace memory.

• Configured break points; uses INTR instruction which is modestly intrusive.

• Software-only supported features are selectable.

• Tool set integrated interactive symbolic debugger — supports both assembler
(COFF) and C Compiler (.COD) SDK linked object formats.

• Instruction-by-instruction memory/register changes displayed when in single step
operation.

• Processor-specific symbolic display of registers and bit level assignments, config-
ured from master model file.

• Halt/Idle mode notification.

• Programming menu supports full product line of programmable OTP and EPROM
COP8 products. Program data is taken directly from the overlay RAM. Program-
ming of 44 PQFP parts requires external programming adapters.

• Includes wallmount power supply

• On-board VPP generator from 5V input or connection to external supply support-
ed. Requires VPP level adjustment per the family programming specification (cor-
rect level is provided on an on-screen pop-down display).

• Includes a copy of COP8-DEV-IBMA assembler snf linker SDK.
3-4 DEVELOPMENT SUPPORT

DM Order-Information

3.4 iceMASTER EVALUATION PROGRAMMING UNIT (EPU)

The iceMASTER-COP8 EPU is a PC based, in-circuit simulation tool to support the
feature family COP8 products.

See Figure 3-3 for the iceMASTER COP8SA-EPU configuration.

Debug Module Unit

COP8SA-DM

Cable Adapters, requires one for emulation

DM-COP8/44P 44 PLCC

DM-COP8/40D 40 DIP

DM-COP8/28D 28 DIP

DM-COP8/20D 20 DIP

DM-COP8/16D 16 DIP

Optional Surface Mount Adapter Kits

MHW-COP8/44P-Q 44 PLCC to 44 PQFP

DM-COP8/28D-SO 28 DIP to 28 SOIC

DM-COP8/20D-SO 20 DIP to 20 SOIC

DM-COP8/16D-SO 16 DIP to 16 SOIC

Optional Programming Adapters

COP8-PGMA-44Q 44 PQFP

Figure 3-3 EPU-COP8 Tool Environment
DEVELOPMENT SUPPORT 3-5

The simulation capability is a very low-cost means of evaluating the general COP8
architecture. In addition, the EPU has programming capability, with added adapters, for
programming the whole COP8 product family of OTP and EPROM products. The product
includes the following features:

• Non-real-time in-circuit simulation. Program overlay memory is PC resident; in-
structions are downloaded over RS-232 as executed. Approximate performance is
20KHz.

• Includes a 40-pin DIP cable adapter. Other target packages are not supported. All
processor I/O pins are cabled to the application development environment.

• Full 32 kbyte of loadable programming space that overlays (replaces) the on-chip
ROM or EPROM. On-chip RAM and I/O blocks are used directly or re-created as
necessary.

• On-chip timer and watchdog execution are not well synchronized to the instruction
simulation.

• 100 frames of synchronous trace memory. The display can be high-level language-
source (e.g., C source), assembly, or mixed. The most recent history prior to a break
is available in the trace memory.

• Up to eight software configured break points; uses INTR instruction which is mod-
estly intrusive.

• Common look-feel debugger software across all MetaLink products — only sup-
ported features are selectable.

• Tool set integrated interactive symbolic debugger — supports both assembler
(COFF) and C Compiler (.COD) SDK linked object formats.

• Instruction-by-instruction memory/register changes displayed when in single step
operation.

• Processor-specific symbolic display of registers and bit level assignments, config-
ured from master model file.

• Halt/Idle mode notification. Restart requires special handling.

• Programming menu supports full product line of programmable OTP and EPROM
COP8 products. Only a 40 ZIF socket is available on the EPU unit. Adapters are
available for other part package configurations.

• Integral wall mount power supply provides 5V and develops the required VPP to
program parts.

• Includes a copy of COP8-DEV-IBMA assembler, linker SDK.
3-6 DEVELOPMENT SUPPORT

3.4.1 Getting Started With the EPU

Installing the EPU Software

You must have at least 1700 kilobytes of free disk space on your PC to install the EPU
host software. To install this software type the following from the DOS command line:

C:\>a:\install a: c: \epu-cop8 or

C:\>x:\install (Where x is either A or B)

The install function will prompt for paths.

Installing the Assembler Software

Place the COP8-DEV-IBMA disk into a floppy drive. Enter:

C:\>x:\install (Where x is either A or B)

Install will prompt for the drives letter of the source drive. Enter if other than a:. It will
then prompt for the directory to install the files. If other than c:\cop enter the correct
path. After confirming there is room for the files, INSTALL copies them to the
installation directory.

Pay particular attention to the notes on editing your CONFIG.SYS and AUTOEXEC.BAT
files. You must properl.y set up your PATH and environment variables. If you need to
redisplay the notes, enter TYPE ASMREAD.ME

Installing the Hardware

Attach the serial cable provided to either COM1 or COM2 of the PC and connect the other
end to the EPU. Plug in the AC adapter provided into the AC outlet. Connect the output
of the adapter to the DC jack provided on the EPU. In order to observe the I/Os the target
cable may be plugged into the header on the EPU. CAUTION: Failure to remove the
conductive foam from the target cable may result in improper operation of the unit.

Assembling and Running a Program on the EPU

Assume that the EPU and Assembler software have been installed in path: c:\epu-cop8\.
Then use the following to assemble a program.

To assemble a program. The various flags are explained in the COP8 Assembler/Linker/
Librarian Users Manual.

C:\EPU-COP8>asmcop /1 /sy sample /PW=132

To link the program

C:\EPU-COP8>lncop sample /fo=h

To load it into the EPU

C:\EPU-COP8>epu888gg sample
DEVELOPMENT SUPPORT 3-7

Programming a Sample Device

Ensure that the jumper block is NOT installed on the EPU board at J4 - this conditions the
programming socket pins for the COP8SAx algorithm. The sample devices shipped with
the EPU are 40-pin DIP packages; the EPU will program all COP8SAx DIP packages,
directly. Other packages require a programming adaptor. To enable the programming
algorithm, start the EPU software and select the MISC menu box. The pop-down menu can
then be used to start the programming functions. The memory used by the EPU simulation
function is the same as the memory used to contain the code for programming - its easy to
develop code, debug and prove correctness, then program a sample part for hardware
testing.

EPU Order-Information

3.5 COP8 ASSEMBLER/LINKER SOFTWARE DEVELOPMENT TOOL KIT

National Semiconductor offers a relocatable COP8 macro cross assembler, linker,
librarian, and utility software development tool kit. Features are summarized as follows:

• Basic and Feature Family instruction set by "device" type.

• Nested macro capability.

• Extensive set of assembler directives.

• Supported on PC/DOS platform.

• Generates National standard COFF output files.

• Integrated Linker and Librarian.

• Integrated utilities to generate ROM code file outputs.

• DUMPCOFF utility.

This product is integrated as a part of MetaLink tools as a development kit, fully
supported by the MetaLink debugger. It may be ordered separately or bundled with the
MetaLink products at no additional cost.

Evaluation Programming Unit

COP8SA-EPU Evaluation Programming Unit with debugger and programmer
control software with 40 pin ZIF programming socket.

Optional Programming Adapters

COP8-PGMA-44P-Q 44 PLCC & 44 PQFP

COP8-PGMA-28 SO 28, 20 and 16 SOIC

COP8-PGMA-878x COP8782, COP8781, COP8780
3-8 DEVELOPMENT SUPPORT

Assembler/Linker Order-Information

3.6 COP8 C COMPILER

A C Compiler is developed and marketed by Byte Craft Limited. The COP8C compiler is
a fully integrated development tool specifically designed to support the compact
embedded configuration of the COP8 family of products.

Features are summarized as follows:

• ANSI C with some restrictions and extensions that optimize development for the
COP8 embedded application.

• BITS data type extension. Register declaration #pragma with direct bit level defi-
nitions.

• C language support for interrupt routines.

• Expert system, rule-based code generation and optimization.

• Performs consistency checks against the architectural definitions of the target
COP8 device.

• Generates program memory code.

• Supports linking of compiled object or COP8 assembled object formats.

• Global optimization of linked code.

• Symbolic debug load format fully source-level supported by the MetaLink debug-
ger.

3.7 INDUSTRY WIDE OTP / EPROM PROGRAMMING SUPPORT

Programming support, in addition to the MetaLink development tools, is provided by a
full range of independent approved vendors to meet the needs from the engineering
laboratory to full production.

Assembler SDK:

COP8-DEV-IBMA Assembler SDK on installable 3.5” PC®/DOS floppy disk drive
format. Periodic upgrades and most recent version is available on
National’s BBS and the Internet.
DEVELOPMENT SUPPORT 3-9

Approved List:

Manufacturer North/South
America Europe Asia/Japan

BP Microsystems
(USA)
www.bpmicro.com
sales@bpmicro.com

US: Houston, TX
800-225-2102
713-688-4600
fax: 713-688-0920
bbx: 713-688-9283

GER: Penzberg (HT Eurep):
88-56-932616
fax: 88-56-932624
UK: North Ants
(Direct Insight):
1280-700-262
fax: 1280-700-577

HK: (Tektron):
2388-0629
fax: 2780-5871
TAI: Taipei (Jeritronics):
2-585-1636
fax: 2-586-4736

Data I/O
(USA)
www.data-io.com
sales@data-io.com
techhelp@data-io.com

US: Redmond, WA
800-426-1045
206-881-6444
fax: 206-882-1043
bbs: 206-882-3211
CAN: 905-678-0761
fax: 905-678-7306

UK: Wokingham, Berks
(0) 734-440011
fax: (0) 734-448700
GER: Graefelfing
fax: (0) 89-8585810

JAP: Tokyo
3-3779-2161
fax: 3-3779-2203
ASIA: Rest of World
Contact USA:
206-867-6919
fax: 206-882-1043

HI - LO
(Taiwan)
www.hilosystems.com.tw

US: Fremont, CA
510-623-8860
bbs: 510-623-0430

SWZ: Schwerzenbach
1-825-5777
fax: 1-825-5661
SWD: Frolunda, 9
31-49-250
fax: 31-491215
UK: Arkley, Barnet, Herts.
181-441-3890
fax: 181-441-1843
GER: Detmold
5232-8131
fax: 5232-86197
FRA: Epinay sur seine
1-48418036
fax: 1-48410223
ITA: Bologna
51-532119
fax: 51-601-0076

TAI: Taipei
2-764-0215
fax: 2-756-6403
bbs: 2-769-0881
hilosys@fit.ivnet.com.tw

ICE Technology
(UK)
www.icetech.com

US: Henderson, NC
800-624-8949
919-693-0679
fax: 919-693-0681

UK: Penistone, S.York
(0) 1226-767404
fax: (0) 1226-370434
bbs: (0) 1226-761181
sales@icetech.com
GER: Magnadata:
60-82-742-1515; 60-82-3448

JAP: Tokyo
3-5386-5501
fax: 3-5386-5503
HK: 2891-3673
fax: 2834-9748
SG: 483-1691
fax: 483-1692

MetaLink
(USA)

US: Chandler, AZ
800-638-2423
602-926-0797
fax: 602-926-1198

GER: (Kirchseeon)
80-91-5696-0
fax: 80-91-2386

HK: (National)
2737-1600
fax: 2736-9960

Needhams
(USA)

US: Sacramento, CA
916-924-8037
fax: 916-924-8065

Contact USA Contact USA
3-10 DEVELOPMENT SUPPORT

3.8 AVAILABLE LITERATURE

For more information, please see the COP8 Basic Family User's Manual, Literature
Number 620895, COP8 Feature Family User's Manual, Literature Number 620897 and
National's Family of 8-bit Microcontrollers COP8 Selection Guide, Literature Number
630006.

3.9 DIAL-A-HELPER SERVICE

Dial-A-Helper is a service provided by the Microcontroller Applications group. The Dial-
A-Helper is an Electronic Information System that may be accessed as a Bulletin Board
System (BBS) via data modem, as an FTP site on the Internet via standard FTP client
application, or as an FTP site on the Internet using a standard Internet browser such as
Netscape or Mosaic.

The Dial-A-Helper system provides access to an automated information storage and
retrieval system. The system capabilities include a MESSAGE SECTION (electronic
mail, when accessed as a BBS) for communications to and from the Microcontroller
Applications Group and a FILE SECTION which consists of several file areas where
valuable application software and utilities can be found.

Systems General
(Taiwan)

US: Milpitas, CA
800-967-4776
408-263-6667
fax: 408-262-9220
bbs: 408-262-6438

FRA: (Micropross):
20-151133
fax: 20-151166

TAI: Taipei
2-918-3005
fax: 2-911-1283
bbs: 2-918-1076
JAP: Tokyo
3-3441-1510
fax: 3-3441-7185

Xeltek
(USA)
www.xeltek.com
info@xeltek.com

US: Sunnyvale, CA
408-524-1929
fax: 408-245-7084
bbs: 408-245-7082

GER: 20-41-684758 SING:
(Test & Measurement)
280-4611
fax: 280-4677

Manufacturer North/South
America Europe Asia/Japan
DEVELOPMENT SUPPORT 3-11

3.10 DIAL-A-HELPER BBS VIA A STANDARD MODEM

Dial-A-Helper via FTP

Dial-A-Helper via a WorldWide Web Browser

3.11 NATIONAL SEMICONDUCTOR ON THE WORLDWIDE WEB

See us on the WorldWide Web at: http://www.national.com

3.12 CUSTOMER RESPONSE CENTER

Complete product information and technical support is available from National's
customer response centers. Please see back cover for telephone number in your area.

Modem: CANADA/U.S.: (800) NSC-MICRO
(800) 672-6427

EUROPE: (+49) 0-814-135 13 32

Baud: 14.4k

Set-Up: Length: 8-Bit

Parity: None

Stop Bit: 1

Operation: 24 Hours, 7 Days

ftp nscmicro.nsc.com

user: anonymous

password: username@yourhost.site.domain

ftp://nscmicro.nsc.com
3-12 DEVELOPMENT SUPPORT

Chapter 4

COP8SAx7 APPLICATION IDEAS

This chapter describes several application examples using the COP8SAx7 family of
microcontrollers. Design examples often include block diagrams and/or assembly code.
Certain hardware design considerations are also presented.

Topics covered in this chapter include the following:

TESTING A REMOTE NORMALLY OPEN SWITCH FOR CONNECTION

MICROWIRE/PLUS INTERFACE

TIMER APPLICATIONS

TIMER PWM APPLICATIONS

TRIAC CONTROL

EXTERNAL POWER WAKEUP CIRCUIT

BATTERY-POWERED WEIGHT MEASUREMENT

ZERO CROSS DETECTION

INDUSTRIAL TIMER

PROGRAMMING EXAMPLES

COP8SAA7 ELECTRONIC KEY APPLICATIONS

COP8SAX7 DIRECT LED DISPLAY DRIVE APPLICATION

CORDLESS PHONE APPLICATION

COP8SAC7 BASED AUTOMATED SECURITY/MONITORING APPLICATIONS

COP8SAC7 KEYBOARD APPLICATIONS

COP8SAA7 CLOSED LOOP TEMPERATURE CONTROL APPLICATIONS

AUTOMATIC WASHING MACHINE

AIR CONDITIONER CONTROLLER
COP8SAx7 APPLICATION IDEAS 4-1

4.1 TESTING A REMOTE NORMALLY OPEN SWITCH FOR CONNECTION

Some applications using remote normally open switches for sensors call for knowing
whether the sensor is connected. Usually one cannot tell the difference between a
normally open switch and a disconnected one. However, a 10k resistor is connected across
the switch, one can measure the resistance to determine whether the switch is connected.
Usually this requires a linear device such as an additional transistor.

If the switch is connected, a programmable I/O port on a microcontroller that can be
placed in the TRI-STATE mode can detect the presence of the 10k resistor without
additional parts. The following shows an example of this technique using a COP8SAx7.

Figure 4-1 Test Circuit

Figure 4-2 Flow Chart

J1 T0

S110K1

COP8SAx7 CAN DETECT:
S1 OPEN
S1 CLOSED
J1 DISCONNECTED

G0 Pin on COP8SAx7

CHECK
SW

SET PIN HIGH

PIN
HIGH?

CONFIGURE PORT
AS INPUT WITH
WEAK PULLUP

OPEN
SWITCH

J1
DISCONNECTED CLOSED

SWITCH

RET

PIN
HIGH?

YES

NO

YES

NO
4-2 COP8SAx7 APPLICATION IDEAS

GDATA = 0D4

GCONF = 0D5

GPINS = 0D6

DPORT = 0DC

CHECK: SBIT 0, GCONF ; Set G0 High

SBIT 0, GDATA

IFBIT 0, GPINS ; Test G0. High?

JP $1 ; Yes

SCLS: NOP ; No, close switch

SBIT 0, DPORT

RBIT 1, DPORT

JP CHECK

$1 RBIT 0, GCONF ; Configure G0 as input with weak pullup

IFBIT 0, GPINS ; Test Go. High?

JP OPEN ; Yes J1 disconnected

NORM: NOP ; No, open switch

SBIT 0, DPORT

RBIT 1, DPORT

JP CHECK

OPEN: NOP

RBIT 0, DPORT

SBIT 1, DPORT

JP CHECK
COP8SAx7 APPLICATION IDEAS 4-3

4.2 MICROWIRE/PLUS INTERFACE

A large number of off-the-shelf devices are directly compatible with the MICROWIRE/
PLUS interface. This allows direct interface of the COP888 microcontrollers with a large
number of peripheral devices. The following sections provide examples of the
MICROWIRE/PLUS interface. These examples include a master/slave mode protocol,
code for a continuous mode of operation, code for a fast burst mode of operation, and a
COP888CL to an NMC93C06 interface.

4.2.1 MICROWIRE/PLUS Master/Slave Protocol

This section gives an example of a MICROWIRE/PLUS master/slave protocol, the slave
mode operating procedure for the example protocol, and a timing illustration of the
example protocol.

Master/Slave Protocol:

1. CS from the master device is connected to G0 of the slave device. An active-
low level on the CS line causes the slave to interrupt.

2. From the high-to-low transition on the CS line, there is no data transfer on
the MICROWIRE interface until the setup time T has elapsed (see
Figure 4-3).

3. The master initiates data transfer on the MICROWIRE interface by turning
on the SK clock.

4. A series of data transfers takes place between the master and slave devices.

5. The master pulls the CS line high to end the MICROWIRE operation. The
slave device returns to normal mode of operation.

Figure 4-3 MICROWIRE/PLUS Sample Protocol Timing

cop8_uwirep_proto

CS

T

SK

8
CLKS

BUSY

t

8
CLKS

8
CLKS

8
CLKS

8
CLKS

8
CLKS

cop8_uwirep_proto

CS

T

SK

8
CLKS

BUSY

t

8
CLKS

8
CLKS

8
CLKS

8
CLKS

8
CLKS
4-4 COP8SAx7 APPLICATION IDEAS

Slave Mode Operating Procedure (for the previous protocol):

1. Set the MSEL bit in the CNTRL register to enable MICROWIRE; G0 and G5
are configured as inputs and G4 as an output. Reset bit 6 of the Port G con-
figuration register to select Standard SK Clocking mode.

2. Normal mode of operation until interrupted by CS going low.

3. Set the BUSY flag and load SIOR register with the data to be sent out on S0.
(The shift register shifts eight bits of data from S0 at the high-order end of
the shift register. Concurrently, eight new bits of data from SI are loaded into
the low-order end of the shift register.)

4. Wait for the BUSY flag to be reset. (The BUSY flag automatically resets after
8 bits of data have been shifted.)

5. If data is being read in, the contents of the SIO register are saved.

6. The prearranged set of data transfers are performed.

7. Repeat steps 3 through 6. The user must ensure step 3 is performed within t-
time (refer to Figure 4-3) as agreed upon in the protocol.

4.2.2 NM93C06-COP8SAx7 Interface

This example shows the COP8SAx7 interface to a NM93C06, a 256-bit E2PROM, using
the MICROWIRE/PLUS interface. The pin connections for the interface is shown in
Figure 4-4. Some notes on the NM93C06 interface requirements are:

1. The SK clock frequency should be less than 250 KHz. The SK clock should be
configured for standard SK mode.

Figure 4-4 NM93C06-COP8SAx7 Interface

VCC

CKI

CKO

COP8SAx7

GND

SO

SI

SK

GO

DI

DO

SK
CS

NM93C06

VCC

GND
COP8SAx7 APPLICATION IDEAS 4-5

2. The CS low period following an Erase/Write instruction must not exceed
30 ms maximum. It should be set at the typical or minimum specification of
10 ms.

3. The start bit on DI must be programmed as a “0” to “1” transition following a
CS enable (“0” to “1”) when executing any instruction. One CS enable transi-
tion can execute only one instruction.

4. In the read mode, following an instruction and data train, the DI is a “don’t
care” while the data is being output for the next 17 bits or clocks. The same
is true for other instructions after the instruction and data have been fed in.

5. The data out train starts with a dummy bit 0 and is terminated by chip dese-
lect. Any extra SK cycle after 16 bits is ignored. If CS is held on after all 16 of
the data bits have been output, the DO will output the state of DI until an-
other CS low to high transition starts a new instruction cycle.

6. After a read cycle, the CS must be brought low for one SK clock cycle before
another instruction cycle starts.

The following table describes the instruction set of the NM93C06. In the table A3A2A1A0
corresponds to one of the sixteen 16-bit registers.

All commands and data are shifted in/out on the rising edge of the SK clock. All
instructions are initiated by a low-to-high transition on CS followed by a low-to-high
transition on DI.

A detailed explanation of the NMC93C06 E2PROM timing, instruction set, and other
considerations can be found in the data sheet. A source listing of the software used to
interface the NM93C06 with the COP8SAx7 is provided below.

Commands Start Bit Opcode Address Comments

READ 1 0000 A3A2A1A0 Read Register 0–15

WRITE 1 1000 A3A2A1A0 Write Register 0–15

ERASE 1 0100 A3A2A1A0 Erase Register 0–15

EWEN 1 1100 0001 Write/Erase Enable

EWDS 1 1100 0010 Write/Erase Disable

WRAL 1 1100 0100 Write All Registers

ERAL 1 1100 0101 Erase All Registers
4-6 COP8SAx7 APPLICATION IDEAS

;This program provides in the form of subroutines, the ability to erase,

;enable, disable, read and write to the NMC93C06 EEPROM.

;The interface consists of four
;lines: The G0 (chip select line), G4 (serial out SO), G5 (serial clock SK), and
;G6 (serial in SI).
;

;This routine erases the memory location pointed to by the address contained in the
;location “ADRESS.” The lower nibble of “ADRESS” contains the NM93C06 register
;address and the upper nibble should be set to zero.
;

;This routine enables programming of the NM93C06. Programming must be preceded
;once by a programming enable (EWEN).
;

;This routine disables programming of the NM93C06
;

.INCLD COP888.INC
.SECT NMC, RAM

NMCMEM: .DSB 5
SNDBUF = NMCMEM ;Contains the command byte to be written NM93C06
RDATL = NMCMEM+1 ;Lower byte of NM93C06 register data read
RDATH = NMCMEM+2 ;Upper byte of NM93C06 register data read
WDATL = NMCMEM+3 ;Lower byte of data to be written to NM93C06 register
WDATH = NMCMEM+4 ;Upper byte of data to be written to NM93C06 register

ADRESS: .DSB 1 ;Lower 4-bits of this location contain the address of
;the NMC93C06 register to read/write

FLAGS: .DSB 1 ;Used for setting up flags
;Flag valueAction
;00Erase, enable, disable, erase all
;01Read contents of NMC93C06 register
;03Write to NMC93C06 register
;OthersIllegal combination

.SECT CNT, REG
DLYH: .DSB 1 ;Delay counter register
DLYL: .DSB 1 ;Delay counter register

; Initialization
;

.SECT NMCODE, ROM
LD PORTGC,#031 ;Setup G0, G4, G5 as outputs and

;select standard SK mode
LD PORTGD,#00 ;Initialize G data reg to zero
LD CNTRL,#08 ;Enable MSEL, select MW rate of 2tc
LD B,#PSW
LD X,#SIOR

ERASE: LD A,ADRESS
OR A,#0C0
X A,SNDBUF
LD FLAGS,#0
JSR INIT
RET

EWEN: LD SNDBUF,#030
LD FLAGS,#0
JSR INIT
RET

EWDS: LD SNDBUF,#0
LD FLAGS,#0
JSR INIT
RET
COP8SAx7 APPLICATION IDEAS 4-7

;This routine erases all registers of the NM93C06

;

;This routine reads the contents of a NM93C06 register. The NM93C06 address is
;specified in the lower nibble of location “ADRESS.” The upper nibble should be set
;to zero. The 16-bit contents of the NM93C06 register are stored in RDATL and RDATH.
;

;This routine writes a 16-bit value stored in WDATL and WDATH to the NM93C06 register
;whose address is contained in the lower nibble of the location “ADRESS.” The upper
;nibble of address location should be set to zero.
;

;This routine sends out the start bit and the command byte. It also deciphers the
;contents of the flag location and takes a decision regarding write, read or return
;to the calling routine.
;

ERAL: LD SNDBUF,#020
LD FLAGS,#0
JSR INIT
RET

READ: LD A,ADRESS
OR A,#080
X A,SNDBUF
LD FLAGS,#1
JSR INIT
RET

WRITE: LD A,ADRESS
OR A,#040
X A,SNDBUF
LD FLAGS,#3
JSR INIT
RET

INIT: SBIT 0,PORTGD ;Set chip select high
LD SIOR,#001 ;Load SIOR with start bit
SBIT BUSY,[B] ;Send out the start bit

PUNT1: IFBIT BUSY,[B]
JP PUNT1
LD A,SNDBUF
X A,[X] ;Load SIOR with command byte
SBIT BUSY,[B] ;Send out command byte

PUNT2: IFBIT BUSY,[B]
JP PUNT2
IFBIT 0,FLAGS ;Any further processing?
JP NOTDON ;Yes
RBIT 0,PORTGD ;No, reset CS and return
RET

;
NOTDON: IFBIT 1,FLAGS ;Read or write?

JP WR494 ;Jump to write routine
LD SIOR,#000 ;No, read NM93C06
SBIT BUSY,PSW ;Dummy clock to read zero
RBIT BUSY,[B]
SBIT BUSY,[B]

PUNT3: IFBIT BUSY,[B]
JP PUNT3
X A,[X]
SBIT BUSY,[B]
X A,RDATH

PUNT4: IFBIT BUSY,[B]
JP PUNT4
LD A,[X]
X A,RDATL
RBIT 0,PORTGD
RET

;
WR494: LD A,WDATH
4-8 COP8SAx7 APPLICATION IDEAS

;Routine to generate delay for write

;

X A,[X]
SBIT BUSY,[B]

PUNT5: IFBIT BUSY,[B]
JP PUNT5
LD A,WDATL
X A,[X]
SBIT BUSY,[B]

PUNT6: IFBIT BUSY,[B]
JP PUNT6
RBIT 0,PORTGD
JSR TOUT
RET

TOUT: LD DLYH,#00A
WAIT: LD DLYL,#0FF
WAIT1: DRSZ DLYL

JP WAIT1
DRSZ DLYH
JP WAIT
RET
.END
COP8SAx7 APPLICATION IDEAS 4-9

4.3 TIMER APPLICATIONS

This section describes several applications that use the 16-bit on-chip timer: speed
measurement with the Input Capture mode and an external event counter with the
External Event Counter mode.

4.4 TIMER PWM APPLICATIONS

The 16-bit timer can be used in any of the following applications:

4.4.1 Rudimentary D-A Converter

The first example illustrates how a rudimentary D-A converter may be built by using the
timer. By controlling the values in the register the user can control the frequency and
duty cycle of the resultant waveform. The voltage at the capacitor is directly proportional
to the duty cycle. Increasing the TON value while holding the frequency constant serves
to increase the analog voltage, whereas increasing the TOFF value while holding the
frequency constant serves to decrease the analog voltage.

4.4.2 PWM Motor Control

In the second example, the PWM output provides servo control for the DC motor. By
varying the ON and OFF times (varying duty cycle) and varying the cycle time, the DC
motor speed is controlled.

Figure 4-5 Timer PWM Applications

COP888

TRIAC
Interface

Driver
Load

Feedback

120Vac
60 Hz

TRIAC
Control

D.C. Motor

C

Analog Signal

TOFF

PWM
Output

PWM

PWM

PWM

R

D/A Converter

TON

COP8SAx7
4-10 COP8SAx7 APPLICATION IDEAS

The duty cycle of the PWM output controls speed of a DC motor. A high output (100%
Duty Cycle) causes the motor to run at maximum speed, while a low output (0% Duty
Cycle) turns the motor off.

PWM Motor Control Code

UPTML0 = 020

UPTMHI = 021

DNTMLO = 022

DNTMHI = 023

T1L = 0C0

T1H = 0C1

T1RALO = 0C2

T1RAHI = 0C3

T1RBLO = 0C4

T1RBHI = 0C5

T1CNTRL = 0C6

PORTLD = 0D0

PORTLC = 0D1

INITIALIZATION: BYTES/CYCLES

T1INIT: LD PORTLC,#0FF 3/3

LD PORTLD,#0 3/3

LD A, DNTMLO 2/3

X A, T1L 2/3

LD A, DNTMHI 2/3

X A, T1H 2/3

JSR UPDATE 2/5

16/23

11/46

TOTAL INITIALIZATION TIME = 27/69

CHANGE:

PWMCHG: _____ Set up times for new Duty

_____ Cycle in UPTMLO, UPTMHI,

_____ DNTMLO, DNTMHI

LD T@CNTRL, #0B5 3/3

INTERRUPT:

. = 0FF (Interrupt Address)

INTR: VIS 1/7

T2INTR: JSR UPDATE 2/5

RETI 1/5

4/17

Both the T1RA and T1RB Timer Interrupts should be
programmed to vector to T1TNTR with the VIS instruction.
COP8SAx7 APPLICATION IDEAS 4-11

4.4.3 AC Motor TRIAC Control

The third example is a dimmer application or AC motor control application.

UPDATE SUBROUTINE: Bytes/Cycles

UPDATE: LD B,#T1RALO 2/2
LD X,#UPTMLO 2/3

UPDLUP: LD A,[X+] 1/3
X A,[B+] 1/2
IFBNE #6 1/1
JP UPDLUP 1/3-1
LD [B],#0B0 2/2
RET 1/5

11/46

4/17
11/46

TOTAL INTERRUPT TIME = 15/63
TOTAL BYTES = 16 +3 + +15 = 34 +

INTIT/CHANGE/INTR

Figure 4-6 PWM Motor Control

PWM
Out

E

12V

E

P P P P P
Period

PWM Out
Timer

Duty
Cycle 70% 60% 50% 40% 30% 20%
4-12 COP8SAx7 APPLICATION IDEAS

4.4.4 Timer Capture Example

The Timer Input Capture Mode can be used to measure the time between events. The
simple block diagram in Figure 4-7 shows how the COP8SAx7 can be used to measure
motor speed based on the time required for one revolution of the wheel. A magnetic
sensor is used to produce a pulse for each revolution of the wheel.

In the capture mode of operation, the timer counts down at the instruction cycle rate. In
this application, the timer T1 is set up to generate an interrupt on a T1A positive edge
transition. The timer is initialized to 0FFFF Hex and begins counting down. An edge
transition on the T1A input pin of the timer causes the current timer value to be copied
into the R1A register. In addition, it sets the timer interrupt pending flag, which causes
a program branch to memory location 0FF Hex. The VIS instruction vectors the program
to interrupt service routine for the timer. The interrupt service routine resets the
T1PNDA pending flag. It then reads the contents of R1A and stores it in RAM for later
processing. An RETI instruction is used to return to normal program execution and re-
enable subsequent interrupts (by setting the GIE bit).

On the next rising edge transition on T1A, the program returns to the interrupt service
routine. The value in R1A is read again, and compared with the previously read value.
The difference between the two captured values, multiplied by the instruction cycle time,
gives the time for one revolution. This is easily converted to a frequency. The frequency
may be displayed on a display unit using the MICROWIRE/PLUS interface and a display
driver.

NOTE: The T1B input may be used simultaneously to measure the time between
different events.
COP8SAx7 APPLICATION IDEAS 4-13

Figure 4-7 Timer Capture Application

Select Rising Edge

Wait For Rising Edge

Store Captured Data

Wait For Next Rising Edge

Store New Captured Data

Process Data

T1A

TIMER
CAPTURE

INPUT

COP8SAx7
MICROWIRE/PLUS

DISPLAY
DISPLAY

DRIVER
4-14 COP8SAx7 APPLICATION IDEAS

An example of the code that can be used for this application is provided below.

4.4.5 External Event Counter Example

This mode of operation is very similar to the PWM Mode of operation. The only difference
is that the timer is clocked from an external source. This mode provides the ability to
perform control of a system based on counting a predetermined number of external
events, such as searching for the nth sector on a disk or testing every nth part on an
assembly line. The code for this example is provided below.

.INCLD COP888XX.INC

.SECT TMR, ROM
;TIMER T1 CONFIGURATION

LD PORTGC,#00 ;Configure G3/T1A as input
LD PORTGD,#08 ;Weak pull-up on G3
LD TMR1L0,#0FF ;Timer lower byte initialization
LD TMR1HI,#0FF ;Timer upper byte initialization
LD ICNTRL,#00 ;Disable T1B interrupt
LD CNTRL,#0C0 ;Timer capture mode, positive edge on T1A
LD PSW,#011 ;Enable T1A and global interrupts

SELF: JP SELF ;Wait for capture

.SECT INTERRUPT,ROM, ABS=0FF ;TIMER INTERRUPT HANDLING ROUTINE
;Set location counter to 00FF Hex

VIS ;Vector to appropriate interrupt routine

;TIMER SERVICE ROUTINE
T1SERV: IFBIT T1C0,CNTRL ;If T1 underflow

JP UNDFLW ;then handle timer underflow
RBIT T1PNDA,PSW ;else Reset T1PNDA pending flag
. ;(Process Timer Capture)
. ;(Process Timer Capture)
RETI ;Return from interrupt

UNDFLW: RBIT T1C0,CNTRL ;Reset timer underflow pending flag
. ;(Process Timer Underflow)
RETI ;Return from interrupt

;ERROR ROUTINE (NO INTERRUPT PENDING)
ERROR: RETI ;Return from interrupt

.SECT INTTABLE, ROM, ABS=01E0 ;VECTOR TABLE
;Set location counter to 01E0 Hex

.ADDRW ERROR ;Store Error routine vector address
... ;{Store vector addresses 01E2 - 01F5 Hex}

;Set location counter to 01F6 Hex
.ADDRW T1SERV ;Store T1PNDA routine vector address

... ;{Store vector addresses 01F8 - 01FF Hex}
.ENDSECT

.INCLD COP888XX.INC

.SECT EEC, ROM
;TIMER T1 CONFIGURATION

RBIT 3,PORTGC ;Configure G3/T1A as Hi-Z input
RBIT 3,PORTGD ;
LD CNTRL,#00 ;Select timer T1 as external event counter
LD ICNTRL,#00 ;Disable T1B interrupt
LD TMR1LO,#COUNT0 ;Timer T1 lower byte
LD TMR1HI,#COUNT1 ;Timer T1 upper byte
LD T1RALO,#Count0 ;Initialize Auto-reload R1A lower byte
LD T1RAHI,#Count1 ;Initialize Auto-reload R1A upper byte
LD T1RBLO,#Count0 ;Initialize Auto-reload R1B lower byte
LD T1RBHI,#Count1 ;Initialize Auto-reload R1B upper byte
SBIT T1C0,CNTRL ;Start timer
LD PSW,#011 ;Enable timer T1A and global interrupts

SELF: JP SELF ;Wait for the n-th count
COP8SAx7 APPLICATION IDEAS 4-15

.SECT INTERRUPT, ROM, ABS=0FF ;TIMER INTERRUPT HANDLING ROUTINE
;Set location counter to 00FF Hex

VIS ;Vector to appropriate interrupt routine

;TIMER SERVICE ROUTINE
T1SERV: RBIT T1PNDA,PSW ;Reset T1A pending flag

RBIT T1C0,PSW ;Stop timer
. ;{Process timer interrupt}
. ;{Process timer interrupt}
SBIT T1C0,PSW ;Start timer
RETI ;Return from interrupt

;ERROR ROUTINE (NO INTERRUPT PENDING)
Error: RETI ;Return from interrupt

.SECT INTTABLE, ROM, ABS=01E0 ;VECTOR TABLE
;Set location counter to 01E0 Hex

.ADDRW ERROR ;Store Error routine vector address
... ;{Store vector addresses 01E2 - 01F5 Hex}

;Set location counter to 01F6 Hex
.ADDRW T1SERV ;Store T1PNDA routine vector address

... ;{Store vector addresses 01F8 - 01FF Hex}
.ENDSECT
4-16 COP8SAx7 APPLICATION IDEAS

4.5 TRIAC CONTROL

The COP8SAx7 family of devices provide the computational ability and speed that is
suitable for intelligently managing power control. In order to control a triac on a cyclic
basis, an accurate time base must be established. This may be in the form of an AC 60Hz
sync pulse generated by a zero voltage detection circuit or a simple real-time clock. The
COP8SAx7 family is suited to accommodate either of these time base schemes while
accomplishing other tasks.

Zero voltage detection is the most useful scheme in AC power control because it affords
a real-time clock base as well as a reference point in the AC waveform. With this
information it is possible to minimize RFI by initiating power-on operations near the AC
line voltage zero crossing. It is also possible to fire the triac only a portion of the cycle,
thus utilizing conduction angle manipulation. This is useful in both motor control and
light-intensity control.

COP8SAx7 program is capable of compensating for noisy or semi-accurate zero voltage
detection circuits. This is accomplished by using delays and debounce algorithms in the
software. With a given reference point in the AC waveform, it becomes easy to divide the
waveform to efficiently allocate processing time.

These techniques are demonstrated in the following code listing. This application
example is based on the half cycle approach of AC power for triac light intensity control.
The code intensifies and deintensifies a lamp under program control.

This program example is not intended to be a final functional program. It is a general-
purpose light intensifying/deintensifying routine which can be modified for a light
dimmer application. The delay routines are based on a 10 MHz crystal clock (1 µs
instruction cycle). The COP8SAx7’s 16-bit timer can be used for timing the half cycle of
an AC power line, and the timer can be started or stopped under software control. Timer
T1 is a read/write memory mapped counter with two associated 16-bit auto-reload
registers. In this example, only one reload register is used because the timer is stopped
after each timer reload from R1A. Zero crossings of the 60 Hz line are detected and
software debounced to initiate each half cycle, so the triac is serviced on every half cycle
of the power line. This program divides the half cycle of a 60 Hz AC power line into 16
levels. Intensity is varied by increasing or decreasing the conduction angle by firing the
triac at various levels. Each level is a fixed time which is loaded into the timer. Once a
true zero cross is detected, the timer starts and the triac is serviced.

A level/sublevel approach is utilized to vary the conduction angle and to provide a
prolonged intensifying period. The maximum intensity reached is at the maximum
conduction angle (level), and the time required to get to that level is loaded into the timer
in increments. Once a level has been specified, the remaining time in the half cycle is
then divided into sublevels. The sublevels are increased in steps to the maximum level
and the triac is fired 16 times per sublevel, thus creating the intensity time base. For
deintensifying, the sublevels are decremented.
COP8SAx7 APPLICATION IDEAS 4-17

;This is a general purpose light dimmer program
;it uses a 10 MHz clock (1 us instruction cycle time)

.INCLD COP888.INC

.TITLE TIMER, ‘TIMER APPLICATION EXAMPLE’

.SECT TRIAC, REG ;INITIALIZATIONS
TEMP: .DSB 1 ;Temporary storage location
LEVEL: .DSB 1 ;Level storage location
FIN: .DSB 1 ;Fire number storage location
REG1: .DSB 1 ;Register1 definition
.SECT MAIN,ROM
LD FIN,#000 ;Set fire number to zero
LD LEVEL,#040 ;Set sublevel to 40 Hex
LD PORTGC,#000 ;Configure Port G as all inputs
LD PORTGD,#004 ;Weak-up on pin G2
LD CNTRL,#080 ;Configure Timer T1 in autoreload mode
LD PSW,#000 ;Disable all interrupts
LD TMR1LO,#07D ;Initialize T1 and T1RA with 0.5mS delay
LD TMR1HI,#000 ;
LD T1RALO,#0EB ;
LD T1RAHI,#003 ;

;POWER UP SYNCHRONIZATION OR RESET SYNCH.
BEG: IFBIT 2,PORTGP ;If Bit G2 = 1

JP HI ;then re-check bit
JP BEG ;else keep looping to synch up 60Hz

HI: IFBIT 2,PORTGP ;If Bit G2 is still 1
JP HI ;then wait until it is zero

;else test for true zero cross

;TEST FOR TRUE ZERO CROSS (Valid Transition)
;Debounce for zero cross detection

JSR DELAY ;When Bit G2 = 0, perform debounce delay
IFBIT 2,PORTGP ;If Bit G2 is high after the delay
JP BEG ;then false alarm, go back to beginning

DOIT: JMP INIT ;else go start program
;Debounce 0 to 1

LO: IFBIT 2,PORTGP ;If Bit G2 is high
JP D1 ;then go perform debounce delay
JP LO ;else loop back and wait for a 1

D1: JSR DELAY ;Debounce delay (clean transition)
IFBIT 2,PORTGP ;If Bit G2 is still 1
JP DOIT ;then go start program
JP LO ;else false alarm, keep debouncing

;MAIN ROUTINE FOR INTENSIFY/DE-INTENSIFY
;A true zero cross has been detected

INIT: JSR TIMER ;Delay for 1ms to get to MAX
LD A,FIN ;Load accumulator with fire number
IFEQ A,#015 ;If the fire number equals 15
JP THER ;then finished firing, continue on

BEGG: INC A ;else increment fire number
X A,FIN ;Save new fire number
JP FIRE ;Keep firing

THER: LD FIN,#000 ;Reset fire number to zero
LD A,LEVEL ;Load accumulator with sublevel number
DEC A ;Decrement sublevel
X A,LEVEL ;Save new sublevel
LD A,LEVEL ;Load sublevel back into accumulator
IFEQ A,#000 ;If sublevel = MAX level
JP LP2 ;then go reset level
JP LP3 ;else go check level

LP2: LD LEVEL, #040 ;Reset level to 40 Hex
JP FIRE ;Go fire (exit)

LP3: IFBIT 5,LEVEL ;If current level is greater than 1F Hex
JSR ADD ;then MAX not yet reached, add delay
4-18 COP8SAx7 APPLICATION IDEAS

JSR SUB ;else MAX has been reached, subtract delay
NOP ;No-operation
NOP ;No-operation

;FIRE SUBROUTINE
FIRE: LD PORTD,#0FF ;Set Port D HIGH for 32uSec

X A,TEMP ;Save accumulator in temp location
CLR A ;Clear accumulator

LP6: INC A ;Increment accumulator
IFEQ A,#03 ;If accumulator equals three
JP LP5 ;then 32uSec done, continue on
JP LP6 ;else not done, keep looping

LP5: CLR A ;Clear accumulator
LD PORTD,#00 ;Set Port D low

TWO: X A,TEMP ;Restore accumulator
HI1: IFBIT 2,PORTGP ;If Bit G2 is high

JMP HI ;then go debounce from High
JMP LO ;else go debounce from Low

;DELAY SUBROUTINE
DELAY: LD REG1,#00F ;Load Reg1 with 0F Hex
LOOP: DRSZ REG1 ;Decr Reg1, If Reg1 not equal to 0

JP LOOP ;then keep looping
RET ;else return from delay routine

;DECREMENT THE TIMER BY THE DESIRED DELAY
SUB: LD A, T1RALO ;Load accumulator with value from T1RALO

SUBC A,#07D ;Subtract 7D Hex
X A,T1RALO ;Store result in T1RALO
LD A,T1RAHI ;Load accumulator with value from T1RAHI
SUBC A,#000 ;Subtract zero and borrow (if occurred)
RC ;Reset carry flag
X A,T1RAHI ;Store result in T1RAHI
RET ;Return from subtract routine

;INCREMENT THE TIMER BY THE DESIREd DELAY
ADD: LD A, T1RALO ;Load accumulator with value from T1RALO

ADC A,#07D ;Add 7D Hex
X A,T1RALO ;Store result in T1RALO
LD A,T1RAHI ;Load accumulator with value from T1RAHI
ADC A,#000 ;Add zero and carry bit
RC ;Reset carry flag
X A,T1RAHI ;Store result in T1RAHI
RETSK ;Return and skip from add routine

;TIMER Subroutine
TIMER: SBIT T1C0,CNTRL ;Start the timer
LP1: IFBIT T1PNDA,PSW ;If underflow (reload from R1A) occurred

JP LP4 ;then go stop the timer
JP LP1 ;else keep looping

LP4: RBIT T1C0,CNTRL ;Stop the timer
RBIT T1PNDA,PSW ;Reset the T1 source A pending flag
RET ;Return from timer subroutine
.END ;end of program
COP8SAx7 APPLICATION IDEAS 4-19

4.6 EXTERNAL POWER WAKEUP CIRCUIT

Power-on wakeup is a technique used in battery powered applications such as electronic
keys or digital scales to save battery power. Instead of using the HALT mode when the
application is not in use, the microcontroller device is powered off. If there is only one
input switch in the application, the implementation is simple. This switch is put in series
with the battery, providing power to the circuit when the switch is closed.

If there is more than one switch, power-on wakeup can be achieved by using an NPN
transistor and one resistor per switch as shown in Figure 4-8. Here, the circuit ground is
connected to the battery negative terminal via the NPN transistor. If the base is floating,
it will not conduct. If the base is pulled to VCC via a current-limiting resistor, it will
conduct, powering up the circuit.

An alternative technique is shown in Figure 4-9. Here the positive terminal of the
battery is connected to the VCC line via a switch, a diode and two resistors per line. If a
switch is pressed, power is applied to the VCC line. The pull-down resistors pull any ports
connected to open switches to ground. If the switch is closed, the voltage on the switch
will be VCC plus the diode voltage drop. If this potential were directly applied to the Port
L pin, the COP device would be driven outside the operating specification. Therefore,
series protection resistors are used on all Port L pins connected to the switches.

Figure 4-8 Power Wakeup Using An NPN Transistor

Vcc

Vcc

L0

L1

L2

L3

COP8SAx7

+

+

GND

Vcc
4-20 COP8SAx7 APPLICATION IDEAS

Figure 4-9 Power Wakeup Using Diodes And Resistors

L0

L1

L2

L3

Vcc

COP8SAx7

+

+

GND

Vcc
COP8SAx7 APPLICATION IDEAS 4-21

4.7 BATTERY-POWERED WEIGHT MEASUREMENT

Figure 4-9 shows the block diagram of a simple weight scale application. This
implementation of weight measurement may be used with the COP8SAx7 device which
has the Multi-input Wakeup feature. The pressure sensor circuit is based on a buffered
Wheatstone bridge arrangement. A current source and a capacitor generate the linear
ramp for the A/D conversion. A crystal oscillator is required for an accurate time base. A
50% duty cycle signal is generated for the audible tone. A 24-segment LCD display
indicates the weight to the user. Four switch inputs are used for configuring the scale.

Figure 4-10 Battery-powered Weight Measurement

BUZZER

Cref

+

HALT MODE

MULTI-INPUT

USER SWITCHES

CRYSTAL OSCILLATOR

GENERAL

16-BIT TIMER

PURPOSE

SOFTWARE

CORE

Vcc

A

WAKEUP

R

R

R+DR

Vcc Vcc

I/O

12

24 SEGMENT LCD DISPLAY
WITH 2-WAY MULTIPLEXING

TRAP

SW1

+

R

4-22 COP8SAx7 APPLICATION IDEAS

If the application is not in use, the COP8SAx7 is held in HALT mode. As soon as a weight
is applied to the system, SW1 closes and the device exits the HALT mode via a Multi-Input
Wakeup pin. The MIWU pin is then reconfigured as an output to power up the sensor
circuit, thus power remains on for a programmed period of time even when the switch is
open again. The measurement and display are then performed. After completing the
measurement and display routines, the COP8SAx7 reconfigures the sensor power pin as a
Wakeup pin, thereby disconnecting power from the sensor circuit. The device then re-
enters the HALT mode.

The 16-bit timer can be used to generate the interrupts required to refresh the LCD
display. An internal power-on reset circuit is used in this application.

4.8 ZERO CROSS DETECTION

Zero cross detection is often used in appliances connected to the AC power line. The line
frequency is a useful time base for applications such as industrial timers or irons which
switch off if not used for five minutes. Phase-controlled applications require a consistent
timing reference in phase with the line voltage.

The COP8SAx7 requires a square wave, magnitude VCC, at the same frequency as the
power line voltage, connected to a input port pin for a simple time base. For a phase-control
time base, this waveform should preferably be in phase with the line voltage, although
control is still possible if there is a predictable, constant phase lag, less than the phase lag
introduced by the load. The choice of zero cross detection circuit depends on factors such as
cost, the type of power supply used in the appliance, and the expected interference.

The zero cross detection input can either be polled by software or can be connected to the
G0 interrupt line. Polling the pin by software is the simplest technique and saves the
interrupt for another function, but has the disadvantage that the polling procedure can be
interrupted, causing inaccuracies in synchronization. Disabling the interrupt during the
polling is not always possible, as the interrupt may be required for the implementation of
other features.

Connecting the zero cross detection input to the external interrupt pin guarantees
synchronization. It has the additional advantage that a regular interrupt is generated,
which could interrupt the processor out of a fault condition. The interrupt routine only
needs to test the integrity of the stack to determine whether such a fault has occurred.

The following software example shows how software polling of the zero cross line is
implemented.

ZCD:
LD B,#STATUS ;Save bytes using the B pointer
IFBIT SYNCHRO,[B] ;If SYNCHRO is 1, wait for a rising edge
JP WLOHI ;otherwise wait for a falling edge.

WHILO: IFBIT 3,PORTLP ;Wait for falling edge
JP WHILO
SBIT SYNCHRO,[B] ;SYNCHRO = 1, so wait for rising edge
JP ENDZCD ;next time.

WLOHI: IFBIT 3,PORTLP ;Wait for a rising edge
JP RSYNC
JP WLOHI

RSYNC: RBIT SYNCHRO,[B] ;SYNCHRO = 0, so wait for a falling edge
;next time.

ENDZCD: ;End of example
COP8SAx7 APPLICATION IDEAS 4-23

4.9 INDUSTRIAL TIMER

Figure 4-11 shows the block diagram for an industrial timer. The user turns the
potentiometer to set the required delay time. When the delay time has elapsed, a load is
switched on or off, as selected by the input switches. The time base is derived from the
power line using a simple zero cross detection circuit, thereby allowing the use of an
inexpensive RC clock instead of a crystal oscillator. There are two indicator diodes and a
buzzer.

Figure 4-11 Industrial Timer Application

Vcc

BUZZER

110V / 60Hz
240V / 50Hz

ZERO CROSS DETECTION

INTERRUPT

TIMER T1

TIMING CONTROL

USER SWITCHES

RC OSCILLATOR

HIGH-SIDE RELAY DRIVER

TWO INDICATOR LEDS

HIGH SINK

WATCHDOG

OUTPUTS

SOFTWARE

CORE

Vcc Vcc

Vrelay

Vcc

VccVcc

Vcc

TRAP

+

4-24 COP8SAx7 APPLICATION IDEAS

The A/D conversion routine used by this industrial timer is based on the single slope
technique. Instead of connecting the variable resistor into a voltage divider circuit and
measuring the voltage using the single slope technique, the variable resistor forms part
of the RC network. The time that the variable RC circuit takes to exceed the fixed
reference voltage is directly proportional to the value of the resistor, simplifying the
conversion from time into resistance. The circuit as shown can be used to program a time
proportional to the angle of the potentiometer setting. The potentiometer can be replaced
by a rotary switch connected to a series of resistors, so that each position of the switch
generates a different resistance. Here the COP8SAx7 can identify the switch positions if
the difference in each resistance for each position is greater than the inaccuracy in
measuring the absolute resistance.
COP8SAx7 APPLICATION IDEAS 4-25

4.10 COP8SAA7 ELECTRONIC KEY APPLICATIONS

Remote door control is becoming very popular in automobiles and in private homes. In
automobiles, the simplest application controls door locks, but more sophisticated uses
include comfort control and turning burglar alarms on and off. A combination of the auto
and home applications will allow a single electronic key to control automobile doors and
burglar alarm, home burglar alarm, garage door opener, and home lighting. A hand-held,
reliable electronic key capable of controlling all these functions must be contained in a
small package that consumes very little power.

COP8SAA7 has the basic requirements to meet the needs of these applications:

• A 16 pin small-outline (SO) package

• A permanently powered HALT mode that consumes typically less than 4 µA

• Reverse battery protection

• Fixed code/rolling code capabilities

• Four channels

• Single-chip solution

• End-of-line programming

• 1K bytes ROM and 64 bytes RAM

• WATCHDOG circuitry

Figure 4-12 Transmitter in Single Cell Operation

OSC VCC
L7

RESET

COP8SAA7
16-PIN

D

L2
L3
L4
L5 GND

G3

3V

VCC
OSC VCC

L7

RESET

COP8SAA7
16-PIN

D

L2
L3
L4
L5 GND

G3

3V

VCC RF
CIRCUIT
4-26 COP8SAx7 APPLICATION IDEAS

• Hard-wired wakeup signal

• Multi-input wakeup signal

4.10.1 Typical Applications

• Burglar alarms

• Gate and garage door openers

• Central locking

• IR/RF transmission

4.10.2 Flexibility

The COP8SAA7 can operate in both RF and IR applications and fixed and rolling code
implementations with or without external EEPROM.

4.10.3 Low Cost

A minimum number of external components are required. Single-cell operation for fixed-
code applications is possible, and reverse battery protection prevents damage.

4.10.4 Small Transmitter Size

The device is contained in a small 16-pin SO package.

4.10.5 Low-Cost Version for Rolling Code

This type of application should be implemented with EEPROM, which contains basic
code, actual code, and some diagnostic and correctional data. Because the COP8SAA7
does not require a large number of external components, external memory contained in
an SO package will not significantly impact the overall size of the system. Figure 4-13
shows a low-cost version of a rolling code IR transmitter implemented with the
COP8SAA7 and National Semiconductor's NM93C06 EEPROM.

4.10.6 Receiver Circuit

The receiver circuit usually has additional control functions, which require a large
amount of software. In some cases, EEPROM is required for diagnostics.
COP8SAx7 APPLICATION IDEAS 4-27

Figure 4-13 Rolling Code IR Transmitter Using External EEPROM

Figure 4-14 Rolling Code IR/RF Transmitter Using One-Chip EEPROM

OSC VCC
D0

COP8SAA7

GND

G3

1.5V

1.5V

NM93C06

LP2951BATTERY

LEARN

VCC

G1

CK1

CK0

RESET
GND

G3

G2

L0

L1

L2

L3

COP8SAA7

OR
VCC RECEIVER

IR OR RF
4-28 COP8SAx7 APPLICATION IDEAS

4.11 COP8SAX7 DIRECT LED DISPLAY DRIVE APPLICATION

Because of its enhanced I/O structure, the COP8SAx7 can be used to directly drive up to
32 LED segments on the 28-pin device. The device features four high-current outputs
(L0-L3). Each output can sink at least 15 mA. The 32 LED segments can be driven in
multiplexed mode by connecting the L0-L3 lines to the common cathode of the eight-
segment LED display. Eight additional outputs are connected to the anodes to select the
specific LED segment. The 40/44 pin devices can drive up to 64 LED segments.

Brightness can be improved by reducing the number of muxed lines to three. This still
allows users to drive 24 segments, enough for most applications in the appliance market.
The core timer (T1) can be used to refresh the display. An external R/C clock generating
an interrupt, or the 50/60-Hz frequency of the main power supply, can also be used to
refresh the display.

In addition to the pins used for the display drive, additional I/O pins are available for
application-specific I/Os. These pins can also be used in conjunction with MICROWIRE/
PLUS peripherals, including A/D converters, zero cross detectors with built-in
comparator, and serial EEPROM.

4.11.1 Improved Brightness

Another way to improve the brightness of the LED display is to use one additional
transistor per muxed line. The muxed line can be any output of the controller, which frees
the L0-L3 lines for other purposes (LED drive, triac drive, etc.).

Figure 4-15 LED Direct Drive Using COP8SAx7

VCC

CK1

CK0

RESET

GND

L0

L0
L1
L2
L3

COP8SAX7

VCC

L1
L2
L3
D0
D1
D2
D3

VCC

HDN11070 HDN11070 HDN11070 HDN11070

3,8 3,8 3,8 3,8

8 X R

8 X R
COP8SAx7 APPLICATION IDEAS 4-29

Additional features:

• HALT mode (typically less than 4 µA)

• 16-bit Multi-function timer with two auto-reload registers

• Programmable I/Os

• Multi-input wakeup

• WATCHDOG circuitry

• Software trap interrupt

• Schmitt trigger inputs

• Efficient table look-up capability

• On-chip R/C oscillator

• Internal power-on reset

• MICROWIRE/PLUS Serial Interface

Figure 4-16 LED Drive

COP8 DEVICE

3
COMMON
OUTPUTS

VCC

24 SEGMENT
LED DISPLAY

8 X R
4-30 COP8SAx7 APPLICATION IDEAS

Figure 4-17 Four-Way Multiplexed Direct LED Drive

INITIALIZATION

MAIN PROGRAM

IRQ

DIGIT X OUT

LAST DIGIT ?

INCREMENT X

DIGIT X=0

Y

N

Y

N

1) REFERS TO THE USER’S MAIN PROGRAM.

IRQ: THE IRQ IS EITHER A TIMER INTERRUPT OR
AN EXTERNAL INTERRUPT. (R/C OR ZERO
CROSS USED FOR LED REFRESH).

THE SUBROUTINE FOR THE MUXED
LED DRIVE REQUIRES 1 BYTE OF
RAM AND 45 BYTES OF ROM.
COP8SAx7 APPLICATION IDEAS 4-31

4.12 CORDLESS PHONE APPLICATION

The COP8 family meets the key requirements of cordless phone applications by providing
cost-effective and versatile solutions. The COP8SAx7 device supports key functions of
the cordless phone's two-piece set (a portable handset unit and a base station). The set
performs standard telephone functions such as network signaling, tone dialing (DTMF),
security, last number redial, alerting, and full duplex voice communication. The base
station connects to the telephone network and provides an RF linkage to the portable
handset using one of the 10 FCC-defined channels in the 46/49 MHz cordless telephone
bands. Figures 4-18 and 4-19 show the COP8SAB7 used in a typical cordless phone
application.

The COP87SAx7 features suited for this application include:

• Low operating voltage (2.7V to 5.5V)

• Low current drain

• HALT mode (typically less than 4 µA)

• 6-bit programmable timer

• Efficient instruction set (efficient table look-up instruction)

Figure 4-18 Handset Block Diagram

MICROCONTROLLER
COP8SAB7

RF AMP

LOCAL
OSC

IF AMP
AND

DATA
BUFFER

KEY
MATRIX

DUPLEXER
COIL

3.58
MHz

LPF
TXPWR

CONTROL

40 Hz

TX
DATA TXMUTE

TRANSMITTER

RF AMP MIXER
DETECTOR

LM386
AMP

RX DATARXPWR
CONTROL

RXMUTE

SPEAKER

DRIVER
BUZZER

BATT LOW
DETECT

CHARGE
DETECT

+
–

TALK/BATT
LOW LED

MICROPHONE
4-32 COP8SAx7 APPLICATION IDEAS

• Programmable I/O

• LED direct drive

• Sufficient I/O in a small package

• Schmitt trigger inputs

• Smooth migration from a smaller to a larger device

4.12.1 Typical Application Requirements

Tone Dialing

The DTMF function can be accomplished in software and a 6-bit R/2R resistor D/A
network. The program size including tables can be approximately 300 bytes of COP8
code. This software approach can guarantee a frequency tolerance of less than 1.5% and
harmonic distortion of less than 27 dB.

Figure 4-19 Base Block Diagram

MICROCONTROLLER
COP8SAB7

RF AMP

LOCAL
OSC

IF AMP
AND

DATA
BUFFER

RING
DETECT

BASE 3.58
MHz

TXPWR
CONTROL

TXDATA TXMUTE

TRANSMITTER

RF AMP MIXER
DETECTOR

RELAY
CONTROL

AC/DC
ADAPTOR

+
–

DUPLEXER
COIL

LM3361A

40 Hz
BEF

40 Hz
DETECTOR

DTMF
RESISTOR
LADDER

TEL LINE
INTERFACE

TEL
LINE

REGULATOR
7806

CHARGING
CIRCUIT

CHARGE
DETECT

AC I/P
120V

DC 6V
COP8SAx7 APPLICATION IDEAS 4-33

Battery Saving Functions

The power saving HALT mode (typicallt < 4 µA) can be used to efficiently manage the life
of the handset battery. In the “OFF” mode, both the receiver and transmitter in the
handset are turned off. The microcontroller will go into HALT mode. In the “STAND BY”
mode, the microcontroller should periodically turn on the handset receiver for a short
time duration to monitor any incoming signals.

RF Transmission and Digital Security Code Generation/Transmission

Frequency Modulation, data transmission, and security code generation/transmission
can be accomplished with the help of multi-function 16-bit timer and the hardware
interrupt capability. The l6-bit timer can generate accurate control timing and the
desired tone output. It is important to note that the same device can be used in the base
as in the handset.

National offers a range of COMBO, EEPROM, Linear Audio, and 8-bit microcontroller
products which provide a complete low-power and low-voltage solution.
4-34 COP8SAx7 APPLICATION IDEAS

4.13 COP8SAC7 BASED AUTOMATED SECURITY/MONITORING
APPLICATIONS

The architecture, features, and flexibility of the COP8SAx7 family of microcontrollers
provide cost-effective solutions for security/monitoring by eliminating external
components from the circuit. Figure 4-20 demonstrates an application example of a
security/monitoring system using the COP8SAC7. The application also illustrates
interfacing the device to a number of specialized peripherals using a minimum number
of I/O lines.

COP8SAC7 features suited for these applications include:

• Low-power HALT and IDLE

• 16-bit timers, each with two 16-bit registers supporting processor independent
PWM mode, external event counter mode, or input capture mode

• MICROWIRE/PLUS serial communication

Figure 4-20 Example of a Security/Monitoring System

VCCWDOUT/G1 GND
PORT L 0-, 4-7

MULTI INPUT
WAKEUP

PORT D
(BIT 0-3)

G5

G4

G6

L2

L3

G3G2G0L1L3L1L2

CKI

CKO/G7

RESET

T0 16 BIT COUNTER 1 MHz
INT
WDOG

CAPTURE LOAD A

16 BIT COUNTERT1

CAPTURE LOAD B

T1A

T1B

INT

1 MHz

INT

VCC

VCC

5

4

SENSE

DRIVE

5X4 KEYPAD
WITH WAKEUP

36
SEGMENT
DISPLAY

LCD
DRIVER

CLK

DATA 0

DATA 1

SOFTWARE
UART

ROUTINE

VCC

L1

L2

COP8SAC7
COP8SAx7 APPLICATION IDEAS 4-35

• Multi-Input Wakeup/interrupts

• Powerful table lookup and indirect addressing modes

• Output pins have direct drive capability

• Fully static HALT mode with hardware restart capability

• WATCHDOG timer

• Programmable I/O

• 254 consecutive bytes of table lookup data in one block

• 10/14 multi-source vectored interrupts

• Schmitt trigger inputs

• LCD arithmetic instructions

The COP8SAC7 is the heart of the system that provides the processing power to scan the
keypad, service the receiver interrupts, update the real-time clock, serially communicate
with the display unit and data storage unit, and activate the auto-dialer unit. System
capabilities may be enhanced or scaled down by simply changing the processor’s
algorithm.

4.13.1 Typical Application Requirements

Keypad Scanning

The keyboard is organized as a matrix. The L port (Multi-Input Wakeup capability) is
configured as an input with weak pull-ups, and is used to sense the keypad inputs. Most
of the time the chip is in the current-saving HALT mode (Idd < 4 µA). Any keystroke can
create a high to low transition one of the L lines, which wakes up the microcontroller from
HALT mode. After returning from the HALT mode, the keypad is scanned in order to
detect which key is pressed. This event-driven keypad scanning technique results in
lowest possible current consumption because the HALT mode is used between successive
keystrokes.

Display Terminal Unit

The display terminal unit can interface with the COP8SAC7 through the software UART.
The COP8SAC7 is interrupted by the terminal and the microcontroller decodes the
character sent and services the corresponding request. The terminal keyboard can be
used to program the telephone numbers to be dialed by the auto-dialer unit. The real-
time clock is displayed on the terminal screen.

LCD Display Unit

The LCD display unit can be used to display the time and date information. The
microcontroller can communicate with the LCD display driver serially using the
MICROWIRE/PLUS serial interface.
4-36 COP8SAx7 APPLICATION IDEAS

Time Keeping

The time keeping routine is the most important software routine and is executed
irrespective of the other modules being executed. The program uses the IDLE timer T0
for this purpose. The IDLE Timer is a 16-bit timer and runs continuously at a fixed rate
of the instruction cycle clock. The IDLE Timer counter is not memory mapped and
consequently, the user can not read or write to it. The toggling of the twelfth bit of the
IDLE counter can be programmed to generate an interrupt. The interrupt is generated
every 4 ms at the maximum instruction cycle clock rate of 1 µS. The software uses this
interrupt to update counters in Data Memory for time keeping. The time keeping routine
then sets a flag to update the display which is then used by the main program.
COP8SAx7 APPLICATION IDEAS 4-37

4.14 COP8SAC7 KEYBOARD APPLICATIONS

The COP8SAC7 microcontroller can be used to cost-effectively provide a solution for a
laptop keyboard. With only a few passive components, the device can accomplish the
complete keyboard scan function. The same principles can be applied to all types of
keyboards (i.e. desktop keyboards) or data input devices. With low power consumption
being the most important design criteria, the device offers the power saving Multi-Input
Wakeup mode.

Figure 4-21 Laptop/Notebook Keyboard Schematics

L0
L1
L2
L3
L4
L5
L6
L7

C4
C5
C6
C7
C0
C1
C2
C3
G2
G4
G5
D0
D1
D2
D3
D4

D5D7D6

CK1

CK0

GND

VCC

RESET WD G0 G3 COL 1 COL 1
J3

9
10
11
12
13
14
15
16COL 8

ROW 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16ROW 16

J4
NUM
LOCK

SCROLL
LOCK

VCC

CAPS
LOCK

4 3 2 1 J2

VCC

VCC

J1

6
2
4
1
3
6

VCC

DATA
CLOCK

VCC
4-38 COP8SAx7 APPLICATION IDEAS

The device features suited for these applications include:

• Single Chip solution

• Low cost on-chip R/C oscillator (or optional ceramic oscillator)

• Output pins have LED direct drive capability

• Internal power-on reset

• Programmable I/O with on-chip pull-ups

• Powerful table lookup and indirect addressing modes

• Fully static HALT mode with hardware restart capability

• Multi-Input Wakeup

• WATCHDOG timer

• 254 consecutive bytes of table lookup data in one block

• Multi-source interrupt (external interrupt with selectable edge, timer interrupt
with selectable edge, and software interrupt)

• Schmitt trigger inputs

4.14.1 Typical Application Requirements

Keyboard Scanning

The keyboard is organized as an 8 input by 16 output matrix. Software key rollover
eliminates the need for decoupling diodes in the 16 by 8 key matrix. The COP8SAC7’s L
port is configured as a weak pull-up input port, thus allowing the use of the Multi-Input
Wakeup feature. Most of the time the chip is in the current saving HALT mode (<4 µA)
Any keystroke or a data transmission from the computer will create a high-to-low
transition one of the L lines, which wakes up the microcontroller from HALT mode. After
returning from the HALT mode, the keyboard is scanned in order to detect which key is
pressed and the appropriate key code is sent to the computer. This event-driven key-
board scanning technique results in lowest possible current consumption because the
HALT mode is used between successive keystrokes.

LED Direct Drive

Three LEDs are driven directly by three of the device high sink D-lines (15 mA sink
capability), thus eliminating the need for additional LED drivers or transistors.
COP8SAx7 APPLICATION IDEAS 4-39

4.14.2 Typical Applications

• Security alarm/monitors

• Appliance control

• Laptop/notebook/desktop keyboards

More Information

A complete keyboard solution is described in Application Note AN-734.
4-40 COP8SAx7 APPLICATION IDEAS

es.

4.15 COP8SAA7 CLOSED LOOP TEMPERATURE CONTROL APPLICATIONS
Closed loop air control is the primary function of air-conditioning/heating systems in automobil

4.15.1 Primary System considerations:

• Low component cost

• Low power

• Small physical size

• Low EMI

The COP8SAA7 features suited for this application include:

• 16-bit PWM timer

• Enhanced outputs for LED and LCD display drives

• Additional hardware interrupts

• High-current programmable outputs

• Software trap interrupts

• Schmitt trigger inputs

• MICROWIRE/PLUS

The COP8SAA7 based Closed Loop Temperature control system, shown in Figure 4-22,
performs the following:

• Measures the user-set potentiometer with a simple R/D converter

• Measures the actual temperature with a successive approximation A/D conversion
using the PWM timer

• Controls the air mix motor speed with a PWM timer

• Reads the keyboard with standard keyboard scanning routines

• Controls the LED driver, solenoid driver (for A/C) and EEPROM through the MI-
CROWIRE/PLUS serial interface.
COP8SAx7 APPLICATION IDEAS 4-41

4.15.2 Typical Requirements for Motor Control Systems

Single Slope A/D or V/F Conversion

Users can build a high-resolution A/D converter by using an external comparator with
the on-chip 16-bit timer.

Small LED or LCD Display Units

Eight high-current outputs, drive to rail capability, programmable I/Os, enhanced table
lookup capability, and two pointer registers support the installation of small two or three
way multiplexed display panels. The COP8SAA7 can communicate with the LCD/LED
display driver serially using the MICROWIRE/PLUS serial interface.

Figure 4-22 Automotive Closed Loop Air Control

KEYPAD

LED
DRIVER

SOLENOID
DRIVER EEPROM

MICROWIRE/PLUS

MOTORG3

G4
G5
G6

G2
G1

G0

L7

L6

COP8SAA7

VIN
(0-5)V

100K

.047mF

100K

Cref

Rx
RREF

VCC

+
–

4-42 COP8SAx7 APPLICATION IDEAS

4.16 AUTOMATIC WASHING MACHINE

The COP8SAC7 can be used as a key control element in an automatic washing machine
control module. The device can improve reliability, functionality, and bring specific
features to the application.

The COP8SAC7 incorporates features to meet the basic requirements of the appliance
market:

• 16-bit multi-function timer with two auto-reload registers

• Enhanced outputs for LED and LCD display drives

• High-current programmable outputs

• Schmitt trigger inputs

• WATCHDOG/clock monitor circuitry

• Software trap interrupt

• Additional hardware interrupts

• MICROWIRE/PLUS serial interface

Figure 4-23 shows the block diagram of an automatic washing machine control unit.

Following is the description of main functions:

4.16.1 Reliability and Safety Features

The WATCHDOG circuitry prevents an application program from continually repeating
an infinite loop. The Software Trap (ST) reports corruption of the program counter (over
popping of the stack, for example) by initiating a non-maskable interrupt.

4.16.2 LED or LCD Display Units

Eight high-current outputs, drive-to-rail capability, programmable I/Os, powerful table
look-up capability, and two pointer registers support the installation of multiplexed
display panels. The configuration shown in Figure 4-24 supports 24 LED segments, two
digital LED blocks, and an 11-key display and scan function.

4.16.3 Zero Cross Detection

The G0 external interrupt pin with programmable edge polarity allows installation of a
simple time-base counter, using the “main power” zero crossing.

4.16.4 Other I/O Functions

Pins F2 and F3 are used for detection of water-in, drain, unbalance, and upper cover
sensor circuit. Pin F4 is used to monitor motor loading to judge the weight of the material
being washed and select proper rinse and spin procedures.
COP8SAx7 APPLICATION IDEAS 4-43

Pins C0-C3 and G3 provide the output drive for the triacs used to control the motor, outlet
valve, inlet valve, and power switch.

4.16.5 External EEPROM Interface

The MICROWIRE/PLUS serial interface can be used to interface the device to an
external 256-bit EEPROM C93CO6). The external EEPROM is used to store the full
wash procedure last used so the washing machine uses the same procedure after power
up.

Figure 4-23 Automatic Washing Machine Control Model Using COP8SAC7

MOTOR ROTATION
CLOCKWISE

MOTOR ROTATION
COUNTERCLOCKWISE

OUTLET VALVE

INLET VALVE

POWER SWITCH

DISPLAY AND

WATER LEVEL SWITCH

SAFETY SWITCH

DETECTION

NM93C06
EEPROM

KEYBOARD

CIRCUIT

RESET

L7
.
.
L2

D6

D0

F0
F1

F2

F3

F4

SK/G5

SO/G4

SI/G6

G2

G1

G0 (INT)

G3

C3

C2

C1

C0

CKO

CKI

.

.

COP8SAC7

ZERO
GROSS
DETECT

110/220 VOLTS

VCC

BUZZER
4-44 COP8SAx7 APPLICATION IDEAS

4.16.6 Software Considerations

The application program can select or preset washing procedures not only before the
start of a wash cycle but also during the washing cycle. This means the program is not a
simple sequential control program but a real-time alterable program.

Figure 4-24 and 4-25 show the program flowcharts.

Figure 4-24 Main Program Flow

BEGIN

INITIALIZATION

SELF-CHECK
?

DISPLAY ON
KEYBOARD SCANNING

KEY
PRESSED

?

WASHING
TASK

REQUESTED
?

PROCESS WASH TASK

KEYPAD PROCESSING

ASK FOR
SELF-CHECK

TASK

N

N

Y

COP8SAx7 APPLICATION IDEAS 4-45

Figure 4-25 Interrupt Routine Flow

INTERRUPT SERVICE

FILTERING FOR

0.1 SEC TASK

REACHED
0.1 SEC

?

1 SEC

1 SEC TASK

INTERRUPT
RETURN

N

N

Y

ROUTINE

EXIT
INT
?

MOTOR OUTPUT

TIMER
INT
?

?

1 MIN TASK
?

1 MIN TASK

Y

Y

N

Y

Y

N

N

Y

4-46 COP8SAx7 APPLICATION IDEAS

4.17 AIR CONDITIONER CONTROLLER

The COP8SAB7 can be used to support functions such as sensing, cooling, and
dehumidifying in a complete air conditioning system. The device provides over-voltage
and under-voltage control and protection for the compressor and fans.

Figure 4-26 shows the block diagram of an air conditioning system using the COP8SAB7.

4.17.1 Temperature Detection

The LM35 temperature sensor is used to generate the input voltage for the LM331 V/F
converter. Based on the input voltage, LM331 presents the proportional output frequency
to the G0/INT pin of the COP8SAB7. The program counts the number of interrupts to
calculate the frequency and translates the frequency to the appropriate temperature
value.

Figure 4-26 Block Diagram of Air Conditioning Control Module

RESET
G4
G5
D0

L0-4

F2

F3

L7

L6

D1

D2

G3

G2

L5

F1

F0

LCD
DISPLAY

KEYPAD

DISPLAY FOR
OVER-VOLTAGE/UNDER-VOLTAGE

BUZZERINDOOR
FAN

DRIVE CIRCUIT

OUTDOOR
MACHINE

DRIVE CIRCUIT

OVER-VOLTAGE
AND

UNDER-VOLTAGE
DETECTION

LM331

LM35

V/F CONVERTER

TEMP SENSOR

COP8SAB7

VCC

G0
LCD

DRIVER

5

COP8SAx7 APPLICATION IDEAS 4-47

4.17.2 Keypad Scanning

Figure 4-28 shows the keypad organization. Pins L0-L4 are normally output high. The
input pins F2 and F3 are low when no key is pressed and high when a key is pressed.

4.17.3 Over-Voltage and Under-Voltage Detection

The status of line voltage range is read through the F0 and F1 pins. Reading lows at these
pins indicate a line voltage out of normal range. Reading highs indicate the line voltage
is within the normal range. See Figure 4-29.

4.17.4 Drive Circuits for Fan, Compressor and Buzzer

Figure 4-30 shows the appropriate drive circuitry. Relay J controls the compressor
switch. Three triacs are used to control the fan in high, medium, and low states.
Figure 4-29 shows only one triac. The MOC3041 is an optoelectric isolation driver with
zero cross trigger. When one key is pressed, the D pin outputs a positive pulse to activate
the buzzer FM0.

Figure 4-27 Temperature Detection Circuit

COP8SAB7

G0/INT
0

0

12k

6.8k

6

C2

1 µF

47

100k

1

7100k

LM35

10k

4

VCC

5 8

6.0k C1

103

LM331
4-48 COP8SAx7 APPLICATION IDEAS

Figure 4-28 Keypad Scanning

Figure 4-29 Over-Voltage and Under-Voltage Detection Circuit

S1
S6

S2
S7

S3
S8

S4
S9

S5
S10

4.7k4.7k

L0

L1

L2

L3

L4

F2

F3

COP8SAB7

+

–

+

–

LM393

COP8SAB7

F0

F1

LM393

220 VAC

VCC
COP8SAx7 APPLICATION IDEAS 4-49

Figure 4-30 Drives Circuits for Fan, Compressor and Buzzer

VCC

FMQ

N2
3.3K

220 VAC

LOAD

330

MOC3041

Q1 X 3

10k

3.3k

470

G3

G2

D2

D1

L5

3.3k

10k

N1

J

COP8SAB7

VCC

VCC

51
4-50 COP8SAx7 APPLICATION IDEAS

Appendix A

PHYSICAL DIMENSIONS

20-Lead Hermetic Dual-In-Line Packge, EPROM (D)
Order Number COP8SAC720Q9

See NS Package Number D20CQ
PHYSICAL DIMENSIONS A-1

Molded Small Outline Package (WM)
Order Number COP8SAA716M8, or COP8SAA716M9

See NS Package Number M16B

Molded Dual-In-Line Package (N)
Order Number COP8SAA716N8, or COP8SAA716N9

See NS Package Number N16A
A-2 PHYSICAL DIMENSIONS

Molded Dual-In-Line Package (N)
Order Number COP8SAA720N9, COP8SAB720N9, COP8SAC720N9,

COP8SAA720N8, COP8SAB720N8, or COP8SAC720N8,
See NS Package Number N20A

Molded SO Wide Body Package (WM)
Order Number COP8SAA720M9, COP8SAB720M9, COP8SAC720M9

COP8SAA720M8, COP8SAB720M8, or COP8SAC720M8
See NS Package Number M20B
PHYSICAL DIMENSIONS A-3

Molded SO Wide Body Package (WM)
Order Number COP8SAA728M9, COP8SAB728M9, COP8SAC728M9,

COP8SAA728M8, COP8SAB728M8, or COP8SAC728M8
See NS Package Number M28B

Molded Dual-In-Line Package (N)
Order Number COP8SAA728N9, COP8SAB728N9, COP8SAC728N9,

COP8SAA728N8, COP8SAB728N8, or COP8SAC728N8
See NS Package Number N28B
A-4 PHYSICAL DIMENSIONS

28-Lead Hermetic Dual-In-Line Package EPROM (D)
Order Number COP8SAC728Q9
See NS Package Number D28JQ

40-Lead Hermetic DIP EPROM (D)
Order Number COP8SAC740Q9
See NS Package Number D40KQ
PHYSICAL DIMENSIONS A-5

Molded Dual-In-Line Package (N)
Order Number COP8SAC740N9, COP8SAC740N8, or COP8SAC740N6

See NS Package Number N40A

44-Lead EPROM Leaded Chip Carrier (EL)
Order Number COP8SAC744Q9
See NS Package Number EL44C
A-6 PHYSICAL DIMENSIONS

Molded Dual-In-Line Package (N)
Order Number COP8SAC744V9, COP8SAC744V8, or COP8SAC744V6

See NS Package Number V44A

Plastic Leaded Chip Carrier (V)
Order Number COP8SAC7VEJ9, or COP8SAC7VEJ8

See NS Package Number VEJ44A
PHYSICAL DIMENSIONS A-7

A-8 PHYSICAL DIMENSIONS

INDEX
A
A register 2-11
AC electrical characteristics 2-127, 2-130, 2-133
AC motor TRIAC control 4-12
AC power control 4-17
Accumulator Bit Manipulation instructions 2-61
Accumulator vs Register 1-13
Add (ADD) 2-65
Add with Carry (ADC) 2-64
Addressing modes 1-19, 2-54, 2-55

Direct 2-55
Immediate 1-19, 2-56
Immediate Short 2-56
Implied 1-19
Indexed Addressing 1-20
Indirect from Program Memory 2-56
Jump Absolute 2-58
Jump Absolute Long 2-58
Jump Indirect 2-59
Jump Relative 2-58
Memory Direct 1-20
operand 2-54
Post-Decrement 1-20
Post-Increment 1-20
Register B 2-55
Register Indirect 1-20
Transfer-of-Control 2-57
X Indirect 2-55
X Indirect with Post-Incrementing/Decrementing 2-

56
Air conditioner controller 4-47
ALU 1-12
And (AND) 2-66
And, Skip if Zero (ANDSZ) 2-67
Application ideas 4-1
Architecture 2-4

Harvard 1-6, 1-7
microcontrollers 1-6
Von Neumann 1-6

Arithmetic instructions 2-60
Arithmetic Logic Unit (ALU). See ALU
Automatic washing machine 4-43

B
B register 2-11
Based automated security/monitoring applications 4-35
Battery saving functions 4-34
Battery-powered weight measurement 4-22
Binary division 2-122
Binary multiplication 2-121
Binary/BCD arithmetic operations 2-118
Block diagram 1-2, 2-4
Board layout 2-137
Brightness 4-29

C
Capacitive decoupling 2-138
Central Processing Unit (CPU). See CPU
Clear Accumulator (CLR) 2-68

Clear RAM 2-118
Clock generation 1-16
Clock monitor 2-43, 2-44
Closed loop temperature control applications 4-41
CMOS 2-3
CNTRL register 2-21
Communicating with external devices 1-17
Conditional instructions 2-62
Connection diagrams 2-5
Control registers 1-12, 2-21
COP8 Assembler/linker Software Development Tool Kit

3-8
COP8 C Compiler 3-9
Cordless phone application 4-32
CPU 1-12

defined 1-1
features 2-2
registers 2-11

Crystal Oscillator 1-16, 2-19
Customer Response Center 3-12

D
D-A converter 4-10
Data memory 1-10, 2-12

defined 1-1
Data storage 1-10
DC electrical characteristics 2-125, 2-128, 2-131
Decimal Correct (DCOR) 2-69
Decode instruction 1-12
Decoupling 2-138

capacitive 2-138
inductive 2-138

Decrement Accumulator (DEC) 2-70
Decrement Register and Skip if Zero (DRSZ) 2-71
Development support 2-3, 3-1
Devices, communicating with external 1-17
Dial-A-Helper 3-10

BBS via a standard modem 3-11
via a WorldWide Web Browser 3-11
via FTP 3-11

Direct addressing mode 2-55
Direct LED display drive application 4-29
Display terminal unit 4-36
Drive circuits for fan, compressor and buzzer 4-48

E
ECON register 2-13
EEPROM interface 4-44
Electric Field emissions 2-136
Electrical characteristics 2-118
Electromagnetic interference (EMI) considerations 2-136
Electronic key applications 4-26
EMI

block diagram of circuitry 2-142
considerations 2-136
improvements 2-140
reuction 2-140
silicon design changes to achieve low 2-141

Emission predictions 2-136
INDEX 1

EPROM
programming support 3-9
user storage space 2-13

EPROM Configuration register. See ECON register
Exchange Memory with Accumulator (X) 2-110
Exclusive Or (XOR) 2-112
Execute instruction 1-12
External devices, communicating with 1-17
External Event Counter Mode 2-25
External event counter mode

example 4-15
External Oscillator 1-16, 2-20
External reset 2-16

F
Features 2-1

CPU 2-2
development support 2-3
fully static CMOS design 2-3
I/O 2-3
instruction set 2-54
Multi-Input Wakeup 2-31
peripheral 2-3
power saving 2-28
temperature ranges 2-3

Fetch instruction 1-12
Fully static CMOS design 2-3
Functional description 2-11

G
Ground plane 2-137

H
HALT mode 2-28
Harvard architecture 1-6, 1-7

I
I/O features 2-3
iceMASTER

Debug Module (DM) 3-3
Evaluation Programming Unit (EPU) 3-5
In-Circuit emulation 3-1

ICNTRL register 2-22
Ideas, application 4-1
IDLE mode 2-29
IDLE timer 2-23
If B Pointer Not Equal (IFBNE) 2-73
Illegal conditions, detecting 2-46
Immediate addressing mode 1-19, 2-56
Immediate Short addressing mode 2-56
Implied addressing mode 1-19
Increment Accumulator (INC) 2-79
Indexed Addressing mode 1-20
Indirect from Program Memory addressing mode 2-56
Inductive decoupling 2-138
Industrial timer 4-24
Input Capture Mode 2-25
Input protection 2-134
Input/Output 1-17
Instruction Execution Time 2-115
Instruction set 1-19, 2-54

categories of 1-19

features 2-54
summary 2-114
types 2-60

Instruction storage 1-10
Instructions

ADC 2-64
ADD 2-65
AND 2-66
ANDSZ 2-67
CLR 2-68
DCOR 2-69
DEC 2-70
DRSZ 2-71
IFBIT 2-72
IFBNE 2-73
IFC 2-74
IFEQ 2-75
IFGT 2-76
IFNC 2-77
IFNE 2-78
INC 2-79
INTR 2-80
JID 2-81
JMP 2-82
JMPL 2-83
JP 2-84
JSR 2-85
JSRL 2-86
LAID 2-87
LD 2-88, 2-90, 2-91, 2-92
NOP 2-93
OR 2-94
POP 2-95
PUSH 2-96
RBIT 2-97
RC 2-98
RET 2-99
RETI 2-100
RETSK 2-101
RPND 2-103
RRC 2-102, 2-104
SBIT 2-105
SC 2-106
SUBC 2-107
SWAP 2-108
VIS 2-109
X 2-110
XOR 2-112

Interrupt routines 1-21
Interrupt Software Trap (INTR) 2-80
Interrupts 1-14, 2-33

Maskable 2-34
non-maskable 2-41
Port L 2-42
summary 2-42
types of 1-15
vector table 2-37
VIS instruction 2-36, 2-38

J
Jump Absolute (JMP) 2-82
2 INDEX

Jump Absolute addressing mode 2-58
Jump Absolute Long (JMPL) 2-83
Jump Absolute Long addressing mode 2-58
Jump Indirect (JID) 2-81
Jump Indirect addressing mode 2-59
Jump Relative (JP) 2-84
Jump Relative addressing mode 2-58
Jump Subroutine (JSR) 2-85
Jump Subroutine Long (JSRL) 2-86

K
Keyboard applications 4-38
Keyboard scanning 4-39
Keypad scanning 4-36, 4-48

L
LCD display unit 4-36
LCD display units 4-42
LED direct drive 4-39
Literature, available 3-10
Load Accumulator (LD) 2-88
Load Accumulator Indirect (LAID) 2-87
Load and Exchange instructions 2-61
Load B Pointer (LD) 2-90
Load Memory (LD) 2-91
Load Register (LD) 2-92
Logical instructions 2-61
Low-cost version for rolling code 4-27

M
Maskable interrupts 2-34
Master mode 2-48
Mechanical shielding 2-139
Memory Bit Manipulation instructions 2-61
Memory Direct addressing mode 1-20
Memory map 2-52
Microcontroller

applications 1-3
architecture 1-6
building blocks 1-9
defined 1-1
differences with microprocessors 1-6
features/application matrix 1-4
operation 1-7

Microprocessors
differences with microntrollers 1-6

MICROWIRE/PLUS 2-47
interface 4-4
interface timing 2-50, 2-51
Master mode operation 2-48
master/slave protocol 4-4
Slave mode operation 2-49

Mnemonics instruction 1-19
Multi-Input Wakeup feature 2-31
Multilayer board 2-138
Multiple Byte Opcode 1-19

N
NM93C06 instruction set 4-6
NM93C06-COP8SAx7 interface 4-5
No Operation (NOP) 2-93
Non-maskable interrupts 2-41
No-Operation instructions 2-62

O
On-chip power-on reset 2-17
Opcode fields 1-19
Opcode table 2-117
Opcodes instruction 1-19
Operand addressing modes 2-54
Operation of a microcontroller 1-7
Or (OR) 2-94
Ordering information 2-7
Oscillator 2-19

Crystal 2-19
External 2-20
R/C 2-20

Oscillator Circuits 1-16
Oscillator control 2-139
OTP 3-9
OTP security 2-14
Output series resistance 2-139
Over-voltage detection 4-48

P
Packaging/pin efficiency 2-4
PC register 1-9, 2-11
Pending flag 2-41
Peripheral features 2-3
Physical dimensions A-1
Pin descriptions 2-8
Pointers 1-10
Pop Stack (POP) 2-95
Port L interrupts 2-42
Post-Decrement addressing mode 1-20
Post-Increment addressing mode 1-20
Power saving features 2-28

HALT mode 2-28
IDLE mode 2-29

Power wakeup circuit 4-20
Processor Independent PWM Mode 2-23
Program Counter register 1-9
Program Memory

defined 1-1
Program memory 1-9, 2-12
Programming examples 2-118
PSW register 2-22
Push Stack (PUSH) 2-96
PWM motor control 4-10

R
R/C Oscillator 1-16, 2-20
RAM, defined 1-1
Random Access Memory. See RAM
Read Only Memory. See ROM
Receiver circuit 4-27
Register B addressing mode 2-55
Register Indirect addressing mode 1-20
Registers

A 2-11
B 2-11
CNTRL 2-21
control 1-12
CPU 2-11
definition of 2-113
ECON 2-13
ICNTRL 2-22
PC 1-9, 2-11
INDEX 3

PSW 2-22
SP 2-11
status 1-12
X 2-11

Reset 2-15
external 2-16
on-chip power-on 2-17

Reset Carry (RC) 2-98
Reset Memory Bit (RBIT) 2-97
Reset Pending (RPND) 2-103
Return and Skip (RETSK) 2-101
Return from Interrupt (RETI) 2-100
Return from Subroutine (RET) 2-99
RF transmission and digital security code generation/

transmission 4-34
ROM, defined 1-1
Rotate Accumulator Left Through Carry (RLC) 2-102
Rotate Accumulator Right Through Carry (RRC) 2-104
Routines/subroutines 1-20
Rudimentary D-A converter 4-10

S
Set Carry (SC) 2-106
Set Memory Bit (SBIT) 2-105
Silicon design changes to achieve low EMI 2-141
Single slope A/D or V/F conversion 4-42
SK idle polarity 2-49
SK phase operation 2-49
Slave mode 2-49
Small LED 4-42
Small transmitter size 4-27
Software Trap 2-41
SP register 2-11
Stack Control instructions 2-61
Stack manipulation 1-20
Stacks 1-11
Status register 1-12
Subtract with Carry (SUBC) 2-107
Swap Nibbles of Accumulator (SWAP) 2-108
Symbol definition 2-113

T
T1C0 2-27
T1C1 2-27
T1C2 2-27
T1C3 2-27
T1ENA 2-27
T1ENB 2-27
T1PNDA 2-27
T1PNDB 2-27
Temperature detection 4-47
Temperature ranges 2-3
Test Bit (IFBIT) 2-72
Test if Carry (IFC) 2-74
Test if Equal (IFEQ) 2-75
Test if Greater Than (IFGT) 2-76
Test If No Carry (IFNC) 2-77
Test If Not Equal (IFNE) 2-78
Testing a remote normally open swtich for connection 4-2
Time keeping 4-37
Timer capture example 4-13

Timer Control Flags 2-27
Timer PWM applications 4-10
Timer T0 2-23
Timer T1 2-23
Timers 2-23

applications 4-10
IDLE 2-23
T0 2-23
T1 2-23

Timing 1-15
Timing signal 1-1
Tone dialing 4-33
Transfer-of Control instructions 2-60
Transfer-of-Control addressing mode 2-57
Triac control 4-17

U
Under-voltage detection 4-48
User storage space in EPROM 2-13

V
Vector Interrupt Select (VIS) 2-109
Vector table 2-37
VIS instruction 2-36

execution 2-38
Von Neumann architecture 1-6

W
WATCHDOG 2-43, 2-44
WorldWide Web 3-11

X
X Indirect addressing mode 2-55
X Indirect with Post-Incrementing/Decrementing ad-

dressing mode 2-56
X register 2-11

Z
Zero cross detection 4-23, 4-43
4 INDEX

	COP8™ MICROCONTROLLER
	COP8SAx Designer’s Guide

	-001
	1/97
	Chapter 1 MICROCONTROLLER BASICS
	Chapter 2 COP8SAx7 MICROCONTROLLER
	Chapter 3 DEVELOPMENT SUPPORT
	Chapter 4 COP8SAx7 APPLICATION IDEAS
	Appendix A PHYSICAL DIMENSIONS
	Chapter 1
	MICROCONTROLLER BASICS

	1.1 WHAT IS A MICROCONTROLLER?
	1.1.1 CPU
	1.1.2 Program Memory
	1.1.3 Data Memory
	1.1.4 Timing
	1.1.5 Inputs/Outputs

	Program Memory
	Figure�1-1 Microcontroller General Block Diagram
	1.2 WHAT DOES A MICROCONTROLLER REPLACE?
	1.3 WHAT ARE MICROCONTROLLER APPLICATIONS?
	Table�1-1 Microcontroller Features/Applications Ma...

	1.4 WHAT IS THE DIFFERENCE BETWEEN A MICROCONTROLL...
	1.5 WHAT IS THE ARCHITECTURE OF A MICROCONTROLLER
	1.5.1 Von Neumann Architecture
	1.5.2 Harvard Architecture

	1.6 HOW DOES A MICROCONTROLLER OPERATE?

	Address Bus
	Figure�1-2 Microcontroller Operation
	1.7 DESCRIPTION OF MICROCONTROLLER BUILDING BLOCKS...
	1.7.1 Program Memory

	Internal Data Bus
	Figure�1-3 Program Memory Section
	Structure
	Program Counter (PC)
	Instruction Storage
	1.7.2 Data Memory
	Structure
	1. Size
	2. Von Neumann Architecture
	3. Harvard Architecture

	Data Storage

	Internal Data Bus
	Figure�1-4 Separate Data and Code Space
	Pointer
	Stack
	1. Stack operation as a result of executing Jump-t...
	2. Stack operation as, a result of executing Retur...

	1.7.3 Microcontroller CPU
	Arithmetic Logic Unit (ALU)
	Status/Control Registers
	1. A carry bit, which indicates whether the last o...
	2. Interrupt enable bit, which tells the microcont...
	3. Interrupt pending bit, which tells the program ...
	4. HALT bit, which tells microcontroller to stop a...
	5. Timer run, which tells microcontroller to start...

	Accumulator vs Register
	1. Stack based: a no address machine
	2. Accumulator based: a one-address machine
	3. Register based: a two- or three-address machine...

	Data Memory
	Figure�1-5 Adding Two Numbers Using Accumulator Ba...

	Register 1
	Figure�1-6 Adding Two Numbers Using Register Based...
	Interrupts
	1. Stops execution of the "next" instruction.
	2. Disables additional interrupts.
	3. Saves current status of the microcontroller.
	4. Jumps to a special interrupt handling routine.
	5. Returns from the special interrupt handling rou...
	6. Restores state of the microcontroller
	7. Enables interrupts
	8. Executes the "next" instruction.

	1.7.4 Timing
	1. Memory access time (memory speed)
	2. Number of bytes per instruction
	3. Width of data bus
	4. Level of decoding required of instructions
	5. Execution time

	Clock Generator
	Figure�1-7 Clock Generation
	1.7.5 Oscillator Circuits
	External Oscillator
	Figure�1-8 External Oscillator

	R/C Oscillator
	Figure�1-9 R/C Oscillator

	Crystal Oscillator
	Figure�1-10 Phase Shift Oscillator
	1. The loop gain must be greater than one.
	2. The phase shift around the loop must be 360˚

	Inputs/Outputs

	1.7.6 Instruction Set
	Categories of Instructions
	1. Arithmetic/logic/shift (ADD/AND/RRC)
	2. Transfer of control (JP, JMP)
	3. Memory reference (LD)
	4. Bit manipulation (SBIT)
	5. Stack control (PUSH)
	6. Conditional/Test (IFEQ)

	Opcode fields/Multiple Byte Opcodes‘
	Addressing Modes

	1.7.7 Programming
	Routines/Subroutines
	Stack Manipulation
	Interrupt Routines
	1. Without a Vector Table
	2. With a Vector Table

	Context Switching
	Assembler
	1. Assembler
	2. Assembler Inputs/Outputs
	3. Assembler Directives

	Linker
	1. Linker
	2. Linker Inputs/Outputs

	Compiler
	1. Compiler
	2. Compiler Inputs/Outputs

	Simulator
	1. Can execute object code
	2. Can perform Single Step/Breakpoint/Go operation...
	3. Can display simulated internal device registers...
	4. Can display program and data memory contents an...
	5. Requires no hardware

	Hardware - Emulators
	1. Can execute object code
	2. Can display data and program memory contents an...
	3. Can display internal registers and allow them t...
	4. Can perform Single Step/Breakpoint/Go operation...
	5. Interfaces directly to external hardware
	6. Can run code in real-time
	7. Can trace code execution
	8. Emulates AC and DC electrical characteristics

	Code Development Path
	Chapter 2
	COP8SAx7 MICROCONTROLLER

	2.1 INTRODUCTION
	2.2 KEY FEATURES
	— Crystal/resonator oscillator
	— Crystal/resonator oscillator with on-chip bias r...
	— External oscillator
	— Internal R/C oscillator

	4k
	128
	16 24 36 40
	2k
	128
	16 24
	1k
	64
	12 16 24
	2.2.1 CPU Features
	— External Interrupt
	— Idle Timer T0
	— One Timer (with 2 Interrupts)
	— MICROWIRE/PLUS Serial Interface
	— Multi-Input Wake Up
	— Software Trap
	— Default VIS (default interrupt)

	2.2.2 Peripheral Features
	— Processor Independent PWM mode
	— External Event counter mode
	— Input Capture mode

	2.2.3 I/O Features
	— TRI-STATE® output
	— Push-pull output
	— Weak pull up input
	— High impedance input

	2.2.4 Fully Static CMOS Design
	2.2.5 Temperature Ranges
	2.2.6 Development Support
	2.3 BLOCK DIAGRAM
	Figure�2-1 COP8SAx7 Block Diagram

	2.4 ARCHITECTURE
	2.5 PACKAGING/PIN EFFICIENCY
	2.6 CONNECTION DIAGRAMS
	Figure�2-2 Connection Diagrams

	Temperature
	9 = 0˚C to +70˚C 8 = –40˚C to +85˚C 7 = –40˚C to 1...
	Figure�2-3 Part Numbering Scheme
	2.6.1 ORDERING INFORMATION
	2.7 PIN DESCRIPTIONS

	0
	0
	0
	1
	1
	0
	1
	1
	Figure�2-4 I/O Port Configurations

	G7
	G6
	Figure�2-5 I/O Port Configurations–Output Mode
	Figure�2-6 I/O Port Configurations–Input Mode
	2.8 FUNCTIONAL DESCRIPTION
	2.8.1 CPU Registers
	2.8.2 Program Memory
	Table�2-1 Program/Data Memory Sizes

	COP8SAA7
	1024
	COP8SAB7
	2048
	COP8SAC7
	4096
	2.8.3 Data Memory
	2.8.4 ECON (EPROM Configuration) Register

	X
	POR
	SECURITY
	CKI 2
	CKI 1
	WATCDOG
	Reserved
	HALT
	2.8.5 User Storage Space In EPROM
	1. Place data in the 8-bytes of user storage space...
	2. Place assembly date in 8-bytes of user storage ...
	3. Place programming date in 8-bytes of user stora...
	4. To place data in both memory space (for example...

	2.8.6 OTP Security
	2.8.7 Reset
	Figure�2-7 Reset Logic
	External Reset
	Figure�2-8 Reset Circuit Using External Reset
	Figure�2-9 Dddesired Reset Response Time

	On-chip Power-On Reset
	Figure�2-10 Reset Timing (Power-On Reset enabled) ...
	Figure�2-11 Reset Circuit Using Power-On Reset

	2.8.8 Oscillator Circuits
	Table�2-2 Oscillator Option

	0
	0
	1
	0
	0
	1
	1
	1
	Crystal Oscillator
	Table�2-3 Crystal Oscillator Configuration, TA = 2...

	0
	1
	30
	30
	15
	0
	1
	32
	32
	10
	0
	1
	45
	30–36
	4
	5.6
	1
	100
	100-156
	0.455
	Figure�2-12 Crystal Oscillator
	External Oscillator
	Figure�2-13 External Oscillator

	R/C Oscillator
	Table�2-4 R/C Oscillator Configuration, -40˚C to +...

	0
	5
	2.0
	9
	4
	2.5
	52
	2
	5.0
	150
	1
	10
	TBD
	32 KHz
	312.5
	Figure�2-14 R/C Oscillator
	2.8.9 Control Registers
	CNTRL Register (Address X'00EE)

	T1C3
	T1C2
	T1C1
	T1C0
	MSEL
	IEDG
	SL1
	SL0
	Bit 7
	Bit 0
	PSW Register (Address X'00EF)

	HC
	C
	T1PNDA
	T1ENA
	EXPND
	BUSY
	EXEN
	GIE
	Bit 7
	Bit 0
	ICNTRL Register (Address X'00E8)

	Unused
	LPEN
	T0PND
	T0EN
	mWPND
	mWEN
	T1PNDB
	T1ENB
	Bit 7
	Bit 0
	2.9 TIMERS
	2.9.1 Timer T0 (IDLE Timer)
	2.9.2 Timer T1
	Mode 1. Processor Independent PWM Mode
	Figure�2-15 Timer in PWM Mode

	Mode 2. External Event Counter Mode
	Figure�2-16 Timer in External Event Counter Mode

	Mode 3. Input Capture Mode
	Figure�2-17 Timer in Input Capture Mode

	2.10 TIMER CONTROL FLAGS
	2.11 POWER SAVING FEATURES
	2.11.1 HALT Mode
	Figure�2-18 Wakeup From HALT

	2.11.2 IDLE Mode
	Figure�2-19 Wakeup From IDLE

	2.12 MULTI-INPUT WAKEUP
	Figure�2-20 Multi-Input Wake Up Logic
	Figure�2-21 Keyboard Scanning

	2.13 INTERRUPTS
	2.13.1 Introduction
	Figure�2-22 Interrupt Block Diagram

	2.13.2 Maskable Interrupts
	1. The enable bit associated with that interrupt i...
	2. The GIE bit is set.
	3. The device is not processing a non-maskable int...
	1. The GIE bit is automatically reset to zero, pre...
	2. The address of the instruction about to be exec...
	3. The program counter(PC) is loaded with 00FF Hex...

	2.13.3 VIS Instruction
	Table�2-5 Interrupt Vector Table
	VIS Execution
	Figure�2-23 VIS Operation
	Figure�2-24 VIS Flow Chart

	2.13.4 Non-maskable Interrupt
	Pending Flag
	Software Trap

	2.13.5 Port L Interrupts
	2.13.6 Interrupt Summary
	1. The Software Trap non-maskable interrupt, trigg...
	2. Maskable interrupts, triggered by an on-chip pe...

	2.14 WATCHDOG/CLOCK MONITOR
	Table�2-6 WATCHDOG Service Register (WDSVR)

	X
	X
	0
	1
	1
	0
	0
	Y
	7
	6
	5
	4
	3
	2
	1
	0
	Table�2-7 WATCHDOG Service Window Select

	0
	0
	0
	1
	1
	0
	1
	1
	2.14.1 Clock Monitor
	2.14.2 WATCHDOG/Clock Monitor Operation
	Table�2-8 WATCHDOG Service Actions

	2.14.3 WATCHDOG and Clock Monitor Summary
	2.14.4 Detection of Illegal Conditions
	1. Executing from undefined ROM
	2. Over “POP”ing the stack by having more returns ...

	2.15 MICROWIRE/PLUS
	Figure�2-25 MICROWIRE/PLUS Application
	Table�2-9 MICROWIRE/PLUS Master Mode Clock Select

	0
	0
	2 X tc
	0
	1
	4 X tc
	1
	x
	8 X tc
	2.15.1 MICROWIRE/PLUS Operation
	MICROWIRE/PLUS Master Mode Operation
	Table�2-10 MICROWIRE/PLUS Mode Settings

	1
	1
	0
	1
	1
	0
	0
	0
	MICROWIRE/PLUS Slave Mode Operation
	Alternate SK Phase Operation and SK Idle Polarity
	Table�2-11 MICROWIRE/PLUS Shift Clock Polarity and...

	Normal
	0
	0
	SK Falling edge
	SK Rising edge
	Low
	Alternate
	1
	0
	SK Rising edge
	SK Falling edge
	Low
	Alternate
	0
	1
	SK Rising edge
	SK Falling edge
	High
	Normal
	1
	1
	SK Falling edge
	SK Rising edge
	High
	Figure�2-26 MICROWIRE/PLUS SPI Mode Interface Timi...
	Figure�2-27 MICROWIRE/PLUS SPI Mode Interface Timi...
	Figure�2-28 MICROWIRE/PLUS SPI Mode Interface Timi...
	Figure�2-29 MICROWIRE/PLUS SPI Mode Interface Timi...
	2.16 MEMORY MAP

	64 On-chip RAM Bytes. Selected by ECON Register
	00 to 2F
	30 to 7F
	128 On-chip RAM Bytes.
	00 to 6F
	70 to 7F
	94
	95
	96
	97
	C7
	C8
	C9
	CA
	CB to CF
	D0
	D1
	D2
	D3
	D4
	D5
	D6
	D7
	D8
	D9
	DA
	DB
	DC
	DD to DF
	E0 to E5
	E6
	E7
	E8
	E9
	EA
	EB
	EC
	ED
	EE
	EF
	F0 to FB
	FC
	FD
	FE
	FF
	2.17 INSTRUCTION SET
	2.17.1 Introduction
	2.17.2 Instruction Features
	2.17.3 Addressing Modes
	Operand Addressing Modes

	Reg/Data Memory
	Contents Before
	Contents After
	Accumulator
	XX Hex
	A6 Hex
	Memory Location 0005 Hex
	A6 Hex
	A6 Hex
	Reg/Data Memory
	Contents Before
	Contents After
	Accumulator
	01 Hex
	87 Hex
	87 Hex
	01 Hex
	B Pointer
	05 Hex
	05 Hex
	Reg/Data Memory
	Contents Before
	Contents After
	Accumulator
	03 Hex
	62 Hex
	Memory Location 0005 Hex
	62 Hex
	03 Hex
	B Pointer
	05 Hex
	06 Hex
	Reg/Data Memory
	Contents Before
	Contents After
	Accumulator
	XX Hex
	05 Hex
	Reg/Data Memory
	Contents Before
	Contents After
	B Pointer
	12 Hex
	07 Hex
	Reg/Data Memory
	Contents Before
	Contents After
	PCU
	04 Hex
	04 Hex
	PCL
	35 Hex
	36 Hex
	Accumulator
	1F Hex
	25 Hex
	Memory Location 041F Hex
	25 Hex
	25 Hex
	Transfer-of-Control Addressing Modes

	Reg
	Contents Before
	Contents After
	PCU
	02 Hex
	02 Hex
	PCL
	05 Hex
	0F Hex
	Reg
	Contents Before
	Contents After
	PCU
	0C Hex
	01 Hex
	PCL
	77 Hex
	25 Hex
	Reg/Memory
	Contents Before
	Contents After
	PCU
	42 Hex
	36 Hex
	PCL
	36 Hex
	25 Hex
	Reg/Memory
	Contents Before
	Contents After
	PCU
	01 Hex
	01 Hex
	PCL
	C4 Hex
	32 Hex
	Accumulator
	26 Hex
	26 Hex
	Memory Location
	0126 Hex
	32 Hex
	32 Hex
	2.17.4 Instruction Types
	Arithmetic Instructions
	Transfer-of-Control Instructions
	Load and Exchange Instructions
	Logical Instructions
	Accumulator Bit Manipulation Instructions
	Stack Control Instructions
	Memory Bit Manipulation Instructions
	Conditional Instructions
	No-Operation Instruction

	2.18 DETAILED FUNCTIONAL DESCRIPTIONS OF INSTRUCTI...
	2.18.1 ADC— Add with Carry

	1
	1
	80
	2
	2
	90/Imm #
	4
	3
	BD/MA/80
	2.18.2 ADD — Add

	1
	1
	84
	4
	3
	BD/MA/84
	2
	2
	94/Imm.#
	2.18.3 AND — And

	1
	1
	85
	2
	2
	95/Imm.#
	4
	3
	BD/MA/85
	2.18.4 ANDSZ — And, Skip if Zero

	2
	2
	60/Imm.#
	2.18.5 CLR — Clear Accumulator

	1
	1
	64
	2.18.6 DCOR — Decimal Correct

	1
	1
	66
	2.18.7 DEC — Decrement Accumulator

	1
	1
	8B
	2.18.8 DRSZ REG# — Decrement Register and Skip if ...

	3
	1
	C (REG#)
	2.18.9 IFBIT — Test Bit

	1
	1
	7#
	4
	3
	BD/MA/7#
	2
	2
	60/2#
	2.18.10 IFBNE # — If B Pointer Not Equal

	1
	1
	4#
	2.18.11 IFC — Test if Carry

	1
	1
	88
	2.18.12 IFEQ — Test if Equal

	1
	1
	82
	2
	2
	92/Imm.#
	4
	3
	BD/MA/82
	3
	3
	A9/MA/Imm.#
	2.18.13 IFGT — Test if Greater Than

	1
	1
	83
	2
	2
	93/Imm.#
	4
	3
	BD/MA/83
	2.18.14 IFNC — Test If No Carry

	1
	1
	89
	2.18.15 IFNE — Test If Not Equal

	1
	1
	B9
	2
	2
	99/Imm.#
	4
	3
	BD/MA/B9
	2.18.16 INC — Increment Accumulator

	1
	1
	8A
	2.18.17 INTR — Interrupt (Software Trap)

	7
	1
	00
	2.18.18 JID — Jump Indirect

	3
	1
	A5
	2.18.19 JMP — Jump Absolute

	3
	2
	2HIADDR/LOADDR
	2.18.20 JMPL — Jump Absolute Long

	4
	3
	AC/HIADDR/ LOADDR
	2.18.21 JP — Jump Relative

	3
	1
	0, 1, E, F + DISP #
	2.18.22 JSR — Jump Subroutine

	5
	2
	3HIADDR/LOADDR
	2.18.23 JSRL — Jump Subroutine Long

	5
	3
	AD/HIADDR/ LOADDR
	2.18.24 LAID — Load Accumulator Indirect

	3
	1
	A4
	2.18.25 LD — Load Accumulator

	1
	1
	AE
	2
	1
	AA
	2
	1
	AB
	2
	2
	98/Imm.#
	3
	2
	9D/MA
	3
	1
	BE
	3
	1
	BA
	3
	1
	BB
	2.18.26 LD — Load B Pointer

	1
	1
	5(15-#)
	2
	2
	9F/Imm.#
	2.18.27 LD — Load Memory

	2
	2
	9E/Imm.#
	2
	2
	9A/Imm.#
	2
	2
	9B/Imm.#
	3
	3
	BC/MA/Imm.#
	2.18.28 LD — Load Register

	3
	2
	D(REG#)/ Imm.#
	2.18.29 NOP — No Operation

	1
	1
	B8
	2.18.30 OR — Or

	1
	1
	87
	2
	2
	97/Imm.#
	4
	3
	BD/MA/87
	2.18.31 POP — Pop Stack

	3
	1
	8C
	2.18.32 PUSH — Push Stack

	3
	1
	67
	2.18.33 RBIT — Reset Memory Bit

	1
	1
	6(8 + #)
	4
	3
	BD/MA/6(8+#)
	2.18.34 RC — Reset Carry

	1
	1
	A0
	2.18.35 RET — Return from Subroutine

	5
	1
	8E
	2.18.36 RETI — Return from Interrupt

	5
	1
	8F
	2.18.37 RETSK — Return and Skip

	5
	1
	8D
	2.18.38 RLC — Rotate Accumulator Left Through Carr...

	1
	1
	A8
	2.18.39 RPND — Reset Pending

	1
	1
	B5
	2.18.40 RRC — Rotate Accumulator Right Through Car...

	1
	1
	B0
	2.18.41 SBIT — Set Memory Bit

	1
	1
	7(8 + #)
	4
	3
	BD/MA/7(8+#)
	2.18.42 SC — Set Carry

	1
	1
	A1
	2.18.43 SUBC — Subtract with Carry

	1
	1
	81
	2
	2
	91/Imm.#
	4
	3
	BD/MA/81
	2.18.44 SWAP — Swap Nibbles of Accumulator

	1
	1
	65
	2.18.45 VIS — Vector Interrupt Select

	5
	1
	B4
	2.18.46 X — Exchange Memory with Accumulator

	1
	1
	A6
	2
	1
	A2
	2
	1
	A3
	3
	2
	9C/MA
	3
	1
	B6
	3
	1
	B2
	3
	1
	B3
	2.18.47 XOR — Exclusive Or

	1
	1
	86
	2
	2
	96/Imm.#
	4
	3
	BD/MA/86
	2.18.48 Register and Symbol Definition
	2.18.49 Instruction Set Summary
	2.18.50 Instruction Execution Time
	Bytes and Cycles per Instruction
	Arithmetic and Logic Instructions

	ADD
	1/1
	3/4
	2/2
	ADC
	1/1
	3/4
	2/2
	SUBC
	1/1
	3/4
	2/2
	AND
	1/1
	3/4
	2/2
	OR
	1/1
	3/4
	2/2
	XOR
	1/1
	3/4
	2/2
	IFEQ
	1/1
	3/4
	2/2
	IFGT
	1/1
	3/4
	2/2
	IFBNE
	1/1
	DRSZ
	1/3
	SBIT
	1/1
	3/4
	RBIT
	1/1
	3/4
	IFBIT
	1/1
	3/4
	RPND
	1/1
	1/1
	3/4
	1/1
	2/3
	1/1
	1/3
	1/3
	3/5
	1/1
	2/5
	1/1
	1/3
	1/1
	1/5
	1/1
	1/5
	1/1
	1/5
	1/1
	1/5
	1/1
	1/7
	1/1
	1/1
	1/3
	1/3
	2/2
	Memory Transfer Instructions

	1/1
	1/3
	2/3
	1/2
	1/3
	1/1
	1/3
	2/3
	2/2
	1/2
	1/3
	1/1
	2/2
	2/2
	3/3
	2/2
	2/3
	3/3
	2.18.51 Opcode Table
	2.19 PROGRAMMING EXAMPLES
	2.19.1 Clear RAM
	2.19.2 Binary/BCD Arithmetic Operations
	2.19.3 Binary Multiplication
	2.19.4 Binary Division
	2.20 ELECTRICAL CHARACTERISTICS
	Absolute Maximum Ratings

	2.20.1 DC Electrical Characteristics (0˚C £ TA £ +...
	2.20.2 AC Electrical Characteristics (0˚C £ TA £ +...
	Absolute Maximum Ratings

	2.20.3 DC Electrical Characteristics (–40˚C £ TA £...
	2.20.4 AC Electrical Characteristics (–40˚C £ TA £...
	Absolute Maximum Ratings

	2.20.5 DC Electrical Characteristics (–40˚C £ TA £...
	2.20.6 AC Electrical Characteristics (–40˚C £ TA £...
	Figure�2-30 MICROWIRE/PLUS Timing

	2.21 ESD/EMI CONSIDERATIONS
	2.22 INPUT PROTECTION
	Figure�2-31 Ports L/C/G/F Input Protection (Except...
	Figure�2-32 Diode Equivalent of Input Protection
	Figure�2-33 On-Chip ESD Detection/Protection Circu...

	2.23 ELECTROMAGNETIC INTERFERENCE (EMI) CONSIDERAT...
	2.23.1 Introduction
	2.23.2 Emission Predictions
	Table�2-12 Electric Field Calculation Results

	2.23.3 Board Layout
	General
	Ground Plane
	Multilayer Board

	2.23.4 Decoupling
	Capacitive Decoupling
	Inductive Decoupling

	2.23.5 Output Series Resistance
	2.23.6 Oscillator Control
	2.23.7 Mechanical Shielding
	2.24 EMI REDUCTION ON THE COP8SAx7
	Figure�2-34 EMI Improvements

	2.24.1 Silicon Design Changes to Achieve Low EMI
	Figure�2-35 Block diagram of EMI Circuitry

	2.24.2 Conclusion
	Chapter 3
	DEVELOPMENT SUPPORT

	3.1 SUMMARY
	3.2 iceMASTER (IM) IN-CIRCUIT EMULATION
	Figure�3-1 COP8 iceMASTER Environment
	IM Order-Information

	3.3 IceMASTER DEBUG MODULE (DM)
	Figure�3-2 COP8-DM Environment
	DM Order-Information

	3.4 IceMASTER EVALUATION PROGRAMMING UNIT (EPU)
	Figure�3-3 EPU-COP8 Tool Environment

	3.4.1 Getting Started With the EPU
	Installing the EPU Software
	Installing the Assembler Software
	Installing the Hardware
	Assembling and Running a Program on the EPU
	Programming a Sample Device
	EPU Order-Information

	3.5 COP8 ASSEMBLER/LINKER SOFTWARE DEVELOPMENT TOO...
	Assembler/Linker Order-Information

	3.6 COP8 C COMPILER
	3.7 INDUSTRY WIDE OTP / EPROM PROGRAMMING SUPPORT
	Approved List:

	3.8 AVAILABLE LITERATURE
	3.9 DIAL-A-HELPER SERVICE
	3.10 DIAL-A-HELPER BBS VIA A STANDARD MODEM
	Dial-A-Helper via FTP
	Dial-A-Helper via a WorldWide Web Browser

	3.11 NATIONAL SEMICONDUCTOR ON THE WORLDWIDE WEB
	3.12 CUSTOMER RESPONSE CENTER
	Chapter 4
	COP8SAx7 APPLICATION IDEAS

	4.1 TESTING A REMOTE NORMALLY OPEN SWITCH FOR CONN...
	J1
	Figure�4�1 Test Circuit
	Figure�4�2 Flow Chart

	4.2 MICROWIRE/PLUS INTERFACE
	4.2.1 MICROWIRE/PLUS Master/Slave Protocol
	1. CS from the master device is connected to G0 of...
	2. From the high-to-low transition on the CS line,...
	Figure�4�3 MICROWIRE/PLUS Sample Protocol Timing
	3. The master initiates data transfer on the MICRO...
	4. A series of data transfers takes place between ...
	5. The master pulls the CS line high to end the MI...
	1. Set the MSEL bit in the CNTRL register to enabl...
	2. Normal mode of operation until interrupted by C...
	3. Set the BUSY flag and load SIOR register with t...
	4. Wait for the BUSY flag to be reset. (The BUSY f...
	5. If data is being read in, the contents of the S...
	6. The prearranged set of data transfers are perfo...
	7. Repeat steps 3 through 6. The user must ensure ...

	4.2.2 NM93C06-COP8SAx7 Interface
	1. The SK clock frequency should be less than 250 ...
	Figure�4�4 NM93C06-COP8SAx7 Interface
	2. The CS low period following an Erase/Write inst...
	3. The start bit on DI must be programmed as a “0”...
	4. In the read mode, following an instruction and ...
	5. The data out train starts with a dummy bit 0 an...
	6. After a read cycle, the CS must be brought low ...

	1
	0000
	1
	1000
	1
	0100
	1
	1100
	1
	1100
	1
	1100
	1
	1100

	4.3 TIMER APPLICATIONS
	4.4 TIMER PWM APPLICATIONS
	4.4.1 Rudimentary D-A Converter
	Figure�4�5 Timer PWM Applications

	4.4.2 PWM Motor Control
	4.4.3 AC Motor TRIAC Control
	Figure�4�6 PWM Motor Control

	4.4.4 Timer Capture Example
	Figure�4�7 Timer Capture Application

	4.4.5 External Event Counter Example

	4.5 TRIAC CONTROL
	4.6 EXTERNAL POWER WAKEUP CIRCUIT
	Figure�4�8 Power Wakeup Using An NPN Transistor
	Figure�4�9 Power Wakeup Using Diodes And Resistors...

	4.7 BATTERY-POWERED WEIGHT MEASUREMENT
	Figure�4�10 Battery-powered Weight Measurement

	4.8 ZERO CROSS DETECTION
	4.9 INDUSTRIAL TIMER
	Figure�4�11 Industrial Timer Application

	4.10 COP8SAA7 ELECTRONIC KEY APPLICATIONS
	Figure�4�12 Transmitter in Single Cell Operation
	4.10.1 Typical Applications
	4.10.2 Flexibility
	4.10.3 Low Cost
	4.10.4 Small Transmitter Size
	4.10.5 Low-Cost Version for Rolling Code
	Figure�4�13 Rolling Code IR Transmitter Using Exte...
	Figure�4�14 Rolling Code IR/RF Transmitter Using O...

	4.10.6 Receiver Circuit

	4.11 COP8SAx7 DIRECT LED DISPLAY DRIVE APPLICATION...
	Figure�4�15 LED Direct Drive Using COP8SAx7
	4.11.1 Improved Brightness
	Figure�4�16 LED Drive

	1) REFERS TO THE USER’S MAIN PROGRAM.
	Figure�4�17 Four-Way Multiplexed Direct LED Drive

	4.12 CORDLESS PHONE APPLICATION
	Figure�4�18 Handset Block Diagram
	Figure�4�19 Base Block Diagram
	4.12.1 Typical Application Requirements
	Tone Dialing
	Battery Saving Functions
	RF Transmission and Digital Security Code Generati...

	4.13 COP8SAC7 BASED AUTOMATED SECURITY/MONITORING ...
	Figure�4�20 Example of a Security/Monitoring Syste...
	4.13.1 Typical Application Requirements
	Keypad Scanning
	Display Terminal Unit
	LCD Display Unit
	Time Keeping

	4.14 COP8SAC7 Keyboard Applications
	Figure�4�21 Laptop/Notebook Keyboard Schematics
	4.14.1 Typical Application Requirements
	Keyboard Scanning
	LED Direct Drive

	4.14.2 Typical Applications
	More Information

	4.15 COP8SAA7 CLOSED LOOP TEMPERATURE CONTROL APPL...
	4.15.1 Primary System considerations:
	Figure�4�22 Automotive Closed Loop Air Control

	4.15.2 Typical Requirements for Motor Control Syst...
	Single Slope A/D or V/F Conversion
	Small LED or LCD Display Units

	4.16 AUTOMATIC WASHING MACHINE
	Figure�4�23 Automatic Washing Machine Control Mode...
	4.16.1 Reliability and Safety Features
	4.16.2 LED or LCD Display Units
	4.16.3 Zero Cross Detection
	4.16.4 Other I/O Functions
	4.16.5 External EEPROM Interface
	4.16.6 Software Considerations
	Figure�4�24 Main Program Flow
	Figure�4�25 Interrupt Routine Flow

	4.17 AIR CONDITIONER CONTROLLER
	Figure�4�26 Block Diagram of Air Conditioning Cont...
	4.17.1 Temperature Detection
	Figure�4�27 Temperature Detection Circuit

	4.17.2 Keypad Scanning
	Figure�4�28 Keypad Scanning

	4.17.3 Over-Voltage and Under-Voltage Detection
	Figure�4�29 Over-Voltage and Under-Voltage Detecti...

	4.17.4 Drive Circuits for Fan, Compressor and Buzz...
	Figure�4�30 Drives Circuits for Fan, Compressor an...
	Appendix A
	PHYSICAL DIMENSIONS

	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

