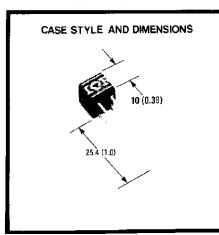
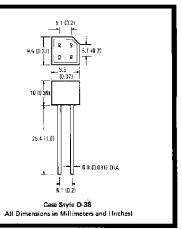

INTERNATIONAL RECTIFIER

1KAB-E SERIES 1.2 amp rectifier bridge

Maximum Ratings

		1KAB-E		
Io		1.2	A	
I _{ESM}	50 Hz	50	А	
1 317	60 Hz	52		
ı2 _t	50 Hz	17.7	— A ² s	
	60 Hz	16.1	A-3	
VRBM		100 -1,000	V	




Single Phase Bridge Rectifier

Description/Features

A 1.2A Diode Bridge Rectifier Assembly designed for new circuits and for replacement service. For printed circuit board applications,

- Ease of assembly, installation, inventory
- High surge rating
- Compact

Document Number: 93559

www.vishay.com

VOLTAGE RATINGS

CROSS REFERENCE

			Maximum (1)	Minimum ()	IR No.	DIN Code	
Туре	VRRM, VRSM (V)	VRMS (recommended) (V)	Load Capacitance {µF}	Source Resistance (52)	1KAB10E 1KAB20E	840C1000 880C1000	
1KAB10E 1KAB20E 1KAB40E 1KAB60E	100 200 400 600	40 80 125 250	5000 3300 1600 1200	0.5 0.8 1.5 2.6	1KA840E 1KA860E 1KA880E 1KA8100E	B125C1000 B250C1000 B380C1000 B500C1000	
1KABBÜE	800	380 500	800 600	3.0	L		

⁽¹⁾ See Figure 3.

ELECTRICAL SPECIFICATIONS

		1KAB-E	Units	Conditions	
10	Max. DC output current	1.2	Д	T _A = 45°C, Resistive or inductive load	
		1,0	А	T _A = 45°C, Capacitive load	
FSM	Max, paak one cycle, non- repetitive surge current	50	Α.,	50 Hz half cycle sine wave or 6 ms rectangular pulse Following any rated load condition, and with rated V _{RRM}	
		52		60 Hz half cycle sine wave applied following surge.	
ı2 _t	Max. I ² t capability for fusing	12,5	——————————————————————————————————————	t = 10 ms Reted V _{BRM} applied following surge,	
		11.3		$t = 8.3 \text{ ms}$ initial $T_j = 150^{\circ} \text{C}$.	
		17.7	A ² s	t = 10 ms V _{RRM} = 0 following surge,	
	_	16,1		$t = 8.3 \text{ ms}$ initial $T_J = 150^{\circ}\text{C}$.	
$\sqrt{12}\sqrt{t}$	Max. $1^2 \sqrt{\frac{1}{t}}$ capability for fusing	177	$A^2\sqrt{s}$	V _{RRM} following surge = 0, t = 0.1 to 10 ms	
VFM	Max, peak forward voltage ps- leg	1.1	v	I _O = 1.2A (1.88A pk)	
^I BM	Typical peak reverse current per leg	10	μΑ	At rated V _{RRM} . T _J = 25°C	
	her refi	500	μА	At rated V _{RRM} , T _J = 150 ^o C	
f	Operating frequency range	40 to 2000	Hz		

⁽²⁾ t^2 t for time $t_x = t^2 \sqrt{t} + \sqrt{t_x}$.

THERMAL AND MECHANICAL SPECIFICATIONS

		IKAB-E	Units	Conditions
Tj, ⊤ _{stg}	Operating and storage junction temperature ranges	-40 to 150	оc	
wi	Approximate weight	3 (0,1)	g (oz.)	

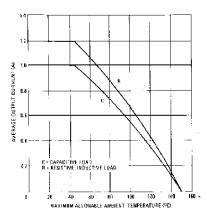


Fig. 1 — Average (DC) Output Current Vs. Maximum Allowable Ambient Temperature

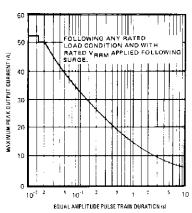


Fig. 2 — Maximum Non-Repetitive Surge Current Vs. Pulse Train Duration (f = 50 Hz)

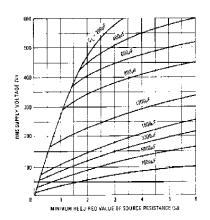


Fig. 3 — Minimum Required Source Resistance Vs. RMS Supply Voltage and Load Capacitance

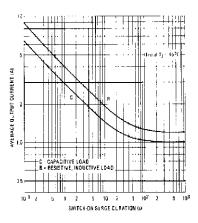


Fig. 4 — Maximum Switch-on Surge Current Vs. Surge Duration

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier[®], IR[®], the IR logo, HEXFET[®], HEXSense[®], HEXDIP[®], DOL[®], INTERO[®], and POWIRTRAIN[®] are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.

Document Number: 99901 www.vishay.com
Revision: 12-Mar-07 1