Trench Power MOSFET 8.0 V, 3.4 A Dual P-Channel ChipFET™

Features

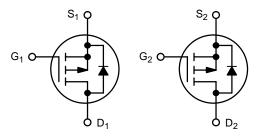
- Offers an Ultra Low R_{DS(on)} Solution in the ChipFET Package
- Miniature ChipFET Package 40% Smaller Footprint than TSOP-6 making it an Ideal Device for Applications where Board Space is at a Premium
- Low Profile (<1.1 mm) Allows it to Fit Easily into Extremely Thin Environments such as Portable Electronics
- Designed to Provide Low R_{DS(on)} at Gate Voltage as Low as 1.8 V, the Operating Voltage used in many Logic ICs in Portable Electronics
- Simplifies Circuit Design since Additional Boost Circuits for Gate Voltages are not Required
- Operated at Standard Logic Level Gate Drive, Facilitating Future Migration to Lower Levels using the same Basic Topology

Applications

- Optimized for Battery and Load Management Applications in Portable Equipment such as MP3 Players, Cell Phones, Digital Cameras, Personal Digital Assistant and other Portable Applications
- Charge Control in Battery Chargers
- Buck and Boost Converters

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

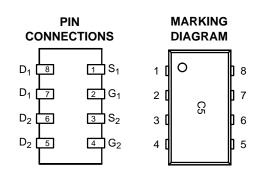
Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	-8.0	V _{dc}
Gate-to-Source Voltage - Continuous	V _{GS}	±8.0	V _{dc}
Drain Current - Continuous - 5 seconds	I _D	-3.4 -4.6	Α
Total Power Dissipation Continuous @ $T_A = 25^{\circ}C$ (5 sec) @ $T_A = 25^{\circ}C$ Continuous @ $85^{\circ}C$ (5 sec) @ $85^{\circ}C$	P _D	1.1 2.1 0.6 1.1	W
Continuous Source Current (Diode Conduction)	Is	-1.1	Α
Thermal Resistance (Note 1) Junction-to-Ambient, 5 sec Junction-to-Ambient, Continuous	R _{θJA} R _{θJA}	60 113	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	TL	260	°C


^{1.} When surface mounted to a 1" x 1" FR4 board.

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
8 V	50 mΩ @ -4.5 V	3.4 A
	68 mΩ @ –2.5 V	0.4 A
	100 mΩ @ –1.8 V	



P-Channel MOSFET

P-Channel MOSFET

ChipFET CASE 1206A Style 2

C5 = Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping [†]		
NTHD2102PT1	ChipFET	3000/Tape & Reel		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

$\textbf{ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}C \ unless \ otherwise \ noted)$

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
OFF CHARACTERISTICS	1					
Drain-to-Source Breakdown Voltage (Note 2) Temperature Coefficient (Positive)	V _{(Br)DSS}	$V_{GS} = 0 \ V_{dc}, \ I_{D} = -250 \ \mu A_{dc}$	-8.0	-	-	V _{dc}
Gate-Body Leakage Current Zero	I _{GSS}	$V_{DS} = 0 \ V_{dc}, \ V_{GS} = \pm 8.0 \ V_{dc}$	-	_	±100	nA _{dc}
Zero Gate Voltage Drain Current	I _{DSS}	$\begin{aligned} V_{DS} &= -6.4 \ V_{dc}, \ V_{GS} = 0 \ V_{dc} \\ V_{DS} &= -6.4 \ V_{dc}, \ V_{GS} = 0 \ V_{dc}, \\ T_{J} &= 85^{\circ}C \end{aligned}$	-	- -	-1.0 -5.0	μA _{dc}
ON CHARACTERISTICS (Note 2)			•			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A_{dc}$	-0.45	_	-1.5	V_{dc}
Static Drain-to-Source On-Resistance	R _{DS(on)}	$\begin{aligned} &V_{GS} = -4.5 \ V_{dc}, \ I_{D} = -3.4 \ A_{dc} \\ &V_{GS} = -2.5 \ V_{dc}, \ I_{D} = -2.7 \ A_{dc} \\ &V_{GS} = -1.8 \ V_{dc}, \ I_{D} = -1.0 \ A_{dc} \end{aligned}$	- - -	50 68 100	58 85 160	mΩ
Forward Transconductance	9FS	$V_{DS} = -5.0 V_{dc}, I_{D} = -3.4 A_{dc}$	-	8.0	_	S
Diode Forward Voltage	V _{SD}	$I_S = -1.1 A_{dc}, V_{GS} = 0 V_{dc}$	-	-0.8	-1.2	V
DYNAMIC CHARACTERISTICS						
Input Capacitance	C _{iss}	$V_{DS} = -6.4 V_{dc}$	-	715	-	pF
Output Capacitance	C _{oss}	$V_{GS} = 0 V$	-	160	_	
Transfer Capacitance	C _{rss}	f = 1.0 MHz	-	120	_	
SWITCHING CHARACTERISTICS (Note 3)						
Turn-On Delay Time	t _{d(on)}	$V_{DD} = -6.4 V_{dc}$	-	8.0	_	ns
Rise Time	t _r	$V_{GS} = -4.5 V_{dc}$	-	20	_	
Turn-Off Delay Time	t _{d(off)}	$I_{D} = -3.2 A_{dc}$	-	20	_	
Fall Time	t _f	$R_G = 2.0 \Omega$	-	15	_	
Gate Charge	Qg	$V_{GS} = -2.5 V_{dc}$	-	8.0	16	nC
	Q _{gs}	$I_D = -3.2 A_{dc}$	-	2.2	-	
	Q _{gd}	$V_{DS} = -6.4 V_{dc}$	-	4.0	-	
Source-Drain Reverse Recovery Time	t _{rr}	$I_F = -0.9 A_{dc}$, $di/dt = 100$	-	15	30	nA _{dc}

Pulse Test: Pulse Width = 250 μs, Duty Cycle = 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL ELECTRICAL CHARACTERISTICS

10

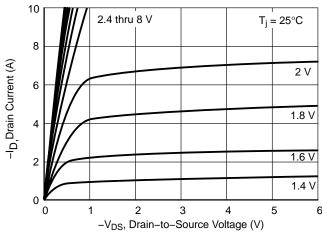
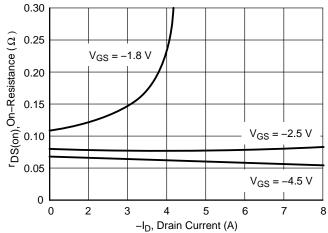



Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

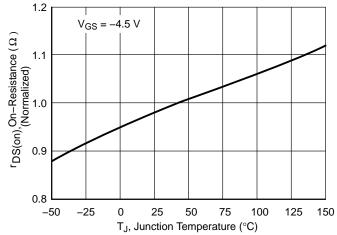
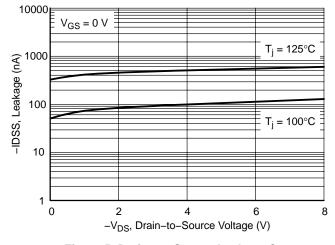



Figure 3. On–Resistance vs. Drain Current and Gate Voltage

Figure 4. On–Resistance Variation vs. Temperature

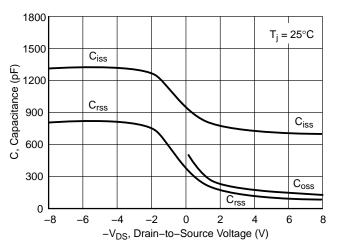


Figure 5. Drain-to-Source Leakage Current vs. Voltage

Figure 6. Capacitance Variation

TYPICAL ELECTRICAL CHARACTERISTICS

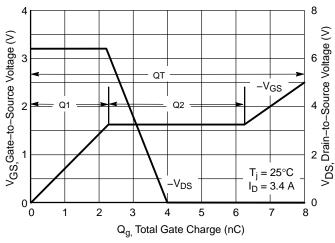


Figure 7. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

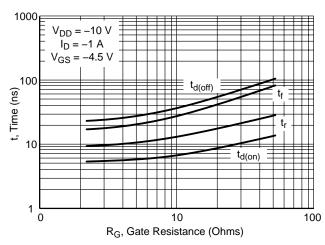


Figure 8. Resistive Switching Time Variation vs. Gate Resistance

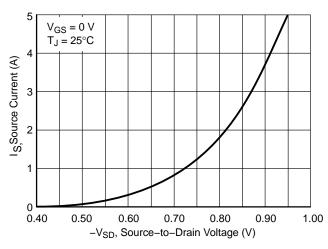


Figure 9. Diode Forward Voltage vs. Current

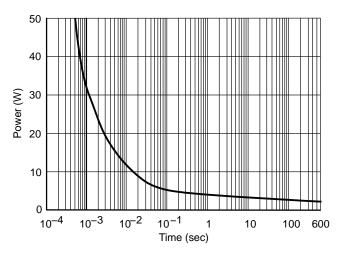


Figure 10. Single Pulse Power

TYPICAL ELECTRICAL CHARACTERISTICS

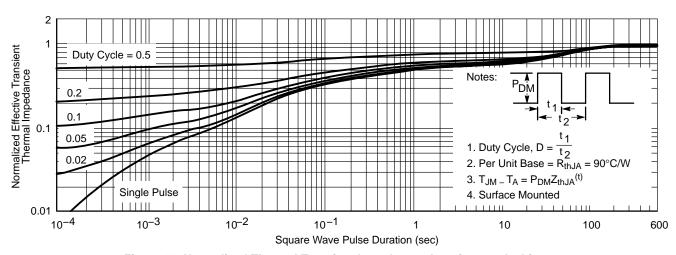


Figure 11. Normalized Thermal Transient Impedance, Junction-to-Ambient

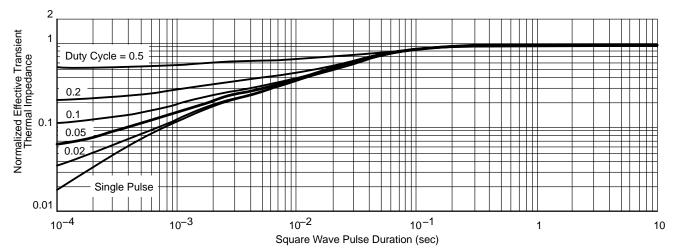
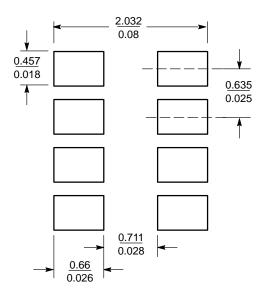



Figure 12. Normalized Thermal Transient Impedance, Junction-to-Foot

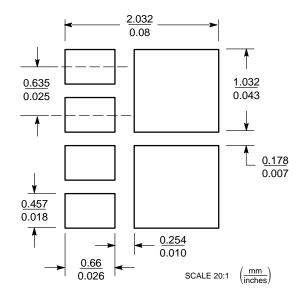
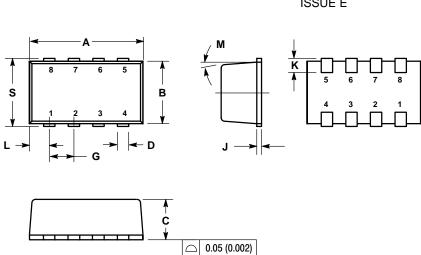


Figure 13. Basic

Figure 14. Style 2

BASIC PAD PATTERNS


The basic pad layout with dimensions is shown in Figure 14. This is sufficient for low power dissipation MOSFET applications, but power semiconductor performance requires a greater copper pad area, particularly for the drain leads.

The minimum recommended pad pattern shown in Figure 13 improves the thermal area of the drain connections (pins 5, 6, 7, 8) while remaining within the

confines of the basic footprint. The drain copper area is 0.0019 sq. in. (or 1.22 sq. mm). This will assist the power dissipation path away from the device (through the copper leadframe) and into the board and exterior chassis (if applicable) for the single device. The addition of a further copper area and/or the addition of vias to other board layers will enhance the performance still further.

PACKAGE DIMENSIONS

ChipFET CASE 1206A-03 **ISSUE E**

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. MOLD GATE BURRS SHALL NOT EXCEED 0.13 MM PER SIDE.
 4. LEADFRAME TO MOLDED BODY OFFSET IN HORIZONTAL AND VERTICAL SHALL NOT EXCEED 0.08 MM.
 5. DIMENSIONS A AND B EXCLUSIVE OF MOLD GATE BURRS
- 5. DIMENSIONS A AND B EAST-SEARCH
 BURRS.
 6. NO MOLD FLASH ALLOWED ON THE TOP AND
 BOTTOM LEAD SURFACE.
 7. 1206A-01 AND 1206A-02 OBSOLETE. NEW
 STANDARD IS 1206A-03.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	2.95	3.10	0.116	0.122	
В	1.55	1.70	0.061	0.067	
C	1.00	1.10	10 0.039 0.0		
D	0.25	0.35	0.010	0.014	
G	0.65	BSC	0.025 BSC		
J	0.10	0.20	0.004	0.008	
K	0.28	0.42	0.011	0.017	
L	0.55 BSC		0.022 BSC		
M	5° NOM		5 ° NOM		
S	1 80	2 00	0.072	0.080	

- STYLE 2:
 PIN 1. SOURCE 1
 2. GATE 1
 3. SOURCE 2
 4. GATE 2
 5. DRAIN 2
 6. DRAIN 2
 7. DRAIN 1
 8. DRAIN 1

ChipFET is a trademark of Vishay Siliconix

ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.