Product Preview

Small Signal MOSFET

20 V, 350 mA, Single P-Channel, Gate Zener, SC-75 & SC-89

Features

- Low R_{DS(on)} for Higher Efficiency and Longer Battery Life
- Small Outline Package (1.6 x 1.6 mm)
- Low Threshold
- ESD Protected Gate
- Pb-Free Package for Green Manufacturing (G Suffix)

Applications

- Battery Operated Systems
- Load Switch for Cell Phones, PDAs, Digital Cameras, etc.
- Power Supply Converter Circuits

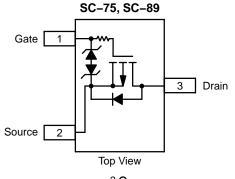
MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

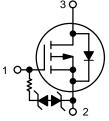
Parameter	Symbol	Value	Units	
Drain-to-Source Voltage	Drain-to-Source Voltage		-20	V
Gate-to-Source Voltage		V _{GS}	±6.0	V
Continuous Drain Current (Note 1) Steady State		Ι _D	-350	mA
Power Dissipation (Note 1)	Steady State	P _D	150	mW
Pulsed Drain Current tp =10 μs		I _{DM}	±1000	mA
Operating Junction and Storage	T _J , T _{STG}	–55 to 150	°C	
Continuous Source Current (Body Diode)		I _S	-250	mA
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		T _L	260	°C

THERMAL RESISTANCE RATINGS

Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	TBD	°C/W
Junction–to–Ambient – t ≤ 10 s (Note 1)	$R_{\theta JA}$	TBD	

1. Surface mounted on FR4 board using 1 in sq. pad size (Cu area = 1.127 in sq. [1 oz] including traces).


This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	(BR)DSS R _{DS(on)} TYP	
–20 V	0.55 Ω @ -4.5 V	
	0.75 Ω @ -2.5 V	-350 mA
	1.2 Ω @ –1.8 V	

P-Channel MOSFET

3 2 2 SC-75 / SOT-416 CASE 463 STYLE 5

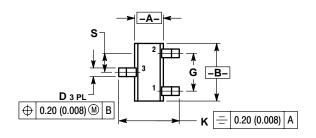
SC-89 CASE 463C

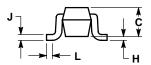
MARKING DIAGRAM 3 XX D

xx = Specific Device Code
D = Date Code

ORDERING INFORMATION

Device	Package	Shipping
NTx4151PT1	TBD	TBD
NTx4151PT1G	TBD (Pb-Free)	TBD

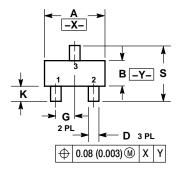

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise stated)

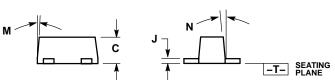

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	-20			V
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = -16 V			-100	nA
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 4.5 \text{ V}$			±2.0	μА
ON CHARACTERISTICS (Note 2)						
Gate Threshold Voltage	V _{GS(TH)}	$V_{DS} = 3.0 \text{ V}, I_D = 250 \mu\text{A}$	-0.45		1.0	V
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = -4.5 \text{ V}, I_D = -350 \text{ mA}$		0.55	0.8	Ω
		$V_{GS} = -2.5 \text{ V}, I_D = -300 \text{ mA}$		0.75	1.2	
		$V_{GS} = -1.8 \text{ V}, I_D = -150 \text{ mA}$		1.2	1.8	
Forward Transconductance	9 _{FS}	$V_{DS} = 10 \text{ V}, I_{D} = -250 \text{ mA}$		0.4		S
CHARGES AND CAPACITANCES						
Input Capacitance	C _{ISS}	$V_{GS} = 0 \text{ V, } f = 1.0 \text{ MHz,}$		TBD		pF
Output Capacitance	C _{OSS}	$V_{DS} = 5.0 \text{ V}$		TBD		1
Reverse Transfer Capacitance	C _{RSS}			TBD		1
SWITCHING CHARACTERISTICS (No	te 3)					
Turn-On Delay Time	td _(ON)	V _{GS} = -4.5 V, V _{DD} = -10 V,		TBD		ns
Rise Time	tr	$I_D = 10 \text{ mA}, R_G = 10 \Omega$		TBD		
Turn-Off Delay Time	td _(OFF)			TBD		1
Fall Time	tf			TBD		
DRAIN-SOURCE DIODE CHARACTE	RISTICS					
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 \text{ V, } I_S = -150 \text{ mA}$		TBD	-1.2	V

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

PACKAGE DIMENSIONS

SC-75 / SOT-416 CASE 463-01 ISSUE C




- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	0.70	0.90	0.028	0.035	
В	1.40	1.80	0.055	0.071	
C	0.60	0.90	0.024	0.035	
D	0.15	0.30	0.006	0.012	
G	1.00 BSC		0.039 BSC		
Η		0.10		0.004	
J	0.10	0.25	0.004	0.010	
K	1.45	1.75	0.057	0.069	
L	0.10	0.20	0.004	0.008	
S	0.50 BSC		0.020 BSC		

STYLE 5: PIN 1. GATE 2. SOURCE 3. DRAIN

SC-89 CASE 463C-03 ISSUE C

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETERS
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
 4. 463C-01 OBSOLETE, NEW STANDARD 463C-02.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	1.50	1.60	1.70	0.059	0.063	0.067	
В	0.75	0.85	0.95	0.030	0.034	0.040	
С	0.60	0.70	0.80	0.024	0.028	0.031	
D	0.23	0.28	0.33	0.009	0.011	0.013	
G	0.50 BSC			0.020 BSC			
Н	0.53 REF			0.021 REF			
J	0.10	0.15	0.20	0.004	0.006	0.008	
K	0.30	0.40	0.50	0.012	0.016	0.020	
L	1	1.10 REF			0.043 REF		
M			10			10	
N			10			10	
S	1.50	1.60	1.70	0.059	0.063	0.067	

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.