

# MJ14001 (PNP), MJ14002\* (NPN), MJ14003\* (PNP)

\*Preferred Devices

## High-Current Complementary Silicon Power Transistors

Designed for use in high-power amplifier and switching circuit applications.

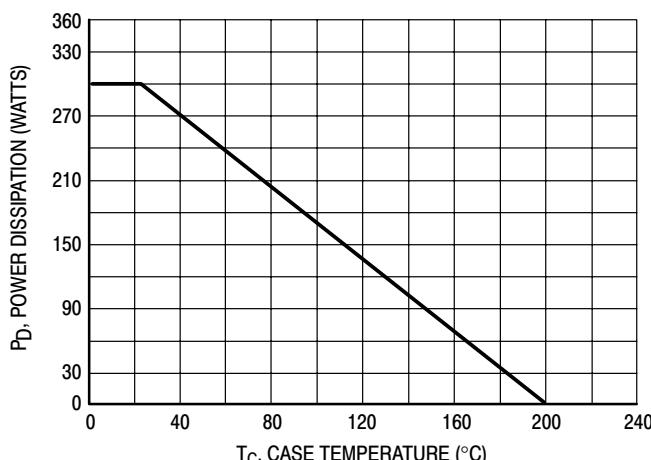
- High Current Capability –  
 $I_C$  Continuous = 60 Amperes
- DC Current Gain –  
 $h_{FE} = 15-100$  @  $I_C = 50$  Adc
- Low Collector-Emitter Saturation Voltage –  
 $V_{CE(sat)} = 2.5$  Vdc (Max) @  $I_C = 50$  Adc

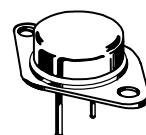
### MAXIMUM RATINGS

| Rating                                                                                   | Symbol         | MJ14001 | MJ14002<br>MJ14003 | Unit                |
|------------------------------------------------------------------------------------------|----------------|---------|--------------------|---------------------|
| Collector-Emitter Voltage                                                                | $V_{CEO}$      | 60      | 80                 | Vdc                 |
| Collector Base Voltage                                                                   | $V_{CBO}$      | 60      | 80                 | Vdc                 |
| Emitter-Base Voltage                                                                     | $V_{EBO}$      |         | 5.0                | Vdc                 |
| Collector Current – Continuous                                                           | $I_C$          |         | 60                 | Adc                 |
| Base Current – Continuous                                                                | $I_B$          |         | 15                 | Adc                 |
| Emitter Current – Continuous                                                             | $I_E$          |         | 75                 |                     |
| Total Power Dissipation<br>@ $T_C = 25^\circ\text{C}$<br>Derate above $25^\circ\text{C}$ | $P_D$          |         | 300                | Watts               |
|                                                                                          |                |         | 1.71               | W/ $^\circ\text{C}$ |
| Operating and Storage<br>Junction Temperature Range                                      | $T_J, T_{stg}$ |         | -65 to +200        | $^\circ\text{C}$    |

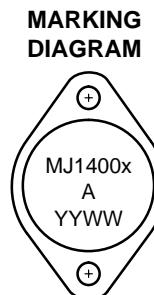
### THERMAL CHARACTERISTICS

| Characteristic                          | Symbol          | Max   | Unit               |
|-----------------------------------------|-----------------|-------|--------------------|
| Thermal Resistance,<br>Junction to Case | $R_{\theta JC}$ | 0.584 | $^\circ\text{C/W}$ |





Figure 1. Power Derating




ON Semiconductor®

<http://onsemi.com>

COMPLEMENTARY SILICON  
POWER TRANSISTORS  
60 AMPERES  
60-80 VOLTS  
300 WATTS



TO-204 (TO-3)  
STYLE 1  
CASE 197A



MJ1400x = Device Code  
A = Assembly Location  
YY = Year  
WW = Work Week  
x = 1, 2, or 3

### ORDERING INFORMATION

| Device  | Package | Shipping       |
|---------|---------|----------------|
| MJ14001 | TO-3    | 100 Units/Tray |
| MJ14002 | TO-3    | 100 Units/Tray |
| MJ14003 | TO-3    | 100 Units/Tray |

Preferred devices are recommended choices for future use and best overall value.

# MJ14001 (PNP), MJ14002\* (NPN), MJ14003\* (PNP)

ELECTRICAL CHARACTERISTICS ( $T_C = 25^\circ\text{C}$  unless otherwise noted)

| Characteristic                                                                                                                                                                                                           | Symbol                       | Min | Max  | Unit |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----|------|------|
| <b>OFF CHARACTERISTICS</b>                                                                                                                                                                                               |                              |     |      |      |
| Collector-Emitter Sustaining Voltage (Note 1)<br>( $I_C = 200 \text{ mA}_\text{dc}$ , $I_B = 0$ )                                                                                                                        | $V_{\text{CEO}(\text{sus})}$ | 60  | —    | Vdc  |
|                                                                                                                                                                                                                          |                              | 80  | —    |      |
| Collector Cutoff Current<br>( $V_{\text{CE}} = 30 \text{ Vdc}$ , $I_B = 0$ )<br>( $V_{\text{CE}} = 40 \text{ Vdc}$ , $I_B = 0$ )                                                                                         | $I_{\text{CEO}}$             | —   | 1.0  | mA   |
|                                                                                                                                                                                                                          |                              | —   | 1.0  |      |
| Collector Cutoff Current<br>( $V_{\text{CE}} = 60 \text{ Vdc}$ , $V_{\text{BE}(\text{off})} = 1.5 \text{ V}$ )<br>( $V_{\text{CE}} = 80 \text{ Vdc}$ , $V_{\text{BE}(\text{off})} = 1.5 \text{ V}$ )                     | $I_{\text{CEX}}$             | —   | 1.0  | mA   |
|                                                                                                                                                                                                                          |                              | —   | 1.0  |      |
| Collector Cutoff Current<br>( $V_{\text{CB}} = 60 \text{ Vdc}$ , $I_E = 0$ )<br>( $V_{\text{CB}} = 80 \text{ Vdc}$ , $I_E = 0$ )                                                                                         | $I_{\text{CBO}}$             | —   | 1.0  | mA   |
|                                                                                                                                                                                                                          |                              | —   | 1.0  |      |
| Emitter Cutoff Current<br>( $V_{\text{BE}} = 5.0 \text{ Vdc}$ , $I_C = 0$ )                                                                                                                                              | $I_{\text{EBO}}$             | —   | 1.0  | mA   |
| <b>ON CHARACTERISTICS</b>                                                                                                                                                                                                |                              |     |      |      |
| DC Current Gain (Note 1)<br>( $I_C = 25 \text{ Adc}$ , $V_{\text{CE}} = 3.0 \text{ V}$ )<br>( $I_C = 50 \text{ Adc}$ , $V_{\text{CE}} = 3.0 \text{ V}$ )<br>( $I_C = 60 \text{ Adc}$ , $V_{\text{CE}} = 3.0 \text{ V}$ ) | $h_{\text{FE}}$              | 30  | —    | —    |
|                                                                                                                                                                                                                          |                              | 15  | 100  |      |
|                                                                                                                                                                                                                          |                              | 5.0 | —    |      |
| Collector-Emitter Saturation Voltage (Note 1)<br>( $I_C = 25 \text{ Adc}$ , $I_B = 2.5 \text{ Adc}$ )<br>( $I_C = 50 \text{ Adc}$ , $I_B = 5.0 \text{ Adc}$ )<br>( $I_C = 60 \text{ Adc}$ , $I_B = 12 \text{ Adc}$ )     | $V_{\text{CE}(\text{sat})}$  | —   | 1.0  | Vdc  |
|                                                                                                                                                                                                                          |                              | —   | 2.5  |      |
|                                                                                                                                                                                                                          |                              | —   | 3.0  |      |
| Base-Emitter Saturation Voltage (Note 1)<br>( $I_C = 25 \text{ Adc}$ , $I_B = 2.5 \text{ Adc}$ )<br>( $I_C = 50 \text{ Adc}$ , $I_B = 5.0 \text{ Adc}$ )<br>( $I_C = 60 \text{ Adc}$ , $I_B = 12 \text{ Adc}$ )          | $V_{\text{BE}(\text{sat})}$  | —   | 2.0  | Vdc  |
|                                                                                                                                                                                                                          |                              | —   | 3.0  |      |
|                                                                                                                                                                                                                          |                              | —   | 4.0  |      |
| <b>DYNAMIC CHARACTERISTICS</b>                                                                                                                                                                                           |                              |     |      |      |
| Output Capacitance<br>( $V_{\text{CB}} = 10 \text{ Vdc}$ , $I_E = 0$ , $f = 0.1 \text{ MHz}$ )                                                                                                                           | $C_{\text{ob}}$              | —   | 2000 | pF   |

1. Pulse Test: Pulse Width = 300  $\mu\text{s}$ , Duty Cycle  $\leq 2\%$ .

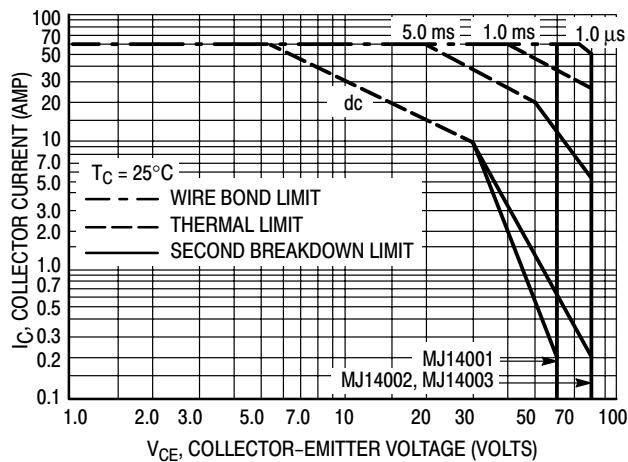



Figure 2. Maximum Rated Forward Biased Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate  $I_C - V_{\text{CE}}$  limits of the transistor that must be observed for reliable operation: i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 2 is based on  $T_{\text{J}(\text{pk})} = 200^\circ\text{C}$ ;  $T_C$  is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided  $T_{\text{J}(\text{pk})} \leq 200^\circ\text{C}$ .  $T_{\text{J}(\text{pk})}$  may be calculated from the data in Figure 13. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

# MJ14001 (PNP), MJ14002\* (NPN), MJ14003\* (PNP)

## TYPICAL ELECTRICAL CHARACTERISTICS

MJ14002 (NPN)

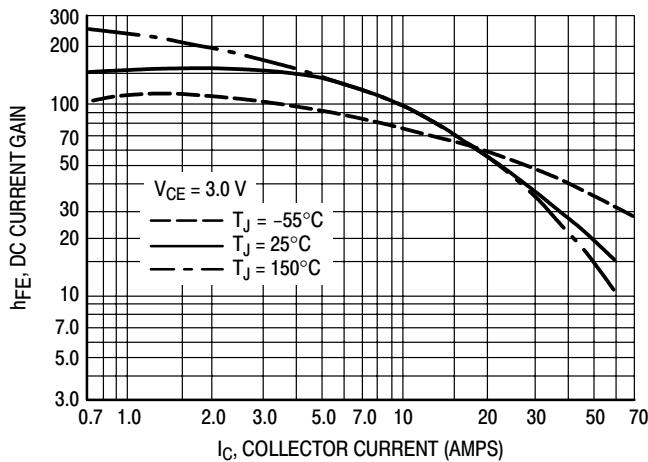



Figure 3. DC Current Gain

MJ14001, MJ14003 (PNP)

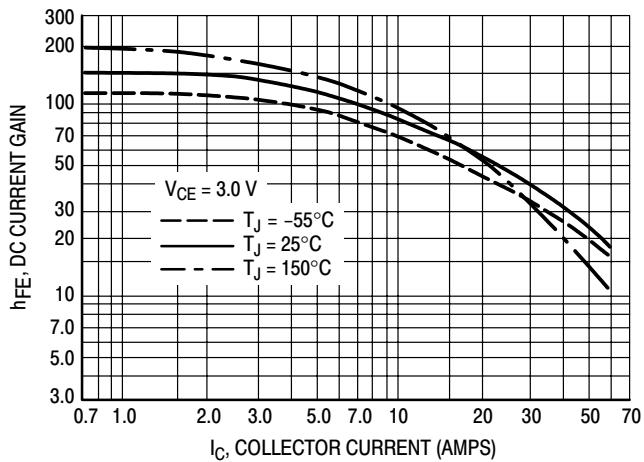



Figure 4. DC Current Gain

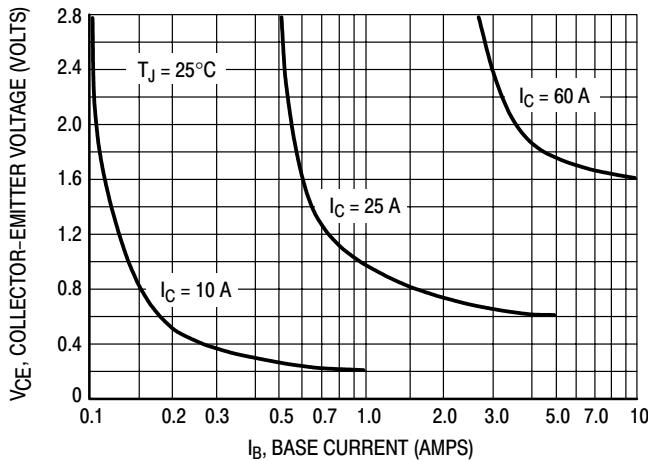



Figure 5. Collector Saturation Region



Figure 6. Collector Saturation Region

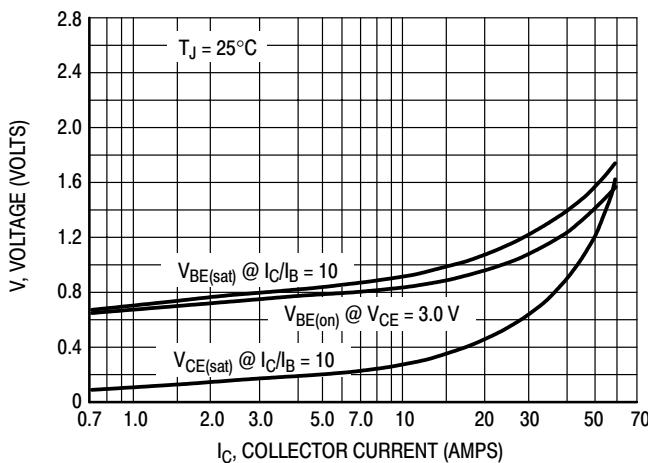



Figure 7. "On" Voltages

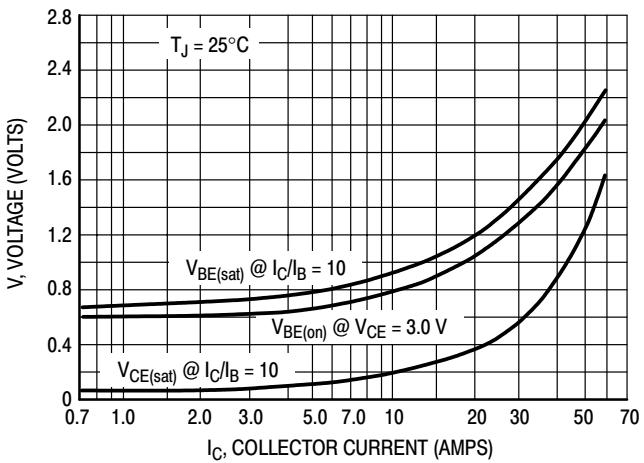



Figure 8. "On" Voltages

# MJ14001 (PNP), MJ14002\* (NPN), MJ14003\* (PNP)

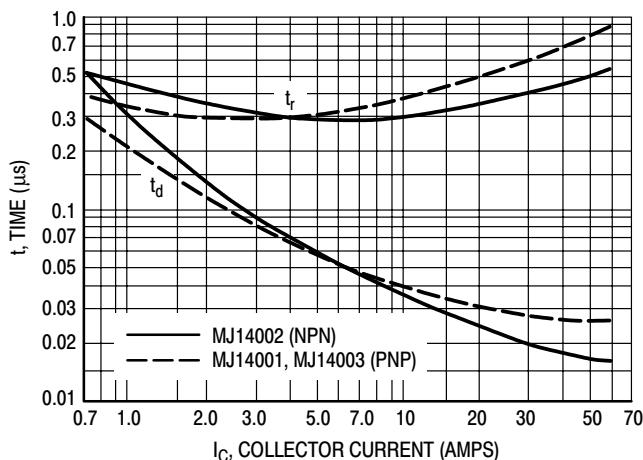



Figure 9. Turn-On Switching Times

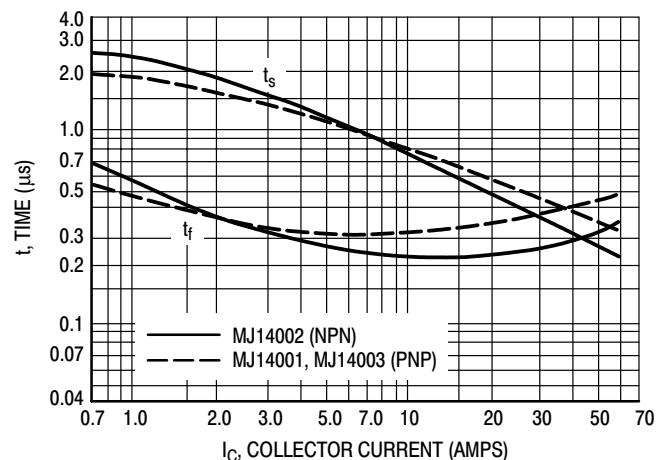



Figure 10. Turn-Off Switching Times

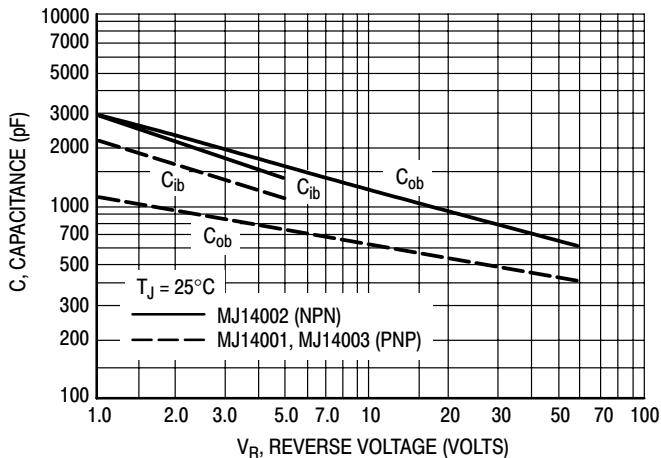
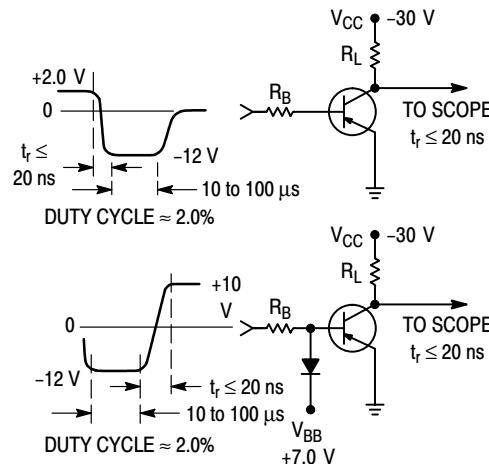




Figure 11. Capacitance Variation



FOR CURVES OF FIGURES 3 & 6,  $R_B$  &  $R_L$  ARE VARIED.  
INPUT LEVELS ARE APPROXIMATELY AS SHOWN.  
FOR NPN CIRCUITS, REVERSE ALL POLARITIES.

Figure 12. Switching Test Circuit

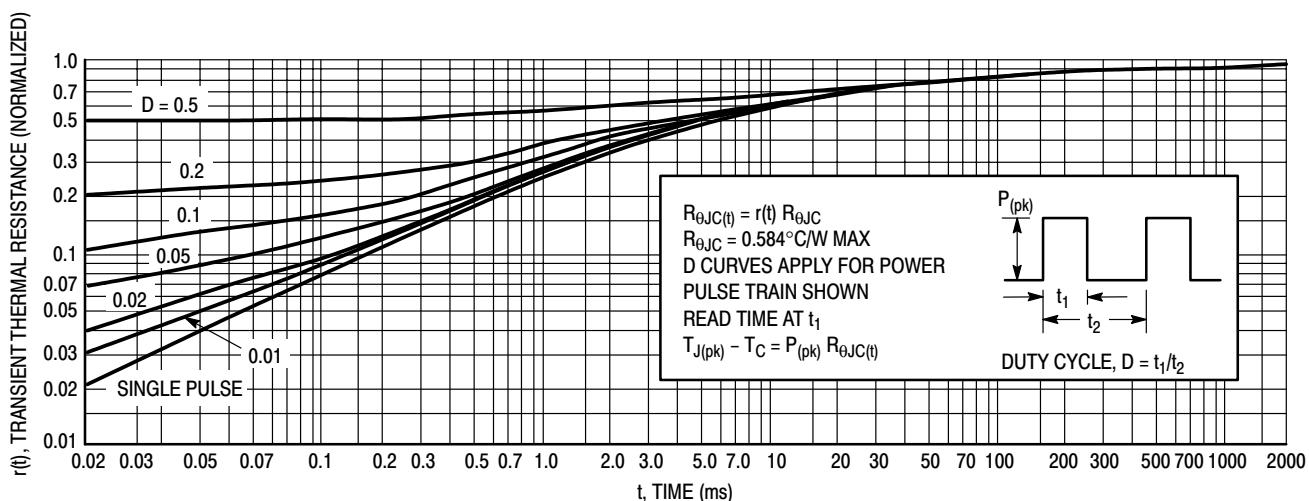
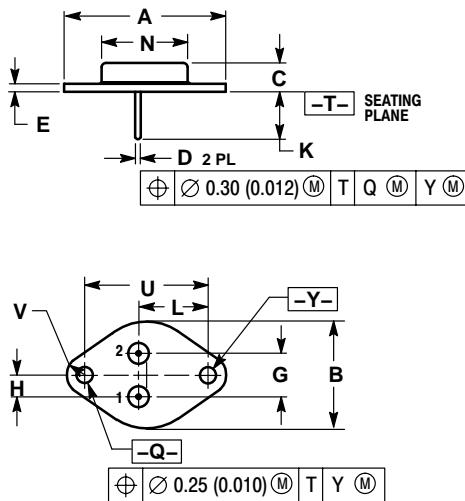




Figure 13. Thermal Response

**PACKAGE DIMENSIONS**

**TO-204 (TO-3)**  
**CASE 197A-05**  
**ISSUE K**



**NOTES:**

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.

| DIM | INCHES |       | MILLIMETERS |       |
|-----|--------|-------|-------------|-------|
|     | MIN    | MAX   | MIN         | MAX   |
| A   | 1.530  | REF   | 38.86       | REF   |
| B   | 0.990  | 1.050 | 25.15       | 26.67 |
| C   | 0.250  | 0.335 | 6.35        | 8.51  |
| D   | 0.057  | 0.063 | 1.45        | 1.60  |
| E   | 0.060  | 0.070 | 1.53        | 1.77  |
| G   | 0.430  | BSC   | 10.92       | BSC   |
| H   | 0.215  | BSC   | 5.46        | BSC   |
| K   | 0.440  | 0.480 | 11.18       | 12.19 |
| L   | 0.665  | BSC   | 16.89       | BSC   |
| N   | 0.760  | 0.830 | 19.31       | 21.08 |
| Q   | 0.151  | 0.165 | 3.84        | 4.19  |
| U   | 1.187  | BSC   | 30.15       | BSC   |
| V   | 0.131  | 0.188 | 3.33        | 4.77  |

STYLE 1:  
 PIN 1. BASE  
 2. Emitter  
 CASE: COLLECTOR

**ON Semiconductor** and  are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

## **PUBLICATION ORDERING INFORMATION**

### **Literature Fulfillment:**

Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
**Phone:** 303-675-2175 or 800-344-3860 Toll Free USA/Canada  
**Fax:** 303-675-2176 or 800-344-3867 Toll Free USA/Canada  
**Email:** [orderlit@onsemi.com](mailto:orderlit@onsemi.com)

**N. American Technical Support:** 800-282-9855 Toll Free USA/Canada

**JAPAN:** ON Semiconductor, Japan Customer Focus Center  
2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051  
**Phone:** 81-3-5773-3850

**ON Semiconductor Website:** <http://onsemi.com>

For additional information, please contact your local  
Sales Representative.