SWITCHMODE™ Series **NPN Silicon Power Transistor** The MJ13333 transistor is designed for high voltage, high-speed, power switching in inductive circuits where fall time is critical. It is particularly suited for line operated SWITCHMODE applications such as: - Switching Regulators - Inverters - Solenoid and Relay Drivers - Motor Controls - Deflection Circuits - Fast Turn Off Times 200 ns Inductive Fall Time — 25°C (Typ) 1.8 µs Inductive Storage Time — 25°C (Typ) • Operating Temperature Range –65 to +200°C • 100°C Performance Specified for: Reversed Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltages Leakage Currents **MJ13333** 20 AMPERE **NPN SILICON POWER TRANSISTORS** 400-500 VOLTS **175 WATTS** **CASE 1-07** TO-204AA (TO-3) #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |---|-----------------------------------|-------------------|---------------| | Collector–Emitter Voltage | V _{CEO} | 400 | Vdc | | Collector–Emitter voltage | V _{CEV} | 700 | Vdc | | Emitter Base Voltage | V _{EB} | 6.0 | Vdc | | Collector Current — Continuous
Peak (1) | I _C | 20
30 | Adc | | Base Current — Continuous Peak (1) | I _B | 10
15 | Adc | | Total Power Dissipation @ $T_C = 25^{\circ}C$ @ $T_C = 100^{\circ}C$ Derate above $25^{\circ}C$ | P _D | 175
100
1.0 | Watts
W/°C | | Operating and Storage Junction Temperature Range | T _J , T _{stg} | -65 to +200 | °C | #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |--|-----------------|-----|------| | Thermal Resistance, Junction to Case | $R_{\theta JC}$ | 1.0 | °C/W | | Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 5 Seconds | TL | 275 | °C | ⁽¹⁾ Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%. Similar device types available with lower V_{CEO} ratings, see the MJ13330 (200 V) and MJ13331 (250 V). ## MJ13333 ### **ELECTRICAL CHARACTERISTICS** (T_C = 25°C unless otherwise noted) | Characteristic | | Symbol | Min | Тур | Max | Unit | |--|--|------------------|-------------|-------------------|---------|------| | OFF CHARACTERISTICS | } | | | | | | | Collector–Emitter Sustain
(I _C = 100 mA, I _B = 0) | V _{CEO(sus)} | 400 | _ | _ | Vdc | | | Collector Cutoff Current
(V _{CEV} = Rated Value,
(V _{CEV} = Rated Value, | I _{CEV} | _
_ | _ | 0.25
5.0 | mAdc | | | Collector Cutoff Current (V_{CE} = Rated V_{CEV} , R_{BE} = 50 Ω , T_{C} = 100°C) | | I _{CER} | _ | _ | 5.0 | mAdc | | Emitter Cutoff Current
(V _{EB} = 6.0 Vdc, I _C = 0) |) | I _{EBO} | _ | _ | 1.0 | mAdc | | SECOND BREAKDOWN | | | | | | | | Second Breakdown Colle | ector Current with base forward biased | I _{S/b} | | See Figure 12 | | | | Clamped Inductive SOA | with Base Reverse Biased | RBSOA | | See Fig | jure 13 | | | ON CHARACTERISTICS | (1) | · | | | | | | DC Current Gain (I _C = 5.0 Adc, V _{CE} = 5.0 Vdc) | | h _{FE} | 10 | _ | 60 | _ | | Collector–Emitter Satura $(I_C = 10 \text{ Adc}, I_B = 2.0 \text{ Adc})$ $(I_C = 20 \text{ Adc}, I_B = 6.7 \text{ Adc})$ $(I_C = 10 \text{ Adc}, I_B = 2.0 \text{ Adc})$ | V _{CE(sat)} | _
_
_ | _
_
_ | 1.8
5.0
2.4 | Vdc | | | Base Emitter Saturation $(I_C = 10 \text{ Adc}, I_B = 2.0 \text{ Adc})$
$(I_C = 10 \text{ Adc}, I_B = 2.0 \text{ Adc})$ | V _{BE(sat)} | _ | _ | 1.8
1.8 | Vdc | | | DYNAMIC CHARACTERIS | STICS | | | | | | | Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f_{test} = 1.0 \text{ kHz}$) | | C _{ob} | 125 | _ | 500 | pF | | SWITCHING CHARACTE | RISTICS | | | | | | | Resistive Load (Table 1 |) | | | | | | | Delay Time | | t _d | _ | 0.02 | 0.1 | μs | | Rise Time | $(V_{CC} = 250 \text{ Vdc}, I_{C} = 10 \text{ A},$ | t _r | _ | 0.3 | 0.7 | μs | | Storage Time | $I_{B1} = 2.0 \text{ A}, V_{BE(off)} = 5.0 \text{ Vdc}, t_p = 10 \text{ μs},$ $Duty Cycle \le 2.0\%)$ | t _s | _ | 1.6 | 4.0 | μs | | Fall Time | | t _f | _ | 0.3 | 0.7 | μs | | Inductive Load, Clampe | ed (Table 1) | 1 | | 1 | ı | ı | | Storage Time | (I _C = 10 A(pk), V _{clamp} = 250 Vdc, I _{B1} = 2.0 A, | t _{sv} | _ | 2.5 | 5.0 | μs | | Crossover Time | $V_{BE(off)} = 5 \text{ Vdc}, T_C = 100^{\circ}\text{C})$ | t _c | _ | 0.8 | 2.0 | μs | | Storage Time | | t _{sv} | _ | 1.8 | _ | μs | | Crossover Time | $(I_C = 10 \text{ A(pk)}, V_{clamp} = 250 \text{ Vdc}, I_{B1} = 2.0 \text{ A}, V_{BE(off)} = 5 \text{ Vdc}, T_C = 25^{\circ}\text{C})$ | t _c | _ | 0.4 | _ | μs | | Fall Time | vBE(off) - 3 vdc, 1C = 23 0) | t _{fi} | _ | 0.2 | _ | μs | | | I . | 1 | | 1 | 1 | 1 | ⁽¹⁾ Pulse Test: PW = $300 \mu s$, Duty Cycle $\leq 2\%$. Figure 1. DC Current Gain Figure 2. Collector Saturation Region Figure 3. Collector-Emitter Saturation Region Figure 4. Base-Emitter Voltage Figure 5. Collector Cutoff Region Figure 6. Capacitance Figure 7. Inductive Switching Measurements Figure 8. Reverse Base Current versus V_{BE(off)} With No External Base Resistance #### **SWITCHING TIMES NOTE** In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. t_{sv} = Voltage Storage Time, 90% I_{B1} to 10% V_{clamp} t_{rv} = Voltage Rise Time, 10 - 90% V_{clamp} t_{fi} = Current Fall Time, 90 – 10% I_{C} t_{ti} = Current Tail, 10 - 2% I_C t_c = Crossover Time, 10% V_{clamp} to 10% I_C An enlarged portion of the inductive switching waveforms is shown in Figure 7 to aid in the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN–222: $$P_{SWT} = 1/2 V_{CC}I_{C}(t_{c})f$$ In general, $t_{rv} + t_{fi} \approx t_c$. However, at lower test currents this relationship may not be valid. As is common with most switching transistors, resistive switching is specified at 25° C and has become a benchmark for designers, However, for designers of high frequency converter circuits, the user oriented specifications which make this a "SWITCHMODE" transistor are the inductive switching speeds (t_c and t_{sv}) which are guaranteed at 100° C. #### RESISTIVE SWITCHING PERFORMANCE Figure 10. Turn-Off Switching Times **Table 1. Test Conditions for Dynamic Performance** Figure 11. Thermal Response Figure 12. Forward Bias Safe Operating Area Figure 13. RBSOA, Reverse Bias Switching Safe Operating Area #### SAFE OPERATING AREA INFORMATION #### **FORWARD BIAS** There are two limitations on the power handling ability of a transistor average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation, i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 12 is based on $T_C = 25^{\circ}C$. $T_{J(pk)}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $T_C \ge 25^{\circ}C$. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 12 may be found at any case temperature by using the appropriate curve on Figure 14. $T_{J(pk)}$ may be calculated from the data in Figure 11. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. #### **REVERSE BIAS** For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current condition allowable during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 13 gives the complete RBSOA characteristics. Figure 14. Power Derating ### MJ13333 ### **PACKAGE DIMENSIONS** ### **CASE 1-07** TO-204AA (TO-3) ISSUE Z - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO-204AA OUTLINE SHALL APPLY. | | INCHES | | MILLIMETERS | | | |-----|-----------|-------|-------------|-----------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 1.550 REF | | 39.37 REF | | | | В | | 1.050 | | 26.67 | | | С | 0.250 | 0.335 | 6.35 | 8.51 | | | D | 0.038 | 0.043 | 0.97 | 1.09 | | | Е | 0.055 | 0.070 | 1.40 | 1.77 | | | G | 0.430 | BSC | 10.92 | 10.92 BSC | | | Н | 0.215 BSC | | 5.46 BSC | | | | K | 0.440 | 0.480 | 11.18 | 12.19 | | | L | 0.665 BSC | | 16.89 BSC | | | | N | | 0.830 | | 21.08 | | | Q | 0.151 | 0.165 | 3.84 | 4.19 | | | J | 1.187 BSC | | 30.15 BSC | | | | ٧ | 0.131 | 0.188 | 3.33 | 4.77 | | STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR SWITCHMODE is a trademark of Semiconductor Components Industries, LLC. ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. #### **PUBLICATION ORDERING INFORMATION** ### NORTH AMERICA Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada N. American Technical Support: 800-282-9855 Toll Free USA/Canada EUROPE: LDC for ON Semiconductor - European Support German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET) Email: ONlit–german@hibbertco.com French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET) Email: ONlit-french@hibbertco.com English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, UK, Ireland #### CENTRAL/SOUTH AMERICA: Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST) Email: ONlit-spanish@hibbertco.com Toll-Free from Mexico: Dial 01-800-288-2872 for Access - then Dial 866-297-9322 ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 1-303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001-800-4422-3781 Email: ONlit-asia@hibbertco.com JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 **Phone**: 81–3–5740–2700 **Email**: r14525@onsemi.com ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative.