Preferred Device

Sensitive Gate Silicon Controlled Rectifiers

Reverse Blocking Thyristors

PNPN devices designed for high volume, low cost consumer applications such as temperature, light and speed control; process and remote control; and warning systems where reliability of operation is critical.

- Small Size
- Passivated Die Surface for Reliability and Uniformity
- Low Level Triggering and Holding Characteristics
- Recommend Electrical Replacement for C106
- Surface Mount Package Case 369A
- Device Marking: Device Type, e.g., for MCR703A: CR703A, Date Code
- To Obtain "DPAK" in Straight Lead Version (Shipped in Sleeves):
 Add '1' Suffix to Device Number, i.e., MCR706A1

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off–State Voltage ⁽¹⁾ (T _C = -40 to +110°C, Sine Wave, 50 to 60 Hz, Gate Open) MCR703A MCR704A MCR706A MCR708A	V _{DRM} , V _{RRM}	100 200 400 600	Volts
Peak Non-Repetitive Off–State Voltage (Sine Wave, 50 to 60 Hz, Gate Open, T _C = -40 to +110°C) MCR703A MCR704A MCR706A MCR708A	V _{RSM}	150 250 450 650	Volts
On–State RMS Current (180° Conduction Angles, T _C = 90°C)	I _{T(RMS)}	4.0	Amps
Average On–State Current (180° Conduction Angles) $T_C = -40 \text{ to } +90^{\circ}\text{C}$ $T_C = +100^{\circ}\text{C}$	I _{T(AV)}	2.6 1.6	Amps
Non-Repetitive Surge Current (1/2 Sine Wave, 60 Hz, T _J = 110°C) (1/2 Sine Wave, 1.5 ms, T _J = 110°C)	I _{TSM}	25 35	Amps
Circuit Fusing (t = 8.3 ms)	l ² t	2.6	A ² s
Forward Peak Gate Power (Pulse Width ≤ 10 μs, T _C = 90°C)	P _{GM}	0.5	Watt
Forward Average Gate Power (t = 8.3 ms, T _C = 90°C)	P _{G(AV)}	0.1	Watt
Forward Peak Gate Current (Pulse Width ≤ 10 μs, T _C = 90°C)	I _{GM}	0.2	Amp
Operating Junction Temperature Range	TJ	-40 to +110	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

⁽¹⁾ V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

ON Semiconductor®

http://onsemi.com

SCRs 4.0 AMPERES RMS 100 thru 600 VOLTS

DPAK CASE 369C STYLE 2

DPAK CASE 369D STYLE 2

PIN ASSIGNMENT		
1	Gate	
2	Anode	
3	Cathode	
4	Anode	

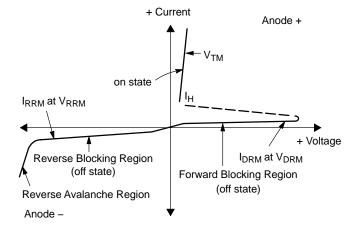
ORDERING INFORMATION

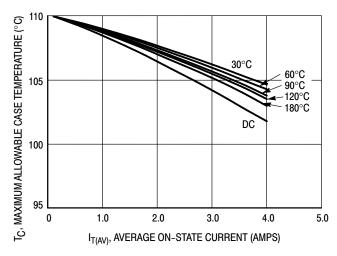
Device	Package	Shipping	
MCR703AT4 MCR704AT4 MCR706AT4 MCR708AT4	DPAK 369C	2500/Tape & Reel	
MCR703AT4-1 MCR704AT4-1 MCR706AT4-1 MCR708AT4-1	DPAK Straight Lead 369D	75 Units / Rail	

Preferred devices are recommended choices for future use and best overall value.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{ heta JC}$	8.33	°C/W
Thermal Resistance, Junction to Ambient ⁽¹⁾	$R_{ heta JA}$	80	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	TL	260	°C

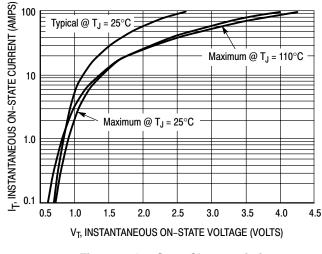

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)


Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Peak Repetitive Forward or Reverse Blocking Curr (V_{AK} = Rated V_{DRM} or V_{RRM} ; R_{GK} = 1 $K\Omega$)	Tent $T_{C} = 25^{\circ}C$ $T_{C} = 110^{\circ}C$	I _{DRM} , I _{RRM}	_	_	10 200	μА
ON CHARACTERISTICS						
Peak Forward "On" Voltage (I _{TM} = 8.2 A Peak, Pulse Width = 1 to 2 ms, 2%	Duty Cycle)	V _{TM}	_	_	2.2	Volts
Gate Trigger Current (Continuous dc) ⁽²⁾ (V _{AK} = 12 Vdc, R _L = 24 Ohms)	$T_C = 25^{\circ}C$ $T_C = -40^{\circ}C$	I _{GT}		25 —	75 300	μΑ
Gate Trigger Voltage (Continuous dc) ⁽²⁾ (V _{AK} = 12 Vdc, R _L = 24 Ohms)	$T_C = 25^{\circ}C$ $T_C = -40^{\circ}C$	V _{GT}	_	_	0.8 1.0	Volts
Gate Non-Trigger Voltage ⁽²⁾ (V _{AK} = 12 Vdc, R _L = 100 Ohms, T _C = 110°C)		$V_{\sf GD}$	0.2	_	_	Volts
Holding Current (V _{AK} = 12 Vdc, Gate Open) (Initiating Current = 200 mA)	T _C = 25°C T _C = -40°C	I _H	_	_	5.0 10	mA
Peak Reverse Gate Blocking Voltage (I _{GR} = 10 µA)		V_{RGM}	10	12.5	18	Volts
Peak Reverse Gate Blocking Current (V _{GR} = 10 V)		I _{RGM}	_	_	1.2	μА
Total Turn-On Time (Source Voltage = 12 V, R_S = 6 k Ohms) (I_{TM} = 8.2 A, I_{GT} = 2 mA, Rated V_{DRM}) (Rise Time = 20 ns, Pulse Width = 10 μ s)		t _{gt}	_	2.0	_	μѕ
DYNAMIC CHARACTERISTICS						
Critical Rate of Rise of Off–State Voltage $(V_D = Rated\ V_{DRM},\ R_{GK} = 1\ K\Omega,\ Exponential\ Water T_C = 110°C)$	aveform,	dv/dt	_	10	_	V/µs
Repetitive Critical Rate of Rise of On–State Currer (Cf = 60 Hz, I _{PK} = 30 A, PW = 100 μs, diG/dt = 1		di/dt	_	_	100	A/μs

⁽¹⁾ Case 369A when surface mounted on minimum pad sizes recommended. (2) R_{GK} current not included in measurement.

Voltage Current Characteristic of SCR

Symbol	Parameter
V _{DRM}	Peak Repetitive Off State Forward Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Off State Reverse Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Peak On State Voltage
IH	Holding Current



30°C 60°C 90°C 120°C 180°C DC DC DC I_{T(AV)}, AVERAGE ON-STATE CURRENT (AMPS)

Figure 1. Average Current Derating

Figure 2. On-State Power Dissipation

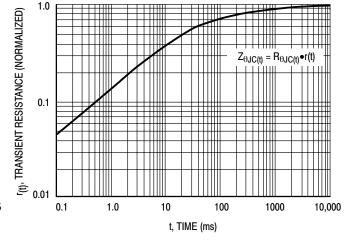


Figure 3. On-State Characteristics

Figure 4. Transient Thermal Response

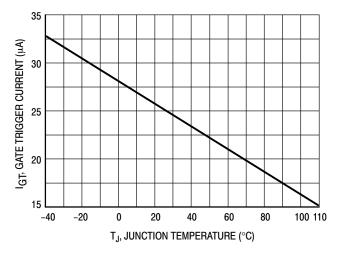


Figure 5. Typical Gate Trigger Current versus Junction Temperature

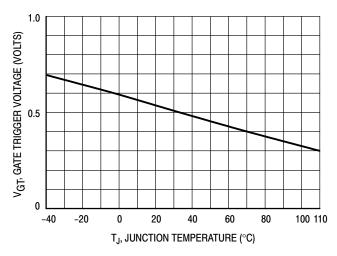


Figure 6. Typical Gate Trigger Voltage versus
Junction Temperature

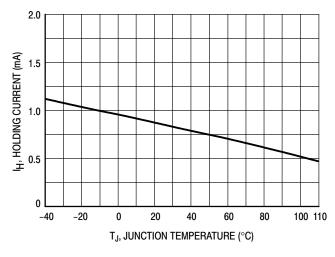


Figure 7. Typical Holding Current versus Junction Temperature

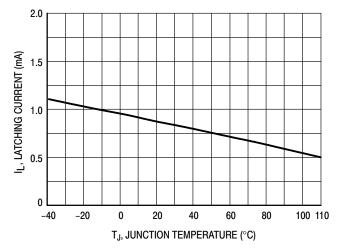
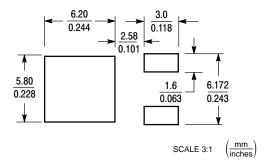
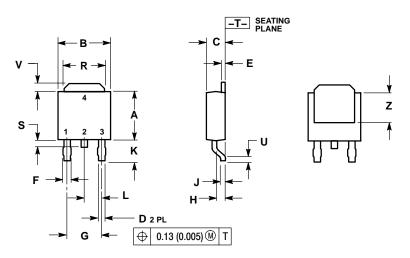



Figure 8. Typical Latching Current versus Junction Temperature

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to insure proper solder connection

interface between the board and the package. With the correct pad geometry, the packages will self align when subjected to a solder reflow process.

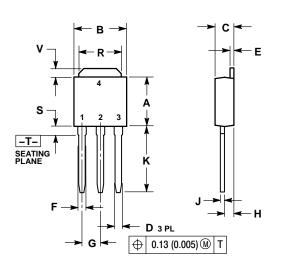


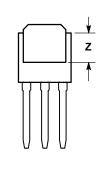
DPAK

PACKAGE DIMENSIONS

DPAK

CASE 369C-01 **ISSUE O**




	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.22
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.180 BSC		4.58	BSC
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.102	0.114	2.60	2.89
L	0.090 BSC		2.29 BSC	
R	0.180	0.215	4.57	5.45
S	0.025	0.040	0.63	1.01
U	0.020		0.51	
٧	0.035	0.050	0.89	1.27
Z	0.155		3.93	

STYLE 2: PIN 1. GATE

- 2. DRAIN
- 3 SOURCE
- 4. DRAIN

DPAK CASE 369D-01 **ISSUE O**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
E	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090	BSC	2.29 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
٧	0.035	0.050	0.89	1.27
Z	0.155		3.93	

STYLE 2:

PIN 1. GATE

- 2. DRAIN 3.
- SOURCE

ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its partnif rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.