Low-Voltage CMOS Octal Transceiver/Registered Transceiver With Dual Enable

With 5V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX652 is a high performance, non–inverting octal transceiver/registered transceiver operating from a 2.3 to 3.6V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_I specification of 5.5V allows MC74LCX652 inputs to be safely driven from 5V devices. The MC74LCX652 is suitable for memory address driving and all TTL level bus oriented transceiver applications.

Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes from a LOW-to-HIGH logic level. Two Output Enable pins (OEBA, OEAB) are provided to control the transceiver outputs. In the transceiver mode, data present at the high impedance port may be stored in either the A or the B register or in both. The select controls (SBA, SAB) can multiplex stored and real-time (transparent mode) data. In the isolation mode (both outputs disabled), A data may be stored in the B register or B data may be stored in the A register. When in the real-time mode, it is possible to store data without using the internal registers by simultaneously enabling OEAB and OEBA. In this configuration, each output reinforces its input (data retention is not guaranteed in this mode).

- Designed for 2.3 to 3.6V V_{CC} Operation
- 5V Tolerant Interface Capability With 5V TTL Logic
- Supports Live Insertion and Withdrawal
- I_{OFF} Specification Guarantees High Impedance When $V_{CC} = 0V$
- LVTTL Compatible
- LVCMOS Compatible
- 24mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States (10μA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

MC74LCX652

LOW-VOLTAGE CMOS OCTAL TRANSCEIVER/ REGISTERED TRANSCEIVER WITH DUAL ENABLE

DW SUFFIX 24-LEAD PLASTIC SOIC PACKAGE CASE 751E-04

DT SUFFIX 24-LEAD PLASTIC TSSOP PACKAGE CASE 948H-01

Figure 1. PIN NAMES

Pins	Function
A0–A7 B0–B7 CAB, CBA SAB, SBA OEBA, OEAB	Side A Inputs/Outputs Side B Inputs/Outputs Clock Pulse Inputs Select Control Inputs Output Enable Inputs

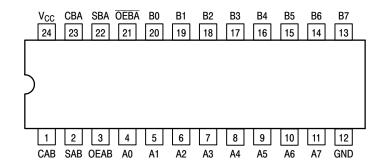
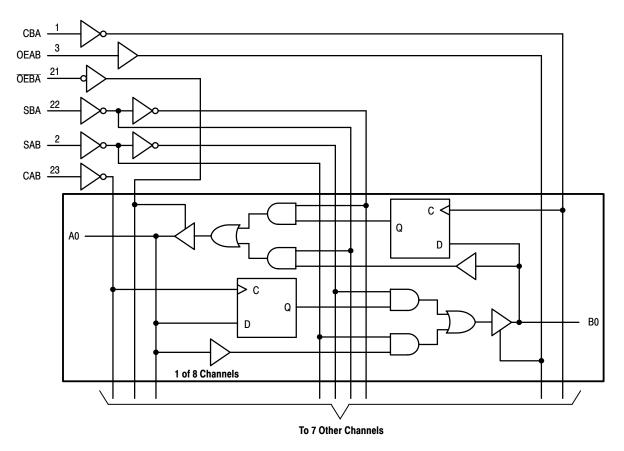
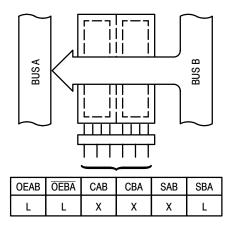
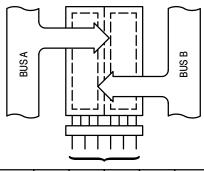


Figure 1. 24-Lead Pinout (Top View)



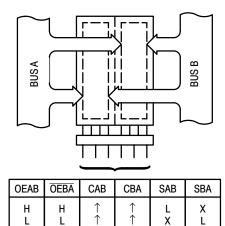

Figure 2. Logic Diagram

FUNCTION TABLE

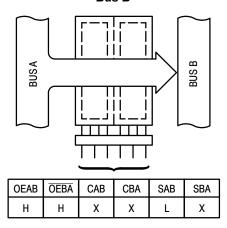

		In	puts			Data	Ports	
OEAB	OEBA	CAB	СВА	SAB	SBA	An	Bn	Operating Mode
L	Н					Input	Input	
		1	1	Х	Х	Х	Х	Isolation, Hold Storage
		1	1	Х	Х	l h	l h	Store A and/or B Data
Н	Н					Input	Output	
		1	X*	L	Х	L H	L H	Real Time A Data to B Bus
				Н	Х	Х	QA	Stored A Data to B Bus
		1	X*	L	Х	l h	L H	Real Time A Data to B Bus; Store A Data
				Н	Х	L H	QA QA	Clock A Data to B Bus; Store A Data
L	L					Output	Input	
		X*	1	Х	L	L H	L H	Real Time B Data to A Bus
				Х	Н	QB	Х	Stored B Data to A Bus
		X*	1	Х	L	L H	l h	Real Time B Data to A Bus; Store B Data
				Х	Н	QB QB	L H	Clock B Data to A Bus; Store B Data
Н	L					Output	Output	
		1	1	Н	Н	QB	QA	Stored A Data to B Bus, Stored B Data to A Bus

H = High Voltage Level; h = High Voltage Level One Setup Time Prior to the Low-to-High Clock Transition; L = Low Voltage Level; I = Low Voltage Level One Setup Time Prior to the Low-to-High Clock Transition; X = Don't Care; ↑ = Low-to-High Clock Transition; ↑ = NOT Low-to-High Clock Transition; QA = A input storage register; QB = B input storage register; * = The clocks are not internally gated with either the Output Enables or the Source Inputs. Therefore, data at the A or B ports may be clocked into the storage registers, at any time. For I_{CC} reasons, Do Not Float Inputs.

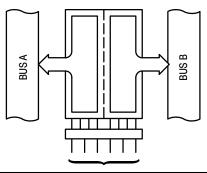
Real Time Transfer – Bus B to Bus A



Store Data from Bus A, Bus B or Bus A and Bus B



OEAB	OEBA	CAB	CBA	SAB	SBA
X L L	H X H	$\rightarrow X \rightarrow$	X←←	X X X	X X X


Store Bus A in Both Registers or Store Bus B in Both Registers

Real Time Transfer – Bus A to Bus B

Transfer A Stored Data to Bus B or B Stored Data to Bus A or Both at the Same Time

OEAB	OEBA	CAB	CBA	SAB	SBA
I L I	- r =	H or L X H or L	X H or L H or I	H X H	X

Isolation

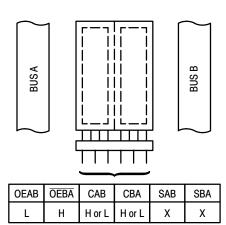


Figure 3. Bus Applications

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
V _{CC}	DC Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	$-0.5 \le V_1 \le +7.0$		V
V _O	DC Output Voltage	$-0.5 \le V_0 \le +7.0$	Output in 3–State	V
		$-0.5 \le V_{O} \le V_{CC} + 0.5$	Note 1.	V
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
		+50	$V_O > V_{CC}$	mA
Io	DC Output Source/Sink Current	±50		mA
Icc	DC Supply Current Per Supply Pin	±100		mA
I _{GND}	DC Ground Current Per Ground Pin	±100		mA
T _{STG}	Storage Temperature Range	-65 to +150		°C

^{*} Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute—maximum—rated conditions is not implied.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Тур	Max	Unit
V _{CC}	Supply Voltage Operating Data Retention Only	2.0 1.5	3.3 3.3	3.6 3.6	V
VI	Input Voltage	0		5.5	V
Vo	Output Voltage (HIGH or LOW State) (3–State)	0 0		V _{CC} 5.5	V
I _{OH}	HIGH Level Output Current, V _{CC} = 3.0V – 3.6V			-24	mA
I _{OL}	LOW Level Output Current, V _{CC} = 3.0V – 3.6V			24	mA
I _{OH}	HIGH Level Output Current, V _{CC} = 2.7V – 3.0V			-12	mA
I _{OL}	LOW Level Output Current, V _{CC} = 2.7V – 3.0V			12	mA
T _A	Operating Free–Air Temperature	-40		+85	°C
Δt/ΔV	Input Transition Rise or Fall Rate, V_{IN} from 0.8V to 2.0V, V_{CC} = 3.0V	0		10	ns/V

DC ELECTRICAL CHARACTERISTICS

			T _A = -40°C	to +85°C	
Symbol	Characteristic	Condition	Min	Max	Unit
V _{IH}	HIGH Level Input Voltage (Note 2.)	2.7V ≤ V _{CC} ≤ 3.6V	2.0		V
V _{IL}	LOW Level Input Voltage (Note 2.)	2.7V ≤ V _{CC} ≤ 3.6V		0.8	V
V _{OH}	HIGH Level Output Voltage	$2.7V \le V_{CC} \le 3.6V; I_{OH} = -100\mu A$	V _{CC} – 0.2		V
		$V_{CC} = 2.7V; I_{OH} = -12mA$	2.2		
		$V_{CC} = 3.0V; I_{OH} = -18mA$	2.4		
		$V_{CC} = 3.0V; I_{OH} = -24mA$	2.2		
V _{OL}	LOW Level Output Voltage	$2.7V \le V_{CC} \le 3.6V; I_{OL} = 100 \mu A$		0.2	V
		$V_{CC} = 2.7V; I_{OL} = 12mA$		0.4	
		$V_{CC} = 3.0V; I_{OL} = 16mA$		0.4	
		$V_{CC} = 3.0V; I_{OL} = 24mA$		0.55	

^{2.} These values of V_{I} are used to test DC electrical characteristics only.

^{1.} Output in HIGH or LOW State. $I_{\rm O}$ absolute maximum rating must be observed.

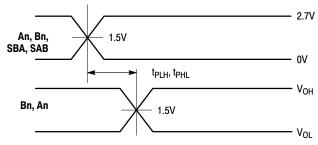
DC ELECTRICAL CHARACTERISTICS (continued)

			T _A = -40°	C to +85°C	
Symbol	Characteristic	Condition	Min	Max	Unit
I _I	Input Leakage Current	$2.7V \le V_{CC} \le 3.6V$; $0V \le V_1 \le 5.5V$		±5.0	μΑ
I _{OZ}	3-State Output Current	$2.7 \le V_{CC} \le 3.6V$; $0V \le V_O \le 5.5V$; $V_I = V_{IH}$ or V_{IL}		±5.0	μА
I _{OFF}	Power-Off Leakage Current	$V_{CC} = 0V$; V_I or $V_O = 5.5V$		10	μΑ
I _{CC}	Quiescent Supply Current	$2.7 \le V_{CC} \le 3.6V$; $V_I = GND \text{ or } V_{CC}$		10	μΑ
		$2.7 \le V_{CC} \le 3.6V$; $3.6 \le V_I$ or $V_O \le 5.5V$		±10	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	$2.7 \le V_{CC} \le 3.6V; V_{IH} = V_{CC} - 0.6V$		500	μΑ

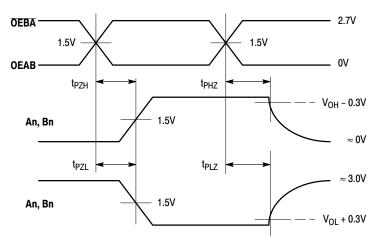
AC CHARACTERISTICS ($t_R = t_F = 2.5 \text{ns}$; $C_L = 50 \text{pF}$; $R_L = 500 \Omega$)

				Lin	nits		
				T _A = −40°	C to +85°C		
			V _{CC} = 3.0	0V to 3.6V	V _{CC} =	= 2.7V	
Symbol	Parameter	Waveform	Min	Max	Min	Max	Unit
f _{max}	Clock Pulse Frequency	3	150				MHz
t _{PLH} t _{PHL}	Propagation Delay Input to Output	1	1.5 1.5	7.0 7.0	1.5 1.5	8.0 8.0	ns
t _{PLH} t _{PHL}	Propagation Delay Clock to Output	3	1.5 1.5	8.5 8.5	1.5 1.5	9.5 9.5	ns
t _{PLH} t _{PHL}	Propagation Delay Select to Output	1	1.5 1.5	8.5 8.5	1.5 1.5	9.5 9.5	ns
t _{PZH} t _{PZL}	Output Enable Time to High and Low Level	2	1.5 1.5	8.5 8.5	1.5 1.5	9.5 9.5	ns
t _{PHZ}	Output Disable Time From High and Low Level	2	1.5 1.5	8.5 8.5	1.5 1.5	9.5 9.5	ns
t _s	Setup Time, HIGH or LOW Data to Clock	3	2.5		2.5		ns
t _h	Hold Time, HIGH or LOW Data to Clock	3	1.5		1.5		ns
t _w	Clock Pulse Width, HIGH or LOW	3	3.3		3.3		ns
t _{OSHL} t _{OSLH}	Output-to-Output Skew (Note 3.)			1.0 1.0			ns

Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device.
 The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

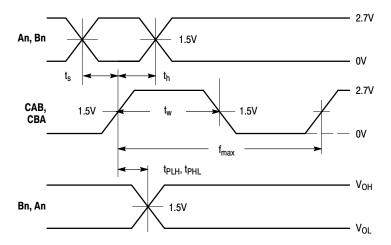

DYNAMIC SWITCHING CHARACTERISTICS

			T _A = +25°C			
Symbol	Characteristic	Condition	Min	Тур	Max	Unit
V_{OLP}	Dynamic LOW Peak Voltage (Note 4.)	$V_{CC} = 3.3V$, $C_L = 50pF$, $V_{IH} = 3.3V$, $V_{IL} = 0V$		0.8		V
V _{OLV}	Dynamic LOW Valley Voltage (Note 4.)	$V_{CC} = 3.3V$, $C_L = 50pF$, $V_{IH} = 3.3V$, $V_{IL} = 0V$		0.8		V


^{4.} Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state. The LCX652 is characterized with 7 outputs switching with 1 output held LOW.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C _{IN}	Input Capacitance	V_{CC} = 3.3V, V_{I} = 0V or V_{CC}	7	pF
C _{I/O}	Input/Output Capacitance	V_{CC} = 3.3V, V_{I} = 0V or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	10MHz, $V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	25	pF



WAVEFORM 1 – SAB to B and SBA to A, An to Bn PROPAGATION DELAYS $t_R=t_F=2.5 ns,\,10\%$ to $90\%;\,f=1 MHz;\,t_W=500 ns$

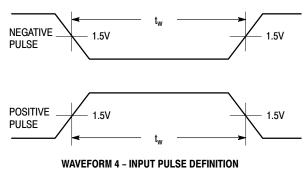
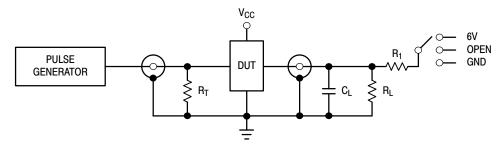

WAVEFORM 2 – $\overline{\text{OEBA}}/\text{OEAB}$ to An/Bn OUTPUT ENABLE AND DISABLE TIMES $t_R=t_F=2.5\text{ns},$ 10% to 90%; f = 1MHz; $t_W=500\text{ns}$

Figure 4. AC Waveforms


WAVEFORM 3 - CLOCK to Bn/An PROPAGATION DELAYS, CLOCK MINIMUM PULSE WIDTH, An/Bn to CLOCK SETUP AND HOLD TIMES

 t_R = t_F = 2.5ns, 10% to 90%; f = 1MHz; t_W = 500ns except when noted

 t_R = t_F = 2.5ns, 10% to 90% of 0V to 2.7V

Figure 5. AC Waveforms (continued)

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6V
Open Collector/Drain t _{PLH} and t _{PHL}	6V
t _{PZH} , t _{PHZ}	GND

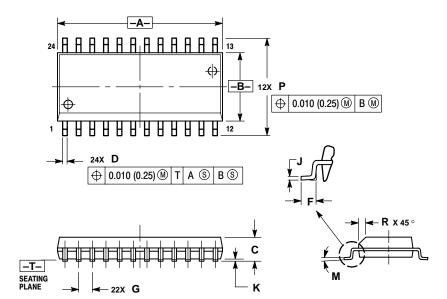

 C_L = 50pF or equivalent (Includes jig and probe capacitance) R_L = R_1 = 500 Ω or equivalent R_T = Z_{OUT} of pulse generator (typically 50 Ω)

Figure 6. Test Circuit

OUTLINE DIMENSIONS

DW SUFFIX

PLASTIC SOIC PACKAGE CASE 751E-04 ISSUE E

NOTES:

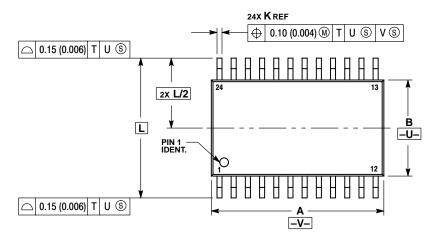
- NOTES:

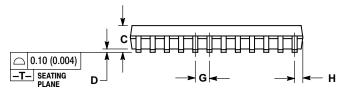
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

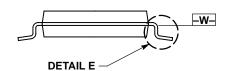
 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.

 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

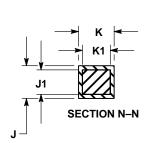

 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION.

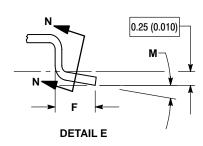

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	15.25	15.54	0.601	0.612
В	7.40	7.60	0.292	0.299
С	2.35	2.65	0.093	0.104
D	0.35	0.49	0.014	0.019
F	0.41	0.90	0.016	0.035
G	1.27 BSC		0.050 BSC	
J	0.23	0.32	0.009	0.013
K	0.13	0.29	0.005	0.011
M	0 °	8°	0°	8°
Р	10.05	10.55	0.395	0.415
R	0.25	0.75	0.010	0.029


OUTLINE DIMENSIONS

DT SUFFIX

PLASTIC TSSOP PACKAGE CASE 948H-01 ISSUE O


NOTES:


- NOTES:
 1 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

 4. DIMENSION B DOES NOT INCLUDE INTERLEAD
- FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED
- PROTRUSION SHALL NOT EXCEED
 0.25 (0.010) PER SIDE.
 5. DIMENSION K DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
 EXCESS OF THE K DIMENSION AT MAXIMUM
 MATERIAL CONDITION.
 6. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.

 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES	
DIM	MIN	MAX	MIN	MAX
Α	7.70	7.90	0.303	0.311
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
Н	0.27	0.37	0.011	0.015
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
M	0°	8°	0°	8°

Notes

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163 Denver Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET) Email: ONlit-german@hibbertco.com

Phone: (+1) 303-308-7141 (Mon-Fri 2:00pm to 7:00pm CET)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303-308-7142 (Mon-Fri 12:00pm to 5:00pm GMT)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

Toll-Free from Mexico: Dial 01-800-288-2872 for Access -

then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support

Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031

Phone: 81-3-5740-2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.