3.3V ECL Programmable Delay Chip

The MC10/100EP195 is a programmable delay chip (PDC) designed primarily for clock deskewing and timing adjustment. It provides variable delay of a differential NECL/PECL input transition.

The delay section consists of a programmable matrix of gates and multiplexers as shown in the logic diagram, Figure 2. The delay increment of the EP195 has a digitally selectable resolution of about 10 ps and a net range of up to 10.2 ns. The required delay is selected by the 10 data select inputs D[0:9] values and controlled by the LEN (pin 10). A LOW level on LEN allows a transparent LOAD mode of real time delay values by D[0:9]. A LOW to HIGH transition on LEN will LOCK and HOLD current values present against any subsequent changes in D[0:9]. The approximate delay values for varying tap numbers correlating to D0 (LSB) through D9 (MSB) are shown in Table 5 and Figure 3.

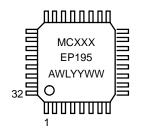
Because the EP195 is designed using a chain of multiplexers it has a fixed minimum delay of 2.2 ns. An additional pin D10 is provided for cascading multiple PDCs for increased programmable range. The cascade logic allows full control of multiple PDCs.

Select input pins D0–D10 may be threshold controlled by combinations of interconnects between V_{EF} (pin 7) and V_{CF} (pin 8) for LVCMOS, ECL, or LVTTL level signals. For LVCMOS input levels, leave V_{CF} and V_{EF} open. For ECL operation, short V_{CF} and V_{EF} (pins 7 and 8). For LVTTL level operation, connect a 1.5 V supply reference to V_{CF} and leave open V_{EF} pin. The 1.5 V reference voltage to V_{CF} pin can be accomplished by placing a 2.2 $k\Omega$ resistor between V_{CF} and V_{EE} for a 3.3 V power supply.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

The 100 Series contains temperature compensation.

- Maximum Input Clock Frequency >1.2 GHz Typical
- Programmable Range: 0 ns to 10 ns
- Delay Range: 2.2 ns to 12.2 ns
- 10 ps Increments
- PECL Mode Operating Range: V_{CC} = 3.0 V to 3.6 V with V_{EE} = 0 V
- NECL Mode Operating Range: V_{CC} = 0 V with V_{EE} = -3.0 V to -3.6 V
- Open Input Default State
- Safety Clamp on Inputs
- A Logic High on the EN Pin Will Force Q to Logic Low
- D[0:10] Can Accept Either ECL, LVCMOS, or LVTTL Inputs
- V_{BB} Output Reference Voltage



ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM*

XXX = 10 OR 100

A = Assembly Location

WL = Wafer Lot YY = Year WW = Work Week

*For additional information, see Application Note AND8002/D

ORDERING INFORMATION

Device	Package	Shipping				
MC10EP195FA	LQFP-32	250 Units/Tray				
MC10EP195FAR2	LQFP-32	2000 Tape & Reel				
MC100EP195FA	LQFP-32	250 Units/Tray				
MC100EP195FAR2	LQFP-32	2000 Tape & Reel				

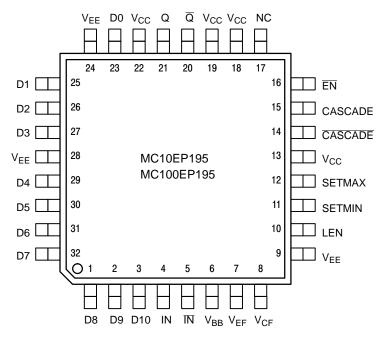


Figure 1. 32-Lead LQFP Pinout (Top View)

Table 1. Pin Description

Pin	Name	1/0	Default State	Description
23,25,26,27,29, 30,31,32,1,2,3	D[0:10]	LVCMOS, LVTTL, ECL Input	Low	Single Ended Parallel Data Inputs [0:10]. Internal 75 k Ω to V _{EE} . (Note 1)
4	IN	ECL Input	Low	Noninverted Differential Input. Internal 75 k Ω to V _{EE} .
5	ĪN	ECL Input	High	Inverted Differential Input. Internal 75 k Ω to V _{EE} and 36.5 k Ω to V _{CC} .
6	V_{BB}	-	-	ECL Reference Voltage Output
7	V_{EF}	-	-	Reference Voltage for ECL Mode Connection
8	V_{CF}	-	-	LVCMOS, ECL, OR LVTTL Input Mode Select
9,28	V _{EE}	-	-	Negative Supply Voltage. All V _{EE} Pins must be Externally Connected to Power Supply to Guarantee Proper Operation. (Note 2)
13,18,19,22	V _{CC}	-	-	Positive Supply Voltage. All V _{CC} Pins must be externally Connected to Power Supply to Guarantee Proper Operation. (Note 2)
10	LEN	ECL Input	Low	Single–ended D pins LOAD / HOLD input. Internal 75 k Ω to V _{EE} .
11	SETMIN	ECL Input	Low	Single-ended Minimum Delay Set Logic Input. Internal 75 k Ω to $V_{EE}.$ (Note 1)
12	SETMAX	ECL Input	Low	Single–ended Maximum Delay Set Logic Input. Internal 75 k Ω to $V_{EE}.$ (Note 1)
14	CASCADE	ECL Output	-	Inverted Differential Cascade Output. Typically Terminated with 50 Ω to V _{TT} = V _{CC} – 2 V.
15	CASCADE	ECL Output	-	Noninverted Differential Cascade Output. Typically Terminated with 50 Ω to V_{TT} = V_{CC} – 2 V.
16	EN	ECL Input	Low	Single–ended Output Enable Pin. Internal 75 k Ω to V _{EE} .
17	NC	-	-	No Connect. The NC Pin is Electrically Connected to the Die and "MUST BE" Left Open
21	Q	ECL Output	-	Noninverted Differential Output. Typically Terminated with 50 Ω to V_{TT} = V_{CC} – 2 V.
20	Q	ECL Output	-	Inverted Differential Output. Typically Terminated with 50 Ω to V_{TT} = V_{CC} – 2 V.

- 1. SETMIN will override SETMAX if both are high. SETMAX and SETMIN will override all D[0:10] inputs.
- 2. All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Table 2. Control Pin

EN	LOW (Note 3)	Input Signal is Propagated to the Output
	HIGH	Output Holds Logic Low State
LEN	LOW (Note 3)	Transparent or LOAD mode for real time delay values present on D[0:10].
	HIGH	LOCK and HOLD mode for delay values on D[0:10]; further changes on D[0:10] are not recognized and do not affect delay.
SETMIN	LOW (Note 3)	Output Delay set by D[0:10]
	HIGH	Set Minimum Output Delay
SETMAX	LOW (Note 3)	Output Delay set by D[0:10]
	HIGH	Set Maximum Output Delay

^{3.} Internal pull-down resistor will provide a logic LOW if pin is left unconnected.

Table 3. Control D[0:10] Interface

V _{CF}	V _{EF} Pin (Note 4)	ECL Mode
V _{CF}	No Connect	LVCMOS Mode
V _{CF}	1.5 V ± 100 mV	LVTTL Mode (Note 5)

Table 4. DATA INPUT OPERATING VOLTAGE TABLE

	CONTROL DATA SELECT INPUTS PINS (D [0:10])									
POWER SUPPLY	LVCMOS LVTTL PECL NECL									
Positive Mode (V _{CC} – V _{EE} > 0)	~	/	~	N/A						
Negative Mode (V _{CC} – V _{EE} < 0)	N/A	N/A	N/A	~						

Short VCF (pin 8) and VEF (pin 7).
 When Operating in LVTTL Mode, the reference voltage can be provided by connecting an external resistor, R_{CF} (suggested resistor value is 2.2 kΩ ±5%), between V_{CF} and V_{EE} pins.

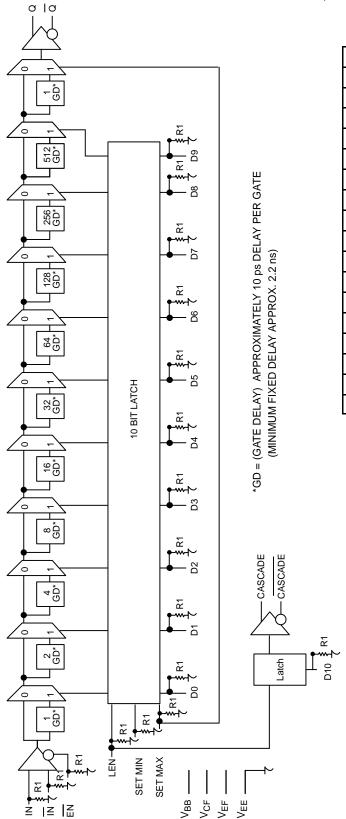


Figure 2. Logic Diagram

Table 5. THEORETICAL DELAY VALUES

D10	D(9:0) Value	Delay Value	Comment
	0000000000	0 ps	(SET MIN)
	000000001	10 ps	
	000000010	20 ps	
	000000011	30 ps	
	000000100	40 ps	
	000000101	50 ps	
	0000000110	60 ps	
	0000000111	70 ps	
	0000001000	80 ps	
	0000010000	160 ps	
	0000100000	320 ps	
	0001000000	640 ps	
	0010000000	1280 ps	
	0100000000	2560 ps	
	1000000000	5120 ps	
	1111111111	10230 ps	
1	XXXXXXXXXX	10240 ps	(SET MAX)

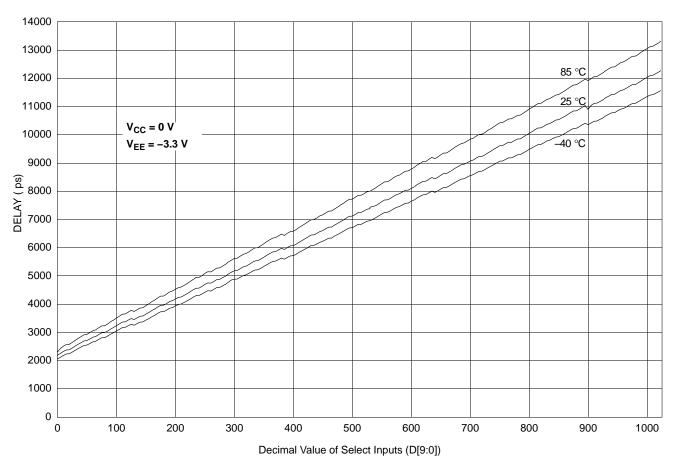


Figure 3. Measured Delay vs. Select Inputs

Table 6. ATTRIBUTES

Characteris	tics	Value
Internal Input Pulldown Resistor	(R1)	75 kΩ
ESD Protection	Human Body Model Machine Model Charged Device Model	> 2 kV > 100 V > 2 kV
Moisture Sensitivity (Note 6)		Level 2
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count		1217 Devices
Meets or exceeds JEDEC Spec EIA/	JESD78 IC Latchup Test	

6. For additional information, see Application Note AND8003/D.

Table 7. MAXIMUM RATINGS (Note 7)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	Positive Mode Power Supply	V _{EE} = 0 V		6	V
V _{EE}	Negative Mode Power Supply	V _{CC} = 0 V		-6	V
Vi	Positive Mode Input Voltage Negative Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$ V_I \leq V_{CC} $ $ V_I \geq V_{EE} $	6 -6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction–to–Ambient)	0 LFPM 500 LFPM	32 LQFP 32 LQFP	80 55	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	std bd	32 LQFP	12 to 17	°C/W
T _{sol}	Wave Solder	< 2 to 3 sec @ 248°C		265	°C

^{7.} Maximum Ratings are those values beyond which device damage may occur.

Table 8. 10EP DC CHARACTERISTICS, PECL $V_{CC} = 3.3 \text{ V}$, $V_{EE} = 0 \text{ V}$ (Note 8)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current	110	145	175	120	150	180	120	150	180	mA
V _{OH}	Output HIGH Voltage (Note 9)	2165	2290	2415	2230	2355	2480	2290	2415	2540	mV
V _{OL}	Output LOW Voltage (Note 9)	1365	1490	1615	1430	1555	1680	1490	1615	1740	mV
V _{IH}	Input HIGH Voltage (Single-Ended) PECL LVCMOS LVTTL	2090 2000 2000		2415 3300 3300	2155 2000 2000		2480 3300 3300	2215 2000 2000		2540 3300 3300	mV
V _{IL}	Input LOW Voltage (Single-Ended) PECL LVCMOS LVTTL	1365 0 0		1690 800 800	1430 0 0		1755 800 800	1490 0 0		1815 800 800	mV
V _{BB}	ECL Output Voltage Reference	1790	1890	1990	1855	1955	2055	1915	2015	2115	mV
V_{CF}	LVTTL Mode Input Detect Voltage	1.4	1.5	1.6	1.4	1.5	1.6	1.4	1.5	1.6	V
V _{EF}	Reference Voltage for ECL Mode Connection	1915	2020	2120	1940	2080	2190	1985	2130	2265	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 10)	2.0		3.3	2.0		3.3	2.0		3.3	V
I _{IH}	Input HIGH Current (@ V _{IH})			150			150			150	μΑ
I _{IL}	Input LOW Current (@ V _{IL}) IN IN	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.

Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.3 V to -0.3 V.
 All loading with 50 Ω to V_{CC}-2.0 V.
 V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 9. 10EP DC CHARACTERISTICS, NECL V_{CC} = 0 V, V_{EE} = -3.3 V to -3.0 V (Note 11)

			−40°C				25°C 85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current	110	145	175	120	150	180	120	150	180	mΑ
V _{OH}	Output HIGH Voltage (Note 12)	-1135	-1010	-885	-1070	-945	-820	-1010	-885	-760	mV
V _{OL}	Output LOW Voltage (Note 12)	-1935	-1810	-1685	-1870	-1745	-1620	-1810	-1685	-1560	mV
V _{IH}	Input HIGH Voltage (Single-Ended) NECL	-1210		-885	-1145		-820	-1085		-760	mV
V _{IL}	Input LOW Voltage (Single-Ended) NECL	-1935		-1610	-1870		-1545	-1810		-1485	mV
V_{BB}	ECL Output Voltage Reference	-1510	-1410	-1310	-1445	-1345	-1245	-1385	-1285	-1185	mV
V _{EF}	Reference Voltage for ECL Mode Connection	-1385	-1280	-1180	-1360	-1220	-1110	-1315	-1170	-1035	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 13)	V _{EE}	+2.0	0.0	V _{EE}	+2.0	0.0	V _{EE}	+2.0	0.0	V
I _{IH}	Input HIGH Current (@ V _{IH})			150			150			150	μΑ
I _{IL}	Input LOW Current (@ V _{IL}) IN IN	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The

NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.
 11. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.3 V to -0.3 V.
 12. All loading with 50 Ω to V_{CC} - 2.0 V.
 13. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 10. 100EP DC CHARACTERISTICS, PECL $V_{CC} = 3.3 \text{ V}$, $V_{EE} = 0 \text{ V}$ (Note 14)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current	100	135	160	110	140	170	110	145	175	mA
V _{OH}	Output HIGH Voltage (Note 15)	2155	2280	2405	2155	2280	2405	2155	2280	2405	mV
V _{OL}	Output LOW Voltage (Note 15)	1355	1480	1605	1355	1480	1605	1355	1480	1605	mV
V _{IH}	Input HIGH Voltage (Single–Ended) PECL CMOS TTL	2075 2000 2000		2420 3300 3300	2075 2000 2000		2420 3300 3300	2075 2000 2000		2420 3300 3300	mV
V _{IL}	Input LOW Voltage (Single-Ended) PECL CMOS TTL	1355 0 0		1675 800 800	1490 0 0		1675 800 800	1490 0 0		1675 800 800	mV
V_{BB}	ECL Output Voltage Reference	1775	1875	1975	1775	1875	1975	1775	1875	1975	mV
V_{CF}	LVTTL Mode Input Detect Voltage	1.4	1.5	1.6	1.4	1.5	1.6	1.4	1.5	1.6	V
V_{EF}	Reference Voltage for ECL Mode Connection	1915	2020	2120	1940	2080	2190	1985	2130	2265	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 16)	2.0		3.3	2.0		3.3	2.0		3.3	V
I _{IH}	Input HIGH Current (@ V _{IH})			150			150			150	μΑ
I _{IL}	Input LOW Current (@ V _{IL}) IN IN	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.

Table 11. 100EP DC CHARACTERISTICS, NECL $V_{CC} = 0 \text{ V}$, $V_{EE} = -3.3 \text{ V}$ (Note 17)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current (Note 18)	100	135	160	110	140	170	110	145	175	mA
V _{OH}	Output HIGH Voltage (Note 19)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
V _{OL}	Output LOW Voltage (Note 19)	-1945	-1820	-1695	-1945	-1820	-1695	-1945	-1820	-1695	mV
V _{IH}	Input HIGH Voltage (Single–Ended) NECL	-1225		-880	-1225		-880	-1225		-880	mV
V _{IL}	Input LOW Voltage (Single-Ended) NECL	-1945		-1625	-1945		-1625	-1945		-1625	mV
V _{BB}	ECL Output Voltage Reference	-1525	-1425	-1325	-1525	-1425	-1325	-1525	-1425	-1325	mV
V _{EF}	Reference Voltage for ECL Mode Connection	-1385	-1280	-1180	-1360	-1220	-1110	-1315	-1170	-1035	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 20)	V _{EE} +2.0		0.0	V _{EE} +2.0		0.0	V _{EE} +2.0		0.0	٧
I _{IH}	Input HIGH Current (@ V _{IH})			150			150			150	μΑ
I _{IL}	Input LOW Current (@ V _{IL}) IN IN	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.

^{14.} Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.3 V to -0.3 V.

^{15.} All loading with 50 Ω to V_{CC}-2.0 V.

^{16.} V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential

^{17.} Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.3 V to -0.3 V. 18. Required 500 lfpm air flow when using +5 V power supply. For $(V_{CC} - V_{EE}) > 3.3 \text{ V}$, 5 Ω to 10 Ω in line with V_{EE} required for maximum thermal protection at elevated temperatures. Recommend $V_{CC}-V_{EE}$ operation at $\leq 3.8 \text{ V}$. 19. All loading with 50 Ω to $V_{CC}-2.0 \text{ V}$. 20. V_{IHCMR} min varies 1:1 with V_{EE} , V_{IHCMR} max varies 1:1 with V_{CC} . The V_{IHCMR} range is referenced to the most positive side of the differential

Table 12. AC CHARACTERISTICS $V_{CC} = 0 \text{ V}$; $V_{EE} = -3.0 \text{ V}$ to -3.6 V or $V_{CC} = 3.0 \text{ V}$ to 3.6 V; $V_{EE} = 0 \text{ V}$ (Note 21)

			-40°C		25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Frequency		1.2			1.2			1.2		GHz
t _{PLH} t _{PHL}	Propagation Delay IN to Q; D(0-10) = 0 IN to Q; D(0-10) = 1023 EN to Q; D(0-10) = 0 D0 to CASCADE	1650 9500 1600 300	2050 11500 2150 420	2450 13500 2600 500	1800 10000 1800 350	2200 12200 2300 450	2600 14000 2800 550	1950 10800 2000 425	2350 13300 2500 525	2750 15800 3000 625	ps
t _{RANGE}	Programmable Range t_{PD} (max) – t_{PD} (min)	7850	9450		8200	10000		8850	10950		ps
Δt	Step Delay (Note 22) D0 High D1 High D2 High D3 High D4 High D5 High D6 High D7 High D8 High D9 High		13 27 44 90 130 312 590 1100 2250 4500			14 30 47 97 140 335 650 1180 2400 4800			41 100 145 360 690 1300 2650 5300		ps
mono	Monotonicity (Note 28)					TBD					
t _{SKEW}	Duty Cycle Skew (Note 23) tphl-tplh		25			25			25		ps
t _S	Setup Time D to LEN D to IN (Note 24) EN to IN (Note 25)	200 300 300	0 140 150		200 300 300	0 160 170		200 300 300	0 180 180		ps
t _h	Hold Time LEN to D IN to EN (Note 26)	200 400	60 250		200 400	100 280		200 400	80 300		ps
t _R	Release Time EN to IN (Note 27) SET MAX to LEN SET MIN to LEN	150 400 350	-25 200 275		150 400 350	-75 250 200		150 400 350	-50 300 225		ps
t _{jitter}	RMS Random Clock Jitter @ 1.25 GHz		3			3			3		ps
V _{PP}	Input Voltage Swing (Differential Configuration)	150	800	1200	150	800	1200	150	800	1200	mV
t _r t _f	Output Rise/Fall Time @ 50 MHz 20-80% (Q) 20-80% (CASCADE)	85 100	100 140	135 200	85 110	110 150	135 200	95 130	125 170	155 220	ps

- 21. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC}-2.0 V.
- 22. Specification limits represent the amount of delay added with the assertion of each individual delay control pin. The various combinations of asserted delay control inputs will typically realize D0 resolution steps across the specified programmable range.
- 23. Duty cycle skew guaranteed only for differential operation measured from the cross point of the input to the cross point of the output.
- 24. This setup time defines the amount of time prior to the input signal the delay tap of the device must be set.
- 25. This setup time is the minimum time that $\overline{\text{EN}}$ must be asserted prior to the next transition of IN/IN to prevent an output response greater than \pm 75 mV to that IN/IN transition.
- 26. This hold time is the minimum time that $\overline{\text{EN}}$ must remain asserted after a negative going IN or positive going $\overline{\text{IN}}$ to prevent an output response greater than ± 75 mV to that IN/IN transition.
- 27. This release time is the minimum time that $\overline{\text{EN}}$ must be deasserted prior to the next $\overline{\text{IN/IN}}$ transition to ensure an output response that meets the specified IN to Q propagation delay and transition times.
- 28. The monotonicity indicates the increasing delay value for each binary count increment on the control inputs D[0:9].

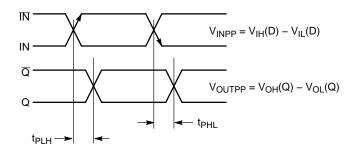


Figure 4. AC Reference Measurement

Cascading Multiple EP195s

To increase the programmable range of the EP195, internal cascade circuitry has been included. This circuitry allows for the cascading of multiple EP195s without the need for any external gating. Furthermore, this capability requires only one more address line per added E195. Obviously, cascading multiple programmable delay chips will result in a larger programmable range: however, this increase is at the expense of a longer minimum delay.

Figure 5 illustrates the interconnect scheme for cascading two EP195s. As can be seen, this scheme can easily be expanded for larger EP195 chains. The D10 input of the EP195 is the cascade control pin. With the interconnect scheme of Figure 5 when D10 is asserted, it signals the need for a larger programmable range than is achievable with a single device. The A11 address can be added to generate a cascade output for the next EP195. For a 2–device configuration, A11 is not required.

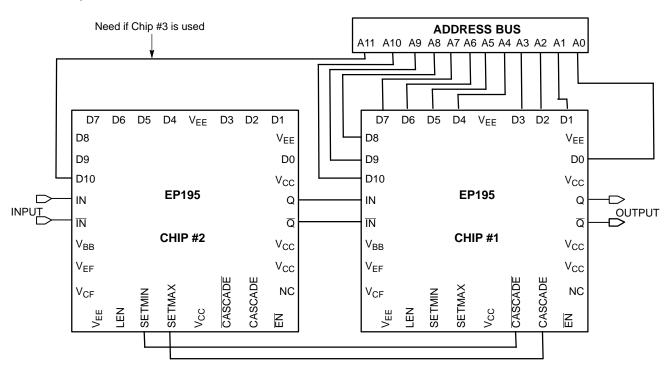


Figure 5. Cascading Interconnect Architecture

An expansion of the latch section of the block diagram is pictured in Figure 6. Use of this diagram will simplify the explanation of how the cascade circuitry works. When D10 of chip #1 in Figure 5 is low the cascade output will also be low while the cascade bar output will be a logical high. In this condition the SET MIN pin of chip #2 will be asserted and thus all of the latches of chip #2 will be reset and the device will be set at its minimum delay.

Chip #1, on the other hand, will have both SET MIN and SET MAX deasserted so that its delay will be controlled entirely by the address bus A0—A9. If the delay needed is greater than can be achieved with 1023 gate delays

(1111111111 on the A0—A9 address bus) D10 will be asserted to signal the need to cascade the delay to the next EP195 device. When D10 is asserted, the SET MIN pin of chip #2 will be deasserted and SET MAX pin asserted resulting in the device delay to be the maximum delay. Figure 7 shows the delay time of two EP195 chips in cascade.

To expand this cascading scheme to more devices, one simply needs to connect the D10 pin from the next chip to the address bus and CASCADE outputs to the next chip in the same manner as pictured in Figure 5. The only addition to the logic is the increase of one line to the address bus for cascade control of the second programmable delay chip.

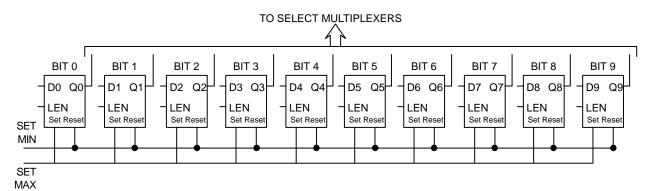


Figure 6. Expansion of the Latch Section of the EP195 Block Diagram

VARIABLE INPUT TO CHIP #1 AND SETMIN FOR CHIP #2												
INPUT FOR CHIP #1												Total
D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Delay Value	Delay Value
0	0	0	0	0	0	0	0	0	0	0	0 ps	4400 ps
0	0	0	0	0	0	0	0	0	0	1	10 ps	4410 ps
0	0	0	0	0	0	0	0	0	1	0	20 ps	4420 ps
0	0	0	0	0	0	0	0	0	1	1	30 ps	4430 ps
0	0	0	0	0	0	0	0	1	0	0	40 ps	4440 ps
0	0	0	0	0	0	0	0	1	0	1	50 ps	4450 ps
0	0	0	0	0	0	0	0	1	1	0	60 ps	4460 ps
0	0	0	0	0	0	0	0	1	1	1	70 ps	4470 ps
0	0	0	0	0	0	0	1	0	0	0	80 ps	4480 ps
0	0	0	0	0	0	1	0	0	0	0	160 ps	4560 ps
0	0	0	0	0	1	0	0	0	0	0	220 ps	4720 ps
0	0	0	0	1	0	0	0	0	0	0	640 ps	5040 ps
0	0	0	1	0	0	0	0	0	0	0	1280 ps	5680 ps
0	0	1	0	0	0	0	0	0	0	0	2560 ps	6960 ps
0	1	0	0	0	0	0	0	0	0	0	5120 ps	9520 ps
0	1	1	1	1	1	1	1	1	1	1	10230 ps	14630 ps

	VARIABLE INPUT TO CHIP #1 AND SETMAX FOR CHIP #2											
					Total							
D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Delay Value	Delay Value
1	0	0	0	0	0	0	0	0	0	0	10240 ps	14640 ps
1	0	0	0	0	0	0	0	0	0	1	10250 ps	14650 ps
1	0	0	0	0	0	0	0	0	1	0	10260 ps	14660 ps
1	0	0	0	0	0	0	0	0	1	1	10270 ps	14670 ps
1	0	0	0	0	0	0	0	1	0	0	10280 ps	14680 ps
1	0	0	0	0	0	0	0	1	0	1	10290 ps	14690 ps
1	0	0	0	0	0	0	0	1	1	0	10300 ps	14700 ps
1	0	0	0	0	0	0	0	1	1	1	10310 ps	14710 ps
1	0	0	0	0	0	0	1	0	0	0	10320 ps	14720 ps
1	0	0	0	0	0	1	0	0	0	0	10400 ps	14800 ps
1	0	0	0	0	1	0	0	0	0	0	10560 ps	14960 ps
1	0	0	0	1	0	0	0	0	0	0	10880 ps	15280 ps
1	0	0	1	0	0	0	0	0	0	0	11520 ps	15920 ps
1	0	1	0	0	0	0	0	0	0	0	12800 ps	17200 ps
1	1	0	0	0	0	0	0	0	0	0	15360 ps	19760 ps
1	1	1	1	1	1	1	1	1	1	1	20470 ps	24870 ps

Figure 7. Delay Value of Two EP195 Cascaded

Multi-Channel Deskewing

The most practical application for EP195 is in multiple channel delay matching. Slight differences in impedance and cable length can create large timing skews within a high–speed system. To deskew multiple signal channels, each channel can

be sent through each EP195 as shown in Figure 8. One signal channel can be used as reference and the other EP195s can be used to adjust the delay to eliminate the timing skews. Nearly any high–speed system can be fine–tuned (as small as 10 ps) to reduce the skew to extremely tight tolerances.

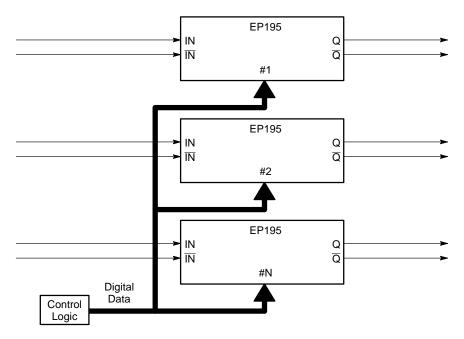


Figure 8. Multiple Channel Deskewing Diagram

Measure Unknown High Speed Device Delays

EP195s provide a possible solution to measure the unknown delay of a device with a high degree of precision. By combining two EP195s and EP31 as shown in Figure 9, the delay can be measured. The first EP195 can be set to SETMIN and its output is used to drive the unknown delay device, which in turn drives the input of a D flip–flop of EP31. The second EP195 is triggered along with the first EP195 and its output provides a clock signal for EP31. The

programmed delay of the second EP195 is varied to detect the output edge from the unknown delay device.

If the programmed delay through the second EP195 is too long, the flip–flop output will be at logic high. On the other hand, if the programmed delay through the second EP195 is too short, the flip–flop output will be at a logic low. If the programmed delay is correctly fine–tuned in the second EP195, the flip–flop will bounce between logic high and logic low. The digital code in the second EP195 can be directly correlated into an accurate device delay.

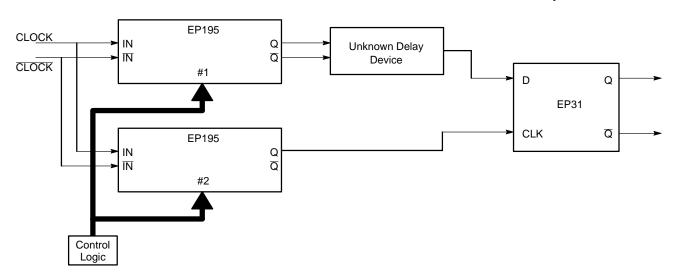


Figure 9. Multiple Channel Deskewing Diagram

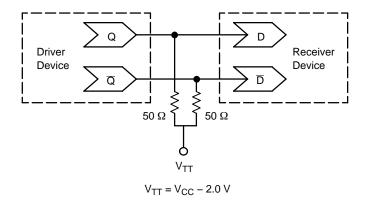


Figure 10. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 – Termination of ECL Logic Devices.)

Resource Reference of Application Notes

AN1404 - ECLinPS Circuit Performance at Non–Standard V_{IH} Levels

AN1405 - ECL Clock Distribution Techniques

AN1406 - Designing with PECL (ECL at +5.0 V)

AN1504 - Metastability and the ECLinPS Family

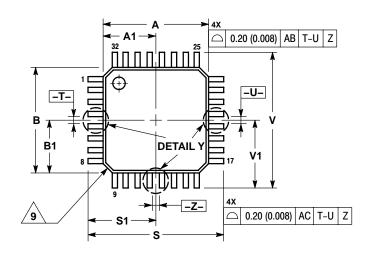
AN1568 - Interfacing Between LVDS and ECL

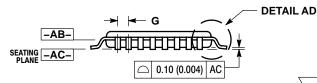
AN1650 - Using Wire-OR Ties in ECLinPS Designs

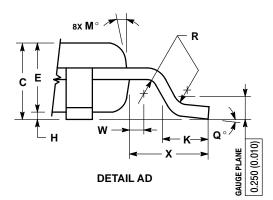
AND8002 - Marking and Date Codes

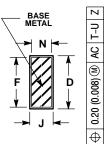
AND8009 - ECLinPS Plus Spice I/O Model Kit

AND8020 - Termination of ECL Logic Devices

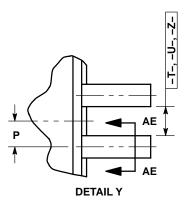

AND8090 - AC Characteristics of ECL Devices


For an updated list of Application Notes, please see our website at http://onsemi.com.


PACKAGE DIMENSIONS


LQFP FA SUFFIX

32-LEAD PLASTIC PACKAGE CASE 873A-02 **ISSUE A**



SECTION AE-AE

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
- DATUM PLANE -AB- IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD

- LEAD AND IS COINCIDENT WITH THE LEAD
 WHERE THE LEAD EXITS THE PLASTIC BODY AT
 THE BOTTOM OF THE PARTING LINE.

 4. DATUMS -T-, -U-, AND -Z- TO BE DETERMINED
 AT DATUM PLANE -AB-.
 5. DIMENSIONS S AND V TO BE DETERMINED AT
 SEATING PLANE -AC-.
 6. DIMENSIONS A AND B DO NOT INCLUDE MOLD
 PROTRUSION. ALLOWABLE PROTRUSION IS
 0.250 (0.010) PER SIDE. DIMENSIONS A AND B
 DO INCLUDE MOLD MISMATCH AND ARE
 DETERMINED AT DATUM PLANE -AB-.
 7. DIMENSION D DOES NOT INCLUDE DAMMAR
- DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE D DIMENSION TO EXCEED 0.520 (0.020).

 8. MINIMUM SOLDER PLATE THICKNESS SHALL BE
- 0.0076 (0.0003). 9. EXACT SHAPE OF EACH CORNER MAY VARY
- FROM DEPICTION.

	MILLIN	IETERS	INCHES				
DIM	MIN	MAX	MIN	MAX			
Α	7.000	BSC	0.276 BSC				
A1	3.500	BSC	0.138 BSC				
В	7.000	BSC	0.276 BSC				
B1	3.500	BSC	0.138	BSC			
С	1.400	1.600	0.055	0.063			
D	0.300	0.450	0.012	0.018			
E	1.350	1.450	0.053	0.057			
F	0.300	0.400	0.012	0.016			
G	0.800	BSC	0.031	BSC			
Н	0.050	0.150	0.002	0.006			
J	0.090	0.200	0.004	0.008			
K	0.500	0.700	0.020	0.028			
M	12°	REF	12°	REF			
N	0.090	0.160	0.004	0.006			
P	0.400	BSC	0.016 BSC				
Q	1°	5°	1°	5°			
R	0.150	0.250	0.006	0.010			
S	9.000	BSC	0.354 BSC				
S1	4.500	BSC	0.177 BSC				
V	9.000	BSC	0.354 BSC				
V1	4.500	BSC	0.177 BSC				
W	0.200	REF	0.008 REF				
X	1.000	REF	0.039 REF				

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.