5V ECL Quint Differential Line Receiver

The MC10E/100E116 is a quint differential line receiver with emitter-follower outputs. For applications which require bandwidths greater than that of the E116, the E416 device may be of interest.

Active current sources plus a deep collector feature of the MOSAIC III process provide the receivers with excellent common-mode noise rejection. Each receiver has a dedicated V_{CCO} supply lead, providing optimum symmetry and stability.

If both inverting and non-inverting inputs are at an equal potential of > -2.5 V, the receiver does *not* go to a defined state, but rather current-shares in normal differential amplifier fashion, producing output voltage levels midway between HIGH and LOW, or the device may even oscillate.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

The 100 Series contains temperature compensation.

- 500 ps Max. Propagation Delay
- V_{BB} Supply Output
- Dedicated V_{CCO} Pin for Each Receiver
- PECL Mode Operating Range: V_{CC} = 4.2 V to 5.7 V with V_{EE} = 0 V
- NECL Mode Operating Range: V_{CC} = 0 V with V_{EE} = -4.2 V to -5.7 V
- Output Qs will default low when inputs are $< V_{CC} 2.5 \text{ V}$
- Internal Input 50 KΩ Pulldown Resistors
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- ESD Protection: Human Body Model; > 2 KV, Machine Model; > 200 V
- Moisture Sensitivity Level 1
 For Additional Information, see Application Note AND8003/D
- Flammability Rating: UL 94 V-0 @ 0.125 in, Oxygen Index: 28 to 34
- Transistor Count = 98 devices

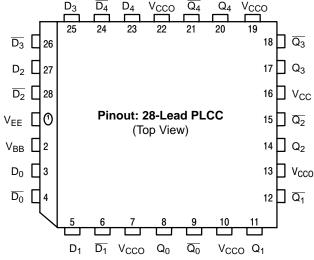
ON Semiconductor®

http://onsemi.com


MARKING DIAGRAMS

PLCC-28 FN SUFFIX CASE 776

A = Assembly Location
WL = Wafer Lot
YY = Year


WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping [†]				
MC10E116FN	PLCC-28	37 Units/Rail				
MC10E116FNR2	PLCC-28	500 Units/Reel				
MC100E116FN	PLCC-28	37 Units/Rail				
MC100E116FNR2	PLCC-28	500 Units/Reel				

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

 * All V_{CC} and V_{CCO} pins are tied together on the die.

Warning: All V_{CC} , V_{CCO} , and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. Pinout Assignment

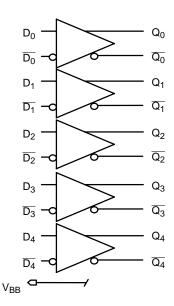


Figure 2. Logic Diagram

PIN DESCRIPTION

PIN	FUNCTION						
$D_0, \overline{D_0} - D_4, \overline{D_4}$	ECL Differential Input Pairs						
$Q_0, \overline{Q_0} - Q_4, \overline{Q_4}$	ECL Differential Output Pairs						
V_{BB}	Reference Voltage Output.						
V _{CC} , V _{CCO}	Positive Supply						
V _{EE}	Negative Supply						

MAXIMUM RATINGS (Note 1)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$V_I \le V_{CC}$ $V_I \ge V_{EE}$	6 -6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
T _A	Operating Temperature Range			0 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 LFPM 500 LFPM	28 PLCC 28 PLCC	63.5 43.5	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	28 PLCC	22 to 26	°C/W
T _{sol}	Wave Solder	< 2 to 3 sec @ 248°C		265	°C

^{1.} Maximum Ratings are those values beyond which device damage may occur.

10E SERIES PECL DC CHARACTERISTICS $V_{CCx} = 5.0 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ (Note 2)

			-40°C	•		0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		29	35		29	35		29	35		29	35	mA
V _{OH}	Output HIGH Voltage (Note 3)				3980	4070	4160	4020	4105	4190	4090	4185	4280	mV
V _{OL}	Output LOW Voltage (Note 3)				3050	3210	3370	3050	3210	3370	3050	3227	3405	mV
V _{IH}	Input HIGH Voltage (Single-Ended)				3830	3995	4160	3870	4030	4190	3940	4110	4280	mV
V _{IL}	Input LOW Voltage (Single-Ended)				3050	3285	3520	3050	3285	3520	3050	3302	3555	mV
V _{BB}	Output Voltage Reference	3.57		3.7	3.57		3.7	3.65		3.75	3.69		3.81	V
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 4)				2.2		4.4	2.2		4.4	2.2		4.4	V
I _{IH}	Input HIGH Current			200			200			200			200	μΑ
I _{IL}	Input LOW Current				0.5	0.3		0.5	0.25		0.3	0.2		μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

- 2. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary -0.46 V / +0.06 V.
- 3. Outputs are terminated through a 50 Ω resistor to V_{CC} 2 volts. 4. V_{IHCMR} min varies 1:1 with V_{EE} , max varies 1:1 with V_{CC} .

10E SERIES NECL DC CHARACTERISTICS $V_{CCx} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 5)

		-40°C			0°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		29	35		29	35		29	35		29	35	mA
V _{OH}	Output HIGH Voltage (Note 6)				-1020	-930	-840	-980	-895	-810	-910	-815	-720	mV
V _{OL}	Output LOW Voltage (Note 6)				-1950	-1790	-1630	-1950	-1790	-1630	-1950	-1773	-1595	mV
V _{IH}	Input HIGH Voltage (Single–Ended)				-1170	-1005	-840	-1130	-970	-810	-1060	-890	-720	mV
V _{IL}	Input LOW Voltage (Single–Ended)				-1950	-1715	-1480	-1950	-1715	-1480	-1950	-1698	-1445	mV
V _{BB}	Output Voltage Reference	-1.43		-1.3	-1.13		-1.30	-1.35		-1.25	-1.31		-1.19	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 7)				-2.8		-0.6	-2.8		-0.6	-2.8		-0.6	V
I _{IH}	Input HIGH Current			200			200			200			200	μΑ
I _{IL}	Input LOW Current				0.5	0.3		0.5	0.065		0.3	0.2		μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

- 5. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary -0.46 V / +0.06 V. 6. Outputs are terminated through a 50 Ω resistor to V_{CC} 2 volts. 7. V_{IHCMR} min varies 1:1 with V_{EE} , max varies 1:1 with V_{CC} .

100E SERIES PECL DC CHARACTERISTICS $V_{CCx} = 5.0 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ (Note 8)

			-40°C			0°C		25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		29	35		29	35		29	35		29	40	mA
V _{OH}	Output HIGH Voltage (Note 9)				3975	4050	4120	3975	4050	4120	3975	4050	4120	mV
V _{OL}	Output LOW Voltage (Note 9)				3190	3295	3380	3190	3255	3380	3190	3260	3380	mV
V _{IH}	Input HIGH Voltage (Single–Ended)		3975		3835	3975	4120	3835	3975	4120	3835	3975	4120	mV
V _{IL}	Input LOW Voltage (Single–Ended)		3355		3190	3355	3525	3190	3355	3525	3190	3355	3525	mV
V _{BB}	Output Voltage Reference	3.62		3.74	3.64		3.75	3.62		3.74	3.62		3.74	٧
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 10)				2.2		4.4	2.2		4.4	2.2		4.4	V
I _{IH}	Input HIGH Current			200			200			200			200	μΑ
I _{IL}	Input LOW Current				0.5	0.3		0.5	0.25		0.5	0.2		μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

100E SERIES NECL DC CHARACTERISTICS $V_{CCx} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 11)

		-40°C				0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Unit									
I _{EE}	Power Supply Current		29	35		29	35		29	35		29	40	mA
V _{OH}	Output HIGH Voltage (Note 12)				-1025	-950	-880	-1025	-950	-880	-1025	-950	-880	mV
V _{OL}	Output LOW Voltage (Note 12)				-1810	-1705	-1620	-1810	-1745	-1620	-1810	-1740	-1620	mV
V _{IH}	Input HIGH Voltage (Single-Ended)		-1025		-1165	-1025	-880	-1165	-1025	-880	-1165	-1025	-880	mV
V _{IL}	Input LOW Voltage (Single–Ended)		-1645		-1810	-1645	-1475	-1810	-1645	-1475	-1810	-1645	-1475	mV
V_{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.25	-1.38		-1.26	-1.38		-1.26	V
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Config- uration) (Note 13)				-2.8		-0.6	-2.8		-0.6	-2.8		-0.6	V
I _{IH}	Input HIGH Current			200			200			200			200	μΑ
I _{IL}	Input LOW Current				0.5	0.3		0.5	0.25		0.5	0.2		μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

^{8.} Input and output parameters vary 1:1 with V_{CC}. \dot{V}_{EE} can vary –0.46 V / +0.8 V.

^{9.} Outputs are terminated through a 50 ohm resistor to V_{CC} – 2 volts.

^{10.} V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}.

^{11.} Input and output parameters vary 1:1 with V_{CC}. \dot{V}_{EE} can vary –0.46 V / +0.8 V.

^{12.} Outputs are terminated through a 50 ohm resistor to V_{CC} – 2 volts.

^{13.} V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}.

AC CHARACTERISTICS $V_{CCx} = 5.0 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ or $V_{CCx} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 14)

			–40°C			25°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{MAX}	Maximum Toggle Frequency		800			800			800		MH z
t _{PLH} t _{PHL}	Propagation Delay to Output D (Differential) D (Single–Ended)	150 150	300 300	500 550	200 150	300 300	450 500	200 150	300 300	450 500	ps
t _{skew}	Within-Device Skew (Note 15)		50			50			50		ps
t _{skew}	Duty Cycle Skew (Note 16) t _{PLH} – t _{PHL}		±10			±10			±10		ps
t _{JITTER}	Random Clock Jitter (RMS)		< 1			< 1			< 1		ps
V_{PP}	Input Voltage Swing (Differential Configuration)	150			150			150			mV
t _r /t _f	Rise/Fall Time 20–80%	250	375	625	275	375	575	275	375	575	ps

NOTE: Devices are designed to meet the AC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

^{14.10} Series: V_{EE} can vary -0.46 V / +0.06 V. 100 Series: V_{EE} can vary -0.46 V / +0.8 V.

^{15.} Within-device skew is defined as identical transitions on similar paths through a device.

^{16.} Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs.

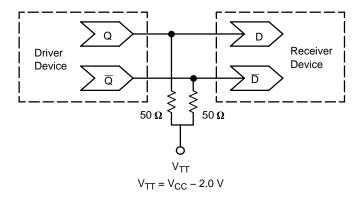


Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 – Termination of ECL Logic Devices.)

Resource Reference of Application Notes

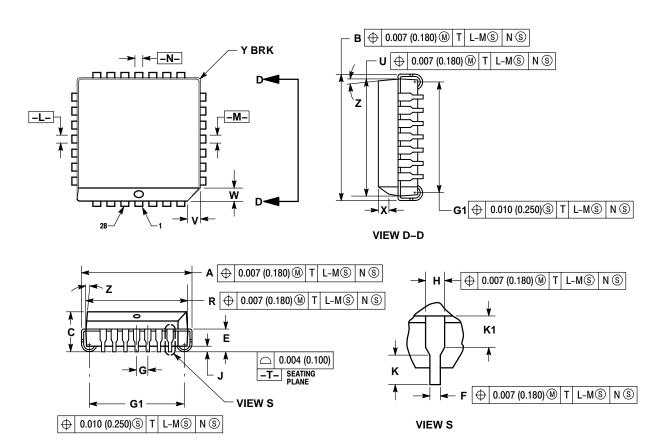
AN1404 ECLinPS Circuit Performance at Non–Standard V_{IH} Levels

AN1405 ECL Clock Distribution Techniques AN1406 Designing with PECL (ECL at +5.0 V) AN1503 ECLinPS I/O SPICE Modeling Kit AN1504 Metastability and the ECLinPS Family

Interfacing Between LVDS and ECL AN1596 ECLinPS Lite Translator ELT Family SPICE I/O Model Kit

AN1650 Using Wire-OR Ties in ECLinPS Designs

AN1672 The ECL Translator Guide AND8001 Odd Number Counters Design AND8002 Marking and Date Codes


AN1568

AND8020 Termination of ECL Logic Devices

PACKAGE DIMENSIONS

PLCC-28 **FN SUFFIX**

PLASTIC PLCC PACKAGE CASE 776-02 **ISSUE E**

NOTES:

- IOTES:

 1. DATUMS -L-, -M-, AND -N- DETERMINED
 WHERE TOP OF LEAD SHOULDER EXITS
 PLASTIC BODY AT MOLD PARTING LINE.

 2. DIMENSION G1, TRUE POSITION TO BE
 MEASURED AT DATUM -T-, SEATING PLANE.

 3. DIMENSIONS R AND U DO NOT INCLUDE
- MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE. 4. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. 5. CONTROLLING DIMENSION: INCH.
- 6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE
- PLASTIC BODY.
 7. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.485	0.495	12.32	12.57
В	0.485	0.495	12.32	12.57
С	0.165	0.180	4.20	4.57
Е	0.090	0.110	2.29	2.79
F	0.013	0.019	0.33	0.48
G	0.050	BSC	1.27	BSC
Н	0.026	0.032	0.66	0.81
7	0.020		0.51	
K	0.025		0.64	
R	0.450	0.456	11.43	11.58
υ	0.450	0.456	11.43	11.58
٧	0.042	0.048	1.07	1.21
W	0.042	0.048	1.07	1.21
Х	0.042	0.056	1.07	1.42
Υ		0.020		0.50
Z	2 °	10°	2°	10°
G1	0.410	0.430	10.42	10.92
K1	0.040		1.02	

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability, arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free LISA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.