5V ECL Quad Driver

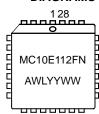
The MC10E/100E112 is a quad driver with two pairs of OR/NOR outputs from each gate, and a common, buffered enable input. Using the data inputs the device can serve as an ECL memory address fan-out driver. Using just the enable input, the device serves as a clock driver, although the MC10E/100E111 is designed specifically for this purpose, and offers lower skew than the E112. For memory address driver applications where scan capabilities are required, please refer to the E212 device.

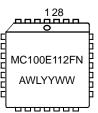
The 100 Series contains temperature compensation.

- 600 ps Max. Propagation Delay
- Common Enable Input
- PECL Mode Operating Range: V_{CC} = 4.2 V to 5.7 V with V_{EE} = 0 V
- NECL Mode Operating Range: V_{CC} = 0 V with V_{EE} = -4.2 V to -5.7 V
- Internal Input 50 KΩ Pulldown Resistors
- ESD Protection: Human Body Model; > 2 KV, Machine Model; > 200 V
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity Level 1
 For Additional Information, see Application Note AND8003/D
- Flammability Rating: UL 94 V-0 @ 0.125 in, Oxygen Index: 28 to 34
- Transistor Count = 125 devices

ON Semiconductor®

http://onsemi.com





PLCC-28 FN SUFFIX CASE 776

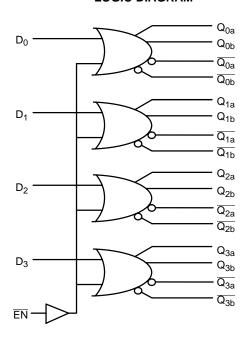
A = Assembly Location WL = Wafer Lot

YY = Year WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping [†]		
MC10E112FN	PLCC-28	37 Units/Rail		
MC10E112FNR2	PLCC-28	500 Units/Reel		
MC100E112FN	PLCC-28	37 Units/Rail		
MC100E112FNR2	PLCC-28	500 Units/Reel		

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


LOGIC DIAGRAM AND PINOUT ASSIGNMENT

Q_{3a} Q_{3b} Q_{3a} V_{CCO} $\overline{Q_{2b}}$ $\overline{Q_{2a}}$ 25 24 23 22 21 20 19 18 Q_{2b} Vcco ☐ 26 17 Q_{2a} D_3 D_2 28 16 V_{CC} VEE 0 15 $\overline{Q_{1b}}$ Pinout: 28-Lead PLCC (Top View) D₁ 14 🔲 🔃 2 13 D_0 Q_{1b} 3 EN [12 📙 Q_{1a} NC V_{CCO} Q_{0a} Q_{0b} $\overline{Q_{0b}}$ $\overline{\mathsf{Q}_{\mathsf{0a}}}$ V_{CCO}

*All V_{CC} and V_{CCO} pins are tied together on the die.

Warning: All V_{CC} , V_{CCO} , and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

LOGIC DIAGRAM

PIN DESCRIPTION

PIN	FUNCTION					
D ₀ – D ₃	ECL Data Inputs					
ĒN	ECL Enable Input					
Q _{na} , Q _{nb} ECL True Outputs						
Q _{na} , Q _{nb}	ECL Inverting Outputs					
V _{CC} , V _{CCO}	Positive Supply					
V _{EE}	Negative Supply					
NC	No Connect					

Truth Table

EN	D	Q	Q
L	Н	Н	L
Н	Н	Н	L
L	L	L	Н
Н	L	Н	L

MAXIMUM RATINGS (Note 1)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{c} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	6 -6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
T _A	Operating Temperature Range			0 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 LFPM 500 LFPM	28 PLCC 28 PLCC	63.5 43.5	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	28 PLCC	22 to 26	°C/W
T _{sol}	Wave Solder	< 2 to 3 sec @ 248°C		265	°C

^{1.} Maximum Ratings are those values beyond which device damage may occur.

10E SERIES PECL DC CHARACTERISTICS V_{CCx} = 5.0 V; V_{EE} = 0.0 V (Note 2)

			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		47	56		47	56		47	56	mA
V _{OH}	Output HIGH Voltage (Note 3)	3980	4070	4160	4020	4105	4190	4090	4185	4280	mV
V_{OL}	Output LOW Voltage (Note 3)	3050	3210	3370	3050	3210	3370	3050	3227	3405	mV
V _{IH}	Input HIGH Voltage	3830	3995	4160	3870	4030	4190	3940	4110	4280	mV
V_{IL}	Input LOW Voltage	3050	3285	3520	3050	3285	3520	3050	3302	3555	mV
I _{IH}	Input HIGH Current			200			200			200	μΑ
I _{IL}	Input LOW Current	0.5	0.3		0.5	0.25		0.3	0.2		μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

- 2. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary –0.46 V / +0.06 V.
- 3. Outputs are terminated through a 50 ohm resistor to V_{CC} 2 volts.

10E SERIES NECL DC CHARACTERISTICS $V_{CCx} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 4)

			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		47	56		47	56		47	56	mA
V _{OH}	Output HIGH Voltage (Note 5)	-1020	-930	-840	-980	-895	-810	-910	-815	-720	mV
V _{OL}	Output LOW Voltage (Note 5)	-1950	-1790	-1630	-1950	-1790	-1630	-1950	-1773	-1595	mV
V _{IH}	Input HIGH Voltage	-1170	-1005	-840	-1130	-970	-810	-1060	-890	-720	mV
V _{IL}	Input LOW Voltage	-1950	-1715	-1480	-1950	-1715	-1480	-1950	-1698	-1445	mV
I _{IH}	Input HIGH Current			200			200			200	μΑ
I _{IL}	Input LOW Current	0.5	0.3		0.5	0.065		0.3	0.2		μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

- 4. Input and output parameters vary 1:1 with V_{CC} . \dot{V}_{EE} can vary -0.46 V / +0.06 V. 5. Outputs are terminated through a 50 ohm resistor to V_{CC} 2 volts.

100E SERIES PECL DC CHARACTERISTICS $V_{CCx} = 5.0 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ (Note 6)

			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		47	56		47	56		54	65	mA
V _{OH}	Output HIGH Voltage (Note 7)	3975	4050	4120	3975	4050	4120	3975	4050	4120	mV
V _{OL}	Output LOW Voltage (Note 7)	3190	3295	3380	3190	3255	3380	3190	3260	3380	mV
V _{IH}	Input HIGH Voltage	3835	3975	4120	3835	3975	4120	3835	3975	4120	mV
V _{IL}	Input LOW Voltage	3190	3355	3525	3190	3355	3525	3190	3355	3525	mV
I _{IH}	Input HIGH Current			200			200			200	μΑ
I _{IL}	Input LOW Current	0.5	0.3		0.5	0.25		0.5	0.2		μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

100E SERIES NECL DC CHARACTERISTICS $V_{CCx} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 8)

			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		47	56		47	56		54	65	mA
V _{OH}	Output HIGH Voltage (Note 9)	-1025	-950	-880	-1025	-950	-880	-1025	-950	-880	mV
V _{OL}	Output LOW Voltage (Note 9)	-1810	-1705	-1620	-1810	-1745	-1620	-1810	-1740	-1620	mV
V_{IH}	Input HIGH Voltage	-1165	-1025	-880	-1165	-1025	-880	-1165	-1025	-880	mV
V _{IL}	Input LOW Voltage	-1810	-1645	-1475	-1810	-1645	-1475	-1810	-1645	-1475	mV
I _{IH}	Input HIGH Current			200			200			200	μΑ
I _{IL}	Input LOW Current	0.5	0.3		0.5	0.25		0.5	0.2		μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

AC CHARACTERISTICS V_{CCx} = 5.0 V; V_{EE} = 0.0 V or V_{CCx} = 0.0 V; V_{EE} = -5.0 V (Note 8)

			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{MAX}	Maximum Toggle Frequency		700			700			700		MHZ
t _{PLH}	Propagation Delay to Output										ps
t _{PHL}	D	200	400	600	200	400	600	200	400	600	
	EN	275	450	675	275	450	675	275	450	675	
t _{SKEW}	Within-Device Skew										ps
	Dn to Qn, Qn (Note 11)		80			80			80		
	Qna to Qnb (Note 12)		40			40			40		
t _{JITTER}	Random Clock Jitter (RMS)		< 1			< 1			< 1		ps
t _r	Rise/Fall Times										ps
t _f	(20 - 80%)	275	425	700	275	425	700	275	425	700	

NOTE: Devices are designed to meet the AC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

^{6.} Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary -0.46 V / +0.8 V.

^{7.} Outputs are terminated through a 50 ohm resistor to V_{CC} – 2 volts.

^{8.} Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary -0.46 V / +0.8 V. 9. Outputs are terminated through a 50 ohm resistor to V_{CC} – 2 volts.

^{10.10} Series: V_{EE} can vary -0.46 V / +0.06 V.

¹⁰⁰ Series: VEE can vary -0.46 V / +0.8 V.

^{11.} Within-device skew is defined as identical transitions on similar paths through a device.

^{12.} Skew defined between common OR or common NOR outputs of a single gate.

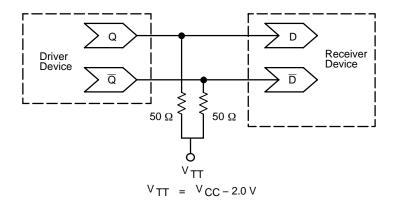


Figure 1. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 – Termination of ECL Logic Devices.)

Resource Reference of Application Notes

AN1404 - ECLinPS Circuit Performance at Non–Standard V_{IH} Levels

AN1405 – ECL Clock Distribution Techniques

AN1406 – Designing with PECL (ECL at +5.0 V)

AN1503 – ECLinPS I/O SPICE Modeling Kit

AN1504 – Metastability and the ECLinPS Family

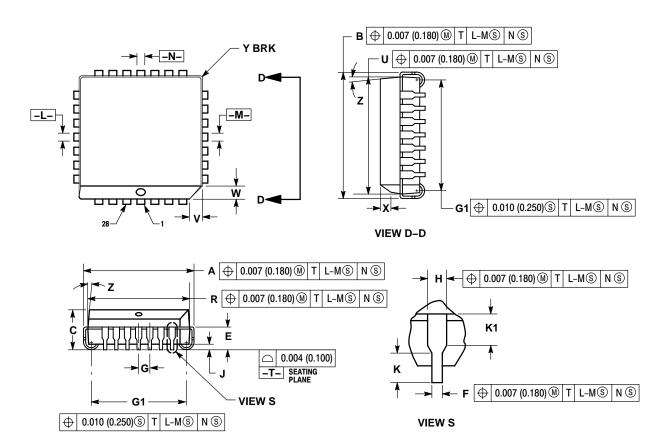
AN1568 – Interfacing Between LVDS and ECL

AN1596 - ECLinPS Lite Translator ELT Family SPICE I/O Model Kit

AN1650 - Using Wire-OR Ties in ECLinPS Designs

AN1672 - The ECL Translator Guide

AND8001 - Odd Number Counters Design


AND8002 - Marking and Date Codes

AND8020 - Termination of ECL Logic Devices

PACKAGE DIMENSIONS

PLCC-28 **FN SUFFIX**

PLASTIC PLCC PACKAGE CASE 776-02 **ISSUE E**

NOTES:

- IOTES:

 1. DATUMS -L-, -M-, AND -N- DETERMINED
 WHERE TOP OF LEAD SHOULDER EXITS
 PLASTIC BODY AT MOLD PARTING LINE.

 2. DIMENSION G1, TRUE POSITION TO BE
 MEASURED AT DATUM -T-, SEATING PLANE.

 3. DIMENSIONS R AND U DO NOT INCLUDE
- MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE. 4. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. 5. CONTROLLING DIMENSION: INCH.
- 6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
 7. DIMENSION H DOES NOT INCLUDE DAMBAR
- PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.485	0.495	12.32	12.57
В	0.485	0.495	12.32	12.57
С	0.165	0.180	4.20	4.57
Е	0.090	0.110	2.29	2.79
F	0.013	0.019	0.33	0.48
G	0.050	BSC	1.27	BSC
Н	0.026	0.032	0.66	0.81
J	0.020		0.51	
K	0.025		0.64	
R	0.450	0.456	11.43	11.58
υ	0.450	0.456	11.43	11.58
٧	0.042	0.048	1.07	1.21
W	0.042	0.048	1.07	1.21
Х	0.042	0.056	1.07	1.42
Υ		0.020		0.50
Z	2 °	10°	2°	10°
G1	0.410	0.430	10.42	10.92
K1	0.040		1.02	

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability, arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.