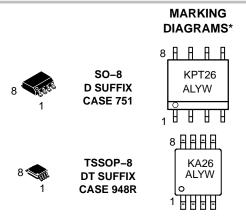
3.3V 1:2 Fanout Differential LVPECL to LVTTL Translator

The MC100EPT26 is a 1:2 Fanout Differential LVPECL to LVTTL translator. Because LVPECL (Positive ECL) levels are used only +3.3 V and ground are required. The small outline 8–lead package and the 1:2 fanout design of the EPT26 makes it ideal for applications which require the low skew duplication of a signal in a tightly packed PC board.


The V_{BB} output allows the EPT26 to be used in a single–ended input mode. In this mode the V_{BB} output is tied to the $\overline{D0}$ input for a non–inverting buffer or the D0 input for an inverting buffer. If used, the V_{BB} pin should be bypassed to ground via a 0.01 μF capacitator.

- 1.4 ns Typical Propagation Delay
- Maximum Frequency > 275 MHz Typical
- The 100 Series Contains Temperature Compensation
- Operating Range: $V_{CC} = 3.0 \text{ V}$ to 3.6 V with GND = 0 V
- Open Input Default State
- Safety Clamp on Inputs
- 24 mA TTL outputs
- $\bullet\,$ Q Outputs Will Default LOW with Inputs Open or at V_{EE}
- V_{BB} Output

ON Semiconductor®

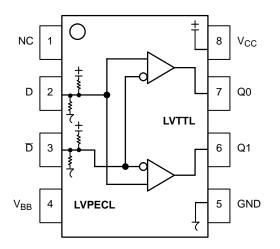
http://onsemi.com

A = Assembly Location

L = Wafer Lot

Y = Year

W = Work Week


*For additional information, see Application Note AND8002/D

ORDERING INFORMATION

Device	Package	Shipping†
MC100EPT26D	SO-8	98 Units/Rail
MC100EPT26DR2	SO-8	2500 Tape & Reel
MC100EPT26DT	TSSOP-8	100 Units/Rail
MC100EPT26DTR2	TSSOP-8	2500 Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

1

PIN DESCRIPTION

PIN	FUNCTION
Q0, Q1	LVTTL Outputs
D**, \(\overline{D}**	Differential LVPECL Input Pair
V _{CC}	Positive Supply
V _{BB}	Output Reference Voltage
GND	Ground
NC	No Connect

^{**} Pins will default to $V_{\mbox{\footnotesize CC}}/2$ when left open.

Figure 1. 8-Lead Pinout (Top View) and Logic Diagram

ATTRIBUTES

Characte	Value	
Internal Input Pulldown Resistor	50 kΩ	
Internal Input Pullup Resistor	50 kΩ	
ESD Protection	Human Body Model Machine Model Charged Device Model	> 2 kV > 100 V > 2 kV
Moisture Sensitivity, Indefinite Time	e Out of Drypack (Note 1)	Level 1
Flammability Rating	UL 94 V-0 @ 0.125 in	
Transistor Count	117 Devices	
Meets or exceeds JEDEC Spec El	A/JESD78 IC Latchup Test	

^{1.} For additional information, see Application Note AND8003/D.

MAXIMUM RATINGS (Note 2)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	Positive Power Supply	GND = 0 V		3.8	V
V _{IN}	Input Voltage	GND = 0 V	$V_{I} \leq V_{CC}$	0 to 3.8	V
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 LFPM 500 LFPM	8 SOIC 8 SOIC	190 130	°C/W
θЈС	Thermal Resistance (Junction-to-Case)	std bd	8 SOIC	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 LFPM 500 LFPM	8 TSSOP 8 TSSOP	185 140	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	std bd	8 TSSOP	41 to 44	°C/W
T _{sol}	Wave Solder	< 2 to 3 sec @ 248°C		265	°C

^{2.} Maximum Ratings are those values beyond which device damage may occur.

PECL INPUT DC CHARACTERISTICS $V_{CC} = 3.3 \text{ V}$; GND = 0.0 V (Note 3)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{IH}	Input HIGH Voltage (Single-Ended)	2075		2420	2075		2420	2075		2420	mV
V _{IL}	Input LOW Voltage (Single-Ended)	1355		1675	1355		1675	1355		1675	mV
V _{BB}	Output Voltage Reference	1775	1875	1975	1775	1875	1975	1775	1875	1975	V
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 4)	2.0		3.3	2.0		3.3	2.0		3.3	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current E				0.5 -150			0.5 -150			μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

- Input parameters vary 1:1 with V_{CC}.
 V_{IHCMR} min varies 1:1 with GND, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

TTL OUTPUT DC CHARACTERISTICS $V_{CC} = 3.3 \text{ V}$; GND = 0.0 V; $T_A = -40 ^{\circ}\text{C}$ to $85 ^{\circ}\text{C}$

Symbol	Characteristic	Condition	Min	Тур	Max	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -3.0 \text{ mA}$	2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 24 mA			0.5	V
I _{CCH}	Power Supply Current		10	20	18	mA
I _{CCL}	Power Supply Current		15	28	35	mA
Ios	Output Short Circuit Current		-50		-150	mA

AC CHARACTERISTICS $V_{CC} = 3.0 \text{ V}$ to 3.6 V; GND = 0.0 V (Note 5)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Frequency (See Figure 2. F _{max} /JITTER)	275	350		275	350		275	350		MHz
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential (Note 6)	1.2 1.2	1.5 1.5	1.8 1.8	1.2 1.2	1.5 1.5	1.8 1.8	1.3 1.2	1.7 1.5	2.2 1.8	ns
t _{SK++} t _{SK} t _{SKPP}	Within Device Skew++ Within Device Skew- – Device-to-Device Skew (Note 7)			60 25 500			60 25 500			60 25 500	ps
t _{JITTER}	Random Clock Jitter (RMS) (See Figure 2. F _{max} /JITTER)		TBD			TBD			TBD		ps
V_{PP}	Input Voltage Swing (Differential)	150	800	1200	150	800	1200	150	800	1200	mV
t _r t _f	Output Rise/Fall Times $(0.8V-2.0V)$ Q, \overline{Q}	330	600	900	330	600	900	330	650	900	ps

- 5. Measured with a 750 mV 50% duty-cycle clock source. R_L = 500 Ω to GND and C_L = 20 pF to GND. Refer to Figure 3. 6. Reference (V_{CC} = 3.3V \pm 5%; GND = 0V) 7. Skews are measured between outputs under identical transitions.

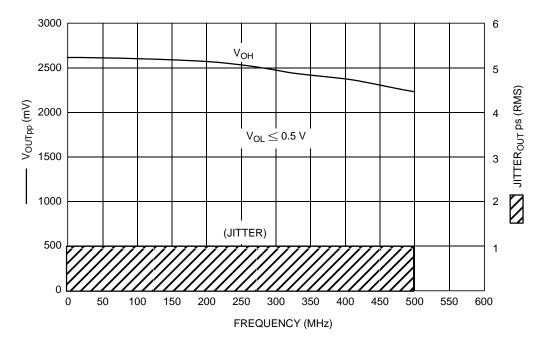


Figure 2. F_{max}/Jitter

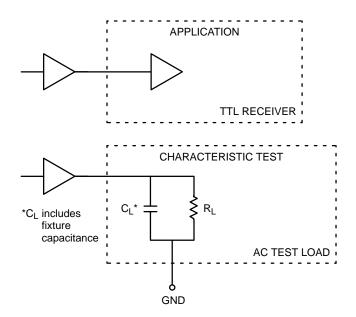


Figure 3. TTL Output Loading Used for Device Evaluation

Resource Reference of Application Notes

AN1404 – ECLinPS Circuit Performance at Non–Standard V_{IH} Levels

AN1405 – ECL Clock Distribution Techniques

AN1406 – Designing with PECL (ECL at +5.0 V)

AN1504 – Metastability and the ECLinPS Family

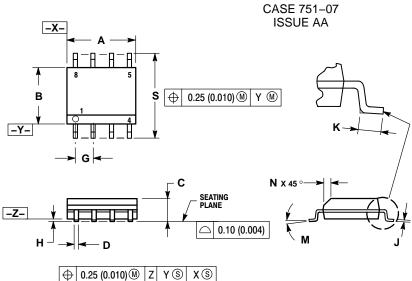
AN1568 – Interfacing Between LVDS and ECL

AN1650 – Using Wire–OR Ties in ECLinPS Designs

AN1672 – The ECL Translator Guide

AND8001 – Odd Number Counters Design

AND8002 – Marking and Date Codes

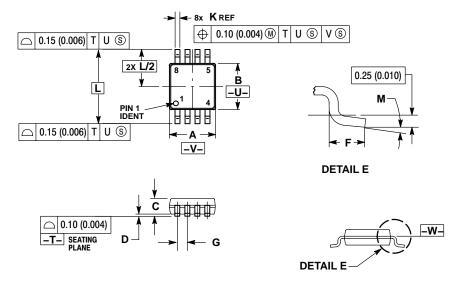

AND8009 – ECLinPS Plus Spice I/O Model Kit

AND8020 – Termination of ECL Logic Devices

For an updated list of Application Notes, please see our website at http://onsemi.com.

PACKAGE DIMENSIONS

SO-8 **D SUFFIX** PLASTIC SOIC PACKAGE CASE 751-07 **ISSUE AA**



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDAARD IS 751-07

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
C	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	7 BSC	0.050 BSC		
Н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
M	0 °	8 °	0 °	8 °	
N	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	

PACKAGE DIMENSIONS

TSSOP-8 **DT SUFFIX** PLASTIC TSSOP PACKAGE CASE 948R-02 **ISSUE A**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 - PER SIDE.
 TERMINAL NUMBERS ARE SHOWN FOR
- TERMINAL NOWBERS ARE STOWN FOR REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	2.90	3.10	0.114	0.122
В	2.90	3.10	0.114	0.122
С	0.80	1.10	0.031	0.043
D	0.05 0.15		0.002	0.006
F	0.40	0.70	0.016	0.028
G	0.65	BSC	0.026	BSC
K	0.25	0.40	0.010	0.016
L	4.90	4.90 BSC		BSC
M	0.0	6 °	00 60	

ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.