

10Gbit/s X2 850 nm Transponder (TRP10GVP200x / TRP10GVP210x)

Features

- Compatible with X2 MSA Rev. 2.0b
- Support of IEEE 802.3ae 10GBASE-SR at 10.3125
 Gbit/s (TRP10GVP200x)
- Compliance to Fibre Channel 1200-M5-SN-I, 1200-M5E-SN-I, 1200-M6-SN-I at 10.51875 Gbit/s (TRP10GVP210x)
- Transmission distance up to 300m (special MMF)
- Power Consumption 1.7 W (typ.)
- Temperature Range 0...70°C
- Laser Class 1 compliant
- Vertical Cavity Surface Emitting Laser at 850 nm (VCSEL)
- SC duplex connector
- Hot pluggable 70-pin connector with XAUI electrical interface
- Management and control via MDIO 2-wire interface
- Compliant with the EU RoHS 6 environmental requirements

General Description and Applications

The TRP10GVP200x/210x is a highly integrated, serial optical transponder module for high-speed, 10Gbit/s data transmission applications. It is ideally suited for 10 GbE datacom (belly-to-belly for high density applications) and storage area network

(SAN / NAS) applications based on the IEEE 802.3ae standard as well as the Fiber Channel 10GFC Rev. 4.0. Designed for short range

Standard	Description	Nominal Baud Rate	Unit
IEEE 802.3ae-2002 (TRP10GVP200x)	10 GBASE-SR	10.3125	GBd
Fiber Channel 10GFC Rev. 4.0 (TRP10GVP212x)	1200-SM-L-LL	10.51875	GBd

distances the transponder module comprises a transmitter with a vertical cavity surface emitting laser (VCSEL), a receiver with a PIN photodiode and a XAUI-Attachment Interface, an integrated Coder / Decoder and multiplexer / demultiplexer (SERDES: Serializer / Deserializer). The transponder operates within a wide temperature range of 0°C to +70°C and offers optimum heat dissipation and excellent electromagnetic shielding thus enabling high port densities for 10 GbE or 10 GFC systems. A 70 pin electrical connector and a duplex SC connector optical interface assure that connectivity is compliant to the X2 and XENPAK MSA.

Content:

ELECTRICAL CHARACTERISTICS	3
ABSOLUTE MAXIMUM RATINGSRECOMMENDED OPERATING CONDITIONS	3
ELECTRICAL CHARACTERISTICS	5
OPTICAL INTERFACE	6
RECOMMENDED OPERATING CONDITIONS	6
MDIO INTERFACE	7
DC CharacteristicsAC Characteristics	7 7
ELECTRO STATIC DISCHARGE (ESD)	8
THERMAL MANAGEMENT	8
EDGE-BOARD-CONNECTOR-PINNING AND LAYOUT	9
ELECTRICAL PIN DEFINITION (PART 1)	10
EYE SAFETY	
MECHANICAL DRAWING	13
ORDERING INFORMATION	14

Electrical Characteristics

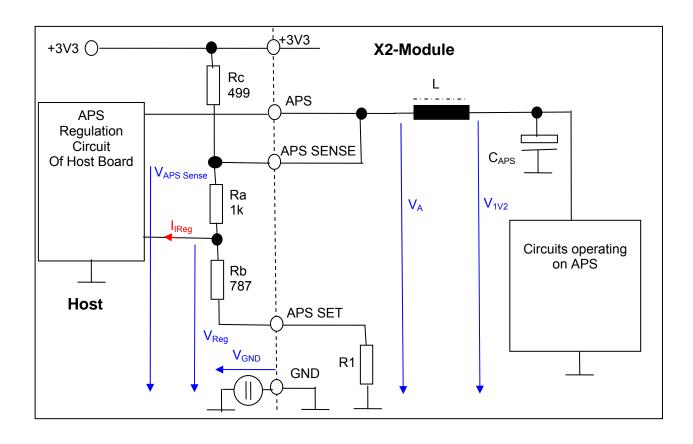
Absolute Maximum Ratings

Rating	Conditions/Remark	Symbol	Min	Max	Units
Storage Ambient Temperature	non condensing	$artheta_{stg}$	-40	+85	°C
Powered Case Temperature	non condensing	θc	0	+75	°C
Adaptable Power Supply (APS)	Voltage @ Pin APS Sense	V _{APSsense}	-0.3	1.5	V
Supply Voltage 3.3V Rail		V _{CC3}	-0.3	4.0	V
Supply Voltage 5V Rail		V _{CC5}	-0.3	6.0	V
Input Voltage Low Speed Signals	RESET, TxOn/Off, PRTADR40, MDIO, MDC	VI	-0.5	3.6	V
LASI Voltage		V_{Q}	-0.5	1.5	V
Differential XAUI Input Amplitude	Inputs are AC coupled	V _{IDXAUI}		2500	mV
Optical Receiver Input Power	Maximum receive power for demage	P _{Rx}	•	+4.0	dBm
Static Discharge Voltage	MIL STD 883 Method 3015.1			500	V

Any stress beyond the maximum ratings can result in permanent damage. The device specifications are guaranteed only under the recommended operating conditions.

Recommended Operating Conditions

omission.


Parameter	Conditions / Remark	Symbol	Min	Тур	Max	Units
Operating Case Temperature Range	worst case thermal location	$artheta_{Case}$	0		+70	°C
APS Feedback Voltage ¹⁾²⁾	Ra=1kΩ ±1%, Rb=787Ω±1%	V _{Feedback}	786	800	812	mV
APS Sense Voltage ¹⁾²⁾	Just for informational purposes	V _{APSsense}	1.164	1.205	1.235	V
Power Supply Voltage @ 3.3V		V _{CC3}	3.135	3.3	3.465	V
Power Supply Voltage @ 5.0V		V _{CC5}	4.75	5.00	5.25	V

The device is supposed to operate in the APS control environment described and specified in the XENPAK-MSA (page 22 to 24 of Revision 3.0). In this environment the APS-Sense Voltage requirements will be automatically satisfied if APS-Feedback Voltage is within its recommended range. The operating APS-Sense Voltage is for informational purposes and is subject to be changed without further notice.

2) A more detailed description on the APS control circuit can also be found on page 3.

Functional Block Diagram of APS Regulation

Electrical Characteristics

Parameter	Conditions	Symbol	Min	Тур	Max	Units
5V Supply Current		I _{VCC5}	3	5	8	mA
3.3V Supply Current		I _{VCC3}	200	235	280	mA
APS Supply Current	V _{Feedback} = 786800812mV	I _{VCCAPS}	740	820	1070	mA
Total Power Consumption		P _{tot}	1.4	1.7	2.4	W

Note: RESET=H, TxOn/Off = H

XAUI Input Characteristics

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Nominal XAUI Baud Rate	Ethernet Fibre Channel			3.125 3.1875		GBd
Nominal XAUI Baud Rate Tolerance	Relative Tolerance		-100		+100	ppm
Differential Input Voltage Swing	8B/10B Coded Input Signal	V_{ID}	220		1600	mV_{P-P}
Differential Return Loss	100 MHz – 2.5 GHz (Referenced to 100 Ω)	SDD11	10			dB
Common Mode Return Loss	100MHz – 2.5GHz (Referenced to 25 Ω)	SCC11	6			dB
Input differential skew	at crossing point	T _{jRDS}			75	ps _{P-P}
Total Peak-to-Peak Jitter Tolerance Sinusoidal Jitter @ 0 20		T _{jRDS}	0.55			UI _{P-P}
Differential Input Impedance		R _{IND}	80	100	120	Ω

Note: XAUI-input-Lanes are ac-coupled

XAUI Output Characteristics

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Nominal XAUI Baud Rate	Ethernet Fibre Channel			3.125 3.1875		GBd
Nominal XAUI Baud Rate Tolerance	Relative Tolerance		-100		+100	ppm
Differential Output Voltage Swing	$R_{LOAD} = 100\Omega \pm 5\%$			800	1600	mV _{P-P}
Output Differential Skew		t _{skew, out}			15	ps
Output Differential Impedance		Z _{XAUI, out}	80	100	120	Ω
Differential Transition Time	20% - 80%		40		100	ps
Total Output Jitter	no pre-equalization	TJ _{XAUI}			0.35	UI
Total Deterministic Output Jitter	no pre-equalization	DJ _{XAUI}			0.17	UI
Differential Output Return Loss	312.5 to 625 MHz	S22	10			dB

Note: XAUI-output-Lanes are ac-coupled

Optical Interface

Recommended Operating Conditions

Parameter	Conditions	Min Modal Bandwidth (MHz*km)	Symbol	Min	Тур	Мах	Units
Operating Range	62.5 µm MMF 50 µm MMF 62.5 µm MMF 50 µm MMF 50 µm MMF	160 400 200 500 2000	I _{OP}	2 0.5 0.5 0.5		26 66 33 82 300	m
Pagaiyar Innut Signal	Center Wavelength		λc	840	850	860	nm
Receiver Input Signal	Average Input Power		P _{IN}	-9.9		-1.0	dBm

Transmitter Characteristics

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Data Rate	TRP10GVP200x TRP10GVP210x	DR		10.3125 10.51875		Gbps
	relative tolerance	ΔDR/DR _{typ}	-100		100	ppm
Nominal Wavelength		λ_{TRP}	840	850	860	nm
Spectral Width		Δλ		0.4	0.45	nm
Optical Output Power		P _{opt, avg}	-3	-2.3	-1	dBm
Extinction Ratio		ER	5	6.5		dB
Optical Modulation Amplitude		OMA	525			μW
Transmitter and Dispersion Penalty		TDP			3.9	dB
Relative Intensity Noise		RIN			-128	dB/Hz

Receiver Characteristics

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Data Rate	TRP10GVP200x TRP10GVP210x	DR		10.3125 10.51875		Gbps
	relative tolerance	$\Delta DR/DR_{typ}$	-100		100	ppm
Receiver Sensitivity	in OMA, BER 10 ⁻¹² @ 2 ³¹ -1 ¹⁾	P _{IN}			-11.1	dBm
Stressed Receiver Sensitivity	in OMA	P _{IN}			-7.5	dBm
Saturation Input Power		P _{SAT}	+1.0			dBm

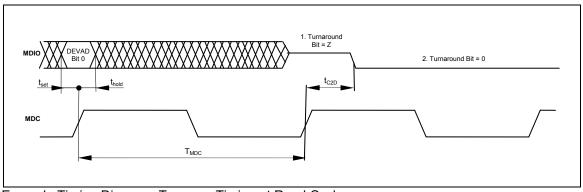
Note: 1) with ideal transmitte

Note: The specified characteristics are met within the recommended range of operating conditions and under the default settings of output power and modulation amplitude. A change in setting of the optical output power influences especially the dynamic behavior of the output signal. Unless otherwise noted typical data are quoted at nominal voltages and +25°C ambient temperature.

MDIO Interface

DC Characteristics

if not otherwise mentioned under the recommended operating conditions.


Thet etherwise mentioned and	er the recommended operating	conditions.				
Characteristic	Condition	Symbol	Minimum	Тур	Maximum	Unit
Pull-up supply voltage		V_{pu}		1.2		V
Input high voltage	3.3V tolerant	V _{IH}	0.84			V
Input low voltage		V _{IL}			0.36	V
Output low voltage	I _{OL} = 4mA	V_{QL}			0.2	V
Output high voltage	I _{OH} = - 100μA	V_{QH}			V_{pu}	V
Input capacitance	$V_I = 0V_{pu}$	C _{in}			10	pF
Load capacitance	$V_I = 0V_{pu}$	C _{load}			470	pF
Pull-up resistance	with 1.2V pull-up voltage	R _{pu}	180			Ω
Full-up resistance	with 3.3V pull-up voltage	R _{pu}	500			Ω

AC Characteristics

not less than 310ns and the sum of input currents of loads on the bus does not exceed 256µA at high and at low not below -320µA.

Characteristic	Condition	Symbol	Minimum	Maximum	Unit
Set Up Time	wrt MDC rising edge	t _{set}		10	ns
Hold Time	wrt MDC rising edge	t _{hold}		10	ns
Clock to Data Time ¹⁾	$V_{pu} = 1.2V$, $R_{pu} = 400\Omega \pm 1\%$, $C_{BUS} \le 470pF$	t _{C2D}	0	300	ns
Clock to Data Time ¹⁾	$V_{pu} = 1.2V, R_{pu} = 400\Omega \pm 1\%, C_{BUS} \le 50pF$	t _{C2D}		30	ns
MDC clock rate	$V_{pu} = 1.2V$, $R_{pu} = 400\Omega \pm 1\%$, $C_{BUS} \le 470pF$	F _{max}		3.125	MHz
MDC H and L times	$V_{pu} = 1.2V$, $R_{pu} = 400\Omega \pm 1\%$, $C_{BUS} \le 470pF$	t_H , t_L	160		ns
Clock to Data Time ¹⁾	$V_{pu} = 1.2V, R_{pu} = 180\Omega \pm 1\%, C_{BUS} \le 100pF$	t _{C2D}	0	32	ns
Clock to Data Time ¹⁾	$V_{pu} = 1.2V, R_{pu} = 180\Omega \pm 1\%, C_{BUS} \le 50pF$	t _{C2D}		20	ns
MDC clock rate	$V_{pu} = 1.2V$, $R_{pu} = 180\Omega \pm 1\%$, $C_{BUS} \le 100pF$	F _{max}		25	MHz
MDC H and L times	$V_{pu} = 1.2V, R_{pu} = 180\Omega \pm 1\%, C_{BUS} \le 100pF$	t _H ,t∟	20		ns

¹⁾ Note: delay is measured from MDC rising edge Vih_min level (0.84V) to MDIO rising edge Vih_min level (0.84V) or MDIO falling edge Vil_max level (0.36V)

Example Timing Diagram: Turnover Timing at Read Cycle

TRP10GVP2x0x SP/5100-04:74-01 A7 Page: 7 / 14 Copyright © 2008 MergeOptics GmbH, MergeOptics GmbH reserves the right to make changes in design, specifications and other information at any time without prior notice. Information in this data sheet is reliable on preliminary status. However, no responsibility is assumed for possible inaccuracy or

Electro Static Discharge (ESD)

The maximum electrostatic charge based on a human body model and the conditions as outlined below is:

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Static Discharge Voltage	MIL STD 883 Method 3015.1				500	V

Thermal Management

The transponder is designed for an operation within a case temperature range between 0 to $+70^{\circ}$ C at an altitude of < 3km. The built in heatsink provides an optimized thermal performance. The user needs to guarantee per system design to not exceed this temperature range. A temperature rise among modules has to be considered in case multiples modules are being used side by side on a single hostboard. Airflow direction and air speed needs to be chosen accordingly.

.

Edge-Board-Connector-Pinning and Layout

	70 GND	1 GND
	69 GND	
	68 RESERVED	2 GND
	67 RESERVED	3 GND
	68 GND	4 5.0V
	65 TX LANE3-	5 3.3V
	64 TX LANES+	6 3.3V
	63 GND	7 APS
	62 TX LANE2-	8 APS
	61 TX LANE2+	9 LASI
		10 RESET
	60 GND	11 VEND SPECIFIC
	59 TX LANE1-	12 TX ON/OFF
	58 TX LANE1+	13 RESERVED
	57 GND	14 MOD DETECT
	56 TX LANEO-	15 VEND SPECIFIC
/	55 TX LANEO+	16 VEND SPECIFIC
Toward Bezel	54 GND	17 MDIO
V	53 GND	18 MDC
	52 GND	19 PRTAD4
	51 RX LANES-	20 PRTAD3
	50 RX LANE3*	21 PRTAD2
	49 GND	22 PRTAD1
	48 RX LANE2-	23 PRTADO
	47 RX LANE2+	24 VEND SPECIFIC
	46 GND	25 APS SET
	45 RX LANE1-	26 RESERVED
	44 RX LANE1+	27 APS SENSE
	43 GND	28 APS
	42 RX LANED	
	41 RX LANEO+	29 APS
	40 GND	30 3.3V
	39 RESERVED	31 3.3V
	38 RESERVED	32 5.0V
		33 GND
	37 GND	34 GND
	36 GND	35 GND

Top of Transceiver PCB

Bottom of Transceiver PCB

(as viewed through top)

TRP10GVP2x0x SP/5100-04:74-01 A7 Page: 9 / 14 Copyright © 2008 MergeOptics GmbH, MergeOptics GmbH reserves the right to make changes in design, specifications and other information at any time without prior notice. Information in this data sheet is reliable on preliminary status. However, no responsibility is assumed for possible inaccuracy or

Electrical Pin Definition (Part 1)

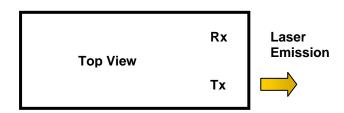
Symbol	Logic	1/0	PIN	Name / Description	Note
3.3V	+3.3 V DC	I	5, 6, 30, 31	Power Supply of Optical Receiver and Transmitter and Control Circuits	2
5.0V	+5.0 V DC	I	4, 32	Power Supply of Optical Receiver Frontend	
APS	+1.2 V	I	7, 8, 28, 29	Adaptive Power Supply, Supply of PHY XS and PCS Layer Devices	
APS SENSE	+1.2 V	0	27	APS Sense Output for APS Control Circuit	
APS SET	GND	I	25	Feedback Input for APS, Input of APS Setting Resistor	
GND	0 V DC	I	1, 2, 3, 33, 34, 35, 36, 37, 40, 43, 46, 49, 52, 53, 54, 57, 60, 63, 66, 69, 70	Common Electrical Ground	1
LASI	1.2V CMOS Open Drain	0	9	Link Alarm Status Indicator, low active, Open Drain Output A pull-up resistor with $10-22K\Omega$ to $1,2V$ is expected. Logic High: Normal Operation Logic Low: Link Alarm is indicated	
MDC	1.2 V CMOS	I	18	Management Clock Input	
MDIO	Open Drain	I/O	17	Management Data I/O. Requires external 10-22 k Ω pullup to 1.2 V on host.	3
MOD DETECT		0	14	1kΩ it Ground for APS Circuit Environment	
PRTADO	1.2V CMOS	I	23	Port Address Bit 0	
PRTAD1	1.2V CMOS	I	22	Port Address Bit 1	
PRTAD2	1.2V CMOS	I	21	Port Address Bit 2	
PRTAD3	1.2V CMOS	I	20	Port Address Bit 3	
PRTAD4	1.2V CMOS	I	19	Port Address Bit 4	
RESERVED			13, 38, 39, 67, 68	Reserved for future use, pins w/o function, leave unconnected	
RESERVED			26	Reserved for Avalanche Photodiode use, not in use	5
RESET	1.2V CMOS Open Drain	I	10	Low active Reset Input $10K\Omega$ pull-up on Transceiver Logic high = Normal Operation Logic Low = Reset asserted	
TX ON/OFF	1.2V CMOS Open Drain	I	12	High active Transmitter Enable Input $10 \mathrm{K}\Omega$ pull-up on Transceiver Logic high = Transmitter active (normal Operation) And Register Bit 1.9.0 set to low as well Logic Low = shut down of Transmitter	
VEND SPECIFIC			11, 15, 16, 24	Vendor Specific Pin. Leave unconnected.	5

Electrical Pin Definition (Part 2)

Symbol	Logic	1/0	PIN	Name / Description	Note		
RX LANE0+		0	41	Module XAUI Output Lane 0+	4		
RX LANE0-	AC-coupled, internally based		Ì	0	42	Module XAUI Output Lane 0-	4
RX LANE1+		0	44	Module XAUI Output Lane 1+	4		
RX LANE1-		0	45	Module XAUI Output Lane 1-	4		
RX LANE2+	differential	0	47	Module XAUI Output Lane 2+	4		
RX LANE2-	CML	0	48	Module XAUI Output Lane 2-	4		
RX LANE3+		0	50	Module XAUI Output Lane 3+	4		
RX LANE3-		0	51	Module XAUI Output Lane 3-	4		
TX LANE0+		I	55	Module XAUI Input Lane 0+	4		
TX LANE0-		I	56	Module XAUI Input Lane 0-	4		
TX LANE1+	AC-coupled,	I	58	Module XAUI Input Lane 1+	4		
TX LANE1-	internally based	I	59	Module XAUI Input Lane 1-	4		
TX LANE2+	differential	I	61	Module XAUI Input Lane 2+	4		
TX LANE2-	CML	I	62	Module XAUI Input Lane 2-	4		
TX LANE3+		I	64	Module XAUI Input Lane 3+	4		
TX LANE3-		ı	65	Module XAUI Input Lane 3-	4		

- Ground connections are common for TX and RX.
- All connector contacts are rated at 0.5A nominal.
- MDIO and MDC timing must comply with IEEE 802.3ae clause 45.3. XAUI output characteristics comply with IEEE 802.3ae clause 47.
- 2) 3) 4) 5) Transceivers will be MSA compliant when no signals are present on the vendor specific pins

Eye Safety

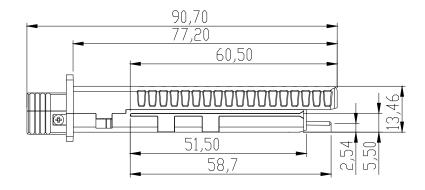

This laser based multimode transceiver is a Class 1 product. It complies with IEC 60825-1 Ed.2: 2007 and FDA performance standards for laser products (21 CFR 1040.10 and 1040.11) except for deviations pursuant to Laser Notice 50, dated June 24, 2007.

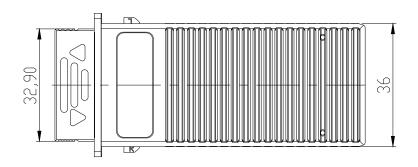
CLASS 1 LASER PRODUCT DO NOT VIEW DIRECTLY WITH OPTICAL INSTRUMENTS

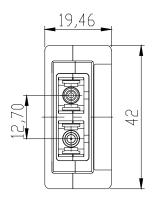
Caution: use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation.

Note: All adjustments have been made at the factory prior to shipment of the devices. No maintenance or alteration to the device is required. Tampering with or modifying the performance of the device will result in voided product warranty. Failure to adhere to the above restrictions could result in a modification that is considered an act of "manufacturing", and will require, under law, recertification of the modified product with the U.S. Food and Drug Administration (ref. 21 CFR 1040.10 (i)).

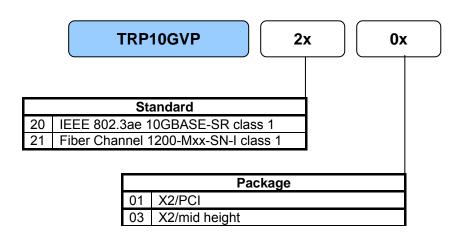
Laser Emission Data


Wavelength	>840 nm
Accessible Emission Limit (as defined by IEC: 7 mm aperture at 70 mm distance)	<743 μW
Beam divergence (full angle)	20° / 0.18rad


Required Labeling



Mechanical Drawing



Ordering Information

For more information on our products, please email us at info@mergeoptics.com or visit our website www.mergeoptics.com.