Unit: mm

TOSHIBA Field Effect Transistor Silicon P Channel MOS Type (U-MOS III)

TPCF8101

Notebook PC Applications Portable Equipment Applications

• Low drain-source ON resistance: RDS (ON) = 22 m Ω (typ.)

• High forward transfer admittance: $|Y_{fs}| = 14 \text{ S (typ.)}$

• Low leakage current: $IDSS = -10 \mu A (max) (VDS = -12 V)$

• Enhancement model: $V_{th} = -0.5 \text{ to } -1.2 \text{ V}$

 $(V_{DS} = -10 \text{ V}, I_{D} = -200 \text{ } \mu\text{A})$

Absolute Maximum Ratings (Ta = 25°C)

Characte	ristics	Symbol	Rating	Unit	
Drain-source voltage		V_{DSS}	-12	V	
Drain-gate voltage (R	$G_{\rm GS} = 20 \text{ k}\Omega$)	V_{DGR}	-12	V	
Gate-source voltage		V _{GSS}	±8	V	
Drain current	DC (Note 1)	I _D	-6	^	
Drain current	Pulsed (Note 1)	I _{DP}	-24	Α	
Drain power dissipation	on (t = 5 s) (Note 2a)	P _D	2.5	W	
Drain power dissipation	on (t = 5 s) (Note 2b)	P _D	0.7	W	
Single pulse avalanch	ne energy(Note 3)	E _{AS}	6.3	mJ	
Avalanche current		I _{AR}	-3	А	
Repetitive avalanche	energy (Note 4)	E _{AR}	0.25	mJ	
Channel temperature		T _{ch}	150	°C	
Storage temperature	range	T _{stg}	-55~150	°C	

6. Drain

7. Drain

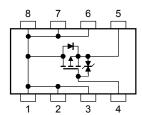
2-3U1A

Weight: 0.011 g (typ.)

JEDEC JEITA TOSHIBA

3. Drain

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

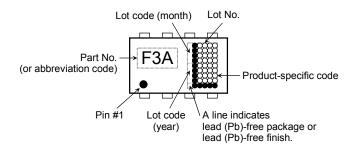

Thermal Characteristics

Characteristics	Symbol	Max	Unit
Thermal resistance, channel to ambient (t = 5 s) (Note 2a)	R _{th (ch-a)}	50.0	°C/W
Thermal resistance, channel to ambient (t = 5 s) (Note 2b)	R _{th (ch-a)}	178.6	°C/W

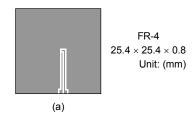
Note: (Note 1), (Note 2), (Note 3), (Note 4) and (Note 5): See the next page.

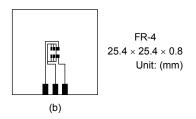
This transistor is an electrostatic-sensitive device. Please handle with caution.

Circuit Configuration

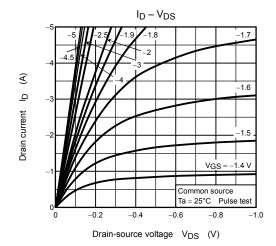

Electrical Characteristics (Ta = 25°C)

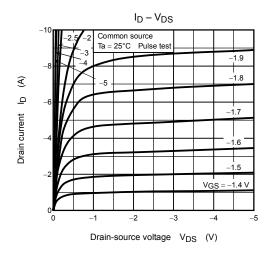
Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit	
Gate leakage current		I _{GSS}	$V_{GS} = \pm 8 \text{ V}, V_{DS} = 0 \text{ V}$	_	_	±10	μА	
Drain cut-off curr	Drain cut-off current		$V_{DS} = -12 \text{ V}, V_{GS} = 0 \text{ V}$	_	_	-10	μА	
Drain-source breakdown voltage		V (BR) DSS	$I_D = -10 \text{ mA}, V_{GS} = 0 \text{ V}$	-12	_	_	V	
		V _{(BR) DSX}	$I_D = -10 \text{ mA}, V_{GS} = 8 \text{ V}$	-4	_		V	
Gate threshold v	oltage	V _{th}	$V_{DS} = -10 \text{ V}, I_D = -200 \mu\text{A}$	-0.5	_	-1.2	V	
Drain-source ON resistance		R _{DS (ON)}	$V_{GS} = -1.8 \text{ V}, I_D = -1.5 \text{ A}$	_	60	85		
		R _{DS (ON)}	$V_{GS} = -2.5 \text{ V}, I_D = -3.0 \text{ A}$	_	32	40	$m\Omega$	
		R _{DS} (ON)	$V_{GS} = -4.5 \text{ V}, I_D = -3.0 \text{ A}$	_	22	28		
Forward transfer admittance		Y _{fs}	$V_{DS} = -10 \text{ V}, I_D = -3.0 \text{ A}$	7	14	_	S	
Input capacitance		C _{iss}	V _{DS} = -10 V, V _{GS} = 0 V, f = 1 MHz	_	1600	_	pF	
Reverse transfer capacitance		C _{rss}		_	260	_		
Output capacitance		Coss		_	335	_		
Switching time	Rise time	t _r	V _{GS} 0 V I _D = -3.0 A	_	7	_		
	Turn-on time	t _{on}		_	13		ns	
	Fall time	t _f	7.7.Ω 1	_	21	_		
	Turn-off time	t _{off}	$V_{DD} \simeq -6 \ V$ Duty \leq 1%, $t_W =$ 10 μs	_	68			
Total gate charge (gate-source plus gate-drain)		Qg	V _{DD} ≃ −10 V, V _{GS} = −5 V,		18.0			
Gate-source charge		Q _{gs}	$I_D = -6.0 \text{ A}$	_	14.5	_	nC	
Gate-drain ("miller") charge		Q _{gd}		_	3.5	_		

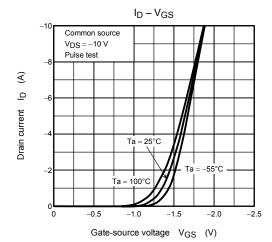

Source-Drain Ratings and Characteristics (Ta = 25°C)

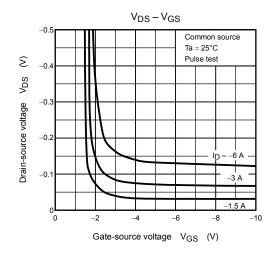

Characteristics Symbol		Symbol	Test Condition	Min	Тур.	Max	Unit
Drain reverse current	Pulse (Note 1)	I _{DRP}	_	_	_	-24	Α
Forward voltage (diode) V _{DS}		V _{DSF}	$I_{DR} = -6.0 \text{ A}, V_{GS} = 0 \text{ V}$	_	_	1.2	V

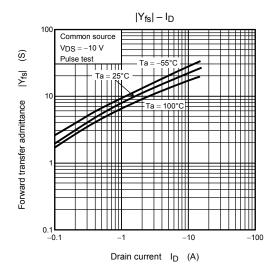
Marking (Note 5)

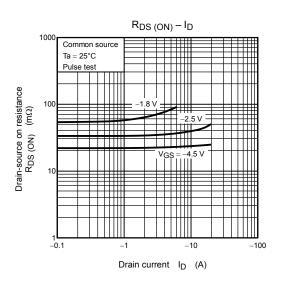


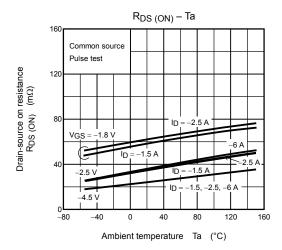

- Note 1: Ensure that the channel temperature does not exceed 150°C.
- Note 2: (a) Device mounted on a glass-epoxy board (a)
- (b) Device mounted on a glass-epoxy board (b)

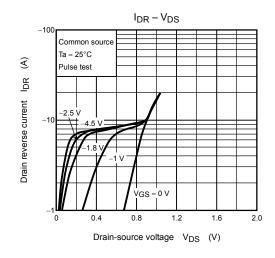


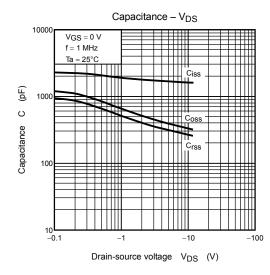


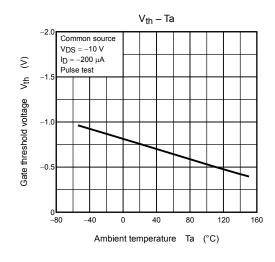

- Note 3: $V_{DD} = -10~V$, $T_{ch} = 25^{\circ}C$ (initial), L = 0.5~mH, $R_G = 25~\Omega$, $I_{AR} = -3.0~A$
- Note 4: Repetitive rating: pulse width limited bymaximum channel temperature
- Note 5: A dot on the lower left of the marking indicates Pin 1.

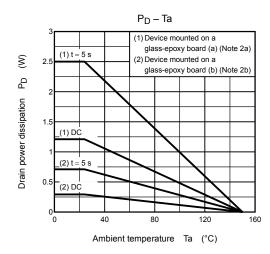


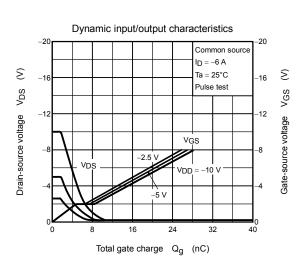


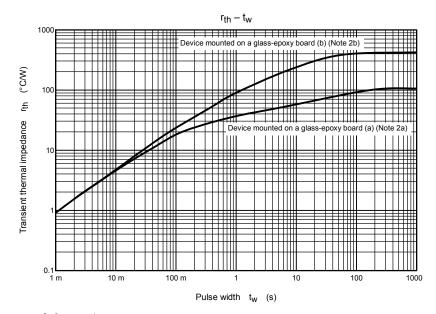


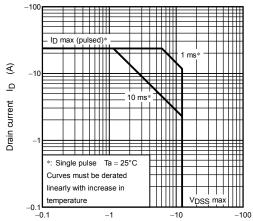





4







Safe operating area

Drain-source voltage V_{DS} (V)

6 2006-11-16

RESTRICTIONS ON PRODUCT USE

030619EAA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patent or patent rights of
 TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.