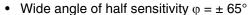


Silicon PIN Photodiode, RoHS Compliant, Released for Lead (Pb)-free Solder Process, AEC-Q101 Released


Description

TEMD5010X01 is a high speed and high sensitive PIN photodiode. It is a miniature Surface Mount Device (SMD) including the chip with a 7.5 mm² sensitive area, detecting visible and near infrared radiation.

Features

- · Product designed and qualified acc. AEC-Q101 for the automotive market
- Large radiant sensitive area: $A = 7.5 \text{ mm}^2$

- · High photo sensitivity for visible and near infrared radiation
- · Fast response times
- Small junction capacitance
- Plastic package
- Floor life: 72 h, MSL 4, acc. J-STD-20
- Lead (Pb)-free component
- Component in accordance to ELV 2000/53/EC. RoHS 2002/95/EC and WEEE 2002/96/EC

Applications

- · Automotive sensors
- Infrared detectors
- · Ambient light detectors
- · High speed photo detectors

Absolute Maximum Ratings

T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Symbol	Value	Unit
Reverse voltage		V _R	60	V
Power dissipation	T _{amb} ≤ 25 °C	P _V	215	mW
Junction temperature		T _j	100	°C
Operating temperature range		T _{amb}	- 40 to + 100	°C
Storage temperature range		T _{stg}	- 40 to + 100	°C
Soldering temperature	In accordance with fig. 8	T _{sd}	260	°C
Thermal resistance junction/ ambient		R _{thJA}	350	K/W

www.vishay.com

Rev. 1.2, 07-May-07

Electrical Characteristics

 T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Forward voltage	I _F = 50 mA	V _F		1	1.3	V
Breakdown voltage	$I_R = 100 \mu A, E = 0$	V _(BR)	60			V
Reverse dark current	V _R = 10 V, E = 0	I _{ro}		2	30	nA
Diode capacitance	$V_R = 0 \text{ V, f} = 1 \text{ MHz, E} = 0$	C _D		70		pF
	$V_R = 3 \text{ V, f} = 1 \text{ MHz, E} = 0$	C _D		25	40	pF

Optical Characteristics

 T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Open circuit voltage	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}$	V _o		350		mV
Temperature coefficient of V _o	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}$	TK _{Vo}		- 2.6		mV/K
Short circuit current	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}$	I _k		50		μΑ
Temperature coefficient of I _k	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}$	TK _{Ik}		0.1		%/K
Reverse light current	$E_e = 1 \text{ mW/cm}^2$, $\lambda = 950 \text{ nm}$, $V_R = 5 \text{ V}$	I _{ra}	45	55		μΑ
Angle of half sensitivity		φ		± 65		deg
Wavelength of peak sensitivity		λ_{p}		900		nm
Range of spectral bandwidth		λ _{0.5}		600 to 1050		nm
Noise equivalent power	$V_R = 10 \text{ V}, \lambda = 950 \text{ nm}$	NEP		4 x 10 ⁻¹⁴		W/√ Hz
Rise time	$V_R = 10 \text{ V}, R_L = 1 \text{ k}\Omega, \lambda = 820 \text{ nm}$	t _r		100		ns
Fall time	$V_R = 10 \text{ V}, R_L = 1 \text{ k}\Omega, \lambda = 820 \text{ nm}$	t _f		100		ns

Typical Characteristics

T_{amb} = 25 °C, unless otherwise specified

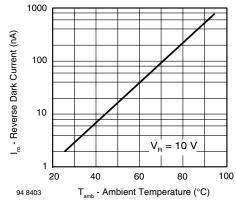


Figure 1. Reverse Dark Current vs. Ambient Temperature

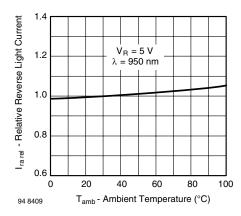


Figure 2. Relative Reverse Light Current vs. Ambient Temperature

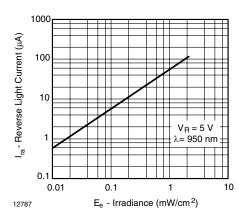


Figure 3. Reverse Light Current vs. Irradiance

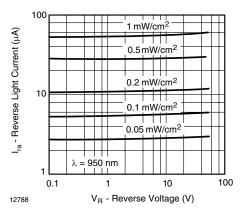


Figure 4. Reverse Light Current vs. Reverse Voltage

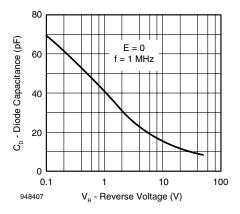


Figure 5. Diode Capacitance vs. Reverse Voltage

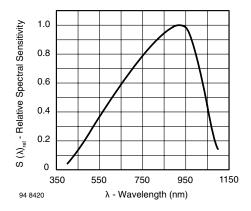


Figure 6. Relative Spectral Sensitivity vs. Wavelength

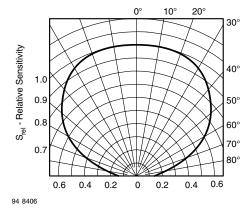
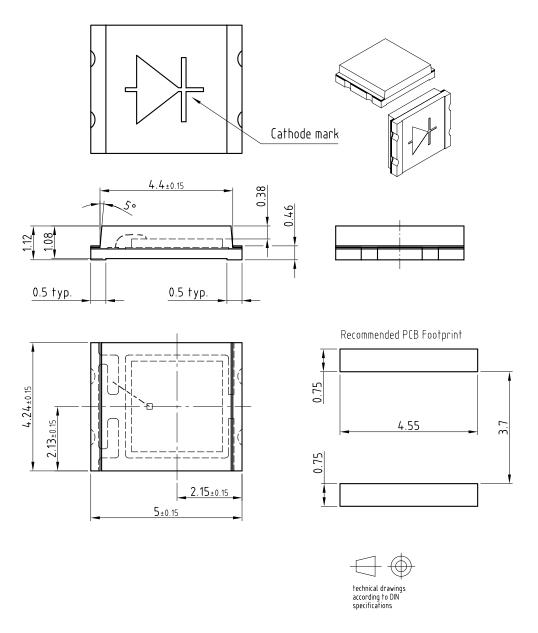
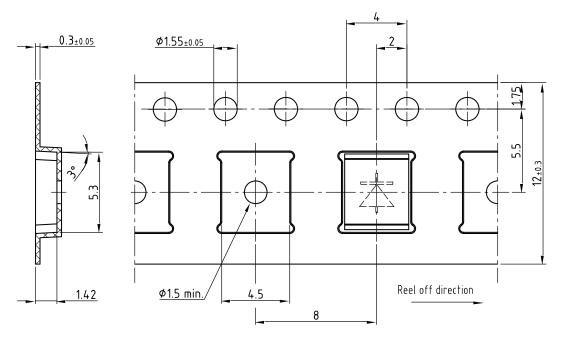



Figure 7. Relative Radiant Sensitivity vs. Angular Displacement

Package Dimensions in millimeters


Drawing-No.: 6.541-5060.01-4 Issue: 2; 26.04.07 20536

Not indicated tolerances \pm 0.1

Minimum order quantity (MOQ): 1500 pcs (1 reel)

Taping Dimensions in millimeters

technical drawings according to DIN specifications

Drawing-No.: 9.700-5293.01-4

Issue: 1; 03.12.04

20537

Not indicated tolerances ±0.1

Reflow Solder Profiles

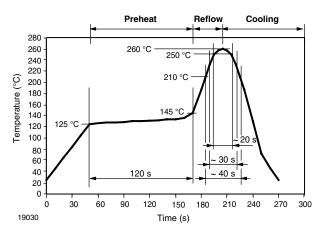


Figure 8. Lead (Pb)-free (Sn) Reflow Solder Profile

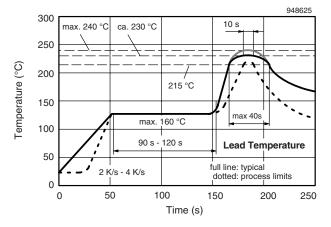


Figure 9. Lead Tin (SnPb) Reflow Solder Profile

Drypack

Devices are packed in moisture barrier bags (MBB) to prevent the products from moisture absorption during transportation and storage. Each bag contains a desiccant.

Floor Life

Floor life (time between soldering and removing from MBB) must not exceed the time indicated in J-STD-020. TEMD5110 is released for: Moisture Sensitivity Level 4, according to JEDEC, J-STD-020

Floor Life: 72 h

Conditions: T_{amb} < 30 °C, RH < 60 %

Drying

In case of moisture absorption devices should be baked before soldering. Conditions see J-STD-020 or Label. Devices taped on reel dry using recommended conditions 192 h at 40 °C (+ 5 °C), RH < 5 % or 96 h at 60 °C (+ 5 °C), RH < 5 %.

www.vishay.com

Document Number 84679

Rev. 1.2, 07-May-07

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

> We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany

Document Number 84679 www.vishay.com Rev. 1.2, 07-May-07

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08