TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC7S04F, TC7S04FU

INVERTER

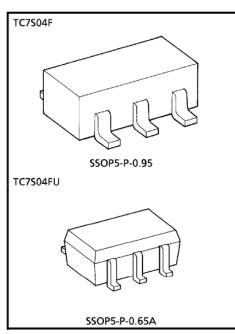
The TC7S04 is a high speed C²MOS INVERTER fabricated with silicon gate C²MOS technology.

It achieves high speed operation similar to equivalent LSTTL while maintaining the C²MOS low power dissipation.

The internal circuit is composed of 3 stages including buffer output, which enables high noise immunity and stable output.

The input is equipped with protection circuits against static discharge or transient excess voltage.

Output currents are 1/2 compared to TC74HC series models.


FEATURES

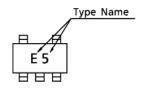
High Speed	t _{pd} = 7ns (Typ.) at
------------	---------------------------------

• Low Power Dissipation
$$I_{CC} = 1 \mu A$$
 (Max.) at $Ta = 25^{\circ}C$

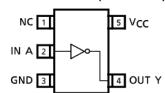
• Symmetrical Output Impedance ...
$$|I_{OH}| = I_{OL}$$

= 2mA (Min.)

Balanced Propagation Delays t_{pLH}≒t_{pHL}
 Wide Operating Voltage Range ... V_{CC} (opr) = 2~6V



Weight SSOP5-P-0.95 : 0.016g (Typ.) SSOP5-P-0.65A : 0.006g (Typ.)


MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage Range	Vcc	-0.5~7	V
DC Input Voltage	V _{IN}	$-0.5 \sim V_{CC} + 0.5$	V
DC Output Voltage	Vout	$-0.5 \sim V_{CC} + 0.5$	V
Input Diode Current	ΙΙΚ	± 20	mA
Output Diode Current	lok	± 20	mA
DC Output Current	IOUT	± 12.5	mA
DC V _{CC} / Ground Current	lcc	± 25	mA
Power Dissipation	PD	200	mW
Storage Temperature	T _{stg}	-65∼150	°C
Lead Temperature (10s)	TL	260	°C

MARKING

PIN ASSIGNMENT (TOP VIEW)

CIRCUIT DIAGRAM

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	Vcc	2~6	V
Input Voltage	VIN	0~V _{CC}	V
Output Voltage	Vout	0~V _{CC}	V
Operating Temperature	T _{opr}	-40~85	°C
		$0\sim1000 \text{ (V}_{CC}=2.0\text{V)}$	
Input Rise and Fall Time	t _r , t _f	$0 \sim 500 \ (V_{CC} = 4.5V)$	ns
		$0 \sim 400 \ (V_{CC} = 6.0V)$	

DC ELECTRICAL CHARACTERISTICS

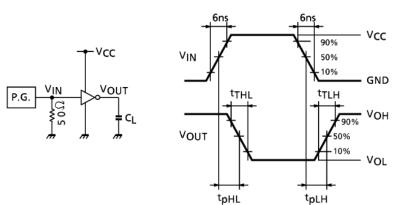
CHARACTERISTIC	SYMBOL TEST CONDITION —				Ta = 25°C			Ta = -4	UNIT	
CHARACTERISTIC	STIVIBUL	TEST CONDITION		Vcc	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
High-Level				2.0	1.5	_	_	1.5	-	
Input Voltage	V _{IH}		_	4.5	3.15	—	—	3.15	—	V
input voitage				6.0	4.2	_	_	4.2	_	
Low-Level	Laur Laurel			2.0	—	_	0.5	—	0.5	v
Input Voltage	V _{IL}	_		4.5	—	—	1.35	—	1.35	
Imput voitage				6.0	_	_	1.8		1.8	
				2.0	1.9	2.0	—	1.9	—	
High Lovel	VOH	V _{IN} = V _{IL}	$I_{OH} = -20\mu A$	4.5	4.4	4.5	—	4.4	—	
High-Level Output Voltage				6.0	5.9	6.0	_	5.9	_	v
			$I_{OH} = -2mA$	4.5	4.18	4.31	_	4.13	_	
			$I_{OH} = -2.6mA$	6.0	5.68	5.80	_	5.63	_	
	VOL	V _{IN} = V _{IH}		2.0	_	0.0	0.1	-	0.1	
Low-Level Output Voltage			$I_{OL} = 20 \mu A$	4.5	_	0.0	0.1	—	0.1	
				6.0	_	0.0	0.1	_	0.1	v
			I _{OL} = 2mA	4.5	-	0.17	0.26	-	0.33	
			$I_{OL} = 2.6 mA$	6.0	_	0.18	0.26	_	0.33	
Input Leakage	lini	V _{IN} = V _{CC} or GND		6.0			± 0.1		± 1.0	
Current	IN			0.0			- 0.1	_	1.0	
Quiescent	lee	V _{IN} = V _{CC} o	or GND	6.0			1.0		10.0	μΑ
Supply Current	lcc	AIM = ACC C	JI GIND	0.0			1.0		10.0	

Output currents are 1/2 compared to TC74HC series models.

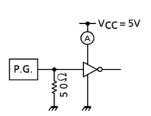
AC ELECTRICAL CHARACTERISTICS ($C_L = 15pF$, Input $t_r = t_f = 6ns$, $V_{CC} = 5V$)

CHARACTERISTIC	SYMBOL	TEST CONDITION -		Ta = 25°C			
CHARACTERISTIC	3 TIVIBOL			TYP.	MAX.	UNIT	
Output Transition Time	tTLH	_	_	5	10	ns	
	[†] THL						
Propagation Delay	t _{pLH}	_		7	15	ns	
Time	t _{pHL}	_			⊢'		

AC ELECTRICAL CHARACTERISTICS ($C_L = 50pF$, Input $t_r = t_f = 6ns$)


CHARACTERISTIC SYMBOL		TEST CONDITION		Ta = 25°C			Ta = -4	UNIT	
CHARACTERISTIC	STIVIBOL	TEST CONDITION	Vcc	MIN.	TYP.	MAX.	MIN.	MAX.	
Output Transition	t		2.0	_	50	125	_	155	
Time	tTLH	_	4.5	—	14	25	—	31	ns
Time	^t THL		6.0	—	12	21	—	26	
Proposition Dalou 4		2.0	_	48	100	_	125		
Propagation Delay Time	t _{pLH}	_	4.5	l —	12	20	—	25	ns
Time	t _{pHL}		6.0	—	9	17	—	21	
Input Capacitance	CIN	_		_	5	10	_	10	
Power Dissipation Capacitance	C _{PD}	(Note 1)		_	10	_	_	_	pF

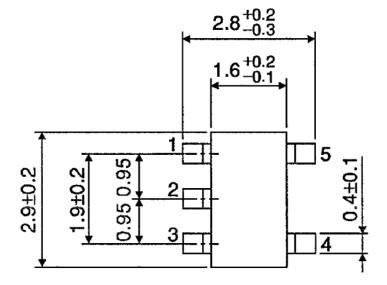
Note 1: CpD defined as the value of internal equivalent capacitance of IC which is calculated from the operating current consumption without load (refer to Test Circuit).

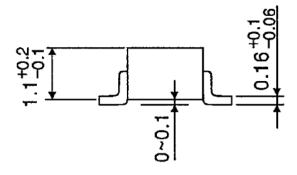

Average operating current can be obtained by the equation hereunder.

 $ICC (opr) = CPD \cdot VCC \cdot fIN + ICC$

SWITCHING CHARACTERISTICS TEST CIRCUIT

ICC (opr) TEST CIRCUIT

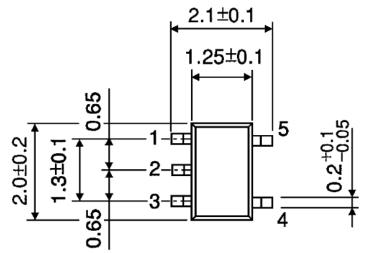


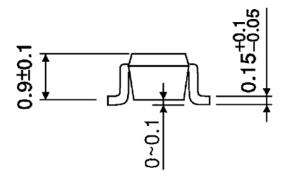

input waveform is the same as that in case of switching characteristics test.

PACKAGE DIMENSIONS

SSOP5-P-0.95

Unit: mm




Weight: 0.016g (Typ.)

Unit: mm

PACKAGE DIMENSIONS

SSOP5-P-0.65A

5

Weight: 0.006g (Typ.)

2008-06-03

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety
 in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such
 TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 - In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.