TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

> TC4051BP, TC4051BF, TC4051BFN, TC4051BFT TC4052BP, TC4052BF, TC4052BFN, TC4052BFT TC4053BP, TC4053BF, TC4053BFN, TC4053BFT

TC4051B
Single 8-Channel Multiplexer/Demultiplexer
TC4052B
Differential 4-Channel Multiplexer/Demultiplexer
TC4053B
Triple 2-Channel Multiplexer/Demultiplexer

TC4051B, TC4052B and TC4053B are multiplexers with capabilities of selection and mixture of analog signal and digital signal. TC4051B has 8 channels configuration. TC4052B has 4 channel $\times 2$ configuration and TC4053B has 2 channel $\times 3$ configuration. The digital signal to the control terminal turns "ON" the corresponding switch of each channel, with large amplitude ($V_{D D}$ - $V_{E E}$) can be switched by the control signal with small logical amplitude (VDD - VSS). For example, in the case of VDD $=5 \mathrm{~V}$ VSS $=0 \mathrm{~V}$ and $\mathrm{VEE}=-5 \mathrm{~V}$, signals between -5 V and +5 V can be switched from the logical circuit with single power supply of 5 volts. As the ON -resistance of each switch is low, these can be connected to the circuits with low input impedance.

Note: $x x x F N$ (JEDEC SOP) is not available in Japan.
TC4051BP, TC4052BP, TC4053BP

DIP16-P-300-2.54A
TC4051BF, TC4052BF, TC4053BF

SOP16-P-300-1.27A

SOP16-P-300-1.27
TC4051BFN, TC4052BFN, TC4053BFN

SOL16-P-150-1.27
TC4051BFT, TC4052BFT, TC4053BFT

TSSOP16-P-0044-0.65A

Pin Assignment

(top view)

Truth Table

Control Inputs				"ON" Channel		
Inhibit	$\mathrm{C} \Delta$	B	A	TC4051B	TC4052B	TC4053B
L	L	L	L	0	0X, OY	0X, OY, OZ
L	L	L	H	1	1X, 1Y	1X, OY, OZ
L	L	H	L	2	2X, 2Y	0X, 1Y, 0Z
L	L	H	H	3	3X, 3Y	1X, 1Y, 0Z
L	H	L	L	4	-	0X, 0Y, 1Z
L	H	L	H	5	-	1X, 0Y, 1Z
L	H	H	L	6	-	0X, 1Y, 1Z
L	H	H	H	7	-	1X, 1Y, 1Z
H	X	X	X	None	None	None

X: Don't care
Δ : Except TC4052B

Logic Diagram

TC4051B

TC4052B

TC4053B

Truth Table

Control C	Impedance between IN-OUT	(Note)
H	0.5 to $5 \times 10^{2} \Omega$	
L	$>10^{9} \Omega$	

Note: See electrical characteristics

Absolute Maximum Ratings (Note)

Characteristics	Symbol	Rating	Unit
DC supply voltage	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$	-0.5 to 20	V
DC supply voltage	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}$	-0.5 to 20	V
Control input voltage	$\mathrm{V}_{\mathrm{CIN}}$	$\mathrm{V}_{\mathrm{SS}}-0.5$ to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
Switch I/O voltage	$\mathrm{V}_{\mathrm{I}} / \mathrm{V}_{\mathrm{O}}$	$\mathrm{V}_{\mathrm{EE}}-0.5$ to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
Control input current	$\mathrm{I}_{\mathrm{CIN}}$	-0.5 to 0.5	mA
Potential difference across I / O during ON	$\mathrm{V}_{\mathrm{I}}-\mathrm{V}_{\mathrm{O}}$		m
Power dissipation	P_{D}	-40 to 85	V
Operating temperature range	$\mathrm{T}_{\mathrm{Opr}}$	-65 to 150	mW
Storage temperature range	$\mathrm{T}_{\mathrm{Stg}}$	${ }^{\circ} \mathrm{C}$	

Note: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Operating Range (Note)

Characteristics	Symbol	Test Condition	Min	Typ.	Max	Unit
DC supply voltage	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$	-	3	-	18	V
	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {EE }}$	-	3	-	18	
Control input voltage	VIN	-	$\mathrm{V}_{\text {SS }}$	-	V ${ }_{\text {DD }}$	V
Input/output voltage	$\mathrm{V}_{\text {IN }} / \mathrm{V}_{\text {OUT }}$	-	V_{EE}	-	V_{DD}	V

Note: The operating range is required to ensure the normal operation of the device.
Unused inputs must be tied to either $V_{D D}$ or $V_{S S}$.

Static Electrical Characteristics

Characteristics	Symbol	Test Condition				$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		Unit
			$\begin{array}{\|c} \hline V_{S S} \\ (\mathrm{~V}) \end{array}$	$\begin{aligned} & \hline \mathrm{VEE}_{\mathrm{EE}} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{DD}} \\ (\mathrm{~V}) \end{gathered}$	Min	Max	Min	Typ.	Max	Min	Max	
Control input high voltage	V_{IH}	$V_{I S}=V_{D D}$$\text { thru } 1 \mathrm{k} \Omega$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \text { to } \mathrm{V}_{\mathrm{SS}} \end{aligned}$		$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		V
Control input low voltage	VIL		$\mathrm{I}_{\mathrm{IS}}<2 \mu \mathrm{~A}$ on all OFF channels		$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 2.25 \\ 4.5 \\ 6.75 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	V
On-state resistance	RON	$\begin{aligned} & 0 \leq V_{I S} \leq V_{D D} \\ & R_{L}=10 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 850 \\ & 210 \\ & 140 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 240 \\ 110 \\ 80 \end{gathered}$	$\begin{aligned} & 950 \\ & 250 \\ & 160 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 1200 \\ 300 \\ 200 \end{gathered}$	Ω
Δ On-state resistance between any 2 switches	RON ${ }^{\text {a }}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	\square	$\begin{aligned} & - \\ & - \end{aligned}$	\square	$\begin{gathered} 10 \\ 6 \\ 4 \end{gathered}$	\square	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	Ω
Input/output leakage current	IOFF	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=18 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=18 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 18 \\ & 18 \end{aligned}$	-	$\begin{aligned} & \pm 100 \\ & \pm 100 \end{aligned}$	-	$\begin{array}{\|l\|} \pm 0.01 \\ \pm 0.01 \end{array}$	$\begin{aligned} & \pm 100 \\ & \pm 100 \end{aligned}$	-	$\begin{aligned} & \pm 1000 \\ & \pm 1000 \end{aligned}$	nA
Quiescent supply current	IDD	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}, \mathrm{V}_{\mathrm{DD}}$		Note)	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 5.0 \\ 10 \\ 20 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{gathered} 5.0 \\ 10 \\ 20 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{A}$
Input current	IIN	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 18 \\ & 18 \end{aligned}$	-	$\begin{gathered} 0.1 \\ -0.1 \end{gathered}$	-	$\begin{gathered} 10^{-5} \\ -10^{-5} \end{gathered}$	$\begin{gathered} 0.1 \\ -0.1 \end{gathered}$	-	$\begin{gathered} 1.0 \\ -1.0 \end{gathered}$	$\mu \mathrm{A}$
Input capacitance	$\mathrm{C}_{\text {IN }}$	-			-	-	-	-	5	7.5	-	-	pF
Switch input capacitance	$\mathrm{ClN}_{\text {IN }}$	-			-	-	-	-	10	-	-	-	pF
Output capacitance	Cout	$\begin{aligned} & \text { TC4051B } \\ & \text { TC4052B } \\ & \text { TC4053B } \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	\square	- - -	$\begin{aligned} & 58 \\ & 30 \\ & 17 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	pF
Feedthrough capacitance	$\begin{gathered} \mathrm{ClN}^{-} \\ \mathrm{C}_{-} \mathrm{OUT} \end{gathered}$	$\begin{aligned} & \text { TC4051B } \\ & \text { TC4052B } \\ & \text { TC4053B } \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	pF

Note: All valid input combinations.

Dynamic Electrical Characteristics ($\mathrm{Ta}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$)

Note 1: Sine wave of $\pm 2.5 \mathrm{~V}_{\text {p-p }}$ shall be used for $\mathrm{V}_{\text {is }}$ and the frequency of $20 \log 10 \frac{\mathrm{~V}_{\mathrm{OS}}}{\mathrm{V}_{\text {is }}}=-3 \mathrm{~dB}$ shall be $f_{\text {max }}$.
Note 2: $\quad V_{\text {is }}$ shall be sine wave of $\pm\left(\frac{V_{D D}-V_{E E}}{4}\right) p-p$.
Note 3: Sine wave of $\pm 2.5 \mathrm{~V}_{\mathrm{p} \text {-p }}$ shall be used for $\mathrm{V}_{\text {is }}$ and the frequency of $20 \log 10 \frac{\mathrm{~V}_{\mathrm{OS}}}{V_{\text {is }}}=-50 \mathrm{~dB}$ shall be feed-through.

Note 4: Sine wave of $\pm 2.5 \mathrm{~V}_{\text {p-p }}$ shall be used for $\mathrm{V}_{\text {is }}$ and the frequency of $20 \log 10 \frac{\mathrm{~V}_{\mathrm{OS}}}{\mathrm{V}_{\text {is }}}=-50 \mathrm{~dB}$ shall be crosstalk.

Package Dimensions

Weight: 1.00 g (typ.)

Package Dimensions

Weight: 0.18 g (typ.)

Package Dimensions

Weight: 0.18 g (typ.)

Package Dimensions (Note)

Note: This package is not available in Japan.
Weight: 0.13 g (typ.)

Package Dimensions

TSSOP16-P-0044-0.65A

Weight: 0.06 g (typ.)

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.

