inDART-ST~C
In-Circuit Debugger for

STMicroelectronics
ST72CXXX FLASH Devices

User’s Manual

MICROSYSTEMS

Copyright © 2001 SofTec Microsystems®
DC00326

SofTec Microsystems

E-mail (general information): info@softecmicro.com

E-mail (marketing department): marketing@softecmicro.com
E-mail (technical support): support@softecmicro.com

Web: http://www.softecmicro.com

Important

SofTec Microsystems reserves the right to make improvements to the inDART® Series
In-Circuit Debuggers, their documentation and software routines, without notice.
Information in this manual is intended to be accurate and reliable. However, SofTec
Microsystems assumes no responsibility for its use; nor for any infringements of rights of
third parties which may result from its use.

SOFTEC MICROSYSTEMS WILL NOT BE LIABLE FOR DAMAGES
RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR
INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE
POSSIBILITY THEREOF.

Trademarks
inDART is a trademark of SofTec Microsystems.
ST is a trademark of STMicroelectronics.

Microsoft and Windows are trademarks or registered trademarks of Microsoft
Corporation.

PC is a registered trademark of International Business Machines Corporation.

Other products and company names listed are trademarks or trade names of their
respective companies.

Written by Paolo Xausa

inDART-ST7C User's Manual

Contents

1. Overview

What is inDART-ST7C?
Naming Conventions
What is In Situ Programming (ISP)?
Supported Devices
Demo Boards
IDB-ST7C254 Demo Board
IDB-ST7C334 Demo Board
STVD7 Integrated Development Environment
Hiware and Cosmic Demo Versions
Recommended Reading
Software Upgrades

2. Getting Started

inDART-ST7C Components
Host System Requirements
Installing the Hardware
Installing the Software
Application Tutorial

3. INDART-ST7C Operations

inDART-ST7C Working Principles
Limitations
Breakpoints Notes
Program Execution Notes
Real-Time Execution
Step Mode Execution
Online Assembler Notes
Stop Execution Notes
Configuring the MCU
Programming Capabilities
DataBlaze Programming Utility

4. Troubleshooting

Installing the inDART-ST7 User Interface under Windows NT

OV I oG ur O

Contents

Common Problems and Solutions
Communication can’t be established with inDART-ST7C
A comimunication error is returned on a program execution
command (Run, Continue, Step, etc.)
When debugging, the program runs too slowly
The “Stop Program” command doesn’t work
The program execution stops at the beginning of user’s code
Interrupt handling routines are not executed
The program seems not to work correctly
Getting Technical Support

Appendix A: Target Reset Topics
Appendix B: IDB-ST7C254 Demo Board Schematic
Appendix C: IDB-ST7C334 Demo Board Schematic

31
31

32
32
32
33
33
33
33

35
37
39

inDART-ST7C User's Manual

1. Overview

What is iInDART-ST7C?

inDART-ST7C is a powerful entry-level tool for STMicroelectronics ST7-based
systems. inDART-ST7C takes advantage of STMicroelectronics’ STVD?7
(STMicroelectronics Visual Debug) Integrated Development Environment and
the ISP (In Situ Programming) feature to program the FLASH memory of the
ST7 family of microcontrollers. Together with STVD7, inDART-ST7C provides
you with everything you need write, compile, download, in-circuit emulate and
debug user code. Full speed program execution allows you to perform hardware
and software testing in real time. inDART-ST7C is connected to the host PC
through a parallel port, while the 10-pin probe of the product fits into the
target's standard ISP connector. On Design Kits packages, a full-featured
experiment board for a specific ST7 microcontroller is also included.

inDART-ST7C offers you the following benefits:

= Real-time code execution without probes—works with all packages;
» In-circuit debugging;

* Built-in FLASH programmer;

* 3.3V1to05.0V operating voltage;

» Operation from voltage supplied by the target application;

» Standard chip used—no bondouts, 100% electrical characteristics
guaranteed;

» Working frequency up to the microcontroller’s maximum;

» STMicroelectronics Visual Debug user interface (the same user interface of
all STMicroelectronics ST tools), with integrated C compiler and assembler
and source level and symbolic debugging.

Naming Conventions
Throughout this manual, the following naming conventions are used:

*» inDART-ST7C is the inDART in-circuit debugger (specific for the
STMicroelectronics ST72CXXX devices);

Page 5

1. Overview

= inDART-ST?7 user interface is the user interface common to all of the
inDART-ST?7 series in-circuit debuggers.

What is In Situ Programming (ISP)?

The ISP feature allows you to update the content of FLASH program memory
when the chip is already plugged on the application board. ISP programming
uses a serial protocol to interface a programming tool like inDART. The ISP
feature can be implemented with a minimum number of added components and
board area impact.

inDART-ST7C uses the standard, 10-pin ST7 ISP connector to program and in-
circuit emulate the target device. You must therefore provide such connector
(see the diagram below) on your target board.

HE10 CONNECTOR TYPE
e TmrTTTTh TO PROGRAMMING TOOL

1

1
OSCILLATOR | Y/

i

1

CIRCUITRY

~ - o ISPSEL -
@ & = =
(@) o] =
"
RESET
ISPCLK
ST7

ISPDATA

APPLICATION
The ST7 ISP Interface

ISP Mode Pin Name ISPDATA ISPCLK ISPSEL RESET Vss Vob

ISP Connector Pin # 2 4 8 6 1,35 7

The ST7 ISP Connector

Page 6

inDART-ST7C User's Manual

Supported Devices 1

inDART-ST7C currently supports all EEPROM-like ST7 FLASH devices, in all
packages.

Device Package Notes

ST72C104G1B SDIP32 ST7 FLASH MCUs (FLASH=4Kx8)

ST72C104G1M SOIC28 ST7 FLASH MCUs (FLASH=4Kx8)

ST72C104G2B SDIP32 ST7 FLASH MCUs (FLASH=8Kx8)

ST72C104G2M S0OIC28 ST7 FLASH MCUs (FLASH=8Kx8)

ST72C124J2B SDIP42 ST7 FLASH MCUs (FLASH=8Kx8)

ST72C124J2T TQFP44 ST7 FLASH MCUs (FLASH=8Kx8)

ST72C171K2B SDIP32 ST7 FLASH MCUs (FLASH=8Kx8)

ST72C171K2M SOIC34 ST7 FLASH MCUs (FLASH=8Kx8)

ST72C215G2B SDIP32 ST7 FLASH MCUs (FLASH=8Kx8)

ST72C215G2M S0OIC28 ST7 FLASH MCUs (FLASH=8Kx8)

ST72C216G1B SDIP32 ST7 FLASH MCUs (FLASH=4Kx8)

ST72C216G1M SOIC28 ST7 FLASH MCUs (FLASH=4Kx8)

ST72C254G1B SDIP32 ST7 FLASH MCUs (FLASH=4Kx8)

ST72C254G1M SOIC28 ST7 FLASH MCUs (FLASH=4Kx8)

ST72C254G2B SDIP32 ST7 FLASH MCUs (FLASH=8Kx8)

ST72C254G2M S0OIC28 ST7 FLASH MCUs (FLASH=8Kx8)

ST72C314J2T TQFP44 ST7 FLASH MCUs (FLASH=8Kx8)

ST72C314J4B SDIP42 ST7 FLASH MCUs (FLASH=16Kx8)

ST72C314J4T TQFP44 ST7 FLASH MCUs (FLASH=16Kx8)

ST72C314N2B SDIP56 ST7 FLASH MCUs (FLASH=8Kx8)

ST72C314N2T TQFP64 ST7 FLASH MCUs (FLASH=8Kx8)

ST72C314N4B SDIP56 ST7 FLASH MCUs (FLASH=16Kx8)

ST72C314NAT TQFP64 ST7 FLASH MCUs (FLASH=16Kx8)

ST72C334J2B SDIP42 ST7 FLASH MCUs (FLASH=8Kx8, EEPROM=256x8)
ST72C334J2T TQFP44 ST7 FLASH MCUs (FLASH=8Kx8, EEPROM=256x8)
ST72C334J4B SDIP42 ST7 FLASH MCUs (FLASH=16Kx8, EEPROM=256x8)
ST72C334J4T TQFP44 ST7 FLASH MCUs (FLASH=16Kx8, EEPROM=256x8)
ST72C334N2B SDIP56 ST7 FLASH MCUs (FLASH=8Kx8, EEPROM=256x8)
ST72C334N2T TQFP64 ST7 FLASH MCUs (FLASH=8Kx8, EEPROM=256x8)
ST72C334N4B SDIP56 ST7 FLASH MCUs (FLASH=16Kx8, EEPROM=256x8)
ST72C334NA4T TQFP64 ST7 FLASH MCUs (FLASH=16Kx8, EEPROM=256x8)

inDART-ST7C Supported Devices

Demo Boards

On Design Kits packages, a full-featured experiment board for a specific ST7
microcontroller (ST7C254 or ST7C334) is also included. Each demo board can
be used for evaluation/experiments in the absence of a target application board.

Page 7

1. Overview

IDB-ST7C254 Demo Board
The IDB-ST7C254 Demo Board has the following hardware features:

10.

11.
12.

13.

An ST72C254G2B microcontroller (in SDIP32 package, already
programmed with a demo application—in addition, you can also use the
following microcontrollers: ST72C104G1B, ST72C104G2B, ST72C215G2B,
ST72C216G1B, ST72C254G1B);

A standard ISP connector;

Eight jumpers to connect/disconnect each of the eight LEDs to/from their
respective Port A pin;

Eight high-efficiency (low-current) LEDs connected to Port A;

A potentiometer, together with a jumper to connect/disconnect it to/from
PCs;

A push-button switch connected to RESET;

A push-button switch, together with a jumper to connect/disconnect it
to/from PC4;

Eight jumpers to connect/disconnect each of the eight DIP-switches
to/from their respective Port A/Port B pin;

Eight general-purpose DIP switches (four connected to PB and four
connected to Port C);

A provision for an external oscillator, together with a jumper to select the
microcontroller’s internal oscillator or the external oscillator;

A connector for a 9-12V, 100 mA power supply;

A connector area to access the I/O pins of the microcontroller for
expansion prototyping;
A prototyping area.

Page 8

inDART-ST7C User's Manual

15P CONNELTOR PR7 na
meK

\lg

The IDB-ST7C254 Demo Board

IDB-ST7C334 Demo Board
The IDB-ST7C334 Demo Board has the following hardware features:

1. An ST72C334N4B microcontroller (in SDIP56 package, already
programmed with a demo application—in addition, you can also use the
following microcontrollers: ST72C314N2B, ST72C314N4B, ST72C334N2B);

2. A standard ISP connector;

3. Eight jumpers to connect/disconnect each of the eight LEDs to/from their
respective Port B pin;

4. Eight high-efficiency (low-current) LEDs connected to Port B;

5. A potentiometer, together with a jumper to connect/disconnect it to/from
PD7;

A push-button switch connected to RESET;

A push-button switch, together with a jumper to connect/disconnect it
to/from PDo;

8. Eight jumpers to connect/disconnect each of the eight DIP-switches
to/from their respective Port A pin;

9. Eight general-purpose DIP switches connected to Port A;

Page 9

1. Overview

10. A provision for an external oscillator, together with a jumper to select the
microcontroller’s internal oscillator or the external oscillator;

11. A connector for a 9-12V, 100 mA power supply;

12. A connector area to access the I/0 pins of the microcontroller for expansion
prototyping;

13. A prototyping area.

DB-ST7C334 8= & |
BREADBOARD AREA ’ o m@mm 1:::‘.@
S L LT TTTTTTT P W®]P33

EEEEEEEEEEEEE P

080808202222220sS

H

000000000."T,000000000000

PB2 ¢4 ISP CONNECTOR

PB7

PBO o|[e] mex
PE7 ”bDL A . . @@ﬂ p
PE6 u ‘QK POWER + b

PE4 EXT W@
PE1 \mgj ® o

PEO osc
v NS

PB4 @ e
PB3 (@ @ 0@’ PB4

/100000000000

rD7

ool (] OBE

e -HHHHHHHHH SIGN%P\ZES LoooooooJ @O : _0 50
ENEEEEEEEEEEE SW §g

Soffee www.softecmicro.com SZdans4ys

The IDB-ST7C334 Demo Board

STVDY Integrated Development Environment

The inDART-ST? user interface is based on the ST7 Visual Debug Integrated
Development Environment (STVD?7). STVD7 enables programs to be executed
and stopped where desired, while viewing the memory contents. It offers the
ability to step through and examine code at the C source level and the Assembly
instruction level. You can introduce breakpoints and run or single-step the
executable, while viewing the source and observing current program values. All
registers and memory locations are accessible for both read and write
operations. This documentation covers the basic setup and operation of the
STVD7, but it does not cover all of its functions. For further information, please
refer to the STVD7 on-line help.

Page 10

inDART-ST7C User's Manual

Hiware and Cosmic Demo Versions

These two third-party companies have developed a C compiler for use with STy
microcontrollers. A demo version of each compiler can be directly installed on
the PC using the STMicroelectronics “MCU ON CD” CD-ROM.

Recommended Reading

This documentation describes how to use inDART together with the STVD7
Integrated Development Environment. Additional information can be found on
the following documents:

» STVD7 On-line Help—The ST7 Visual Debug on-line help.

» AST7-LST7.PDF— This user’s guide describes how to use the
STMicroelectronics assembler, linker, formatter and librarian for the ST7
family.

» ST7 FAMILY 8-BIT MCUs Programming Manual—Programming
reference containing the description of the full ST7 instruction set.

*» ST7 Family Data Sheets—The complete set of device data sheets can be
found on the “MCU ON CD” CD.

» RELEASE.TXT—Contains notes and known problems about the STVD7
user interface.

Software Upgrades

The latest version of the inDART-ST7 user interface is always available for free
at our download page on the web:
http://www.softecmicro.com/download.html.

Page 11

inDART-ST7C User's Manual

2. Getting Started

INDART-ST7C Components

The inDART-ST7C package includes the following items:

The inDART-ST7C in-circuit debugger;

A 20-cm, 10-conductor ISP cable;

A parallel cable;

The inDART-ST7 CD-ROM;

The STMicroelectronics “MCU ON CD” CD;

On Design Kits packages, a full-featured experiment board for a specific ST7
microcontroller (ST7C254 or ST7C334) is also included.

I N

The inDART-ST7C package

Page 13

2. Getting Started

Host System Requirements

The inDART-ST7C in-circuit debugger is controlled by a PC user interface
running under Windows. The following hardware and software is required to
run the inDART-ST?7 user interface:

* An Intel Pentium 100 or above running Windows 95, Windows 98,
Windows 2000 or Windows NT;

» 32 MB of random-access memory (RAM) plus 20 MB of available disk
space.

Installing the Hardware

The inDART-ST7C in-circuit debugger is connected through the parallel port to
a PC which runs the inDART-ST7 user interface as explained later. Connection
steps are numbered below in the recommended flow order:

1. Turn off the PC;

2. Insert the male D-Sub connector of the parallel cable into a free PC parallel
interface (LPT1 or LPT2);

3. Insert the other end of the parallel cable into the LPT connector on the
inDART-ST7C board;

4. Insert one end of the ISP cable into the ISP connector on the inDART-ST7C

board;

5. Insert the other end of the ISP cable into the ISP connector of the demo
board or target application;

Turn on the PC;

7. Turn on the power to the demo board/target application which also powers

the inDART-ST7C board.

Page 14

inDART-ST7C User's Manual

Note: inDART-ST7C can be powered by the demo board/target application
via the ISP cable. In this case, the power supply is taken from the Vcc pin of the
ISP connector, and MUST BE 5 V, 10 mA. In the case your target application is
not able to provide the required voltage and current, you must power the
inDART-ST7C board via its power connector. inDART-ST7C uses a 9-12 V DC,
10 mA (unregulated) wall plug-in power supply with a 2.1 mm pin and sleeve
plug with positive in the center and sleeve as ground.

Installing the Software

The inDART-ST7 user interface setup program is located on the SofTec
Microsystems “System Software” CD-ROM provided with the instrument. The
setup program will copy the required files to your hard drive. Additionally, an
uninstall program will be copied, giving you the option to uninstall the inDART-
ST7 user interface at any time.

To install the inDART-ST7 user interface:

1. Insert the “System Software” CD-ROM into your computer’s CD-ROM
drive.

2. A startup window should automatically appear (if the startup window
doesn’t appear automatically, manually run the Set up. exe file located on
the CD-ROM root). Choose “Install Instrument Software” from the
main menu.

3. Alist of available software should appear. Click on the “Install inDART-
ST7 Toolchain” option.

4. Follow the on-screen instructions.

Page 15

2. Getting Started

Note: if you are installing the inDART-ST7 user interface from Windows NT,
you must have logged in as Administrator.

Application Tutorial

This section will provide a step-by-step guide on how to launch your first
inDART-ST7 project and get started with the inDART-ST? user interface. The
example provided requires that inDART-ST7 be used with the IDB-ST7C254
Demo Board or the IDB-ST7C334 Demo Board. The sample application
configures the A/D peripheral to convert on the A/D channel connected to the
potentiometer and displays the results on the LEDs.

Note: this tutorial is based on an Assembly example. Additional examples in C
(based on the Cosmic C compiler) are also provided.

» Ensure that inDART-ST?7 is connected to the PC (via the parallel cable), to
the demo board (via the ISP) connector, and that the demo board is
powered on.

» Make sure that the “OSC SEL” jumper on the demo board selects the “INT”
mode.

» Make sure that all of the “LED ENABLE” jumpers and the
“POTENTIOMETER ENABLE” jumpers are inserted.

» Start the inDART-ST7 user interface by selecting Start > Programs >
SofTec inDART-ST7 > inDART-ST?. The first time you launch the
inDART-ST7 user interface you are prompted to enter the toolchain paths to
be used by STVD7’s integrated development environment. Click “Yes”. The
following dialog box will appear.

Page 16

inDART-ST7C User's Manual

Toolchain Path x|

Cozmic builder path:

| =
Hiware builder path:

| [T

ST7 Azzembler path:
’C: YProgram FileshS Th\stFtoalchainha - .. I

(] 8 i Cancel |

The Toolchain Path Dialog Box

This step-by-step tutorial requires that the ST7 Assembler path be defined.
Make sure that the ST7 Assembler path that appears on the Toolchain
Path Dialog Box corresponds to the location where the ST7 Assembler has
been installed (please note that you may modify the toolchain path at any
time from within STVD7—simply select Project > Toolchain Paths from
the main menu to access the dialog box above). Click “OK”. The inDART-
ST7 user interface will open.

From the main menu, choose File > Open Workspace. Select the
“adc.wsp” workspace file that is located under the “\Program
Files\inDART-ST7\STVD7\Sample\Asm\254\Adc” directory if you
are using the IDB-ST7C254 Demo Board. If you are using the IDB-ST7C334
Demo Board, look for the same file under the “\334\Adc” directory. Click
“Open”.

As the application has already been assembled and the executable file
generated, from the main menu, choose Emulator > Emulator Settings
and select the LPT port the inDART-ST7C board is connected to. Click
“OK”.

From the main menu, choose Debug > Start Debugging. The user
interface will display the source code with the Program Counter pointing to
the first instruction, alongside of the Disassembly window.

Page 17

2

2. Getting Started

= ST72C25462B SofTec Microspstems inDART-ST7 - ade_wsp - [Debug] - adc.s19 - [adc.asm] . [

o1 File Edt Wiew Project Debug Emulator Tools Window Help =18] 5||
agd|ae|sarren reran [Pee s s|loost i imrnneos |
R = = = : =
e * e | oe(eon (Reesem s s el EE A =l
Workspace E) E 55 [[[oizassembis: B
= @ adc.msp 1 Program entry asm:26 rim -
= B buidbat o <main
=D adestd 21 ade.asm:27 call
[Csourcefilss o2 WORDS 0x=001 <main+l
=0T ASM soucefies | o3 segment ' rom' ade.asm:2g BEif
ade.asm 2 0xe004 <wait
EHT Other fies BE .wain adc. qom:30 1a
8722948 Es & rim 0xe007 <waitsd
27 call init : port initialization adc.asm:31 1d
e .wait 0x=009 <wait+s
o BEIf ADCCSR, #7, wait : waits for the end of the conversion e jra
0 1d A, ADCDR ; reads the ADCDR register 0xe00b <yait+7
51 14 FADR, A ; writes this valus on port A adc.asm:39 1d
32 jra wait ; forever 0xe00d <init
153 ade . asm: 40 1a
RS 3 Oxe00L <init+d
BS |. Porc inicializavion adc. asmi 41 1d
e Oxe011 <init+4
37 ade . aswm: 42 1a
BE .inic 0x2013 <init+s
<E3 1a A, HSFF ade. asm: 43 1d
a0 14 FADDE, A ; configures port A as oucput 0xe015 <init+d
31 1d PAOR, A ade.asm: 44 ret
122 1a L, #525 : enables the /D peripheral on PCS Oxe017 <init+10
l43 1a ADCCSR, & Oxe0is <.
a4 ret Oxe=0ih <.
115 Oxe0le <.)
6 Oxe021 <.
137 Oxelzd <.
lac: segment 'vectit! 0x=027 <.
139 5 Oxe02a <. -
7 B
-» Ewulator reset (LPT1)... -
[Connected to the GDI Debug Instrument. done.
(Opening application C:\Prograwmi’ inDART-ST74STVD7) Samplel Aowh254% Adehade.s19. .. done.
-5 Chip-reset...
#T Application stopped: =
A Build A Tools Find in Files 1 Findin Files 2 # Debug /4 Console
[For Help, press F1 [TLn26,Col [MODIFED | READ [CAP [NUM BERL [OVR Ready

Debugging Session Started

= From the main menu, select Debug > Run. The program will be executed
in real-time. By rotating the potentiometer, you affect the results of the A/D
conversion, and the binary value of each conversion is displayed on the
LEDs.

= From the main menu, select Debug > Stop Program. The application will
stop, and the Program Counter arrow will point to the next instruction to be
executed.

= From the main menu, select View > ST Registers. A small window
displaying the current value of all of the ST7 registers (Program Counter,
Stack Pointer, Index Registers, etc.) will appear.

= From the main menu, select View > Peripheral Registers. A small
window displaying the current status of all of the ST7 built-in peripherals
(I/O ports, Timers, A/D converter registers, etc.) will appear.

= On the source code window, set a breakpoint on the “I d A, ADCDR’
instruction. To do so click on the line containing that instruction and then,

Page 18

inDART-ST7C User's Manual

from the main menu, select Edit > Insert/Remove Breakpoint. A solid,
red circle will appear on the leftmost column indicating that the breakpoint
has been set.

* From the main menu, select Debug > Run. The application will restart,
and will automatically stop at the previously set breakpoint.

* From the main menu, select Debug > Step Into. This command will
execute the “l d A, ADCDR’ instruction. On the ST Registers window, you
can see how that instruction affected the value contained on the
Accumulator. This value is the result of the A/D conversion.

» Issue another Step Into command (Debug > Step Into). The Accumulator
value will be displayed on the LEDs.

Congratulations! You have successfully completed this tutorial! You can
continue to experiment with the inDART-ST7 user interface and discover by
your own its potentialities. For an in-depth guide of all of the user interface
features, select Help > Search from the main menu.

Page 19

inDART-ST7C User's Manual

3. INDART-ST7C Operations

INDART-ST7C Working Principles

inDART-ST7C is an in-circuit debugger as well as a programming tool. It
programs files into the ST72CXXX microcontrollers and offers debugging
features like real-time code execution, stepping, and breakpoint. Its debugging
features are achieved thanks to a small portion of monitor code which is
automatically and transparently added to the user code and programmed into
the target microcontroller. The monitor communicates with the host PC through
a bi-directional command-based protocol via the ISPDATA and ISPCLK lines of
the microcontroller. For this reason, the ISPDATA and ISPCLK lines (which are
the standard lines used by the microcontroller’s ISP peripheral) are reserved
during debugging sessions. The same two lines are also used during device
programming.

Contrariwise to traditional in-circuit emulation (where the target application is
executed and emulated inside the emulator), inDART-ST7C uses the very same
target microcontroller to carry on in-circuit execution. This means that all
microcontroller’s peripherals (timers, A/D converters, I/O pins, etc.) are not
reconstructed or simulated by an external device, but are the very same target
microcontroller’s peripherals. Moreover, the inDART-ST7C debugging approach
ensures that the target microcontroller’s electrical characteristics (pull-ups, low-
voltage operations, I/Os thresholds, etc.) are 100% guaranteed. The trade-off,
however (in electronics miracles don’t exist, after all—do they?), is that the
target microcontroller must be properly configured and ready to execute target
applications.

“Start Debugging” Command

(Download
Program Code

+ Monitor)

v

“Stop Debugging” Command

Monitor Download

Page 21

3. InDART-ST7C Operations

Limitations

Since inDART-ST7C is based on the ISP feature of the ST7, some on-chip
resources are wasted for debugging purposes. In particular:

= 7 stack levels (bytes) are wasted;

= 288 bytes are reserved for the monitor (from address FECoH to address
FFEoH);

= ISPDATA and ISPCLK lines are reserved for programming and in-circuit
debugging (i.e., PB5 and PB6 1/0 lines are reserved on ST72C254 devices;
PC4 and PC6 lines are reserved on ST72C334 devices; PB3 and PB5 lines
are reserved on ST72C171 devices);

= SPI peripheral and the SPI interrupt vector are reserved (since the SPI I/O
lines share the ISPDATA and ISPCLK lines);

= The TRAP instruction and the TRAP interrupt vector are reserved for the
monitor;

= Global interrupts must be enabled to allow the STOP command to be
implemented;

= Peripherals run even in STOP mode.

Breakpoints Notes

inDART-ST7C can handle an unlimited number of breakpoints within program
memory. When you set a breakpoint on a source code line, inDART-ST7C
automatically (and transparently) replaces the opcode of the instruction where
the breakpoint is set with the opcode of the TRAP instruction (this explains why
the TRAP instruction—and the TRAP vector—is reserved and should not be used
in user applications).

The difference between inDART-ST7C and a standard emulator is that the latter
can set/reset breakpoints under all conditions, while inDART-ST7C (since it
needs to change the opcode of the instruction where the breakpoint is set with
the TRAP instruction) needs to program the FLASH memory of the target
microcontroller to perform this operation. To program the FLASH memory,
inDART-ST7C needs to enter the ISP mode and, consequentely, to reset the
target microcontroller. inDART-ST7C actually programs breakpoints only when
an execution command that resets the target microcontroller (e.g., the “Run”
command) is issued. In all of the other cases breakpoint information is stored

Page 22

inDART-ST7C User's Manual

inside the host PC, program execution switches to “step mode” (see below) and
breakpoint programming occurs next time an execution command that resets
the target microcontroller is issued.

Program Execution Notes

inDART-ST7C executes in real-time mode or in step mode.

» Step mode execution occurs when you launch the emulation, then stop it,
then set/modify breakpoints, and then continue the emulation;

= Real-time execution occurs in all other cases.

The following table summarizes (for the most common emulation commands)
which command causes inDART-ST7C to execute in real-time mode or in step
mode.

Emulation Command Execution Mode

Run Real-time

Restart Real-time

Continue Real-time if no breakpoints have been set/modified since the
“Stop Program” command. Step mode otherwise.

Step Into Step mode

Step Over Step mode

Step Out Step mode

Run to Cursor Step mode

Execution Mode Summary

The following FSM (Finite State Machine) diagram illustrates in detail the
behaviour of inDART-ST7C. In the diagram, each state transition is caused by
one or more events, explained below.

» Reset. The Reset event is caused by the “Chip Reset” command, an
external Reset event, or a peripheral Reset event.

= Restart. Include either the “Run” command or the “Restart” command.

» Stop. The Stop event is caused either by the “Stop Program” command
or by a breakpoint hit.

* Continue. Is caused by the “Continue” command.

Page 23

3. InDART-ST7C Operations

» Single-step command. Is caused by the “Step Into” and “Step Into
ASM?” commands.

* Multiple-step command. One of the following commands: “Step Out”,
“Step Over”, “Step Over ASM”, “Run To Cursor”. Please note that, in
some cases, the “Step Over” and “Step Over ASM” commands have the
same effect of the “Step Into” and “Step Into ASM” commands,
respectively, depending on whether there is a function call to be executed or
not.

*» Modify Breakpoints. One of the following commands:
“Insert/Remove Breakpoint”, “Enable/Disable Breakpoint”,
“Remove All Breakpoints”.

» Edit Data/Registers. One of the following events: memory editing,
registers editing, watch variables editing, peripherals editing, Program
Counter editing.

START DEBUGGING

Multiple-Step Cmd

Reset

Single-Step Cmd
Reset (—\ EditDala/Register(‘N Mum‘p/e-_s%md

Single-Step Cmd

Single-Step Cmd

K) Multiple-Step Cmd
Mod. Brkpts
Edit Data/Registers .~ Mod. Brkpts
> b
RESET), —>| STOP(B)
Reset Edit Data/Registers

)

Mod. Brkpts

Reset Restart
Continue

Restart Restart

Continue

Continue

Reset Stop

RUN
(Real Time)

RUN
(Step Mode)

STEP MODE

inDART-ST7C Execution Modes

Page 24

inDART-ST7C User's Manual

Real-Time Execution

When inDART-ST7C runs in real time, instructions are executed just as the
microcontroller would without the debugger. inDART-ST7C executes in real
time until a breakpoint is encountered or until the “Stop Program” command
is issued. Subsequent “Continue” commands are still performed in real time
only if you do not set/modify breakpoints.

Step Mode Execution

In step mode, program execution is supervised by the host PC and performed
(automatically) step by step.

Note: in step mode, peripherals are still truly handled by the target
microcontroller. Howeuver, interrupts are not handled (that is, interrupt events
never occur). This affects execution of instructions like wf i and hal t —since
these instructions require interrupts to work, in step mode their behaviour is
different than in real-time mode. In particular, the wf i instruction loops
forever on itself (no interrupts ever occur), and after executing an hal t
instruction, program execution cannot continue (same reason).

Note: in step mode, program execution speed is affected by the host PC
speed—in particular, in step mode, program execution is slower than real-time
program execution. This can affect the program execution speed when, for
example, commands such as “Step Over?”, “Step Out” or “Run to Cursor”
are executed, since it can take a long time to perform the action (especially
when the code contains loops to be executed many times).

Online Assembler Notes

During a debugging sessions, every time assembly instructions are modified in
the Assembly window (through the Online Assembler), a reset condition occurs
(even though the Program Counter arrow still points to the same instruction).
Subsequent debugging commands will be therefore executed from a reset state.

Page 25

3. InDART-ST7C Operations

Stop Execution Notes

During debugging, user program execution will stop if one of the following
conditions occur:

1. A breakpoint has been encountered (or a TRAP instruction has been
executed);

The microcontroller RESET line has been driven active;

3. A microcontroller internal RESET state has been triggered (by, for example,
a Watchdog event, or an internal low-voltage detection);

4. The “Stop Program” emulation command has been issued from the
inDART-ST7 user interface. Please note that, during real-time execution,
the “Stop Program” command only works if interrupts are enabled in the
user application.

Note: when executing in real-time mode, the “Stop Program” command
only works if interrupts are enabled on the user program (the RIM instruction
must be present at the beginning of user’s code). The RIM instruction is only
needed if users want to stop the program by using the “Stop Program?” from
the user interface—and does not affect any other debugging feature. In
particular, the RIM instruction does not affect breakpoints.

Configuring the MCU

Before to start a debugging session, you must define and configure the target
device (MCU) you wish inDART-ST7C to emulate. The target device is defined
and configured from the MCU Configuration dialog box. To access it, select
Tools > MCU Configuration from the main menu. The following dialog box
will appear.

Page 26

inDART-ST7C User's Manual

MCU Configuration x|
—inD&RT model
Cancel I

Hw Cade: inDaRT-ST70C

Settings |

— Dewice and Option Bytes

Device Code:
ST72C254528 =l

Set Option Bytes |

The MCU Configuration Dialog Box

First of all, verify that the inDART model corresponds to “inDART-ST7C”.

By clicking the “Settings” button you can modify the “RESET Rise Time”
parameter to make it suitable for your target application. This parameters
depends on your target application’s reset circuitry. If you use inDART-
ST7C in connection with an inDART demo board, you don’t need to change
this parameter. For more information on this parameter, please refer to
“Appendix A: Target Reset Topics”.

The “Device Code” parameter specifies the target microcontroller used in
your target application. You must specify the exact device code of the
microcontroller you are working with.

The “Set Option Bytes” button allows you to access the Edit Option Bytes
dialog box. The following figure illustrates an example of the Edit Option
Bytes dialog box (every microcontroller has its own specific Option Bytes).

Page 27

3. InDART-ST7C Operations

x
[FMP] - Full Memary Protection: INot Pratected _| | L I
[ETIT] - Extemal Intemupt Configuration: ||m Pa7-PA0, IT1=PB7-PEDAPCE-PCO ﬂ = I
WD G SWw] - Watchdog Activatior: [software =l
DG HALT] - Watchdog and Halt Mode: IHeget inHALT ﬂ
[LVD] - Low Valtage Detection Selection: ILVD 0 Ll
[QSC] - Dscilitar Selection: |4 MHz Intemal RC =
[CFC] - Clack filter contral [Enabled =l

The Edit Option Bytes dialog box

Particular attention must be paid in correctly setting each of the Option Bytes
parameters. Improper settings may cause the target microcontroller not to work
correctly (or not to work at all). In particular, the following parameters must be
carefully set:

* FMP (Full Memory Protection). Must be always set to “Not Protected”.

* WDG SW (Watchdog Activation). If set to “Hardware”, you must
refresh the Watchdog in your target application. You can leave it to
“Software” when working with the provided sample applications.

» OSC (Oscillator Selection). Specify the oscillator source used by your
target application. inDART-ST7C demo boards, by default, work with the
internal, 4-Mhz RC oscillator.

* CFC (Clock Filter Control). When enabled, allows an internal, security
clock to be used should the main oscillator source (specified by the OSC
parameter) not be present, or set incorrectly, or not work correctly. It is
suggested to set this parameter to “Enabled”—since otherwise, if due to a
bad OSC parameter setting (or other reason) the target microcontroller
can’t work, it will not be possible to reprogram the Option Bytes.

Note: the Option Bytes value specified in the Edit Option Bytes dialog box will
be used when programming the device (see “Programming Capabilities”
below).

Page 28

inDART-ST7C User's Manual

Programming Capabilities

inDART-ST7C feature ISP programming capabilities. A programming utility is
built-in in the inDART-ST7 user interface. When in Debugging mode, the Tools
> Program command in the main menu is enabled, and allows you to program
the target microcontroller with your target application code but without any
debugging code. A typical programming procedure is made of a series of
programming steps, as indicated in the figure below. You can choose whether to
perform or not each single step. Please note that the programming steps are
performed in the exact order as shown in the Program dialog box.

%

—Steps
Start
[Clear Fiead-out pratection
[Eraze device -
IV Program FLASH memory Evit |

¥ ey FLASH memary
™ Program Option bytes
[~ Set Read-out protection

v Run

‘WARNING: By programming the device, you will not be able to
continue with the current debugging session,

The Program Dialog Box

* Clear Read-Out Protection. Clears the Read-Out Protection bit. Check
this programming step when you are programming a device which has been
programmed with the Read-Out Protection bit set.

» Erase Device. Erases the entire Code memory area.

* Program FLASH Memory. Writes the application code into the Code
memory area.

» Verify FLASH Memory. Verifies that the application code has been
correctly written into the Code memory.

* Program Option Bytes. Programs the Option Bytes according to the
parameters specified in the Edit Option Bytes dialog box.

» Set Read-Out Protection. Set the Read-Out Protection bit. Check this
programming step if you want to protect the application code from external
reading operations.

Page 29

3. InDART-ST7C Operations

* Run. After programming, resets the microcontroller and executes the
application program.

Note: after programming the device, you will not able to continue with the
current debugging session. To continue debugging, you must stop the current
debugging session and start a new one.

DataBlaze Programming Utility

A standalone, full-featured programming utility (DataBlaze) is also provided
with inDART-ST?7. To start the DataBlaze utility select Start > Programs >
SofTec inDART-ST7 > Programmer > DataBlaze.

DataBlaze offers the following advanced features:

* Code memory editing;
» Data memory (EEPROM) editing;

» Blank check/erase/verify operations on Code memory, Data memory and
Option Bytes;

» Read operations from Code memory, Data memory and Option Bytes;
* Project handling.

Page 30

inDART-ST7C User's Manual

4. Troubleshooting

Installing the iInDART-ST7 User Interface under
Windows NT

In order to install the inDART-ST7 user interface under Windows NT, you must
have logged in as Administrator.

Common Problems and Solutions

Communication can’t be established with inDART-ST7C

1.

Make sure the inDART-ST7C in-circuit debugger is powered on. inDART-
ST7C can be powered by the demo board/target application via the ISP
cable. In this case, the power supply is taken from the Vce pin of the ISP
connector, and MUST BE 5V, 10 mA. In the case your target application is
not able to provide the required voltage and current, you must power the
inDART-ST7C board via its power connector. inDART-ST7C use a 9-12 V
DC, 10 mA (unregulated) wall plug-in power supply.

Make sure that the parallel cable is connected. Also make sure you selected
the LPT port number to which the instrument is connected to. To
view/change the LPT port in use, choose Emulator > Emulator Settings
from the inDART-ST7 user interface’s main menu.

Make use you are working with the correct inDART hardware model. To
view/change the inDART hardware model in use, choose Tools > MCU
Configuration from the inDART-ST7 user interface’s main menu.

Make sure the demo board/target application board is powered on and the
target microcontroller is working. Programming and debugging rely on an
ISP serial communication between the inDART-ST7C board and the demo
board/target application. This means that, in order to work correctly, the
target microcontroller must be running. In particular, make sure that:

= The ISP cable is connected to the demo board/target application’s ISP
connector.

» The target microcontroller is in place.

= All of the ISP connector signals (ISPSEL, ISPDATA, ISPCLK, RESET,
VDD and VSS) are correctly tied to the target microcontroller.

Page 31

4. Troubleshooting

» The microcontroller’s Reset circuitry is working (for more information
please refer to “Appendix A: Target Reset Topics”).

» The oscillator circuitry is working according to the Option Bytes
specifications. To view/change the Option Bytes, choose Tools > MCU
Configuration from the inDART-ST?7 user interface’s main menu.
From the dialog box which will appear, click the “Set Option Bytes”
button.

A communication error is returned on a program execution command (Run,
Continue, Step, etc.)

Make sure that your program doesn’t use the SPI peripheral and that the I/O
bits corresponding to the ISPDATA and ISPCLK ISP signals are set to input
mode.

When debugging, the program runs too slowly
This problem can have two causes:

» Ifnot correctly set (via Option Bytes), the target microcontroller may run at
a frequency lower than that specified. On some ST7 microcontrollers (if
specified on the Option Bytes), the working frequency is automatically set to
a safe value (< 1 MHz) when the specified oscillator source can’t be found
(or doesn’t work properly). In this conditions, the low working frequency
affects the ISP communication and, therefore, the inDART-ST7 user
interface performances.

» Under some conditions, program execution is not performed in real time.
As a consequence, program execution may slow down. Please read
“Program Execution Notes” on Chapter 3 for more information.

The “Stop Program” command doesn’t work

When executing in real-time mode, the “Stop Program” command only works
if interrupts are enabled on the user program (the RIM instruction must be
present at the beginning of user’s code). The RIM instruction is only needed if
users want to stop the program by using the “Stop Program” from the user
interface—and does not affect any other debugging feature. In particular, the
RIM instruction does not affect breakpoints.

Also make sure that your program doesn’t use the SPI peripheral and that the
I/0 bits corresponding to the ISPDATA and ISPCLK ISP signals are set to input
mode.

Page 32

inDART-ST7C User's Manual

The program execution stops at the beginning of user’s code

A Reset condition occurred. This can be due to an external Reset condition
(microcontroller’s RESET line driven low) or an internal Reset condition (e.g.,
due to a Watchdog event). For more information on causes that can trigger a
Reset condition, please refer to the specific ST7 microcontroller device data
sheet.

Interrupt handling routines are not executed

Under some conditions, program execution is not performed in real time. As a
consequence, interrupts are not handled. Please read “Real-Time Execution
Notes” on Chapter 3 for more information.

The program seems not to work correctly

When debugging your program with inDART-ST7C, some target
microcontroller’s resources are reserved for debugging purposes. In particular,
288 bytes are reserved for the monitor (from address FECoH to address
FFEoH). Therefore, you must pay attention that your program doesn’t use this
range of memory locations. Also, please remember that 7 stack levels are
reserved by inDART-ST7C as well.

Getting Technical Support

Technical assistance is provided free to all customers. For technical assistance,
documentation and information about products and services, please refer to
your local SofTec Microsystems partner.

SofTec Microsystems offers its customers a free technical support service at
support@softecmicro.com.

Page 33

inDART-ST7C User's Manual

Appendix A: Target Reset Topics

During debugging and programming, inDART-ST7C communicates with the
target microcontroller through the target microcontroller’s ISP capability. Both
debugging and programming capabilities thus require that the ISP mode be
selected on the target microcontroller. In order to enter the ISP mode, the
microcontroller ISPSEL line must be correctly driven during the microcontroller
RESET phase. inDART-ST7C automatically and transparently performs such
operation: however, since inDART-ST7C must drive the ISPSEL line in the
correct timings, you must specify (in the inDART-ST7 user interface—see
“Configuring the MCU” on chapter 3) a parameter called “RESET Rise Time”
(Trise in the diagram below), according to the limits depicted on the diagram
itself.

T0 T T2

_—

RESET \

0,7 Vop

€< Trse | 21€ Tisp

ISPSEL

T2 - T1 =256 CPU Clocks (32 us @ 16 MHz)
Tisr=4 us
T1 <Trise < T2 - Tisp

Trise Parameter Constraints

Page 35

Appendix A: Target Reset Topics

The following table lists some values of the “RESET Rise Time” parameter based
on the most common RC configurations. In the table, Rs is the serial resistor,
which we suggest to use.

f=16 MHz, Vcc =5V
RESET Rise RESET Rise
RC Time Rs RC Time Rs
4,7 K* 100 pF 10 us 47K 4,7 K* 100 pF 10 us 0
4,7 K*10 nF 10 us 47K 4,7 K*10 nF 35 us 0
4,7 K* 22 nF 10 us 4,7 K 4,7 K* 22 nF 76 us 0
4,7 K* 47 nF 10 us 47K 4,7 K* 47 nF 202 us 0
4,7 K* 100 nF 10 us 47K 4,7 K* 100 nF 490 us 0
47 K*1uF 10 us 47K

“RESET Rise Time” Vs. RC Values

Page 36

inDART-ST7C User's Manual

Appendix B: IDB-ST7C254 Demo
Board Schematic

Thommmne).

flezee msememe cBE S
5 ,’\
cooon B ¢
a1] g 5 i
P 2 :
|

IDB-ST7C254 Demo Board Schematic

Page 37

inDART-ST7C User's Manual

Appendix C: IDB-ST7C334 Demo
Board Schematic

T

& G

&

2

i)

g © 5
£ i
ez | lrEeps
BLLLT LLLLEEEELLELT: CE. 5 H
400000000000 oo 2 s 00000 |z
3
za— 2 ae 3 =

IDB-ST7C334 Demo Board Schematic

Page 39

