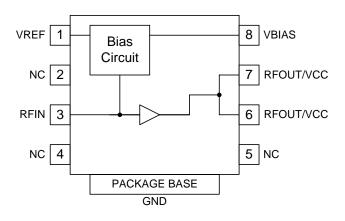
rfmd.com

RF3807

GaAs HBT PRE-DRIVER AMPLIFIER

RoHS Compliant & Pb-Free Product Package Style: SOIC-8



Features

- Output Power>0.5W P1dB
- High Linearity
- High Power-Added Efficiency
- Thermally-Enhanced Packaging
- Broadband Platform Design Approach, 450 MHz to 2700 MHz

Applications

- GaAs Pre-Driver for Basestation **Amplifiers**
- PA Stage for Commercial Wireless Infrastructure
- Class AB Operation for NMT, GSM, DCS, PCS, UMTS, and **WLAN Transceiver Applications**
- 2nd/3rd Stage LNA for Wireless Infrastructure

Functional Block Diagram

Product Description

The RF3807 is a GaAs pre-driver power amplifier, specifically designed for wireless infrastructure applications. Using a highly reliable GaAs HBT fabrication process, this high-performance single-stage amplifier achieves high output power over a broad frequency range. The RF3807 also provides excellent efficiency and thermal stability through the use of a thermally-enhanced surface-mount plastic-slug package. Ease of integration is accomplished through the incorporation of an optimized evaluation board design provided to achieve proper 50Ω operation. Various evaluation boards are available to address a broad range of wireless infrastructure applications: NMT 450 MHz, GSM850, GSM900, DCS1800, PCS1900, and UMTS2100.

Ordering Information

RF3807	GaAs HBT Pre-Driver Amplifier
RF3807PCK-410	Fully Assembled Evaluation Board, 450MHz
RF3807PCK-411	Fully Assembled Evaluation Board, 869MHz to 894MHz
RF3807PCK-412	Fully Assembled Evaluation Board, 920MHz to 960MHz
RF3807PCK-413	Fully Assembled Evaluation Board, 1800MHz to 1880MHz
RF3807PCK-414	Fully Assembled Evaluation Board, 1930 MHz to 1990 MHz
RF3807PCK-415	Fully Assembled Evaluation Board, UMTS

Optimum Technology Matching® Applied

☑ GaAs HBT	☐ SiGe BiCMOS	☐ GaAs pHEMT	☐ GaN HEMT
☐ GaAs MESFET	☐ Si BiCMOS	Si CMOS	
☐ InGaP HBT	☐ SiGe HBT	☐ Si BJT	

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage (V _{CC} and V _{BIAS})	9.0	V
Reference Current (I _{REF})	30	mA
DC Supply Current	250	mA
Maximum Input Power	see below	
Output Load VSWR @ P1dB	4:1	
Operating Ambient Temperature	-40 to +85	°C
Storage Temperature	-40 to +150	°C

Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RoHS status based on EU Directive 2002/95/EC (at time of this document revision).

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Parameter		Specification		Unit	Condition	
raranielei	Min.	Тур.	Max.	Ullit	Condition	
Overall - 450 MHz						
Frequency	420		480	MHz	I_{REF} =14 mA, V_{CC} =8V, V_{REF} =8V, V_{BIAS} =8V, Temp=+25 °C	
P1dB		+29.0		dBm		
P _{IN} , Maximum			18	dBm		
Total Efficiency		53.5		%	@P1dB	
Total Power Added Efficiency		52.5		%	@P1dB	
Gain (S21)		16.5		dB		
Second Harmonic (2fo)		-19.0		dBc	@P1dB	
Third Harmonic (3fo)		-21.0		dBc	@P1dB	
Input Return Loss (S11)		-13.0		dB		
Output Return Loss (S22)		-6.5		dB		
Two-Tone Specification						
OIP3		40.0		dBm	15 dBm/tone	
		42.0		dBm	17 dBm/tone	
		43.5		dBm	19dBm/tone	
		44.5		dBm	21dBm/tone	

Davamatav		Specification	n	I locit	Condition	
Parameter	Min.	Тур.	Max.	Unit	Condition	
Overall - GSM800						
Frequency	869		894	MHz	I _{REF} =14mA, V _{CC} =8V, V _{REF} =8V, V _{BIAS} =8V, Temp=+25°C	
P1dB		+30.5		dBm		
P _{IN} , Maximum			16	dBm		
Total Efficiency		56		%	@P1dB	
Total Power Added Efficiency		55		%	@P1dB	
Gain (S21)		16.5		dB		
Second Harmonic (2fo)		-20.0		dBc	@P1dB	
Third Harmonic (3fo)		-39.0		dBc	@P1dB	
Input Return Loss (S11)		-18.0		dB		
Output Return Loss (S22)		-12.0		dB		
Two-Tone Specification						
OIP3		38.5		dBm	15dBm/tone	
		41.0		dBm	17 dBm/tone	
		44.0		dBm	19dBm/tone	
		45.0		dBm	21dBm/tone	
Overall - GSM900						
Frequency	920		960	MHz	I _{REF} =14mA, V _{CC} =8V, V _{REF} =8V, V _{BIAS} =8V, Temp=+25°C	
P1dB		+30.5		dBm		
P _{IN} , Maximum			16	dBm		
Total Efficiency		56		%	@P1dB	
Total Power Added Efficiency		55		%	@P1dB	
Gain (S21)		16.5		dB		
Second Harmonic (2fo)		-22.0		dBc	@P1dB	
Third Harmonic (3fo)		-30.5		dBc	@P1dB	
Input Return Loss (S11)		-22.0		dB		
Output Return Loss (S22)		-8.5		dB		
Two-Tone Specification						
OIP3		42.5		dBm	15dBm/tone	
		43.0		dBm	17 dBm/tone	
		44.0		dBm	19dBm/tone	
		42.0		dBm	21dBm/tone	

Parameter		Specification	n	Unit	Condition	
Parameter	Min.	Тур.	Max.	Unit	Condition	
Overall - DCS1800						
Frequency	1805		1880	MHz	I_{REF} =14 mA, V_{CC} =8V, V_{REF} =8V, V_{BIAS} =8V, T_{CC} =8	
P1dB		29.0		dBm		
P _{IN} , Maximum			18.0	dBm		
Total Efficiency		53.0		%	@P1dB	
Total Power Added Efficiency		52.0		%	@P1dB	
Gain (S21)		14.5		dB		
Second Harmonic (2fo)		-36.0		dBc	@P1dB	
Third Harmonic (3fo)		-36.0		dBc	@P1dB	
Input Return Loss (S11)		-14.0		dB		
Output Return Loss (S22)		-6.0		dB		
Two-Tone Specification						
OIP3	40.0			dBm	15 dBm/tone	
		41.0		dBm	17 dBm/tone	
		42.0		dBm	19dBm/tone	
		42.0		dBm	21dBm/tone	
Overall - PCS1900						
Frequency	1930		1990	MHz	I_{REF} =14 mA, V_{CC} =8V, V_{REF} =8V, V_{BIAS} =8V, Temp=+25 °C	
P1dB		28.0		dBm		
P _{IN} , Maximum			18.0	dBm		
Total Efficiency		49.0		%	@P1dB	
Total Power Added Efficiency		48.0		%	@P1dB	
Gain (S21)		14.0		dB		
Second Harmonic (2fo)		-41.0		dBc	@P1dB	
Third Harmonic (3fo)		-41.0		dBc	@P1dB	
Input Return Loss (S11)		-12.0				
Output Return Loss (S22)		-7.0		dB		
Two-Tone Specification						
OIP3		39.5		dBm	15 dBm/tone	
		41.5		dBm	17 dBm/tone	
		42.5		dBm	19dBm/tone	
		41.5		dBm	21dBm/tone	

Davamatav	Specification			Unit	Condition
Parameter	Min.	Тур.	Max.	Unit	Condition
UMTS 2100					
Frequency	2110		2170	MHz	I _{REF} =14mA, V _{CC} =8V, V _{REF} =8V, V _{BIAS} =8V, Temp=+25°C
P1dB	+28.0	+28.5		dBm	
P _{IN} , Maximum			18	dBm	
Total Efficiency		46		%	@P1dB
Total Power Added Efficiency		45		%	@P1dB
Gain (S21)	12.5	14.0	15	dB	
Second Harmonic (2fo)		-35.0		dBc	@P1dB
Third Harmonic (3fo)		-56.0		dBc	@P1dB
Input Return Loss (S11)		-16.0		dB	
Output Return Loss (S22)		-11.0		dB	
Two-Tone Specification					
OIP3	38.5	39.5		dBm	15dBm/tone
		40.5		dBm	17 dBm/tone
		42.0		dBm	19 dBm/tone
		40.5		dBm	21dBm/tone
Power Supply					
Power Supply Voltage	4.5	8.0	9.0	V	
Supply Current (I _{CC} +I _{BIAS})	95	112	130	mA	$V_{CC} = V_{REF} = V_{BIAS} = 8 \text{ V}, R_{BIAS} = 340 \Omega$
Control Current (I _{REF})		14		mA	$V_{CC}=V_{REF}=V_{BIAS}=8V$, $R_{BIAS}=340\Omega$
Power Down Current			30	μА	V _{REF} =0V, V _{CC} =8V

Bias Table

V _{CC}	V _{BIAS}	V _{REF}	R _{BIAS}	I _{REF}	I _{CQ}	Comments
8	8	8	340	14	111	
5	5	5	43	24	111	For equivalent I _{CQ} to 8V case

Pin	Function	Description
1	VREF	Control input to internal bias circuitry.
2	NC	No connection.
3	RFIN	Input for RF signal.
4	NC	No connection.
5	NC	No connection.
6	RFOUT/VCC	RF output pin and V _{CC} supply pin.
7	RFOUT/VCC	RF output pin and V _{CC} supply pin.
8	VBIAS	RF supply to internal bias circuitry.
Pkg	GND	Backside of package should be connected to a short path to ground.
Base		

Theory of Operation and Application Information

RF3807 design accommodates use in a variety of applications:

- · Linear driver from 450 MHz to 2200 MHz
- 2nd/3rd stage high linearity LNA, with noise figure in the 3dB to 4dB range from 800 MHz to 2200 MHz
- High efficiency (>50%) output stage for non-linear applications
- 13dB gain, > 37dBm typical OIP3 when matched for WiMax 2.5GHz to 2.7GHz (see "Application Schematic" on page 8)

Nominal data sheet shows specification for $V_{CC} = V_{BIAS} = V_{REF} = 8V$. RF3807 can easily be configured for 5V operation, with a simple bias resistor change at V_{REF} . "Bias Table" on page 5 shows resistor values for $V_{CC} = V_{BIAS} = V_{REF} = 5V$. Generally speaking, 5V data will compare to that for 8V as follows:

- 3dB to 3.5dB reduction in OP1dB
- 0.4dB to 0.5dB increase in small signal gain

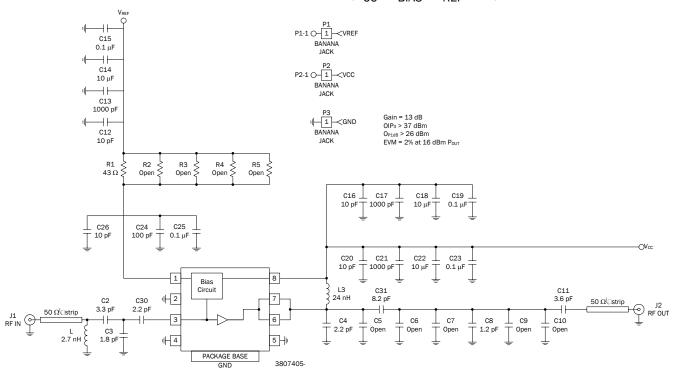
For operation at other than 5V, bias R can be calculated as follows ($V_{CC} = V_{BIAS} = V_{REF} = 5V$ is used here to illustrate, operation at different voltage is determined with same methodology).

- 1. Use nominal 8V case as a starting point: $V_{CC} = V_{BIAS} = V_{REF} = 8V$, $I_{REF} = 14$ mA, $I_{CQ} = 112$ mA. Target condition will be to achieve same I_{CO} with $V_{CC} = V_{BIAS} = V_{REF} = 5V$.
- 2. Using standard evaluation board with separate lab supplies on (V_{CC}/V_{BIAS}) and (V_{REF}) , set $V_{CC}/V_{BIAS}=5V$, $V_{REF}=8V$. I_{REF} is maintained at 14 mA, and I_{CO} drops from nominal value of 112 mA.
- 3. V_{REF} can then be increased >8V until I_{CO} is restored. I_{REF} increase to 24mA is required (as seen in "Bias Table" on page 5).
- 4. At this point, pin voltage at V_{REF} is calculated (or measured with DVM): $V_{PIN} = V_{REF}$ at eval board input I_{REF} * bias R = 12.1 0.024 * 340 = 3.94 V.
- 5. Next, calculate new bias R for V_{REF} =5V: Bias R=(5-3.94)/0.024=44 Ω . See "Bias Table" on page 5, standard resistor value=43 Ω is called out. In this way, bias R can be calculated for any V_{CC} = V_{BIAS} = V_{REF} configuration. The maximum I_{REF} limit for RF3807=30 mA.

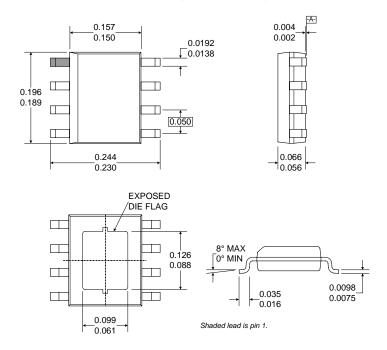
Junction-to-case thermal resistance (R_{TH_JC}) is shown versus output power in the graph section of this data sheet. The graph was generated with nominal $V_{CC} = V_{BIAS} = V_{REF} = 8V$, $I_{REF} = 14$ mA, where ambient temperature = 85 °C. Using this curve along with operating condition, junction temperature can be calculated. Resultant T_J for this case yields MTTF>100 years. Standard RF3807 evaluation boards are matched for high efficiency at O_{P1dB} . To ensure reliability for operation at high power, output match achieving equivalent or better efficiency on system board should be the goal.

Typical s-parameter responses for each evaluation board are shown within the data sheet. These boards were matched with two specifications in mind:

- Output load impedance set for optimum OIP₃/ACP (Adjacent Channel Power for commonly used modulation standards).
- Output load impedance set for high efficiency at O_{P1dB}, with ruggedness (survival) into output 4:1 VSWR.

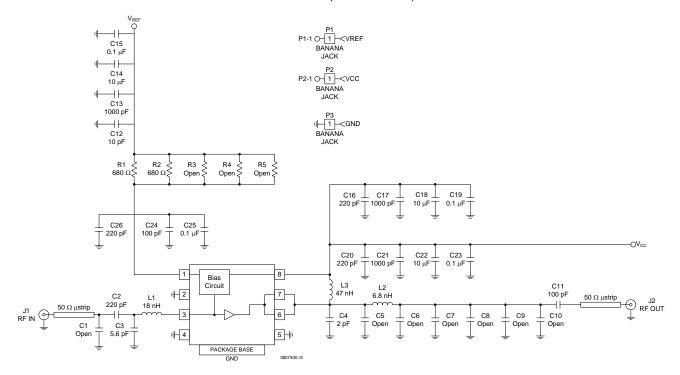

In some cases, low power operation being one, it may be desirable to improve output return loss seen on evaluation board. This can be done with output match adjust. The result will be an increase in small signal gain. Tradeoffs between return loss, gain, OIP₃, and compression point can then be considered in obtaining optimum performance for a particular application.

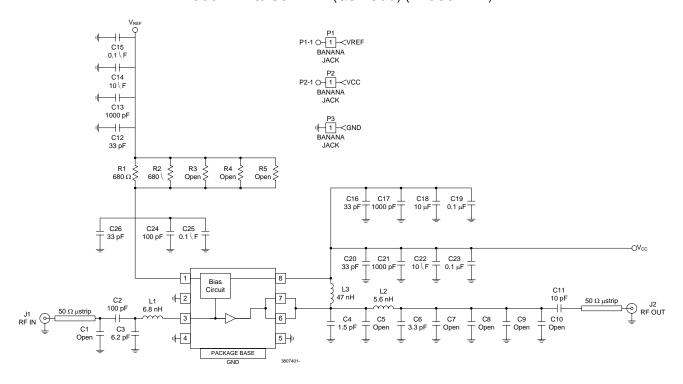
Finally, infrastructure qualification report for RF3807 can be obtained by contacting RFMD.



Application Schematic

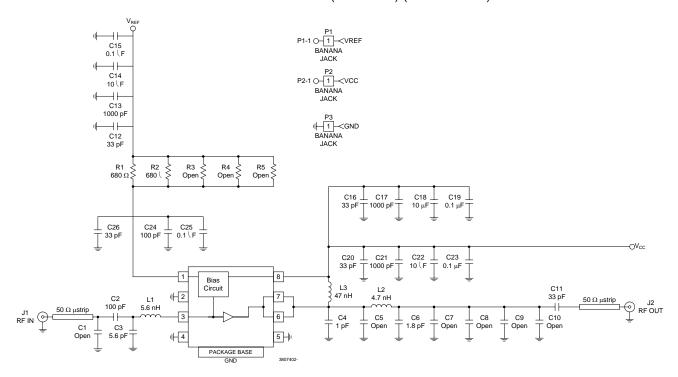
WiMax 2.5 GHz to 2.7 GHz ($V_{CC} = V_{BIAS} = V_{REF} = 5V$)

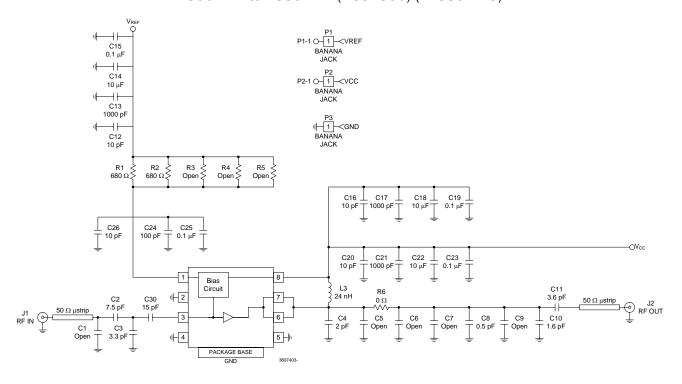

Package Drawing


Evaluation Board Schematic

450 MHz (RF3807410)

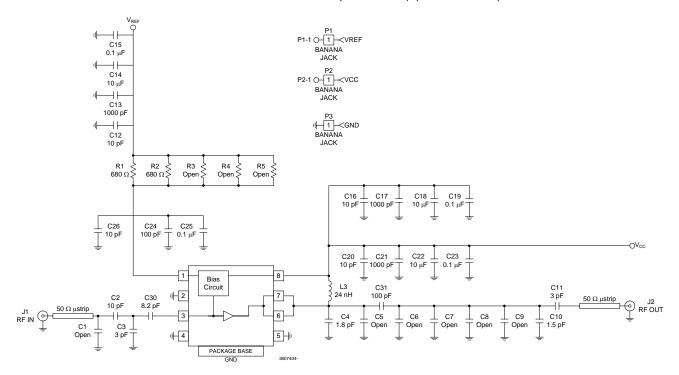
Evaluation Board Schematic

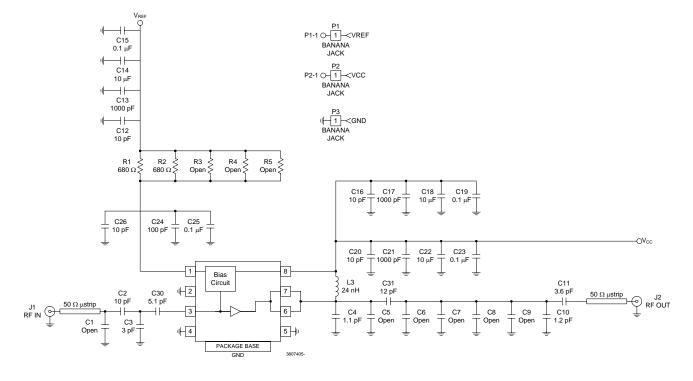

869 MHz to 894 MHz (GSM800) (RF3807411)


Evaluation Board Schematic

920 MHz to 960 MHz (GSM900) (RF3807412)

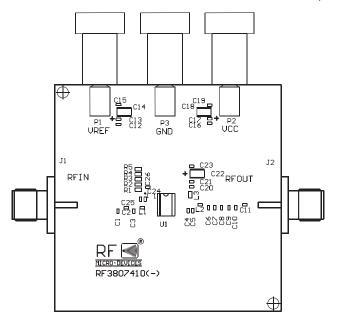
Evaluation Board Schematic

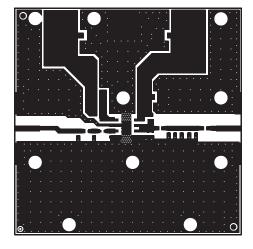

1800 MHz to 1880 MHz (DCS1800) (RF3807413)

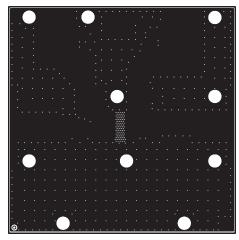

Evaluation Board Schematic

1930 MHz to 1990 MHz (PCS1900) (RF3807414)

Evaluation Board Schematic


UMTS (RF3807415)





Evaluation Board Layout - 400 MHz Board Size 2.0" x 2.0"

Board Thickness 0.023", Board Material Rogers 4530

PCB Design Requirements

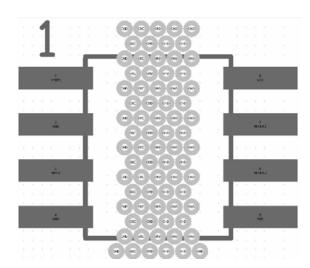
PCB Surface Finish

The PCB surface finish used for RFMD's qualification process is electroless nickel, immersion gold. Typical thickness is 3μ inch to 8μ inch gold over 180μ inch nickel.

PCB Land Pattern Recommendation

PCB land patterns for PFMD components are based on IPC-7351 standards and RFMD empirical data. The pad pattern shown has been developed and tested for optimized assembly at RFMD. The PCB land pattern has been developed to accommodate lead and package tolerances. Since surface mount processes vary from company to company, careful process development is recommended.

PCB Metal Land Pattern


PCB Solder Mask Pattern

Liquid Photo-Imageable (LPI) solder mask is recommended. The solder mask footprint will match what is shown for the PCB metal land pattern with a 2mil to 3mil expansion to accommodate solder mask registration clearance around all pads. The center-grounding pad shall also have a solder mask clearance. Expansion of the pads to create solder mask clearance can be provided in the master data or requested from the PCB fabrication supplier.

Thermal Pad and Via Design

The DUT must be connected to the PCB backside ground through a low inductance, low thermal resistance path. The required interface is achieved with the via pattern shown below for both low inductance as well as low thermal resistance. The footprint provided below worked well on the RFMD 20mil thick Rogers 4350 PCB and also standard FR4. The vias are 8mil vias that are partially plated through and are finished to 8mils±2mils with a minimum plating of 1.5mil. Failure to place these vias within the DUT mounting area on the PCB in this prescribed manner may result in electrical performance and/or reliability degradation.

Tape and Reel Information

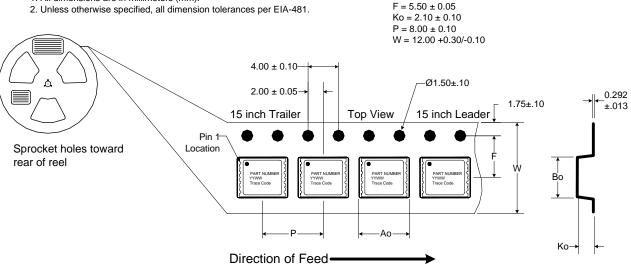
Carrier tape basic dimensions are based on EIA481. The pocket is designed to hold the part for shipping and loading onto SMT manufacturing equipment, while protecting the boyd and the solder terminals from damaging stresses. The individual pocket design can vary from vendor to vendor, but wide and pitch will be consistent.

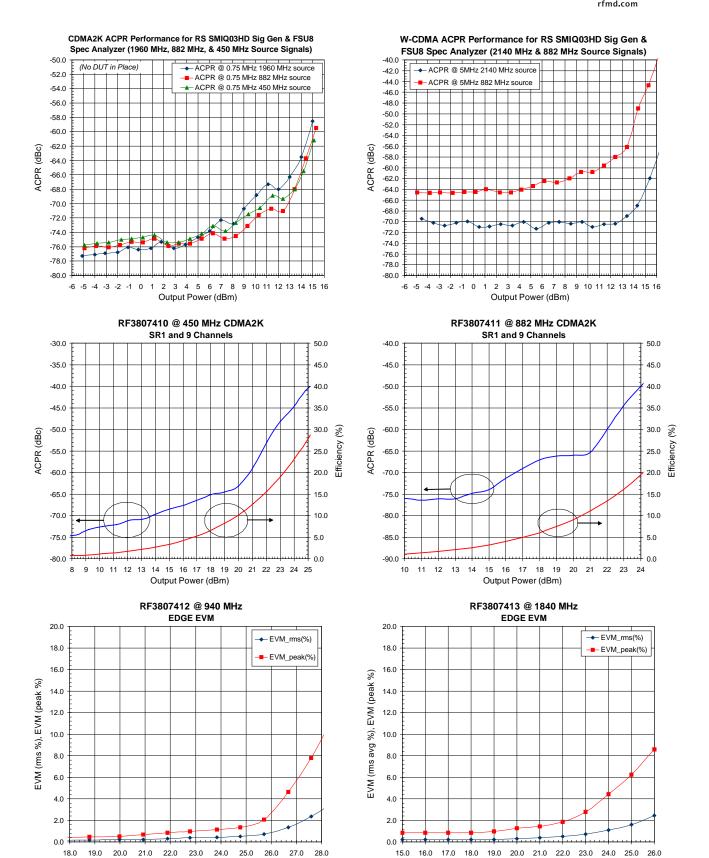
Carrier tape is wound or placed on a shipping reel with a diameter of either 330 mm (13 inches) or 178 mm (7 inches). The center hub design is large enough to ensure the radius formed by the carrier tape around it does not put unnecessary stress on the parts.

Prior to shipping, moisture sensitive parts (MSL level 2a to 5a) are baked and placed into the pockets of the carrier tape. A cover tape is sealed over the top of the entire length of the carrier tape. The reel is sealed in a moisture barrier, ESD bag, which is placed in a cardboard shipping box. It is important to note that unused moisture sensitive parts need to be resealed in the moisture barrier bag. If the reels exceed the exposure limit and need to be rebaked, most carrier tape and shipping reels are not rate as bakeable at 125°C. If baking is required, devices may be baked according to section 4, table 4-1, column 8 of Joint Industry Standard IPC/JEDECJ-STD-033A.

The following table provides useful information for carrier tape and reels used for shipping the devices described in this document.

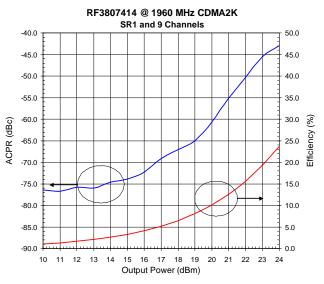
RFMD Part Number	Reel Diameter Inch (mm)	Hub Diameter Inch (mm)	Width (mm)	Pocket Pitch (mm)	Feed	Units per Reel
RF3807TR13	13 (330)	4 (102)	12	8	Single	2500
RF3807TR7	7 (178)	2.4 (61)	12	8	Single	750

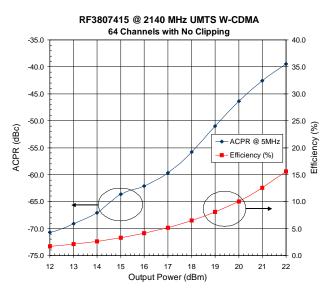

Carrier Tape Drawing with Part Orientation

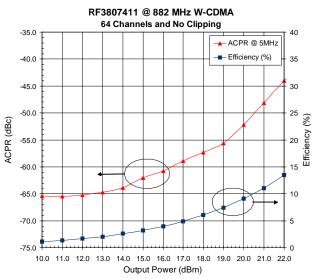

- 1. All dimensions are in millimeters (mm).
- 2. Unless otherwise specified, all dimension tolerances per EIA-481.

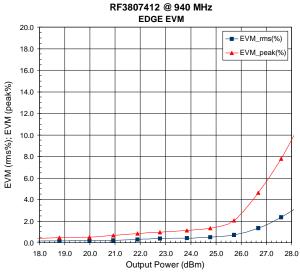
 $Ao = 6.70 \pm 0.10$

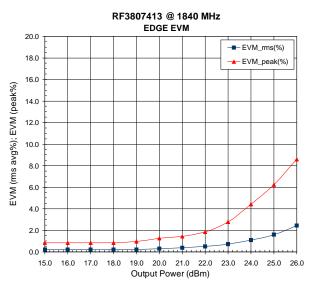
 $Bo = 5.40 \pm 0.10$

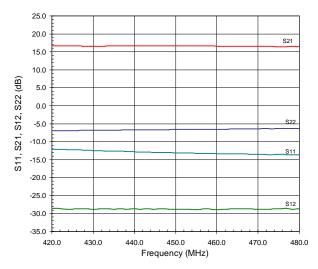


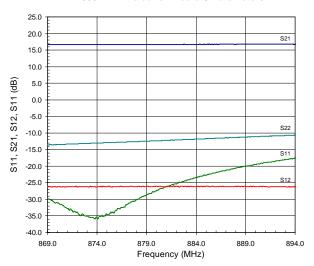


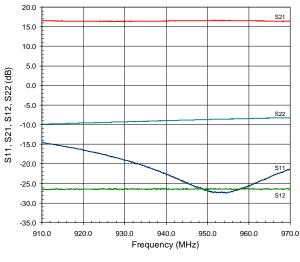

Output Power (dBm)

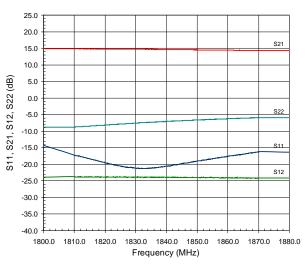

Output Power (dBm)

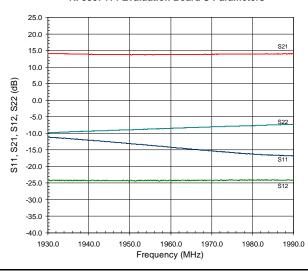


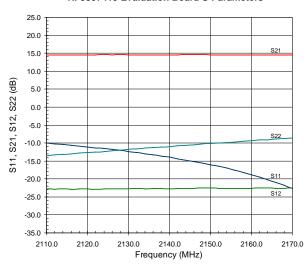




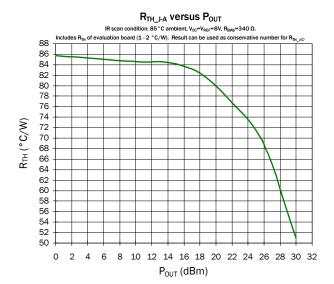



RF3807411 Evaluation Board S-Parameters

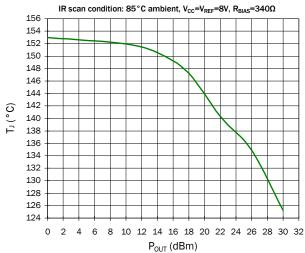

RF3807412 Evaluation Board S-Parameters


RF3807413 Evaluation Board S-Parameters

RF3807414 Evaluation Board S-Parameters



RF3807415 Evaluation Board S-Parameters



Junction Temperature versus P_{OUT}

RoHS* Banned Material Content

RoHS Compliant:

Package total weight in grams (g):

Compliance Date Code:

N/A

Bill of Materials Revision:

A

Pb Free Category:

e3

Dill of Materials	Parts Per Million (PPM)							
Bill of Materials	Pb	Cd	Hg	Cr VI	PBB	PBDE		
Die	0	0	0	0	0	0		
Molding Compound	0	0	0	0	0	0		
Lead Frame	0	0	0	0	0	0		
Die Attach Epoxy	0	0	0	0	0	0		
Wire	0	0	0	0	0	0		
Solder Plating	0	0	0	0	0	0		

This RoHS banned material content declaration was prepared solely on information, including analytical data, provided to RFMD by its suppliers, and applies to the Bill of Materials (BOM) revision noted above.

^{*} DIRECTIVE 2002/95/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment