R0P751RLC0011RL

Outline

SH7751R Evaluation Platform

Keep safety	first in	vour	circuit design	!snr
. toop calety		,	on our acong	7

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/ or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

IMPORTANT INFORMATION

READ FIRST

- READ this user's manual before using this product.
- KEEP the user's manual handy for future reference.

Do not attempt to use the product until you fully understand its mechanism.

This Product:

In this manual, this product points out the following product which Renesas Solutions Corporation manufactured. A user's user system and host machine are not included.

Purpose of the Product:

This product is a device to support the development of a system that uses the SuperH Risc engine Family SH7751R of Renesas 32-bit RISC MCUs. It provides support for system development in both software and hardware. Be sure to use this product correctly according to said purpose of use. Please avoid using this product for other than its intended purpose of use.

For those who use this product:

This product can only be used by those who have carefully read the user's manual and know how to use it. Use of this product requires the basic knowledge of electric circuits, logical circuits, and MCUs.

Precautions to be Taken when Using This Product:

- (1) This product is a development supporting unit for use in your program development and evaluation stages. In mass-producing your program you have finished developing, be sure to make a judgment on your own risk that it can be put to practical use by performing integration test, evaluation, or some experiment else.
- (2) In no event shall Renesas Solutions Corporation be liable for any consequence arising from the use of this product.
- (3) Renesas Solutions Corporation strives to renovate or provide a workaround for product malfunction at some charge or without charge. However, this does not necessarily mean that Renesas Solutions Corporation guarantees the renovation or the provision under any circumstances.
- (4) This product has been developed by assuming its use for program development and evaluation in laboratories. Therefore, it does not fall under the application of Electrical Appliance and Material Safety Law and protection against electromagnetic interference when used in Japan.
- (5) Renesas cannot anticipate every possible circumstance that might involve a potential hazard. The warnings in this user's manual and on the product are therefore not all inclusive. Therefore, you must use the product safely at your own risk.
- (6) This emulator does not conform to safety standards such as UL or IEC. Be careful when you take this emulator overseas.
- (7) This product is a product used for development of a program, and an evaluation stage. It cannot include in a user's product and cannot mass-produce.
- (8) Even if it is the case where fault is in the device carried in this product, it does not exchange for the fault repair article of a device.
- (9) Operation of all CF cards cannot be guaranteed.
- (10) Connection with the apparatus of all LAN interfaces cannot be guaranteed.
- (11) When you do not use it for a long time, please pull out and keep a power supply plug from a plug socket etc. for safety.
- (12) This product is a lead free mounting product.
- (13) Generally each brand name carried in these data is each maker's trademark or registered trademark.
- (14) Near DC jack of this product becomes high temperature. Be careful of a burn.

Limited Applications:

This emulator product is not authorized for use in transportation, vehicular, medical (where human life is potentially at stake), aerospace, nuclear, or undersea repeater applications. Buyers of this emulator product must notify Renesas Technology Corporation, Renesas Solutions Corporation or an authorized Renesas Technology product distributor before planning to use the product in such applications.

Improvement Policy:

Renesas Technology Corp. (including its subsidiaries, hereafter collectively referred to as Renesas) pursues a policy of continuing improvement in design, performance, and safety of the product. Renesas reserves the right to change, wholly or partially, the specifications, design, user's manual, and other documentation at any time without notice.

All Rights Reserved:

- 1. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Renesas' semiconductor products. Renesas assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
- 2. No license is granted by implication or otherwise under any patents or other rights of any third party or Renesas.
- 3. This user's manual and emulator product are copyrighted and all rights are reserved by Renesas. No part of this user's manual, all or part, may be reproduced or duplicated in any form, in hard-copy or machine-readable form, by any means available without Renesas' prior written consent.

State Law:

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or consequential damages, so the above limitation or exclusion may not apply to you.

This warranty gives you specific legal rights, and you may have other rights which may vary from state to state.

The Warranty is Void in the Following Cases:

Renesas shall have no liability or legal responsibility for any problems caused by misuse, abuse, misapplication, neglect, improper handling, installation, repair or modifications of the product without Renesas' prior written consent or any problems caused by the user system.

Figures:

Some figures in this user's manual may show items different from your actual system.

* Compact FlashTM is the registered trademark of SanDisk Corporation.

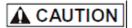
Precautions for Safety

Definitions of Signal Words

In both the General Information Manual and on the product itself, several icons are used to insure proper handling of this product and also to prevent injuries to you or other persons, or damage to your properties.

This chapter describes the precautions which should be taken in order to use this product safely and properly.

Be sure to read this chapter before using this product.


This symbol represents a warning about safety. It is used to arouse caution about a potential danger that will possibly inflict an injury on persons. To avoid a possible injury or death, please be sure to observe the safety message that follows this symbol.

DANGER indicates an imminently dangerous situation that will cause death or heavy wound unless it is avoided. However, there are no instances of such danger for the product presented in this manual.

WARNING indicates a potentially dangerous situation that will cause death or heavy wound unless it is avoided.

CAUTION indicates a potentially dangerous situation that will cause a slight injury or a medium-degree injury unless it is avoided.

CAUTION with no safety warning symbols attached indicates a potentially dangerous situation that will cause property damage unless it is avoided.

NOTE emphasizes essential information.

In addition to the five above, the following are also used as appropriate.

△ means WARNING or CAUTION.

Example:

CAUTION AGAINST AN ELECTRIC SHOCK

Example:

DISASSEMBLY PROHIBITED

means A FORCIBLE ACTION.

Example:

UNPLUG THE POWER CABLE FROM THE RECEPTACLE.

Warnings for AC Power Supply:

- If If the attached AC power cable does not fit the receptacle, do not alter the AC power cable and do not plug it forcibly. Failure to comply may cause electric shock and/or fire.
- Use an AC power cable which complies with the safety standard of the country.
- Do not touch the plug of the AC power cable when your hands are wet. This may cause electric shock.
- This product is connected signal ground with frame ground. If your developing product is transformless (not having isolation transformer of AC power), this may cause electric shock. Also, this may give an unrepairable damage to this product and your developing one.
 While developing, connect AC power of the product to commercial power through isolation transformer in order to avoid these dangers.
- If other equipment is connected to the same branch circuit, care should be taken not to overload the circuit.

- If you smell a strange odor, hear an unusual sound, or see smoke coming from this product, then
 disconnect power immediately by unplugging the AC power cable from the outlet.
 Do not use this as it is because of the danger of electric shock and/or fire. In this case, contact your
 local distributor.
- Before setting up this product and connecting it to other devices, turn off power or remove a power cable to prevent injury or product damage.

Warnings to Be Taken for This Product:

- Do not disassemble or modify this product. Personal injury due to electric shock may occur if this product is disassembled and modified.
- Make sure nothing falls into the cooling fan on the top panel, especially liquids, metal objects, or anything combustible.

Warning for Installation:

- Do not set this product in water or areas of high humidity. Make sure that the product does not get wet. Spilling water or some other liquid into the product may cause unrepairable damage.
- Please use this product indoors.

Warning for Use Environment:

• This equipment is to be used in an environment with a maximum ambient temperature of 35°C. Care should be taken that this temperature is not exceeded.

Note on Connecting the Power Supply:

- Do not use any power cable other than the one that is included with the product.
- At the time of connection with installation of this product or other equipments, please extract an AC/DC adaptor from a plug socket and prevent an injury and an accident.
- Pay attention to the polarities of the power supply. If its positive and negative poles are connected in reverse, the internal circuit may be broken.

Power supply injection:

• Once the power is turned off, wait for about 10 seconds before turning it back on again.

Cautions to Be Taken for Handling This Product:

- Handle the product with caution, taking care not to apply strong mechanical shock to the product by dropping or letting it fall down.
- Do not touch the communication interface connector pins or other connector pins directly with your hand. Static electricity from your body may break down the internal circuit of the product.
- Do not pull the product by the cable connecting to a board in it. Do not hold down a board while you pull the other end of it. The cable may break.

Contents		
1.	Outline	10
1.1.	Package Components	10
1.2.	System Configuration	11
1.2.1.	System Configuration	11
1.2.2.	Names and Functions of each part of the System	12
1.3.	Setup Method (Up to Boot loader starting)	13
1.4.	Specification List	14
1.5.	Address Map	16
2.	Functional Specification	17
2.1.	Power Supply Specification	17
2.1.1.	DC Jack Input Power Supply	18
2.2.	Switches Specification	18
2.2.1.	DIP Switch for CPU Mode Setup	18
2.2.2.	DIP Switch for Debugging	19
2.2.3.	Power On Switch	19
2.2.4.	Switch for System Reset	19
2.2.5.	Switch for Manual Reset	20
2.2.6.	DIP Switch for Maintenance	20
2.3.	LED Specification	21
2.3.1.	LED for the SH7751R status	21
2.3.2.	LED for the Ethernet Hub	21
2.3.3.	LED for the CF Card	21
2.3.4.	LED for the USB Hub	21
2.3.5.	LED for Power Supply	21
2.3.6.	LED for Debugging	21
2.4.	JTAG Emurator Interface	22
2.5.	Memories	22
2.5.1.	An Access Timing Setup to Each Device Connected to SH Bus	22
2.6.	PCI Devices	23
2.6.1.	PCI Card Slot	23
2.6.2.	CardBus Card Connector	23
2.6.3.	LAN Connector	23
2.6.3.1.	MAC Address Assignment	23
2.7.	2D Graphic Controller Interface	24
2.7.1.	CRT Connector	24
2.7.2.	LCD Connector	25
2.7.3.	LCD Back Light Connector	26
2.7.4.	USB Connector	26
2.7.5.	SM501 Extention Connector	27
2.8.	Touch Panel Connector	28
2.9.	SH Bus Extention Connector	29
2.10.	Serial Connector	36
2.11.	CF Card Connector	36
2.12.	FROM Board Connector	37
2.13.	Real Time Clock	39
2.14.	Serial Interface (Internal FPGA)	39
2.15.	Reset Signal	40
2.15.1.	Power On Reset	40
2.15.2.	System Reset	41
2.15.3.	Manual Reset	41
2.15.4.	CF Card Reset	41
3.	FPGA Logic Function Specification	42
3.1.	Pin Function	42
3.2.	Register Map	47
4.	Extension Board Specification	48
4.1.	About the extension boaed size	
4.2.	The allowable current of add-in board and PCI card	49

R0P751RLC0011RL	. User's manual
-----------------	-----------------

\sim		
Co	nta	ntc
-	шс	HIG

4.2.1.	The allowable current of add-in board	49
4.2.2.	The allowable current of PCI board	
5.	Boot Loader Specification	
5.1.	Boot Loader Functional List	
6	Linux Kernel Download	

1. Outline

1.1. Package Components

This product is constituted by the following board and parts. When opened, please check whether it has gathered altogether.

Table 1.1.1 The contents list of packing

Item	Description	Quantity
R0P751RLC0011RL	SH7751R Platform	1
FROM Board (Bus width is 32bit 64M Byte)	Within boot loader	1
AC Adapter	DC12.0V 5.0A	1
CD-ROM	User's manual, Sample program etc.	1

^{*} If there is any question or doubt about the packaged product, contact your local distributor.

1.2. System Configuration

1.2.1. System Configuration

Figure 1.2.1 shows the system configuration.

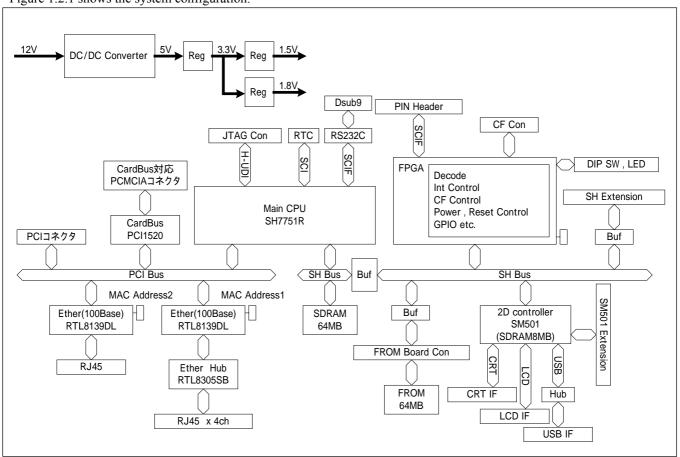


Figure 1.2.1 R0P751RLC0011RL system configuration

1.2.2. Names and Functions of each part of the System

Figure 1.2.2 shows the names of parts reference.

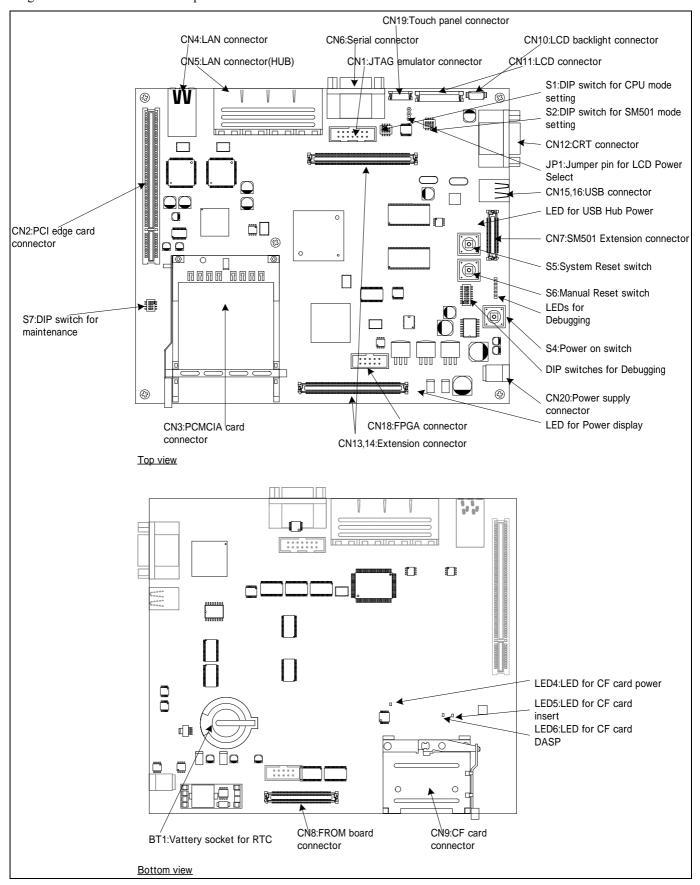


Figure 1.2.2 Name of R0P751RLC0011RL's parts reference

1.3. Setup Method (Up to Boot loader starting)

Figure 1.3.1 shows the setting up this system. Please prepare the follows:

Console PC

RS232C cross cable

Please prepare CF card, a CRT monitor, network environment, etc. if needed.

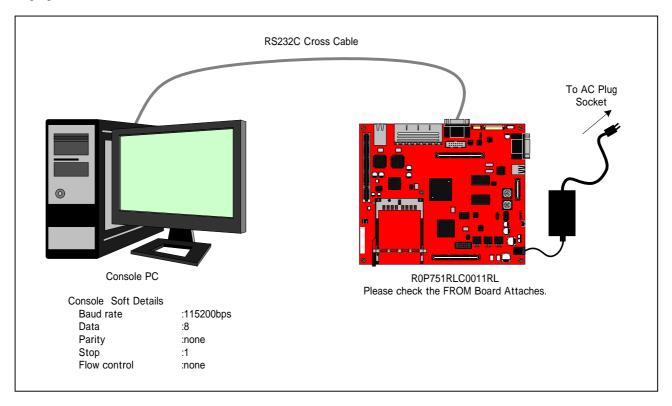
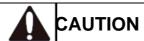


Figure 1.3.1 Set Up this system

(1) Please attach the FROM board in CN8 mounted in the solder side of R0P751RLC0011RL. (Be careful of poor contact.)



Where the power supply of this product is intercepted, please be sure to make connection of a FROM board. Moreover, be careful of poor contact of a FROM board. The mistaken usage leads to destruction of this product.

- (2) Connect the terminal for consoles with this board with a RS232C cross cable.
- (3) Start terminal software on the terminal for consoles.

(baudrate:115200bps, data:8bit, parity:none, stop bit:1bit, flow control:none)

- (4) Insert an attached AC/DC adaptor in CN20, and connect with a plug socket.
- (5) If S4 of R0P751RLC0011RL is pushed, a power supply injection will be carried out. (Red button)

If S4 is pushed again, power supply interception is possible. However, while using CF card, please carry out power supply interception processing in carried FPGA. When S4 is pushed during CF card operation and power supply interception is performed, there is possibility of destruction of CF card. Please refer to the clause of FPGA functional explanation about the specification of FPGA.

1.4. Specification List

Table 1.4.1 shows a list of specifications.

Table 1.4.1 R0P751RLC0011RL Specifications

T	Table 1.4.1 R0P751RLC0011RL Specifications		
Item	Description		
CPU	HD6417751RBP240V (Renesas Technorogy)		
	• Input Clock: 20MHz		
	• CPU Clock(I): 240MHz (Mode 5)		
	• Bus Clock(B): 120MHz (Mode 5)		
	• Peripheral Clock(P): 60MHz (Mode 5)		
	• PCI Bus: 33MHz (4ch)		
	• Package: 256pins BGA (1.27mm pitch)		
Memory	FROM board:S29PL127J60TFI130 (Spansion)		
	• FROM:64M Byte • 32bit Bus Access		
	EDS2516ADTA-75E (Elpida memory)		
	• SDRAM:64MB		
TDC A	• 32bit Bus Access		
FPGA	EP1C4F400C8N (ALTERA)		
	• Address Decode ,Interrupt control ,CF control etc.		
	Configuration ROM: EPCS4SI8N		
2D Graphic Controller	SM501GX08LF00-AB (Silicon Motion)		
LAN Controller	RTL8139DL-LF (Realtek)		
	LAN Connector: LU1S041C-43-LF(BOTHHAND)		
LAN Hub Controller	RTL8305SB-VD-LF (Realtek)		
	LAN Connector:0810-1X4T-36-F(BelFuse)		
CardBus Controller	PCI1520ZHK (Texas Instruments)		
Real Time Clock	RTC-9701JE(Epson Toyocom)		
	• Uses SH7751R'SCI		
LED	• for Debugging (8):Control FPGA register		
	• for Status (6)		
Switch	• for Power ON (x 1)		
	• for RESET (x 2)		
	• for Debugging (8bit x 1)		
	• for Mode setting (4bit x 2)		
Compact Flash Card Connector	Header: ICM-MA2H-SS52-N11B(LF)(SN) (JST)		
	Ejector: ICME-CB68L5-302N (JST)		
PCMCIA Card Connector	Header: ICM-CB68H-S112-502N(LF)(SN) (JST)		
	Ejector:ICM-MAE-R32 (JST)		
Serial Connector	RS232C Connector:JEY- 9P-1A2B (JST)		
	SH7751R's SCIF		
Connectors	SH Bus Extension connector: 52837-1679 (Molex)		
	FROM board connector:52837-1079 (Molex)		
	SM501 Extension connector:52837-0679 (Molex)		
	USB connector:XM7A-0442-A (Omron)		
	CRT connector:XM4L-1542-132 (Omron)		
	LCD connector:40FLH-SM1-TB(LF)(SN) (JST)		
	LCD backlight connector:53261-0590 (Molex)		
	Touchpanel interface connector:		
	14FLH-SM1-TB (LF)(SN) (JST)		
	SH7751R JTAG Emulator connector (14pins)		
	XG4C-1031 (Omron)		
	EPCS4SI8N connector (10pins)		
	XG4C-1431 (Omron)		

Item	Description	
Power IN	2.1mmSocket Center Plus	
	• From AC/DC Adapter	
Size	• Size: 170mm × 200mm	
Operating temperature	5 to 35°C (no dew)	
Storage temperature	-10 to 60°C (no dew)	

1.5. Address Map

Figure 1.5.1 shows Address Map. Please refer to the clause of FPGA functional explanation about the specification of FPGA.

H 0000_0000			
	Area O	<u>32bit</u>	FROM Area (64MB)
<u>H 03FF_FFFF</u>			
H 0400 0000			FPGA Area (80B)
<u>H 0400_004F</u> <u>H 0400_0050</u>	Area 1	<u>16bit</u>	
H 07FF_FFFF			<u>Disable Area (FPGA Shadow)</u>
H 0800 0000			
	Area 2	8/16/32 bit	Extension Area (64MB)
H OBFF_FFFF			
H 0C00_0000			
	Area 3	<u>32bit</u>	SDRAM Area (64MB)
H OFFF_FFFF			
H 1000 0000			
	Area 4	<u>32bit</u>	SM501GX08LF00 Area
H 13FF_FFFF			
H 1400_0000			
	Area 5	<u>16bit</u>	Compact FLASH Area (64MB)
H 17FF_FFFF			
H 1800 0000		- / - /	
	Area 6	8/16/32 bit	Extension Area (64MB)
H 1BFF_FFFF		~	

Figure 1.5.1 SH7751R Address Map

2. Functional Specification

2.1. Power Supply Specification

This board operates by supply of 12V from an attached AC/DC adaptor.

A power supply system figure is shown in Fig. 2.1.1

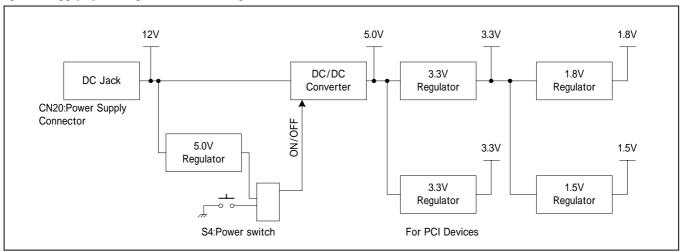
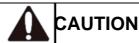


Figure 2.1.1 power-supply system figure

Each voltage is used by the following blocks. The main power supply use blocks are shown in Table 2.1.1.

Voltage	Use place	Note
	PCI connector	
1017	PCMCIA connector	
12V	Inverter for LCD	
	The connector for extension	
	Standby power	
	PCI connector	
5.017	PCMCIA connector	
5.0V	LAN controller	RTL8139DL
	USB Hub controller	
	拡張connector	
	PCI connector	
	PCMCIA connector	
	SH7751R	HD6417751RBP240
	FROM	S29PL127J60TFI130
3.3V	SDRAM	EDS2516ADTA
	FPGA	EP1C4F400C8N
3.3 V	SM501	SM501GX08LF00
	CF card connector	
	CardBus card controller	PCI1520ZHK
	LAN controller	RTL8139DL
	LAN Hub controller	RTL8305SB
	The connector for extension	
1.8V	SM501 core power	SM501GX08LF00
1.5V	SH7751R core power	HD6417751RBP240
1.3 V	FPGA core power	EP1C4F400C8N

Table 2.1.1 The main power supply use blocks


2.1.1. DC Jack Input Power Supply

The input power supply specification from DC jack of this board is shown.

Please choose the power supply which suits the specification shown in Table 2.1.2 in the case of use of except for an attached AC/DC adaptor.

Table 2.1.2 DC jack input specification.

	1 1
Item	Specification
Plug	2.5mm
Plug Polarity	Outside: Minus, inner side:Plus.
Input voltage	12.0V
Supply current	More than 5.0A

Keep in mind that near DC jack becomes high temperature very much at the time of this product operation.

When an AC/DC adaptor with the reverse polarity of a plug is used, it leads to destruction of this product. Moreover, keep in mind that there is possibility of emitting smoke and ignition.

2.2. Switches Specification

Three push switches and three DIP switches are mounted in this board.

2.2.1. DIP Switch for CPU Mode Setup

S1 is the DIP switch for a mode setup of operation of SH7751R. The clock mode and the endian of SH7751R are specified. The S1 specification is shown in Table 2.2.1 and the S1appearance figure is shown in Fig. 2.2.1. It is in a shading state at the time of shipment, it was made into the clock mode 5 (internal:240MHz, external bus:120MHz, circumference module:60MHz), and is set as a little endian.

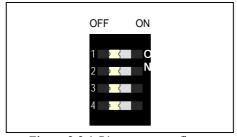


Figure 2.2.1 S1 appearance figure

Table 2.2.1 S1 specification.

Switch	Connection terminal	ON	OFF	Function
S1-1	SH7751R_MD0	Н	L	
S1-2	SH7751R_MD1	Н	L	A setup of an clock mode
S1-3	SH7751R_MD2	Н	L	
				A setup of an endian
S1-4	SH7751R_MD5	H	L	L:Big endian
				H:Little endian

2.2.2. DIP Switch for Debugging

S3 is a DIP switch for debugging. It can connect with FPGA and can refer to by the dedicated register. It can be used of a user. Please refer to the clause of FPGA functional explanation about the specification of FPGA. The S3 appearance figure is shown in Table 2.2.2 and the S3 specification is shown in Fig. 2.2.2.

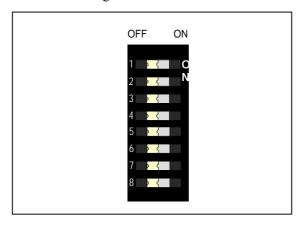


Figure 2.2.2 S3 appearance figure.

		1 able 2.2.2	33 specification	1.
Switch	Connection terminal	ON	OFF	Function
S3-1	FPGA	Н	L	
S3-2	FPGA	Н	L	
S3-3	FPGA	Н	L	
S3-4	FPGA	Н	L	Defence is respille at EDCA
S3-5	FPGA	Н	L	Reference is possible at FPGA
S3-6	FPGA	Н	L	
S3-7	FPGA	Н	L	
S3-8	FPGA	Н	L	

Table 2.2.2 S3 specification

2.2.3. Power On Switch

S4 is a power supply switch. Key-top is "red". After inserting an attached AC/DC adaptor in CN20, a power supply is supplied to this board under switch-pushing. A power supply is again intercepted under S4 swich-pushing at the time of this board operation.

The method of power supply interception is controllable by "S4 switch-pushing" or the control from FPGA. When you perform sudden power supply interception by S4, since the data of CF card etc. may be destroyed, please perform power supply interception by the control from FPGA.

Please refer to the clause of FPGA functional explanation about the specification of FPGA.

2.2.4. Switch for System Reset

S5 is a system-reset switch. A key-top is "white". A reset pulse is generated to this timing in each device under S5 swich-pushing. The explanation about a reset signal is indicated to "2.15 Reset signal".

2.2.5. Switch for Manual Reset

S6 is a manual reset switch. A key-top is "blue". Manual reset is inputted into SH7751R under S6 swich-pushing. There is no input to other devices. The explanation about a reset signal is indicated to "2.15 Reset signal".

2.2.6. DIP Switch for Maintenance

S7 is a DIP switch for a maintenance setup. Moreover, the bus width of FROM at the time of starting is also set up by ON/OFF of bit4.

It can connect with FPGA and can refer to by the dedicated register. Please refer to the clause of FPGA functional explanation about the specification of FPGA. An attached FROM board is connected, and if bit1 is set as "ON" and started, it will start in maintenance mode.

By starting in maintenance mode, use of boot loader update and test mode is attained.

Please refer to the clause of boot loader functional explanation about the specification in boot loader update and test mode.

The S7 specification is shown in Table 2.2.6 and the S7 appearance figure is shown in Fig. 2.2.6. It is in a shading state at the time of shipment, and it is set as normal mode starting and a bus width of 32 bits.

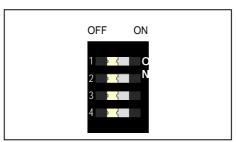


Figure 2.2.6 S7 appearance figure

Table 2.2.6 S7 specification

Switch	Connection terminal	ON	OFF	Function
S7-1	FPGA	Н	L	Boot loader mode
S7-2	FPGA	Н	L	Reservation
S7-3	FPGA	Н	L	Reservation
S7-4	SH7751R_MD3	Н	L	Area 0 bus width is specified 0: 16bit / 1: 32bit

2.3. LED Specification

2.3.1. LED for the SH7751R status

LED1 is LED for a status display of SH7751R. It has connected with STATUS1, and STATUS0 of SH7751R ports. Functional assignment of LED is shown in Table 2.3.1.

Table 2.3.1 LED functional assignment.

LED	Function	Status
	Reset	Lighting off
LED1	Sleep	Green lighting
LED1	Standby	Red lighting
	Nomal	Orange lighting

2.3.2. LED for the Ethernet Hub

LED2 and LED3 are connected to LED_ACT4, and LED_SPD4 of RTL8305SB. A function changes with setup of RTL8305SB. Please refer to the data of RTL8305SB about the details of the usage.

2.3.3. LED for the CF Card

LED4, LED5, and LED 6 are LED for CF cards. It is automatically controlled by CF card insertion. LED functional assignment is shown in Table 2.3.2.

Table 2.3.2 LED functional assignment

LED	Function	Status
LED4	At the time of the power supply to CF card	Lighting
LED5	At the time of CF card insertion	Lighting
LED6	At the time of CF_DASP mode	Lighting

2.3.4. LED for the USB Hub

LED7 and LED8 are connected to a USB Hub controller. If a power supply is supplied to each USB connector, it will light up.LED functional assignment is shown in Table 2.3.3.

Table 2.3.3 LED functional assignment

LED	Function	Status
LED7	It is power supply supply to USB Hub No.1	Lighting
LED8	It is power supply supply to USB Hub No.2	Lighting

2.3.5. LED for Power Supply

LED17 is LED for a power supply display. If a power supply is supplied to this board, it will light up.

2.3.6. LED for Debugging

LED9 to LED16 are LED for debugging. It is controllable by FPGA. Please refer to the clause of FPGA functional explanation about the specification of FPGA.

2.4. JTAG Emurator Interface

CN1 is a connector for JTAG emulator. The emulator which used the H-UDI interface of SH7751R is connected. Please use it, connecting the emulator corresponding to H-UDI made from Renesas Technology Corp.

The general-view figure of a JTAG emulator connector is shown in Fig. 2.4.1, and signal arrangement is shown in Table 2.4.1.

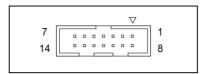


Figure 2.4.1 Appearance figure of JTAG emulator connector

Table 2.4.1 Signal arrangement of JTAG emulator connector

Pin number	Signal name
1	TCK
2	TRST#
3	TDO
4	ASEBRK#
5	TMS
6	TDI
7	RESET#
8	GND
9	GND
10	GND
11	NC
12	GND
13	GND
14	GND

2.5. Memories

The list of the memory carried in this product is shown in Table 2.5.1.

Table 2.5.1 memory list

Classification	Start address	Size	Bus width	Note
External FROM	H'0000_0000	64MB	32bit	At the time of mounting of an enclosed FROM
				board
External SDRAM	H'0C00_0000	64MB	32bit	

2.5.1. An Access Timing Setup to Each Device Connected to SH Bus

The timing specification of each device linked to the SH7751R local bus of this board is shown in Table 2.5.2.

(STATUS: Input clock is 20MHz and CPU modeis mode5)

Table 2.5.2 The timing specification of each device

Area	Classification	Product name	Bus width	Timing specifications
0	FROM Board	S29PL127J60TFI130	32	The number of soft waits: 9
1	FPGA	EP1C4F400C8N	16	The number of soft waits: 3
3	SDRAM	EDS2516ADTA-75-E	32	CAS latency: 3
4	2DGraphic controller	SM501GX08LF00-AB	32	The number of soft waits: 9
5	CF card	CF card	16	The number of SH7751R soft waits: 12 The CFCTL register of FPGA also needs to be set up.

2.6. PCI Devices

With this board, one PCI connector, one CardBus card controller, and two LAN controllers are connected to the PCI bus of SH7751R. One of two LAN controllers connects a Hub controller, and it has 4 ports.

Each device number (DEVNO) is shown in Table 2.6.1. A device number is a number of a device set as the object of configuration access.

Table 2.6.1 device number list

DEVNO	Device	Function	Interruption
H'0	PCI card connector	all-purpose PCI card	PCI_INTA
H'1	RTL8139DL (with RTL8305SB)	Ethernet 10/100Base (with Ethernet Hub)	PCI_INTB
H'2	PCI1520ZHK	PCI – CardBus bridge	PCI_INTC
H'3	RTL8139DL	Ethernet 10/100Base	PCI_INTD

2.6.1. PCI Card Slot

CN2 is a PCI card connector. It has connected with the PCI bus of SH7751R.

Although the connector based on PCI 5V card specification is mounted, a PCI bus signal should use the card of 3.3V signal specification for the specification of SH7751R. If 5V signal is supplied to SH7751R, there is a possibility of destroying SH7751R.

2.6.2. CardBus Card Connector

CN3 is a CardBus card controller, PCI1520ZHK (made from Texas Instruments) is connected to the PCI bus of SH7751R.

This controller supports the PC card and 3.3V CardBus card of 5V/3.3V mixture.

Please refer to the data of PCI1520ZHK about the details of the usage.

2.6.3. LAN Connector

This board -- as an Ethernet controller -- the product made from REALTEK -- two RTL8139DL(s) are mounted.

Please refer to the data of RTL8139DL about the details of the usage.

Moreover, RTL8139DL arranged for the device number 1 is connected to Hub controller RTL8305SB.

A Hub-controller (RTL8305SB) supports 4 ports.

2.6.3.1. MAC Address Assignment

The MAC Address is written in external EEPROM of RTL8139DL. Please refer to MAC1 and MAC2 on the solder side of this product.

MAC1 is supported the device number 1 and MAC2 is supported the device number 3.

2.7. 2D Graphic Controller Interface

This board -- as 2D graphic controller -- Silicon Motion Inc. make -- SM501GX08LF00-AB is mounted. It has connected with SH bus. About the "RDY" signal to SH7751R, timing adjustment is carried out in FPGA. Please refer to the data of SM501GX08LF00-AB about the details of the usage.

HCLK supplied to SM501GX about this product is use limitation in a laboratory, and Silicon Motion Inc. consents to operation by a maximum of 120MHz. In the adoption to a user's product, please perform a sufficient examination and sufficient evaluation.

2.7.1. CRT Connector

CN12 is a connector for CRT connection. It has connected with the CRT output terminal of SM501. Signal arrangement of the connector for CRT interfaces is shown in Table 2.7.1.

Table 2.7.1 Signal arrangement of connector for CRT interfaces

Pin number	Signal name
1	R
2	G
3	В
4	NC
5	GND
6	GND
7	GND
8	GND
9	NC
10	GND
11	NC
12	NC
13	CRTHS
14	CRTVS
15	NC

2.7.2. LCD Connector

CN11 is a connector for LCD interfaces. It has connected with the LCD output terminal of SM501.

Please use it according to the specification of LCD which the user adopted. The supply voltage of LCD can be chosen in JP1. The connectors currently used are 40 FLH-SM1-TB (LF), and (SN) (made from the J.S.T. Mfg Co.,Ltd) The appearance figure of the connector for LCD interfaces is shown in Fig. 2.7.2, and signal arrangement is shown in Table 2.7.2.

Figure 2.7.2 Connector appearance figure for LCD interfaces

Table 2.7.2 Signal arrangement of connector for LCD interfaces

Pin number	Signal name	1 connector for LCD interfaces Note	
1 in number	GND	Note	
2	CK	Clock signal	
3	GND	Clock Signal	
4		Horizontal Synchronizing signal	
	HSYNC	Horizontal Synchronizing signal	
5	GND	Warding I Complement in a pictural	
6	VSYNC	Vertical Synchronizing signal	
7	GND		
8	R0	_	
9	R1	_	
10	R2	Red data	
11	R3	_	
12	R4		
13	R5		
14	GND		
15	G0		
16	G1		
17	G2	Green data	
18	G3		
19	G4		
20	G5		
21	GND		
22	B0		
23	B1		
24	B2	Blue data	
25	В3	Diue data	
26	B4		
27	B5		
28	GND		
29	FPEN	LCD enable	
30	GND		
31	GND		
32	NC		
33	NC		
34	VCC		
35	VCC		
36	VCC	3.3V/5.0V change is possible at J1.	
37	VCC	1-2 short-circuit: 3.3V	
38	VCC	2-3 short-circuit: 5.0V	
39	VCC	It is 3.3V setup at the time of shipment.	
40	VCC		

2.7.3. LCD Back Light Connector

CN10 is a connector for LCD inverter connection. The appearance figure of the connector for LCD inverter connection is shown in Fig. 2.7.3, and signal arrangement of the connector for LCD inverter connection is shown in Table 2.7.3. The connector currently used is the product 53261-0571 made from Molex. Conformity housing is 51021-0500.

Figure 2.7.3 Connector appearance figure for LCD inverter connection

Table 2.7.2 Signal arrangement of connector for LCD inverter connection

Pin number	Signal name	Note
1	VCC	12.0V
2	GND	
3	VRMT	Inverter ON/OFF
4	VR0	Brightness (however,
5	VR1	short at 20Kohm).

2.7.4. USB Connector

CN15 and CN16 are the connectors for USB connection. The USB terminal of SM501 is connected to LSI for USB Hub, and 2ch mounting is carried out. It is based on USB1.1.

2.7.5. SM501 Extention Connector

CN17 has connected the signal of I2C of SM501 and a ZV port, and AC97 and UART. The connector has not mounted. Please prepare of a user if needed. An assumption connector is the product 52837-0679 made from Molex. Signal arrangement is shown in Table 2.7.5.

Table 2.7.5 Signal arrangement of SM501 extension interface connector

Pin number	Signal name	Note	Pin number	Signal name	Note
1	5.0V		31	GPIO59	ZV port
2	5.0V		32	GPIO29	
3	5.0V		33	GPIO60	ZV port
4	5.0V		34	GPIO37	UART
5	GND		35	GPIO61	ZV port
6	GND		36	GND	
7	GPIO16	ZV port	37	GPIO62	ZV port
8	GND		38	GND	
9	GPIO17	ZV port	39	GPIO63	ZV port
10	GND		40	GND	
11	GPIO18	ZV port	41	GND	
12	GPIO24	AC97	42	GPIO38	UART
13	GPIO19	ZV port	43	VP_HREF	ZV port
14	GPIO25	AC97	44	GND	
15	GPIO20	ZV port	45	VP_VSYNC	ZV port
16	GPIO26	AC97	46	GND	
17	GPIO21	ZV port	47	VP_CLK	ZV port
18	GND		48	GND	
19	GPIO22	ZV port	49	GND	
20	GND		50	GPIO39	UART
21	GPIO23	ZV port	51	I2CCK	I2C
22	GND		52	GND	
23	GND		53	GND	
24	GPIO27	AC97	54	GPIO40	UART
25	GPIO56	ZV port	55	I2CDA	I2CD
26	GND		56	GND	
27	GPIO57	ZV port	57	GND	
28	GND		58	GND	
29	GPIO58	ZV port	59	12V	
30	GPIO28	AC97	60	12V	

2.8. Touch Panel Connector

CN19 is a connector for interfaces for receiving the signal from LSI for touch-panel control. The inputted signal can be referred to in FPGA. Please prepare of a user about a touch-panel interface circuitry. Please refer to the clause of FPGA functional explanation about the specification of FPGA.

The appearance figure of the connector for touch-panel interfaces is shown in Fig. 2.8.1, and signal arrangement is shown in Table 2.8.1.

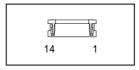


Figure 2.8.1 The connector appearance figure

Table 2.8.1 Signal arrangement of the connector (CN19)

Pin number	Signal name	IO	Note
1	3.3V		
2	3.3V		
3	DCLK	О	Clock output (it can change on FPGA to 60kHz - 110kHz).
4	GND		
5	CS#	О	Chip selection signal
6	GND		
7	DIN	О	Write Data
8	GND		
9	BUSY	I	Busy signal
10	GND		
11	DOUT	I	Read Data
12	GND		
13	IRQ#	I	Interruption
14	GND		

2.9. SH Bus Extention Connector

CN13 and CN14 are SH bus extension interface connectors. General-purpose from SH bus and FPGA for extension I/O is connected. The general-view figure of SH bus extension interface connector is shown in Fig. 2.9.1, and signal arrangement is shown in Table 2.9.1 and Table 2.9.2. A use connector is the product 52837-1679 made from Molex. Please refer to the clause of FPGA functional explanation about the specification of FPGA.

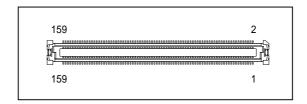


Figure 2.9.1 SH bus extension interface connector general-view figure

Table 2.9.1 Signal arrangement of SH bus extension interface connector (CN13)

Pin number	Signal name	IO	Note
1	3.3V		
2	3.3V		
3	3.3V		
4	3.3V		
5	5.0V		
6	5.0V		
7	5.0V		
8	5.0V		
9	GND		
10	GND		
11	CKIO	О	
12	GND		
13	GND		
14	EXT_D0	IO	
15	EXT_D1	IO	
16	GND		
17	GND		
18	EXT_D2	IO	
19	EXT_D3	IO	
20	GND		
21	GND		
22	EXT_D4	IO	
23	EXT_D5	IO	
24	GND		
25	GND		
26	EXT_D6	IO	
27	EXT_D7	IO	
28	GND		
29	GND		
30	EXT_D8	IO	
31	EXT_D9	IO	
32	GND		
33	GND		
34	EXT_D10	IO	
35	EXT D11	IO	

Pin number	Signal name	IO	Note
36	GND		
37	GND		
38	EXT_D12	IO	
39	EXT_D13	IO	
40	GND		
41	GND		
42	EXT_D14	IO	
43	EXT_D15	IO	
44	GND		
45	GND		
46	EXT_D16	IO	
47	EXT_D17	IO	
48	GND		
49	GND		
50	EXT_D18	IO	
51	EXT_D19	IO	
52	GND		
53	GND		
54	EXT_D20	IO	
55	EXT_D21	IO	
56	GND		
57	GND		
58	EXT_D22	IO	
59	EXT_D23	IO	
60	GND		
61	GND		
62	EXT_D24	IO	
63	EXT_D25	IO	
64	GND		
65	GND		
66	EXT_D26	IO	
67	EXT_D27	IO	
68	GND		
69	GND		
70	EXT_D28	IO	
71	EXT_D29	IO	
72	GND		
73	GND		
74	EXT_D30	IO	
75	EXT_D31	IO	
76	GND		
77	GND		
78	EXT_RST_OUT	О	The reset output to an expansive board
79	EXT_RST_IN	I	Reset input from an expansive board
80	GND		
81	GND		
82	GND		
83	GND		
84	FPGA_GPIO21	IO	It is controlled by FPGA
85	FPGA_GPIO22	IO	It is controlled by FPGA

Pin number	Signal name	IO	Note
86	GND		
87	GND		
88	FPGA_GPIO23	IO	It is controlled by FPGA
89	FPGA_GPIO24	IO	It is controlled by FPGA
90	GND		
91	GND		
92	FPGA_GPIO25	IO	It is controlled by FPGA
93	FPGA_GPIO26	IO	It is controlled by FPGA
94	GND		
95	GND		
96	FPGA_GPIO27	IO	It is controlled by FPGA
97	FPGA_GPIO28	IO	It is controlled by FPGA
98	GND		
99	GND		
100	FPGA_GPIO29	IO	It is controlled by FPGA
101	FPGA_GPIO30	IO	It is controlled by FPGA
102	GND		
103	GND		
104	FPGA_GPIO31	IO	It is controlled by FPGA
105	FPGA_GPIO32	IO	It is controlled by FPGA
106	GND		
107	GND		
108	FPGA_GPIO33	IO	It is controlled by FPGA
109	FPGA_GPIO34	IO	It is controlled by FPGA
110	GND		
111	GND		
112	FPGA_GPIO35	IO	It is controlled by FPGA
113	FPGA_GPIO36	IO	It is controlled by FPGA
114	GND		
115	GND		
116	FPGA_GPIO37	IO	It is controlled by FPGA
117	FPGA_GPIO38	IO	It is controlled by FPGA
118	GND		
119	GND		
120	FPGA_GPIO39	IO	It is controlled by FPGA
121	FPGA_GPIO40	IO	It is controlled by FPGA
122	GND		
123	GND		
124	FPGA_GPIO41	IO	It is controlled by FPGA
125	FPGA_GPIO42	IO	It is controlled by FPGA
126	GND		
127	GND	10	T
128	FPGA_GPIO43	IO	It is controlled by FPGA
129	FPGA_GPIO44	IO	It is controlled by FPGA
130	GND		
131	GND FRCA CRICAS	10	T
132	FPGA_GPIO45	IO	It is controlled by FPGA
133	FPGA_GPIO46	IO	It is controlled by FPGA
134	GND		
135	GND		

Pin number	Signal name	IO	Note
136	FPGA_GPIO47	IO	It is controlled by FPGA
137	FPGA_GPIO48	IO	It is controlled by FPGA
138	GND		
139	GND		
140	FPGA_GPIO49	IO	It is controlled by FPGA
141	FPGA_GPIO50	IO	It is controlled by FPGA
142	GND		
143	GND		
144	FPGA_GPIO51	IO	It is controlled by FPGA
145	FPGA_GPIO52	IO	It is controlled by FPGA
146	GND		
147	GND		
148	FPGA_GPIO53	IO	It is controlled by FPGA
149	GND		
150	GND		
151	GND		
152	GND		
153	3.3V		
154	3.3V		
155	3.3V		
156	3.3V		
157	12V		
158	12V		
159	12V		
160	12V		

Table 2.9.2 Signal arrangement of SH bus extension interface connector (CN14)

Pin number	Signal name	IO	Note
1	3.3V		
2	3.3V		
3	3.3V		
4	3.3V		
5	5.0V		
6	5.0V		
7	5.0V		
8	5.0V		
9	GND		
10	GND		
11	EXT_A0	О	
12	GND		
13	GND		
14	EXT_A1	О	
15	EXT_A2	О	
16	GND		
17	GND		
18	EXT_A3	О	
19	EXT_A4	О	
20	GND		
21	GND		
22	EXT_A5	О	
23	EXT_A6	О	
24	GND		
25	GND		

Pin number	Signal name	IO	Note
26	EXT_A7	О	
27	EXT_A8	О	
28	GND		
29	GND		
30	EXT_A9	О	
31	EXT_A10	О	
32	GND		
33	GND		
34	EXT_A11	О	
35	EXT_A12	О	
36	GND		
37	GND		
38	EXT_A13	О	
39	EXT_A14	О	
40	GND		
41	GND		
42	EXT_A15	О	
43	EXT_A16	О	
44	GND		
45	GND		
46	EXT_A17	О	
47	EXT_A18	О	
48	GND		
49	GND		
50	EXT_A19	О	
51	EXT A20	О	
52	GND		
53	GND		
54	EXT A21	О	
55	EXT_A22	О	
56	GND		
57	GND		
58	EXT_A23	О	
59	EXT A24	О	
60	GND		
61	GND		
62	EXT_A25	О	
63	EXT_CS0#	О	
64	GND		
65	GND		
66	EXT CS1#	О	
67	EXT BS#	О	
68	GND		
69	GND		
70	EXT RD#	О	
71	EXT RD/WR#	0	
72	GND		
73	GND		
74	EXT WE0#	О	
75	EXT WE1#	0	

Pin number	Signal name	IO	Note
76	GND		
77	GND		
78	EXT_WE2#	О	
79	EXT_WE3#	О	
80	GND		
81	GND		
82	EXT_INT0	I	Interruption from an expansive board
83	EXT_INT1	I	Interruption from an expansive board
84	GND		
85	GND		
86	EXT_INT2	I	Interruption from an expansive board
87	EXT_INT3	I	Interruption from an expansive board
88	GND		
89	GND		
90	EXT_DREQ0#	I	
91	EXT_DREQ1#	I	
92	GND		
93	GND		
94	EXT_DRAK0	О	
95	EXT_DRAK1	O	
96	GND		
97	GND		
98	EXT_DACK0	О	
99	EXT_DACK1	O	
100	GND		
101	GND		
102	EXT_CE2A#	O	
103	EXT_CE2B#	O	
104	GND		
105	GND		
106	EXT_RDY#	I	
107	EXT_IOIS16	IO	
108	GND		
109	GND		
110	GND		
111	GND		
112	FPGA_GPIO0	IO	It is controlled by FPGA
113	FPGA_GPIO1	IO	It is controlled by FPGA
114	GND		
115	GND		
116	FPGA_GPIO2	IO	It is controlled by FPGA
117	FPGA_GPIO3	IO	It is controlled by FPGA
118	GND		
119	GND		
120	FPGA_GPIO4	IO	It is controlled by FPGA
121	FPGA_GPIO5	IO	It is controlled by FPGA
122	GND		
123	GND		
124	FPGA_GPIO6	IO	It is controlled by FPGA
125	FPGA_GPIO7	IO	It is controlled by FPGA

Pin number	Signal name	IO	Note
126	GND		
127	GND		
128	FPGA_GPIO8	IO	It is controlled by FPGA
129	FPGA_GPIO9	IO	It is controlled by FPGA
130	GND		
131	GND		
132	FPGA_GPIO10	IO	It is controlled by FPGA
133	FPGA_GPIO11	IO	It is controlled by FPGA
134	GND		
135	GND		
136	FPGA_GPIO12	IO	It is controlled by FPGA
137	FPGA_GPIO13	IO	It is controlled by FPGA
138	GND		
139	GND		
140	FPGA_GPIO14	IO	It is controlled by FPGA
141	FPGA_GPIO15	IO	It is controlled by FPGA
142	GND		
143	GND		
144	FPGA_GPIO16	IO	It is controlled by FPGA
145	FPGA_GPIO17	IO	It is controlled by FPGA
146	GND		
147	GND		
148	FPGA_GPIO18	IO	It is controlled by FPGA
149	FPGA_GPIO19	IO	It is controlled by FPGA
150	GND		
151	GND		
152	FPGA_GPIO20	IO	It is controlled by FPGA
153	3.3V		
154	3.3V		
155	3.3V		
156	3.3V		
157	5.0V		
158	5.0V		
159	5.0V		
160	5.0V		

2.10. Serial Connector

CN6 is mainly used by the object for serial interface cable splicing, connecting with a console. SCIF of SH7751R is connected to Dsub9 pin connector via a RS232C driver receiver. As an exclusive clock for SCIF, a communication baud rate inputs 1.8432MHz into SH7751R, and is considering it as fixation at 115200bps. It connects with a DSUB9 pin cross cable. Signal arrangement of a serial interface connector is shown in Table 2.10.1.

Pin number Signal name Ю Note NC 2 RD Ι Data transmission 3 TD O Data reception 4 DTR It is connection on 6 pins and a board 5 **GND** 6 DSR It is connection on 4 pins and a board 7 RTS Ι Request to Send 8 CTS O Ready for sending 9 NC

Table 2.10.1 Signal arrangement of serial-interface connector (CN6)

2.11, CF Card Connector

CN9 is a connector for CF card interfaces. Timing control is performed in FPGA.

Access equivalent to the True-IDE interface timing based on CFA is possible. It corresponds to PIO mode 0-4. Please refer to the clause of FPGA functional explanation about the specification of FPGA.

2.12. FROM Board Connector

CN8 is a connector for FROM board interfaces. The general-view figure of a FROM board interface connector is shown in Fig. 2.12.1, and signal arrangement is shown in Table 2.12.1. A use connector is the product 52837-1079 made from Molex.

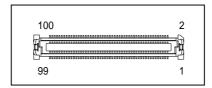


Figure 2.12.1 FROM board interface connector general view

Table 2.12.1 Signal arrangement of FROM board interface connector (CN8)

Pin number	Signal name	IO	Note
1	5.0V		
2	3.3V		
3	GND		
4	GND		
5	D0	IO	
6	D16	IO	
7	D1	IO	
8	D17	IO	
9	D2	IO	
10	D18	IO	
11	D3	IO	
12	D19	IO	
13	D4	IO	
14	D20	IO	
15	D5	IO	
16	D21	IO	
17	D6	IO	
18	D22	IO	
19	D7	IO	
20	D23	IO	
21	D8	IO	
22	D24	IO	
23	D9	IO	
24	D25	IO	
25	5.0V		
26	3.3V		
27	GND		
28	GND		
29	D10	IO	
30	D26	IO	
31	D11	IO	
32	D27	IO	
33	D12	IO	
34	D28	IO	
35	D13	IO	

Pin number	Signal name	IO	Note
36	D29	IO	1,000
37	D14	Ю	
38	D30	IO	
39	D15	IO	
40	D31	IO	
41	A0	0	
42	A13	О	
43	A1	О	
44	A14	О	
45	A2	О	
46	A15	О	
47	A3	О	
48	A16	О	
49	5.0V		
50	3.3V		
51	GND		
52	GND		
53	A4	О	
54	A17	О	
55	A5	О	
56	A18	О	
57	A6	О	
58	A19	О	
59	A7	О	
60	A20	O	
61	A8	O	
62	A21	О	
63	A9	O	
64	A22	O	
65	A10	О	
66	A23	O	
67	A11	O	
68	A24	О	
69	A12	0	
70	A25	O	
71	5.0V		
72	3.3V		
73	GND		
74	GND		
75	WE0#	0	
76	CS0#	0	
77	WE1#	О	
78	NC		
79	WE2#	О	
80	NC		
81	WE3#	О	
82	NC CND		
83	GND		
84	GND PD#	0	
85	RD#	O	

Pin number	Signal name	IO	Note
86	NC		
87	RD/WR#	О	
88	NC		
89	NC		10K pull-up
90	BS#	О	
91	RESET#	О	
92	NC		10K pull-up
93	GND		
94	CKIO	О	
95	5.0V		
96	5.0V		
97	3.3V		
98	3.3V		
99	GND		
100	GND		

2.13. Real Time Clock

The real time clock module "RTC-9701JE" (made from the EPSON TOYOCOM CORPORATION) are mounted in this board as an object for time management. It has connected with the SCI interface of SH7751R. Please refer to the data of RTC-9701JE about the details of the usage.

About the battery back-up, it has realized by inserting a button battery in BT1.

When a button battery is exchanged, a diameter should use a 20mm product.

2.14. Serial Interface (Internal FPGA)

SCIF is mounted in FPGA of this board. The SCIF terminal is prepared by the through hole on this board. The silk of CN17 is printed. Signal arrangement is shown in Table 2.14.1. Please refer to the clause of FPGA functional explanation about the specification of FPGA.

Table 2.14.1 Signal arrangement of connector for SCIF interfaces with built-in FPGA

	5 6		
Pin number	Signal name	IO	Note
1	3.3V		
2	TxD	О	Data transmission
3	RxD	I	Data reception
4	CTS	О	Ready for sending
5	RTS	I	Request to Send
6	NC		
7	GND		
8	GND		

2.15. Reset Signal

The reset signal connection diagram of this product is shown in Fig. 2.15.1.

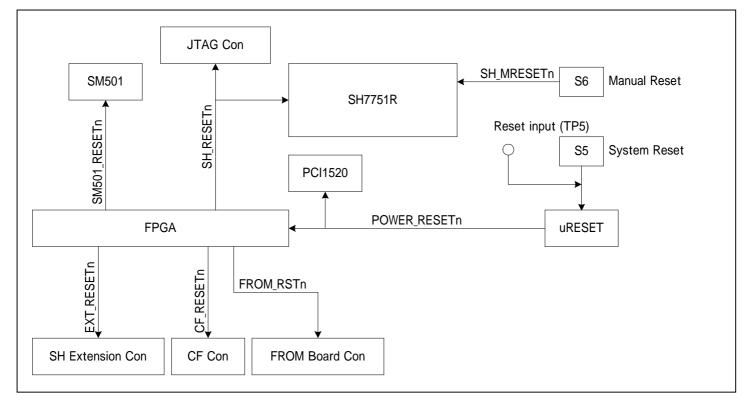


Figure 2.15.1 reset signal connection diagram

2.15.1. Power On Reset

A power-on reset signal is published to each device at the time of a power supply. 3.3V generated from the voltage regulator are made into criteria voltage, and when criteria voltage is less than [2.93V], a reset signal is published from Reset IC. With this board, since the configuration of FPGA is performed at the time of a power supply, the reset signal over SH7751R is inputted after the configuration end of FPGA. Power-on reset timing is shown in Fig. 2.15.2.

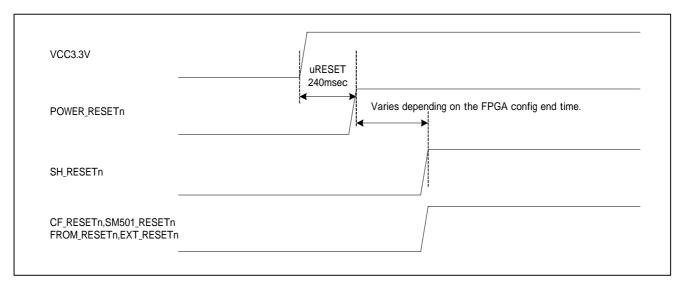


Figure 2.15.2 power-on reset timing

2.15.2. System Reset

This product publishes a system-reset signal under S5 swich-pushing. In a system reset, a reset pulse is published to this timing to each device. System-reset timing is shown in Fig. 2.15.3.

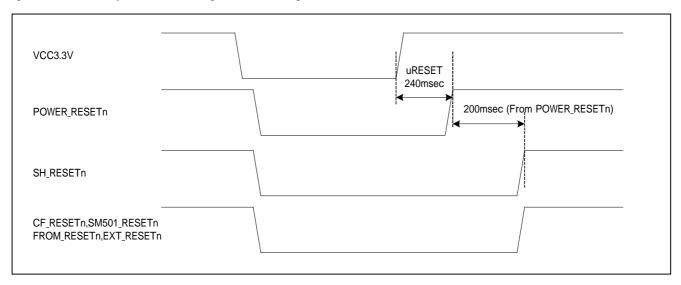


Figure 2.15.3 system-reset timing

2.15.3. Manual Reset

This product publishes a manual reset signal to SH7751R under S6 swich-pushing. The reset signal to other devices is not published. Manual reset timing is shown in Fig. 2.15.4.

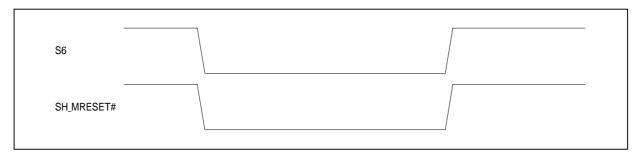


Figure 2.15.4 system-reset timing

2.15.4. CF Card Reset

About the reset signal to CF card, after the power supply outputted from the power supply supply control IC(TPS2211) to CF card is stabilized, it is made the specification of which the reset to CF card is canceled. Moreover, in case the power supply from TPS2211 is intercepted, the reset signal to CF card is confirmed. CF card reset timing is shown in Fig. 2.15.5.

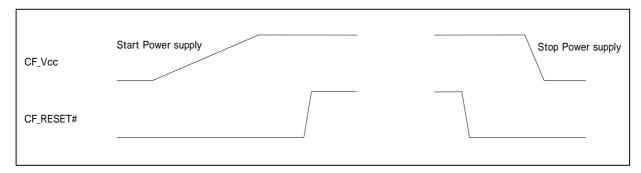


Figure 2.15.5 CF card reset timing

3. FPGA Logic Function Specification

3.1. Pin Function

For the FPGA, the EP1C4F400C8N manufactured by Altera is used. Table 3-1-1 is a list of the pin assignments. Pins dedicated to JTAG and power supply pins are omitted. The EP1C4F400C8N manual is referred to for details.

Table 3-1-1 EP1C4F400C8N Pin assignments

		1 autc 3-1-1	EFIC4F400Con Fill assignments	
Signal Name	FPGA Pin	IO	Function	Active
SH_CS0#	A4	I	SH7751R Chip Select Signal 0	L
SH_CS1#	A6	I	SH7751R Chip Select Signal 1	L
SH_CS2#	A7	I	SH7751R Chip Select Signal 2	L
SH_CS4#	A9	I	SH7751R Chip Select Signal 4	L
SH_CS5#	A10	I	SH7751R Chip Select Signal 5	L
SH_CS6#	B4	I	SH7751R Chip Select Signal 6	L
SH_BS#	B5	I	SH7751R Bus Start Signal	L
SH_WE0#	В6	I	SH7751R Write Enable Signal 0	L
SH_WE1#	В7	I	SH7751R Write Enable Signal 1	L
SH_WE2#	В8	I	SH7751R Write Enable Signal 2	L
SH_WE3#	В9	I	SH7751R Write Enable Signal 3	L
SH_RD#	B10	I	SH7751R Read Enable Signal	L
SH_RDWE#	C2	I	SH7751R Read/Write Strobe Signal	R:H/W:L
SH_RDY#	C5	0	SH7751R Ready Signal	L
SH CKIO	K5	I	SH7751R Clock Signal	-
SH RESET#	T4	О	SH7751R Power ON Reset Signal	L
SH IRL0#	C7	О	SH7751R Interrupt Signal 0	L
SH IRL1#	C8	О	SH7751R Interrupt Signal 1	L
SH IRL2#	С9	О	SH7751R Interrupt Signal 2	L
SH IRL3#	C10	О	SH7751R Interrupt Signal 3	L
SH DREQ0	D1	О	SH7751R DMA Request Signal 0	L
SH DREQ1	D2	О	SH7751R DMA Request Signal 1	L
SH_DACK0	D4	I	SH7751R DMA Acknowledge Signal 0	Н
SH DACK1	D5	I	SH7751R DMA Acknowledge Signal 1	Н
SH A[1]	D6	I	SH7751R Address Bus	-
SH_A[2]	D7	I	SH7751R Address Bus	-
SH_A[3]	D8	I	SH7751R Address Bus	-
SH_A[4]	D9	I	SH7751R Address Bus	-
SH_A[5]	D10	I	SH7751R Address Bus	-
SH_A[6]	E2	I	SH7751R Address Bus	-
SH_A[7]	E3	I	SH7751R Address Bus	-
SH_A[8]	E4	I	SH7751R Address Bus	-
SH_A[9]	E5	I	SH7751R Address Bus	-
SH_A[10]	E6	I	SH7751R Address Bus	-
SH_A[11]	E7	I	SH7751R Address Bus	-
SH_A[12]	E8	I	SH7751R Address Bus	-
SH_A[13]	E9	I	SH7751R Address Bus	-
SH_A[14]	E10	I	SH7751R Address Bus	-
SH_A[15]	F1	I	SH7751R Address Bus	-
SH_A[16]	F2	I	SH7751R Address Bus	-
SH_A[17]	F4	I	SH7751R Address Bus	-
SH_A[18]	F5	I	SH7751R Address Bus	-
SH_A[19]	F6	I	SH7751R Address Bus	-

Signal Name	FPGA Pin	IO	Function	Active
SH A[20]	F7	I	SH7751R Address Bus	Active
SH_A[20] SH_A[21]	F8	I	SH7751R Address Bus	<u>-</u>
SH_A[22]	F10	I	SH7751R Address Bus	
SH_A[23]	G1	I	SH7751R Address Bus	
SH_A[24]	G2	I	SH7751R Address Bus	
	G2 G3	I	SH7751R Address Bus	-
SH_A[25]	+			-
SH_D[0]	G4	IO	SH7751R Data Bus	-
SH_D[1]	G5	IO	SH7751R Data Bus	-
SH_D[2]	G6	IO	SH7751R Data Bus	-
SH_D[3]	G7	IO	SH7751R Data Bus	-
SH_D[4]	H1	IO	SH7751R Data Bus	-
SH_D[5]	H2	IO	SH7751R Data Bus	-
SH_D[6]	H3	IO	SH7751R Data Bus	-
SH_D[7]	H4	IO	SH7751R Data Bus	-
SH_D[8]	H5	IO	SH7751R Data Bus	-
SH_D[9]	Н6	IO	SH7751R Data Bus	-
SH_D[10]	H7	IO	SH7751R Data Bus	-
SH_D[11]	J1	IO	SH7751R Data Bus	-
SH_D[12]	J2	IO	SH7751R Data Bus	-
SH_D[13]	J3	IO	SH7751R Data Bus	-
SH_D[14]	J4	IO	SH7751R Data Bus	-
SH_D[15]	J5	IO	SH7751R Data Bus	-
SH_D[16]	J6	IO	SH7751R Data Bus	-
SH_D[17]	J7	IO	SH7751R Data Bus	-
SH D[18]	Ј8	IO	SH7751R Data Bus	-
SH D[19]	M1	IO	SH7751R Data Bus	-
SH D[20]	M2	IO	SH7751R Data Bus	-
SH D[21]	M3	IO	SH7751R Data Bus	-
SH D[22]	M4	IO	SH7751R Data Bus	-
SH_D[23]	M5	IO	SH7751R Data Bus	-
SH D[24]	M6	IO	SH7751R Data Bus	-
SH_D[25]	M7	IO	SH7751R Data Bus	_
SH D[26]	N1	IO	SH7751R Data Bus	-
SH_D[27]	N2	IO	SH7751R Data Bus	_
SH D[28]	N3	IO	SH7751R Data Bus	-
SH D[29]	N4	IO	SH7751R Data Bus	_
SH D[30]	N5	IO	SH7751R Data Bus	_
SH_D[31]	N6	IO	SH7751R Data Bus	_
CF VCC5EN#	R4	0	CF Card 5.0V Power control Signal	L
CF VCC3EN#	R5	0	CF Card 3.3V Power control Signal	L
CF IORD#	R6	0	CF Card I/O Write strobe Signal	L
CF_IOND#	R7	0	CF Card I/O Read strobe Signal	L
CF_IOWK#	T2	0	CF Card Chip Select Signal	L
CF_CE0# CF_CE1#	T3	0	CF Card Chip Select Signal CF Card Chip Select Signal	L
CF_CE1# CF_CDINT1#	T5	I	CF Card Chip Select Signal CF Card Card Detect Signal 1	L
_	T7			-
CF_CDINT2#		I	CF Card Interpret Signal 2	L
CF_INT	T8	I	CF Card Interrupt Signal	L
CF_RDY#	T9	I	CF Card Ready Signal	H
CF_RST#	T10	0	CF Card Reset Signal	L
CF_DET_LED	R9	0	CF Card Card Detect LED Signal	Н
CF_A[0]	U1	0	CF Card Address Bus	-
CF_A[1]	U2	О	CF Card Address Bus	-

Signal Name	FPGA pin	IO	Function	Active
CF A[2]	U3	00	CF Card Address Bus	-
CF D[0]	V2	IO	CF Data Bus	_
CF D[1]	V3	IO	CF Data Bus	_
CF D[2]	V4	IO	CF Data Bus	_
CF D[3]	V5	IO	CF Data Bus	_
CF_D[4]	V6	IO	CF Data Bus	_
CF D[5]	V7	IO	CF Data Bus	_
CF D[6]	V8	IO	CF Data Bus	_
CF D[7]	V9	IO	CF Data Bus	_
CF D[8]	V10	IO	CF Data Bus	_
CF D[9]	W3	IO	CF Data Bus	_
CF D[10]	W4	IO	CF Data Bus	_
CF D[11]	W5	IO	CF Data Bus	_
CF_D[12]	W6	IO	CF Data Bus	_
CF_D[12] CF D[13]	W7	IO	CF Data Bus	<u>-</u>
CF_D[13] CF D[14]	W8	IO	CF Data Bus	
CF_D[14] CF D[15]	W9	IO	CF Data Bus	-
PCI INTA#	Y6	I	PCI Interrupt Signal A	L
PCI_INTB#	Y7	I	PCI Interrupt Signal B	L
PCI_INTD#	Y8	I	PCI Interrupt Signal C	L
PCI_INTD#	Y9	I	PCI Interrupt Signal D	L
PCI_PRST#	Y4	0	PCI Reset Signal	L
FROM CS# FPGA	R1	0	FlashROM Board Chip Select Signal	L
FROM RST#	R2	0	FlashROM Board Reset Signal	L
EXT RD/WE#	C14	0	External extension connector Read/Write Strobe Signal	R:H/W:L
EXT_RD/WE#	C14	0	External extension connector Read Signal	L
EXT_DB_OE#	C10	I	External extension connector Interrupt Signal 0	L
EXT_INT1#	C17	I	External extension connector Interrupt Signal 1	L
EXT_INT2#	C19	I	External extension connector Interrupt Signal 2	L
EXT_INT3#	K15	I	External extension connector Interrupt Signal 3	L
EXT RESET# OUT	D11	0	External extension connector Reset Signal	L
EXT RESET# IN	D12	I	External extension connector Reset input Signal	L
SM501 RESET#	D12	O	SM501 Reset Signal	L
SM501 INT#	D16	I	SM501 Interrupt Signal	L
SM501_BS#	D17	0	SM501 Bus Start Signal	L
SM501_BS#	D18	0	SM501 Chip Select Signal	L
SM501 RDY#	E17	I	SM501 Ready Signal	L
RTC AIRQ#	F16	I	RealTime Clock Alarm Interrupt Signal	L
RTC_AIRQ#	F17	I	RealTime Clock Timer Interrupt Signal	L
RTC CE	F19	O	RealTime Clock Chip Select Signal	H
LOCAL BUS EN#	G15	0	External extension connector Bus enable signal	L
EXT DACK0	G16	0	External extension connector DMA Request Signal 0	Н
EXT_DACK1	G17	0	External extension connector DMA Request Signal 1	Н
EXT_DREQ0#	G18	I	External extension connector DMA Acknowledge Signal 0	L
EXT_DREQ1#	G19	I	External extension connector DMA Acknowledge Signal 1	L
POWER OFF#	G20	0	Power supply Shutdown Signal	L
SH MODESET#	W14	0	SH7751R Mode setting Signal	L
POWER RESET#	F3	I	PoweON Reset Signal	L
SCI TXD	W10	0	TXD data signal of FPGA's SCIF	-
SCI RXD	W16	I	RXD data signal of FPGA's SCIF	_
TP BUSY	F12	I	Touch-panel controller Busy Signal	Н
TP CS#	H18	0	Touch-panel controller Chip Select Signal	L
-1_00"	1110			

Signal Name	FPGA pin	IO	Function	Active
TP DIN	H19	О	Touch-panel controller Data Output Signal	-
TP DOUT	H20	I	Touch-panel controller Data Input Signal	-
TP DCLK	R11	О	Touch-panel controller Clock Signal	_
TP INT#	M19	I	Touch-panel controller Interrupt Signal	Н
LCD BKL OFF#	C6	0	The back light control signal for LCD panel	L
SCI RTS	V12		RTS signal of FPGA's SCIF for Modems	_
SCI CTS	V13		CTS signal of FPGA's SCIF for Modems	_
Reserved [1]	V14		Reserve Signal 1 (Connected to Resistor)	_
Reserved [2]	V15		Reserve Signal 2 (Connected to Resistor)	_
Reserved [3]	V16		Reserve Signal 3 (Connected to Resistor)	_
Reserved [4]	V17		Reserve Signal 4 (Connected to Resistor)	_
Reserved [5]	W11		Reserve Signal 5 (Connected to Resistor)	_
Reserved [6]	W13		Reserve Signal 6 (Connected to Resistor)	_
USB RESET#	W12		USB Hub controller Reset Signal	_
FPGA GPIO00	H14	IO	FPGA General Input/Output Port	_
FPGA GPIO01	H15	IO	FPGA General Input/Output Port	-
FPGA GPIO02	H16	IO	FPGA General Input/Output Port	_
FPGA GPIO03	H17	IO	FPGA General Input/Output Port	-
FPGA GPIO04	J13	IO	FPGA General Input/Output Port	_
FPGA GPIO05	J14	IO	FPGA General Input/Output Port	_
FPGA GPIO06	J15	IO	FPGA General Input/Output Port	_
FPGA GPIO07	J16	IO	FPGA General Input/Output Port	_
FPGA GPIO08	M14	IO	FPGA General Input/Output Port	_
FPGA GPIO09	M15	IO	FPGA General Input/Output Port	_
FPGA GPIO10	M16	IO	FPGA General Input/Output Port	_
FPGA GPIO11	M17	IO	FPGA General Input/Output Port	_
FPGA GPIO12	M18	IO	FPGA General Input/Output Port	_
FPGA GPIO13	M20	IO	FPGA General Input/Output Port	_
FPGA GPIO14	N14	IO	FPGA General Input/Output Port	_
FPGA GPIO15	N15	IO	FPGA General Input/Output Port	_
FPGA GPIO16	N16	IO	FPGA General Input/Output Port	_
FPGA_GPIO17	N17	IO	FPGA General Input/Output Port	_
FPGA GPIO18	N18	IO	FPGA General Input/Output Port	_
FPGA GPIO19	N19	IO	FPGA General Input/Output Port	_
FPGA GPIO20	P1	IO	FPGA General Input/Output Port	-
FPGA GPIO21	P2	IO	FPGA General Input/Output Port	_
FPGA GPIO22	Р3	IO	FPGA General Input/Output Port	_
FPGA GPIO23	R13	IO	FPGA General Input/Output Port	_
FPGA GPIO24	R14	IO	FPGA General Input/Output Port	_
FPGA GPIO25	R15	IO	FPGA General Input/Output Port	_
FPGA GPIO26	R16	IO	FPGA General Input/Output Port	_
FPGA GPIO27	R17	IO	FPGA General Input/Output Port	-
FPGA GPIO28	R18	IO	FPGA General Input/Output Port	=
FPGA GPIO29	R19	IO	FPGA General Input/Output Port	-
FPGA GPIO30	R20	IO	FPGA General Input/Output Port	-
FPGA GPIO31	U12	IO	FPGA General Input/Output Port	-
FPGA GPIO32	U13	IO	FPGA General Input/Output Port	-
FPGA GPIO33	U14	IO	FPGA General Input/Output Port	-
FPGA GPIO34	U15	IO	FPGA General Input/Output Port	-
FPGA GPIO35	T11	IO	FPGA General Input/Output Port	_
_				
FPGA GPIO37			1 1	_
FPGA_GPIO36	T12 T13	IO IO	FPGA General Input/Output Port FPGA General Input/Output Port	-

Signal Name	FPGA pin	IO	Function	Active
FPGA_GPIO38	T14	IO	FPGA General Input/Output Port	-
FPGA_GPIO39	T15	IO	FPGA General Input/Output Port	-
FPGA_GPIO40	T16	IO	FPGA General Input/Output Port	-
FPGA_GPIO41	T17	IO	FPGA General Input/Output Port	-
FPGA_GPIO42	T18	IO	FPGA General Input/Output Port	-
FPGA_GPIO43	U16	IO	FPGA General Input/Output Port	-
FPGA_GPIO44	U17	IO	FPGA General Input/Output Port	-
FPGA_GPIO45	J17	IO	FPGA General Input/Output Port	-
FPGA_GPIO46	J18	IO	FPGA General Input/Output Port	-
FPGA_GPIO47	J19	IO	FPGA General Input/Output Port	-
FPGA_GPIO48	J20	IO	FPGA General Input/Output Port	-
FPGA_GPIO49	K19	IO	FPGA General Input/Output Port	-
FPGA_GPIO50	V19	IO	FPGA General Input/Output Port	-
FPGA_GPIO51	W18	IO	FPGA General Input/Output Port	-
FPGA_GPIO52	U20	IO	FPGA General Input/Output Port	-
EXT_PRST#	N7	IO	External extension Board Ditect Signal	L
FPGA_LED0	A11	О	LED control signal for debugging	Н
FPGA_LED1	A12	О	LED control signal for debugging	Н
FPGA_LED2	A13	О	LED control signal for debugging	Н
FPGA_LED3	A14	О	LED control signal for debugging	Н
FPGA_LED4	A15	О	LED control signal for debugging	Н
FPGA_LED5	A17	О	LED control signal for debugging	Н
FPGA_LED6	B11	О	LED control signal for debugging	Н
FPGA_LED7	B12	О	LED control signal for debugging	Н
FPGA_SW0	B13	I	DIP switch signal for debugging	-
FPGA_SW1	B14	I	DIP switch signal for debugging	-
FPGA_SW2	B15	I	DIP switch signal for debugging	-
FPGA_SW3	B16	I	DIP switch signal for debugging	-
FPGA_SW4	B17	I	DIP switch signal for debugging	-
FPGA_SW5	B18	I	DIP switch signal for debugging	-
FPGA_SW6	C11	I	DIP switch signal for debugging	-
FPGA_SW7	C12	I	DIP switch signal for debugging	-
B_SW1	P4	I	DIP switch signal for boot loader selection	-
B_SW2	P5	I	DIP switch signal for boot loader selection	-
B SW3	P6	I	DIP switch signal for boot loader selection	-

3.2. Register Map

A register map is shown in Table 3.2.1.

Table3-2-1 FPGA Internal Register List

No	Register Name	Abbreviation	Bit	Initial Value	R/W	Address
1	Interrupt mask control Register	IRLMSK	16	H'0000	R/W	H'0400 0000
2	Interrupt status control Register	IRLMON	16	H'0000	R/W	H'0400_0000
3	CompactFlash timing control Register	CFCTL	16	H'0000	R/W	H'0400 0004
4	CompactFlash power-supply control Register	CFPOW	16	H'0000	R/W	H'0400_0006
5	RealTime Clock chip enable control Register	RTCCE	16	H'0000	R/W	H'0400_000C
6	PCI expansion slot card detection control Register	PCICD	16	H'0000	R	H'0400_000E
7	Touch-panel control Register	TP_CTL	16	H'0000	R/W	H'0400_0010
8	Touch-panel TXCLK variable control Register	TP_TXCLK	16	H'0000	R/W	H'0400_0012
9	Touch-panel control reset control Register	TP_RST	16	H'0000	W	H'0400_0014
10	Touch-panel X position data Register	TP_XRD	16	H'0000	R	H'0400_0016
11	Touch-panel Y position data Register	TP_YRD	16	H'0000	R	H'0400_0018
12	SM501 reset control Register	SM501RST	16	H'0000	W	H'0400_0020
13	CompactFlash reset control Register	CFRST	16	H'0000	W	H'0400_0024
14	Expansion Connector reset control Register	EXTRST	16	H'0000	R/W	H'0400_0028
15	CompactFlash insertion detection interrupt clear control Register	CFCDINTCLR	16	H'0000	W	H'0400_002A
16	Board power OFF control Register	POWOFF	16	H'0000	W	H'0400_0030
17	FPGA version management control Register	VERREG	16	H'0010	R	H'0400_0032
18	General input port control Register	INPORT	16	H'00xx	R	H'0400_0034
19	General output port control Register	OUTPORT	16	H'0000	W	H'0400_0036
20	Board version Register	BVERREG	16	H'0011	R	H'0400_0038
21	GPIO Port 0 Data Register	GPIO_DATA_0G	16	H'0000	R/W	H'0400_0040
22	GPIO Port 1 Data Register	GPIO_DATA_1G	16	H'0000	R/W	H'0400_0042
23	GPIO Port 2 Data Register	GPIO_DATA_2G	16	H'0000	R/W	H'0400_0044
24	GPIO Port 3 Data Register	GPIO_DATA_3G	16	H'0011	R/W	H'0400_0046
25	General IO Pin function Register 0	GPIO_DIR_0G	16	H'0000	R/W	H'0400_0048
26	General IO Pin function Register 1	GPIO_DIR_1G	16	H'0000	R/W	H'0400_004A
27	General IO Pin function Register 2	GPIO_DIR_2G	16	H'0000	R/W	H'0400_004C
28	General IO Pin function Register 3	GPIO_DIR_3G	16	H'0000	R/W	H'0400_004E
29	External extension Board Status Register	EXT_PRST	16	H'0000	R	H'0400_0050
30	FlashROM board Reset control Register	FROMRST	16	H'0000	W	H'0400_0052
31	Back light control Register (for LCD Panel)	LCDPOW	18	H'0000	W	H'0400_0054
32	SCIF Serial mode control Register	SCSMR	16	H'0000	R/W	H'0400_0100
33	SCIF Bit rate Register	SCBRR	16	H'00FF	R/W	H'0400_0104
34	SCIF Serial Control Register	SCSCR	16	H'0000	R/W	H'0400_0108
35	SCIF Transmit FIFO Data Register	SCFTDR	16	H'0000	W	H'0400_010C
36	SCIF Status Register	SCFSR	16	H'0060	R/(W)	H'0400_0110
37	SCIF Receive FIFO Register	SCFRDR	16	H'0000	R	H'0400_0114
38	SCIF FIFO control Register	SCFCR	16	H'0000	R/W	H'0400_0118
39	SCIF FIFO Data count Register	SCFDR	16	H'0000	R	H'0400_011C
40	SCIF Serial port Register	SCSPTR	16	H'0000	R/W	H'0400_0120
41	SCIF line Status Register	SCLSR	16	H'0000	R/(W)	H'0400_0124

4. Extension Board Specification

4.1. About the extension boaed size

Please observe the following matters when the extension board for this product is made by the customer.

Figure 4.1.1 shows the extension board dimensional drawing.

In the substrate size, the vertical direction is 138.00mm fixation. Please give horizontal direction to me longest the shorts by 147.00mm as 100.00mm.

CN13 and 14 are the insect eyeviews on the part side. The terminal number is also similar.

Please do not mount parts other than CN13 and CN14 on the solder side of the extension board.

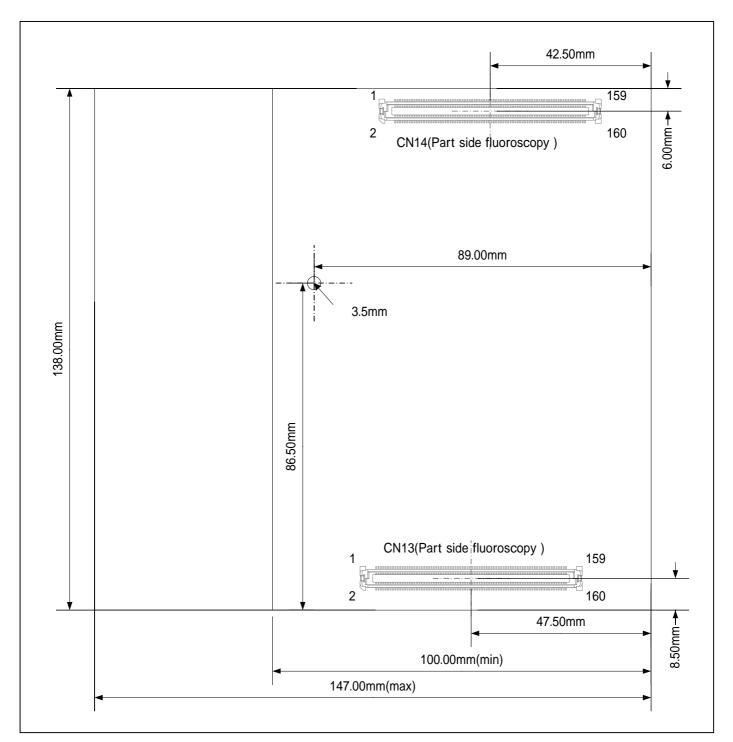
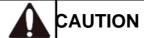


Figure 4.1.1 The extention board dimension

4.2. The allowable current of add-in board and PCI card


The maximum consumed electric power of this product is about 11W. When you carry out use of an add-in board or the PCI card of a user, be careful of the following points.

4.2.1. The allowable current of add-in board

When an add-in board is prepared of a user, please use the thing of the specification which does not exceed 3.3V/2A.

4.2.2. The allowable current of PCI board

When a PCI card is used of a user, please use the thing of the specification which does not exceed 3.3V/3A.

Although the connector based on PCI 5V card specification is mounted, the specification top PCI bus signal of SH7751R should use the card of 3.3V signal specification. If 5V signal is supplied to SH7751R, there is a possibility of destroying SH7751R. Moreover, it leads to destruction of this product.

5. Boot Loader Specification

5.1. Boot Loader Functional List

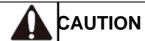
The Boot Loader to start Linux is written on the FROM board bundled to this product. Table 5.1.1 shows the function to support by the boot loader. zImage used in this chapter indicates the Linux kernel image.

Table 5.1.1 Boot Loader Functional list

No	Command	Function	Note
1	h or ?	Command list display	
2	b	Program loading from CF card	
3	1	The message display about license	
4	W	The message display about Warranty(None)	
5	n	Lord zImage from Ethernet	Channel:eth0
6	Z	Program counter movement and execution zImage development ahead	
7	i	Board information display	
8	v	Boot loader version information display	

6. Linux Kernel Download

About Linux software, it is downloadable from the following URL etc.


http://www.kernel.org/

http://www.linux-sh.org/cgi-bin/moin.cgi

http://mirror.sh-linux.org/rpm-index/index.html

http://www.m17n.org/linux-sh/

http://www.superh-linux.org/

Downloadable software is an open source and is not contained in the range of a guarantee.

The information about GPL refers to http://www.gnu.org/copyleft/gpl.html, and please uses it in the range of a user's responsibility.

SH7751R Evaluation Platform Outline R0P751RLC0011RL

Publication Date: July. 2006 Rev.1.00

Published by: Renesas Solutions Corp. System Buisiness Division

Edited by:

Renesas Solutions Corp.

System Buisiness Division

System Buisiness Division
© 2006. Renesas Technology Corp. and Renesas Solutions Corp., All rights

R0P751RLC0011RL Outline

