

MICROCHIP PIC18F2420/2520/4420/4520

PIC18F2420/2520/4420/4520 Rev. B4 Silicon Errata

The PIC18F2420/2520/4420/4520 Rev. B4 parts you have received conform functionally to the Device Data Sheet (DS39631**D**), except for the anomalies described below. Any Data Sheet Clarification issues related to the PIC18F2420/2520/4420/4520 will be reported in a separate Data Sheet errata. Please check the Microchip web site for any existing issues.

The following silicon errata apply only to PIC18F2420/2520/4420/4520 devices with these Device/Revision IDs:

Part Number	Device ID	Revision ID
PIC18F2420	0001 0001 010	0 0111
PIC18F2520	0001 0001 000	0 0111
PIC18F4420	0001 0000 110	0 0111
PIC18F4520	0001 0000 100	0 0111

The Device IDs (DEVID1 and DEVID2) are located at addresses 3FFFEh:3FFFFh in the device's configuration space. They are shown in binary in the format "DEVID2 DEVID1".

All of the issues listed here will be addressed in future revisions of the PIC18F2420/2520/4420/4520 silicon.

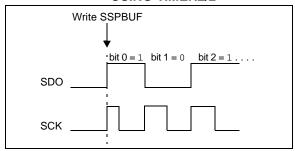
1. Module: MSSP

In SPI Slave mode with slave select enabled (SSPM<3:0> = 0100), the minimum time between the falling edge of the \overline{SS} pin and first SCK edge is greater than specified in parameter 70 in Table 26-16 and Table 26-17 of the above referenced data sheet.

The updated specification is shown in bold in Table 1.

Work around

None.


Date Codes that pertain to this issue:

All engineering and production devices.

2. Module: MSSP (SPI Mode)

When the SPI is using Timer2/2 as the clock source, a shorter than expected SCK pulse may occur on the first bit of the transmitted/received data (Figure 1).

FIGURE 1: SCK PULSE VARIATION USING TIMER2/2

Work around

To avoid producing the short pulse, turn off Timer2 and clear the TMR2 register, load the SSPBUF with the data to transmit and then turn Timer2 back on. Refer to Example 1 for sample code.

EXAMPLE 1: AVOIDING THE INITIAL SHORT SCK PULSE

LOOP	BTFSS	SSPSTAT, BF	;Data received? ;(Xmit complete?)
	BRA	LOOP	; No
	MOVF	SSPBUF, W	;W = SSPBUF
	MOVWF	RXDATA	;Save in user RAM
	MOVF	TXDATA, W	;W = TXDATA
	BCF	T2CON, TMR2ON	;Timer2 off
	CLRF	TMR2	Clear Timer;
	MOVWF	SSPBUF	;Xmit New data
	BSF	T2CON, TMR2ON	;Timer2 on

Date Codes that pertain to this issue:

All engineering and production devices.

TABLE 1: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING)

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	SS ↓ to SCK ↓ or SCK ↑ Input	3 Tcy		ns	

3. Module: Enhanced Universal Synchronous Receiver Transmitter (EUSART)

One bit has been added to the BAUDCON register and one bit has been renamed. The added bit is RXDTP and is in the location, BAUDCON<5>. The renamed bit is the TXCKP bit (BAUDCON<4>), which had been named SCKP.

The TXCKP (BAUDCON<4>) and RXDTP (BAUDCON<5>) bits enable the TX and RX signals to be inverted (polarity reversed).

Register 18-3, on page 204, will be changed as shown.

Work around

None required.

Date Codes that pertain to this issue:

All engineering and production devices.

REGISTER 18-3: BAUDCON: BAUD RATE CONTROL REGISTER

R/W-0	R-1	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN
bit 7							bit 0

		_		_1	_
L	ea	е	n	u	

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7 ABDOVF: Auto-Baud Acquisition Rollover Status bit

1 = A BRG rollover has occurred during Auto-Baud Rate Detect mode

(must be cleared in software)

0 = No BRG rollover has occurred

bit 6 RCIDL: Receive Operation Idle Status bit

1 = Receive operation is Idle

0 = Receive operation is Active

bit 5 RXDTP: Receive Data Polarity Select bit

Asynchronous mode:

1 = Receive data (RX) is inverted. Idle state is a low level.

0 = No inversion of receive data (RX). Idle state is a high level.

Synchronous mode:

1 = Data (DT) is inverted. Idle state is a low level.

0 = No inversion of data (DT). Idle state is a high level.

bit 4 TXCKP: Transmit/Clock Polarity Select bit

Asynchronous mode:

1 = Transmit data (TX) is inverted. Idle state is a low level.

0 = No inversion of transmit data (TX). Idle state is a high level.

Synchronous mode:

1 = Idle state for clock (CK) is a high level

0 = Idle state for clock (CK) is a low level

bit 3 BRG16: 16-bit Baud Rate Register Enable bit

1 = 16-bit Baud Rate Generator - SPBRGH and SPBRG

0 = 8-bit Baud Rate Generator – SPBRG only (Compatible mode); SPBRGH value ignored

bit 2 **Unimplemented:** Read as '0'

REGISTER 18-3: BAUDCON: BAUD RATE CONTROL REGISTER (CONTINUED)

bit 1 WUE: Wake-up Enable bit

Asynchronous mode:

1 = EUSART will continue to sample the RX pin with the interrupt generated on the falling edge; bit cleared in hardware on following rising edge

0 = RX pin is not monitored or rising edge detected

Synchronous mode: Unused in this mode.

bit 0 ABDEN: Auto-Baud Detect Enable bit

Asynchronous mode:

- 1 = Enable baud rate measurement on the next character. Requires reception of a Sync field (55h); cleared in hardware upon completion.
- 0 = Baud rate measurement disabled or completed

Synchronous mode: Unused in this mode.

4. Module: 10-Bit Analog-to-Digital Converter

When the AD clock source is selected as 2 ToSc or RC (when ADCS<2:0> = 000 or x11), in extremely rare cases, the EIL (Integral Linearity Error) and EDL (Differential Linearity Error) may exceed the data sheet specification at codes 511 and 512 only.

Work around

Select the AD clock source as 4 Tosc, 8 Tosc, 16 Tosc, 32 Tosc or 64 Tosc and avoid selecting 2 Tosc or RC.

Date Codes that pertain to this issue:

All engineering and production devices.

5. Module: MSSP

With MSSP in SPI Master mode, Fosc/64 or Timer2/2 clock rate, and CKE = 0, a write collision may occur if SSPBUF is loaded immediately after the transfer is complete. A delay may be required after the MSSP Interrupt Flag bit, SSPIF, is set or the Buffer Full bit, BF, is set and before writing SSPBUF. If the delay is insufficiently short, a write collision may occur as indicated by the WCOL bit being set.

Work around

Add a software delay of one SCK period after detecting the completed transfer and prior to updating the SSPBUF contents. Verify the WCOL bit is clear after writing SSPBUF. If the WCOL is set, clear the bit in software and rewrite the SSPBUF register.

Date Codes that pertain to this issue:

All engineering and production devices.

6. Module: Enhanced Capture/Compare/PWM (ECCP)

With the ECCP configured for Half-Bridge PWM mode (CCP1M<3:0> = 1110), the output may be corrupted for particular duty cycle selections. Affected duty cycle values are 0 though 3, and every subsequent increment of 4 (i.e., 7, 11, 15, 19, etc.).

Work around

None.

Date Codes that pertain to this issue:

All engineering and production devices.

7. Module: Resets (BOR)

An unexpected Reset may occur if the Brown-out Reset module (BOR) is disabled, and then reenabled, when the High/Low-Voltage Detection module (HLVD) is not enabled (HLVDCON<4> = 0).

This issue affects BOR modes: BOREN<1:0> = 10 and BOREN<1:0> = 01. In both of these modes, if the BOR module is re-enabled while the device is active, unexpected Resets may be generated.

Work around

If BOR is required, and power consumption is not an issue, use BOREN<1:0> = 11. For BOREN<1:0> = 10 mode, either switch to BOREN<1:0> = 11 mode or enable the HLVD (HLVDCON<4> = 1) prior to entering Sleep.

If power consumption is an issue and low power is desired, Microchip does not recommend using BOREN<1:0> = 10 mode. Instead, use BOREN<1:0> = 01 and follow the steps below when entering and exiting Sleep.

- Disable BOR by clearing SBOREN (RCON<6> = 0).
- 2. Enter Sleep mode (if desired).
- After exiting Sleep mode, enable the HLVD (HLVDCON<4> = 1).
- 4. Wait for the internal reference voltage (TIRVST) to stabilize (typically 20 μ s).
- 5. Re-enable BOR by setting SBOREN (RCON<6>=1).
- Disable the HLVD by clearing HLVDEN (HLVDCON<4> = 0).

Date Codes that pertain to this issue:

All engineering and production devices.

REVISION HISTORY

Rev A Document (1/2008)

Initial release of this document. Includes silicon issues 1 (MSSP), 2 (MSSP – SPI Mode), 3 (Enhanced Universal Synchronous Receiver Transmitter – EUSART) and 4 (10-Bit Analog-to-Digital Converter).

Rev B Document (10/2008)

Added silicon issues 5 (MSSP), 6 (Enhanced Capture/Compare/PWM – ECCP) and 7 (Resets – BOR).

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
 intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC, SmartShunt and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM, PICDEM.net, PICtail, PIC³² logo, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total Endurance, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2008, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 Technical Support:

http://support.microchip.com

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago

Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara

Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto

Mississauga, Ontario, Canada

Tel: 905-673-0699

Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong

Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Hong Kong SAR

Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Xian Tel: 86-29-8833-7252

Fax: 86-29-8833-7256 China - Zhuhai

Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-4182-8400 Fax: 91-80-4182-8422

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama

Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung

Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei

Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 **UK - Wokingham**

Tel: 44-118-921-5869 Fax: 44-118-921-5820

01/02/08