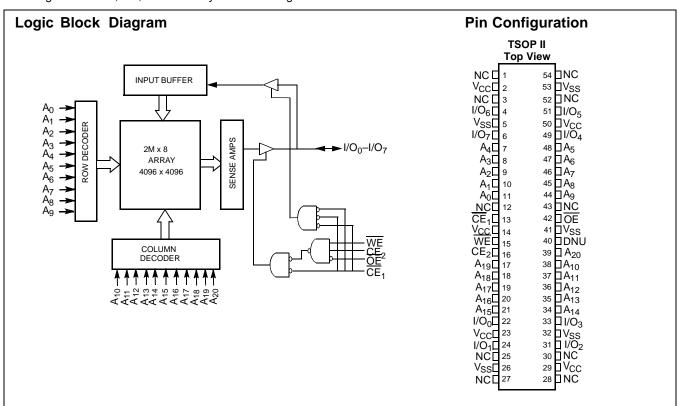


2M x 8 Static RAM

Features

- · High speed
 - $-t_{AA} = 10 \text{ ns}$
- · Low active power
 - -180 mW (max.)
- Operating voltages of 3.3 ± 0.3V
- 2.0V data retention
- · Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with CE1 and CE2 features

Functional Description

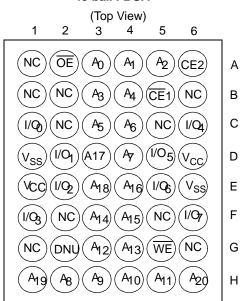

The CY7C1069AV33 is a high-performance CMOS Static RAM organized as 2,097,152 words by 8 bits. Writing to the

device is accomplished by enabling the <u>chip</u> (by taking $\overline{\text{CE}}_1$ LOW and CE_2 HIGH) and Write Enable (WE) inputs LOW.

Reading from the device is accomplished by enabling the chip $(\overline{CE}_1 \text{ LOW})$ and $(\overline{CE}_2 \text{ HIGH})$ as well as forcing the Output Enable (\overline{OE}) LOW while forcing the Write Enable (\overline{WE}) HIGH. See the truth table at the back of this data sheet for a complete description of Read and Write modes.

The input/output pins (I/O $_0$ through I/O $_{15}$) are placed <u>in a</u> high-impedance state when the device is de<u>selected</u> (\overline{CE}_1 HIGH or \overline{CE}_2 LOW), the outputs are disabled (\overline{OE} HIGH), or during a Write operation (\overline{CE}_1 LOW, \overline{CE}_2 HIGH, and \overline{WE} LOW).

The CY7C1069AV33 is available in a 54-pin TSOP II package with center power and ground (revolutionary) pinout, and a 48-ball fine-pitch ball grid array (FBGA) package.


Selection Guide

		-10	-12	Unit
Maximum Access Time		10	12	ns
Maximum Operating Current	Commercial	250	225	mA
	Industrial	250	225	
Maximum CMOS Standby Current	Commercial/Industrial	50	50	mA

Pin Configurations

48-ball FBGA

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied......–55°C to +125°C

Supply Voltage on V_{CC} to Relative $GND^{[1]}$ -0.5V to +4.6V

DC Voltage Applied to Outputs in High-Z State $^{[1]}$ -0.5V to V CC + 0.5V

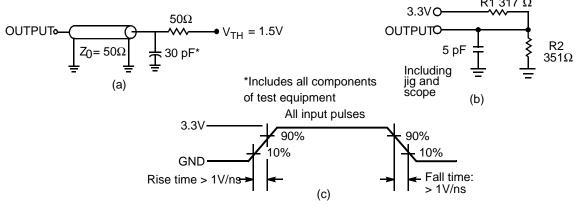
DC Input Voltage ^[1]	0.5V to V _{CC} + 0.5V
Current into Outputs (LOW)	20 mA

Operating Range

Range	Ambient Temperature	V _{cc}
Commercial	0°C to +70°C	$3.3V \pm 0.3V$
Industrial	–40°C to +85°C	

DC Electrical Characteristics Over the Operating Range

			-10		-1			
Parameter	Description	iption Test Conditions					Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -4.0 mA				2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA	$V_{CC} = Min.,$ $I_{OI} = 8.0 \text{ mA}$				0.4	V
V _{IH}	Input HIGH Voltage				V _{CC} + 0.3	2.0	V _{CC} + 0.3	V
V_{IL}	Input LOW Voltage ^[1]			-0.3	0.8	-0.3	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	-1	+1	-1	+1	μΑ	
I _{OZ}	Output Leakage Current	$GND \le V_{OUT} \le V_{CC}$, Out	GND ≤ V _{OUT} ≤ V _{CC} , Output Disabled			-1	+1	μΑ
I _{CC}	V _{CC} Operating	$V_{CC} = Max., f = f_{MAX} =$	Commercial		250		225	mA
	Supply Current	1/t _{RC}	Industrial		250		225	mA
I _{SB1}	Automatic CE Power-down Current —TTL Inputs	$CE_2 \leq V_{IL}, \\ Max. \ V_{CC}, \overline{SCE} \geq V_{IH} \\ V_{IN} \geq V_{IH} \ or \\ V_{IN} \leq V_{IL}, \ f = f_{MAX}$			100		100	mA
I _{SB2}	Automatic CE Power-down Current —CMOS Inputs	$ \begin{array}{l} CE_2 \leq 0.3V \\ \underline{Max}. \ V_{CC}, \\ CE \geq V_{CC} - 0.3V, \\ V_{IN} \geq V_{CC} - 0.3V, \\ or \ V_{IN} \leq 0.3V, \ f = 0 \end{array} $	Commercial/ Industrial		50		50	mA


Capacitance^[2]

Parameter	meter Description Test Conditions			Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz, $V_{CC} = 3.3V$	6	pF
C _{OUT}	I/O Capacitance		8	pF

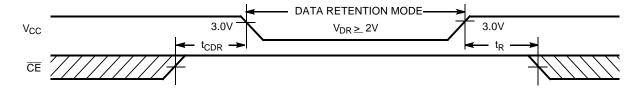
V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
 Tested initially and after any design or process changes that may affect these parameters.

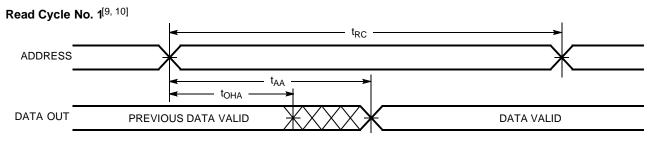
AC Test Loads and Waveforms

AC Switching Characteristics Over the Operating Range [3]

			10		12	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle			1		•	
t _{power}	V _{CC} (typical) to the first access ^[4]	1		1		μs
t _{RC}	Read Cycle Time	10		12		ns
t _{AA}	Address to Data Valid		10		12	ns
t _{OHA}	Data Hold from Address Change	3		3		ns
t _{ACE}	CE ₁ LOW / CE ₂ HIGH to Data Valid		10		12	ns
t _{DOE}	OE LOW to Data Valid		5		6	ns
t _{LZOE}	OE LOW to Low-Z ^[5, 6]			1		ns
t _{HZOE}	OE HIGH to High-Z ^[5, 6]		5		6	ns
t _{LZCE}	CE ₁ LOW / CE ₂ HIGH to Low-Z ^[5, 6]	3		3		ns
t _{HZCE}	CE ₁ HIGH / CE ₂ LOW to High-Z ^[5, 6]		5		6	ns
t _{PU}	CE ₁ LOW / CE ₂ HIGH to Power-up	0		0		ns
t _{PD}	CE ₁ HIGH / CE ₂ LOW to Power-down		10		12	ns
Write Cycle ^[7, 8]		l l				
t _{WC}	Write Cycle Time	10		12		ns
t _{SCE}	CE ₁ LOW / CE ₂ HIGH to Write End	7		8		ns
t _{AW}	Address Set-up to Write End	7		8		ns

- Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified $I_{OL}I_{OH}$ and transmission line loads. Test conditions for the Read cycle use output loading shown in part a) of the AC test loads, unless specified otherwise. 3.
- This part has a voltage regulator which steps down the voltage from 3V to 2V internally. tpower time has to be provided initially before a Read/Write operation is started.
- $t_{HZOE}, t_{HZSCE}, t_{HZWE} \text{ and } t_{LZOE}, t_{LZCE}, \text{ and } t_{LZWE} \text{ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured <math>\pm 200 \text{ mV}$ from steady-state
- At any given temperature and voltage condition, t_{HZSCE} is less than $\underline{t_{LZSCE}}$, t_{HZOE} is less than $\underline{t_{LZOE}}$, and $\underline{t_{HZWE}}$ is less than $\underline{t_{LZWE}}$ for any given device. The internal Write time of the memory is defined by the overlap of $\overline{CE_1}$ LOW / CE_2 HIGH, and \overline{WE} must be LOW along with CE_2 HIGH to initiate a Write, and the transition of any of these signals can terminate the Write. The input data set-up and hold timing should be referenced to the leading edge of the signal that
- terminates the Write.

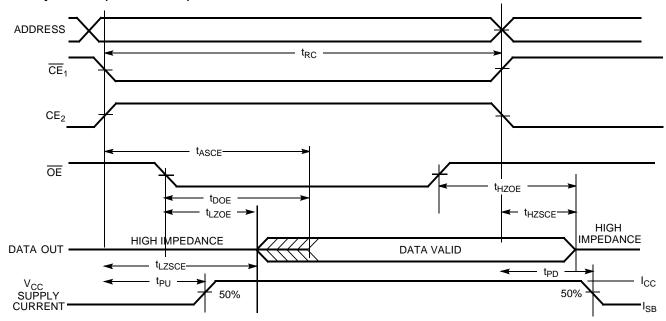

 The minimum Write cycle time for Write Cycle No. 3 ($\overline{\text{WE}}$ controlled, $\overline{\text{OE}}$ LOW) is the sum of t_{HZWE} and t_{SD} .


AC Switching Characteristics Over the Operating Range (continued)^[3]

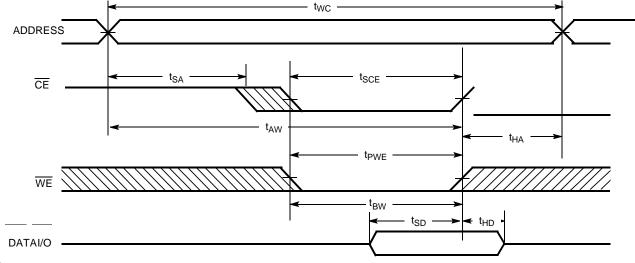
			-10	-12			
Parameter	Description	Min.	Max.	Min.	Max.	Unit	
t _{HA}	Address Hold from Write End	0		0		ns	
t _{SA}	Address Set-up to Write Start	0		0		ns	
t _{PWE}	WE Pulse Width	7		8		ns	
t _{SD}	Data Set-up to Write End	5		6		ns	
t _{HD}	Data Hold from Write End	0		0		ns	
t _{LZWE}	WE HIGH to Low-Z ^[5, 6]	3		3		ns	
t _{HZWE}	WE LOW to High-Z ^[5, 6]		5		6	ns	

Data Retention Waveform

Switching Waveforms



- Device is continuously selected. \$\overline{CE}_1 = V_{IL}\$, \$CE_2 = V_{IH}\$.
 WE is HIGH for Read cycle.

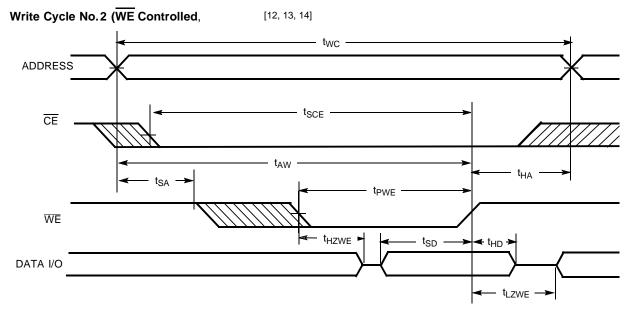


Switching Waveforms (continued)

Read Cycle No. 2(OE Controlled) [10, 11]

Write Cycle No. 1 (CE₁ Controlled)^[12, 13, 14]

- 11. Address valid prior to or coincident with \overline{CE}_1 transition LOW and CE_2 transition HIGH.


 12. Data I/O is high-impedance if \overline{OE} or \overline{BHE} and/or $\overline{BLE} = V_{IH}$.

 13. If \overline{CE}_1 goes HIGH / CE_2 LOW simultaneously with \overline{WE} going HIGH, the output remains in a high-impedance state.

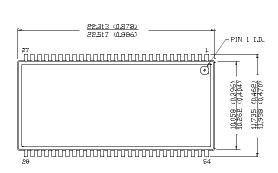
 14. \overline{CE} above is defined as a combination of \overline{CE}_1 and \overline{CE}_2 . It is active low.

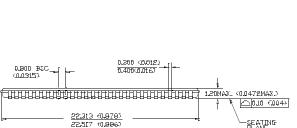
Switching Waveforms (continued)

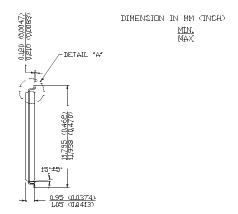
Truth Table

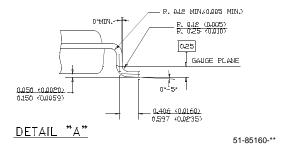
CE ₁	CE ₂	OE	WE	I/O ₀ –I/O ₇	Mode	Power
Н	X	Х	Χ	High-Z	Power-down	Standby (I _{SB})
Х	L	Х	Χ	High-Z	Power-down	Standby (I _{SB})
L	Н	L	Η	Data Out	Read All Bits	Active (I _{CC})
L	Н	L	Η	Data Out	Read Lower Bits Only	Active (I _{CC})
L	Н	L	Η	High-Z	Read Upper Bits Only	Active (I _{CC})
L	Н	Х	Ш	Data In	Write All Bits	Active (I _{CC})
L	Н	Х	Ш	Data In	Write Lower Bits Only	Active (I _{CC})
L	Н	Χ	L	High-Z	Write Upper Bits Only	Active (I _{CC})
L	Н	Н	Н	High-Z	Selected, Outputs Disabled	Active (I _{CC})

Ordering Information

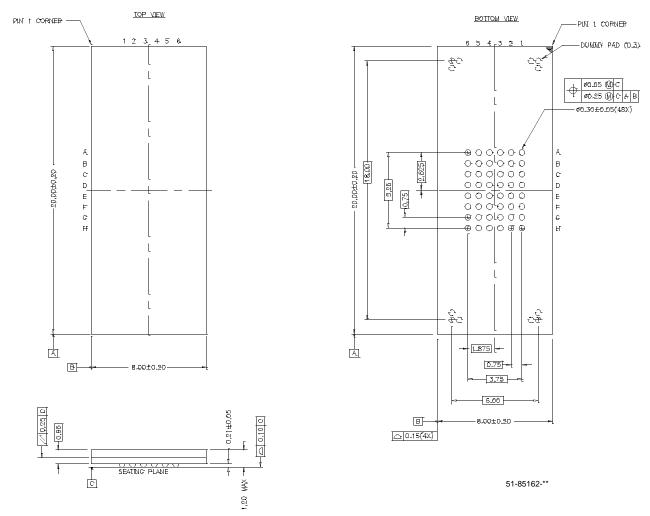

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
10	CY7C1069AV33-10ZC	Z54	54-pin TSOP II	Commercial
	CY7C1069AV33-10ZI]		Industrial
	CY7C1069AV33-10BAC	BA48	48-ball Mini BGA	Commercial
	CY7C1069AV33-10BAI			Industrial
12	CY7C1069AV33-12ZC	Z54	54-pin TSOP II	Commercial
	CY7C1069AV33-12ZI			Industrial
	CY7C1069AV33-12BAC	BA48	48-ball Mini BGA	Commercial
	CY7C1069AV33-12BAI]		Industrial




Package Diagrams


54-lead Thin Small Outline Package, Type II Z54-II

SEATING PLANE



Package Diagrams (continued)

48-ball (8 mm x 20 mm x 1.2 mm) FBGA BA48G

All product and company names mentioned in this document may be the trademarks of their respective holders.

Document Title: CY7C1069AV33 2M x 8 Static RAM Document Number: 38-05255								
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change				
**	113724	03/27/02	NSL	New Data Sheet				
*A	117060	07/31/02	DFP	Removed 15 ns bin.				